
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-16-2010 12:00 AM

Advanced Topics on State Complexity of Combined Operations Advanced Topics on State Complexity of Combined Operations

Yuan Gao, The University of Western Ontario

Supervisor: Dr. Sheng Yu, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Yuan Gao 2010

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Gao, Yuan, "Advanced Topics on State Complexity of Combined Operations" (2010). Electronic Thesis and
Dissertation Repository. 65.
https://ir.lib.uwo.ca/etd/65

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/65?utm_source=ir.lib.uwo.ca%2Fetd%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Advanced Topics on State Complexity of
Combined Operations

(Thesis Format: Monograph)

by

Yuan Gao

Department of Computer Science

Submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario

December 2010

c© Yuan Gao 2010

THE UNIVERSITY OF WESTERN ONTARIO

SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Advisor Examining Board

Prof. Sheng Yu Prof. Lila Kari

Prof. Stuart Rankin

Prof. Jeffrey Shallit

Prof. Robert Webber

The thesis by

Yuan Gao

entitled

Advanced Topics on State Complexity of Combined Operations

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Date

Chair of Examining Board

ii

ABSTRACT

State complexity is a fundamental topic in formal languages and automata

theory. The study of state complexity is also strongly motivated by appli-

cations of finite automata in software engineering, programming languages,

natural language and speech processing and other practical areas. Since many

of these applications use automata of large sizes, it is important to know the

number of states of the automata.

In this thesis, we firstly discuss the state complexities of individual op-

erations on regular languages, including union, intersection, star, catenation,

reversal and so on. The state complexity of an operation on unary languages

is usually different from that of the same operation on languages over a larger

alphabet. Both kinds of state complexities are reviewed in the thesis.

Secondly, we study the exact state complexities of twelve combined opera-

tions on regular languages. The state complexities of most of these combined

operations are not equal to the compositions of the state complexities of the

individual operations which make up these combined operations. We also

explore the reason for this difference.

Finally, we introduce the concept of estimation and approximation of state

complexity. We show close estimates and approximations of the state complex-

ities of six combined operations on regular languages which are good enough

to use in practice.

Keywords: state complexity, regular languages, combined operations, deter-

ministic finite automata, nondeterministic finite automata, estimation of state

complexity, approximation of state complexity.

iii

To my parents

iv

ACKNOWLEDGEMENTS

To begin with and foremost, I thank Dr. Sheng Yu for his constant guid-

ance, invaluable encouragement and thoughtful advice on both technical and

non-technical matters.

I also thank the whole faulty and staff of the department, who welcomed

me and showed me how hard and seriously people worked in the field of science.

I thank my colleagues and friends for their constant encouragement.

Last, but not least, I would like to thank my parents for their never-ending

patience, support, and encouragement, which gave me the strength to finish

this thesis.

v

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION ii

ABSTRACT iii

DEDICATION iv

ACKNOWLEDGEMENTS v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

Chapter 1 Introduction 1

1.1 Why State Complexity? . 1

1.2 Why State Complexity of Combined operations? 2

1.3 Why Estimation and Approximation of State Complexity of

Combined Operations? . 3

1.4 New Contributions of the Thesis 4

1.5 Outline of the Thesis . 5

Chapter 2 Basic Definitions and Notation 7

2.1 Languages . 7

2.2 Operations . 7

2.3 Grammars . 8

2.4 Regular Expressions . 10

vi

2.5 Regular Languages . 11

2.6 Deterministic Finite Automata 11

2.7 Minimization of DFAs . 13

2.8 Nondeterministic Finite Automata 16

2.9 State Complexity . 17

Chapter 3 State Complexity of Individual Operations 19

3.1 State Complexity of Individual Operations on Regular Languages 19

3.1.1 Regular Languages over a General Alphabet 19

3.1.2 Unary Regular Languages 25

3.2 State Complexity of Individual Operations on Finite Languages 29

3.2.1 Finite Languages over a General Alphabet 29

3.2.2 Finite Languages over a One-letter Alphabet 31

3.3 Conclusion . 31

Chapter 4 Recent Results on State Complexity of Combined Oper-

ations 33

4.1 State Complexity of Star of Union and Star of Intersection . . 33

4.2 State Complexity of Star of Catenation and Star of Reversal . 35

4.3 State Complexity of Reversal of Union and Reversal of Intersection 37

4.4 State Complexity of Reversal of Catenation and Reversal of Star 38

4.5 State Complexity of Power . 38

4.6 Conclusion . 40

Chapter 5 Exact State Complexity of Combined Operations 41

5.1 State Complexity of Catenation Combined with Star and Reversal 41

5.1.1 State Complexity of L∗
1L2 41

5.1.2 State Complexity of L1L
∗
2 49

5.1.3 State Complexity of LR
1 L2 60

5.1.4 State Complexity of L1L
R
2 71

5.2 State Complexity of Catenation Combined with Union and In-

tersection . 78

vii

5.2.1 State Complexity of L1(L2 ∪ L3) 79

5.2.2 State Complexity of L1(L2 ∩ L3) 87

5.3 State Complexity of Union and Intersection Combined with Star

and Reversal . 94

5.3.1 State Complexity of L∗
1 ∪ L2 94

5.3.2 State Complexity of L∗
1 ∩ L2 99

5.3.3 State Complexity of LR
1 ∪ L2 101

5.3.4 State Complexity of LR
1 ∩ L2 105

5.4 State Complexity of Combined Boolean Operations 106

5.5 State Complexity of Multiple Catenations 113

5.5.1 State Complexity of L1L2L3 113

5.5.2 State Complexity of L1L2 · · ·Lk 117

Chapter 6 Estimation and Approximation of State Complexity of

Combined Operations 124

6.1 Estimation of State Complexity of Combined Operations . . . 124

6.2 Approximation of State Complexity of Combined Operations . 126

Chapter 7 Conclusion and Future Work 132

7.1 Summary of Results . 132

7.2 List of Contributions . 134

7.3 Future Work . 136

REFERENCES 137

VITA 149

viii

LIST OF TABLES

3.1 The state complexities of individual operations on regular lan-

guages [105] . 32

4.1 The state complexities of 10 combined operations 40

6.1 The exact state complexities of 4 combined operations and cor-

responding estimates . 125

6.2 The ratio bounds of the approximations of the state complexi-

ties of 4 combined operations [32] 128

7.1 The exact state complexities of the 12 combined operations in-

vestigated in this thesis . 133

7.2 The approximations of the state complexities of 6 combined

operations [32] . 134

ix

LIST OF FIGURES

2.1 The transition diagram of DFA A in Example 2.4 12

3.1 Witness DFA B for the first case of Theorem 3.1 20

3.2 Witness DFA A for the second case of Theorem 3.1 21

3.3 Witness DFA B for the second case of Theorem 3.1 21

3.4 Witness DFA for Theorems 3.5 and 6.3 23

3.5 Witness DFA for Theorems 3.8, Lemma 4.3 and Theorem 5.15 24

3.6 The model of DFAs that accept unary regular languages [83] . 26

4.1 Witness DFAs A1 and A2 for the star of a union 34

4.2 Witness DFAs A and B for the star of an intersection 35

4.3 Witness DFAs A and B for the star of a catenation 36

4.4 Witness DFAs A1 and A2 for both the reversal of a union and

the reversal of an intersection 38

4.5 Witness DFA An for L3 . 39

5.1 Witness DFA A for Theorem 5.2 when m ≥ 2 43

5.2 Witness DFA B for Theorem 5.2 when m ≥ 2 43

5.3 Witness DFA A for Theorem 5.4 47

5.4 Witness DFA B for Theorem 5.4 47

5.5 Witness DFA A for Lemma 5.1: d = (m − n+ 1) mod (m − 1) 50

5.6 Witness DFA B for Lemma 5.1 50

5.7 Witness DFA A for Theorem 5.6 54

5.8 NFA for L(A)L(B)∗ . 55

5.9 Witness DFA D for Theorem 5.6 56

x

5.10 Witness DFA M of Theorem 5.8 showing that the upper bound

in Theorem 5.7 is attainable when m,n ≥ 2 62

5.11 Witness DFA N of Theorem 5.8 showing that the upper bound

in Theorem 5.7 is attainable when m,n ≥ 2 63

5.12 Witness DFAM of Theorem 5.12 showing that the upper bound

in Theorem 5.11 is attainable when m ≥ 4 and n = 1 69

5.13 Witness DFAM of Theorem 5.15 showing that the upper bound

in Theorem 5.14 is attainable when m ≥ 2 and n ≥ 2 72

5.14 Witness DFA N showing that the upper bound in Theorem 5.14

is attainable when m ≥ 1 and n ≥ 3 76

5.15 The DFA B used for showing that the upper bound in Theo-

rem 5.18 is attainable when m = 1 and n, p ≥ 2 81

5.16 The DFA C used for showing that the upper bound in Theo-

rem 5.18 is attainable when m = 1 and n, p ≥ 2 81

5.17 Witness DFA A for Theorem 5.21 83

5.18 Witness DFA B for Theorem 5.21 84

5.19 Witness DFA C for Theorem 5.21 84

5.20 The DFA A used for showing that the upper bound in Theo-

rem 5.22 is attainable when m ≥ 2 and n, p ≥ 1 88

5.21 The DFA B used for showing that the upper bound in Theo-

rem 5.22 is attainable when m ≥ 2 and n, p ≥ 1 89

5.22 The DFA C used for showing that the upper bound in Theo-

rem 5.22 is attainable when m ≥ 2 and n, p ≥ 1 89

5.23 Witness DFA B for Theorems 5.24 92

5.24 Witness DFA C for Theorems 5.24 92

5.25 Witness DFA M for Theorems 5.26 and 5.29 97

5.26 Witness DFA N for Theorems 5.26 and 5.29 97

5.27 Witness DFA M of Theorem 5.32 103

5.28 Witness DFA N of Theorem 5.32 103

5.29 Witness DFA A1 for Theorem 5.41 118

5.30 Witness DFA Ai for Theorem 5.41 118

xi

7.1 The reason for the difference in state complexity 134

xii

Chapter 1

Introduction

Automata theory is one of the oldest research areas in computer science. It

started in the 1930’s [102], before electronic computers were invented [52].

Since then, much research has been done in the area. Although it already has

a long history, new problems in automata theory arise due to its increasing

application. Research on many topics in automata theory is ongoing. For

example, statecharts, which are widely used as a modeling tool in software

engineering, come from automata theory [71]. The use of finite automata has

been shown to be successful in lexical analysis in programming languages [98].

In parallel programming, automata theory has been associated with optimiza-

tion problems [75]. Automata theory also serves as the basis for pattern recog-

nition in natural language and speech processing [74, 78]. These applications

motivate the study of state complexity, a fundamental subarea in automata

theory.

1.1 Why State Complexity?

One basic question in research on finite automata and regular languages is

how to measure the size of a deterministic finite automaton (DFA). There are

three ways to do this: the number of states, the number of transitions, or a

combination of the two [105]. For a complete DFA, whose transition function

is defined for every state and every possible input symbol, the number of

1

2

transitions is linear in the number of states if the alphabet is considered as a

constant [30]. Thus, the number of states becomes the key point when we try

to measure the size of a complete DFA. State complexity is the study of the

number of states of finite automata.

Generally speaking, the study of complexity issues mainly focuses on the

following two kinds of issues: (1) time and space complexity issues, (2) de-

scriptional complexity issues [105]. State complexity is a type of descriptional

complexity. It is based on the finite automaton model. The state complexity

of an operation on regular languages gives a lower bound for the space com-

plexity and the time complexity of the operation. For many operations, the

bounds given by the state complexities are tight.

Compared to other representations of regular languages such as nonde-

terministic finite automata (NFAs) [25, 49] and regular expressions, the DFA

model has the following advantages [105]. (1) It takes almost linear time to

check two DFAs to determine if they are equal [1], while for NFA and regular

expressions it is PSPACE-complete. (2) For a regular language, the minimal

DFA that accepts the language is unique up to isomorphism, while other mod-

els are not unique in general. (3) There is an O(n logn)-time minimization

algorithm for DFAs; however, the same problem for other models is not known

to be solvable in polynomial time. Thus, the size of a minimal DFA is a natural

and objective measurement for the language it accepts [105].

1.2 Why State Complexity of Combined operations?

During the last 20 years, motivated by new applications of regular languages

that require automata of very large sizes, state complexity has received in-

creased attention and many papers have been published on this topic. Exam-

ples include [3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 35, 36, 37,

38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 50, 54, 55, 56, 57, 58, 59, 60, 61, 63, 66, 67,

68, 77, 79, 80, 81, 82, 83, 84, 85, 87, 93, 94, 95, 96, 99, 100, 105, 106, 110, 111].

Most of these papers focused on individual operations, for example, union,

intersection, star, catenation, reversal, shuffle, orthogonal catenation, propor-

tional removal, cyclic shift and so on. However, in practice, the operation

to be performed is often a combination of several individual operations in a

3

certain order rather than only one individual operation. The state complexity

of combined operations is certainly an important research direction in state

complexity research. The state complexities of a number of combined opera-

tions have been studied in the past five years. It has been shown that the state

complexity of a combination of several operations is usually not equal to the

composition of the state complexities of individual participating operations

[28, 31, 45, 62, 70, 92].

There seems to be no common method to compute the state complexities

of combined operations because each combined operation has its own special

features. Although the composition of individual state complexities of com-

ponent operations of a combined operation would give an upper bound to the

state complexity of the combined operation, the upper bound is usually too

large to be useful. For example, for two regular languages L1 and L2 accepted

by m-state and n-state deterministic finite automata, respectively, the state

complexity of (L1∪L2)
∗ is actually 2m+n−1 − 2m−1 − 2n−1+1, while the compo-

sition of the individual state complexities is 2mn−1+2mn−2. So it appears that

the state complexity of each combined operation has to be studied specifically.

1.3 Why Estimation and Approximation of State Com-

plexity of Combined Operations?

There are only a limited number of individual operations on regular languages.

However, the number of combined operations on regular languages is unlim-

ited. Thus, it is important to obtain general results that cover not only single

combined operations, but also infinite classes of combined operations. A good

estimate of the state complexity of a combined operation can be used in many

applications.

The method of estimation through nondeterministic state complexity was

proposed in [97, 108]. For most combined operations that include the star

operation or reversal, it gives good estimates. For example, the estimation of

the state complexity of (L1 ∪ L2)
∗ through nondeterministic state complexity

is 2m+n+2. Note that m + n + 2 is the direct mathematical composition of

the two individual nondeterministic state complexities and no optimization is

made. This estimation is close to the exact state complexity of this combined

4

operation: 2m+n−1 − 2m−1 − 2n−1 + 1.

However, this method has its limitations. Considering the union of k >

1 regular languages accepted by DFAs of n1, . . . , nk states, respectively, the

estimate of its state complexity through nondeterministic state complexity

would result in 2n1+···+nk+k−1. It can be easily shown that the state complexity

of this operation is no more than n1 · · ·nk.

Although an estimate of the state complexity of a combined operation is

simpler and more convenient to use, it does not show how close it is to the

exact state complexity. The concept of approximation of state complexity

solves this problem by defining the ratio bound which provides the error range

of the estimate [32].

Approximation of state complexity can play useful roles in two different

cases. In the first case, the exact state complexities have not been obtained.

They may be very difficult to obtain. However, approximations with low

ratio bounds can be obtained rather easily and they can be used for practical

purposes in general. In the second case, the exact state complexities have

been proved. The approximations of those results with low ratio bounds can

simplify the formulae of the complexities and make them more intuitive and

easier to apply. Thus, approximation of state complexity is clearly a useful and

important concept in the study of state complexity of combined operations.

1.4 New Contributions of the Thesis

This thesis focuses on two topics on the state complexities of combined oper-

ations on regular languages:

(1) exact state complexity of combined operations, and

(2) estimation and approximation of state complexity of combined opera-

tions.

In this thesis, we discuss exact state complexity of combined operations on

regular languages. It is one of the major topics of the study of state complex-

ity in the past five years. We choose 12 combined operations which are com-

monly used in practice and investigate their exact state complexities. These

combined operations include: combinations of union, intersection and comple-

mentation, multiple catenations, combinations of star and catenation, reversal

5

and catenation, Boolean operations and catenation, Boolean operations and

star, Boolean operations and reversal. For all these combined operations, we

obtain tight bounds on their state complexities.

We also study estimation and approximation of state complexity of com-

bined operations on regular languages. We revisit the method of estimation

of state complexity through nondeterministic state complexity and clarify the

boundaries of its usage. We introduce the concept of approximation of state

complexity and obtain approximations of the state complexities of 6 combined

operations on regular languages. All of them are close to the corresponding

exact state complexities.

An important aspect of the research of this thesis is that it combines ab-

stract theoretical work with the use of software systems, such as Grail+ [112],

to help us find worst-case examples experimentally. Hundreds of DFAs of large

sizes are used in the experiments. If we do all these experiments on paper,

the researcher can often get no result. State complexity is a theoretical topic.

However, experiments play an important role in the study of state complexity.

Although the final results always have to be proved theoretically, experiments

verify or reject our initial proposal and greatly speed up the research process.

1.5 Outline of the Thesis

The thesis is structured as follows:

Chapter 2 presents basic notation and definitions used in this thesis.

Chapter 3 gives a survey of research results on the state complexities of

individual operations on regular languages.

Chapter 4 presents the current results of the state complexities of combined

operations, including star of union, star of intersection, star of catenation, star

of reversal, reversal of union, reversal of intersection, reversal of catenation and

power.

Chapter 5 presents the exact state complexities of 12 combined operations,

including catenation combined with star and reversal, catenation combined

with union and intersection, combined Boolean operations and multiple cate-

6

nations.

Chapter 6 introduces the research results on estimation and approximation

of state complexity of combined operations on regular languages.

Chapter 7 concludes the thesis with discussions of state complexity of com-

bined operations and future work.

Chapter 2

Basic Definitions and Notation

In this chapter, we review some basic knowledge about formal languages and

automata theory [52, 53, 90, 91, 101, 104] that is related to this thesis. This

knowledge is the foundation of any study not only in state complexity but also

the whole of computer science. We also specify the notation which is used in

the thesis.

2.1 Languages

An alphabet is a finite, nonempty set of symbols, denoted by Σ. The symbols in

the alphabet are also called letters. The notation Σ∗ means the set containing

all the finite strings whose symbols are chosen from an alphabet Σ.

Strings, which are finite sequences of letters, are also called words. A

special word is the empty word, denoted by ε. It is over any alphabet.

For a word x over an alphabet Σ, its length is the number of occurrences

of letters in x. It is denoted by |x|. The a-length of the word x is the number

of times that the letter a appears in x. It is denoted by |x|a.

A language over Σ is a set of words which are chosen from Σ∗. The lan-

guages {ε} and ∅ are over any alphabet. We use the notation |L| to denote

the cardinality of a language L, i.e., the number of words in L. (There should

be no confusion with the same notation used for the length of a word.)

2.2 Operations

For a word x over an alphabet Σ, the reversal of x is denoted by xR. It is x

itself if x = ε; it is yRa if x = ay, where a is a letter in Σ and y is a word over

7

8

Σ. By the definition, if x = a1 · · · an, where n ≥ 0 and a1, · · · , an are letters

in Σ, then xR = an · · · a1.

For a language L over an alphabet Σ, the reversal of L is denoted by LR,

and LR = {xR | x ∈ L}.

For words x and y over an alphabet Σ, the catenation of x and y is denoted

by xy. It is the word obtained by attaching y to the end of x. Catenation is

associative. The length of the new word xy is the sum of the length of x and

the length of y.

For a language L1 and a language L2 over an alphabet Σ, the catenation

of L1 and L2 is denoted by L1L2, and L1L2 = {xy | x ∈ L1, y ∈ L2}.

For a language L over an alphabet Σ, the star of L is denoted by L∗. The

operation L∗ is also called Kleene closure. We define L0 = {ε} and Li = Li−1L,

where i ≥ 1. We define L∗ = ∪∞
i=0L

i. Similarly, we define L+ as ∪∞
i=1L

i. The

operation L+ is called positive closure.

Given a set S, the power set of S is the set of all subsets of S, denoted by

P(S).

Let R and L be two languages over the alphabet Σ. Then the left quotient

of R by L, denoted by L\R, is the language

{y | xy ∈ R and x ∈ L},

and the right quotient of R by L, denoted by R/L, is the language

{x | xy ∈ R and y ∈ L}.

2.3 Grammars

Definition 2.1 Context-free Grammars

A context-free grammar (CFG) G is specified by a quadruple (N,Σ, P, S)

where

N is the set of nonterminals (variables);

Σ is the set of terminals, Σ ∩N = ∅;

P ⊆ N × (N ∪ Σ)∗ is the set of productions;

S ∈ N is sentence symbol;

9

and N , Σ, and P are all finite [109].

A CFG generates a word by rewriting (or derivation) [109]. LetG = (N,Σ, P, S)

be a CFG and β, β ′ ∈ (N ∪ Σ)∗. If β = β1Aβ2 for A ∈ N , β1, β2 ∈ (N ∪ Σ)∗,

A → α ∈ P and β ′ = β1αβ2, then we say that β can be rewritten as β ′,

denoted by β =⇒ β ′ [109].

β =⇒i β ′, i > 0, if β ′ can be obtained from β in i rewriting steps [109].

β =⇒+ β ′, if β ′ can be obtained from β in at least one rewriting steps [109].

β =⇒∗ β ′, if β = β ′ or β =⇒+ β ′ [109].

The language that consists of the words generated by the CFG G is denoted

by L(G) and

L(G) = {w ∈ Σ∗ | S =⇒∗ w} [109].

Example 2.1 A CFG for {aibi | i ≥ 1} is as follows: S → aSb | ab, N = {S}

and Σ = {a, b}. 2

Definition 2.2 Right Linear Grammars

A CFG G = (N,Σ, P, S) is right linear if every production in P is of one

of the forms:

A → x, A → xB, A,B ∈ N, x ∈ Σ∗ [109].

Definition 2.3 Left Linear Grammars

A CFG G = (N,Σ, P, S) is left linear if every production in P is of one of

the forms:

A → x, A → Bx, A,B ∈ N, x ∈ Σ∗ [109].

Definition 2.4 Regular Grammars

A CFG G is said to be regular if it is right linear or left linear [109].

Example 2.2 A regular grammar for {w ∈ {a, b}∗ | |w| ≥ 1} is as follows:

S → aS | bS | a | b, N = {S} and Σ = {a, b}. 2

10

2.4 Regular Expressions

Definition 2.5 Regular Expressions

A regular expression over the base alphabet Σ is a well-formed string over

the larger alphabet Σ ∪ A, where A = {ε, ∅, (,),+, ∗}; we assume Σ ∩ A =

∅ [101]. Valid regular expressions can be defined with a CFG grammar as

follows [101]:

S → E+ | E• | G

E+ → E+ + F | F + F

F → E• | G

E• → E•G | GG

G → E∗ | C | P

C → ∅ | ε | a (a ∈ Σ)

E∗ → G ∗

P → (S)

The meaning of the variables is as follows [101]:

• S generates all regular expressions.

• E+ generates all unparenthesized expressions where the last operator was

+.

• E• generates all unparenthesized expressions where the last operator was ·

(implicit concatenation).

• E∗ generates all unparenthesized expressions where the last operator was

∗ (Kleene closure).

• C generates all unparenthesized expressions where there was no last op-

erator (i.e., the constants).

• P generates all parenthesized expressions.

Here, by parenthesized we mean there is at least one pair of enclosing paren-

theses [101]. If the word u is a regular expression, then L(u) represents the

language that u is shorthand for [101].

Example 2.3 Consider the regular expression u = (0 + 1)∗1. Then L(u)

represents all the words over {0, 1} that end with 1. 2

11

2.5 Regular Languages

There are four levels of languages according to the Chomsky hierarchy of

formal languages, which are the regular languages, the context-free languages,

the context-sensitive languages and the recursively enumerable languages. In

this thesis, regular languages are discussed. A language L is regular if and

only if there is a regular expression E such that L = L(E).

Regular Languages are generated by regular grammars. A language L is

regular if and only if there is a regular grammar G such that L = L(G) [109].

Finite languages make up a specific subset of the class of regular languages.

Each finite language contains only a finite number of words. They are regular

since a finite language can be described by a regular expression that is the

union of every word in the language.

2.6 Deterministic Finite Automata

Definition 2.6 Deterministic Finite Automata

A deterministic finite automaton (DFA) is a 5-tuple (Q, Σ, δ, q0, F), where

Q is a finite set of states;

Σ is a finite set of all the input symbols, often called the alphabet;

δ is a transition function that takes a state and an input symbol as ar-

guments and returns a state. If p is the current state, and a is the input

symbol, then δ(p, a) = q means the DFA transfers from p to q by reading

the letter a;

q0 is an initial state where q0 ∈ Q;

F is a set of final states and F ⊆ Q.

An extended transition function δ̂ describes what happens when we start

in any state and follow any sequence of inputs [52]. We define δ̂ by induction

on the length of the input string, as follows [52]:

Basis: δ̂(q, ε) = q. That is, if we are in state q and read no inputs, then we

are still in state q.

Induction: Suppose w is a string of the form xa; that is, a is the last symbol

12

of w, and x is the string consisting of all but the last symbol. Then

δ̂(q, w) = δ(δ̂(q, x), a).

The language accepted by a DFA is the set of strings that take the initial

state to one of the final states. If a language L is accepted by some DFA, then

L is a regular language. Two DFAs are equivalent if they accept the same

regular language.

Example 2.4 Let the DFAA = (Q,Σ, δ, q0, F) be given byQ = {0, 1, 2, 3, 4, 5},

Σ = {a}, q0 = 0, F = {5}, and

δ(m, a) = n, m ∈ Q, n = (m+ 1) mod 6.

The regular language accepted by A can be denoted by

L(A) = {ai | i ≡ 5 (mod 6)}.

The transition diagram of A is shown in Figure 2.1. 2

a

a

5a

a
1

0

4

3

2

a

a

Figure 2.1: The transition diagram of DFA A in Example 2.4

A complete DFA is one that has transitions defined for each state in Q and

each input symbol in Σ. A sink state is a state from which there exists no

sequence of transitions to a final state.

For every DFA A, there exists an automaton B such that L(A) = L(B)

and (1) every state of B is reachable from the initial state and (2) from every

state, except at most one sink state, a final state can be reached. The DFA B

is called a reduced DFA.

Note that we assume that all the DFAs used are complete in this thesis.

13

2.7 Minimization of DFAs

There are many DFAs that accept the same regular language. An important

way to test the equivalence of DFAs is to minimize them. That is, for each DFA

we can find an equivalent DFA that has as few states as any DFA that accepts

the same language [52]. Since minimal DFAs are used in the study of state

complexity, we will go through DFA minimization algorithms. Firstly, the

Myhill-Nerode theorem implies that there is an essentially unique minimum-

state DFA for each regular language [53].

Theorem 2.1 (The Myhill-Nerode theorem). The following three statements

are equivalent:

1) The set L ⊆ Σ∗ is accepted by some finite automaton.

2) L is the union of some of the equivalence classes of a right invariant

equivalence relation of finite index.

3) Let the equivalence relation RL be defined by xRLy if and only if for all

z in Σ∗, xz is in L exactly when yz is in L. Then RL is of finite index.

We say that states p and q in a DFA are equivalent if:

For all input strings w, δ̂(p, w) is a final state if and only if δ̂(q, w) is a

final state [52].

If two states are not equivalent, then we say they are distinguishable [52].

State p is distinguishable from state q if there exists at least one string w such

that one of δ̂(p, w) and δ̂(q, w) is final, and the other is not final [52].

There is a simple method to minimize DFAs. Let A = (Q,Σ, δ, q0, F) be

a DFA. To minimize A, we firstly eliminate all the states which cannot be

reached from the initial state. Secondly, we use the table-filling algorithm to

partition the remaining states into blocks such that:

1. All the states in a block are equivalent.

2. No two states chosen from two different blocks are equivalent [52].

The table-filling algorithm shown in [53] is as follows:

14

begin

for p ∈ F and q ∈ Q − F do mark (p, q);

for each pair of distinct states (p, q) in F × F or (Q − F)× (Q − F)

do

if for some input symbols a, (δ(p, a), δ(q, a)) is marked then

begin

mark (p, q);

recursively mark all unmarked pairs on the list for (p, q)

and on the lists of other pairs that are marked at this step;

end

else / ∗ no pair (δ(p, a), δ(q, a)) is marked ∗ /

for all input symbols a do

put (p, q) on the list for (δ(p, a), δ(q, a)) unless

δ(p, a) = δ(q, a);

end

After partitioning the set of states Q into blocks of mutually equivalent

states by the algorithm described above, we can construct the minimum-state

equivalent DFA B by using the blocks as its states. The initial state of B is

the block containing the initial state of A. The set of final states of B is the

set of blocks containing final states of A. Note that if one state of a block

is accepting, then all the states of that block must be accepting. The reason

is that any final state is distinguishable from any non-final state. Thus, you

cannot have both final and non-final states in one block of equivalent states.

A detailed example of DFA minimization can be found in [52]. The time

complexity of the above minimization algorithm is O(n2). Most textbooks on

automata theory give the above algorithm to minimize the number of states

in a DFA, because it is simple and easy to grasp. However, J. Hopcroft pub-

lished an O(n logn)-time minimization algorithm [51]. It is more complex

but faster because it uses a different approach to partition the states. If

A = {Q,Σ, δ, q0, F} is a DFA, the O(n logn) algorithm is as follows [51]:

15

begin

for q ∈ Q and a ∈ Σ do

construct δ−1(q, a) = {t | δ(t, a) = q};

construct B(1) = F and B(2) = Q − F ;

for a ∈ Σ and 1 ≤ i ≤ 2 do

construct a(i) = {s | s ∈ B(i) and δ−1(s, a) 6= ∅};

k = 3;

for a ∈ Σ do

construct L(a) =

{

{1} if |a(1)| ≤ |a(2)|,

{2} otherwise;

while there exists a ∈ Σ such that L(a) 6= ∅ do

for a ∈ Σ and i ∈ L(a) do

begin

delete i from L(a);

for j < k do

if there exists t ∈ B(j) with δ(t, a) ∈ a(i) then

begin

partition B(j) into B′(j) = {t | δ(t, a) ∈ a(i)} and

B′′(j) = B(j) − B′(j);

B(j) = B′(j);

B(k) = B′′(j);

for a ∈ Σ do

begin

construct corresponding a(j) and a(k);

L(a) =

{

L(a) ∪ {j} if j /∈ L(a) and 0 < |a(j)| ≤ |a(k)|,

L(a) ∪ {k} otherwise;

end

k = k + 1;

end

end

end

16

2.8 Nondeterministic Finite Automata

Definition 2.7 Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is a 5-tuple (Q, Σ, δ, q0, F),

where

Q is a finite set of states;

Σ is a finite set of all the input symbols, often called alphabet;

δ is a transition function that takes a state in Q and an input symbol in

Σ as arguments and returns a subset of Q. If p is the current state, and

a is the input symbol, then δ(p, a) = {q, r, t} means the NFA transfers

from p to q, r or t by reading the letter a;

q0 is an initial state, where q0 ∈ Q;

F is a set of final states, where F ⊆ Q.

An NFA can have multiple initial states, which is not the usual convention.

In this case, the NFA can be denoted by a 5-tuple (Q, Σ, δ, S, F), where S is

the set of the initial states.

An ε-NFA is a further extension of NFA. Its transition function δ: Q ×

(Σ ∪ {ε}) → 2Q allows the ε-transitions between states.

Comparing the definitions of a DFA and an NFA, we find that the defini-

tions of their transition functions are different. The transition function of a

DFA maps a pair of a state and an input symbol into one state. The transition

function of an NFA maps a pair of a state and an input symbol into a set of

states.

Two finite automata are equivalent if they accept the same language. Given

an n-state NFA A, we can always find a 2n-state DFA A′ which is equivalent to

A by performing the subset construction [52, 89]. A language L is accepted by

some DFA if and only if L is accepted by some NFA. Thus, DFAs and NFAs

accept exactly the same class of languages as regular expressions describe,

which we have termed the “regular languages” [52]. Sometimes, in the study

of state complexity, an upper bound on the number of states can be estimated

using an NFA and converting it into a DFA at the end.

17

2.9 State Complexity

Definition 2.8 State Complexity

1. The state complexity of a regular language L is the number of states of

the minimal DFA that accepts L [105].

2. The state complexity of a class of regular languages is the largest among

the state complexities of all the languages in the class [105].

There are two kinds of state complexity with respect to different complexity

types: average-case state complexity and worst-case state complexity. Average

state complexity was first studied by C. Nicaud [76]. In this thesis, we study

only worst-case state complexity.

With respect to different automaton models, there is deterministic state

complexity and nondeterministic state complexity [26, 35, 36, 42, 43, 44, 47,

48, 49]. As we discussed in Section 1.1, the DFA model is more suitable to

represent regular languages in general than the NFA model when we study

state complexity. So the state complexity we study here is deterministic state

complexity.

With respect to different problem types, we have operational state complex-

ity and representational state complexity. Representational state complexity

studies the state complexity of transformations between models. For example,

given an n-state NFA, the DFA which is equivalent to it has at most 2n states.

Operational state complexity studies the state complexity of operations on

regular languages.

When we speak about the state complexity of an operation on regular

languages, we mean the state complexity of the resulting languages from the

operation [105]. For example, when we say that the state complexity of the

union of an m-state DFA language and an n-state DFA language is mn, we

mean mn is the state complexity of the class of languages each of which is the

resulting language of the union of an m-state DFA language and an n-state

DFA language. In other words, there exist two regular languages which are

respectively accepted by an m-state DFA and an n-state DFA, such that their

union is accepted by an mn-state DFA in the worst case.

In this thesis, when we study the state complexity of an operation, we may

assume the operand languages of the operation are over the same alphabet

18

without loss of generality.

Thus, the state complexity we study in this thesis is worst-case, determin-

istic, operational state complexity.

In the next chapter, we will review the state complexities of many individ-

ual operations on regular languages.

Chapter 3

State Complexity of Individual Operations

Many papers on the state complexities of individual operations have been

published since the early 1990’s, for example, [23, 56, 58, 83, 93, 105, 110,

111]. The state complexities of most individual operations such as union,

intersection, catenation, star, etc., have been obtained. In this chapter, we

first review the state complexities of these operations on regular languages over

a general alphabet. For catenation, star and reversal, both the upper bounds

and the worst-case examples of their state complexities are presented. Next, we

review the mathematical model for DFAs that accept unary regular languages

and the state complexities of individual operations on unary regular languages.

Lastly, the state complexities of individual operations on finite languages, both

over a general alphabet and over a unary alphabet, are presented.

3.1 State Complexity of Individual Operations on Regu-

lar Languages

3.1.1 Regular Languages over a General Alphabet

The following theorems about the state complexities of individual operations

on regular languages over a general alphabet have been proved in [72, 73, 110,

111].

State Complexity of Catenation

Theorem 3.1 For integers m ≥ 1 and n ≥ 2, there exists a DFA A of m

states and a DFA B of n states, such that any DFA that accepts L(A)L(B)

19

20

needs at least m2n − 2n−1 states.

Theorem 3.1 is given in [111]. It can be proved in two cases. The first

one is when m = 1 and n ≥ 2. Define DFA A = {Q,Σ, δA, q0, FA} where

Q = {q0}, Σ = {a, b}, FA = {q0}, δA(q0, a) = q0 and δA(q0, b) = q0. Define DFA

B = {P,Σ, δB, p0, FB} where P = {p0, p1, · · · , pn−1}, Σ = {a, b}, FB = {pn−1},

and

δB(p0, a) = p0,

δB(p0, b) = p1,

δB(pn−1, a) = p1,

δB(pi, a) = pi+1, 1 ≤ i ≤ n − 2,

δB(pi, b) = pi, 1 ≤ i ≤ n − 1.

Figure 3.1 shows the transition diagram of B. It has been proved that any

a

a

p2

p3

pn -1

b

a

a

p1p0
b

a

b

b

a

b

Figure 3.1: Witness DFA B for the first case of Theorem 3.1

DFA that accepts L(A)L(B) needs at least 2n−1 states [111].

The second case is whenm ≥ 2 and n ≥ 2. Define DFAA = {Q,Σ, δA, q0, FA}

where Q = {q0, q1, · · · , qm−1}, Σ = {a, b, c}, FA = {qm−1} and each i, 0 ≤ i ≤

m − 1, and

δA(qi, X) =

qj , j = (i+ 1) mod m, if X = a;

q0, if X = b;

qi, if X = c.

21

a
a

a
c

q1

q2

qm

q0

-1

b,c
a

a,b

b b

c
c

Figure 3.2: Witness DFA A for the second case of Theorem 3.1

Figure 3.2 shows the transition diagram ofA. Define DFAB = {P,Σ, δB, p0, FB}

where P = {p0, p1, · · · , pn−1}, Σ = {a, b, c}, FB = {pn−1} and for each i,

0 ≤ i ≤ n − 1, and

δB(pi, X) =

pj , j = (i+ 1) mod n, if X = b;

pi, if X = a;

p1, if X = c.

Figure 3.3 shows the transition diagram of B.

b
b

b
a

p1

p2

pn

p0

-1

a

b

a,c

c

c

a
a,c

Figure 3.3: Witness DFA B for the second case of Theorem 3.1

It has been proved that any DFA that accepts L(A)L(B) needs at least

m2n − 2n−1 states [111]. Theorem 3.1 gives the lower bound on the number of

states of the DFA that accepts the catenation of two regular languages.

22

Theorem 3.2 Let A and B be two DFAs defined on the same alphabet, where

A has m states and B has n states, and A has k final states, 0 < k < m. Then

there exists a (m2n − k2n−1)-state DFA that accepts L(A)L(B).

Theorem 3.2 is shown in [111]. It gives an upper bound on the number of

states of the DFA that accepts the catenation of two DFA languages. This

upper bound coincides with the lower bound in Theorem 3.1. So the bounds

are tight and we get the state complexity of catenation of regular languages

shown in following theorem [111].

Theorem 3.3 The number of states that is sufficient and necessary in the

worst case for a DFA to accept the catenation of an m-state DFA language

and a one-state DFA language is m.

State Complexity of Star

Theorem 3.4 For any n-state DFA A = (Q,Σ, δ, q0, F) such that |F −{ q0}| =

k ≥ 1 and n > 1, there exists a DFA A′ of at most 2n−1 + 2n−k−1 states that

accepts (L(A))∗.

Theorem 3.4 is given in [111]. According to this theorem, if k ≥ 1, A′ has

at most 2n−1 + 2n−1−1 = 2n−1 + 2n−2 states. If k = 0, then A′ needs only n

states. So the following corollary can be obtained from this theorem [111].

Corollary 3.1 For any n-state DFA A, n > 1, there exists a DFA A′ of at

most 2n−1 + 2n−2 states that accepts L(A′) = (L(A))∗.

Theorem 3.5 For any integer n ≥ 2, there exists a DFA A of n states such

that any DFA that accepts (L(A))∗ needs at least 2n−1 + 2n−2 states.

Theorem 3.5 is given in [111]. For n = 2, it is clear that L = {w ∈ {a, b}∗ |

|w|a is odd} is accepted by a two-state DFA, and L∗ = {ε} ∪ {w ∈ {a, b}∗ |

|w|a ≥ 1} cannot be accepted by a DFA with less than three states [111].

For n > 2, DFAA = {Q,Σ, δ, 0, F} where Q = {0, 1, · · · , n − 1}, Σ = {a, b},

F = {n − 1}, and

δ(i, a) = (i+ 1) mod n, 0 ≤ i < n,

δ(i, b) = (i+ 1) mod n, 1 ≤ i < n,

δ(0, b) = 0.

23

0

b

-1

a,b

a a,ba,ba,b
n21

Figure 3.4: Witness DFA for Theorems 3.5 and 6.3

Figure 3.4 shows the transition diagram of A. It has been proved that any

DFA that accepts (L(A))∗ needs at least 2n−1 + 2n−2 states.

State Complexity of Left Quotient

Theorem 3.6 For any integer n > 0, 2n − 1 states are both sufficient and

necessary in the worst case for a DFA to accept the left quotient of an n-state

DFA language R by an arbitrary language L (L \R).

Theorem 3.6 shows the state complexity of left quotient of regular lan-

guages. It is given in [111].

State Complexity of Right Quotient

Theorem 3.7 For any integer n > 0, n states are both sufficient and nec-

essary in the worst case for a DFA to accept the right quotient of an n-state

DFA language R by an arbitrary language L (R/L).

Theorem 3.7 shows the state complexity of right quotient of regular lan-

guages. It is proved in [111].

State Complexity of Reversal

Theorem 3.8 For any integer n > 1, 2n states are both sufficient and nec-

essary in the worst case for a DFA to accept the reversal of an n-state DFA

language.

Theorem 3.8 is given in [111]. For any n > 1, E. Leiss has designed an

n-state DFA such that the reversal of the language accepted by this DFA is

24

accepted by a minimal DFA of 2n states [69]. A modified n-state DFA A was

designed by S. Yu, Q. Zhuang and K. Salomaa [111]. L(A)R is also accepted

by a minimal DFA of 2n states. The following example shows this modified

DFA.

Example 3.1 Define DFA A = (Q,Σ, δ, 0, F) where Q = {0, 1, · · · , n − 1},

Σ = {a, b, c}, F = {0}, and

δ(0, a) = n − 1, δ(0, b) = 1,

δ(0, c) = 1, δ(1, c) = 0,

δ(k, a) = k − 1, 1 ≤ k ≤ n − 1,

δ(k, b) = k, 1 ≤ k ≤ n − 1,

δ(k, c) = k, 2 ≤ k ≤ n − 1.

Figure 3.5 shows the transition diagram of A.

b,c

a,c

b
b,c

a
a

a
b,c

a -1n

0

1
2

Figure 3.5: Witness DFA for Theorems 3.8, Lemma 4.3 and Theorem 5.15

2

State Complexity of Intersection and Union

Theorem 3.9 For integers m,n ≥ 2, m · n states are both sufficient and

necessary in the worst case for a DFA to accept the intersection (union) of an

m-state DFA language and an n-state DFA language.

25

Theorem 3.9 gives the state complexities of intersection and union of reg-

ular languages. It is shown in [111].

3.1.2 Unary Regular Languages

The following results on the state complexities of several operations on regular

languages with a one-letter alphabet have been proved in [83, 111].

Basic Lemmas and Models

We denote the greatest common divisor of two integers m and n by gcd(m,n)

and denote the least common multiple of m and n by lcm(m,n). Lemma 3.1,

Fact 3.1 and Lemma 3.2 in the following are given in [111].

Lemma 3.1 Let m,n > 0 be two arbitrary integers such that gcd(m,n) = 1

(m and n are relatively prime).

1. The largest integer that cannot be represented as cm+dn for any integers

c, d > 0 is mn.

2. The largest integer that cannot be represented as cm+dn for any integers

c > 0 and d ≥ 0 is (m − 1)n.

3. The largest integer that cannot be represented as cm+dn for any integers

c, d ≥ 0 is mn − (m+ n).

Fact 3.1 Let R ⊆ Σ∗ be a regular language. If there exists an integer n such

that

max{|w| | w ∈ Σ∗, w /∈ R} = n

then any DFA that accepts R needs at least n+ 2 states. In particular, if Σ is

a singleton, the minimal DFA that accepts R uses exactly n + 2 states.

Lemma 3.2 Suppose a, b are positive integers. Then each number of the form

ax + by, with x, y ≥ 0, is a multiple of gcd(a, b). Furthermore, the largest

multiple of gcd(a, b) that cannot be represented as ax + by, with x, y ≥ 0, is

lcm(a, b) − (a+ b).

26

Since the alphabet of a unary regular language has only one letter, the

words of the language can be considered as a set of numbers by associating

an with n (assuming Σ = {a}). In this way, the state complexity can be

obtained from the analysis of these numbers. So a mathematical model for

the DFA that accepts a unary regular language is designed as two numbers by

G. Pighizzini and J. Shallit [83]. It has been shown in [83] that the transition

diagram of a unary DFA A, with n states, has a “tail” consisting of µ ≥ 0

states and a “circle” of λ ≥ 1 states. Furthermore, if the transition diagram is

connected (as we may assume without loss of generality) then n = µ+ λ [83].

Theorem 3.10 in the following is given in [83]. Figure 3.6 shows this model.

Figure 3.6: The model of DFAs that accept unary regular languages [83]

Theorem 3.10 A unary language L is regular if and only if there are two

integers µ ≥ 0, λ ≥ 1, such that for any n ≥ µ, the word an ∈ L if and only if

an+λ ∈ L.

Given a unary language L, the pair of integers (λ, µ) in Theorem 3.10 is

the size of the DFA that accepts L, and more precisely [83]:

Theorem 3.11 Given a unary regular language L and two integers µ ≥ 0,

λ ≥ 1, the following statements are equivalent:

(i) L is accepted by a DFA of size (λ, µ);

(ii) for any n ≥ µ, an ∈ L if and only if an+λ ∈ L.

27

A condition which characterizes minimal unary DFAs is presented in [76, 83]:

Theorem 3.12 A unary DFA A = (Q,Σ, δ, q0, F) of size (λ, µ) is minimal if

and only if both the following conditions are satisfied:

(i) For any maximal proper divisor d of λ (i.e., λ = α · d for some prime

number α > 1) there exists an integer h, with 0 ≤ h < λ, such that

ph ∈ F if and only if p(h+d)modλ /∈ F , i.e., aµ+h ∈ L if and only if

aµ+h+d /∈ L;

(ii) qµ−1 ∈ F if and only if pλ−1 /∈ F , i.e., aµ−1 ∈ L if and only if aµ+λ−1 /∈ L.

Using Theorem 3.12, Corollary 3.2 is shown and proved in [83].

Corollary 3.2 Given two integers µ ≥ 0, λ ≥ 1, let L = aµ+λ−1(aλ)∗. Then

the size of the minimal DFA that accepts L is (λ, µ).

State Complexity of Catenation

Theorems 3.13 and 3.14 in the following are given in [111] concerning the state

complexity of catenation of unary regular languages.

Theorem 3.13 Letm,n be two arbitrary positive integers such that gcd(m,n) =

1. Then there exists an m-state DFA language R1 and an n-state DFA lan-

guage R2, over a one-letter alphabet, such that any DFA that accepts R1R2

needs at least mn states.

Theorem 3.14 For any integers m,n ≥ 1, let A and B be an m-state DFA

and an n-state DFA, respectively, over a one-letter alphabet. Then there exists

a DFA of at most mn states that accepts L(A)L(B).

Theorems 3.15 and 3.16 in the following are given in [83] concerning the sizes

of DFAs for the catenation of unary regular languages.

Theorem 3.15 Given any µ′, µ′′ ≥ 0, λ′, λ′′ ≥ 1, let L′ and L′′ be two unary

languages accepted by two automata A′ and A′′ of size (λ′, µ′) and (λ′′, µ′′),

respectively. Then, the catenation of L′ and L′′ is accepted by a DFA of size

(λ, µ), where λ = lcm(λ′, λ′′) and µ = µ′ + µ′′ + lcm(λ′, λ′′) − 1.

28

Theorem 3.16 For any µ′, µ′′ ≥ 2, λ′, λ′′ ≥ 2, such that gcd(λ′, λ′′) > 1,

there exist two unary languages L′ and L′′ which are accepted by two DFAs

A′ and A′′ of size (λ′, µ′) and (λ′′, µ′′), respectively, such that the catenation

of L′ and L′′ is accepted by a DFA of size (λ, µ), with λ =lcm(λ′, λ′′) and

µ = µ′ + µ′′ + lcm(λ′, λ′′) − 1.

State Complexity of Star

Theorem 3.17 is given and proved in [111]. It shows the state complexity of

star of unary regular languages.

Theorem 3.17 The number of states that is both sufficient and necessary in

the worst case for a DFA to accept the star of an n-state DFA language, n > 1,

over a one-letter alphabet is (n − 1)2 + 1.

State Complexity of Intersection and Union

Theorem 3.18 in the following is given in [111] concerning the state complexities

of union and intersection of unary regular languages.

Theorem 3.18 The number of states which is both sufficient and necessary

in the worst case for a DFA to accept the intersection (union) of an m-state

DFA language and an n-state DFA language, m,n > 1, gcd(m,n) = 1, over a

one-letter alphabet is mn.

Theorems 3.19 and 3.20 in the following are given in [83] concerning the sizes

of the DFAs for the union and intersection of unary regular languages.

Theorem 3.19 Let L′ and L′′ be two languages accepted by unary automata

A′ and A′′ of the size (λ′, µ′) and (λ′′, µ′′), respectively. The intersection (the

union, respectively) of L′ and L′′ is accepted by a DFA of the size (lcm(λ′, λ′′),

max(µ′, µ′′)).

Theorem 3.20 For any µ′, µ′′ ≥ 0, λ′, λ′′ ≥ 1, there exist two languages L′

and L′′ which are accepted by DFAs of size (λ′, µ′) and (λ′′, µ′′), respectively,

such that the minimal DFAs that accept L′ ∪ L′′ and L′ ∩ L′′ have both size

(lcm(λ′, λ′′),max(µ′, µ′′)).

29

3.2 State Complexity of Individual Operations on Finite

Languages

In this section, we assume that all the DFAs mentioned are reduced DFAs. The

following theorems and corollaries about the state complexity of operations on

finite languages have been proved in [13].

3.2.1 Finite Languages over a General Alphabet

State Complexity of Star

Theorems 3.21, 3.22 and Corollary 3.3 in the following are given in [13] con-

cerning the state complexity of star of finite languages.

Theorem 3.21 Let A = (Q,Σ, δ, 0, F) be a DFA that accepts a finite language

L, where 0 /∈ F , |F | = t ≥ 2, |Q| = n ≥ 4. Then there exists a DFA of at

most 2n−3 + 2n−t−2 states that accepts L∗.

Corollary 3.3 Let A = (Q,Σ, δ, 0, F) be a DFA that accepts a finite language

L, where |Q| = n > 4. Then there exists a DFA of at most 2n−3 + 2n−4 states

that accepts L∗.

Theorem 3.22 There exists a DFA A = (Q,Σ, δ, 0, F) with |Q| = n ≥ 4 such

that any DFA recognizing (L(A))∗ has at least 2n−3 + 2n−4 states.

State Complexity of Catenation

We use the following notation:

(

n

≤ i

)

=

i
∑

j=0

(

n

j

)

Theorems 3.23, 3.24, Corollaries 3.4 and 3.5 in the following are given and

proved in [13] concerning the state complexity of catenation of finite languages.

Theorem 3.23 Let Ai = (Qi,Σi, δi, 0, Fi), i = 1, 2, be two DFAs that accept

finite languages Li, respectively, where |Q1| = m, |Q2| = n, |Σ| = k and |F1| =

30

t. There exists a DFA A = (Q,Σ, δ, 0, F) that accepts L(A) = L(A1)L(A2) and

|Q| ≤
m−2
∑

i=0

min

{

ki,

(

n − 2

≤ i

)

,

(

n − 2

≤ t − 1

)}

+min

{

km−1,

(

n − 2

≤ t

)}

.

Corollary 3.4 Let Ai = (Qi,Σi, δi, 0, Fi), i = 1, 2, be two DFAs that accept

finite languages Li, respectively, where |Q1| = m, |Q2| = n, |F1| = t and

t > 0. Then there exists a DFA A = (Q,Σ, δ, 0, F) of O(mnt−1 + nt) states

that accepts L(A) = L(A1)L(A2).

Corollary 3.5 Let Ai = (Qi,Σi, δi, 0, Fi), i = 1, 2, be two DFAs that accept

finite languages Li, respectively, where |Q1| = m, |Q2| = n, |Σ| = k, k = 2

and m+ 1 ≥ n > 2. Then there exists a DFA A = (Q,Σ, δ, 0, F) of (m − n+

3)2n−2 − 1 states that accepts L(A) = L(A1)L(A2).

Theorem 3.24 The bound given by Corollary 3.5 for k = 2 is attainable.

State Complexity of Reversal

Theorems 3.25, 3.26 and Corollary 3.6 in the following are shown and proved

in [13] concerning the state complexity of reversal of finite languages.

Theorem 3.25 Let A = (Q,Σ, δ, 0, F) be a DFA that accepts a finite language

L, where |Q| = n ≥ 3, |Σ| = k ≥ 2. Let t be the smallest integer such that

2n−1−t ≤ kt. Then there exists a DFA, with

|QB| ≤
t−1
∑

i=0

ki+2n−1−t,

that accepts the reversal of L.

Corollary 3.6 Let |Σ| = 2 and A be a DFA of n ≥ 3 states that accepts a

finite language L ⊆ Σ∗. Then there exists a DFA B that accepts the reversal

of L such that B has at most 3 · 2p−1 − 1 states if n = 2p or 2p − 1 states if

n = 2p − 1.

Theorem 3.26 The bounds given by Corollary 3.6 are attainable.

31

3.2.2 Finite Languages over a One-letter Alphabet

Note that if DFA A = (Q, {a}, δ, 0, F) is a minimal DFA that accepts words

whose largest length is l, then |Q| = l + 1.

Theorem 3.27 is given in [13]. It shows the state complexities of operations

on finite languages.

Theorem 3.27 Let Ai = (Qi, {a}, δi, 0, Fi), i = 1, 2, be two minimal DFAs

with |L(Ai)| < ∞, |Q1| = m, |Q2| = n. Let A = (Q, {a}, δ, 0, F), |Q| = k, be

a minimal DFA. Then we have the following:

a) If L(A) = L(A1) ∪ L(A2), then k = max{m,n}.

b) If L(A) = L(A1) ∩ L(A2), then k ≤ min{m,n}.

c) If L(A) = L(A1) − L(A2), then k ≤ m.

d) If L(A) = {a}∗ − L(A1), then k = m.

e) If L(A) = L(A1)L(A2), then k = m+ n − 1.

f) If L(A) = L(A1)
∗, then k ≤ m2 − 7m+ 13 for m > 4 and m = 3, k ≤ 2

otherwise.

g) If L(A) = a \ L(A1), then k = m − 1.

h) If L(A) = L(A1)
R, then k = m.

3.3 Conclusion

After reviewing the above results on the state complexities of operations on

regular languages, we find that most basic individual operations have been

studied. Tight bounds have been found and proved.

We assume that languages L1 and L2 are accepted by an m-state DFA

A1 and an n-state DFA A2, respectively, m,n > 1. L1 and L2 are over the

same alphabet Σ. The state complexities of individual operations on regular

languages are listed in Table 3.1.

From Table 3.1, we know that the state complexity of an individual oper-

ation on regular languages over a general alphabet may not be the same as its

state complexity on unary regular languages. Note that the state complexities

32

Table 3.1: The state complexities of individual operations on regular

languages [105]

|Σ| = 1 |Σ| > 1

L1 ∪ L2 mn, for gcd(m,n) = 1 mn

L1 ∩ L2 mn, for gcd(m,n) = 1 mn

Σ∗ − L1 m m

L1L2 mn, for gcd(m,n) = 1 m2n − 2n−1

L1
R m 2m

L1
∗ (m − 1)2 + 1 2m−1 + 2m−2

of some individual operations on regular languages over a two-letter alphabet

remain open.

Using these results as the foundation, we can start the study of the state

complexity of combined operations on regular languages. The direct compo-

sitions of the state complexities of these individual operations can give the

upper bounds for combined operations. In the next chapter, we will study

whether these bounds are tight or not.

Chapter 4

Recent Results on State Complexity of

Combined Operations

The research on state complexity of combined operations started in 2005. Up

to now, the state complexities of some combined operations have been studied,

e.g., star of union and intersection, star of catenation and reversal, reversal of

union and intersection, reversal of catenation and star, etc. [23, 62, 70, 86,

92]. These results are reviewed in this chapter. We will start with the state

complexities of star of union and star of intersection in the following.

4.1 State Complexity of Star of Union and Star of Inter-

section

It is known that the state complexity of the union operation on a DFA of m1

states and a DFA of m2 states is m1 · m2. The state complexity of the star

operation on a DFA of m states is 2m−1 + 2m−2. The direct composition of

state complexities of the union and star operations on regular languages is

2m1m2−1 + 2m1m2−2.

However, the actual state complexity of the star of a union is very different

from the composition of the state complexities of the individual operations

[62, 92].

Theorem 4.1 Let Li = L(Ai) and Ai be a complete DFA of mi states, i = 1, 2.

Then (L1 ∪ L2)
∗ is accepted by a complete DFA of no more than 2m1+m2−1 −

2m1−1 − 2m2−1 + 1 states.

33

34

2

1 2

a,b a,b a,b a,b
-1

-1

b

a
b

a,b

a a

bbb

a

0

0 m

n

1

Figure 4.1: Witness DFAs A1 and A2 for the star of a union

Note that this upper bound

2m1+m2−1 − 2m1−1 − 2m2−1 + 1

is much smaller than

2m1m2−1 + 2m1m2−2.

This upper bound has been proved to be attainable with the witness DFAs

shown in Figure 4.1 [62, 92].

Theorem 4.2 For all integers m1 > 2 and m2 > 2, there exist binary DFAs

A and B of m1 and m2 states, respectively, such that the state complexity of

the language (L(A) ∪ L(B))∗ is 2m1+m2−1 − 2m1−1 − 2m2−1 + 1.

After considering other cases, the following corollary has been obtained in [62].

Corollary 4.1 For every alphabet Σ, such that |Σ| ≥ 2, the state complexity

of the star of a union over Σ is:

f(m1, m2) =

2m1+m2−1 − 2m1−1 − 2m2−1 + 1, if m1, m2 ≥ 2,

3 · 2m1−2, if m1 ≥ 2, m2 = 1,

3 · 2m2−2, if m1 = 1, m2 ≥ 2,

2, if m1 = m2 = 1.

The state complexity of intersection operation on a DFA of m1 states and

a DFA of m2 states is also m1 · m2. Thus, the direct composition of state

complexities of the intersection and star operations on regular languages is

also

2m1m2−1 + 2m1m2−2.

35

This is an upper bound on the state complexity of the star of an intersection

[92]. It has been proved to be attainable by some witness DFAs shown in

Figure 4.2 [62].

b,d,e,fb,d,e,f

a,ca,ca,c

b,d,f

e

a

b,c,d,e,f

021

02

a

n -1

m -1

a,b,da,b,da,b,d

f

a,b

a,b

c,d,e,f c,e c,e,f c,e,f

d

c

1

Figure 4.2: Witness DFAs A and B for the star of an intersection

Theorem 4.3 For all integers m1 > 2 and m2 > 2, there exist DFAs A and

B of m and n states, respectively, defined over a six-letter alphabet, such that

the state complexity of the language (L(A) ∩ L(B))∗ is 2m1m2−1 + 2m1m2−2.

4.2 State Complexity of Star of Catenation and Star of

Reversal

The state complexity of the combined operation the star of a catenation has

been proved to be much smaller than the direct composition of state complex-

ities of catenation and star [28, 31].

Theorem 4.4 Let L1 and L2 be two regular languages accepted by an m-state

and n-state DFA, respectively, m, n ≥ 2. Then there exists a DFA of at most

2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1 states that accepts (L1L2)
∗.

The state complexity of the star of the catenation of an m-state DFA language

and a one-state DFA language is at most m+ 1. The state complexity of the

star of a catenation of a one-state DFA language and an n-state DFA language

is upper bounded by 2n.

36

It has also been shown in [28, 31] that the upper bound in Theorem 4.4 is

tight, when m ≥ 2 and n ≥ 2. Figure 4.3 shows the transition diagrams of the

witness DFAs A and B.

Theorem 4.5 For all integers m ≥ 2 and n ≥ 2, there exist DFAs A and B

of m states and n states, respectively, defined over a four-letter input alphabet

and such that any DFA that accepts (L(A)L(B))∗ needs at least 2m+n−1 +

2m+n−4 − 2m−1 − 2n−1 +m+ 1 states.

n

-1m
a,ca,ca,ca

021

02

-1

a,c,d

b,c,d b,d b,d b,d

a,ca,c

b b,d b,db,d

a,c

b,d

a,c

1

Figure 4.3: Witness DFAs A and B for the star of a catenation

The state complexity of the star of a reversal on regular languages can-

not attain the direct composition of the state complexities of its component

operations either [28, 31].

Lemma 4.1 Let A = (Q,Σ, δ, s, F) be a DFA, where |Q| = n ≥ 2 and

|(F − { s})| = k with 1 ≤ k ≤ n − 1, and L = L(A). Then there exists another

DFA B = (QB,Σ, δB, sB, FB) of no more than 2n − (2k − 1)2n−k−1 + 1 states

that accepts (LR)∗.

After considering the case when n = 1, the following lemma concerning an

upper bound on the state complexity of (LR)∗ has been obtained [28, 31].

Lemma 4.2 Let A = (Q,Σ, δ, s, F) be a DFA of n > 0 states and L = L(A).

Then there exists a DFA B = (QB,Σ, δB, sB, FB) of no more than 2n states

that accepts (LR)∗.

37

The witness DFA A for the state complexity of the star of a reversal is

the same as the witness DFA for the state complexity of reversal operation on

regular languages. The transition diagram of A is shown in Figure 3.5. It is

the worst-case example attaining the upper bound precisely [28, 31].

Lemma 4.3 There exists an n-state DFA A, for any n > 0, such that any

DFA that accepts (L(A)R)∗ has at least 2n states.

By Lemmas 4.1, 4.2 and 4.3, the following theorem has been concluded [28, 31].

Theorem 4.6 The state complexity of the star of a reversal of an n-state DFA

language is exactly 2n, for any n > 0.

4.3 State Complexity of Reversal of Union and Reversal

of Intersection

The state complexity of the reversal of an m-state DFA language is known

to be 2m. As we mentioned before, the state complexity of the union of an

m1-state DFA language and an m2-state DFA language is m1 ·m2. Thus, the

direct composition of state complexities of the union and reversal operations

on regular languages is 2m1m2 . In fact, this upper bound is not attainable [70].

It can be reduced to 2m1+m2 − 2m1 − 2m2 + 2 which can be attained by the

witness DFAs shown in Figure 4.4 [70].

Theorem 4.7 Let L1 and L2 be languages accepted by m1-state and m2-state

complete DFAs, m1, m2 ≥ 3. Then the state complexity of the combined oper-

ation (L1 ∪ L2)
R is 2m1+m2 − 2m1 − 2m2 + 2.

The direct composition of state complexities of the intersection and reversal

operations on regular languages is also 2m1·m2 . However, the actual state

complexity of this combined operation is the same as that of the reversal of

union, 2m1+m2 − 2m1 − 2m2 + 2 [70], since

(L1 ∩ L2)
R = (L1 ∪ L2)

R

= (L1 ∪ L2)R.

Theorem 4.8 Let L1 and L2 be languages accepted by m1-state and m2-state

complete DFAs, m1, m2 ≥ 3. Then the state complexity of the combined oper-

ation (L1 ∩ L2)
R is 2m1+m2 − 2m1 − 2m2 + 2.

38

21

a,b

b

ccca,c

a,b

-1n02

......

a

c

a,b

b,c

b

aaaa,c

b,c b,c

-1m0

1

Figure 4.4: Witness DFAs A1 and A2 for both the reversal of a union

and the reversal of an intersection

4.4 State Complexity of Reversal of Catenation and Re-

versal of Star

For the state complexity of the reversal of a catenation, only an upper bound

has been obtained [70].

Theorem 4.9 Let L1 and L2 be languages accepted by m-state and n-state

complete DFAs, respectively, with m, n > 1. Then there exists a DFA with no

more than 3 · 2m+n−2 − 2n + 1 states that accepts (L1L2)
R.

Since (L∗)R = (LR)∗, the state complexity of (L∗)R is the same as that of

(LR)∗ [70].

Theorem 4.10 Let L be a language accepted by an n-state DFA. The state

complexity of the reversal of star operation on L is exactly 2n, for any n > 0.

4.5 State Complexity of Power

The state complexity of the power of a language: Lk, has been studied in

[23, 86]. The state complexity of L2 has been shown to be at most n2n − 2n−1,

where L is a language accepted by an n-state DFA. This bound can be attained

for any n ≥ 3 over an alphabet of size two [86]. The following results concern

the state complexity of Lk for k ≥ 2 [23].

39

Theorem 4.11 For every n-state regular language L, with n ≥ 1, the lan-

guage Lk requires at most n2(k−1)n states. Furthermore for every k ≥ 2,

n ≥ k+1, and alphabet Σ with |Σ| ≥ 6, there exists an n-state regular language

L ⊆ Σ∗ such that Lk requires at least (n − k)2(k−1)(n−k) states.

The worst-case example used in Theorem 4.11 is a sequence of automata

Ak,n (2 ≤ k < n) over the alphabet Σ = {a, b, c, d, e, f}. Let each Ak,n have a

set of states Q = {0, 1, . . . , n − 1}, of which 0 is the initial state, n − 1 is the

sole final state, and where the transitions are defined as follows:

δ(j, a) =

j + 1, if 1 ≤ j ≤ n − k − 1;

1, if j = n − k;

j, otherwise,

δ(j, b) =

j + 1, if

n − k + 1 ≤ j ≤ n − 2;

n − k + 1, if j = n − 1;

j, otherwise,

δ(j, c) =

1, if j = 0;

0, if j = 1;

j, otherwise,

δ(j, d) =

{

1, if j = n − k + 1;

j, otherwise,

δ(j, e) =

n − 1, if j = 0;

j − 1, if n − k + 2 ≤ j ≤ n − 1;

j, otherwise,

δ(j, f) =

{

n − 1, if j = 1;

n − 2, otherwise.

c,d a

0

b,d

...... -2

c,d

n -1n
ba,ba,ba

c

a

b

c,d

1

Figure 4.5: Witness DFA An for L3

The state complexity of L3 has also been obtained [23].

Theorem 4.12 For every n-state regular language L, with n ≥ 3, the state

complexity of L3 is at most 6n−3
8

4n − (n − 1)2n − n. This upper bound is attained

on every alphabet of at least four letters.

Figure 4.5 shows the witness DFA An for the combined operation L3. It has

been pointed out that any witness for the worst-case state complexity of L3 is

a witness for L2 as well [23].

40

4.6 Conclusion

In this chapter, we have reviewed the state complexities of 10 combined oper-

ations on regular languages. These results are shown in Table 4.1. We assume

that L1 and L2 are accepted by an m-state DFA A1 = (Q1,Σ, δ1, s1, F1) and

an n-state DFA A2 = (Q2,Σ, δ2, s2, F2), respectively, and m,n ≥ 3.

Table 4.1: The state complexities of 10 combined operations

Operation State complexity

(L1 ∪ L2)
∗ 2m+n−1 − 2m−1 − 2n−1 + 1 [92]

(L1 ∩ L2)
∗ 2mn−1 + 2mn−2 [62]

(L1L2)
∗ 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1 [31]

(LR
1)

∗ 2m [31]

(L1 ∪ L2)
R 2m+n − 2m − 2n + 2 [70]

(L1 ∩ L2)
R 2m+n − 2m − 2n + 2 [70]

(L1L2)
R O(2mn−1) [70]

(L1
∗)R 2m [70]

L1
3 6m−3

8
4m − (m − 1)2m − m [23]

L1
k θ(m2(k−1)m) [23]

We can see that for most of these combined operations, their state complex-

ities are very different from the direct compositions of the state complexities

of their component operations. There is only one combined operation, star of

intersection, whose state complexity is exactly the same as the direct combi-

nation of the state complexities of intersection and star.

Thus, although the direct combination of the state complexities of indi-

vidual operations can provide an upper bound on the state complexity of a

combined operation, this upper bound may not be tight [92].

Chapter 5

Exact State Complexity of Combined

Operations

In this chapter, we investigate the exact state complexities of combined opera-

tions on regular languages. We choose 12 combined operations and investigate

their exact state complexities, including combinations of union, intersection

and complementation, multiple catenations, combinations of star and cate-

nation, reversal and catenation, Boolean operations and catenation, Boolean

operations and star, and Boolean operations and reversal. These combined

operations are widely used in practice. For example, the state complexity

of L1L
R
2 is equal to that of catenation combined with antimorphic involu-

tion (L1θ(L2)). An antimorphic involution is the natural formalization of the

notion of Watson-Crick complementarity in biology. The combination of cate-

nation and antimorphic involution can naturally formalize a basic biological

operation: primer extension [2].

We will first study the state complexities of catenation combined with star

and reversal in the following.

5.1 State Complexity of Catenation Combined with Star

and Reversal

5.1.1 State Complexity of L∗
1L2

In this subsection, we investigate the state complexity of L(A)∗L(B) for two

DFAs A and B of sizes m,n ≥ 1, respectively. All the results in this subsection

are from our paper [12].

41

42

We first notice that, when n = 1, the state complexity of L(A)∗L(B) is 1

for any m ≥ 1. This is because B is complete (L(B) is either ∅ or Σ∗), and

we have either L(A)∗L(B) = ∅ or Σ∗ ⊆ L(A)∗L(B) ⊆ Σ∗. Thus, L(A)∗L(B)

is always accepted by a one-state DFA. Next, we consider the case when A

has only one final state and it is also the initial state. In such a case, L(A)∗

is also accepted by A, and hence the state complexity of L(A)∗L(B) is equal

to that of L(A)L(B). We will show that, for any A of size m ≥ 1 in this form

and any B of size n ≥ 2, the state complexity of L(A)L(B) (also L(A)∗L(B))

is m(2n − 1) − 2n−1 + 1 (Theorems 5.1 and 5.2), which is lower than the state

complexity of catenation in the general case. Lastly, we consider the state

complexity of L(A)∗L(B) in the remaining case, that is when A has at least

one final state that is not the initial state, and n ≥ 2. We will show that

its upper bound (Theorem 5.3) coincides with its lower bound (Theorem 5.4),

and the state complexity is 5 · 2m+n−3 − 2m−1 − 2n + 1 [12].

Now, we consider the case when the DFA A has only one final state and

it is also the initial state, and first obtain the following upper bound on the

state complexity of L(A)L(B) (L(A)∗L(B)), for any DFA B of size n ≥ 2.

Theorem 5.1 For integers m ≥ 1 and n ≥ 2, let A and B be two DFAs with

m and n states, respectively, where A has only one final state and it is also the

initial state. Then there exists a DFA of at most m(2n − 1) − 2n−1 + 1 states

accepting L(A)L(B), which is equal to L(A)∗L(B).

Proof: Let A = (Q1,Σ, δ1, s1, {s1}) and B = (Q2,Σ, δ2, s2, F2) be two DFAs

with m and n states, respectively. We construct the DFA C = (Q,Σ, δ, s, F)

such that

Q = Q1 × (2Q2 − {∅}) − { s1} × (2Q2−{s2} − {∅}),

s = 〈s1, {s2}〉,

F = {〈q, T 〉 ∈ Q | T ∩ F2 6= ∅},

δ(〈q, T 〉, a) = 〈q′, T ′〉, for a ∈ Σ, where q′ = δ1(q, a) and T ′ = R ∪ {s2}

if q′ = s1, T
′ = R otherwise, where R = δ2(T, a).

Intuitively, Q contains the pairs whose first component is a state of Q1 and

second component is a subset of Q2. Since s1 is the final state of A, without

reading any letter, we can enter the initial state of B. Thus, states 〈q, ∅〉

43

such that q ∈ Q1 can never be reached in C, because B is complete. More-

over, Q does not contain those states whose first component is s1 and second

component does not contain s2.

Clearly, C has m(2n − 1) − 2n−1+1 states, and we can verify that L(C) =

L(A)L(B). q.e.d.

Next, we show that this upper bound can be attained by some witness

DFAs in the specific form.

Figure 5.1: Witness DFA A for Theorem 5.2 when m ≥ 2

Figure 5.2: Witness DFA B for Theorem 5.2 when m ≥ 2

Theorem 5.2 For integers m ≥ 1 and n ≥ 2, there exists a DFA A of m

states and a DFA B of n states, where A has only one final state and it is also

44

the initial state, such that any DFA accepting the language L(A)L(B), which

is equal to L(A)∗L(B), has at least m(2n − 1) − 2n−1 + 1 states.

Proof: Whenm = 1, the witness DFAs used in the proof of Theorem 1 in [111]

can be used to show that the upper bound proposed in Theorem 5.1 can be

attained.

Next, we consider the case when m ≥ 2. We provide witness DFAs A and

B, depicted in Figures 5.1 and 5.2, respectively, over the three-letter alphabet

Σ = {a, b, c}.

A is defined by A = (Q1,Σ, δ1, 0, {0}) where Q1 = {0, 1, . . . , m − 1}, and

the transitions are given by

• δ1(i, a) = i+ 1 mod m, for i ∈ Q1;

• δ1(i, x) = i, for i ∈ Q1, where x ∈ {b, c}.

B is defined by B = (Q2,Σ, δ2, 0, {n − 1}) where Q2 = {0, 1, . . . , n − 1},

where the transitions are given by

• δ2(i, a) = i, for i ∈ Q2;

• δ2(i, b) = i+ 1 mod n, for i ∈ Q2;

• δ2(0, c) = 0, δ2(i, c) = i+ 1 mod n, for i ∈ {1, . . . , n − 1}.

Following the construction described in the proof of Theorem 5.1, we con-

struct the DFA C = (Q,Σ, δ, s, F) that accepts L(A)L(B) (also L(A)∗L(B)).

To prove that C is minimal, we show that (I) all states in Q are reachable

from s, and (II) any two different states in Q are not equivalent.

For (I), we show that all states in Q are reachable by induction on the size

of T .

The basis clearly holds, since, for any i ∈ Q1, the state 〈i, {0}〉 is reachable

from 〈0, {0}〉 by reading ai, and the state 〈i, {j}〉 can be reached from state

〈i, {0}〉 on bj , for any i ∈ {1, . . . , m − 1} and j ∈ Q2.

In the induction step, we assume that all states 〈q, T 〉 such that |T | < k

are reachable. Then we consider the states 〈q, T 〉 where |T | = k. Let T =

{j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < · · · < jk ≤ n − 1. We consider the

following three cases:

45

1. j1 = 0 and j2 = 1. For any state i ∈ Q1, the state 〈i, T 〉 ∈ Q can be

reached as

〈i, {0, 1, j3, . . . , jk}〉 = δ(〈0, {0, j3 − 1, . . . , jk − 1}〉, bai),

where {0, j3 − 1, . . . , jk − 1} is of size k − 1.

2. j1 = 0 and j2 > 1. For any state i ∈ Q1, the state 〈i, {0, j2, . . . , jk}〉 can

be reached from the state 〈i, {0, 1, j3 − j2+1, . . . , jk − j2+1}〉 by reading

cj2−1.

3. j1 > 0. In such a case, the first component of the state 〈q, T 〉 cannot be

0. Thus, for any state i ∈ {1, . . . , m − 1}, the state 〈i, {j1, j2, . . . , jk}〉

can be reached from the state 〈i, {0, j2 − j1, . . . , jk − j1}〉 by reading bj1 .

Next, we show that any two distinct states 〈q, T 〉 and 〈q′, T ′〉 in Q are not

equivalent. We consider the following two cases:

1. q 6= q′. Without loss of generality, we assume q 6= 0. Then w =

cn−1am−qbn distinguishes the two states, since δ(〈q, T 〉, w) ∈ F and

δ(〈q′, T ′〉, w) 6∈ F .

2. q = q′ and T 6= T ′. Without loss of generality, we assume that |T | ≥ |T ′|.

Then there exists a state j ∈ T − T ′. It is clear that, when q 6= 0, bn−1−j

distinguishes the two states, and when q = 0, cn−1−j distinguishes the

two states since j cannot be 0.

From (I) and (II), the DFA C has at least m(2n − 1) − 2n−1 +1 states and

is minimal. q.e.d.

In the rest of this subsection, we focus on the case when the DFAA contains

at least one final state that is not the initial state. Thus, this DFA is of size at

least two. We first obtain the following upper bound for the state complexity.

Theorem 5.3 Let A = (Q1,Σ, δ1, s1, F1) be a DFA such that |Q1| = m > 1

and |F1 − { s1}| = k1 ≥ 1, and B = (Q2,Σ, δ2, s2, F2) be a DFA such that

|Q2| = n > 1. Then there exists a DFA of at most (
3

4
2m − 1)(2n − 1) − (2m−1 −

2m−k1−1)(2n−1 − 1) states that accepts L(A)∗L(B).

46

Proof: We denote F1 − { s1} by F0. Then |F0| = k1 ≥ 1.

We construct the DFA C = {Q,Σ, δ, s, F} for the language L∗
1L2, where

L1 and L2 are the languages accepted by DFAs A and B, respectively.

Let Q = {〈p, t〉 | p ∈ P and t ∈ T} − {〈 p′, t′〉 | p′ ∈ P ′ and t′ ∈ T ′}, where

P = {R | R ⊆ (Q1 − F0) and R 6= ∅} ∪ {R | R ⊆ Q1, s1 ∈ R, and R ∩ F0 6= ∅},

T = 2Q2 − {∅} ,

P ′ = {R | R ⊆ Q1, s1 ∈ R, and R ∩ F0 6= ∅}, and

T ′ = 2Q2−{s2} − {∅} .

The initial state is s = 〈{s1}, {s2}〉.

The set of final states is defined to be F = {〈p, t〉 ∈ Q | t ∩ F2 6= ∅}.

The transition relation δ is defined as follows:

δ(〈p, t〉, a) =

{

〈p′, t′〉, if p′ ∩ F1 = ∅;

〈p′ ∪ {s1}, t
′ ∪ {s2}〉 otherwise,

where a ∈ Σ, p′ = δ1(p, a), and t′ = δ2(t, a).

Intuitively, C is equivalent to the NFA C ′ obtained by first constructing

an NFA A′ that accepts L∗
1, then catenating this new NFA with the DFA B

by ε-transitions. Note that in the construction of A′, we need to add a new

initial and final state s′1. However, this new state does not appear in the first

component of any of the states in Q. The reason is as follows. First, note that

this new state does not have any incoming transitions. Thus, from the initial

state s′1 of A′, after reading a nonempty string, we will never return to this

state. As a result, states 〈p, t〉 such that p ⊆ Q1∪{s′1}, s
′
1 ∈ p, and t ∈ 2Q2 are

never reached in the DFA C except for the state 〈{s′1}, {s2}〉. Then we note

that in the construction of A′, states s′1 and s1 should reach the same state on

any letter in Σ. Thus, we can say that states 〈{s′1}, {s2}〉 and 〈{s1}, {s2}〉 are

equivalent, because either of them is final if s2 6∈ F2, and they are both final

states otherwise. Hence, we merge these two states and let 〈{s1}, {s2}〉 be the

initial state of C.

Also, we notice that states 〈p, ∅〉 such that p ∈ P can never be reached in

C, because B is complete.

Moreover, C does not contain those states whose first component contains

a final state of A and second component does not contain the initial state of

B.

47

Therefore, we can verify that the DFA C indeed accepts L∗
1L2, and it is

clear that the size of Q is

(
3

4
2m − 1)(2n − 1) − (2m−1 − 2m−k1−1)(2n−1 − 1).

q.e.d.

Next we show that this upper bound is attainable by some witness DFAs.

Figure 5.3: Witness DFA A for Theorem 5.4

Figure 5.4: Witness DFA B for Theorem 5.4

Theorem 5.4 For integers m,n ≥ 2, there exists a DFA A of m states and

a DFA B of n states such that any DFA that accepts L(A)∗L(B) has at least

5 · 2m+n−3 − 2m−1 − 2n + 1 states.

48

Proof: We define the following two automata over a four-letter alphabet Σ =

{a, b, c, d}.

Let A = (Q1,Σ, δ1, 0, {m − 1}), as shown in Figure 5.3, where Q1 =

{0, 1, . . . , m − 1}, and the transitions are defined as

• δ1(i, a) = i+ 1 mod m, for i ∈ Q1;

• δ1(0, b) = 0, δ1(i, b) = i+ 1 mod m, for i ∈ {1, . . . , m − 1};

• δ1(i, x) = i, for i ∈ Q1, x ∈ {c, d}.

Let B = (Q2,Σ, δ2, 0, {n − 1}), as shown in Figure 5.4, where Q2 =

{0, 1, . . . , n − 1}, and the transitions are defined as

• δ2(i, x) = i, for i ∈ Q2, x ∈ {a, b};

• δ2(i, c) = i+ 1 mod n, for i ∈ Q2;

• δ2(i, d) = 0, for i ∈ Q2.

Let C = {Q,Σ, δ, 〈{0}, {0}〉, F} be the DFA for the language L(A)∗L(B)

which is constructed from A and B exactly as described in the proof of Theo-

rem 5.3.

Now, we prove that the size of Q is minimal by showing that (I) any state

in Q can be reached from the initial state, and (II) no two different states in

Q are equivalent.

We first prove (I) by induction on the size of the second component t of

the states in Q.

Basis: for any i ∈ Q2, the state 〈{0}, {i}〉 can be reached from the initial

state 〈{0}, {0}〉 on ci. Then by the proof of Theorem 5 in [111], it is clear that

the state 〈p, {i}〉 of Q, where p ∈ P and i ∈ Q2, is reachable from the state

〈{0}, {i}〉 on strings over letters a and b.

Induction: assume that all states 〈p, t〉 in Q such that p ∈ P and |t| < k

are reachable. Then we consider the states 〈p, t〉 in Q where p ∈ P and |t| = k.

Let t = {j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < · · · < jk ≤ n − 1.

Note that the states such that p = {0} and j1 = 0 are reachable as follows:

〈{0}, {0, j2, . . . , jk}〉 = δ(〈{0}, {0, j3 − j2, . . . , jk − j2}〉, c
j2am−1b).

Then the states such that p = {0} and j1 > 0 can be reached as follows:

〈{0}, {j1, j2, . . . , jk}〉 = δ(〈{0}, {0, j2 − j1, . . . , jk − j1}〉, c
j1).

49

Once again, by using the proof of Theorem 5 in [111], the states 〈p, t〉 in

Q, where p ∈ P and |t| = k, can be reached from the state 〈{0}, t〉 on strings

over letters a and b.

Next, we show that any two states in Q are not equivalent. Let 〈p, t〉 and

〈p′, t′〉 be two different states in Q. We consider the following two cases:

1. p 6= p′. Without loss of generality, we assume |p| ≥ |p′|. Then there

exists a state i ∈ p − p′. It is clear that am−1−idcn is accepted by C

starting from the state 〈p, t〉, but it is not accepted starting from the

state 〈p′, t′〉.

2. p = p′ and t 6= t′. We may assume that |t| ≥ |t′| and let j ∈ t − t′. Then

the state 〈p, t〉 reaches a final state on cn−1−j, but the state 〈p′, t′〉 does

not on the same string. Note that when m − 1 ∈ p, we can say that

j 6= 0.

From (I) and (II), the DFA C has at least 5 · 2m+n−3 − 2m−1 − 2n + 1

reachable states, and any two of them are not equivalent. q.e.d.

5.1.2 State Complexity of L1L
∗
2

In this subsection, we consider the state complexity of L1L
∗
2 where L1 and L2

are two languages accepted by two DFAs of sizes m and n, respectively. All

the results in this subsection are from our paper [10].

We notice that if the n-state DFA has only one final state that is also its

initial state, this DFA also accepts L∗
2. Thus, in such a case, an upper bound

for the number of states of any DFA that accepts L1L
∗
2 is given by the state

complexity of catenation asm2n − 2n−1. We first show that this upper bound is

attainable by some DFAs of this form. Next we consider the state complexity

of L1L
∗
2 in the other cases, that is when the n-state DFA contains some final

states other than the initial state.

First, we show that there exist two DFAs A and B, where the latter DFA

has only one final state that is also its initial state, such that the number of

states of any DFA for L(A)L(B)∗, which is equal to L(A)L(B), attains the

upper bound given by the state complexity of catenation. One example can

be obtained by slightly modifying the examples used in [58]. We change the

50

initial state of the DFA B in [58] into the only final state, and obtain the

following result [10]:

Figure 5.5: Witness DFA A for Lemma 5.1: d = (m − n+ 1) mod (m − 1)

Figure 5.6: Witness DFA B for Lemma 5.1

Lemma 5.1 For any m ≥ 2 and n ≥ 2, there exists a DFA A of m states

and a DFA B of n states, where B has only one final state and it is also the

initial state, such that any DFA for the language L(A)L(B), which is equal to

L(A)L(B)∗, has at least m2n − 2n−1 states.

Proof: We use the DFAs A, as in Figure 5.5, and B, as in Figure 5.6, which

are originally from [58] and we only modify the final state of the DFA B. For

the sake of clarity, we repeat the definitions of these DFAs.

Let A = (QA,Σ, δA, q0, FA) be a DFA, where QA = {q0, q1, . . . , qm−1},

Σ = {a, b}, FA = {qm−1}, and for any i ∈ {0, 1, . . . , m − 1},

δA(qi, X) =

qj , j = (i+ 1) mod m, if X = a;

qi+1, if i ≤ m − 3 and X = b;

q0, if i = m − 2 and X = b;

qd, d = (m − n+ 1) mod (m − 1), if i = m − 1 and X = b.

51

Let B = (QB,Σ, δB, 0, FB) be a DFA, where QB = {0, 1, . . . , n − 1}, FB =

{0}, and for any i ∈ {0, 1, . . . , n − 1},

δB(i, X) =

i+ 1, if i ≤ n − 2 and X = a;

n − 1, if i = n − 1 and X = a;

(i+ 1) mod n, if X = b.

We construct the DFA C = (QC ,Σ, δC , {q0}, FC) that accepts L(A)L(B)

following the construction described in [58]. Note that the state set QC and

transition rules δC are exactly the same as those of the DFA C ′ constructed

in [58] and only the final state sets are different. In the DFA C, if a state

contains the state 0 of B, it is a final state, but, in the DFA C ′ in [58], it is a

final state if it contains the state n − 1. Thus, the state set of QC is

QC = {{qi}∪S | 0 ≤ i ≤ m − 2 and S ⊆ QB}∪{{qm−1}∪S | S ⊆ QB − { 0}},

and the size of QC is m2n − 2n−1. To prove the lemma, it is sufficient to show

that (1) any state in QC is reachable and (2) no two different states in QC

are equivalent. Since the state set QC and transition rules δC are the same

as those of the DFA C ′ in [58], the proof for the reachability of states is the

same, and hence is omitted. Therefore, we only prove (2) as follows.

Let {qi} ∪ S and {qj} ∪ T be two different states in QC with 0 ≤ i ≤ j ≤

m − 1. There are two cases:

1. i < j. Then the string am−1−ibn is accepted by the DFA C starting from

the state {qi} ∪ S, but it is not accepted starting from the state {qj} ∪ T .

2. i = j. Without loss of generality, there is a state l in QB such that l ∈ S

and l 6∈ T . Note that l ≥ 1 if i = j = m − 1. Then bn−l is accepted by the

DFA C starting from the state {qi} ∪ S, but not accepted starting from the

state {qj} ∪ T . q.e.d.

Note that if n = 1, according to Theorem 3 in [111], for any DFA A of size

m ≥ 1, the state complexity of a DFA that accepts L(A)L(B) (L(A)L(B)∗) is

m.

In the rest of this subsection, we only consider the cases when the DFA

for L2 contains at least one final state that is not the initial state. Thus, this

latter DFA is of size at least two.

When considering the size of the former DFA, we notice that, when the

size of this DFA is one, the state complexity of L1L
∗
2 is one.

52

Lemma 5.2 Let A be a DFA of one state and B be a DFA of n ≥ 1 states.

Then the sufficient and necessary number of states for a DFA to accept L(A)L(B)∗

is one.

Proof: Since A is complete, L(A) is either ∅ or Σ∗. We need to consider only

the case when L(A) = Σ∗. Then we have Σ∗ ⊆ L(A)L(B)∗ ⊆ Σ∗. Thus,

L(A)L(B)∗ = Σ∗, and it is accepted by a DFA of one state. q.e.d.

Now, we focus on the cases when m > 1 and n > 1, and propose an upper

bound for the state complexity of L1L
∗
2.

Theorem 5.5 Let A = (Q1,Σ, δ1, s1, F1) be a DFA such that |Q1| = m > 1

and |F1| = k1, and B = (Q2,Σ, δ2, s2, F2) be a DFA such that |Q2| = n > 1

and |F2 − { s2}| = k2 ≥ 1. Then there exists a DFA of at most m(2n−1 +

2n−k2−1) − k12
n−k2−1 states that accepts L(A)L(B)∗.

Proof: We denote F2 − { s2} by F0. Then |F0| = k2 ≥ 1.

We construct the DFA C = {Q,Σ, δ, s, F} for the language L1L
∗
2, where L1

and L2 are the languages accepted by DFAs A and B, respectively. Intuitively,

C is constructed by first constructing the DFA B′ that accepts L∗
2, then cate-

nating A with this new DFA. By careful examination, we can check that the

states of B′ are s′2 and the elements in P − {∅} , where s′2 is the additional

initial and final state in the construction and P is defined below. As the state

set we choose

Q = {r ∪ p | r ∈ R and p ∈ P}, where for qi ∈ Q1

R =

{

{qi}, if qi 6∈ F1;

{qi, s
′
2}, otherwise,

P = {S | S ⊆ Q2 − F0} ∪ {T | T ⊆ Q2, s2 ∈ T, and T ∩ F0 6= ∅},

s =

{

{s1} ∪ {∅}, if s1 6∈ F1;

{s1, s
′
2} ∪ {∅}, otherwise.

The set of final states F is chosen to be F = {S ∈ Q | S ∩ (F2 ∪ {s′2}) 6= ∅}.

We denote a state in Q by {qi} ∪G1 ∪G2, where qi ∈ Q1, G1 ⊆ {s′2}, and

G2 ⊆ Q2. Then the transition relation δ is defined as follows:

δ({qi} ∪G1 ∪G2, a) = D1 ∪D2 ∪D3, for any a ∈ Σ, where

53

D1: If δ1(qi, a) = q′i ∈ F1, D1 = {q′i, s
′
2}, otherwise, D1 = {q′i}.

D2 =

∅, if G1 = ∅;

δ2(s2, a), if δ2(s2, a) ∩ F0 = ∅;

δ2(s2, a),∪{s2} otherwise,

D3 =

∅, if G2 = ∅;

δ2(G2, a), if δ2(G2, a) ∩ F0 = ∅;

δ2(G2, a),∪{s2} otherwise.

We can verify that the DFA C indeed accepts L1L
∗
2. The computation of

C always starts with the initial state of A, and after reaching a final state

of A, it also reaches s′2 by the ε-transition of the catenation operation. Up

to this point, the states of Q we have visited contain only one state q of A,

and s′2 if q is a final state. After reaching some states of B′, the computation

simulates the transition rules of both A and B′. It is clear that each state in

Q should consist of exactly one state in Q1 and the states in one element of

P − {∅} . Moreover, if a state of Q contains a final state of A, then this state

also contains the state s′2. The transition rules of A are simulated by D1, and

the transition rules of B′ are simulated by D2 and D3. We should notice that

the simulation of A is deterministic. Finally, due to the construction of B′,

any state in Q that contains either the state s′2 or a final state of B is a final

state of C.

To get an upper bound for the state complexity of catenation combined

with star, we should count the number of states in Q. However, as we will

show in the following, some states in Q are equivalent. Thus, we calculate the

number of states after merging the equivalent states.

In order to show the equivalent states, let us recall the construction for

B′ and D2. We notice that, in the construction of B′, states s′2 and s2 reach

the same state on any letter in Σ. This is the reason for having D2 in the

transition rules. Moreover, a state of Q contains s′2 only when it contains a

final state of A. Therefore, we can formally show that a pair of two states in

Q, denoted by {qf , s
′
2, s2} ∪ T and {qf , s

′
2} ∪ T such that qf is a final state of

A and T either is the empty set or consists of some states of B, are equivalent

as follows. For a letter a ∈ Σ and a string w ∈ Σ∗,

δ({qf , s
′
2, s2} ∪ T, aw) = δ({qf , s

′
2} ∪ T, aw) = δ(δ({qf , s

′
2} ∪ T, a), w).

54

Note that the equivalent states are only in the set F1 × {s′2} × {S | S ⊆

(Q2 − F0)}, and we can further partition this set into two sets as follows:

F1 × {s′2} × ({s2} ∪ {S ′ | S ′ ⊆ (Q2 − F0 − { s2})}) ∪

F1 × {s′2} × {S ′ | S ′ ⊆ (Q2 − F0 − { s2})}.

It is easy to see that, for each state in the former set, there exists one and

only one equivalent state in the latter set, and vice versa. Thus, the number

of equivalent pairs is k12
n−k2−1.

Finally, we calculate the number of inequivalent states in Q. Notice that

there are m elements in R. There are 2n−k2 elements in the first term of P ,

and (2k2 − 1)2n−k2−1 elements in the second term of P . Therefore, the size of Q

is |Q| = m(2n−1 + 2n−k2−1). Then after removing one state in each equivalent

pair, we obtain the following upper bound

m(2n−1 + 2n−k2−1) − k12
n−k2−1.

q.e.d.

Next, we give examples to show that this upper bound can be attained.

Figure 5.7: Witness DFA A for Theorem 5.6

Theorem 5.6 For integers m ≥ 2 and n ≥ 2, there exists a DFA A of m

states and a DFA of n states such that any DFA that accepts L(A)L(B)∗ has

at least m
3

4
2n − 2n−2 states.

Proof: We first give an example of two DFAs A and B of sizes m ≥ 2 and

n = 2, respectively, and we show that the number of states of a DFA that

accepts L(A)L(B)∗ attains the upper bound given in Theorem 5.5. We use a

three-letter alphabet Σ = {a, b, c}.

Define A = (Q1,Σ, δ1, q0, {qm−1}), as in Figure 5.7, whereQ1 = {q0, q1, . . . , qm−1},

and the transitions are given as follows:

55

• δ1(qi, a) = qi+1, i ∈ {0, . . . , m − 2}, δ1(qm−1, a) = q0,

• δ1(qi, b) = qi+1, i ∈ {0, . . . , m − 3}, δ1(qm−2, b) = q0, δ1(qm−1, b) = qm−2,

• δ1(qi, c) = qi+1, i ∈ {0, . . . , m − 3}, δ1(qm−2, c) = q0, δ1(qm−1, c) = qm−1.

Define B = (Q2,Σ, δ2, 0, {1}), where Q2 = {0, 1}, and the transitions are

given as follows

δ2(0, a) = 1, δ2(0, b) = 0, δ2(0, c) = 0,

δ2(1, a) = 0, δ2(1, b) = 1, δ2(1, c) = 0.

Figure 5.8: NFA for L(A)L(B)∗

Following the construction described in the proof of Theorem 5.5, we con-

struct the DFA C = (Q3,Σ, δ3, s3, F3) that accepts L(A)L(B)∗. Note that set

P only contains three elements P = {∅, {0}, {0, 1}}. To prove that C attains

the upper bound, it is sufficient to show that 1) all the states in Q3 are reach-

able from s3, 2) after merging the equivalent states {qm−1, 0
′} and {qm−1, 0

′, 0},

the remaining states are pairwise inequivalent.

We first consider the reachability of all the states. It is clear that the state

{qi} ∪ {∅}, for i ∈ {1, . . . , m − 2}, and the state {qm−1, 0
′}∪ {∅} are reachable

from s3 by reading the strings ai and am−1, respectively. Then on letters b and

c, we can reach states {qm−2, 0} and {qm−1, 0
′, 0}, respectively, from the state

{qm−1, 0
′}. Moreover, the state {qi, 0}, i ∈ {0, . . . , m − 3}, can be reached

from the state {qm−2, 0} by reading the string bi+1. Lastly, the state {qi, 0, 1},

i ∈ {0, . . . , m − 2}, and the state {qm−1, 0
′, 0, 1}, are reachable from {qm−1, 0

′}

on inputs ai+1 and am, respectively.

56

Since states {qm−1, 0
′} and {qm−1, 0

′, 0} are equivalent, we remove the state

{qm−1, 0
′, 0} from Q3, and show that the rest of the states are pairwise in-

equivalent. Let {qi} ∪ G and {qj} ∪ H be two different states in Q3 with

0 ≤ i ≤ j ≤ m − 1. There are three cases:

1. i < j. Then the string am−1−ic is accepted by the DFA C starting from

the state {qi} ∪ G, but it is not accepted starting from the state {qj} ∪ H .

Note that after reading am−1−ic, the state {qi}∪G reaches a state that contains

states qm−1 and 0′. In contrast, the state reached by {qi} ∪ H on the same

input does not contain these states. Moreover, the resulting states cannot

contain the state 1, since on letter c, C remains in the state 0 from the state

0 and goes to the state 0 from the state 1.

2. i = j 6= m − 1. Since P = {∅, {0}, {0, 1}} consists of only three

elements, we consider them individually. It is obvious that the state {qi, 0, 1}

is not equivalent to either {qi} or {qi, 0}, since it is a final state but the latter

two are not. States {qi} and {qi, 0} are inequivalent, since via the string ab

we can reach a final state from the state {qi, 0} but not from the state {qi}.

3. i = j = m − 1. There are only two states {qm−1, 0
′} and {qm−1, 0

′, 0, 1}.

They are inequivalent, because after reading the letter b, the state {qm−1, 0
′, 0, 1}

leads to a final state of C but {qm−1, 0
′} does not.

In the rest of the proof, we consider more general cases when the first DFA

is of size m ≥ 2 and the second DFA is of size n ≥ 3. We again use the same

DFA A, and give an example of the DFA D such that the number of states

of a DFA that accepts L(A)L(D)∗ attains the upper bound. We use the same

alphabet Σ = {a, b, c}.

......0 21
a a, b a, ba, b

a

b, c

b, c c c

n − 1

Figure 5.9: Witness DFA D for Theorem 5.6

57

Define D = (Q4,Σ, δ4, 0, {n − 1}), as shown in Figure 5.9, where Q4 =

{0, 1, . . . , n − 1}, and the transitions are given as follows:

• δ4(i, a) = i+ 1, i ∈ {0, . . . , n − 2}, δ4(n − 1, a) = 0,

• δ4(0, b) = 0, δ4(i, b) = i+ 1, i ∈ {1, . . . , n − 2}, δ4(n − 1, b) = 1,

• δ4(i, c) = i, i ∈ {0, . . . , n − 2}, δ4(n − 1, c) = 1.

Let E = (Q5,Σ, δ5, s5, F5) be the DFA that accepts the language L(A)L(D)∗

constructed from A and D exactly as described in the proof of the previous

theorem. Then we will show that (1) all the states in Q5 are reachable from the

initial state, and (2) after merging the states that are shown to be equivalent

in the previous theorem, all the remaining states are pairwise inequivalent.

We first consider (1). Recall that every state in Q5 consists of exactly one

state of Q1 and the states of an element in P defined from the states of D as

in the previous theorem. Moreover, if a state of Q5 contains a final state of A,

then this state also contains 0′. Thus, we denote each state in Q5 as Q′
i ∪ S,

where Q′
i = {qi} for i ∈ {0, . . . , m − 2}, Q′

m−1 = {qm−1, 0
′}, and S ∈ P . States

Q′
1 ∪ {∅}, . . . , Q′

m−1 ∪ {∅} are reachable since Q′
i ∪ {∅} = δ5(Q

′
0 ∪ {∅}, ai), for

i ∈ {1, 2, . . . , m − 1}. Then we prove that the rest of the states are reachable

by induction on the size of S.

Basis: We show that, for any i ∈ {0, . . . , m − 1}, the state Q′
i ∪ S such

that S contains only one state of B is reachable. We first consider two special

cases when S = {0} and S = {1}.

For the case when S = {0}, since Q′
m−1∪{∅} is reachable, we have Q′

m−1∪

{0} = δ5(Q
′
m−1 ∪ {∅}, c). Then from the state Q′

m−1 ∪ {0}, by reading the

letter b, we can reach the state Q′
m−2 ∪ {0}. Furthermore, we can reach the

other states where S = {0} as follows:

Q′
i ∪ {0} = δ5(Q

′
m−2 ∪ {0}, ci+1), for i ∈ {0, . . . , m − 3}.

For the case when S = {1}, we can reach the state Q′
i ∪ {1} for i ∈

{1, . . . , m − 2} from states Q′
i−1 ∪ {0} by reading the letter a. Moreover, the

state Q′
0∪{1} can be reached from the state Q′

m−1∪{0} by reading the letter a.

Note that the state Q′
m−1 ∪ {1} has not been considered, but we will consider

it later.

58

Then we consider the state Q′
i ∪ {j} where j ≥ 2, for i ∈ {0, . . . , m − 2}.

We can easily verify that they can be reached as follows:

Q′
i ∪ {j} = δ5(Q

′
l ∪ {1}, bj−1),

where

l =

{

i − (j − 1) mod (m − 1) +m − 1, if i − (j − 1) mod (m − 1) < 0;

i − (j − 1) mod (m − 1), otherwise.

So far, the only states that have not been considered are states Q′
m−1∪{j}, j ≥

1. However, it is clear that they can be reached from Q′
m−2∪{j − 1} by reading

the letter a.

Induction: For i ∈ {0, . . . , m − 1}, assume that all states Q′
i∪S such that

|S| < k are reachable. Then we consider states Q′
i ∪ S where |S| = k. Let

S = {j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < · · · < jk < n − 1 if n − 1 6∈ S,

j1 = n − 1 and 0 = j2 < · · · < jk < n − 1 otherwise. There are four cases:

1. j1 = n − 1 and j2 = 0. Then for i ∈ {1, . . . , m − 1},

Q′
i ∪ S = δ5(Q

′
i−1 ∪ S ′, a)

where S ′ = {n − 2, j3 − 1, . . . , jk − 1}, which contains k − 1 states.

For the reachability of the state Q′
0 ∪ S, we consider the following two

subcases. (1) if j3 = 1, Q′
0 ∪ S can be reached from Q′

m−1 ∪ {n − 2, 0, j4 −

1, . . . , jk − 1} by reading the letter a, (2) otherwise, it can be reached from

Q′
m−2 ∪ {n − 2, j3 − 1, . . . , jk − 1} by reading the letter b. Note that in both of

the two subcases, the state Q′
0 ∪ S is reached from a state where the size of S

is k − 1 as well.

2. j1 = 0 and j2 = 1. Then Q′
0 ∪ S = δ5(Q

′
m−1 ∪ S ′, a), and for i ∈

{1, . . . , m − 1}, Q′
i∪S = δ5(Q

′
i−1∪S

′, a), where S ′ = {n − 1, 0, j3 − 1, . . . , jk − 1}.

The state Q′
i ∪ S ′, i ∈ {0, . . . , m − 1}, is considered in Case 1.

3. j1 = 0 and j2 = 1 + t, t > 0. Then for i ∈ {0, . . . , m − 2},

Q′
i ∪ S = δ5(Q

′
l ∪ S ′, bt)

where

l =

{

i − t mod (m − 1) +m − 1, if i − t mod (m − 1) < 0;

i − t mod (m − 1), otherwise,

59

and S ′ = {0, 1, j3 − t, . . . , jk − t}, which is considered in Case 2.

For the state Q′
m−1 ∪ S, we can verify that it is reachable from the state

Q′
m−1 ∪S ′ by reading the letter c, where S ′ = {j2, j3, . . . , jk} and |S ′| = k − 1.

4. j1 = t > 0. We first consider the case when t = 1. It is clear that the

state Q′
0 ∪ S and the state Q′

i ∪ S, i ∈ {1, . . . , m − 1}, can be reached from

states Q′
m−1 ∪ S ′ and Q′

i−1 ∪ S ′, respectively, by reading the letter a, where

S ′ = {0, j2 − 1, . . . , jk − 1}, which is considered in either Case 2 or Case 3.

Then we consider the cases when t > 1. If i ∈ {0, . . . , m − 2}, the state

Q′
i ∪ S is reachable as follows:

Q′
i ∪ S = δ5(Q

′
l ∪ {1, j2 − t+ 1, . . . , jk − t + 1}, bt−1),

where

l =

{

i − (t − 1) mod (m − 1) +m − 1, if i − (t − 1) mod (m − 1) < 0;

i − (t − 1) mod (m − 1) otherwise,

For the remaining states, the state Q′
m−1∪S can be reached from the state

Q′
m−2 ∪ {1, j2 − 1, . . . , jk − 1} by reading the letter a.

Now we show that, after merging the states that are proven to be equiva-

lent, the rest of the states are pairwise inequivalent. Let {qi}∪G and {qj}∪H

be two different states in Q5, where qi, qj ∈ Q1, with 0 ≤ i ≤ j ≤ m − 1. Then

we consider the following three cases:

1. i < j. The string am−1−ic is accepted by the DFA E starting from the

state {qi} ∪ G, but it is not accepted starting from the state {qj} ∪ H . The

reason is similar to that for the DFA C, but, on the letter c, E remains in the

same state for any non-final state, and goes to the state 1 from the state n − 1.

2. i = j 6= m − 1. Without loss of generality, there exists a state k of D

such that k ∈ G and k 6∈ H . We first consider a special case when H ⊂ G and

G − H = {0}. The only difference between G and H is that G contains one

more state 0 than H . In such a case, we can verify that the string abn−2 is

accepted by the DFA C starting from the state {qi}∪G, but it is not accepted

starting from the state {qj} ∪ H . In other cases, we can assume that k > 0.

Then the string bn−1−k is accepted by the DFA E starting from the state

{qi} ∪G, but it is not accepted starting from the state {qj} ∪H .

3. i = j = m − 1. Recall from the proof of Theorem 5.5 that we can

60

partition the subset {qm−1} × {0′} × {S | S ⊆ (Q4 − F0)} of Q5 into

{qm−1} × {0′} × ({0} ∪ {S ′ | S ′ ⊆ (Q4 − F0 − { 0})}) ∪

{qm−1} × {0′} × {S ′ | S ′ ⊆ (Q4 − F0 − { 0})}.

Moreover, for each state in the former set, there exists one and only one

equivalent state in the latter set, and vice versa. Thus, we remove all the

states in the former set from Q5. Then, without loss of generality, there exists

a state k of D such that k 6= 0′, k 6= 0, k ∈ G, and k 6∈ H . We can verify that

the string b2n−2−k is accepted starting from the state {qi} ∪ G, but it is not

accepted starting from the state {qj} ∪H . q.e.d.

5.1.3 State Complexity of LR
1 L2

In this subsection, we study the state complexity of LR
1 L2 for an m-state DFA

language L1 and an n-state DFA language L2. All the results in this subsection

are from our paper [12].

We first show that the state complexity of LR
1 L2 is upper bounded by

3 ·2m+n−2 in general (Theorem 5.7). Then we prove that this upper bound can

be attained when m,n ≥ 2 (Theorems 5.8 and 5.9). Next, we investigate the

case when m = 1 and n ≥ 1 and prove the state complexity can be lowered to

2n−1 in such a case (Theorem 5.10). Finally, we show that the state complexity

of LR
1 L2 is 2m−1 + 1 when m ≥ 2 and n = 1 (Theorems 5.11, 5.12, 5.13 and

Lemma 5.3).

Now, we start with a general upper bound on state complexity of LR
1 L2 for

integers m,n ≥ 1.

Theorem 5.7 For two integers m,n ≥ 1, let L1 and L2 be two regular lan-

guages accepted by an m-state DFA and an n-state DFA, respectively. Then

there exists a DFA of at most 3 · 2m+n−2 states that accepts LR
1 L2.

Proof: Let M = (QM ,Σ, δM , sM , FM) be a DFA of m states, k1 final states

and L1 = L(M). Let N = (QN ,Σ, δN , sN , FN) be another DFA of n states

and L2 = L(N).

Let M ′ = (QM ,Σ, δM ′, FM , {sM}) be an NFA with k1 initial states. The

transition function δM ′(p, a) = q if δM(q, a) = p where a ∈ Σ and p, q ∈ QM .

Clearly,

L(M ′) = L(M)R = LR
1 .

61

By performing the subset construction on NFA M ′, we can get an equiva-

lent, 2m-state DFAA = (QA,Σ, δA, sA, FA) such that L(A) = LR
1 . SinceM

′ has

only one final state sM , we know that FA = {i | i ⊆ QM , sM ∈ i}. Thus, A has

2m−1 final states in total. Now we construct the DFA B = (QB,Σ, δB, sB, FB)

that accepts the language LR
1 L2, where

QB = {〈i, j〉 | i ∈ QA, j ⊆ QN},

sB =

{

〈sA, ∅〉, if sA 6∈ FA;

〈sA, {sN}〉, otherwise,

FB = {〈i, j〉 ∈ QB | j ∩ FN 6= ∅},

δB(〈i, j〉, a) =

{

〈i′, j′〉, if δA(i, a) = i′, δN(j, a) = j′, a ∈ Σ, i′ /∈ FA;

〈i′, j′ ∪ {sN}, if δA(i, a) = i′, δN(j, a) = j′, a ∈ Σ, i′ ∈ FA.

From the above construction, we can see that all the states in B starting with

i ∈ FA must end with j such that sN ∈ j. There are in total 2m−1 · 2n−1 states

that don’t satisfy this condition.

Thus, the number of states of the minimal DFA that accepts LR
1 L2 is no

more than

2m+n − 2m−1 · 2n−1 = 3 · 2m+n−2.

q.e.d.

This result gives an upper bound for the state complexity of LR
1 L2. Next

we show that this bound is attainable when m,n ≥ 2.

Theorem 5.8 Given two integers m,n ≥ 2, there exists a DFA M of m states

and a DFA N of n states such that any DFA that accepts L(M)RL(N) has at

least 3 · 2m+n−2 states.

Proof: Let M = (QM ,Σ, δM , 0, {m − 1}) be a DFA, as shown in Figure 5.10,

where QM = {0, 1, . . . , m − 1}, Σ = {a, b, c, d}, and the transitions are given

as follows:

• δM(i, a) = i+ 1 mod m, i = 0, . . . , m − 1;

• δM(i, b) = i, i = 0, . . . , m − 2, δM(m − 1, b) = m − 2;

• δM(m − 2, c) = m − 1, δM(m − 1, c) = m − 2,

if m ≥ 3, δM(i, c) = i, i = 0, . . . , m − 3;

62

Figure 5.10: Witness DFA M of Theorem 5.8 showing that the upper

bound in Theorem 5.7 is attainable when m,n ≥ 2

• δM(i, d) = i, i = 0, . . . , m − 1.

Let N = (QN ,Σ, δN , 0, {n − 1}) be a DFA, as shown in Figure 5.11, where

QN = {0, 1, . . . , n − 1}, Σ = {a, b, c, d}, and the transitions are given as follows:

• δN(i, a) = i, i = 1, . . . , n − 1;

• δN(i, b) = i, i = 1, . . . , n − 1;

• δN(i, c) = 0, i = 1, . . . , n − 1;

• δN(i, d) = i+ 1 mod n, i = 0, . . . , n − 1.

Now we construct the DFA A = (QA,Σ, δA, {m − 1}, FA), where QA = {q |

q ⊆ QM}, Σ = {a, b, c, d}, FA = {q | 0 ∈ q, q ∈ QA}, and the transitions are

defined as follows:

δA(p, e) = {j | δM(j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

It is easy to see that A is a DFA that accepts L(M)R. We prove that A is

minimal before using it.

(I) We first show that every state I ∈ QA is reachable from {m − 1}. There

are three cases.

1. |I| = 0. |I| = 0 if and only if I = ∅. Then δA({m − 1}, b) = I = ∅.

63

Figure 5.11: Witness DFA N of Theorem 5.8 showing that the upper

bound in Theorem 5.7 is attainable when m,n ≥ 2

2. |I| = 1. Let I = {i}, 0 ≤ i ≤ m − 1. Then δA({m − 1}, am−1−i) = I.

3. 2 ≤ |I| ≤ m. Let I = {i1, i2, . . . , ik}, 0 ≤ i1 < i2 < · · · < ik ≤ m − 1,

2 ≤ k ≤ m. Then δA({m − 1}, w) = I, where

w = ab(ac)i2−i1−1ab(ac)i3−i2−1 · · · ab(ac)ik−ik−1−1am−1−ik .

(II) Any two different states I and J in QA are distinguishable.

Without loss of generality, we may assume that |I| ≥ |J |. Let x ∈ I − J .

Then the string ax distinguishes these two states because

δA(I, a
x) ∈ FA,

δA(J, a
x) /∈ FA.

From (I) and (II), A is a minimal DFA with 2m states that accepts L(M)R.

Now let B = (QB,Σ, δB, sB, FA} be another DFA, where

QB = {〈p, q〉 | p ∈ QA − FA, q ⊆ QN}

∪ {〈p′, q′〉 | p′ ∈ FA, q
′ ⊆ QN , 0 ∈ q′},

Σ = {a, b, c, d},

sB = 〈{m − 1}, ∅〉,

FB = {〈p, q〉 | n − 1 ∈ q, 〈p, q〉 ∈ QB},

64

and for each state 〈p, q〉 ∈ QB and each letter e ∈ Σ,

δB(〈p, q〉, e) =

{

〈p′, q′〉, if δA(p, e) = p′ /∈ FA, δN(q, e) = q′;

〈p′, q′〉, if δA(p, e) = p′ ∈ FA, δN(q, e) = r′, q′ = r′ ∪ {0}.

As we mentioned in the previous proof, all the states in B that starts with

p ∈ FA must end with q ⊆ QN such that 0 ∈ q. Clearly, B accepts the

language L(M)RL(N) and it has

2m · 2n − 2m−1 · 2n−1 = 3 · 2m+n−2

states. Now we show that B is a minimal DFA.

(I) Every state 〈p, q〉 ∈ QB is reachable. We consider the following six

cases:

1. p = ∅, q = ∅. 〈∅, ∅〉 is a sink state of B. δB(〈{m − 1}, ∅〉, b) = 〈p, q〉.

2. p 6= ∅, q = ∅. Let p = {p1, p2, . . . , pk}, 1 ≤ p1 < p2 < · · · < pk ≤ m − 1,

1 ≤ k ≤ m − 1. Note that 0 /∈ p, because 0 ∈ p guarantees 0 ∈ q.

δB(〈{m − 1}, ∅〉, w) = 〈p, q〉, where

w = ab(ac)p2−p1−1ab(ac)p3−p2−1 · · · ab(ac)pk−pk−1−1am−1−pk .

Note that w = am−1−p1 when k = 1.

3. p = ∅, q 6= ∅. In this case, let q = {q1, q2, . . . , ql}, 0 ≤ q1 < q2 < · · · <

ql ≤ n − 1, 1 ≤ l ≤ n. Then δB(〈{m − 1}, ∅〉, x) = 〈p, q〉, where

x = amdql−ql−1amdql−1−ql−2 · · · amdq2−q1amdq1b.

4. p 6= ∅, 0 /∈ p, q 6= ∅. Let p = {p1, p2, . . . , pk}, 1 ≤ p1 < p2 < · · · <

pk ≤ m − 1, 1 ≤ k ≤ m − 1 and q = {q1, q2, . . . , ql}, 0 ≤ q1 < q2 <

· · · < ql ≤ n − 1, 1 ≤ l ≤ n. We can find a string uv such that

δB(〈{m − 1}, ∅〉, uv) = 〈p, q〉, where

u = ab(ac)p2−p1−1ab(ac)p3−p2−1 · · · ab(ac)pk−pk−1−1am−1−pk ,

v = amdql−ql−1amdql−1−ql−2 · · · amdq2−q1amdq1.

65

5. p 6= ∅, 0 ∈ p, m − 1 /∈ p, q 6= ∅. Let p = {p1, p2, . . . , pk}, 0 = p1 <

p2 < · · · < pk < m − 1, 1 ≤ k ≤ m − 1 and q = {q1, q2, . . . , ql},

0 = q1 < q2 < · · · < ql ≤ n − 1, 1 ≤ l ≤ n. Since 0 is in p, according to

the definition of B, 0 has to be in q as well. There exists a string u′v′

such that δB(〈{m − 1}, ∅〉, u′v′) = 〈p, q〉, where

u′ = ab(ac)p2−p1−1ab(ac)p3−p2−1 · · · ab(ac)pk−pk−1−1am−2−pk ,

v′ = amdql−ql−1amdql−1−ql−2 · · ·amdq2−q1amdq1a.

6. p 6= ∅, {0, m − 1} ⊆ p, q 6= ∅. Let p = {p1, p2, . . . , pk}, 0 = p1 < p2 <

· · · < pk = m − 1, 2 ≤ k ≤ m and q = {q1, q2, . . . , ql}, 0 = q1 < q2 <

· · · < ql ≤ n − 1, 1 ≤ l ≤ n. In this case, we have

〈p, q〉 =

{

δB(〈{0, 1, p2 + 1, . . . , pk−1 + 1}, q〉, a), if m − 2 /∈ p,

δB(〈p − { m − 1}, q〉, b), if m − 2 ∈ p,

where states 〈{0, 1, p2 + 1, . . . , pk−1 + 1}, q〉 and 〈p − { m − 1}, q〉 have

been proved to be reachable in Case 5.

(II) We then show that any two different states 〈p1, q1〉 and 〈p2, q2〉 in QB

are distinguishable.

1. q1 6= q2. Without loss of generality, we may assume that |q1| ≥ |q2|. Let

x ∈ q1 − q2. The string dn−1−x distinguishes them because

δB(〈p1, q1〉, d
n−1−x) ∈ FB,

δB(〈p2, q2〉, d
n−1−x) /∈ FB.

2. p1 6= p2, q1 = q2. Without loss of generality, we assume that |p1| ≥ |p2|.

Let y ∈ p1 − p2. Then there always exists a string ayc2dn such that

δB(〈p1, q1〉, a
yc2dn) ∈ FB,

δB(〈p2, q2〉, a
yc2dn) /∈ FB.

Since all the states in B are reachable and pairwise distinguishable, the DFA

B is minimal. Thus, any DFA that accepts L(M)RL(N) has at least 3 ·2m+n−2

states. q.e.d.

66

This result gives a lower bound for the state complexity of LR
1 L2 when

m,n ≥ 2. It coincides with the upper bound shown in Theorem 5.7 exactly.

Thus, we obtain the state complexity of the combined operation LR
1 L2 for

m ≥ 2 and n ≥ 2.

Theorem 5.9 For integers m,n ≥ 2, let L1 be an m-state DFA language and

L2 be an n-state DFA language. Then 3 · 2m+n−2 states are both necessary and

sufficient in the worst case for a DFA to accept LR
1 L2.

In the rest of this subsection, we study the remaining cases when either

m = 1 or n = 1.

We first consider the case when m = 1 and n ≥ 2. In this case, L1 = ∅

or L1 = Σ∗. LR
1 L2 = L1L2 holds regardless of whether L1 is ∅ or Σ∗, since

∅R = ∅ and (Σ∗)R = Σ∗. It has been shown in [111] that 2n−1 states are both

sufficient and necessary in the worst case for a DFA to accept the catenation

of a one-state DFA language and an n-state DFA language, n ≥ 2.

When m = 1 and n = 1, it is also easy to see that one state is sufficient and

necessary in the worst case for a DFA to accept LR
1 L2, because LR

1 L2 is either

∅ or Σ∗. Thus, we have the following theorem concerning the state complexity

of LR
1 L2 for m = 1 and n ≥ 1.

Theorem 5.10 Let L1 be a one-state DFA language and L2 be an n-state

DFA language, n ≥ 1. Then 2n−1 states are both sufficient and necessary in

the worst case for a DFA to accept LR
1 L2.

Now, we study the state complexity of LR
1 L2 for m ≥ 2 and n = 1. Let us

start with the following upper bound.

Theorem 5.11 For any integer m ≥ 2, let L1 and L2 be two regular languages

accepted by an m-state DFA and a one-state DFA, respectively. Then there

exists a DFA of at most 2m−1 + 1 states that accepts LR
1 L2.

Proof: Let M = (QM ,Σ, δM , sM , FM) be a DFA of m states, m ≥ 2, k1 final

states and L1 = L(M). Let N be another DFA of one state and L2 = L(N).

Since N is a complete DFA, as we mentioned before, L(N) is either ∅ or

Σ∗. Clearly, LR
1 · ∅ = ∅. Thus, we need to consider only the case when

L2 = L(N) = Σ∗.

67

We construct an NFA M ′ = (QM ,Σ, δM ′ , FM , {sM}) with k1 initial states

which is similar to the proof of Theorem 5.7. δM ′(p, a) = q if δM(q, a) = p

where a ∈ Σ and p, q ∈ QM . It is easy to see that

L(M ′) = L(M)R = LR
1 .

By performing the subset construction on NFA M ′, we get an equivalent,

2m-state DFA A = (QA,Σ, δA, sA, FA) such that L(A) = LR
1 . FA = {i | i ⊆

QM , sM ∈ i} because M ′ has only one final state sM . Thus, A has 2m−1 final

states in total.

Define B = (QB,Σ, δB, sB, {fB}) where fB /∈ QA, QB = (QA − FA)∪{fB},

sB =

{

sA, if sA /∈ FA;

fB, otherwise,

and for any a ∈ Σ and p ∈ QB,

δB(p, a) =

δA(p, a), if δA(p, a) /∈ FA;

fB, if δA(p, a) ∈ FA;

fB, if p = fB.

The automaton B is exactly the same as A except that A’s 2m−1 final states

are made to be sink states and these sink, final states are merged into one,

since they are equivalent. When the computation reaches the final state fB,

it remains there. Now, it is clear that B has

2m − 2m−1 + 1 = 2m−1 + 1

states and L(B) = LR
1 Σ

∗. q.e.d.

This theorem shows an upper bound for the state complexity of LR
1 L2 for

m ≥ 2 and n = 1. Next we prove that this upper bound is attainable.

Lemma 5.3 Given an integer m = 2 or 3, there exists an m-state DFA M

and a one-state DFA N such that any DFA that accepts L(M)RL(N) has at

least 2m−1 + 1 states.

Proof: When m = 2 and n = 1, we can construct the following witness DFAs.

LetM = ({0, 1},Σ, δM , 0, {1}) be a DFA, where Σ = {a, b}, and the transitions

are given as follows:

68

• δM(0, a) = 1, δM(1, a) = 0;

• δM(0, b) = 0, δM(1, b) = 0.

Let N be the DFA that accepts Σ∗. Then the resulting DFA for L(M)RΣ∗ is

A = ({0, 1, 2},Σ, δA, 0, {1}) where

• δA(0, a) = 1, δA(1, a) = 1, δA(2, a) = 2;

• δA(0, b) = 2, δA(1, b) = 1, δA(2, b) = 2.

When m = 3 and n = 1. The witness DFAs are as follows. Let M ′ =

({0, 1, 2},Σ′, δM ′, 0, {2}) be a DFA, where Σ′ = {a, b, c}, and the transitions

are given as follows:

• δM ′(0, a) = 1, δM ′(1, a) = 2, δM ′(2, a) = 0;

• δM ′(0, b) = 0, δM ′(1, b) = 0, δM ′(2, b) = 1;

• δM ′(0, c) = 0, δM ′(1, c) = 2, δM ′(2, c) = 1.

Let N ′ be the DFA that accepts Σ′∗. The resulting DFA for L(M ′)RΣ′∗ is

A′ = ({0, 1, 2, 3, 4},Σ′, δA′ , 0, {3}) where

• δA′(0, a) = 1, δA′(1, a) = 3, δA′(2, a) = 2, δA′(3, a) = 3, δA′(4, a) = 3;

• δA′(0, b) = 2, δA′(1, b) = 4, δA′(2, b) = 2, δA′(3, b) = 3, δA′(4, b) = 4;

• δA′(0, c) = 1, δA′(1, c) = 0, δA′(2, c) = 2, δA′(3, c) = 3, δA′(4, c) = 4.

q.e.d.

The above result shows that the bound 2m−1 + 1 is attainable when m is

equal to 2 or 3 and n = 1. The last case is when m ≥ 4 and n = 1.

Theorem 5.12 Given an integer m ≥ 4, there exists a DFA M of m states

and a DFA N of one state such that any DFA that accepts L(M)RL(N) has

at least 2m−1 + 1 states.

Proof: Let M = (QM ,Σ, δM , 0, {m − 1}) be a DFA, as shown in Figure 5.12,

where QM = {0, 1, . . . , m − 1}, m ≥ 4, Σ = {a, b, c, d}, and the transitions are

given as follows:

• δM(i, a) = i+ 1 mod m, i = 0, . . . , m − 1;

69

Figure 5.12: Witness DFAM of Theorem 5.12 showing that the upper

bound in Theorem 5.11 is attainable when m ≥ 4 and

n = 1

• δM(i, b) = i, i = 0, . . . , m − 2, δM(m − 1, b) = m − 2;

• δM(i, c) = i, i = 0, . . . , m − 3, δM(m − 2, c) = m − 1, δM(m − 1, c) = m − 2;

• δM(0, d) = 0, δM(i, d) = i+ 1, i = 1, . . . , m − 2, δM(m − 1, d) = 1.

Let N be the DFA that accepts Σ∗. Then L(M)RL(N) = L(M)RΣ∗. Now

we construct the DFA A = (QA,Σ, δA, {m − 1}, FA) similar to the proof of

Theorem 5.8, where QA = {q | q ⊆ QM}, Σ = {a, b, c, d}, FA = {q | 0 ∈ q, q ∈

QA}, and the transitions are defined as follows:

δA(p, e) = {j | δM(j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

It is easy to see that A is a DFA that accepts L(M)R. Since the transitions

of M on letters a, b, and c are exactly the same as those of the DFA M in

the proof of Theorem 5.8, we can say that A is minimal and it has 2m states,

among which 2m−1 states are final.

Let B = (QB,Σ, δB, sB, {fB}) be a DFA where fB /∈ QA, QB = (QA −

FA) ∪ {fB},

sB =

{

sA, if sA /∈ FA;

fB, otherwise,

70

and for any e ∈ Σ and I ∈ QB,

δB(I, e) =

δA(I, e), if δA(I, e) /∈ FA;

fB, if δA(I, e) ∈ FA;

fB, if I = fB.

The DFA B is the same as A except that A’s 2m−1 final states are changed

into sink states and merged to one sink, final state, as we did in the proof of

Theorem 5.11. Clearly, B has 2m − 2m−1 + 1 = 2m−1 + 1 states and L(B) =

L(M)RΣ∗. Next we show that B is a minimal DFA.

(I) Every state I ∈ QB is reachable from {m − 1}. The proof is similar to

that of Theorem 5.8. We consider the following four cases:

1. I = ∅. Then δA({m − 1}, b) = I = ∅.

2. I = fB. Then δA({m − 1}, am−1) = I = fB.

3. |I| = 1. Assume that I = {i}, 1 ≤ i ≤ m − 1. Note that i 6= 0

because all the final states in A have been merged into fB. In this case,

δA({m − 1}, am−1−i) = I.

4. 2 ≤ |I| ≤ m. Assume that I = {i1, i2, . . . , ik}, 1 ≤ i1 < i2 < · · · < ik ≤

m − 1, 2 ≤ k ≤ m. δA({m − 1}, w) = I, where

w = ab(ac)i2−i1−1ab(ac)i3−i2−1 · · · ab(ac)ik−ik−1−1am−1−ik .

(II) Any two different states I and J in QB are distinguishable.

Since fB is the only final state in QB, it is inequivalent to any other state.

Thus, we consider the case when neither of I and J is fB.

Without loss of generality, we may assume that |I| ≥ |J |. Let x ∈ I − J .

x is always greater than 0 because all the states which include 0 have been

merged into fB. Then the string dx−1a distinguishes these two states because

δB(I, d
x−1a) = fB,

δB(J, d
x−1a) 6= fB.

Since all the states in B are reachable and pairwise distinguishable, B is a

minimal DFA. Thus, any DFA that accepts L(M))RΣ∗ has at least 2m−1 + 1

states. q.e.d.

71

After summarizing Theorem 5.11, Theorem 5.12 and Lemma 5.3, we obtain

the state complexity of the combined operation LR
1 L2 for m ≥ 2 and n = 1.

Theorem 5.13 For any integer m ≥ 2, let L1 be an m-state DFA language

and L2 be a one-state DFA language. Then 2m−1 + 1 states are both sufficient

and necessary in the worst case for a DFA to accept LR
1 L2.

5.1.4 State Complexity of L1L
R
2

In this subsection, we study the state complexity of L1L
R
2 for regular languages

L1 and L2. All the results in this subsection are from our paper [10]. We will

first look at an upper bound on this state complexity.

Theorem 5.14 For two integers m,n ≥ 1, let L1 and L2 be two regular

languages accepted by an m-state DFA with k1 final states and an n-state

DFA with k2 final states, respectively. Then there exists a DFA of at most

m2n − k12
n−k2(2k2 − 1) − m+ 1 states that accepts L1L

R
2 .

Proof: Let M = (QM ,Σ, δM , sM , FM) be a DFA of m states, k1 final states

and L1 = L(M). Let N = (QN ,Σ, δN , sN , FN) be another DFA of n states,

k2 final states and L2 = L(N). Let N ′ = (QN ,Σ, δN ′, FN , {sN}) be an NFA

with k2 initial states. δN ′(p, a) = q if δN(q, a) = p where a ∈ Σ and p, q ∈ QN .

Clearly,

L(N ′) = L(N)R = LR
2 .

After performing the subset construction on N ′, we can get an equivalent,

2n-state DFA A = (QA,Σ, δA, sA, FA) such that L(A) = LR
2 . Note that A may

not be minimal and since A has 2n states, one of its final states must be QN .

Now we construct the DFA B = (QB,Σ, δB, sB, FB) that accepts the language

L1L
R
2 , where

QB = {〈i, j〉 | i ∈ QM , j ∈ QA},

FB = {〈i, j〉 ∈ QB | j ∈ FA},

sB =

{

〈sM , ∅〉, if sM 6∈ FM ;

〈sM , FN〉, otherwise,

δB(〈i, j〉, a) =

{

〈i′, j′〉, if δM(i, a) = i′, δA(j, a) = j′, a ∈ Σ, i′ /∈ FM ;

〈i′, j′ ∪ FN 〉, if δM(i, a) = i′, δA(j, a) = j′, a ∈ Σ, i′ ∈ FM .

72

It is easy to see that δB(〈i, QN〉, a) ∈ FB for any i ∈ QM and a ∈ Σ. This

means all the states (two-tuples) ending with QN are equivalent. There are m

such states.

On the other hand, since NFA N ′ has k2 initial states, the states in B

starting with i ∈ FM must end with j such that FN ⊆ j. There are in total

k12
n−k2(2k2 − 1) states which don’t satisfy this condition.

Thus, the number of states of the minimal DFA that accepts L1L
R
2 is no

more than

m2n − k12
n−k2(2k2 − 1) − m+ 1.

q.e.d.

This result gives an upper bound for the state complexity of L1L
R
2 . Next

we show that this bound is attainable.

c

c

0

1
2

a,b

m

a,b

c

c

-1

a,b

c

a,b

Figure 5.13: Witness DFAM of Theorem 5.15 showing that the upper

bound in Theorem 5.14 is attainable when m ≥ 2 and

n ≥ 2

Theorem 5.15 Given two integers m ≥ 2, n ≥ 2, there exists a DFA M of m

states and a DFA N of n states such that any DFA that accepts L(M)L(N)R

has at least m2n − 2n−1 − m+ 1 states.

Proof: Let M = (QM ,Σ, δM , 0, {m − 1}) be a DFA, as shown in Figure 5.13,

where QM = {0, 1, . . . , m − 1}, Σ = {a, b, c}, and the transitions are given by

• δM(i, x) = i, i = 0, . . . , m − 1, x ∈ {a, b};

• δM(i, c) = i+ 1 mod m, i = 0, . . . , m − 1.

73

Let N = (QN ,Σ, δN , 0, {0}) be a DFA, where QN = {0, 1, . . . , n − 1},

Σ = {a, b, c}, and the transitions are given by

• δN(0, a) = n − 1, δN (i, a) = i − 1, i = 1, . . . , n − 1;

• δN(0, b) = 1, δN(i, b) = i, i = 1, . . . , n − 1;

• δN(0, c) = 1, δN (1, c) = 0, δN(j, c) = j, j = 2, . . . , n − 1, if n ≥ 3.

N is the same as the witness DFA for the state complexity of reversal operation

on regular languages. The transition diagram of N is shown in Figure 3.5.

Now we construct the DFA A = (QA,Σ, δA, {0}, FA), where QA = {q | q ⊆

QN}, Σ = {a, b, c}, FA = {q | 0 ∈ q, q ∈ QA}, and the transitions are defined

as:

δA(p, e) = {j | δN(j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

It has been shown in [111] that A is a minimal DFA that accepts L(N)R.

Let B = (QB,Σ, δB, sB, FA) be another DFA, where

QB = {〈p, q〉 | p ∈ QM − { m − 1}, q ∈ QA − { QN}} ∪ {〈0, QN〉}

∪ {〈m − 1, q〉 | q ∈ QA − { QN}, {0} ∈ q},

Σ = {a, b, c},

sB = 〈0, ∅〉,

FB = {〈p, q〉 | q ∈ FA, 〈p, q〉 ∈ QB},

and for each state 〈p, q〉 ∈ QB and each letter e ∈ Σ,

δB(〈p, q〉, e) =

〈p′, q′〉, if δM(p, e) = p′ 6= m − 1, δA(q, e) = q′ 6= QN ;

〈p′, q′〉, if δM(p, e) = p′ = m − 1,

δA(q, e) = r′, q′ = r′ ∪ {0}, q′ 6= QN ;

〈0, QN〉, if δM(p, e) = m − 1, δA(q, e) = r′, r′ ∪ {0} = QN ;

〈0, QN〉, if δM(p, e) 6= m − 1, δA(q, e) = QN .

As we mentioned in the previous proof, all the states (two-tuples) ending with

QN are equivalent. So, we replace them with one state: 〈0, QN〉. According

to the definition of B, all the states in B that starts with m − 1 must end

with j ∈ QA such that 0 ∈ j. It is easy to see that B accepts the language

L(M)L(N)R. It has m2n − 2n−1 − m + 1 states. Now we show that B is a

minimal DFA.

74

(I) We first show that every state 〈i, j〉 ∈ QB is reachable by induction

on the size of j. Let k = |j| and k ≤ n − 1. Note that the state 〈0, QN〉 is

reachable from the state 〈0, ∅〉 via the string cmb(ab)n−2.

When k = 0, i is less than m − 1 according to the definition of B. Then

there always exists a string w = ci such that δB(〈0, ∅〉, w) = 〈i, ∅〉.

Basis (k = 1): The state 〈m − 1, {0}〉 can be reached from the state

〈m − 2, ∅〉 on c. The State 〈0, {0}〉 can be reached from the state 〈m − 1, {0}〉

on can−1. Then for i ∈ {1, . . . , m − 2}, the state 〈i, {0}〉 is reachable from the

state 〈i − 1, {0}〉 on can−1. Moreover, for i ∈ {0, . . . , m − 2}, the state 〈i, j〉 is

reachable from the state 〈i, {0}〉 on aj .

Induction: Assume that all states 〈i, j〉 such that |j| < k are reachable.

Then we consider the states 〈i, j〉 where |j| = k. Let j = {j1, j2, . . . , jk} such

that 0 ≤ j1 < j2 < · · · < jk ≤ n − 1. We consider the following four cases:

1. j1 = 0 and j2 = 1. The state 〈m − 1, {0, 1, j3, . . . , jk}〉 is reachable from

the state 〈m − 2, {0, j3, . . . , jk}〉 on c. Then for i ∈ {0, . . . , m − 2}, the state

〈i, j〉 can be reached from the state 〈m − 1, {0, 1, j3, . . . , jk}〉 on ci+1.

2. i = 0, j1 = 0, and j2 > 1. The state 〈0, j〉 can be reached as follows:

〈0, {j1, j2, . . . , jk}〉 = δB(〈m − 2, {j3 − j2+1, . . . , jk − j2+1, n − j2+1}〉, c2aj2−1).

3. i = 0 and j1 > 0. The state 〈0, j〉 is reachable from the state 〈0, {0, j2 −

j1, . . . , jk − j1}〉 on aj1 .

4. We consider the remaining states. For i ∈ {1, . . . , m − 1}, the state 〈i, j〉

such that j1 = 0 and j2 > 1 can be reached from the state 〈i − 1, {1, j2, . . . , jk}〉

on the letter c, and for i ∈ {1, . . . , m − 2}, the state 〈i, j〉 such that j1 > 0 is

reachable from the state 〈i, {0, j2 − j1, . . . , jk − j1}〉 via the string aj1. Recall

that we do not have states 〈i, j〉 such that i = m − 1 and j1 > 0.

(II) We then show that any two different states 〈i1, j1〉 and 〈i2, j2〉 in QB

are distinguishable. Let us consider the following three cases:

1. j1 6= j2. Without loss of generality, we may assume that |j1| ≥ |j2|. Let

x ∈ j1 − j2. We don’t need to consider the case when x = 0, since the two states

are clearly in different equivalence classes if 0 ∈ j1 − j2. For 0 < x ≤ n − 1,

there always exists a string t such that

δB(〈i1, j1〉, t) ∈ FB,

δB(〈i2, j2〉, t) /∈ FB,

75

where

t =

an−x, if i2 6= m − 1, j1 6= j2;

an−x−1ca, if i2 = m − 1, j1 6= j2, n > 2;

c, if i2 = m − 1, j1 6= j2, n = 2.

Note that under the second condition, after reading the prefix an−x−1 of t, the

state n − 1 cannot be in the second component of the resulting state since

x 6∈ j2.

Also note that when n = 2, j1, j2 ∈ {QN , {0}, {1}}, where QN = {0, 1}.

Moreover, when i2 = m − 1, the state 〈i2, j2〉 can only be 〈m − 1, {0}〉. Due

to the definition of B, we have that, for s ≥ 1, 〈s,QN〉 /∈ QB. Thus, it is easy

to see that 〈i1, j1〉 is either 〈i1, {1}〉 or 〈0, {0, 1}〉. When 〈i1, j1〉 = 〈i1, {1}〉,

0 ∈ j1 − j2, so the two states are distinguishable. When 〈i1, j1〉 = 〈0, {0, 1}〉,

the letter c distinguishes them because

δB(〈0, {0, 1}〉, c) ∈ FB,

δB(〈m − 1, {0}〉, c) /∈ FB.

2. j1 = j2 6= QN , i1 6= i2. Without loss of generality, we may assume that

i1 > i2. In this case, i2 6= m − 1. Let x ∈ QN − j1. There always exists a

string u = an−x+1bcm−1−i1 such that

δB(〈i1, j1〉, u) ∈ FB,

δB(〈i2, j2〉, u) /∈ FB.

Let 〈i1, j
′
1〉 and 〈i2, j

′
1〉 be two states reached from states 〈i1, j1〉 and 〈i2, j2〉

on the prefix an−x+1 of u, respectively. We notice that the state 1 of N cannot

be in j′1. Then after reading another letter b, we reach states 〈i1, j
′′
1 〉 and

〈i2, j
′′
1 〉, respectively. It is easy to see that states 0 and 1 of N are not in

j′′1 . Lastly, after reading the remaining string cm−1−i1 from the state 〈i1, j
′′
1 〉,

the first component of the resulting state is the final state of the DFA M and

therefore its second component contains the state 0 of the DFA N . In contrast,

the second component of the resulting state reached from the state 〈i2, j
′′
1 〉 on

the same string cannot contain the state 0, and hence it is not a final state of

B. Note that this includes the case when j1 = j2 = ∅, i1 6= i2.

3. We don’t need to consider the case when j1 = j2 = QN , because there

is only one state in QB that ends with QN . It is 〈0, QN〉.

76

Since all the states in B are reachable and pairwise distinguishable, the

DFA B is minimal. Thus, any DFA that accepts L(M)L(N)R has at least

m2n − 2n−1 − m+ 1 states. q.e.d.

This result gives a lower bound for the state complexity of L(M)L(N)R

when m,n ≥ 2. It coincides with the upper bound when k1 = 1 and k2 = 1. In

the rest of this subsection, we consider the remaining cases when either m = 1

or n = 1. We first consider the case when m = 1 and n ≥ 3. We have L1 = ∅

or L1 = Σ∗. When L1 = ∅, for any L2, a one-state DFA always accepts L1L
R
2 ,

since L1L
R
2 = ∅. The following theorem provides a lower bound for the latter

case.

Theorem 5.16 Given an integer n ≥ 3, there exists a DFA M of one state

and a DFA N of n states such that any DFA that accepts L(M)L(N)R has at

least 2n−1 states.

Proof: Let M = (QM ,Σ, δM , 0, {0}) be a DFA, where QM = {0}, Σ = {a, b},

and δM(0, e) = 0 for any e ∈ Σ. Clearly, L(M) = Σ∗.

a

b
b

a
a

-2n

1
2

0

a

a
b

b

a,b

-1n

Figure 5.14: Witness DFA N showing that the upper bound in Theo-

rem 5.14 is attainable when m ≥ 1 and n ≥ 3

Let N = (QN ,Σ, δN , 0, {n − 1}) be a DFA, as shown in Figure 5.14, where

QN = {0, 1, . . . , n − 1}, Σ = {a, b}, and the transitions are given by

• δN(0, a) = n − 2, δN (i, a) = i − 1, i = 1, . . . , n − 2, δN(n − 1, a) = n − 1

77

• δN(0, b) = n − 1, δN(j, b) = j, j = 1, . . . , n − 1.

Now we design a 2n-state DFA A = (QA,Σ, δA, {n − 1}, FA), where QA =

{q | q ⊆ QN}, Σ = {a, b}, FA = {q | 0 ∈ q, q ∈ QA}, and the transitions are

defined as follows:

δA(p, e) = {j | δN(j, e) = i, i ∈ p}, p ∈ QA, e ∈ Σ.

It is easy to see that A is a DFA that accepts L(N)R. LetB = (QB,Σ, δB, sB, FA}

be another DFA, where Σ = {a, b},

QB = {〈0, q〉 | q ∈ QA, n − 1 ∈ q},

sB = 〈0, {n − 1}〉,

FB = {〈0, q〉 | q ∈ FA, 〈0, q〉 ∈ QB},

and for each state 〈0, q〉 ∈ QB and each letter e ∈ Σ,

δB(〈0, q〉, e) = 〈0, q′〉 if δA(q, e) = q′′ and q′ = q′′ ∪ {n − 1}.

Clearly, the DFA B accepts L(M)L(N)R. Since n − 1 ∈ j for any state

〈0, j〉 ∈ QB, B has 2n−1 states in total. Now we show that B is a minimal

DFA.

(I) We first show that every state 〈0, j〉 ∈ QB is reachable. We omit the

case when |j| = 1 because the only state in QB satisfying this condition is the

initial state 〈0, {n − 1}〉. When |j| > 1, assume that j = {n − 1, j1, j2, . . . , jk}

where 0 ≤ j1 < j2 < · · · < jk ≤ n − 2, 1 ≤ k ≤ n − 1. There always exists a

string

w = bajk−jk−1bajk−1−jk−2 · · · baj2−j1baj1

such that δB(〈0, {n − 1}〉, w) = 〈0, j〉.

(II) We then show that any two different states 〈0, j1〉 and 〈0, j2〉 in QB are

distinguishable. Without loss of generality, we may assume that |j1| ≥ |j2|.

Then let x ∈ j1 − j2. Note that x 6= n − 1 because n − 1 has to be in both j1

and j2. We can always find the string u = an−1−x such that

δB(〈0, j1〉, u) ∈ FB, and δB(〈0, j2〉, u) /∈ FB.

Since all the states in B are reachable and pairwise distinguishable, B is a

minimal DFA. Thus, any DFA that accepts L(M)L(N)R has at least 2n−1

states. q.e.d.

78

Now, we consider the case when m = 1 and n = 2.

Lemma 5.4 There exists a one-state DFA M and a two-state DFA N such

that any DFA that accepts L(M)L(N)R has at least two states.

Proof: M is defined the same as in Theorem 5.16, and letN = (QN ,Σ, δN , 0, {1})

be a DFA, where QN = {0, 1}, Σ = {a, b}, and the transitions are given by

• δN(0, a) = 0, δN (1, a) = 1,

• δN(0, b) = 1, δN(1, b) = 1.

It is easy to see that L(N) contains all the strings over {a, b} that has at

least one b. So L(N)R = L(N) and

L(M)L(N)R = Σ∗L(N) = L(N).

N is a minimal DFA that accepts L(M)L(N)R. Its two states are reachable

and distinguishable obviously. q.e.d.

Lastly, we consider the case when m ≥ 1 and n = 1. When L2 = ∅, for any

L1, a one-state DFA always accepts L1L
R
2 = ∅. When L2 = Σ∗, L1L

R
2 = L1Σ

∗,

since (Σ∗)R = Σ∗. According to Theorem 3 in [111], which states that, for any

DFA A of size m ≥ 1, the state complexity of L(A)Σ∗ is m, we can get the

following corollary immediately.

Corollary 5.1 Given an integer m ≥ 1, there exists an m-state DFA M and

a one-state DFA N such that any DFA that accepts L(M)L(N)R has at least

m states.

After summarizing Theorems 5.14, 5.15, and 5.16, Lemma 5.4 and Corol-

lary 5.1, we obtain the state complexity of the combined operation L1L
R
2 .

Theorem 5.17 For integers m ≥ 1, n ≥ 1, m2n − 2n−1 − m+1 states are both

necessary and sufficient in the worst case for a DFA to accept L(M)L(N)R,

where M is an m-state DFA and N is an n-state DFA.

5.2 State Complexity of Catenation Combined with Union

and Intersection

In this section, we will present and prove the state complexities of L1(L2∪L3)

and L1(L2 ∩ L3). All the results in this section are from our paper [11].

79

5.2.1 State Complexity of L1(L2 ∪ L3)

In this subsection, we consider the state complexity of L(A)(L(B)∪L(C)) for

three DFAs A,B,C of sizes m,n, p ≥ 1, respectively [11]. We first obtain the

following upper bound (m − k)(2n+p − 2n − 2p +2)+ k2n+p−2 (Theorem 5.18),

and then show that this bound is tight for m,n, p ≥ 1, except the situations

when m ≥ 2 and n = p = 1 (Theorems 5.19 and 5.20).

Theorem 5.18 For integers m,n, p ≥ 1, let A, B and C be three DFAs with

m, n and p states, respectively, where A has k final states. Then there exists

a DFA of at most (m − k)(2n+p − 2n − 2p + 2) + k2n+p−2 states that accepts

L(A)(L(B) ∪ L(C)).

Proof: Let A = (Q1,Σ, δ1, s1, F1) where |F1| = k, B = (Q2,Σ, δ2, s2, F2), and

C = (A3,Σ, δ3, s3, F3). We construct D = (Q,Σ, δ, s, F) such that

Q = {〈q1, q2, q3〉 | q1 ∈ Q1 − F1, q2 ∈ 2Q2 − {∅} , q3 ∈ 2Q3 − {∅}}

∪{〈q1, ∅, ∅〉 | q1 ∈ Q1 − F1}

∪{〈q1, {s2} ∪ q2, {s3} ∪ q3〉 | q1 ∈ F1, q2 ∈ 2Q2−{s2}, q3 ∈ 2Q3−{s3}},

s = 〈s1, ∅, ∅〉 if s1 6∈ F1, s = 〈s1, {s2}, {s3}〉 otherwise,

F = {〈q1, q2, q3〉 ∈ Q | q2 ∩ F2 6= ∅ or q3 ∩ F3 6= ∅},

δ(〈q1, q2, q3〉, a) = 〈q′1, q
′
2, q

′
3〉, for a ∈ Σ, where q′1 = δ1(q1, a) and,

for i ∈ {2, 3}, q′i = Si ∪ {si} if q′1 ∈ F1, q
′
i = Si otherwise,

Si = ∪r∈qi{δi(r, a)}.

Intuitively, Q is a set of triples such that the first component of each triple is

a state in Q1 and the second and the third components are subsets of Q2 and

Q3, respectively.

We notice that if the first component of a state is a non-final state of Q1,

the other two components are either both the empty set or both nonempty

sets. This is because the two components always change from the empty set

to a non-empty set at the same time. This is the reason to have the first and

second terms of Q.

Also, we notice that if the first component of a state of D is a final state

of A, then the second component and the third component of the state must

80

contain the initial state of B and C, respectively. This is described by the

third term of Q.

Clearly, the size of Q is (m − k)(2n+p − 2n − 2p + 2) + k2n+p−2. Moreover,

one can easily verify that L(D) = L(A)(L(B) ∪ L(C)). q.e.d.

In the following, we consider the conditions under which this bound is

tight. We know that a complete DFA of size one only accepts either ∅ or Σ∗.

Thus, when n = p = 1, L(A)(L(B) ∪ L(C)) = L(A)Σ∗ if either L(B) = Σ∗ or

L(C) = Σ∗, and L(A)(L(B) ∪ L(C)) = ∅ otherwise. Therefore, in such cases,

the state complexity of L(A)(L(B) ∪ L(C)) is m as shown in [111].

Now, we consider the case when n = 1 and p ≥ 2. Since L(B) ∪ L(C) =

L(C) when L(B) = ∅, it is clear that the state complexity of L(A)(L(B) ∪

L(C)) is equal to that of L(A)L(C), m2p − k2p−1 given in [111], which coincides

with the upper bound obtained in Theorem 5.18. The situation is analogous

to the case when n ≥ 2 and p = 1.

Next, we consider the case when m = 1 and n, p ≥ 2.

Theorem 5.19 Let A be a DFA of size 1. Then for integers n, p ≥ 2, there

exist DFAs B and C with n and p states, respectively, such that any DFA that

accepts L(A)(L(B) ∪ L(C)) has at least 2n+p−2 states.

Proof: We use a four-letter alphabet Σ = {a, b, c, d}, and let A be the DFA

that accepts Σ∗.

Let B = (Q2,Σ, δ2, 0, {n − 1}), as shown in Figure 5.15, where Q2 =

{0, 1, . . . , n − 1}, and the transitions are given by

• δ2(i, a) = i+ 1 mod n, for i ∈ {0, . . . , n − 1};

• δ2(i, x) = i for i ∈ Q2, where x ∈ {b, d};

• δ2(0, c) = 0, δ2(i, c) = i+ 1 mod n, for i ∈ {1, . . . , n − 1}.

Let C = (Q3,Σ, δ3, 0, {p − 1}), whose transition diagram is similar to the

one shown in Figure 5.15, where Q3 = {0, 1, . . . , p − 1}, and the transitions

are given by

• δ3(i, x) = i for i ∈ Q3, where x ∈ {a, c};

• δ3(i, b) = i+ 1 mod p, for i ∈ {0, . . . , p − 1};

81

Figure 5.15: The DFA B used for showing that the upper bound in

Theorem 5.18 is attainable when m = 1 and n, p ≥ 2

Figure 5.16: The DFA C used for showing that the upper bound in

Theorem 5.18 is attainable when m = 1 and n, p ≥ 2

• δ3(0, d) = 0, δ3(i, d) = i+ 1 mod p, for i ∈ {1, . . . , p − 1}.

Let D = (Q, {a, b, c, d}, δ, 〈0, {0}, {0}〉, F) be the DFA that accepts the

language L(A)(L(B)∪L(C)) constructed from those DFAs exactly as described

in the proof of the previous theorem, where

Q = {〈0, {0} ∪ q2, {0} ∪ q3〉 | q2 ∈ 2Q2−{0}, q3 ∈ 2Q3−{0}},

F = {〈q1, q2, q3〉 ∈ Q | n − 1 ∈ q2 or p − 1 ∈ q3}.

We omit the definition of the transitions.

Then we prove that the size of Q 2n+p−2 is minimal by showing that (I)

any state in Q can be reached from the initial state, and (II) no two different

states in Q are equivalent.

For (I), we first show that all states 〈0, q2, q3〉 such that q3 = {0} are

reachable by induction on the size of q2.

The basis clearly holds, since the initial state is the only state whose second

component is of size 1.

82

In the induction step, we assume that all states 〈0, q2, {0}〉 such that |q2| <

k are reachable. Then we consider the states 〈0, q2, {0}〉 where |q2| = k. Let

q2 = {0, j2, . . . , jk} such that 0 < j2 < j3 < · · · < jk ≤ n − 1. Note that the

states such that j2 = 1 can be reached as follows

〈0, {0, 1, j3, . . . , jk}, {0}〉 = δ(〈0, {0, j3 − 1, . . . , jk − 1}, {0}〉, a),

where {0, j3 − 1, . . . , jk − 1} is of size k − 1. Then the states such that j2 > 1

can be reached from these states as follows

〈0, {0, j2, . . . , jk}, {0}〉 = δ(〈0, {0, 1, j3 − t, . . . , jk − t}, {0}〉, ct), where t = j2 − 1.

After this induction, all states such that the third component is {0} have

been reached. Then it is clear that, from each of these states 〈0, q2, {0}〉, all

states in Q such that the second component is q2 and the size of their third

component is larger than one can be reached by using the same induction step

but using the transitions on letters b and d.

Next, we show that any two distinct states 〈0, q2, q3〉 and 〈0, q′2, q
′
3〉 in Q

are not equivalent. We only consider the situations where q2 6= q′2, since the

other case can be shown analogously. Without loss of generality, there exists a

state r such that r ∈ q2 and r 6∈ q′2. It is clear that r 6= 0. Let w = dp−1cn−1−r.

Then δ(〈0, q2, q3〉, w) ∈ F but δ(〈0, q′2, q
′
3〉, w) 6∈ F . q.e.d.

Next we consider the more general case when m,n, p ≥ 2.

Example 5.1 We use a five-letter alphabet Σ = {a, b, c, d, e} in the following

three DFAs, which are modified from the two DFAs in the proof of Theorem

1 in [111].

Let A = (Q1,Σ, δ1, 0, {m − 1}), where Q1 = {0, . . . , m − 1} and, for each

state i ∈ Q1, δ1(i, a) = j, j = (i + 1) mod m, δ1(i, x) = 0, if x ∈ {b, d}, and

δ1(i, x) = i, if x ∈ {c, e}.

Let B = (Q2,Σ, δ2, 0, {n − 1}), where Q2 = {0, . . . , n − 1} and, for each

state i ∈ Q2, δ2(i, b) = j, j = (i + 1) mod m, δ2(i, c) = 1, and δ2(i, x) = i, if

x ∈ {a, d, e}.

Let C = (Q3,Σ, δ3, 0, {p − 1}), where Q3 = {0, . . . , p − 1} and, for each

state i ∈ Q3, δ3(i, d) = j, j = (i + 1) mod m, δ3(i, e) = 1, and δ3(i, x) = i, if

x ∈ {a, b, c}. 2

83

Following the construction in the proof of Theorem 5.18, the DFAD can be

constructed from the DFAs in Example 5.1. It shows that the upper bound is

attainable for m,n, p ≥ 2. We note that similar to the proof of Theorem 5.19,

the DFAs B and C in this example change their states on disjoint letter sets,

{b, c} and {d, e}. Thus, by using a proof that is similar to the proof of Theorem

1 in [111] that shows the upper bound on the state complexity of catenation can

be attained, we can easily verify that there are at least (m − 1)(2n+p − 2n − 2p+

2) + 2n+p−2 distinct equivalence classes of the right-invariant relation induced

by L(A)(L(B) ∪ L(C)) [53]. Therefore, the upper bound can be attained and

the following theorem holds.

Theorem 5.20 Given three integers m,n, p ≥ 2, there exists a DFA A of m

states, a DFA B of n states, and a DFA C of p states such that any DFA that

accepts L(A)(L(B) ∪ L(C)) has at least (m − 1)(2n+p − 2n − 2p + 2) + 2n+p−2

states.

A natural question is that, if we reduce the size of the alphabet used in

DFAs A,B,C, using a three-letter alphabet, can we attain the upper bound

as well? We give a positive answer in the next theorem under the condition

m,n, p ≥ 3.

Figure 5.17: Witness DFA A for Theorem 5.21

Theorem 5.21 For integers m,n, p ≥ 3, there exist DFAs A, B and C of m,

n, and p states, respectively, defined over a three-letter alphabet, such that any

DFA that accepts L(A)(L(B) ∪ L(C)) has at least (m − 1)(2n+p − 2n − 2p +

2) + 2n+p−2 states.

Proof: We define the following three automata over the three-letter alphabet

Σ = {a, b, c}.

84

Let A = (Q1,Σ, δ1, 0, {m − 1}) be a DFA, as shown in Figure 5.17, where

Q1 = {0, 1, . . . , m − 1}, and the transitions are given as follows:

• δ1(i, a) = i+ 1 for i ∈ {0, . . . , m − 2}, δ1(m − 1, a) = 0;

• δ1(i, e) = i for i ∈ Q1, where e ∈ {b, c}.

Let B = (Q2,Σ, δ2, 0, {n − 1}) be a DFA, as shown in Figure 5.18, where

Q2 = {0, 1, . . . , n − 1}, and the transitions are given as follows:

• δ2(i, a) = i for i ∈ {0, . . . , n − 3}, δ2(n − 2, a) = n − 1, δ2(n − 1, a) = n − 2;

• δ2(i, b) = i+ 1 for i ∈ {0, . . . , n − 2}, δ2(n − 1, b) = n − 1;

• δ2(i, c) = i for i ∈ Q2.

Figure 5.18: Witness DFA B for Theorem 5.21

Let C = (Q3,Σ, δ3, 0, {p − 1}) be a DFA, as shown in Figure 5.19, whose

transition diagram is similar to that of the DFAB, whereQ3 = {0, 1, . . . , p − 1},

and the transitions are given as follows:

• δ3(i, a) = i for i ∈ {0, . . . , p − 3}, δ3(p − 2, a) = p − 1, δ3(p − 1, a) = p − 2;

• δ3(i, b) = i for i ∈ Q3;

• δ3(i, c) = i+ 1 for i ∈ {0, . . . , p − 2}, δ3(p − 1, c) = p − 1.

Figure 5.19: Witness DFA C for Theorem 5.21

85

Let D = (Q, {a, b, c}, δ, 〈0, ∅, ∅〉, F) be the DFA that accepts the language

L(A)(L(B) ∪ L(C)) constructed from those DFAs exactly as described in the

proof of the previous theorem, where

Q = {〈q1, q2, q3〉 | q1 ∈ Q1 − { m − 1}, q2 ∈ 2Q2 − {∅} , q3 ∈ 2Q3 − {∅}}

∪{〈q1, ∅, ∅〉 | q1 ∈ Q1 − { m − 1}}

∪{〈m − 1, {0} ∪ q2, {0} ∪ q3〉 | q2 ∈ 2Q2−{0}, q3 ∈ 2Q3−{0}},

F = {〈q1, q2, q3〉 ∈ Q | n − 1 ∈ q2 or p − 1 ∈ q3}.

We omit the definition of transitions.

Then we prove that the size of Q m(2n+p − 2n − 2p+2)+2n+p−2 is minimal

by showing that (I) any state in Q can be reached from the initial state and

(II) no two different states in Q are equivalent.

Now we consider (I). It is clear that states 〈q1, ∅, ∅〉, for q1 ∈ Q1 − { m − 1},

are reachable from the initial state on strings aq1, and the state 〈m − 1, {0}, {0}〉

can be reached from 〈m − 2, ∅, ∅〉 on the letter a.

We first show by induction on the size of the second component that any

remaining state in Q such that its third component is {0} can be reached from

the state 〈m − 1, {0}, {0}〉. We only use strings over the letters a, b. Thus, the

last component remains {0}.

Basis: for any i ∈ {0, . . . , m− 2}, the state 〈i, {0}, {0}〉 can be reached from

the state 〈m − 1, {0}, {0}〉 on the string ai+1. Then for any i ∈ {0, . . . , m − 2}

and j ∈ {1, . . . , n},

〈i, {j}, {0}〉 = δ(〈i, {0}, {0}〉, bj).

Induction step: for i ∈ {0, . . . , m − 1}, assume that all states 〈i, q2, {0}〉

such that |q2| < k are reachable. Then we consider the states 〈i, q2, {0}〉 where

|q2| = k. Let q2 = {j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < · · · < jk ≤ n − 1.

Note that the states such that j1 = 0 are reachable as follows. If either

jk ≤ n − 3 or jk−1 = n − 2 and jk = n − 1, we have

〈m − 1, {0, j2, . . . , jk}, {0}〉 = δ(〈m − 2, {j2, . . . , jk}, {0}〉, a).

If jk = n − 2, the states 〈m − 1, {0, j2, . . . , jk}, {0}〉 can be reached from

the states 〈m − 2, {j2, . . . , jk−1, n − 1}, {0}〉 by reading the letter a. If jk =

n − 1, the states 〈m − 1, {0, j2, . . . , jk}, {0}〉 can be reached from states 〈m −

86

2, {j2, . . . , jk−1, n − 2}, {0}〉 by reading the letter a. In all the cases, we reach

the state from a state such that |q2| = k − 1. Similarly, we can easily verify

that, by reading the letter a, states 〈0, {0, . . . , jk}, {0}〉 can be reached from

the states 〈m − 1, {0, . . . , jk}, {0}〉 and, for i ∈ {1, . . . , m − 2}, the states

〈i, {0, . . . , jk}, {0}〉 can be reached from the states 〈i − 1, {0, . . . , jk}, {0}〉.

Next, we show that all states such that 0 6∈ q2 are reachable. Note that the

first component of these states cannot be m − 1. Thus, for i ∈ {0, . . . , m − 2},

we have

〈i, {j1, . . . , jk}, {0}〉 = δ(〈i, {0, j2 − j1, . . . , jk − j1}, {0}〉, b
j1).

After the induction step, we can verify that all states in Q such that the

third component is {0} have been reached. Then we consider the states whose

third component is non-empty but not {0}. Note that if the second component

of a state does not contain the states n − 2 and n − 1 or contains both of them,

this component does not change by reading the letter a. Thus, by using the

letter c instead of the letter b in the same induction step, we can show that, for

i ∈ {0, . . . , m − 1}, the states 〈i, q2, q3〉 in Q such that q2 ∩ {n − 2, n − 1} = ∅

or {n − 2, n − 1} ⊆ q2 are reachable from the state 〈0, q2, {0}〉. The remaining

states to be considered are the states 〈i, q2, q3〉 such that q2 contains either n − 2

or n − 1 but not both, for i ∈ {0, . . . , m − 1}. Assume q2 contains n − 2. Then

by the same induction with the letters a, c, we can reach the states 〈i, q2, q3〉

and states 〈i′, q′2, q
′
3〉, i, i

′ ∈ {0, . . . , m − 1}, from the state 〈0, q2, {0}〉 such that

q′2 = (q2 ∪ {n − 1}) − { n − 2}. Moreover, if we replace q′2 with q2, the union

of these two types of states is exactly all states in Q such that their second

component is q2. It is clear that those states 〈i′, q2, q
′
3〉 are reachable from the

state 〈0, q′2, {0}〉 by following the same induction step with letters a, c. An

analogous argument can be applied to the states such that q2 contains n − 1

but not n − 2.

Now all the states in Q are reachable, and next we will show that the states

of the DFA D are pairwise inequivalent. Let 〈i, q2, q3〉 and 〈j, q′2, q
′
3〉 be two

different states. We consider the following two cases:

1. i < j. Then the string am−1−ibn−1cp−1a is accepted by the DFA D

starting from the state 〈i, q2, q3〉, but it is not accepted starting from the

state 〈j, q′2, q
′
3〉.

87

2. i = j. We only prove for the situation where q2 6= q′2, since the proof is

analogous when q3 6= q′3. Without loss of generality, there exists a state

r such that r ∈ q2 and r 6∈ q′2.

If i = j 6= m − 1, we can verify that cp−1bn−r−2a is accepted by D from

the state 〈i, q2, q3〉 but not from the state 〈j, q′2, q
′
3〉.

If i = j = m − 1, it is clear that r 6= 0. We consider the following three

cases.

(a) r ∈ {1, . . . , n − 3}. After reading the letter a, i and j become 0 and

we still have r ∈ q2 and r 6∈ q′2. Thus, the resulting situation has

just been considered.

(b) r = n − 2. Then the state 〈i, q2, q3〉 reaches a final state on acp−1ab,

but the state 〈j, q′2, q
′
3〉 does not on the same string.

(c) r = n − 1. Then the state 〈i, q2, q3〉 reaches a final state by reading

acp−1a, but the state 〈j, q′2, q
′
3〉 does not.

q.e.d.

5.2.2 State Complexity of L1(L2 ∩ L3)

In this subsection, we investigate the state complexity of L1(L2 ∩ L3), and

show that its upper bound (Theorem 5.22) coincides with its lower bound

(Theorems 5.23 and 5.24) [11]. The following theorem gives an upper bound

for the state complexity of this combined operation.

Theorem 5.22 Let L1, L2 and L3 be three regular languages accepted by an

m-state, an n-state and a p-state DFA, respectively, for m, n, p ≥ 1. Then

there exists a DFA of at most m2np − 2np−1 states that accepts L1(L2 ∩ L3).

We omit the proof of Theorem 5.22 because m2np − 2np−1 is the math-

ematical composition of the state complexities of the individual component

operations, which is obviously an upper bound on the state complexity of

L1(L2 ∩ L3). In the following, we investigate lower bounds on the state com-

plexity of this combined operation under different conditions.

When n = p = 1, L(A)(L(B) ∩ L(C)) = L(A)Σ∗ if both L(B) and L(C)

are Σ∗. The resulting language is ∅ otherwise. Thus, the state complexity of

88

L(A)(L(B) ∩ L(C)) in this case is the same as that of L(A)Σ∗: namely, m

[111]. When n = 1, p ≥ 2,

L(A)(L(B) ∩ L(C)) =

{

∅, if L(B) = ∅;

L(A)L(C), ifL(B) = Σ∗.

In this case, the state complexity of the combined operation is m2p − 2p−1,

which is the same as that of L(A)L(C) [111]. Similarly, when n ≥ 2, p = 1,

the state complexity of L(A)(L(B)∩L(C)) is m2n − 2n−1. Next, we show the

upper bound m2np − 2np−1 is attainable when m,n, p ≥ 2.

2 -1m
a a a......

c c c

a
0

b,d
b,d

b,c,d

a,b,d

1

Figure 5.20: The DFA A used for showing that the upper bound in

Theorem 5.22 is attainable when m ≥ 2 and n, p ≥ 1

Theorem 5.23 Given three integers m,n, p ≥ 2, there exists a DFA A of m

states, a DFA B of n states and a DFA C of p states such that any DFA that

accepts L(A)(L(B) ∩ L(C)) has at least m2np − 2np−1 states.

Proof: Let A = (QA,Σ, δA, 0, FA) be a DFA, as shown in Figure 5.20, where

QA = {0, 1, . . . , m − 1}, FA = {m − 1}, Σ = {a, b, c, d} and the transitions are

given by

• δA(i, a) = i+ 1 mod m, i = 0, . . . , m − 1;

• δA(i, x) = 0, i = 0, . . . , m − 1, where x ∈ {b, d};

• δA(i, c) = i, i = 0, . . . , m − 1.

Let B = (QB,Σ, δB, 0, FB) be a DFA, as shown in Figure 5.21, where QB =

{0, 1, . . . , n − 1}, FB = {n − 1} and the transitions are given by

• δB(i, x) = i, i = 0, . . . , n − 1, where x ∈ {a, d};

• δB(i, b) = i+ 1 mod n, i = 0, . . . , n − 1;

89

2 n
b b b......0

b,c
-1

c

b

a,c,d a,da,d a,d

c
1

Figure 5.21: The DFA B used for showing that the upper bound in

Theorem 5.22 is attainable when m ≥ 2 and n, p ≥ 1

• δB(i, c) = 1, i = 0, . . . , n − 1.

Let C = (QC ,Σ, δC , 0, FC) be a DFA whose transition diagram is shown in

Figure 5.22, where QC = {0, 1, . . . , p − 1}, FC = {p − 1} and the transitions

are given by

• δC(i, x) = i, i = 0, . . . , p − 1, where x ∈ {a, b};

• δC(i, c) = 1, i = 0, . . . , p − 1;

• δC(i, d) = i+ 1 mod p, i = 0, . . . , p − 1.

2 p
d d d......0 -1

c

d

a,b,c a,ba,b a,b

c
c,d

1

Figure 5.22: The DFA C used for showing that the upper bound in

Theorem 5.22 is attainable when m ≥ 2 and n, p ≥ 1

We construct the DFA D = (QD,Σ, δD, sD, FD}, where

QD = {〈u, v〉 | u ∈ QB, v ∈ QC},

sD = 〈0, 0〉,

FD = {〈n − 1, p − 1〉},

and for each state 〈u, v〉 ∈ QD and each letter e ∈ Σ,

δD(〈u, v〉, e) = 〈u′, v′〉 if δB(u, e) = u′, δC(v, e) = v′.

90

Clearly, there are n ·p states in D and L(D) = L(B)∩L(C). Now we construct

another DFA E = (QE ,Σ, δE, sE , FE}, where

QE = {〈q, R〉 | q ∈ QA − FA, R ⊆ QD} ∪ {〈m − 1, S〉 | sD ∈ S, S ⊆ QD},

sE = 〈0, ∅〉,

FE = {〈q, R〉 | R ∩ FD 6= ∅, 〈q, R〉 ∈ QE},

and for each state 〈q, R〉 ∈ QE and each letter e ∈ Σ,

δE(〈q, R〉, e) =

{

〈q′, R′〉, if δA(q, e) = q′ 6= m − 1, δD(R, e) = R′;

〈q′, R′〉, if δA(q, e) = q′ = m − 1, R′ = δD(R, e) ∪ {sD}.

It is easy to see that L(E) = L(A)(L(B)∩L(C)). There are (m − 1) ·2np states

in the first term of the union for QE . In the second term, there are 1 · 2np−1

states. Thus,

|QE| = (m − 1) · 2np + 1 · 2np−1 = m2np − 2np−1.

In order to show that E is minimal, we need to show that (I) every state

in E is reachable from the initial state and (II) each state defines a distinct

equivalence class.

We prove (I) by induction on the size of the second component of states in

QE . First, any state 〈q, ∅〉, 0 ≤ q ≤ m − 2, is reachable from sE by reading the

string aq. Then we consider all states 〈q, R〉 such that |R| = 1. In this case,

let R = {〈x, y〉}. We have

〈q, {〈x, y〉}〉 = δE(〈0, ∅〉, a
mbxdyaq).

Notice that the only state 〈q, R〉 in QE such that q = m − 1 and |R| = 1 is

〈m − 1, {〈0, 0〉}〉 since the fact that q = m − 1 guarantees 〈0, 0〉 ∈ R.

Assume that all states 〈q, R〉 such that |R| < k are reachable. Consider

〈q, R〉 where |R| = k. Let R = {〈xi, yi〉 | 1 ≤ i ≤ k} such that 0 ≤ x1 ≤ x2 ≤

· · · ≤ xk ≤ n − 1 if q 6= m − 1 and 0 = x1 ≤ x2 ≤ · · · ≤ xk ≤ n − 1, y1 = 0,

otherwise. We have 〈q, R〉 = δE(〈0, R
′〉, ambx1dy1aq), where

R′ = {〈xj − x1, (yj − y1 + n)modn〉 | 2 ≤ j ≤ k}.

The state 〈0, R′〉 is reachable from the initial state, since |R| = k − 1. Thus,

〈q, R〉 is also reachable.

To prove (II), let 〈q1, R1〉 and 〈q2, R2〉 be two different states in E. We

consider the following two cases.

91

1. q1 6= q2. Without loss of generality, we may assume that q1 > q2. There

always exists a string t = cam−1−q1bn−1dp−1 such that

δE(〈q1, R1〉, t) ∈ FE,

δE(〈q2, R2〉, t) /∈ FE.

2. q1 = q2, R1 6= R2. Without loss of generality, we may assume that

|R1| ≥ |R2|. Let 〈x, y〉 ∈ R1 − R2. Then

δE(〈q1, R1〉, b
n−1−xdp−1−y) ∈ FE ,

δE(〈q2, R2〉, b
n−1−xdp−1−y) /∈ FE .

Thus, the minimal DFA that accepts L(A)(L(B) ∩L(C)) has at least m2np −

2np−1 states for m,n, p ≥ 2. q.e.d.

Now we consider the case when m = 1, i.e., L(A) = Σ∗.

Theorem 5.24 Given two integers n, p ≥ 2, there exists a DFA A of one

state, a DFA B of n states and a DFA C of p states such that any DFA that

accepts L(A)(L(B) ∩ L(C)) has at least 2np−1 states.

Proof: As we mentioned in the proof of Theorem 5.23, when n = 1, L(A)(L(B)∩

L(C)) is either ∅ or L(A)L(C). It has been proved in [111] that the state com-

plexity of L(A)L(C) is 2p−1 for m = 1, p ≥ 2. If m = n = p = 1, L(A)(L(B)∩

L(C)) is either ∅ or Σ∗, which are both accepted by one-state DFAs. Similarly,

when n ≥ 2, p = 1, the state complexity of L(A)(L(B) ∩ L(C)) is 2n−1.

When m = 1, n ≥ 2, p ≥ 2, we give the following construction. Let

A = ({0},Σ, δA, 0, {0}) be a DFA, where Σ = {a, b, c, d, e} and δA(0, t) = 0 for

any letter t ∈ Σ. It is clear that L(A) = Σ∗.

Let B = (QB,Σ, δB, 0, FB) be a DFA, as shown in Figure 5.23, where

QB = {0, 1, . . . , n − 1}, FB = {n − 1} and the transitions are given by

• δB(i, a) = i+ 1 mod n, i = 0, . . . , n − 1;

• δB(i, b) = i, i = 0, . . . , n − 1;

• δB(0, c) = 1, δB(j, c) = j, j = 1, . . . , n − 1;

• δB(0, d) = 0, δB(j, d) = j + 1, j = 1, . . . , n − 2, δB(n − 1, d) = 1;

• δB(i, e) = i, i = 0, . . . , n − 1.

92

2 n
a,d a,d a,d......0

a,c
-1

d

a

b,c,e b,c,eb,d,e b,c,e

1

Figure 5.23: Witness DFA B for Theorems 5.24

Let C = (QC ,Σ, δC , 0, FC) be a DFA, as shown in Figure 5.24, where QC =

{0, 1, . . . , p − 1}, FC = {p − 1} and the transitions are given by

• δC(i, a) = i, i = 0, . . . , p − 1;

• δC(i, b) = i+ 1 mod p, i = 0, . . . , p − 1;

• δC(0, c) = 1, δC(j, c) = j, j = 1, . . . , p − 1;

• δC(i, d) = i, i = 0, . . . , p − 1;

• δC(0, e) = 0, δC(j, e) = j + 1, j = 1, . . . , p − 2, δC(p − 1, e) = 1.

2 p
b,e b,e b,e......0

b,c
-1

e

b

a,c,d a,c,da,d,e a,c,d

1

Figure 5.24: Witness DFA C for Theorems 5.24

Construct the DFA D = (QD,Σ, δD, sD, FD} that accepts L(B) ∩ L(C) in the

same way as the proof of Theorem 5.23, where

QD = {〈u, v〉 | u ∈ QB, v ∈ QC},

sD = 〈0, 0〉,

FD = {〈n − 1, p − 1〉},

and for each state 〈u, v〉 ∈ QD and each letter t ∈ Σ,

δD(〈u, v〉, t) = 〈u′, v′〉 if δB(u, t) = u′, δC(v, t) = v′.

Now we construct the DFA E = (QE,Σ, δE , sE, FE}, where

QE = {〈0, R〉 | 〈0, 0〉 ∈ R,R ⊆ QD},

sE = 〈0, {〈0, 0〉}〉,

FE = {〈0, R〉 | R ∩ FD 6= ∅, 〈0, R〉 ∈ QE},

93

and for each state 〈0, R〉 ∈ QE and each letter t ∈ Σ,

δE(〈0, R〉, t) = 〈0, R′〉 where R′ = δD(R, t).

Note that 〈0, 0〉 ∈ R for every state 〈0, R〉 ∈ QE , since 0 is the only state in A

and it is both initial and final. It is easy to see that L(E) = L(A)(L(B)∩L(C))

and E has 2np − 2np−1 = 2np−1 states in total. Now we show that E is a minimal

DFA by (I) every state in E is reachable from the initial state and (II) each

state defines a distinct equivalence class.

We again prove (I) by induction on the size of the second component of

states in QE. First, the only state in 〈0, R〉 ∈ QE such that |R| = 1 is the

initial state, 〈0, {〈0, 0〉}〉.

Assume that all states 〈0, R〉 such that |R| ≤ k are reachable. Consider

〈0, R〉 where |R| = k + 1. Let R = {〈0, 0〉, 〈x1, y1〉, . . . , 〈xk, yk〉} such that

0 ≤ x1 ≤ x2 ≤ . . . ≤ xk ≤ n − 1. We consider the following three cases.

Case 1. 〈0, y1〉 ∈ R, y1 ≥ 1. If there exists 〈0, yi〉 ∈ R, yi ≥ 1, 1 ≤ i ≤ k,

then x1 = 0 and y1 ≥ 1, since 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ n − 1. For this case,

we have

〈0, R〉 = δE(〈0, R1〉, be
y1−1),

where

R1 = {〈0, 0〉} ∪ S1 ∪ T1,

S1 = {〈xj, p − 1〉 | 〈xj , 0〉 ∈ R, xj 6= 0},

T1 = {〈xj, (yj − y1 + p − 1) mod (p − 1)〉 | 〈xj , yj〉 ∈ R, yj 6= 0, 2 ≤ j ≤ k}.

Notice that 〈0, 0〉 /∈ S1 ∪ T1 and S1 ∩ T1 = ∅. So the state 〈0, R〉 is reachable

from the initial state, since |R1| = k and 〈0, R1〉 is reachable.

Case 2. x1 ≥ 1, 〈xi, 0〉 ∈ R, 1 ≤ i ≤ k. It is easy to see that every xi ≥ 1

because xi ≥ x1. We have

〈0, R〉 = δE(〈0, R2〉, ad
xi−1),

where

R2 = {〈0, 0〉} ∪ T2,

T2 = {〈(xj − xi + n − 1) mod (n − 1), yj〉 | 〈xj, yj〉 ∈ R, 1 ≤ j ≤ k, j 6= i}.

There are k elements in R2. So the state 〈0, R〉 is also reachable for this case.

94

Case 3. x1 ≥ 1, yi ≥ 1, 1 ≤ i ≤ k, because every xi ≥ x1 ≥ 1, we have

〈0, R〉 = δE(〈0, R3〉, cd
x1−1ey1−1),

where

R3 = {〈0, 0〉} ∪ T3,

T3 = {〈(xj − x1+1), (yj − y1+p − 1) mod (p − 1)+1〉 | 〈xj , yj〉 ∈ R, 2 ≤ j ≤ k}.

So every state 〈0, R〉 in E is reachable when |R| = k + 1.

To prove (II), let 〈0, R〉 and 〈0, R′〉 be two different states in E. With-

out loss of generality, we may assume that |R| ≥ |R′|. So we can always

find 〈x, y〉 ∈ R − R′. Clearly, 〈x, y〉 6= 〈0, 0〉. So there exists a string

w = an−1−xbp−1−y such that

δE(〈0, R〉, w) ∈ FE,

δE(〈0, R
′〉, w) /∈ FE.

Thus, the minimal DFA that accepts Σ∗(L(B) ∩ L(C)) has at least 2np−1

states for n ≥ 1, p ≥ 1. q.e.d.

This lower bound coincides with the upper bound given in Theorem 5.22.

Thus, the bounds are also tight for the case when m = 1, n, p ≥ 2.

5.3 State Complexity of Union and Intersection Com-

bined with Star and Reversal

In this section, we will show the state complexities of L∗
1∪L2 and L∗

1∩L2. All

the results in this section are from our paper [33].

5.3.1 State Complexity of L∗
1 ∪ L2

We consider the state complexity of L∗
1 ∪ L2, where L1 and L2 are regular

languages accepted by m-state and n-state DFAs, respectively. It has been

proved that the state complexity of L∗
1 is 3

4
2m and the state complexity of

L1 ∪ L2 is mn [72, 111]. The mathematical composition of these functions is
3
4
2m · n. In the following, we show that this upper bound can be decreased

[33].

95

Theorem 5.25 For any m-state DFA M = (QM ,Σ, δM , sM , FM) and n-state

DFA N = (QN ,Σ, δN , sN , FN) such that |FM − { sM}| = k ≥ 1, m ≥ 2, n ≥ 1,

there exists a DFA of at most (2m−1 + 2m−k−1) · n − n + 1 states that accepts

L(M)∗ ∪ L(N).

Proof: Let M = (QM ,Σ, δM , sM , FM) be a complete DFA of m states. Denote

|FM −{ sM}| by F0. Then F0 = k ≥ 1. Let N = (QN ,Σ, δN , sN , FN) be another

complete DFA of n states. Let M ′ = (QM ′ ,Σ, δM ′, sM ′, FM ′) be a DFA where

sM ′ /∈ QM is a new initial state,

QM ′ = {sM ′} ∪ {P | P ⊆ (QM − F0) & P 6= ∅}

∪{R | R ⊆ QM & sM ∈ R & R ∩ F0 6= ∅},

FM ′ = {sM ′} ∪ {R | R ⊆ QM & R ∩ FM 6= ∅},

and for R ⊆ QM and a ∈ Σ,

δM ′(sM ′, a) =

{

{δM(sM , a)}, if δM(sM , a) ∩ F0 = ∅;

{δM(sM , a)} ∪ {sM}, otherwise,

δM ′(R, a) =

{

{δM(R, a)}, if δM (R, a) ∩ F0 = ∅;

{δM(R, a)} ∪ {sM}, otherwise.

It is clear that M ′ accepts L(M)∗. In the second term of the union for QM ′

there are 2m−k − 1 states. And in the third term, there are (2k − 1)2m−k−1

states. So M ′ has 2m−1 + 2m−k−1 states in total. Now we construct another

DFA A = (Q,Σ, δ, s, F) where

s = 〈sM ′, sN〉,

Q = {〈i, j〉 | i ∈ QM ′ − { sM ′}, j ∈ QN} ∪ {s},

δ(〈i, j〉, a) = 〈δM ′(i, a), δN (j, a)〉, 〈i, j〉 ∈ Q, a ∈ Σ,

F = {〈i, j〉 | i ∈ FM ′ or j ∈ FN}.

We can see that

L(A) = L(M ′) ∪ L(N) = L(M)∗ ∪ L(N).

Note 〈sM ′, j〉 /∈ Q, for j ∈ QN − { sN}, because there is no transition going into

sM ′ in the DFA M ′. So there are at least n − 1 states in Q that are not reach-

able. Thus, the number of states of minimal DFA that accepts L(M)∗ ∪L(N)

96

is no more than

|Q| = (2m−1 + 2m−k−1) · n − n+ 1.

q.e.d.

If sM is the only final state of M(k = 0), then L(M)∗ = L(M).

Corollary 5.2 For any m-state DFA M = (QM ,Σ, δM , sM , FM) and n-state

DFA N = (QN ,Σ, δN , sN , FN), m > 1, n > 0, there exists a DFA A of at most
3
4
2m · n − n+ 1 states such that L(A) = L(M)∗ ∪ L(N).

Proof: Let k be defined as in the above proof. There are two cases in the

following.

(I) k = 0. In this case, L(M)∗ = L(M). Then A needs at most m ·n states,

which is less than 3
4
2m · n − n+ 1 when m > 1.

(II) k ≥ 1. The claim is clearly true by Theorem 5.25.

q.e.d.

Next, we show that the upper bound 3
4
2m · n − n+ 1 is attainable.

Theorem 5.26 Given two integers m ≥ 2, n ≥ 2, there exists a DFA M of m

states and a DFA N of n states such that any DFA that accepts L(M)∗∪L(N)

has at least 3
4
2m · n − n+ 1 states.

Proof: LetM = (QM ,Σ, δM , 0, {m− 1}) be a DFA, whereQM = {0, 1, . . . , m−

1}, Σ = {a, b, c} and the transitions of M are

δM(i, a) = i+ 1 mod m, i = 0, 1, . . . , m − 1,

δM(0, b) = 0, δM(i, b) = i+ 1 mod m, i = 1, . . . , m − 1,

δM(i, c) = i, i = 0, 1, . . . , m − 1.

The transition diagram of M is shown in Figure 5.25.

Let N = (QN ,Σ, δN , 0, {n − 1}) be another DFA, where QN = {0, 1, . . . , n − 1}

and

δN(i, a) = i, i = 0, 1, . . . , n − 1,

δN(i, b) = i, i = 0, 1, . . . , n − 1,

δN(i, c) = i+ 1 mod n, i = 0, 1, . . . , n − 1.

97

a,b
a,b

a,b

1
2

0

-1m

b,c a

a,b

c
c

c

Figure 5.25: Witness DFA M for Theorems 5.26 and 5.29

c
c

c

1
2

0

c

c

a,b

a,b
a,b

a,b

n -1

Figure 5.26: Witness DFA N for Theorems 5.26 and 5.29

The transition diagram of N is shown in Figure 5.26.

It has been proved in [111] that the minimal DFA that accepts the star of an

m-state DFA language has 3
4
2m states in the worst case. M is a modification of

the worst-case example given in [111] by adding a c-loop to every state. So we

design a 3
4
2m-state, minimal DFA M ′ = (QM ′ ,Σ, δM ′, sM ′, FM ′) that accepts

L(M)∗, where

sM ′ /∈ QM is a new initial state,

QM ′ = {sM ′} ∪ {P | P ⊆ {0, 1, . . . , m − 2} & P 6= ∅}

∪{R | R ⊆ {0, 1, . . . , m − 1} & 0 ∈ R & m − 1 ∈ R},

FM ′ = {sM ′} ∪ {R | R ⊆ {0, 1, . . . , m − 1} & m − 1 ∈ R},

and for R ⊆ QM and a ∈ Σ,

δM ′(sM ′ , a) = {δM(0, a)},

98

δM ′(R, a) =

{

{δM(R, a)}, if m − 1 /∈ δM (R, a);

{δM(R, a)} ∪ {0}, otherwise.

Then we construct the DFA A = (Q,Σ, δ, s, F) that accepts L(M)∗∪L(N)

exactly as described in the proof of Theorem 5.25, where

s = 〈sM ′, 0〉,

Q = {〈i, j〉 | i ∈ QM ′ − { sM ′}, j ∈ QN} ∪ {s},

δ(〈i, j〉, a) = 〈δM ′(i, a), δN (j, a)〉, 〈i, j〉 ∈ Q, a ∈ Σ,

F = {〈i, j〉 | i ∈ FM ′ or j = n − 1}.

Now we need to show that A is a minimal DFA.

(I) All the states in Q are reachable.

For an arbitrary state 〈i, j〉 in Q, there always exists a string w1w2 such

that δ(〈s′M , 0〉, w1w2) = 〈i, j〉, where

δM ′(sM ′, w1) = i, w1 ∈ {a, b}∗,

δN(0, w2) = j, w2 ∈ {c}∗.

(II) Any two different states 〈i1, j1〉 and 〈i2, j2〉 in Q are distinguishable.

1. i1 6= i2, j2 6= n − 1. There exists a string w1 such that

δ(〈i1, j1〉, w1) ∈ F,

δ(〈i2, j2〉, w1) /∈ F,

where w1 ∈ {a, b}∗, δM ′(i1, w1) ∈ FM ′ and δ′M(i2, w1) /∈ F ′
M .

2. i1 6= i2, j2 = n − 1. There exists a string w1 such that

δ(〈i1, j1〉, w1c) ∈ F,

δ(〈i2, j2〉, w1c) /∈ F,

where w1 ∈ {a, b}∗, δM ′(i1, w1) ∈ FM ′ and δM ′(i2, w1) /∈ FM ′.

3. i1 = i2 /∈ FM ′, j1 6= j2. For this case, the string c
n−1−j1 distinguishes

the two states, since δ(〈i1, j1〉, c
n−1−j1) ∈ F and δ(〈i2, j2〉, c

n−1−j1) /∈

F .

99

4. i1 = i2 ∈ FM ′ , j1 6= j2. The string bmcn−1−j1 distinguishes them,

because δ(〈i1, j1〉, b
mcn−1−j1) ∈ F and δ(〈i2, j2〉, b

mcn−1−j1) /∈ F .

Since all the states in A are reachable and distinguishable, the DFA A is

minimal. Thus, any DFA that accepts L(M)∗∪L(N) has at least 3
4
2m ·n − n+1

states. q.e.d.

This result gives a lower bound for the state complexity of L(M)∗ ∪L(N).

It coincides with the upper bound in Corollary 5.2. So we have the following

theorem.

Theorem 5.27 For integers m ≥ 2, n ≥ 2, 3
4
2m · n − n + 1 states are both

sufficient and necessary in the worst case for a DFA to accept L(M)∗ ∪L(N),

where M is an m-state DFA and N is an n-state DFA.

5.3.2 State Complexity of L∗
1 ∩ L2

Since the state complexity of intersection on regular languages is the same as

that of union [111], the mathematical composition of the state complexities of

star and intersection is also 3
4
2m. In this subsection, we show that the state

complexity of L∗
1∩L2 is

3
4
2m ·n − n+1 which is the same as the state complexity

of L∗
1 ∪ L2 [33].

Theorem 5.28 For any m-state DFA M = (QM ,Σ, δM , sM , FM) and n-state

DFA N = (QN ,Σ, δN , sN , FN) such that |FM − { sM}| = k ≥ 1, m > 1, n > 0,

there exists a DFA of at most (2m−1 + 2m−k−1) · n − n + 1 states that accepts

L(M)∗ ∩ L(N).

Proof: We construct the DFA A for L(M)∗ ∩ L(N) which is the same as in

the proof of Theorem 5.25, except that its set of final states is

F = {〈i, j〉 | i ∈ FM ′, j ∈ FN}.

Thus, after removing the n − 1 unreachable states 〈sM ′, j〉 /∈ Q, for j ∈ QN −

{sN}, the number of states of A is sill no more than (2m−1+2m−k−1) ·n − n+1.

q.e.d.

Similarly to the proof of Corollary 5.2, we consider both the case when

M has no other final state except sM (L(M)∗ = L(M)) and the case when

100

M has some other final states (Theorem 5.28). Then we obtain the following

corollary.

Corollary 5.3 For any m-state DFA M = (QM ,Σ, δM , sM , FM) and n-state

DFA N = (QN ,Σ, δN , sN , FN), m > 1, n > 0, there exists a DFA A of at most
3
4
2m · n − n+ 1 states such that L(A) = L(M)∗ ∩ L(N).

Next, we show that this general upper bound on the state complexity of

L(M)∗ ∩ L(N) can be attained by some witness DFAs.

Theorem 5.29 Given two integers m ≥ 2, n ≥ 2, there exists a DFA M of m

states and a DFA N of n states such that any DFA that accepts L(M)∗∩L(N)

has at least 3
4
2m · n − n+ 1 states.

Proof: We use the same DFAs M and N as in the proof of Theorem 5.26.

Their transition diagrams are shown in Figure 5.25 and Figure 5.26, respec-

tively. Construct the DFA M ′ = (QM ′,Σ, δM ′ , sM ′, FM ′) that accepts L(M)∗

in the same way.

Then we construct the DFA A = (Q,Σ, δ, s, F) that accepts L(M)∗∩L(N)

exactly as described in the proof of Theorem 5.26 except that

F = {〈i, n − 1〉 | i ∈ FM ′}.

Now we prove that A is minimal.

(I) Every state of A is reachable.

Let 〈i, j〉 be an arbitrary state of A. Then there always exists a string

w1w2 such that δ(〈sM ′, 0〉, w1w2) = 〈i, j〉, where

δM ′(sM ′, w1) = i, w1 ∈ {a, b}∗,

δN(0, w2) = j, w2 ∈ {c}∗.

(II) Any two different states 〈i1, j1〉 and 〈i2, j2〉 of A are distinguishable.

1. i1 6= i2.

We can find a string w1 such that

δ(〈i1, j1〉, w1c
n−1−j1) ∈ F,

δ(〈i2, j2〉, w1c
n−1−j1) /∈ F,

where w1 ∈ {a, b}∗, δM ′(i1, w1) ∈ FM ′ and δM ′(i2, w1) /∈ FM ′.

101

2. i1 = i2 /∈ FM ′, j1 6= j2.

There exists a string w2 such that

δ(〈i1, j1〉, w2c
n−1−j1) ∈ F,

δ(〈i2, j2〉, w2c
n−1−j1) /∈ F,

where w2 ∈ {a, b}∗ and δM ′(i1, w2) ∈ FM ′.

3. i1 = i2 ∈ FM ′, j1 6= j2.

δ(〈i1, j1〉, c
n−1−j1) ∈ F,

δ(〈i2, j2〉, c
n−1−j1) /∈ F.

From (I) and (II), A is a minimal DFA with 3
4
2m ·n − n+1 states which accepts

L(M)∗ ∩ L(N). q.e.d.

This lower bound coincides with the upper bound in Corollary 5.3. Thus,

the bounds are tight.

Theorem 5.30 For integers m ≥ 2, n ≥ 2, 3
4
2m · n − n + 1 states are both

sufficient and necessary in the worst case for a DFA to accept L(M)∗ ∩L(N),

where M is an m-state DFA and N is an n-state DFA.

5.3.3 State Complexity of LR
1 ∪ L2

In this subsection, we study the state complexity of LR
1 ∪ L2, where L1 and

L2 are regular languages [33]. It has been proved that the state complexity

of LR
1 is 2m and the state complexity of L1 ∪ L2 is mn [72, 111]. Thus, the

composition of these two expressions is 2m ·n. In this subsection we will prove

that this upper bound on state complexity of LR
1 ∪ L2 cannot be attained in

any case. We will first decrease the upper bound in the following.

Theorem 5.31 Let L1 and L2 be two regular languages accepted by an m-

state and n-state DFAs, respectively. Then there exists a DFA of at most

2m · n − n + 1 states that accepts LR
1 ∪ L2.

Proof: Let M = (QM ,Σ, δM , sM , FM) be a complete DFA of m states and

L1 = L(M). LetN = (QN ,Σ, δN , sN , FN) be another complete DFA of n states

and L2 = L(N). Let M ′ = (QM ,Σ, δM ′, FM , {sM}) be an NFA with multiple

102

initial states. δM ′(p, a) = q if δM(q, a) = p where a ∈ Σ and p, q ∈ QM .

Clearly, L(M ′) = L(M)R = LR
1 . After performing the subset construction, we

get a 2m-state DFA A = (QA,Σ, δA, sA, FA) that is equivalent to M ′. Since A

has 2m states, one of its final states must be QM . Now we construct the DFA

B = (QB,Σ, δB, sB, FB), where

QB = {〈i, j〉 | i ∈ QA, j ∈ QN},

sB = 〈sA, sN〉,

FB = {〈i, j〉 ∈ QB | i ∈ FA or j ∈ FN},

δB(〈i, j〉, a) = 〈i′, j′〉, if δA(i, a) = i′ and δN (j, a) = j′, a ∈ Σ.

It is easy to see that δB(〈QM , j〉, a) ∈ FB for any j ∈ QN and a ∈ Σ. This

means all the states (two-tuples) starting with Q1 are equivalent. There are

n such states in total. Thus, the minimal DFA that accepts LR
1 ∪ L2 has no

more than 2m · n − n+ 1 states. q.e.d.

This result gives an upper bound for the state complexity of LR
1 ∪L2. Now

let’s see if this bound is attainable.

Theorem 5.32 Given two integers m ≥ 2, n ≥ 2, there exists a DFA M of m

states and a DFA N of n states such that any DFA that accepts L(M)R∪L(N)

has at least 2m · n − n + 1 states.

Proof: Let M = (QM ,Σ, δM , 0, {0}) be a DFA, where QM = {0, 1, . . . , m − 1},

Σ = {a, b, c, d} and the transitions are

δM(0, a) = m − 1, δM(i, a) = i − 1, i = 1, . . . , m − 1,

δM(0, b) = 1, δM(i, b) = i, i = 1, . . . , m − 1,

δM(0, c) = 1, δM(1, c) = 0, δM(j, c) = i, j = 2, . . . , m − 1,

δM(k, d) = k, k = 0, . . . , m − 1.

The transition diagram ofM is shown in Figure 5.27. LetN = (QN ,Σ, δN , 0, {0})

be another DFA, where QN = {0, 1, . . . , n − 1}, Σ = {a, b, c, d} and the tran-

sitions are

δN(i, a) = i, i = 0, . . . , n − 1,

δN(i, b) = i, i = 0, . . . , n − 1,

δN(i, c) = i, i = 0, . . . , n − 1,

δN(i, d) = i+ 1 mod n, i = 0, . . . , n − 1.

103

1
2

, c

, c

m

c,a

b , c , d

, d
d,

d

a

-1

0
b

b
b

a

a

a

Figure 5.27: Witness DFA M of Theorem 5.32

The transition diagram of N is shown in Figure 5.28.

b

n

a , , c

, c
b,

d

d

b

-1

a , b , c

, c

d

,
a

a

d

d

0

1
2

Figure 5.28: Witness DFA N of Theorem 5.32

Note that M is a modification of the worst-case example given in [111] for

reversal, by adding a d-loop to every state. Intuitively, the minimal DFA that

accepts L(M)R should also have 2m states. Before using this result, we will

prove it first. Let A = (QA,Σ, δA, {0}, FA) be a DFA, where

QA = {q | q ⊆ QM},

Σ = {a, b, c, d},

δA(p, e) = {j | δM(i, e) = j, i ∈ p}, p ∈ QA, e ∈ Σ,

FA = {q | {0} ∈ q, q ∈ QA}.

Clearly, A has 2m states and it accepts L(M)R. Now let’s prove A is minimal.

(i) Every state i ∈ QA is reachable.

104

1. i = ∅.

|i| = 0 if and only if i = ∅. δA({0}, b) = i = ∅.

2. |i| = 1.

Assume that i = {p}, 0 ≤ p ≤ m − 1. δA({0}, a
p) = i.

3. 2 ≤ |i| ≤ m.

Assume that i = {i1, i2, . . . , ik}, 0 ≤ i1 < i2 < · · · < ik ≤ m − 1,

2 ≤ k ≤ m. δA({0}, w) = i, where

w = ab(ac)ik−ik−1−1ab(ac)ik−1−ik−2−1 · · · ab(ac)i2−i1−1ai1 .

(ii) Any two different states i and j in QA are distinguishable.

Without loss of generality, we may assume that |i| ≥ |j|. Let x ∈ i − j.

Then the string am−x distinguishes these two states because

δA(i, a
m−x) ∈ FA,

δA(j, a
m−x) /∈ FA.

Thus, A is a minimal DFA with 2m states that accepts L(M)R. Now let

B = (QB,Σ, δB, {〈{0}, 0〉}, FB) be a DFA, where

QB = {〈p, q〉 | p ∈ QA − { QM}, q ∈ QN} ∪ {〈QM , 0〉},

Σ = {a, b, c, d},

FB = {〈p, q〉 | p ∈ FA or q ∈ FN , 〈p, q〉 ∈ QB},

and for 〈p, q〉 ∈ QB, e ∈ Σ

δB(〈p, q〉, e) =

{

〈p′, q′〉, if δA(p, e) = p′, δN (q, e) = q′, p′ 6= QM ;

〈QM , 0〉, if δA(p, e) = QM .

As we mentioned in the previous proof, all the states (two-tuples) starting

with QM are equivalent. Thus, we replace them with one state: 〈QM , 0〉. It is

easy to see that B accepts the language L(M)R ∪ L(N). It has 2m · n − n+ 1

states. Now let us prove that B is a minimal DFA.

(I) All the states in QB are reachable.

For an arbitrary state 〈p, q〉 in QB, there always exists a string dqw such

that δB(〈{0}, 0〉, d
qw) = 〈p, q〉, where w ∈ {a, b, c}∗ and δA({0}, w) = p.

(II) Any two different states 〈p1, q1〉 and 〈p2, q2〉 in QB are distinguishable.

105

1. q1 = q2.

We can easily find a string diw such that

δB(〈p1, q1〉, d
iw) ∈ FB,

δB(〈p2, q2〉, d
iw) /∈ FB,

where (i + q1) mod n 6= 0, w ∈ {a, b, c}∗, δA(p1, w) ∈ FA and

δA(p2, w) /∈ FA.

2. p1 = p2, q1 6= q2.

The string dn−q1w distinguishes these two states where w ∈ {a, b, c}∗

and δA(p1, w) /∈ FA, because

δB(〈p1, q1〉, d
n−q1w) ∈ FB,

δB(〈p2, q2〉, d
n−q1w) /∈ FB.

3. p1 6= p2, q1 6= q2.

We first find a string w ∈ {a, b, c}∗ such that δA(p1, w) ∈ FA and

δA(p2, w) /∈ FA. Then it is clear that

δB(〈p1, q1〉, d
n−q1w) ∈ FB,

δB(〈p2, q2〉, d
n−q1w) /∈ FB.

Since all the states in B are reachable and distinguishable, the DFA B is

minimal. Thus, any DFA that accepts L(M)R∪L(N) has at least 2m ·n − n+1

states. q.e.d.

This result gives a lower bound for the state complexity of L(M)R ∪L(N).

It coincides with the upper bound. So we have the following theorem.

Theorem 5.33 For integers m ≥ 2, n ≥ 2, 2m · n − n + 1 states are both

sufficient and necessary in the worst case for a DFA to accept L(M)R ∪L(N),

where M is an m-state DFA and N is an n-state DFA.

5.3.4 State Complexity of LR
1 ∩ L2

The state complexity of LR
1 ∩ L2 is the same as that of LR

1 ∪ L2, namely,

2m · n − n + 1, since

LR
1 ∩ L2 = LR

1 ∪ L2 = L1
R
∪ L2

106

according to De Morgan’s laws and LR = L
R
, where L denotes the comple-

mentation of L, and the state complexity of the complementation of an n-state

DFA language is n.

5.4 State Complexity of Combined Boolean Operations

In this section, we will present and prove the state complexity of combined

Boolean operations. All the results in this section have been published in our

paper [27].

A combined Boolean operation in k operands (over languages over an alpha-

bet) is a function f(x1, . . . , xk) which can be constructed from the projection

functions and the binary union, intersection and the unary complementation

operations by function composition [27]. In other words, there is an expres-

sion denoting f which is built from the variables x1, . . . , xk and the boolean

operations of conjunction, disjunction and complementation. Each variable

may be used any number of times. We say that such a combined operation f

depends on its ith operand, for i = 1, . . . , k, if there exist languages L1, . . . , Lk

and L′
i such that f(L1, . . . , Lk) 6= f(L1, . . . , Li−1, L

′
i, Li+1, . . . , Lk). Any com-

bined Boolean operation f(x1, . . . , xk) may be viewed as a Boolean function

on truth values. It is clear that f depends on its ith operand iff there ex-

ist c1, . . . , ci−1, ci+1, . . . , ck in {0, 1} such that, as a Boolean function on truth

values, it satisfies f(c1, . . . , ci−1, 0, ci+1, . . . , ck) 6= f(c1, . . . , ci−1, 1, ci+1, . . . , ck).

For example, x1 ∪ (x1 ∩ x2) depends on its first operand, but does not depend

on its second. However, if there is an expression for f containing exactly one

occurrence of each xi, i = 1, . . . , k, then f depends on each of its operands

[27].

Theorem 5.34 Let f be a combined Boolean operation in k operands. Sup-

pose that f depends on each of its operands. Then for all integers n1, . . . , nk

greater than 1, the state complexity of f is n1 · · ·nk, where for each i, ni de-

notes the state complexity of the ith regular operand language.

Proof: It is clear that n1 · · ·nk is an upper bound. To prove that it is also a

lower bound, we construct an example that attains the bound. For this reason,

consider regular languages Ri of state complexity ni over pairwise disjoint

107

alphabets Σi, i = 1, . . . , k. In our argument, we will need the additional

property that for each Ri and for any two not necessarily different left quotients

u−1Ri and v−1Ri there is a string x such that both ε ∈ x−1u−1Ri and ε ∈

x−1v−1Ri, and symmetrically, there is a string y such that neither ε ∈ y−1u−1Ri

nor ε ∈ y−1v−1Ri. For the minimal automaton of Ri this means that for any

two not necessarily different states q and q′ there is a string x which brings

both q and q′ to a final state, and there is also a string y which brings neither

of them to a final state. By minimality, we also know that when q and q′ are

different, then there is a string z which brings exactly one of q and q′ to a

final state. For example, we may define Ri as the set of all strings over the

two-letter alphabet {ai, bi}, ending in at least ni − 1 occurrences of the letter

ai, i.e., Ri = (ai ∪ bi)
∗ani−1

i .

Let Σ be the union of the Σi, and for each i, let R′
i = h−1

i (Ri), where

hi : Σ∗ → Σi is the homomorphism which is the identity function on Σi

and maps any other letter to the empty word. Then each R′
i is a regular

language of state complexity ni over the alphabet Σ. Indeed, the minimal

automaton A′
i = (Qi,Σ, δ

′
i, si, Fi) for R

′
i can be constructed from the minimal

automaton Ai = (Qi,Σi, δi, si, Fi) for Ri by adding a transition from any state

to itself under any letter in Σ − Σi. We show that the minimal automaton for

R′ = f(R′
1, . . . , R

′
k) is the (usual) direct product

A′ = (Q = Q1 × · · · ×Qk,Σ, δ
′, s = (s1, . . . , sk), F)

of the A′
i with set of final states F = {q ∈ Q : ∃u ∈ R′ δ′(s, u) = q}. Thus,

δ′((q1, . . . , qk), a) = (δ′1(q1, a), . . . , δ
′
k(qk, a)) for all (q1, . . . , qk) ∈ Q1 × · · · ×Qk

and a ∈ Σ.

First we show that L(A′) = R′. It is clear that R′ ⊆ L(A′). Suppose now

that u ∈ L(A′). Then there is a string v ∈ R′ with δ′(s, v) = δ′(s, u), so that

δ′i(si, v) = δ′i(si, u) for all i. But this implies that for all i, v ∈ R′
i iff u ∈ R′

i.

Thus, since v ∈ R′, it follows that u ∈ R′.

Now each state in Q is accessible from the initial state s. Indeed, given a

k-tuple q = (q1, . . . , qk), we can choose strings ui ∈ Σ∗
i with δi(si, ui) = qi, for

all i. Then let u = u1 · · ·uk. We have that δ′(s, u) = q.

So to complete the proof of the fact that A′ is the minimal automaton for

R′, we have to show that for any two different tuples q = (q1, . . . , qk) and q′ =

(q′1, . . . , q
′
k) there is a string v ∈ Σ∗ such that exactly one of δ′(q, v) and δ′(q′, v)

108

is in F . Since q is different from q′, there is some i0 with qi0 6= q′i0 . Let us choose

strings u, u′ ∈ Σ∗ with δ′(s, u) = q and δ′(s, u′) = q′. For each i, let ui = hi(u)

and u′
i = hi(u

′). By the minimality of Ai0 , there exists a string vi0 ∈ Σ∗
i0
such

that exactly one of the states δi0(qi0 , vi0) and δi0(q
′
i0
, vi0) is in Fi0 . Since f de-

pends on each of its arguments, for some bits c1, . . . , ci0−1, ci0+1, . . . , ck in {0, 1}

we have that f(c1, . . . , ci0−1, 0, ci0+1, . . . , ck) 6= f(c1, . . . , ci0−1, 1, ci0+1, . . . , ck).

Now, for each i 6= i0, by our assumption on the language Ri, we can select a

string vi ∈ Σ∗
i with δi(si, uivi), δi(si, u

′
ivi) ∈ Fi if ci = 1 and δi(si, uivi),δi(si, u

′
ivi) /∈

Fi if ci = 0. Thus, if ci = 1, then both uivi and u′
ivi are in Ri and if ci = 0, then

neither of these strings is in Ri. Then let v = v1 · · · vk and consider the strings

uv and u′v. It is clear that exactly one of them is in R′. Since δ′(s, u) = q and

δ′(s, u′) = q′, and since L(A) = R′, this means that exactly one of δ′(q, v) and

δ′(q′, v) is in F . q.e.d.

Remark 5.35 The above proof shows that the upper bound n1 · · ·nk can be

attained over an alphabet of size 2k. We conjecture that it cannot be attained

in general over an alphabet of a fixed size. The proof also shows that the

bound n1 · · ·nk can be attained by the same regular languages R1, . . . , Rk for

all combined Boolean operations which depend on k operands.

Example 5.2 Let f(x, y) be the “equivalence function” (x ∩ y) ∪ (x ∩ y)

which depends on both of its operands. When R is the set of all strings over

{a, b} with an even number of occurrences of letter a and S is the set of all

strings with an even number of occurrences of letter b, then both R and S

have state complexity two. Now f(R, S) is the set of all strings over {a, b} of

even length, which also has state complexity two. So this example shows that

the state complexity of f(R, S) may be smaller than the product of the state

complexities of the operand languages R, S. 2

Although we conjecture that n1 · · ·nk cannot be attained in general for all

the combined Boolean operations on languages over an alphabet of a fixed size,

we show that the bound can be attained in infinitely many cases. We have

the following results. The first is a case over a one-letter alphabet. The next

two cases are over a two-letter alphabet. Note that the following results only

involve intersections. In the following, gcd and lcm stand for greatest common

divisor and least common multiple, respectively.

109

Theorem 5.36 Let R1, . . . , Rk, k > 1, be regular languages, over a one-letter

alphabet, accepted by minimal DFAs of n1, . . . , nk states, respectively, where

n1, . . . , nk > 0 and gcd(ni, nj) = 1 for any 1 ≤ i < j ≤ k. Then the number

of states which is both sufficient and necessary in the worst case for a DFA to

accept the intersection of R1, . . . , Rk is n1 · · ·nk.

We only give a brief proof of Theorem 5.36 here. Consider languages Ri =

{ani}∗ of state complexity ni. Then R1 ∩ · · · ∩ Rk = {alcm(n1,...,nk)}∗. Since

n1, . . . , nk are mutually prime, lcm(n1, . . . , nk) = n1 · · ·nk.

Although this result is about languages over a one-letter alphabet, it clearly

holds on languages over an alphabet of any positive size.

Theorem 5.37 Let Σ be a two-letter alphabet and R1, . . . , Rk, k ≥ 2, be

k regular languages over Σ accepted by minimal DFAs of n1, . . . , nk states,

respectively, n1, . . . , nk > 0. If the k languages can be partitioned into two sets

{R1, . . . , Rl} and {Rl+1, . . . , Rk} for some l, 1 ≤ l < k, such that n1, . . . , nl

are mutually prime and nl+1, . . . , nk are also mutually prime, then the state

complexity of R1 ∩ · · · ∩Rk is n1 · · ·nk.

Proof: It is clear that n1 · · ·nk is an upper bound. In the following, we show

that n1 · · ·nk is also a lower bound.

Assume that a set of integers {n1, n2, . . . , nk}, ni > 0, 1 ≤ i ≤ k, can be

divided into two sets M and N such that gcd(ne, nf) = 1 for any ne, nf ∈ M ,

e 6= f , gcd(ng, nh) = 1 for any ng, nh ∈ N , g 6= h. We construct k DFAs as

follows.

For each ni ∈ M , define the DFA Ai = (Qi, {a, b}, δi, 0, {0}), where Qi =

{0, . . . , ni − 1} and δi is given by

δi(t, a) = t + 1modni, t = 0, 1, . . . , ni − 1,

δi(t, b) = t, t = 0, 1, . . . , ni − 1.

We denote L(Ai) by Ri.

Similarly for each np ∈ N , define the DFA Ap = (Qp, {a, b}, δp, 0, {0}),

where Qp = {0, . . . , np − 1} and δp is given by

δp(t, b) = t + 1modnp, t = 0, 1, . . . , np − 1,

δp(t, a) = t, t = 0, 1, . . . , np − 1.

We denote L(Ap) by Rp.

110

It is easy to show that the following DFA is the minimal DFA that accepts

the intersection of all Ri such that ni ∈ M : C = (QC , {a, b}, δC , 0, {0}) where
QC = {0, 1, . . . ,

∏

ne∈M

ne − 1},

δC(t, a) = t+ 1mod
∏

ne∈M

ne, t = 0, 1, . . . ,
∏

ne∈M

ne − 1,

δC(t, b) = t, t = 0, 1, . . . ,
∏

ne∈M

ne − 1.

Analogously, we have the following minimal DFA that accepts the intersection

of languages Rp such that np ∈ N : D = (QD, {a, b}, δD, 0, {0}) where
QD = {0, 1, . . . ,

∏

ng∈N

ng − 1},

δD(t, b) = t + 1mod
∏

ng∈N

ng, t = 0, 1, . . . ,
∏

ng∈N

ng − 1,

δD(t, a) = t, t = 0, 1, . . . ,
∏

ng∈N

ng − 1.

Now we have
L(C) = {w | w ∈ {a, b}∗, |w|amod

∏

ne∈M

ne = 0},

L(D) = {w | w ∈ {a, b}∗, |w|bmod
∏

ng∈N

ng = 0}.

Clearly, we have
L(C) ∩ L(D) = {w | w ∈ {a, b}∗, |w|amod

∏

ne∈M

ne = 0, |w|bmod
∏

ng∈N

ng = 0}.

Let E = (QE , {a, b}, δE, 〈0, 0〉, {〈0, 0〉}) be a DFA, where
QE = {〈X, Y 〉 | X ∈ QC , Y ∈ QD},

δE(〈X, Y 〉, a) = 〈δC(X, a), δD(Y, a)〉,

δE(〈X, Y 〉, b) = 〈δC(X, b), δD(Y, b)〉.

It is easy to see that L(E) = L(C) ∩ L(D). Now we will show that E is

minimal.

1. For each state 〈X, Y 〉 ∈ QE , δE(〈0, 0〉, a
XbY) = 〈X, Y 〉. So every state

in QE is reachable.

2. For any two different states 〈X1, Y1〉 and 〈X2, Y2〉 in QE , if X1 6= X2 or

Y1 6= Y2, then

δE(〈X1, Y1〉, a
|QC |−X1b|QD|−Y1) = 〈0, 0〉,

δE(〈X2, Y2〉, a
|QC |−X1b|QD|−Y1) 6= 〈0, 0〉.

So any two distinct states of E are not equivalent.

111

Thus, E is the minimal DFA that accepts R1 ∩ R2 ∩ · · · ∩Rk. q.e.d.

This result can be easily extended to languages over an arbitrary t-letter

alphabet, t ≥ 2, in the following.

Corollary 5.4 Let Σ be a t-letter alphabet, t ≥ 2, and R1, . . . , Rk, k ≥ 2, be k

regular languages over Σ accepted by DFAs of n1, . . . , nk states, respectively. If

the k languages can be partitioned into t sets, 1 ≤ t ≤ k, and all the numbers

of states of the DFAs that accept the languages in each set are mutually prime,

then the state complexity of intersection of all the k languages is n1 · · ·nk.

A further improvement of Theorem 5.37 is stated in the following.

Theorem 5.38 Let Σ be a two-letter alphabet and R1, . . . , Rk, Rk+1, k ≥ 2,

be k+ 1 regular languages over Σ accepted by DFAs of n1, . . . , nk+1 states, re-

spectively, n1, . . . , nk ≥ 1, nk+1 ≥ 3. If the first k languages can be partitioned

into two sets {R1, . . . , Rl} and {Rl+1, . . . , Rk} for some l, 1 ≤ l < k, such

that both {n1, . . . , nl} and {nl+1, . . . , nk} are mutually prime, then the state

complexity of R1 ∩ · · · ∩Rk ∩ Rk+1 is n1 · · ·nknk+1.

Proof: It is easy to see that n1 · · ·nk+1 is an upper bound. In the following,

we show that n1 · · ·nk+1 is also a lower bound. The first part of the proof

of this theorem is the same as that of Theorem 5.37. Assume that a set of

integers {n1, n2, . . . , nk}, ni ≥ 1, 1 ≤ i ≤ k, can be divided into two sets M

and N such that both of them are mutually prime, i.e., gcd(ne, nf) = 1 for

any ne, nf ∈ M , e 6= f , and gcd(ng, nh) = 1 for any ng, nh ∈ N , g 6= h. Then

construct the DFA C that accepts the intersection of all Re for ne ∈ M and

the DFA D that accepts the intersection of all Rg for ng ∈ N . Let QC and QD

be the state sets of C and D, respectively, and u = |QC | and v = |QD|.

Let nk+1 be an arbitrary integer such that nk+1 ≥ 3. Define an nk+1-state

DFA F = {QF , {a, b}, δF , 0, {0}} where

QF = {0, 1, . . . , nk+1 − 1},

δF (0, b) = 1, δF (0, a) = 0,

δF (1, b) = 2, δF (1, a) = 1,

δF (t, a) = t+ 1modnk+1, t = 2, . . . , nk+1 − 1,

δF (t, b) = t, t = 2, . . . , nk+1 − 1.

112

We denote L(F) by Rk+1. Let G = {QG, {a, b}, δG, q0, FG} be a DFA, where

QG = {〈X, Y, Z〉 | X ∈ QC , Y ∈ QD, Z ∈ QF},

q0 = 〈0, 0, 0〉,

FG = {〈0, 0, 0〉},

δG(〈X, Y, Z〉, a) = 〈δC(X, a), δD(Y, a), δF (Z, a)〉,

δG(〈X, Y, Z〉, b) = 〈δC(X, b), δD(Y, b), δF (Z, b)〉, for each 〈X, Y, Z〉 ∈ QG.

It is easy to see that L(G) = L(C) ∩ L(D) ∩ Rk+1.

Now we check if G is a minimal DFA.

1. For any state 〈X, Y, Z〉 ∈ QG, Z 6= 0, 1, 2,

δG(〈0, 0, 0〉, a
nk+1+T bv+Y aZ−2) = 〈X, Y, Z〉

where T is a positive integer such that (nk+1+T +Z − 2) ≡ X (mod u).

For 〈X, Y, Z〉 ∈ QG, Z = 0 or 1 or 2,

δG(〈0, 0, 0〉, a
T bnk+1v+Y−Zank+1−2bZ) = 〈X, Y, Z〉

where T is a positive integer such that (nk+1 + T − 2) ≡ X (mod u).

So every state in QG is reachable.

2. 〈X1, Y1, Z1〉, 〈X2, Y2, Z2〉 ∈ QG are two different states.

(1) X1 6= X2 or Y1 6= Y2

δG(〈X1, Y1, Z1〉, a
nk+1+T b2v−Y1ank+1−2) = 〈0, 0, 0〉,

δG(〈X2, Y2, Z2〉, a
nk+1+T b2v−Y1ank+1−2) 6= 〈0, 0, 0〉,

where T is a positive integer such that (2nk+1 + T − 2) ≡ u − X1

(mod u).

(2) X1 = X2, Y1 = Y2, Z1 6= Z2

(I) Z1 ≥ 0, Z2 > 2, Z2 > Z1

Let t1 = b2v−Y1−1ank+1−Z2bank+1+T , where T is a positive integer

such that (2nk+1 − Z2 + T) ≡ u − X1 (mod u). Then

δG(〈X1, Y1, Z1〉, t1) = 〈0, 0, 0〉,

δG(〈X2, Y2, Z2〉, t1) 6= 〈0, 0, 0〉,

113

(II) Z1 > 2, Z2 ≥ 0, Z1 > Z2

It is symmetric to (I), let t′1 = b2v−Y2−1ank+1−Z1bank+1+T , where

T is a positive integer such that (2nk+1 − Z1 + T) ≡ u − X1

(mod u). In this case, t′1 distinguishes the two states.

(III) Z1 = 0, Z2 = 1 or 2

Let t2 = baT (ank+1b)2v−Y1−1ank+1, where T is a positive integer

such that (T + nk+1(2v − Y1)) ≡ u − X1 (mod u). Then one

of δG(〈X1, Y1, 0〉, t2) and δG(〈X2, Y2, Z2〉, t2) is 〈0, 0, 0〉 but the

other is not.

(IV) Z1 = 1 or 2, Z2 = 0

It is symmetric to (III). The string t2 also works for distinguish-

ing the two states.

(V) Z1 = 1, Z2 = 2

Let t3 = ank+1+T b(ank+1b)2v−Y1−1ank+1 , where T is a positive

integer such that (T + nk+1(2v − Y1 + 1)) ≡ u − X1 (mod u).

Then one of δG(〈X1, Y1, 1〉, t3) and δG(〈X2, Y2, 2〉, t3) is 〈0, 0, 0〉

but the other is not.

(VI) Z1 = 2, Z2 = 1

It is symmetric to (V). The string t3 also works for distinguish-

ing the two states.

So any two states of G are distinguishable.

Thus, G is the minimal DFA for R1 ∩ R2 ∩ · · · ∩ Rk ∩ Rk+1 that has n1 · n2 ·

· · · · nk · nk+1 states. q.e.d.

5.5 State Complexity of Multiple Catenations

5.5.1 State Complexity of L1L2L3

In this subsection, we study the state complexity of L1L2L3, where L1, L2

and L3 are three regular languages accepted by DFAs of m, n and p states,

respectively. All the results in this subsection have been published in our

paper [27].

The direct composition of the state complexity of the catenation of L1,

L2 and L3 is m2n+p − 2n+p−1 − 2p−1 which is an upper bound for the state

114

complexity of L1L2L3 but cannot be attained [27, 29].

Theorem 5.39 For integers m,n, p ≥ 2, there exist DFAs A, B, and C of m,

n, and p states, respectively, such that any DFA that accepts L(A)L(B)L(C)

has at least m2n+p − 2n+p−1 − (m − 1)2n+p−2 − 2n+p−3 − (m − 1)(2p − 1) states.

Proof: Let Σ = {a, b, c, d, e}. Let A = (QA,Σ, δA, 0, {m − 1}) be a DFA,

where QA = {0, . . . , m − 1} and δA is defined as follows. For the state t =

0, 1, . . . , m − 1, δA(t, a) = t+1 mod m, δA(t, x) = t, x ∈ {b, c, e} and δA(t, d) =

0. Let B = (QB,Σ, δB, 0, {n − 1}) be a DFA, where QB = {0, . . . , n − 1} and δB

is defined as follows. For the state t = 0, 1, . . . , n − 1, δB(t, b) = t + 1 mod n,

δB(t, y) = t, y ∈ {a, d, e} and δB(t, c) = 1. Let C = (QC ,Σ, δC , 0, {p − 1})

be a DFA, where QC = {0, . . . , p − 1}. For the state t = 0, 1, . . . , p − 1,

δC(t, d) = t+ 1 mod p, δC(t, z) = t, z ∈ {a, b, c} and δC(t, e) = 1.

For each x ∈ {a, b, d}∗, we define

S(x) = {i | x = uvw such that u ∈ L(A), v ∈ L(B), and i = |w|dmod p}.

Consider that x, y ∈ {a, b, d}∗ such that S(x) 6= S(y). Let k ∈ S(x) − S(y)(or

S(y) − S(x)). Then it is clear that xdp−1−k ∈ L(A)L(B)L(C) but ydp−1−k /∈

L(A)L(B)L(C). So, x and y are in different equivalence classes of the right-

invariant relation induced by L(A)L(B)L(C).

For each x ∈ {a, b, d}∗, we define

T (x) = {i | x = uv such that u ∈ L(A), and i = |v|bmodn}.

Consider that x, y ∈ {a, b, d}∗ such that T (x) 6= T (y). Let k ∈ T (x) −

T (y)(or T (y) − T (x)). Then it is clear that xbn−1−kedp−1 ∈ L(A)L(B)L(C)

but ybn−1−kedp−1 /∈ L(A)L(B)L(C). So, x and y are in different equivalence

classes of the right-invariant relation induced by L(A)L(B)L(C).

For each x ∈ {a, b, d}∗, define

R(x) = |z|a where x = ydz, y ∈ {a, b, d}∗, z ∈ {a, b}∗, if d occurs in x;

R(x) = |x|a, otherwise.

Consider u, v ∈ {a, b, d}∗ such that R(u) mod m > R(v) mod m. Let i = R(u)

mod m and w = am−1−icbn−1edp−1. Then clearly uw ∈ L(A)L(B)L(C) but

vw /∈ L(A)L(B)L(C).

115

Notice that there does not exist a string w such that 0 /∈ T (w) and R(w) =

m − 1, since R(w) = m − 1 guarantees that 0 ∈ T (w). For the same reason,

there does not exist a string w such that n − 1 ∈ T (w) and 0 /∈ S(w). It is

also impossible that T (w) = ∅ but S(w) 6= ∅.

For each subset s = {i1, . . . , ik} of {0, . . . , p − 1} and each subset t =

{j1, . . . , jl} of {0, . . . , n − 1} where i1 > · · · > ik and j1 > · · · > jl, and an

integer r ∈ {0, . . . , m − 1}, except the following three cases (1) 0 /∈ t and

r = m − 1, (2) 0 /∈ s and n − 1 ∈ t, and (3) r 6= m − 1, s 6= ∅ and t = ∅, there

exists a string

x = ambndi1−i2ambndi2−i3 · · · ambndik−1−ikambndik

ambj1−j2ambj2−j3 · · ·ambjl−1−jlambjlar

such that S(x) = s, T (x) = t and R(x) = r. In total, there are m2n2p classes.

There are 2n−12p classes with both 0 /∈ t and r = m − 1. Notice that the

classes with r = m − 1, 0 /∈ t, n − 1 ∈ t and 0 /∈ s have already been included

in these 2n−12p classes. So there are only (m − 1)2n−12p−1 + 2n−22p−1 classes

with both 0 /∈ s and n − 1 ∈ t. And there are (m − 1)(2p − 1) classes with

r 6= m − 1, s 6= ∅ and t = ∅. Thus, there are at least

m2n+p − 2n+p−1 − (m − 1)2n+p−2 − 2n+p−3 − (m − 1)(2p − 1)

distinct equivalence classes. q.e.d.

We now show an upper bound for this combined operation.

Theorem 5.40 Let A, B and C be three DFAs of m, n, and p states, re-

spectively, m,n, p > 0, where A has k final states and B has l final states,

0 < k < m and 0 < l < n. Then there exists a DFA of at most (2m − k)2n+p−2+

(2m − k)2n+p−l−2 − (m − k)(2p − 1) states that accepts L(A)L(B)L(C).

Proof: Let A = (QA,Σ, δA, r0, FA), B = (QB,Σ, δB, s0, FB) and C = (QC ,Σ, δC , t0, FC)

be three DFAs. Construct the DFA E = (QE ,Σ, δE , q0, FE) such that

QE = QA × 2QB × 2QC − FA × 2QB−{s0} × 2QC

− (QA − FA)× ((2FB − {∅}) ∪ 2QB−FB)× 2QC−{t0}

− FA × ((2FB − {∅}) ∪ 2QB−FB−{s0})× 2QC−{t0}

− (QA − FA)× {∅} × (2QC − {∅}),

116

q0 =

〈r0, ∅, ∅〉, if r0 /∈ FA and s0 /∈ FB;

〈r0, {s0}, ∅〉, if r0 ∈ FA and s0 /∈ FB;

〈r0, {s0}, {t0}〉, if r0 ∈ FA and s0 ∈ FB,

FE = {〈r, S, T 〉 ∈ QE | T ∩ FC 6= ∅},

δE(〈r, S, T 〉, a) = 〈r′, S ′, T ′〉, for a ∈ Σ, where r′ = δA(r, a),

S ′ =

{

δB(S, a) ∪ {s0}, if r′ ∈ FA;

δB(S, a), otherwise,

T ′ =

{

δC(T, a) ∪ {t0}, if S ′ ∩ FB 6= ∅;

δC(T, a), otherwise.

Intuitively, QE is a set of three-tuples whose first component is a state in

QA, second component is a subset of QB, and last component is a subset of

QC .

The state set QE does not contain those three-tuples whose first component

is a final state of A and second component does not contain s0, the initial state

of B.

The set QE does not contain those three-tuples whose second component

contains at least one final state of B and third component does not contain

t0, the initial state of C. Notice that the three-tuples whose first component

is a final state of A , second component contains at least one final state of B

but does not contain s0, and last component does not contain t0 have been

included in the first case.

Finally, QE also does not contain the three-tuples whose first component is

a non-final state of A, second component is ∅, and last component is nonempty.

Clearly, L(E) = L(A)L(B)L(C). Let |QA| = m, |QB| = n, |QC | = p,

|FA| = k and |FB| = l. Then E has (2m − k)2n+p−2+(2m − k)2n+p−l−2 − (m −

k)(2p − 1) states. q.e.d.

Note that when k = 1 and l = 1, i.e., A and B each have one final state, this

upper bound is exactly the same as the lower bound stated in Theorem 5.39.

Thus, this bound is the state complexity of the catenation of three regular

languages.

117

5.5.2 State Complexity of L1L2 · · ·Lk

In this subsection, we prove the exact state complexities of the catenation

of k regular languages for arbitrary k ≥ 2. All the results shown in this

subsection are from our paper [32]. We first consider a lower bound on the

state complexity of L1L2 · · ·Lk.

Theorem 5.41 For integers ni ≥ 2, 1 ≤ i ≤ k, there exist DFAs Ai of ni

states, respectively, such that any DFA that accepts L(A1) · · ·L(Ak) has at

least

n12
n2+···+nk − D −

k−1
∑

h=1

Eh

states, where

D =

k−2
∑

j=1

(n1 · (

j
∏

r=2

(2nr − 1)) · (2
∑k

q=j+2 nq − 1));

Eh =

2h−1−1
∑

α=0

((

h
∏

β=1

Gα,β) · (1 + (2nh+1−1 − 1) · Rh,1));

Rh,µ = (1 + (2nµ+h+1 − 1) · Rh,µ+1) for 1 ≤ µ ≤ k − h − 2;

Rh,k−h−1 = 2nk ;

and for wγ ∈ {0, 1}, 1 ≤ γ ≤ h − 1 such that w1w2w3 · · ·wh−1 is a binary

number whose length is h − 1 and value is α,

Gα,1 =

{

n1 − 1, if w1 = 0 and h ≥ 2;

1, if w1 = 1 and h ≥ 2,

for 2 ≤ θ ≤ h − 1, Gα,θ =

2nθ−1 − 1, if wθ−1 = 0 and wθ = 0;

2nθ−1, if wθ−1 = 0 and wθ = 1;

2nθ−2, if wθ−1 = 1,

Gα,h =

1, if h = 1;

2nh−1, if wh−1 = 0 and h ≥ 2;

2nh−2, if wh−1 = 1 and h ≥ 2.

Proof: Let Σ = {aj | 1 ≤ j ≤ 2k − 1}. Let A1 = (Q1,Σ, δ1, 0, F1) be a DFA,

118

where

Q1 = {0, 1, . . . , n1 − 1};

F1 = {n1 − 1};

δ1(t, a1) = t + 1 mod n1, 0 ≤ t ≤ n1 − 1;

δ1(t, a2k−2) = 0, 0 ≤ t ≤ n1 − 1;

δ1(t, b) = t, b ∈ Σ − { a1, a2k−2}, 0 ≤ t ≤ n1 − 1.

Figure 5.29 shows the transition diagram of A1.

2 -1n
a a a......

b b b

a

b

0
1 1 11

a
a

2

2

1

k -2

k -2

,

1

a 2 -2k

1a a 2 -2k,

Figure 5.29: Witness DFA A1 for Theorem 5.41

Let Ai = (Qi,Σ, δi, 0, Fi), 2 ≤ i ≤ k be a DFA, where

Qi = {0, 1, . . . , ni − 1};

Fi = {ni − 1};

δi(t, a2i−2) = t + 1 mod ni, 0 ≤ t ≤ ni − 1;

δi(t, a2i−1) = 1, 0 ≤ t ≤ ni − 1;

δi(t, b) = t, b ∈ Σ − { a2i−2, a2i−1}, 0 ≤ t ≤ ni − 1.

Figure 5.30 shows the transition diagram of Ai.

2 22
0

b bbb

...... aaa
n -1

a
a -1i2 ,

i
-2i-2i-2i-2i2

2

-2i2a

-1i2a
-1ia 2

1

Figure 5.30: Witness DFA Ai for Theorem 5.41

For each x ∈ {a1, a2, a4, . . . , a2k−2}
∗, we define

Ps(x) = {p | x = u1u2 · · ·us, ul ∈ L(Al), 1 ≤ l ≤ s − 1,

p = |us|a2s−2
mod ns, 2 ≤ s ≤ k}.

119

Consider that x, y ∈ {a1, a2, a4, . . . , a2k−2}
∗ such that Ps(x) 6= Ps(y). Let

c ∈ Ps(x) − Ps(y)(or Ps(y) − Ps(x)) and w = ans−1−c
2s−2 a2s+1a

ns+1−1
2s · · · a2k−1a

nk−1
2k−2 .

Then it is clear that xw ∈ L(A1) · · ·L(Ak) but yw /∈ L(A1) · · ·L(Ak). So, x

and y are in different equivalence classes of the right-invariant relation induced

by L(A1) · · ·L(Ak).

For each x ∈ {a1, a2, a4, . . . , a2k−2}
∗, define

P1(x) = |z|a1 where x = ydz, y ∈ {a1, a2, a4, . . . , a2k−2}
∗,

z ∈ {a1, a2, a4, . . . , a2k−4}
∗, if a2k−2 occurs in x;

P1(x) = |x|a1 , otherwise.

Consider u, v ∈ {a1, a2, a4, . . . , a2k−2}
∗ such that P1(u) mod n1 > P1(v) mod

n1. Let i = P1(u) mod n1 and w = an1−1−i
1 a3a

n2−1
2 · · · a2k−1a

nk−1
2k−2 . Then clearly

uw ∈ L(A1) · · ·L(Ak) but vw /∈ L(A1) · · ·L(Ak).

Notice that there does not exist a string w such that 0 /∈ P2(w) and P1(w) =

n1 − 1, since P1(w) = n1 − 1 guarantees that 0 ∈ P2(w). Because of the same

reason, there does not exist a string w such that nt − 1 ∈ Pt(w) and 0 /∈ Pt+1(w),

2 ≤ t ≤ k − 1. It is also impossible that Pt(w) = ∅ but Pt+1(w) 6= ∅.

For each subset ps = {d1,s, . . . , des,s} of {0, . . . , ns − 1} where d1,s > · · · >

des,s and 2 ≤ s ≤ k, and an integer p1 ∈ {0, . . . , n1 − 1}, except the cases we

mentioned above, there exists a string

x = an1

1 an2

2 an3

4 · · · a
nk−1

2k−4a
d1,k−d2,k
2k−2 an1

1 an2

2 an3

4 · · · a
nk−1

2k−4a
d2,k−d3,k
2k−2 · · ·

an1

1 an2

2 an3

4 · · · a
nk−1

2k−4a
dek−1,k−dek,k

2k−2 an1

1 an2

2 an3

4 · · · a
nk−1

2k−4a
dek,k

2k−2

an1

1 an2

2 an3

4 · · · a
d1,k−1−d2,k−1

2k−4 · · · an1

1 an2

2 an3

4 · · · a
dek−1,k−1

2k−4 · · ·

an1

1 a
d1,2−d2,2
2 · · · an1

1 a
de2,2
2 ap11 .

such that P1(x) = p1 and Ps(x) = ps.

In total, there are n12
n22n3 · · · 2nk classes. There are

D =

k−2
∑

j=1

(n1 · (

j
∏

r=2

(2nr − 1)) · (2
∑k

q=j+2 nq − 1))

classes with both pt = ∅ and pt+1 6= ∅, 2 ≤ t ≤ k − 1. There are

E1 = 1 + (2n2−1 − 1) · R1,1

120

classes with both p1 = n1 − 1 and 0 /∈ p2, which are not in D, where

R1,µ = (1 + (2nµ+2 − 1) · R1,µ+1) for 1 ≤ µ ≤ k − 3;

R1,k−2 = 2nk .

There are

E2 = (n1 − 1)2n2−1(1 + (2n3−1 − 1) · R2,1)

+2n2−2(1 + (2n3−1 − 1) ·R2,1)

classes with both n2 − 1 ∈ p2 and 0 /∈ p3, which are not in D,E1, where

R2,µ = (1 + (2nµ+3 − 1) · R2,µ+1) for 1 ≤ µ ≤ k − 4;

R2,k−3 = 2nk .

There are

E3 = (n1 − 1)(2n2−1 − 1)2n3−1(1 + (2n4−1 − 1) · R3,1)

+(n1 − 1)2n2−12n3−2(1 + (2n4−1 − 1) · R3,1)

+2n2−22n3−1(1 + (2n4−1 − 1) · R3,1)

+2n2−22n3−2(1 + (2n4−1 − 1) · R3,1)

classes with both n3 − 1 ∈ p3 and 0 /∈ p4, which are not in D,E1, E2, where

R3,µ = (1 + (2nµ+4 − 1) · R3,µ+1) for 1 ≤ µ ≤ k − 5;

R3,k−4 = 2nk .

We omit the other similar classes until the hth group of such classes, 1 ≤ h ≤

k − 1. There are Eh classes with both nh − 1 ∈ ph and 0 /∈ ph+1, which are

not in D,E1, E2, . . . , Eh−1, where Eh is exactly the same as the one given in

Theorem 5.41.

Thus, there are at least

n12
n2+...+nk − D −

k−1
∑

h=1

Eh

distinct equivalence classes. q.e.d.

121

Before we investigate the upper bound on the state complexity of L1L2 · · ·L2,

we first define an operation ⊔ on R1 and R2 that are two classes of languages

over Σ. Then

R1 ⊔ R2 = {A ∪B | A ∈ R1, B ∈ R2}.

We can easily see that |R1 ⊔R2| ≤ |R1| · |R2|. The operation ⊔ will be used in

the proof of the following theorem.

Theorem 5.42 Let Ai, 1 ≤ i ≤ k be k DFAs of ni states, respectively, where

Ai has fi final states, 0 < fi < ni. Then there exists a DFA of at most

n12
n2+...+nk − D −

k−1
∑

h=1

Eh

states that accepts L(A1) · · ·L(Ak), where

D =

k−2
∑

j=1

(n1 · (

j
∏

p=2

(2np − 1)) · (2
∑k

q=j+2 nq − 1));

Eh =

2h−1−1
∑

v=0

((

h
∏

y=1

Gv,y) · (1 + (2nh+1−1 − 1) · Rh,1));

Rh,t = (1 + (2nt+h+1 − 1) ·Rh,t+1) for 1 ≤ t ≤ k − h − 2;

Rh,k−h−1 = 2nk ;

and for wz ∈ {0, 1}, 1 ≤ z ≤ h − 1 such that w1w2w3 · · ·wh−1 is a binary

number whose length is h − 1 and value is v,

Gv,1 =

{

n1 − f1, if w1 = 0 and h ≥ 2;

f1, if w1 = 1 and h ≥ 2,

for 2 ≤ x ≤ h − 1, Gv,x =

2nx−fx − 1, if wx−1 = 0 and wx = 0;

(2fx − 1)2nx−fx, if wx−1 = 0 and wx = 1;

2nx−fx−1, if wx−1 = 1 and wx = 0;

(2fx − 1)2nx−fx−1, if wx−1 = 1 and wx = 1,

Gv,h =

f1, if h = 1;

(2fh − 1)2nh−fh, if wh−1 = 0 and h ≥ 2;

(2fh − 1)2nh−fh−1, if wh−1 = 1 and h ≥ 2.

122

Proof: Construct DFAs Ai = (Qi,Σ, δi, 0, Fi), 1 ≤ i ≤ k. Construct the DFA

E = (QE ,Σ, δE , q0, FE) such that

QE = Q1 × 2Q2 × 2Q3 × · · · × 2Qk − D′ −
k−1
∑

i=1

E ′
i;

FE = {〈u1, u2, . . . , uk〉 ∈ QE | uk ∩ Fk 6= ∅};

q0 = 〈u1, u2, . . . , uk〉,

u1 = 0, uc = {0}, ud = ∅, 2 ≤ c ≤ i, i + 1 ≤ c ≤ k when 0 ∈ F1 and 0 /∈ Fi,

2 ≤ i ≤ k;

δE : δE(〈u1, u2, . . . , uk〉, a) = 〈u′
1, u

′
2, . . . , u

′
k〉, for a ∈ Σ,

u′
1 = δA1

(u1, a),

u′
2 = δA2

(u2, a) ∪ {0} if u′
1 ∈ F1,

u′
2 = δA2

(u2, a) otherwise,

u′
i = δAi

(ui, a) ∪ {0} if u′
i−1 ∩ Fi−1 6= ∅,

u′
i = δAi

(ui, a) otherwise, 3 ≤ i ≤ k,

where

D′ =

k−2
⋃

j=1

(Q1 × (

j
∏

p=2

(2Qp − {∅}))× {∅} × (

k
∏

g=j+2

2Qg − {∅} k−j−1);

E ′
1 = F1 × ({∅}k−1 ∪ (2Q2−{0} − {∅})× R′

1,1);

R′
1,t = ({∅}k−t−1 ∪ (2Qt+2 − {∅})×R′

1,t+1) for 1 ≤ t ≤ k − 3;

R′
1,k−2 = 2Qk ;

E ′
2 = (Q1 − F1)× ((2F2 − {∅}) ⊔ 2Q2−F2)× ({∅}k−2 ∪ (2Q3−1 − { 0})×R′

2,1)

∪F1 × ((2F2 − {∅}) ⊔ 2Q2−F2−{0} ∪ {0})× ({∅}k−2 ∪ (2Q3−{0} − {∅})× R′
2,1);

R′
2,t = ({∅}k−t−2 ∪ (2Qt+3 − {∅})×R′

2,t+1) for 1 ≤ t ≤ k − 4;

R′
2,k−3 = 2Qk ;

. . .

E ′
h =

2h−1−1
⋃

v=0

((
h
∏

y=1

G′
v,y)× ({∅}k−h ∪ (2Qh+1−{0} − {∅})× R′

h,1));

R′
h,t = ({∅}k−t−h ∪ (2Qt+h+1 − {∅})×R′

h,t+1) for 1 ≤ t ≤ k − h − 2;

R′
h,k−h−1 = 2Qk ;

123

and for wz ∈ {0, 1}, 1 ≤ z ≤ h − 1 such that w1w2w3 · · ·wh−1 is a binary

number whose length is h − 1 and value is v,

G′
v,1 =

{

Q1 − F1, if w1 = 0 and h ≥ 2;

F1, if w1 = 1 and h ≥ 2,

for 2 ≤ x ≤ h − 1, G′
v,x =

2Qx−Fx − {∅} , if wx−1 = 0 and wx = 0;

(2Fx − {∅}) ⊔ 2Qx−Fx , if wx−1 = 0 and wx = 1;

2Qx−Fx−{0}, if wx−1 = 1 and wx = 0;

(2Fx − {∅}) ⊔ 2Qx−Fx−{0}, if wx−1 = 1 and wx = 1,

G′
v,h =

F1, if h = 1;

(2Fh − {∅}) ⊔ 2Qh−Fh, if wh−1 = 0 and h ≥ 2;

(2Fh − {∅}) ⊔ 2Qh−Fh−{0}, if wh−1 = 1 and h ≥ 2.

Intuitively, QE is a set of k-tuples whose first component is a state in Q1

and ith component is a subset of states in Qi, 2 ≤ i ≤ k.

QE does not contain those k-tuples whose ith component is ∅ and whose

jth component is not ∅, when 1 < i < j ≤ k. D′ is the set of them.

QE does not contain those k-tuples whose first component is an element of

F1 and second component is not ∅ (if it is ∅ then all the elements afterwards

have to be ∅) and does not contain 0, either. E ′
1 is the set consisting of them.

QE does not contain those k-tuples whose hth component contains one or

more final states of Ah and whose (h + 1)th component is not ∅ (if it is ∅

then all the elements afterwards have to be ∅) and does not contain 0, when

1 ≤ h ≤ k − 1, either. E ′
h is the set consisting of them. Note that E ′

h does not

contain the k-tuples that belong to E ′
j where 1 ≤ j < i.

Clearly, L(E) = L(A1) · · ·L(Ak). Let |QAi
| = ni and |FAi

| = fi, 1 ≤ i ≤ k.

Then E has the following number of states

n12
n2+...+nk − D −

k−1
∑

h=1

Eh.

q.e.d.

Note that when each Ai, 1 ≤ i ≤ k, has one final state, this upper bound is

exactly the same as the lower bound stated in Theorem 5.41. Thus, this bound

is tight and is the state complexity of the catenation of k regular languages.

Chapter 6

Estimation and Approximation of State

Complexity of Combined Operations

There are at least two problems concerning the exact state complexities of

combined operations. Firstly, the exact state complexities of many combined

operations are extremely difficult to compute. Secondly, a large proportion of

results that have been obtained are rather complex and difficult to comprehend

[32]. For example, the exact state complexity of the catenation of four regular

languages accepted by m,n, p, q states, respectively, is

9(2m − 1)2n+p+q−5 − 3(m − 1)2p+q−2 − (2m − 1)2n+q−2+(m − 1)2q+(2m − 1)2n−2,

for m,n, p ≥ 2, which is difficult to understand.

It is clear that good estimates and approximations of state complexities

can be used in these two cases. We will first investigate estimation of state

complexity of combined operations in the following.

6.1 Estimation of State Complexity of Combined Oper-

ations

In [97, 108], estimation based on nondeterministic state complexity was intro-

duced. Briefly speaking, for a combined operation on regular languages, the

method first estimates the nondeterministic state complexity of the combined

operation using the composition of the nondeterministic state complexities of

its component operations, and then converts it to an estimate of the deter-

ministic state complexity [27]. For example, for (L(A) ∪ L(B))∗ where A and

B are DFAs of m states and n states, respectively, the nondeterministic state

124

125

complexity of L = L(A) ∪ L(B) is m + n + 1 and that of L∗ is m + n + 2,

which is then converted to an estimation of the deterministic state complexity

2m+n+2. Note that the nondeterministic state complexity m + n + 2 is the

direct mathematical composition of the two individual nondeterministic state

complexities [27]. No optimization is made. Other nondeterministic state com-

plexities for combined operations in this chapter are calculated in the same

way.

It has been shown that this method can obtain good estimates for the com-

bined operations: star of union, star of intersection, star of catenation, and star

of reversal. Table 6.1 shows their actual state complexities and corresponding

estimates.

Table 6.1: The exact state complexities of 4 combined operations

and corresponding estimates

Operation State Complexity Estimate

(L(A) ∪ L(B))∗ 2m+n−1 − 2m−1 − 2n−1 + 1 [92] 2m+n+2 [27]

(L(A) ∩ L(B))∗ 3 · 2mn−2 [62] 2mn+1 [27]

(L(A)L(B))∗ 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1 [31] 2m+n+1 [27]

(L(B)R)∗ 2n [31] 2n+2 [27]

However, this method clearly has its limitations. For example, we would

obtain 2n1+n2+n3+2 for the union of n1-state, n2-state, and n3-state DFA lan-

guages using this method. However, the actual state complexity of this com-

bined operation is n1n2n3.

It seems that this method may work well for all combined operations with

the final component operation having an exponential state complexity, e.g.,

star or reversal. Indeed, it works well when a combined operation is ended with

the star operation. However, it does not work well in general for combined

operations that are ended with reversal. For example, the state complexity

of the reversal of the intersection of an m-state DFA language and an n-state

DFA language is 2m+n − 2m − 2n + 2. However, we would obtain the estimate

2mn+1 using this method.

The following result was obtained in [97], where a regular operation expres-

sion is an expression built from occurrences of binary operations union and

126

concatenation, occurrences of the unary operation star, and variables, where

each variable occurs at most once in the expression, and nsc(f) denotes the

nondeterministic state complexity of the operation f expressed by a regular

operation expression.

Theorem 6.1 Let f be an operation defined by a regular operation expression

with k variables, and denote the number of states of the NFAs for the argument

languages by m1, . . . , mk. Then

nsc(f) ≤ 1 +

k
∑

i=1

mi. (6.1)

Using the above result, we easily obtain the following estimates [97].

Corollary 6.1 Let f be an operation defined by a regular operation expression

with k variables and denote the number of states of the NFAs for the argument

languages by m1, . . . , mk. Then the state complexity of f is no more than

2m1+···+mk+1.

We can see clearly that when the star operation is the final operation of f ,

the upper bound is almost tight [27].

6.2 Approximation of State Complexity of Combined Op-

erations

Although an estimation of the state complexity of a combined operation is

simpler and more convenient to use, it does not show how close it is to the

exact state complexity. To solve this problem, we study approximation of state

complexity [32].

The idea of approximation of state complexity is from the notion of approxi-

mation algorithms which was formalized in early 1970’s by David S. Johnson et

al. [34, 64, 65]. Many polynomial-time approximation algorithms have been

designed for quite a large number of NP-complete problems, which include

the well-known traveling-salesman problem, the set-covering problem, and the

subset-sum problem. Obtaining an optimal solution for an NP-complete prob-

lem is considered intractable. Near optimal solutions are often good enough

127

in practice. Assuming that the problem is a maximization or a minimization

problem, an approximation algorithm is said to have a ratio bound of ρ(n) if

for any input of size n, the cost C of the solution produced by the algorithm

is within a factor of ρ(n) of the cost C∗ of an optimal solution [19]:

max

(

C

C∗
,
C∗

C

)

≤ ρ(n).

The concept of approximation of state complexity is in many ways similar

to that of approximation algorithms. An approximation of state complexity

is close to the exact state complexity and normally not equal to it. The

ratio bound shows the error range of the approximation. In addition to the

property of having a small ratio bound in general, we also consider that an

approximation of state complexity should be in a simple and intuitive form.

In spite of the similarities, there are fundamental differences between an ap-

proximation of state complexity and an approximation algorithm. The efforts

in the area of approximation algorithms are in finding polynomial algorithms

for NP-complete problems such that the results of the algorithms approxi-

mate the optimal results. In comparison, the efforts in approximation of state

complexity are in searching directly for estimates of state complexities such

that they satisfy certain ratio bounds. The aim of designing an approximation

algorithm is to transform an intractable problem into one that is easier to

compute where the result is acceptable although not optimal. In comparison,

an approximation of state complexity may have two different effects: (1) it

gives a reasonable estimation of certain state complexity, with some bound,

the exact value of which is difficult or impossible to compute; or (2) it gives

a simpler and more comprehensible formula that approximates a known state

complexity.

Let ξ be a combined operation on k regular languages. Assume that the

state complexity of ξ is θ. We say that α is an approximation of the state

complexity of the operation ξ with ratio bound ρ if, for any sufficiently large

positive integers n1, . . . , nk, which are the numbers of states of the DFAs that

accept the argument languages of the operation, respectively,

max

(

α(n1, . . . , nk)

θ(n1, . . . , nk)
,
θ(n1, . . . , nk)

α(n1, . . . , nk)

)

≤ ρ(n1, . . . , nk).

Note that in many cases, ρ is a constant.

128

Here are some examples. Consider the estimates of state complexities of

the four combined operations listed in the previous table to be approximations

of state complexities. Then we can easily get their ratio bounds in Table 6.2

by comparing them with the exact state complexities. In the above cases,

Table 6.2: The ratio bounds of the approximations of the state com-

plexities of 4 combined operations [32]

Operation Ratio bound of the approximation

(L(A) ∪ L(B))∗ ≈ 8

(L(A) ∩ L(B))∗ 8/3

(L(A)L(B))∗ 4

(L(B)R)∗ 4

although the exact state complexities have been obtained, the approximation

results with small ratio bounds are good enough for practical purposes, and

they clearly have the advantage of being more intuitive and simpler in formu-

lation.

In rest of this section, we consider two combined operations: (1) star of left

quotient and (2) left quotient of star. For each of the combined operations,

we do not have the exact state complexity; however, an approximation with a

good ratio bound is obtained in our paper [32]. In the following, we assume

that all languages are over an alphabet of at least two letters.

Theorem 6.2 Let R be a language accepted by an n-state DFA M , n > 0,

and L be an arbitrary language. Then there exists a DFA of at most 2n states

that accepts (L\R)∗.

Proof: Let M = (Q,Σ, δ, s, F) be a complete DFA of n states and R = L(M).

For each q ∈ Q, denote by L(Mq) the set {w ∈ Σ∗ | δ(s, w) = q}. We construct

an NFA M ′ with multiple initial states to accept (L\R)+ as follows. M ′ is the

same as M except that the initial state s of M is replaced by the set of

initial states S = {q | L(Mq) ∩ L 6= ∅} and ε-transitions are added from each

final state to the states in S. By performing the subset construction, we can

construct a DFA A′ of no more than 2n − 1 states that is equivalent to M ′.

129

Note that ∅ is not a state of A′. From the DFA A′, we construct a new DFA A

by just adding a new initial state that is also a final state and the transitions

from this new state that are the same as the transitions from the original

initial state of A′. It is easy to see that L(A) = (L\R)∗ and A has 2n states.

q.e.d.

This result gives an upper bound for the state complexity of the combined

operation: star of left quotient. It means that for any n-state DFA language

R, n > 0, and an arbitrary language L, the state complexity of the star of the

left quotient of R by L is no more than 2n.

Theorem 6.3 For any integer n ≥ 2, there exists a DFA M of n states

and a language L such that any DFA that accepts (L\L(M))∗ needs at least

2n−1 + 2n−2 states.

Proof: For n = 2, it is clear that R = {w ∈ {a, b}∗ | |w|a is odd} is accepted

by a two-state DFA, and

({ε}\R)∗ = R∗ = {ε} ∪ {w ∈ {a, b}∗ | |w|a ≥ 1}

cannot be accepted by a DFA with less than three states.

For n > 2, let M = (Q, {a, b}, δ, 0, {n − 1}) where Q = {0, 1, . . . , n − 1}

and

δ(i, a) = (i+ 1) mod n, i = 0, 1, . . . , n − 1,

δ(0, a) = 0,

δ(j, b) = (j + 1) mod n, j = 1, . . . , n − 1.

M is the same as the witness DFA for the state complexity of star operation

on regular languages. The transition diagram of M is shown in Figure 3.4.

It has been proved in [111] that the minimal DFA that accepts L(M)∗ has

2n−1 + 2n−2 states. Let L = {ε}. Then (L\L(M))∗ = L(M)∗. So, any DFA

that accepts (L\L(M))∗ needs at least 2n−1 + 2n−2 states. q.e.d.

This result gives a lower bound for the state complexity of star of left

quotient. Clearly, the lower bound does not coincide with the upper bound.

We still do not know the exact state complexity for this combined operation,

130

and it could be difficult to obtain. However, we can easily obtain a good state

complexity approximation for the operation. Let 2n be the approximation.

Then the ratio bound is
2n

2n−1 + 2n−2
=

4

3
.

Next we consider the combined operation: left quotient of star.

Theorem 6.4 Let R be a language accepted by an n-state DFA M and L be

an arbitrary language. Then there exists a DFA of at most 2n+1 − 1 states that

accepts L\R∗.

Proof: Let M = (Q,Σ, δ, s, F) be a complete DFA of n states and R = L(M).

Then we can easily construct an (n+1)-state NFA M ′ = (Q∪{s′},Σ, δ′, s′, F ∪

{s′}) such that L(M ′) = R∗ by adding a new initial state s′ and transitions

δ′(s′, ε) = s and δ′(f, ε) = s′ for each final state f ∈ F . For each q ∈ Q∪ {s′},

we denote by L(Mq) the set {w ∈ Σ∗ | q ∈ δ′(s′, w)}. We construct an NFA

N with multiple initial states to accept L\L(M ′) = L\R∗ as follows. N is the

same as M ′ except that the initial state s′ of M ′ is replaced by the set of initial

states S = {q | L(Mp) ∩ L 6= ∅}. By performing the subset construction, we

can verify that there exists a DFA A of no more than 2n+1 − 1 states that is

equivalent to N . Note that ∅ is not a state of A. It is easy to see that

L(A) = L(N) = L\L(M ′) = L\R∗.

So, 2n+1 − 1 is an upper bound on the state complexity of the left quotient of

star operation. q.e.d.

Theorem 6.5 For any integer n ≥ 2, there exist a DFA M of n states and a

language L such that any DFA that accepts L\L(M)∗ needs at least 2n−1+2n−2

states.

Proof: For n = 2, we still use R = {w ∈ {a, b}∗ | |w|a is odd} which is

accepted by a two-state DFA. {ε}\R∗ = R∗ cannot be accepted by a DFA

with less than three states.

Again we use DFA M shown in Figure 3.4 for any integer n > 2. As

stated before, it has been proved that the minimal DFA that accepts L(M)∗

has 2n−1 + 2n−2 states. So any DFA that accepts L\L(M)∗ needs at least

2n−1 + 2n−2 states. q.e.d.

131

For the combined operation: left quotient of star, we choose 2n+1 to be an

approximation of its state complexity. Then the ratio bound can be calculated

easily as follows:
2n+1

2n−1 + 2n−2
=

8

3
.

Chapter 7

Conclusion and Future Work

In this thesis, some recent results of the study of state complexity are summa-

rized and our new research results on state complexity of combined operations

are presented and proved.

7.1 Summary of Results

Assume that there are k regular languages over the same alphabet, where

k ≥ 3. The language Li is one of them and accepted by an ni-state DFA

Ai = (Qi,Σ, δi, si, Fi), 1 ≤ i ≤ k. The exact state complexities of the 12

combined operations investigated in this thesis are listed in Table 7.1.

The state complexities of most of these combined operations are smaller

than the compositions of the state complexities of individual operations that

form the combinations. Only the state complexities of L1(L2 ∩ L3) and com-

bined Boolean operations are the same as the compositions of the state com-

plexities of the component operations.

The reason for this difference is that the result of the first operation is not

among the worst cases of the second operation. Thus, the state complexity of

a combined operation does not necessarily equal the composition of the state

complexities of individual operations that form the combination. Figure 7.1

shows this situation clearly.

Note that in the proofs of the lower bounds of the state complexities of

combined Boolean operations and L1L2 · · ·Lk, alphabets of size dependant on

k are used. It remains open whether the same results can be obtained with

witness regular languages over fixed alphabets.

132

133

Table 7.1: The exact state complexities of the 12 combined opera-

tions investigated in this thesis

Operation State complexity

L∗
1L2 5 · 2n1+n2−3 − 2n1−1 − 2n2 + 1 [12]

L1L
∗
2 n1

3
4
2n2 − 2n2−2 [10]

LR
1 L2 3 · 2n1+n2−2 [12]

L1L
R
2 n12

n2 − 2n2−1 − n1 + 1 [10]

L1(L2 ∪ L3) (n1 − 1)(2n2+n3 − 2n2 − 2n3 + 2) + 2n2+n3−2 [11]

L1(L2 ∩ L3) n12
n2n3 − 2n2n3−1 [11]

L∗
1 ∪ L2

3
4
2n1 · n2 − n2 + 1 [33]

L∗
1 ∩ L2

3
4
2n1 · n2 − n2 + 1 [33]

LR
1 ∪ L2 2n1 · n2 − n2 + 1 [33]

LR
1 ∩ L2 2n1 · n2 − n2 + 1 [33]

Combined Boolean operations n1n2 · · ·nk [27]

on L1, L2, . . . , Lk

L1L2L3 n12
n2+n3 − 2n2+n3−1 − (n1 − 1)2n2+n3−2

− 2n2+n3−3 − (n1 − 1)(2n3 − 1) [27]

In this thesis, we have also discussed estimation and approximation of state

complexity. We have reviewed the estimation method based on nondetermin-

istic state complexity and pointed out that this method may work well for all

combined operations with the final component operation having an exponen-

tial state complexity. The new concept of approximation of state complexity

further advances the idea of estimation of state complexity by including the

ratio bound. The ratio bound gives a precise and intuitive measurement on

the “quality” of the estimation. We have given the approximations of the state

complexities of 6 combined operations on regular languages which are shown

in Table 7.2.

134

Language

Second Result

Second OperationFirst Result

First Operation

BALanguage

May not be among the worst cases
of the second operation.

Figure 7.1: The reason for the difference in state complexity

Table 7.2: The approximations of the state complexities of 6 com-

bined operations [32]

Operation Approximation of state complexity Ratio bound

(L1 ∪ L2)
∗ 2m+n+2 ≈ 8

(L1 ∩ L2)
∗ 2mn+1 8

3

(L1L2)
∗ 2m+n+1 4

(LR
1)

∗ 2n+2 4

(L\L1)
∗ 2n1 4

3

L\L∗
1 2n1+1 8

3

7.2 List of Contributions

I am the main contributor in the research on the state complexities of eight

combined combined operations among the twelve summarized in Section 7.1,

which are shown as follows:

1. the state complexity of LR
1 L2 [12];

135

2. the state complexity of L1L
R
2 [10];

3. the state complexity of L1(L2 ∩ L3) [11];

4. the state complexity of L∗
1 ∪ L2 [33];

5. the state complexity of L∗
1 ∩ L2 [33];

6. the state complexity of LR
1 ∪ L2 [33];

7. the state complexity of LR
1 ∩ L2 [33];

8. the state complexity of multiple catenations [27];

For all the eight combined operations, I first find the upper bounds on their

state complexities. Then I do hundreds of experiments to find their worst-

case examples that attain the upper bounds, and finally, I prove their state

complexities theoretically.

The state complexities of the other four combined operations listed in the

following are obtained through the teamwork of me and the co-authors of the

papers in which these results are presented.

9. the state complexity of L∗
1L2 [12];

10. the state complexity of L1L
∗
2 [10];

11. the state complexity of L1(L2 ∪ L3) [11];

12. the state complexity of combined Boolean operations [27].

For these results, my contributions are mainly in obtaining their upper bounds

and finding the corresponding worst-case examples through experiments.

I am also the main contributor in the study on the approximations of the

state complexities of (L\L1)
∗ and L\L∗

1 [32]. By finding and proving their up-

per bounds and lower bounds, I obtain their approximations and ratio bounds.

The other results on estimation and approximation of state complexity are ob-

tained through teamwork [27, 32].

136

7.3 Future Work

There are still many interesting combined operations that have not yet been

studied. The compositions may not necessarily be restricted to two operations.

The compositions of three or more individual operations will be much more

complex. The sequence in which the individual operations are performed can

also be changed when they form compositions. In this way, the state complex-

ity will change, too.

There might also be some more general rules on the relationship between

the state complexity of a combined operation and the state complexities of its

individual component operations. Many further problems in this direction are

to be solved in the near future.

REFERENCES

[1] A. Aho, J. Hopcroft and J. Ullman: The Design and Analysis of Com-

puter Algorithms, Addison-Wesley, 1974

[2] M. Amos: Theoretical and Experimental DNA Computation (Natural

Computing Series), Springer, 2005

[3] F. Bassino, L. Giambruno and C. Nicaud: The average state complexity

of the star of a finite set of words is linear, in: Proceedings of the 12th

Developments in Language Theory (DLT 2008), Springer, LNCS 5257,

2008, 134–145

[4] J. Birget: Intersection and union of regular languages and state com-

plexity, Information Processing Letters, vol. 43 no. 4 (1992) 185–190

[5] J. Birget: State-complexity of finite-state devices, state compressibility

and incompressibility, Mathematical Systems Theory, vol. 26 no. 3 (1993)

237–269

[6] J. Birget: Partial orders on words, minimal elements of regular languages

and state complexity, Theoretical Computer Science, vol. 119 no. 2 (1993)

267–291

[7] J. Birget: The state complexity of Σ∗L and its connection with temporal

logic, Information Processing Letters, vol. 58 no. 4 (1996) 185–188

[8] J. Brzozowski: Quotient complexity of regular languages, in: Proceedings

of Descriptional Complexity of Formal Systems 11th Workshop (DCFS

2009), Magdeburg, Germany, 2009, 17–28

[9] J. Brzozowski, S. Konstantinidis: State-complexity hierarchies of uni-

form languages of alphabet-size length, in: Theoretical Computer Sci-

ence, vol. 410 no. 35 (2009) 3223–3235

137

138

[10] B. Cui, Y. Gao, L. Kari and S. Yu: State complexity of catenation com-

bined with star and reversal, in: Proceedings of Descriptional Complexity

of Formal Systems 12th Workshop (DCFS 2010), Saskatoon, Canada,

2010, 74–85

[11] B. Cui, Y. Gao, L. Kari and S. Yu: State complexity of catenation

combined with union and intersection, in: Proceedings of 15th Inter-

national Conference on Implementation and Application of Automata

(CIAA 2010), Winnipeg, Canada, 2010, 89–98

[12] B. Cui, Y. Gao, L. Kari and S. Yu: State complexity of two combined op-

erations: reversal-catenation and star-catenation, Computing Research

Repository (2010) arXiv:1006.4646v1

[13] C. Câmpeanu, K. Culik, K. Salomaa and S. Yu: State complexity of

basic operations on finite languages, in: Proceedings of 4th International

Workshop on Implementing Automata (WIA 1999), Springer, LNCS

2214, 2001, 60–70

[14] C. Câmpeanu, W. Ho: The maximum state complexity for finite lan-

guages, Journal of Automata, Languages and Combinatorics, vol. 9 no.

2-3 (2004) 189–202

[15] C. Câmpeanu, A. Paun: Tight bounds for NFA to DFCA transforma-

tions for binary alphabets, in: Proceedings of 9th International Con-

ference on Implementation and Application of Automata (CIAA 2004),

Springer, LNCS 3317, 2004, 306–307

[16] C. Câmpeanu, K. Salomaa and S. Yu: Chapter 5: State complexity of

regular languages: finite versus infinite, Finite VS Infinite - Contribu-

tions to an Eternal Dilemma, edited by C. Calude and G. Paun, Springer,

2000, 53–73

[17] C. Câmpeanu, K. Salomaa and S. Yu: Tight lower bound for the state

complexity of shuffle of regular languages, Journal of Automata, Lan-

guages and Combinatorics, vol. 7 no. 3 (2002) 303–310

[18] E. Charlier, N. Rampersad, M. Rigo and L. Waxweiler: State complexity

of testing divisibility, in: Proceedings of Descriptional Complexity of

139

Formal Systems 12th Workshop (DCFS 2010), Saskatoon, Canada, 2010,

62–73

[19] T. Cormen, C. Leiserson and R. Rivest: Introduction to Algorithms,

MIT Press and McGraw-Hill, 1990

[20] C. Calude, K. Salomaa and T. Roblot: Finite state complexity and

the size of transducers, in: Proceedings of Descriptional Complexity of

Formal Systems 12th Workshop (DCFS 2010), Saskatoon, Canada, 2010,

50–61

[21] M. Daley, M. Domaratzki, K. Salomaa: State complexity of orthogo-

nal catenation, in: Proceedings of Descriptional Complexity of Formal

Systems 10th Workshop (DCFS 2008), Charlottetown, Canada, 2008,

134–144

[22] M. Domaratzki: State complexity and proportional removals, Journal of

Automata, Languages and Combinatorics, vol. 7 (2002) 455–468

[23] M. Domaratzki, A. Okhotin: State complexity of power, Theoretical

Computer Science, vol. 410 no. 24-25 (2009) 2377–2392

[24] M. Domaratzki, K. Salomaa: State complexity of shuffle on trajecto-

ries, Journal of Automata, Languages and Combinatorics, vol. 9 no. 2-3

(2004) 217–232

[25] M. Domaratzki, K. Salomaa: Lower bounds for the transition complexity

of NFAs, in: Proceedings of 31st International Symposium on Mathemat-

ical Foundations of Computer Science (MFCS 2006), Springer, LNCS

4162, 2007, 315–326

[26] K. Ellul: Descriptional complexity measures of regular languages, Mas-

ter’s Thesis, University of Waterloo, Canada, 2002

[27] Z. Ésik, Y. Gao, G. Liu and S. Yu: Estimation of state complexity

of combined operations, Theoretical Computer Science, vol. 410 no. 35

(2009) 3272–3280

[28] Y. Gao: State complexity of combined operations on regular languages,

Master’s Thesis, University of Western Ontario, Canada, 2006

140

[29] Y. Gao, Z. Ésik, G. Liu and S. Yu: State complexity of intersection,

union and catenation on k regular languages, Technical Report 715, De-

partment of Computer Science, the University of Western Ontario, 2008

[30] Y. Gao, K. Salomaa and S. Yu: Transition complexity of incomplete

DFAs, in: Proceedings of Descriptional Complexity of Formal Systems

12th Workshop (DCFS 2010), Saskatoon, Canada, 2010, 123–134

[31] Y. Gao, K. Salomaa and S. Yu: The state complexity of two combined

operations: star of catenation and star of reversal, Fundamenta Infor-

maticae, vol. 83 no. 1-2 (2008) 75–89

[32] Y. Gao, S. Yu: State complexity approximation, in: Proceedings of De-

scriptional Complexity of Formal Systems 11th Workshop (DCFS 2009),

Magdeburg, Germany, 2009, 163-174

[33] Y. Gao, S. Yu: State complexity of union and intersection com-

bined with star and reversal, Computing Research Repository (2010)

arXiv:1006.3755v1

[34] M. Garey, R. Graham and J. Ullman: Worst-case analysis of memory

allocation algorithms, in: Proceedings of 4th Annual ACM Symposium

on the Theory of Computing, 1972, 143–150

[35] H. Gruber, M. Holzer: Finding lower bounds for nondeterministic state

complexity is hard, in: Proceedings of the 10th Developments in Lan-

guage Theory (DLT 2006), Springer, LNCS 4036, 2006, 363–374

[36] H. Gruber, M. Holzer: Inapproximability of nondeterministic state and

transition complexity assuming P 6= NP , in: Proceedings of the 11th

Developments in Language Theory (DLT 2007), Springer, LNCS 4588,

2007, 205–216

[37] H. Gruber, M. Holzer: On the average state and transition complexity

of finite languages, Theoretical Computer Science, vol. 387 no. 2 (2007)

155–166

[38] J. Gruska, A. Monti, M. Napoli and D. Parente: State complexity of

SBTA languages, in: Proceedings of 2nd Latin American Symposium

Valparaiso (LATIN 1995), Springer, LNCS 911, 1995, 346–357

141

[39] Y. Han, K. Salomaa: State complexity of union and intersection of finite

languages, in: Proceedings of the 11th Developments in Language Theory

(DLT 2007), Springer, LNCS 4588, 2007, 217–228

[40] Y. Han, K. Salomaa: State complexity of union and intersection of finite

languages, International Journal of Foundations of Computer Science,

vol. 19 no. 3 (2008) 581–595

[41] Y. Han, K. Salomaa: State complexity of basic operations on suffix-

free regular languages, Theoretical Computer Science, vol. 410 no. 27-29

(2009) 2537–2548

[42] Y. Han, K. Salomaa: Nondeterministic state complexity of nested word

automata, Theoretical Computer Science, vol. 410 no. 30-32 (2009) 2961–

2971

[43] Y. Han, K. Salomaa: Nondeterministic state complexity for suffix-free

regular languages, in: Proceedings of Descriptional Complexity of Formal

Systems 12th Workshop (DCFS 2010), Saskatoon, Canada, 2010, 227–

235

[44] Y. Han, K. Salomaa and D. Wood: Nondeterministic state complexity

of basic operations for prefix-free regular languages, Fundamenta Infor-

maticae, vol. 90 no. 1-2 (2009) 93–106

[45] Y. Han, K. Salomaa and S. Yu: State complexity of combined operations

for prefix-free regular languages, in: Proceedings of 3rd International

Conference on Language and Automata Theory and Applications (LATA

2009), Springer-Verlag, LNCS 5457, 2009, 398–409

[46] M. Holzer, B. König: Regular languages, sizes of syntactic monoids,

graph colouring, state complexity results, and how these topics are re-

lated to each other (Column: Formal Language Theory), Bulletin of the

EATCS, vol. 83 (2004) 139–155

[47] M. Holzer, M. Kutrib: State complexity of basic operations on nondeter-

ministic finite automata, in: Proceedings of 7th International Conference

on Implementation and Application of Automata (CIAA 2002), Springer,

LNCS 2608, 2003, 148–157

142

[48] M. Holzer, M. Kutrib: Unary language operations and their nondeter-

ministic state complexity, in: Proceedings of the 6th Developments in

Language Theory (DLT 2002), Kyoto, Japan, 2002, Springer LNCS 2450,

162–172

[49] M. Holzer, M. Kutrib: Nondeterministic finite automata-recent results

on the descriptional and computational complexity, in: Proceedings of

13th International Conference on Implementation and Application of

Automata (CIAA 2008), Springer, LNCS 5148, 2008, 1–16

[50] M. Holzer, K. Salomaa and S. Yu: On the state complexity of K-

entry deterministic finite automata, Journal of Automata, Languages

and Combinatorics, vol. 6 (2001) 453–466

[51] J. Hopcroft: An n logn algorithm for minimizing states in a finite au-

tomaton, The Theory of Machines and Computations, Academic Press,

1971, 189–196

[52] J. Hopcroft, R. Motwani and J. Ullman: Introduction to Automata the-

ory, Languages, and Computation, 2nd ed., Addison-Wesley, 2001

[53] J. Hopcroft, J. Ullman: Introduction to Automata Theory, Languages,

and Computation, 1st ed., Addison-Wesley, 1979

[54] L. Ilie, R. Solis-Oba and S. Yu: Reducing the size of NFAs by using

equivalences and preorders, in: Proceedings of 16th Annual Symposium

on Combinatorial Pattern Matching (CPM 2005), Springer, LNCS 3537,

2005, 306–307

[55] K. Iwama, Y. Kambayashi and K. Takaki: Tight bounds on the number

of states of DFAs that are equivalent to an n-state NFAs, Theoretical

Computer Science, vol. 237 (2002) 485–494

[56] J. Jirásek, G. Jirásková, A. Szabari: State complexity of concatena-

tion and complementation of regular languages, International Journal

of Foundations of Computer Science, vol. 16 (2005) 511–529

[57] G. Jirásková: State complexity of some operations on regular languages,

in: Proceedings of Descriptional Complexity of Formal Systems 5th

Workshop (DCFS 2003), Budapest, Hungary, 2003, 114–125

143

[58] G. Jirásková: State complexity of some operations on binary regular

languages, Theoretical Computer Science, vol. 330 (2005) 287–298

[59] G. Jirásková: On the state complexity of complements, stars, and rever-

sals of regular languages, in: Proceedings of the 12th Developments in

Language Theory (DLT 2008), Springer, LNCS 5257, 2008, 431–442

[60] G. Jirásková: Concatenation of regular languages and descriptional com-

plexity, in: Proceedings of 4th International Computer Science Sympo-

sium in Russia (CSR 2009), Springer, LNCS 5675, 2009, 203–214

[61] G. Jirásková, A. Okhotin: State complexity of cyclic shift, in: Pro-

ceedings of Descriptional Complexity of Formal Systems 7th Workshop

(DCFS 2005), Como, Italy, 2005, 182–193

[62] G. Jirásková, A. Okhotin: On the state complexity of star of union and

star of intersection, Turku Center for Computer Science TUCS Technical

Report 825, 2007

[63] G. Jirásková, A. Okhotin: On the state complexity of operations on

two-way finite automata, in: Proceedings of the 12th Developments in

Language Theory (DLT 2008), Springer, LNCS 5257, 2008, 443–454

[64] D. Johnson: Fast allocation algorithms, in: Proceedings of 13th Annual

IEEE Symposium on Switching and Automata Theory, 1972, 144–154

[65] D. Johnson: Near-optimal bin packing algorithms, PhD Dissertation,

Massachusetts Institute of Technology, Cambridge, MA, 1973

[66] B. Krawetz, J. Lawrence and J. Shallit: State complexity and the monoid

of transformations of a finite set, International Journal of Foundations

of Computer Science, vol. 16 no. 3 (2005) 547–563

[67] D. Krieger, A. Miller, N. Rampersad, B. Ravikumar and J. Shallit: Dec-

imations of languages and state complexity, Theoretical Computer Sci-

ence, vol. 410 no. 24-25 (2008) 2401–2409

[68] J. Lee, J. Shallit: Regular expressions: enumeration and state complex-

ity, in: Proceedings of 9th International Conference on Implementation

144

and Application of Automata (CIAA 2004), Springer, LNCS 3317, 2005,

2–22

[69] E. Leiss: Succinct representation of regular languages by boolean au-

tomata II, Theoretical Computer Science, vol. 13 (1981) 323–330

[70] G. Liu, C. Martin-Vide, A. Salomaa, S. Yu: State complexity of basic

language operations combined with reversal, Information and Computa-

tion, vol. 206 (2008) 1178–1186

[71] H. Lu, S. Yu: Are statecharts finite automata? in: Proceedings of

14th International Conference on Implementation and Application of

Automata (CIAA 2009), Springer, LNCS 5642, 2009, 258–261

[72] A. Maslov: Estimates of the number of states of finite automata, Soviet

Mathematics Doklady, vol. 11 (1970) 1373–1375

[73] B. Mirkin: On dual automata, Cybernetics and Systems Analysis, vol. 2

no. 1 (1966) 6–9

[74] M. Mohri: On some applications of finite-state automata theory to nat-

ural language processing, Natural Language Engineering, vol. 2 (1996)

61–80

[75] D. Morales, F. Almeida, C. Rodriguez, J. Roda, I. Coloma and A. Del-

gado: Parallel dynamic programming and automata theory, Parallel

Computing, vol. 26 (2000) 113–134

[76] C. Nicaud: Average state complexity of operations on unary automata,

Symposium on Mathematical Foundations of Computer Science (M.

Kutylowski, L. Pacholski, and T. Wierzbicki, Eds.), LNCS 1672, 1999,

231–240

[77] A. Okhotin: State complexity of linear conjunctive grammars, Journal of

Automata, Languages and Combinatorics, vol. 9 no. 2-3 (2004) 365–381

[78] F. Pereira, M. Riley: Speech recognition by composition of weighted

finite automata, in: Finite-State Language Processing, MIT Press, 1996,

pp. 431–453

145

[79] X. Piao, K. Salomaa: Operational state complexity of nested word au-

tomata, Theoretical Computer Science, vol. 410 no. 35 (2009) 3290–3302

[80] X. Piao, K. Salomaa: Operational state complexity of deterministic un-

ranked tree automata, in: Proceedings of Descriptional Complexity of

Formal Systems 12th Workshop (DCFS 2010), Saskatoon, Canada, 2010,

181–192

[81] X. Piao, K. Salomaa: Transformations between different types of un-

ranked bottom-up tree automata, in: Proceedings of Descriptional Com-

plexity of Formal Systems 12th Workshop (DCFS 2010), Saskatoon,

Canada, 2010, 193–204

[82] Giovanni Pighizzini: Unary language concatenation and its state com-

plexity, in: Proceedings of 5th International Conference on Implementa-

tion and Application of Automata (CIAA 2000), Springer, LNCS 2088,

2001, 252–262

[83] G. Pighizzini, J. Shallit: Unary language operations, state complexity

and Jacobsthal’s function, International Journal of Foundations of Com-

puter Science, vol. 13 (2002) 145–159

[84] E. Pribavkina, E. Rodaro: State complexity of prefix, suffix, bifix and

infix operators on regular languages, in: Proceedings of the 14th Devel-

opments in Language Theory (DLT 2010), Springer, LNCS 6224, 2010,

252–262

[85] D. Qiu: Research report: state complexity of operations on two-

way quantum finite automata, Computing Research Repository, (2008)

abs/0807.0476

[86] N. Rampersad: The state complexity of L2 and Lk, Information Pro-

cessing Letters, vol. 98 (2006) 231–234

[87] N. Rampersad, N. Santean, J. Shallit and B. Ravikumar: State complex-

ity of unique rational operations, Theoretical Computer Science, vol. 410

no. 24-25 (2008) 2431–2441

146

[88] D. Raymond, D. Wood and S. Yu (Eds.): Automata Implementation,

Proceedings of 1st International Workshop on Implementing Automata

(WIA 1996), LNCS 1260, 1996

[89] M. Rabin, D. Scott: Finite automata and their decision problems, IBM

Journal of Research and Development, vol. 3 (1959) 114–125

[90] A. Salomaa: Theory of Automata, Pergamon, New York, 1969

[91] A. Salomaa: Formal Languages, Academic Press, New York, 1973

[92] A. Salomaa, K. Salomaa and S. Yu: State complexity of combined op-

erations, Theoretical Computer Science, vol. 383 (2007) 140–152

[93] A. Salomaa, D. Wood and S. Yu: On the state complexity of reversals of

regular languages, Theoretical Computer Science, vol. 320 (2004) 293–

313

[94] K. Salomaa: State complexity of nested word automata, in: Proceedings

of 3rd International Conference on Language and Automata Theory and

Applications (LATA 2009), Springer, LNCS 5457, 2009, 59–70

[95] K. Salomaa, S. Yu: NFA to DFA transformation for finite languages

over arbitrary alphabets, Journal of Automata, Languages and Combi-

natorics, vol. 2 no. 3 (1997) 177–186

[96] K. Salomaa, P. Schofield: State complexity of additive weighted finite

automata, International Journal of Foundations of Computer Science,

vol. 18 no. 6 (2007) 1407–1416

[97] K. Salomaa, S. Yu: On the state complexity of combined operations

and their estimation, International Journal of Foundations of Computer

Science, vol. 18 no. 4 (2007) 683–698

[98] M. Scott: Programming Language Pragmatics, Elsevier, New York, 2006

[99] J. Shallit: State complexity and Jacobsthal’s function, in: Proceedings

of 5th International Conference on Implementation and Application of

Automata (CIAA 2000), Springer, LNCS 2088, 2001, 272–278

147

[100] J. Shallit: New directions in state complexity, in: Proceedings of De-

scriptional Complexity of Formal Systems 8th Workshop (DCFS 2006),

Las Cruces, USA, 2006, 41–45

[101] J. Shallit: A Second Course in Formal Languages and Automata Theory,

Cambridge University Press, USA, 2009

[102] A. Turing: On computable numbers, with an application to the entschei-

dungsproblem, in: Proceedings of the London Mathematical Society, Ser.

2 vol. 42, 1937, 230–265

[103] D. Wood, S. Yu (Eds.): Automata implementation, in: Proceedings of

1st International Workshop on Implementing Automata (WIA 1996),

LNCS 1260, 1996

[104] S. Yu: Regular languages, in: Handbook of Formal Languages, vol. 1,(G.

Rozenberg, A. Salomaa, Eds.), Springer, 1997, pp. 41–110

[105] S. Yu: State complexity of regular languages, Journal of Automata,

Languages and Combinatorics, vol. 6 no. 2 (2001) 221–234

[106] S. Yu: State complexity of finite and infinite regular languages, in: Bul-

letin of the EATCS, no. 76 (2002) 142–152

[107] S. Yu: State complexity: recent results and open problems, Fundamenta

Informaticae, vol. 64 no. 1-4 (2005) 471–480

[108] S. Yu: On the state complexity of combined operations, in: Proceedings

of 11th International Conference on Implementation and Application of

Automata (CIAA 2006), Springer, LNCS 4094, 2006, 11–22

[109] S. Yu: Lecture notes for CS 3331a Foundations of Computer Science,

The University of Western Ontario, 2010

[110] S. Yu, Q. Zhuang: On the state complexity of intersection of regular

languages, ACM SIGACT News, vol. 22 no. 3 (1991) 52–54

[111] S. Yu, Q. Zhuang and K. Salomaa: The state complexity of some basic

operations on regular languages, Theoretical Computer Science, vol. 125

(1994) 315–328

148

[112] Grail+, developed by Department of Computer Science, The University

of Western Ontario, http://www.csd.uwo.ca/Research/grail

VITA

NAME: Yuan Gao

PLACE OF BIRTH: Liaoning, P.R.China

YEAR OF BIRTH: 1983

POST SECONDARY

EDUCATION

AND DEGREES:

The University of Western Ontario

London, Canada

2005-2006 M.Sc.

Northeastern University

Liaoning, P.R.China

2001-2005 B.Sc.

HONOURS AND

AWARDS:

Western Graduate Thesis Research Awards Fund

2010

1st place - University of Western Ontario Research

in Computer Science (UWORCS)

2010

Western Graduate Thesis Research Awards Fund

2009

1st place - University of Western Ontario Research

in Computer Science (UWORCS)

2007

Western Graduate Research Scholarships

Computer Science

2005-2010

149

150

Excellent Theses Award of Northeastern University

2005

The Second Prize in China Undergraduate Mathemat-

ical Contest in Modeling

2004

RELATED WORK

EXPERIENCE:

Research Assistant / Teaching Assistant

The University of Western Ontario

2005-2006

EDITED

PROCEEDINGS:

Proceedings of 14th International Conference of Devel-

opments in Language Theory,

with H. Lu, S. Seki and S. Yu,

Springer, LNCS 6224, 2010

PUBLICATIONS: B. Cui, Y. Gao, L. Kari and S. Yu:

State complexity of two combined operations:

catenation-Star and catenation-reversal,

International Journal of Foundations of Computer Sci-

ence, submitted by invitation for publication

B. Cui, Y. Gao, L. Kari and S. Yu:

State complexity of two combined operations: reversal-

catenation and star-catenation,

Computing Research Repository (2010)

arXiv:1006.4646v1

Y. Gao, S. Yu:

State complexity of union and intersection combined with

star and reversal,

Computing Research Repository (2010)

arXiv:1006.3755v1

151

Y. Gao, K. Salomaa and S. Yu:

Transition complexity of incomplete DFAs,

in: Proceedings of Descriptional Complexity of For-

mal Systems 12th Workshop (DCFS 2010), Saskatoon,

Canada, 2010, 123-134

B. Cui, Y. Gao, L. Kari and S. Yu:

State complexity of catenation combined with star and

reversal,

in: Proceedings of Descriptional Complexity of For-

mal Systems 12th Workshop (DCFS 2010), Saskatoon,

Canada, 2010, 74-85

B. Cui, Y. Gao, L. Kari and S. Yu:

State complexity of catenation combined with union and

intersection,

in: Proceedings of the 15th International Conference

on Implementation and Application of Automata (CIAA

2010), Winnipeg, Canada, 2010, 89-98

Y. Gao, S. Yu:

State complexity approximation of combined operations,

submitted to Journal of Computer and System Sciences

(2009)

Y. Gao, S. Yu:

State complexity approximation,

in: Proceedings of Descriptional Complexity of Formal

Systems 11th Workshop (DCFS 2009), Magdeburg, Ger-

many, 2009, 163-174

Z. Ésik, Y. Gao, G. Liu and S. Yu:

Estimation of state complexity of combined operations,

Theoretical Computer Science, vol. 410 no. 35 (2009)

3272-3280

152

Z. Ésik, Y. Gao, G. Liu and S. Yu:

Estimation of state complexity of combined operations

(preliminary version),

Proceedings of Descriptional Complexity of Formal Sys-

tems 10th Workshop (DCFS 2008), Charlottetown,

Canada, 2008, 168-181

Y. Gao, K. Salomaa and S. Yu:

The state complexity of two combined operations: star

of catenation and star of reversal,

Fundamenta Informaticae, vol. 83 no. 1-2 (2008) 75-89

Y. Gao, Z. Ésik, G. Liu and S. Yu:

State complexity of intersection, union and catenation on

k regular languages,

Technical Report 715, Department of Computer Science,

the University of Western Ontario, 2008

Y. Gao, K. Salomaa and S. Yu:

State complexity of star of catenation and reversal,

Proceedings of Descriptional Complexity of Formal Sys-

tems 8th Workshop (DCFS 2006), Las Cruces, USA,

2006, 153-164

Y. Gao, G. Yu, F. Li and Y. Yu:

A data stream operator scheduling algorithm for multi-

ple goals,

Journal of Huazhong University of Science And Technol-

ogy (Nature Science) vol. 33 no. s1 (2005) 232-234

Y. Gao, G. Yu, F. Li and Y. Yu:

A data stream operator scheduling algorithm for multi-

ple goals (preliminary version),

Proceedings of the 2nd China National Computer Con-

ference, Wuhan, China, 2005

	Advanced Topics on State Complexity of Combined Operations
	Recommended Citation

	Advanced Topics on State Complexity of Combined Operations

