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Abstract

Cone-beam computed tomography (CBCT) is used for patient alignment before
treatment and is ideal for use in adaptive radiotherapy to account for tumor
shrinkage, organ deformation and weight loss. However, CBCT images are
prone to artifacts such as streaking and cupping effects, reducing image quality
and CT number accuracy. Our goal was to determine the optimum combination
of cone-beam imaging options to increase the accuracy of image CT numbers.
Several phantoms with and without inserts of known relative electron densities
were imaged using the Varian on-board imaging system. It was found that
CT numbers are most influenced by the selection of field-of-view and are
dependent on object size and filter type. Image acquisition in half-fan mode
consistently produced more accurate CT numbers, regardless of phantom size.
Values measured using full-fan mode can differ by up to 7% from planning
CT values. No differences were found between CT numbers of all phantom
images with low and standard dose modes.

1. Introduction

Conventionally, patients are aligned to external markings made at the time of radiotherapy
simulation. It may be sufficient if the target and organs-at-risk have not moved relative
to external markings. Now, imaging devices such as electronic portal imaging and flat-
panel detectors are available where orthogonal, two-dimensional images can be acquired to
evaluate setup correctness. More recently, cone-beam computed tomography (CBCT) has
been developed as a three-dimensional imaging method for image-guided radiotherapy where
patients are imaged and repositioned in reference to the target volume (Jaffray and Siewerdsen
2000, Li et al 2006, Fu et al 2007, Ding et al 2006, Hansen et al 2006).

Cone-beam imaging is currently available on the Elekta Synergy and Varian On-board
imaging (OBI) systems. These systems have a kV x-ray source and a flat-panel detector
mounted orthogonal to the megavoltage (MV) beam of the linear accelerator. Such an
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arrangement allows convenient patient imaging before treatment and minimizes patient motion
between patient alignment and treatment. A cone-shaped kV beam rotates around the patient
(usually 360◦ rotation but the range can be varied at setup) and 360 or 720 projections are
recorded and reconstructed. Although CBCT imaging can greatly improve patient treatment
accuracy by positioning, significant changes (5–8%) in the delivered treatment have been
found for sessions where there were large anatomic variations caused by setup inaccuracy,
organ deformation, tumor shrinkage and/or weight loss (Lee et al 2008). In the case when
such changes may be clinically significant, original radiotherapy plan should be adapted or
modified to conform to the current (e.g. CBCT) images prior to further treatment to ensure
that the intended dose delivery is achieved (Karellas et al 2008). Several studies on dose
calculations based on CBCT images have been conducted investigating the feasibility of
cone-beam-based plans for dosimetry calculations (Lee et al 2007, 2008, Ding et al 2007b,
Nijkamp et al 2008, Yang et al 2007, Yoo and Yin 2006, Richter et al 2008). Currently,
CBCT images are prone to artifacts such as streaking and cupping effects, reducing image
quality and CT number accuracy (Ding et al 2007a, Katsumata et al 2006). This is due to
increased detected scatter, which is a direct consequence of the large field cone-beam design.
For reliable dosimetry calculations, an accurate conversion of CT numbers (HU) to electron
density (ED) is required. Due to scatter dependence on factors such as patient size, complexity
of patient composition and incoming x-ray characteristics, it may not be viable to use a single
standard HU-ED calibration curve. For example, Cozzi et al showed that a difference of
approximately 300 HU in CT number lead to a maximum treatment dose error of 2.5% (Cozzi
et al 1998). Previous studies have shown the mean dose can vary by up to 3.6% between
CBCT and planning CT (pCT)-based treatment plans (Lee et al 2008, Yoo and Yin 2006).
Plans based on helical fan-beam CTs are still far superior to CBCT-based dosimetry (Lo et al
2005) with mean dose differences in calculations for a head and neck case of only 0.3 ± 0.3%
(Liang et al 2008).

In CBCT, detected photon scatter is significantly greater than in the fan-beam geometry.
This results in lower image quality. Previously, Guan et al (2002) investigated the effect of
altering kV, mA and slice thickness in kVCT on the CT numbers. Energy settings were found
to have the greatest impact on CT numbers, although not clinically significant, i.e. less than 2%
variation between HU-ED calibration curves. However, thus far, the effects of field-of-view
(FOV) and filter type in CBCT imaging have not been reported. This paper considers for
the first time the variations in CT numbers due to CBCT filter, FOV and dose settings on the
Varian OBI system.

2. Materials and methods

2.1. Computed tomography

The Varian OBI system includes a kV x-ray source and a kV x-ray detector mounted on the
linear accelerator orthogonal to the MV treatment-beam axis. Images were obtained using
the low (125 kVp, 40 mA and 10 ms) and standard (125 kVp, 80 mA and 25 ms) dose
settings and reconstructed with the 512 × 512 matrix in axial slices. An anti-scatter grid
is permanently installed on the flat-panel detector. An aluminum bow-tie filter is used for
all image acquisitions. This filter reduces scattering effects e.g. reduces beam hardening
and charge trapping in the detector (Mail et al 2009, Siewerdsen and Jaffray 2001). It also
compensates for the heel effect where flux is equalized at the detector (Ding et al 2007a,
Glover 1982). Overall, the filter reduces the skin dose to the patient and improves image
quality (Siewerdsen and Jaffray 2001). The filters are 1.5 cm thick at the center. The
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Figure 1. Beam positioning of full and half-fan scans. A symmetric square-cone of kV x-rays
rotates about the isocenter for cone-beam imaging in full-fan mode. In half-fan mode, the position
of the kV source remains the same, however, half the beam is truncated by an aluminum filter.

half-bow-tie is used when either the left–right (LR) or posterior–anterior (PA) dimension
exceeds 25 cm, since the reconstruction uses the largest dimension for its FOV. Conversely, a
full-bow-tie filter is used for diameters less than or equal to 25 cm. The FOV in the cranio-
caudal direction is fixed at 15 and 14 cm for full- and half-fan modes shown in figure 1. For
each of these scanning modes, the jaw settings were X1 = X2 = 13.6 cm and Y1 = Y2 = 10.7
cm for full-fan mode and X1 = 6.8 cm, X2 = 23.5 cm, Y1 = Y2 = 10.3 cm for half-fan mode
scans. Planning CT (pCT) studies were acquired on a CT simulator (Philips, Brilliance CT
Big Bore) at 120 kV, 85 mA and 3 mm slice spacing.

2.2. Cylindrical phantoms

Four homogeneous cylindrical phantoms of known densities were used to test the consistency
of CT numbers obtained by the OBI system. The first is a 20 cm diameter phantom, commonly
used for the calibration of cone-beam systems (Catphan 504, The Phantom Laboratory, New
York, NY). The phantom has several sections, which include a uniform, water-equivalent
section, and an inhomogeneous section. The second and the third phantoms are 30 cm solid-
water phantoms (Gammex-RMI, Middletown, WI). These phantoms are commonly used for
the calibration of the tomotherapy system. Each is identical except one that includes inserts
of various electron densities for HU-ED calibration within a homogenous water-equivalent
material. In-house cylindrical perspex phantoms (density = 1.19 g cm−3, expected CT
number = 100 HU) were also imaged. pCT and CBCT studies of all phantoms were exported
to the Pinnacle3 (version 8.0 m) treatment planning system (Philips Healthcare, Fitchburg, WI,
USA) as DICOM files.
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(a)

(b)

Figure 2. CT numbers along the lateral (x) axis of uniform-density phantoms of various sizes.
Images were acquired with (a) half-fan and (b) full-fan bow-tie filters. Phantoms 1 (D = 20 cm),
2 (D = 30 cm) and 3 (D = 30 cm) are composed of a water-equivalent material. Phantoms 4 and
5 are perspex phantoms (D = 8 and 10 cm).

3. Results

3.1. Uniform-density phantoms

All uniform density phantoms were imaged in full- and half-fan modes. The OBI system
limits the use of each filter to FOV < 25 cm for full-fan mode and FOV � 26 cm for half-
fan mode. Therefore, to restrict the effects of any HU changes to filter-type only, 25 and
26 cm FOV settings were used for full- and half-fan scans, respectively. CT numbers across
phantoms were measured using Image J 1.40 g (NIH, Bethesda, MD, USA). In the analyzed
image, each data point represents the CT number per voxel. The voxel size is (FOV/512)2 ×
slice thickness. The CT number profiles of the two phantoms imaged with half- and full-fan
modes are presented in figures 2(a) and (b), respectively. Five phantoms are listed. Phantom
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Table 1. Average of CT numbers across uniform water-equivalent cylindrical phantoms obtained
using full- and half-fan filters (see section 3.1 for acquisition details).

Measured HU (% difference)

No D (cm) L (cm) HUexp (bulk) pCT Full-fan Half-fan

1 20 20 0–20 19 ± 7 8.8 ± 7.9 (−0.5 ± 0.3) 0.54 ± 5.7 (−1.0 ± −9.6)
2 30 18 0–20 20 ± 18 −98 ± 43 (−5.9 ± 5.6) 38 ± 58 (0.9 ± 5.2)
3 30 18 0–20 20 ± 18 −123 ± 17 (−7.2 ± 2.7) −18 ± 22 (−1.9 ± 4.3)
4 8 12 100 127 ± 3 94 ± 14 (−0.3 ± 0.1) 102 ± 5 (−0.2 ± 0.1)
5 10 15 100 124 ± 3 123 ± 9 (0.0 ± 0.1) 125 ± 6 (0.0 ± 0.1)

1 is the 20 cm diameter phantom, phantom 2 is the 30 cm diameter phantom, phantom 3 is
phantom 2 rotated 90◦, phantoms 4 and 5 are 8 and 10 cm diameter cylinders of perspex. The
truncation of some data points can be observed in cases where phantom diameter is greater
than the FOV e.g. phantom 2 imaged in full-fan mode. Average CT numbers measured across
the phantoms are shown in table 1 and a percentage difference from pCT-image measurements
are shown in parentheses. All presented results were acquired using the standard dose mode
as no difference was found between images obtained using low or standard dose modes for
all five acquisitions. No significant changes were observed in phantom 1 between filter types.
However, significant differences were measured for the larger 30 cm phantom (phantom 2).
Full-fan mode underestimates CT numbers through the center of the phantom, while half-
fan mode causes a large fluctuation of CT numbers. In half-fan mode, CT numbers across
phantom 2 vary by 150 HU between two sides of the phantom. These fluctuations do not
occur when the phantom is rotated (phantom 3). Previous literature has also observed profiles
fluctuations of homogeneous water phantoms of D = 16.0 and 26.6 cm (Yang et al 2007).

The CT numbers across the perspex phantoms (4 and 5) were consistent and accurate both
in full- and half-fan modes. For perspex, CT numbers are expected to be 100 HU. Phantom 4
showed a mean value of 94 ± 14 and 102 ± 5 HU when scanned in full- and half-fan modes,
respectively. Phantom 5 showed average values of 123 ± 9 and 125 ± 6 HU when scanned
in full- and half-fan modes, respectively, which is in good agreement (within 1%) with pCT
values.

Switching the filter from half-fan to full-fan mode decreases the area of reconstruction
in the axial plane by 50 cm2. To investigate the exclusion of scattering materials from the
reconstruction area due to an adequate FOV, images were acquired using FOV 15–26 cm.
The profiles across the 20 cm diameter phantom are illustrated in figure 3. A decrease in the
average CT number was measured for FOV �20 cm. Measurements were also repeated for
the 30 cm phantom where a FOV �25 cm resulted in inaccurate CT numbers.

Two peaks at ±80 mm are the result of a crescent artifact caused by a shift of the bow-
tie profile from one projection to the next. The manufacturer claims this is due to minor
mechanical instabilities e.g. tilted source or focal spot shift (Varian Medical Systems, Inc.
2008). The prominence of this feature is more noticeable in full-fan images; however, it also
occurs in half-fan mode where CT numbers suddenly change.

3.2. Phantoms with inserts of different densities

The effect of FOV on the measurement of CT numbers on two phantoms with different
diameters was investigated. CT numbers of inserts with known electron densities were
imaged using CBCT. Image J 1.40 g was used to measure average CT numbers within a
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Figure 3. Profile of CT numbers from CBCT images along the lateral (x) axis of phantom 1 (D =
20 cm) taken with various fields-of-view (full-fan mode for FOV � 25 cm diameter and half-fan
mode for FOV � 26 cm). CT numbers determined from pCT images are also shown (23 cm FOV).

Figure 4. CT numbers of inserts in the 20 cm phantom imaged using 15, 20 and 26 cm FOVs.

circular region-of-interest (ROI) of an axial image slice. The region selected was within an
area of uniform electron density, corresponding to the cross-section of a RED insert. Regions
of diameters 0.8 and 2.0 cm were used for RED inserts in the 20 and 30 cm diameter phantoms,
respectively. The measured CT values of inserts within the smaller phantom are illustrated
in figure 4. The solid line represents expected values. Errors due to noise are not shown, as
they are smaller than the marker size. Scans obtained using a FOV of 26 cm produced the
most accurate results which agree within 10% with the manufacturer’s specifications. This
is in agreement with previously published measurements (Lee et al 2008, Yang et al 2007).
However, the accuracy of CT numbers diminished as FOV decreased e.g. CT numbers from
images obtained with a 20 cm FOV were less accurate than those obtained with 15 cm FOV.
This is due to the cupping artifact, as detailed in section 4.
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Figure 5. CT numbers of electron density inserts in the 30 cm phantom, measured from CBCT
images acquired at various field-of-views.

The larger phantom was also imaged. Manufacturers of the 30 cm phantom did not
provide HU values; therefore, CT numbers were determined by pCT and regarded as expected
values. Five FOVs ranging from 15 to 40 cm were used for imaging, and the measured CT
values for RED inserts are shown in figure 5. Only the errors of pCT number (18 ± 4 HU) are
shown to avoid graph over-crowding. The average standard deviation of the CT numbers for
each insert by CBCT imaging is 36 ± 5 HU. Scans acquired with 15 and 20 cm FOV show
the most significant difference where respective CT numbers were, on average, 240 ± 30 and
330 ± 150 HU lower than the measured pCT values. For FOVs greater than 20 cm, average
CT numbers increase by 100 ± 60 HU from pCT values. The phantom was also rotated by
90◦ and imaged. In this orientation, CT numbers were on average 8 ± 25% lower than pCT
values when imaged using a FOV less than 20 cm. This difference was reduced to 2 ± 5%
when scanned with a FOV greater than 30 cm.

Inserts of varying electron densities were rearranged in the 30 cm phantom.
Figure 6 illustrates these arrangements: (a) and (b) were imaged with CBCT using half-
fan and pCT, respectively. Average CT numbers within the inserts from CBCT and pCT scans
are reported in figure 7. Inserts located in the inner and outer regions are differentiated by
marker shape. For the same insert in a different location, the CT numbers obtained from
a full-fan scan varied considerably from measured pCT values, with a difference of up to
370 ± 190 HU. A smaller difference (130 ± 80 HU) was observed between images scanned
using half-fan mode. The greatest difference (1080 ± 70 HU) was found between CBCT
and pCT values for the high-density cortical bone (1.824 g cm−3) obtained by full-fan mode
for the phantom in orientation shown in figure 6(b). With the exception of cortical bone,
inserts located in the inner region (within an 8 cm radius from the isocenter) were measured
to be 200–300 HU lower than expected CT numbers. For inserts in the outer region of the
phantom, the inaccuracy of CT numbers doubled. The causes of these affects are discussed
below.

The orientation of the phantom also affected CT numbers of inserts. The average
percentage difference between CT numbers of inserts obtained by CBCT of phantom 2 (see
table 1) with respect to pCT values was 940%, while it was 840% for phantom 3. These values
decreased to 260% and 30%, respectively, when scanned in the half-fan mode. These results
suggest that the combination of the location of the high-density cortical bone at the outer edge
of the phantom and scanning in half-fan mode produces less scattering artifacts.



6258 K Y T Seet et al

(a) (b)

Figure 6. Location of inserts of known relative electron densities (REDs) in the 30 × 18 cm2

water-equivalent phantom: (a) phantom 2a imaged with CBCT and (b) phantom 2b imaged by
pCT. Images were reconstructed using an external image processing program (Image J 1.40 g,
National Institutes of Health, MD, USA).

4. Discussion

Although there are other systems which produce far better image quality than CBCT, the
distinct advantage of on-board CBCT imaging is the ‘in-room’ acquisition ability where the
patients are imaged in their treatment position. This provides minimal patient movement,
low dose, rapid acquisition and reconstruction. CBCT enables frequent imaging, hence is a
precursor for adaptive planning. This paper reports on the optimization of imaging settings
available to radiation therapists to obtain the most accurate results for adaptive planning.

Pronounced streaking artifacts are observed in figure 6(a) as an illustration of how the
complexity and size of patients can significantly affect CT numbers obtained by CBCT. This
is more pronounced in the case of high-density materials. For the high-density cortical bone
(see figure 1(a)), the large difference between CBCT and pCT numbers is a consequence of
streaking artifacts producing partial volume effects for voxels within homogenous inserts. CT
numbers are most accurate if using a FOV greater than the patient diameter. All previous
publications reported investigations using a D = L = 20 cm cylindrical phantom (phantom 1)
with inserts of known electron densities (Yoo and Yin 2006, Ding et al 2007a, Lee et al 2008).
Full- and half-fan scans were reported to produce CT numbers within 5% of accepted values.
These scans were performed with a FOV of 45 cm for half-fan and 25 cm for full-fan mode.
For adaptive planning, it may not be optimal to use the maximum FOV as the spatial resolution
is compromised. Another concern is the positioning of collimating blades. In the Varian OBI
system, these blades have a fixed field size for both full- and half-fan modes independent of
the FOV used for image reconstruction. Therefore, the FOV change in this system does not
affect patient imaging dose.

The manufacturer recommends using a FOV equal to the maximum patient dimension.
This prevents the truncation of data in axial slice, where cupping is known to produce artifacts
with a drop in CT number values. Effects are more prominent in CBCT imaging than fan-
based imaging due to the increased detected scatter (Siewerdsen and Jaffray 2001, Yoo and
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(a)

(b)

Figure 7. CT numbers of inserts measured in rotated phantoms, acquired by CBCT using
(a) half- and (b) full-fan modes. Inserts were rearranged at different positions (location of inserts
are illustrated in figure 1). Inserts in the inner region of the phantom are within 15 cm diameter
inner circle and outside this circle for the ‘outer’. The solid line (—) represents values from
planning CT (pCT).

Yin 2006, Yang et al 2007, Petit et al 2008). Previous reports on artifacts have explained
these effects as due to the reconstruction algorithm’s inability to properly account for objects
outside the FOV (Katsumata et al 2007). Our results from imaging in the full-fan mode and
25 cm FOV for phantom 2 show that the average CT number is −65 ± 7 HU lower than
expected (see crosses in figure 3(b). The cupping artifact is not observed when the FOV is
greater than 26 cm. For a smaller phantom (phantom 1), imaging at FOV = D also produced
cupping artifacts. Upon closer inspection of axial images, the 20 cm FOV truncates the
phantom by the slightest fraction. A difference of 20 mm2 in the axial area was enough to
produce such artifacts (see figure 8). This demonstrates the sensitivity of the cupping artifacts
in CBCT when imaging in a full-fan mode. It is therefore vital, especially in adaptive planning,
to use a FOV that includes the whole patient in the traverse plane.

The profiles of phantom 2 show that CT numbers fluctuate when imaged with FOVs
between 26 and 40 cm (see figure 2(a). Yang et al (2007) noticed such fluctuations for
phantoms imaged using half-fan mode and FOV > D. The same fluctuation was observed in
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(a) (b)

Figure 8. Axial slices from CBCT of phantom 1 where the area truncated by the FOV is (a) 5.41
and (b) 6.01 cm2, respectively. This lead to a difference of 70 HU of the average CT number across
the physical limits of the phantom.

phantom 1, although to a much smaller degree. These CT number fluctuations are caused by
scattering alone and independent of data truncation in the axial plane. Such fluctuations are
due to an increased influence of scatter radiation and increase with phantom size (Katsumata
et al 2007). Note, however, that this effect is not directly related to diameter, as our scans of
phantom 2 (D = L = 20 cm) did not demonstrate such fluctuations. Nevertheless, average
CT numbers across the phantom scanned using half-fan mode are more accurate than those
obtained with full-fan mode.

Artifacts may also be the result of initial system calibrations where there was no option to
change the FOV. The Varian OBI system performs full- and half-fan mode calibrations with
25 and 26 cm FOV, respectively. This places a restriction on the size of the phantom to be
used for calibration.

In phantom 2b, the location of the cortical bone insert on the outer edge of the phantom
produced less artifacts compared to positioning of this insert in the inner region. The former
insert arrangement is representative of human anatomy where bones are located close to the
outside edge of the body, as in the head and thorax. This is an indication that CBCT for
adaptive planning may not be suitable for patients with high-density structures located within
the central portion of the body.

5. Conclusion

In this study, images of uniform phantoms were obtained with kV CBCT using the various
settings available. Imaging phantoms with FOV less than the phantom size is known to
produce cupping artifacts. Even imaging with full-fan mode and FOV equal to the phantom
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size produced CT numbers lower than expected as a result of the slight data truncation. It is
vital to ensure that the FOV encloses the entire phantom or patient. The major factors which
influence the precision of CT numbers are the FOV and size of the phantom. The FOV should
be small to maximize spatial resolution and large enough to avoid the truncation of scattering
material, particularly when imaging with a full-fan mode. Imaging with a FOV < D with
half-fan mode appears independent of ‘cupping’ artifacts but demonstrates CT fluctuations of
varying degrees, depending on phantom size. We recommend initial calibration of the system
with a phantom of size comparable to the object to be imaged. At the current state of OBI
development, CBCT is not ideal for adaptive planning due to its vulnerability to increased
scatter and therefore inaccurate representation of material density, compared to planning CT.
CBCT provides low-dose, regular, up-to-date images of the patient immediately prior to
treatment thereby improving genuine accuracy. Adaptive planning using CBCT imaging is
useful for cases where the patient anatomy has significantly changed, recognizing, however,
the limitation in the accuracy of the CT number.
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