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Abstract

An important barrier to conflict resolution is asymmetric information. That is adver-
saries have private information about their objectives, resources, and strengths during
the conflict and have incentives to misrepresent this information during the negotiations.
This can lead to the breakdown of negotiations. Third-party institutions, like mediators,
can help adversaries to reach an agreement by making a peace proposal. In this thesis, I
explore the implication of asymmetric information and the lack of commitment of players
to the design of an optimal peace proposal by a mediator.

In Chapter 2, co-authored with Charles Zheng, I study a problem of conflict mediation
where a mediator proposes a split of a good between two ex-ante identical contestants
thereby preempting a conflict if and only if both accept the proposal. A contestant worries
that accepting the proposal may signal weakness that may be exploited in the event of
conflict. Thus, when conflict cannot be fully preempted, the mediator leans toward a
proposal that shuts down the signaling channel for one of the contestants. Consequently,
the socially optimal proposal offers to one of the contestants a minimally larger share
of the good than what it offers to the other party so that the former contestant always
accepts it without fearing any part of its private information being revealed.

Chapter 3 examines the participation decisions of the players in a mediation process.
The action of participating in the mediator’s negotiation mechanism conveys information
to the opponent. The mediator wants to minimize the probability of conflict subject to
incentive compatibility and full participation conditions of players. I find that despite ex-
ante identical players, a certain class of biased proposals augmented by a randomization
device, that incentivizes the favored player to always accept, satisfy full participation.
The mechanism that proposes the equal proposal cannot satisfy full participation even
with randomization. These results are true when the type distribution is binary or a
continuum of types. When the type distribution is binary, the lopsided proposals also
minimize the probability of conflict subject to the full participation constraint.

Chapter 4 studies a conflict model where adversaries lack commitment and can renege
on an accepted agreement. A mediator whose objective is to maximize welfare subject to
renege-proof constraint proposes a peaceful split of a contested prize between two players.
Despite ex-ante identical players, the renege-proof optimal proposal is a biased proposal
that the favored player always accepts. This proposal is even more biased than the
optimal lopsided proposal that maximizes welfare when players have full commitment.

Keywords: Conflict Mediation, Endogenous Conflict, Information Design, Full Par-
ticipation, Renege
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Summary for Lay Audience

An important barrier to a peaceful settlement between adversaries is asymmetric in-
formation, i.e., each involved party is uncertain about the strength, objective, or resources
of the opponent. The difficulty of assessing the cost of conflict and the strategic interac-
tion of involved parties can lead to the collapse of negotiations and escalation of disputes.
Mediators can help adversaries to reach an agreement by making peace proposals. In
this thesis, I examine the design of optimal peace proposals when two adversaries are
competing over a prize and if they cannot settle their dispute they will go into a conflict.

Chapter 2, co-authored with Charles Zheng, studies conflict mediation problems
where a mediator cannot enforce a peace settlement and cannot provide any economic in-
centives. She proposes a split of a prize between two players that if and only if they both
accept, they avoid a conflict. The conflict is winner-take-all. Whoever puts more effort
will win it. Players have private information about their cost of exerting effort. They
can be either strong or weak. These types are drawn from a common prior distribution.
We find that, when conflict cannot be fully preempted, despite ex-ante identical players,
the optimal proposal that maximizes social welfare, the sum of the ex-ante payoffs of the
players, is a specific biased proposal. It is the smallest proposal that the favored player
always accepts, without worrying to signal any weakness by accepting the proposal.

Chapter 3 considers a conflict mediation problem where adversaries can decide to
participate in a mediation procedure or trigger conflict immediately. The act of par-
ticipation reveals information about players’ private information. A mediator, who can
provide economic incentives, offers a peace surplus of an agreement to two players to
prevent a conflict if both accept the proposal. The mediator is interested in designing
proposals that guarantee the full participation of the players in the mediation. I find that
despite ex-ante identical players the peace proposals that guarantee the full participation
of players are a class of biased proposals, augmented with a fair coin, that incentivize the
favored player to always accept them. These results are true when the type distribution
is binary or a continuum of types. In the former case, these stochastic biased proposals
also minimize the probability of conflict among the fully participating proposals.

Chapter 4 studies conflict mediation problems where players lack commitment and
can renege on an accepted proposal. Players can learn about each other by observing each
other’s decisions in the mediation. In particular, they can learn about each other after
a successful round of mediation and use this information to reassess the cost of conflict
and renege on the previously accepted proposal. I find that a mediator who is interested
in the design of renege-proof welfare-maximizing proposals should propose even more
biased proposals compared to the environments where players have full commitment.
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Chapter 1

Introduction

Social scientists have long been concerned with the design of contracts that lift societies
from pervasive conflicts and minimize the social cost associated with them. A crucial
impediment to peaceful settlement is asymmetric information, i.e., each involved party
is uncertain about the strength, objective, or resources of the opponent. The difficulty
of assessing the cost of conflict and strategic interaction of involved parties can lead to
the collapse of negotiations and escalation of disputes. Examples abound. For instance,
international negotiation over natural resources heightened to war, pre-litigation nego-
tiations escalated to court, union bargaining ascended to strike, or trade negotiations
escalated to tariff wars.

Asymmetric information of the types mentioned above provides scope and incentive
for adversaries to misrepresent their strength. Thus, it could hinder peaceful settlements
and exacerbate the cost of conflict. Third-party institutions such as mediators can mit-
igate this problem and help these adversaries to reach an agreement by making peace
proposals that can set a status quo or a focal point for an agreement in a situation that
may otherwise lack one. My Ph.D. research examines the optimal peace proposal in a
dynamic environment with asymmetric information where two adversaries may agree to
settle disputes that would otherwise escalate to a costly conflict. Even when a mediator
cannot prevent a conflict, by designing peace proposals she can manipulate adversaries’
beliefs about each other’s strengths. Hence, she could affect their strategies in the conflict
and minimize the social cost of conflict.

My thesis contains three chapters that explore the design of peace proposals by a
mediator in three different contexts. In Chapter 2, co-authored with Charles Zheng,
I study situations where a mediator, with very limited power, wants to design peace
proposals that maximize the social welfare of adversaries who have full commitment if

1



2

they accept a proposal. In Chapter 3, I study the implication of information revelation
from the mediation procedures on the participation decisions of players in a mediation
mechanism. In the final chapter, I study conflict mediation problems where adversaries
lack commitment and can renege on an accepted proposal.

In Chapter 2, co-authored with Charles Zheng, I study a problem of conflict mediation
where a mediator proposes a split of a good between two ex-ante identical contestants
thereby preempting a conflict if and only if both accept the proposal. The mediator’s
decisions are not binding, she cannot provide economic incentives, and if the conflict
happens, it is beyond her control. Conflict is modeled as an all-pay auction. It is costly
and winner-take-all. Each contestant simultaneously chooses a level of effort or resources
to devote to the conflict and whoever puts the greatest resources wins. Contestants have
private information about their marginal cost of exerting effort, i.e., their strength, in
the conflict, independently drawn from the same prior distribution. The outcome of
conflict depends on the contestants’ warring efforts, which is determined by the posterior
beliefs that players form about each other after observing the mediation’s outcome. A
contestant worries that accepting the proposal may signal weakness that may be exploited
in the event of conflict. Thus, when conflict cannot be fully preempted, the mediator
leans toward a proposal that shuts down the signaling channel for one of the contestants.
Consequently, the socially optimal proposal offers to one of the contestants a minimally
larger share of the good than what it offers to the other party so that the former contestant
always accepts it without fearing any part of its private information being revealed. That
is, even though the contestants are ex ante identical, and are assigned equal welfare
weights, the socially optimal proposal lopsidedly favors one side against the other.

Chapter 3 studies a conflict model where a mediator, who can offer economic incen-
tives and for reputation and practical motivations would like to guarantee full partici-
pation in her negotiation mechanism, proposes a split of peace surplus to two players.
Players can participate in the nonbinding mediation that can result in conflict or they can
trigger conflict immediately. Conflict is modeled as an endogenous continuation game.
The action of participating in the mediator’s mechanism can convey information to the
opponent. Thus, full participation in the negotiation mechanism cannot be assumed
without loss of generality. The mediator wants to minimize the probability of conflict
subject to incentive compatibility and full participation conditions of players. The play-
ers are ex-ante identical. I find that when the type distribution is binary, a certain class
of biased proposals augmented by a randomization device, that incentivizes the favored
player to always accept, are the constrained optimal proposals and satisfy full participa-
tion. The mechanism that proposes the equal proposal cannot satisfy full participation
even with randomization. When the type distribution is continuous, the randomized
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biased proposals satisfy full participation while the equal proposal cannot satisfy it.

Chapter 4 studies a conflict model where adversaries lack commitment and can renege
on an accepted agreement. The primitives, similar to the previous chapters, are such that
no negotiation mechanism exists that fully preempts conflict. A mediator whose objective
is to maximize welfare subject to renege-proof constraint proposes a peaceful split of the
contested prize to two ex-ante identical rivals. By observing each other’s decisions, after
a successful or failed mediation, adversaries learn about each other and update their
forecast of conflict. Despite ex-ante identical players, the renege-proof optimal proposal
is a biased proposal where the favored player always accepts and reveals no further
information. This biased proposal is even more extreme than the biased proposal that
maximizes welfare in a renege-banning model where players have full commitment. The
same results hold when the mediator’s objective is to minimize the probability of conflict.

The possibility of fully preventing conflict has been vastly studied in the economic lit-
erature. This literature models conflicts as the outside option of a negotiation procedure
that imposes a cost on it. Conflicts are either modeled as exogenous lotteries for the play-
ers (e.g., Hörner et al., 2015) that impose an exogenous cost on the negotiations or they
are modeled as an endogenous continuation game after the breakdown of negotiations
(e.g., Zheng, 2019) so that the posterior belief conditional on the outcome of negotiations
becomes crucial. This thesis also models conflict as an endogenous continuation game,
but different from both of the previously mentioned strands of literature, the assump-
tions on primitives of the model are such that full preemption of conflict is impossible.
Therefore, conflict happens on the path of equilibrium. The mediator that wants to max-
imize welfare or minimize the probability of conflict should take into account the payoff
from both the event of peace and conflict. The only channel through which a mediator
can affect the players’ payoffs in the conflict is by indirectly manipulating the posterior
beliefs that they have about each other after the mediation. However, these beliefs are
not policy instruments and they are interdependent with the equilibrium strategy profiles
via Bayes’s rule. This poses a challenge in finding an optimal solution for the mediator’s
mechanism. Balzer and Schneider (2021) have considered a conflict management model
where full preemption of conflict is also impossible. They consider communication mech-
anisms that minimize the probability of conflict and focus on the case where the designer
is an arbitrator with full commitment power. While they also consider a mediation case,
the mediator is assumed able to communicate separately and confidentially to the con-
testants so that the two can learn from each other only if the mediation fails. In this
thesis, by contrast, a mediator can only indirectly influence the posterior systems through
a message-independent peace proposal, to which the contestants’ responses, commonly
observed, cannot be misrepresented.
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The general result I find in this thesis is that the optimal proposal sometimes treats
the two equal adversaries unequally. Therefore, it should not be taken for granted that a
neutral mediator should offer an equal share to equal contestants. The insight conveyed
by these results is that a lopsidedly biased proposal is conducive to peacemaking because
the favored side is willing to accept the peace deal without fearing being viewed to be
weak and subsequently exploited in the event of a conflict so that the mediator is less
constrained and can devote more resources to compensate the unfavored side.
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Chapter 2

Unequal Peace Proposals for Equal
Contestants: Designing Information
Indirectly

2.1 Introduction

In international conflicts, a mediator’s power is limited. A mediator may find itself hav-
ing no extra value to offer to the two sides and no special skills or understanding of
the complex situation, as exemplified by how Israel is described by the media during its
mediation effort in the current Russian-Ukraine conflict ( Kershner, 2022). Even when
a mediator is powerful enough to use various instruments ranging from proposing peace
deals to providing economic incentives, such as the United States Presidency during its
intensive involvement in the Oslo Process, it is still unable to enforce a peace settle-
ment (cf. Lasensky, 2004). As much as a mediator might try to conduct the talks with
confidentiality, leaks are commonplace (cf. Feerick, 2003). Furthermore, as noted in the
conflict management literature such as Kydd (2003), Rauchhaus (2006), and Smith and
Stam (2003), when a mediator uses a communication mechanism to conduct the nego-
tiation, the incentive compatibility of the mediator is at issue because the peacekeeping
intention might drive mediators to exaggerate some information—regarding the cost of
conflict—when they convey it from one contestant to the other. The question is: What
can and what should a mediator do given severely limited instruments?

This chapter therefore considers a stylized model of conflict mediation where the me-
diator can only propose a peaceful split of the prize between the two contestants so that
the only response a contestant can make is to accept or to reject it. If neither of them

5
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reject it, the proposed split becomes the status quo. Otherwise, conflict ensues, in which
the marginal cost of warring efforts that a contestant incurs is the contestant’s private
information. A main assumption in this setup is that the mediator makes the proposal
without any more information than the common prior, and that the peaceful split in
the proposal is independent of the messages that the mediator might have been able to
collect from the contestants. This assumption is to capture the situations where a medi-
ator’s instruments are limited, especially in international conflicts.1 With the proposal
independent of any message from any party involved, the aforementioned incentive issue
of the mediator is avoided and hence we do not need to make the restrictive assump-
tion in the mechanism- or information-design literature that the mediator is trustworthy
throughout the negotiation.

Despite the simplicity of the negotiation mechanism that we assume, the mediator
can still affect the outcome. This, roughly speaking, is in line with Schelling’s (Schelling,
1980) original idea that through making a peace proposal a mediator creates a focal
point for agreement in a situation that would have otherwise lacked one. More precisely,
a contestant’s response to the proposal can signal to the other contestant the former’s
willingness or hesitancy to fight in the conflict. Since we model the conflict as an all-pay
auction where each contestant chooses an amount of effort to exert and, win or lose,
bears the cost of its effort, these signals affect how the conflict unfolds. Thus, despite the
restriction to merely proposing a settlement that has room only for a binary response, a
mediator can still indirectly influence the contestants’ beliefs about each other, thereby
affecting the outcome and social welfare.

The possibility of fully preempting the conflict between two contestants is considered
by Bester and Wärneryd (2006), Compte and Jehiel (2009), Fey and Ramsay (2011),
Hörner et al. (2015), Meirowitz et al. (2019), and Spier (1994), who model conflicts as
exogenous lotteries for the contestants. A recent literature models conflict as an endoge-
nous continuation game after the breakdown of the negotiation, so that the posterior
beliefs conditional on the outcome of the negotiation become crucial. In this endoge-
nous conflict literature, the possibility of full preemption of conflict is characterized by
Zheng (2019a,b) and Celik and Peters (2011) when the peace or collusion proposal is
from a mediator, and by Lu et al. (2021) when the peace proposal is from an exogenously
designated contestant.

This chapter also models conflict as an endogenous continuation game. Different from

1Mediation through proposing a peaceful split corresponds roughly to the formulative style in real-
world mediation, as opposed to the manipulative style where the mediator offers economic incentives
such as side payments. According to Wilkenfeld et al. (2007), the formulative style accounts for almost
half of all mediated cases in their dataset of international conflict.
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both of the above literatures, however, the chapter is based on an environment where
full preemption is impossible. That is, no proposal exists—be it message-independent as
in our model or message-dependent as in the general framework—that admits a perfect
Bayesian equilibrium where conflict occurs with zero probability. Thus conflict is an on-
path event in any proposal-equilibrium pair. Consequently, a benevolent mediator cares
about the contestants’ welfare not only in the event of peace, but also in the event of
conflict. Therefore, a received insight in the above literatures needs to be reexamined.
The insight goes that a mediator should minimize each contestant’s expected payoff in
the conflict thereby incentivizing the contestant to accept the peace proposal. Now that
conflict is not off-path and hence contestants’ conflict payoffs are part of their ex ante
expected payoffs, such a policy may hurt the overall welfare of the contestants. Our
analysis takes into account the contestants’ expected payoffs in all possible events, be
they conflict or peace. That is, the objective is to maximize the social surplus, or the
sum of ex ante equilibrium payoffs for both contestants.

We focus on the question whether the mediator should treat equal parties equally.
More precisely, we assume that the two contestants are ex ante symmetric so that their
types—private information about their marginal costs of warring efforts in the conflict—
are drawn from the same distribution, assumed binary for tractability, and that they
have the same valuation, commonly known, of the contested prize. In the spirit of the
symmetry axiom in the Nash bargaining solution, there is a sense that the mediator
should propose to split the prize equally between the two symmetric players. In a model
where the proposed split depends on the contestants’ messages (which the mediator is
assumed to trustworthily collect and convey), Hörner et al. (2015) restrict attention
to symmetric mechanisms. In our model, which considers only message-independent
proposals, their symmetric mechanisms would all be the equal-split proposal. In addition,
the notion of equal split between equal claimants dates back to the Talmud (cf. Aumann
and Maschler, 1985). Yaari and Bar-Hillel (1984) suggest several ways to justify the equal
split between contesting claimants (including the equal treatment property in general
equilibrium). Recently, Keniston et al. (2021) provide a rationale for, and conduct an
experimental study of, the equal split of the perceived surplus between two bargainers in
a dynamic game.

By contrast, despite the ex ante symmetry between the two contestants, we find that
when the prior probability for a contestant to be the weak type is in an intermediary
range, the social-surplus maximizing proposal is not the equal split but rather a par-
ticularly lopsided one. It proposes to split the prize in such an unequal way that the
contestant offered the larger share would always accept it while the other contestant
would reject it for sure when the latter’s type is strong (namely, incurring a low marginal
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cost of warring efforts), and mix between rejection and acceptance when its type is weak.

We obtain this result through analyzing the mediator’s indirect choice of the posterior
belief system. A posterior system here associates to each player a posterior conditional
on the player’s action (accepting or rejecting the peace proposal). Obviously these pos-
teriors are jointly constrained by the equilibrium condition including Bayes’s rule and
mutual best responses. The shortcoming of the equal-split proposal is that its equilibrium
constraint leaves little room for the designer to effect a desirable posterior system. That
is because, given the equal-split proposal, both rejecting and accepting the proposal are
on-path actions for each player and hence the posteriors of both players are constrained
by Bayes’s rule. By contrast, the mediator can propose a lopsidedly biased split that
offers a much larger share of the prize to one of the players so that the favored player
always accepts it. That means the posterior about this player conditional on its rejecting
the proposal becomes off-path and hence free of the Bayesian restriction. With one less
constraint to satisfy, the mediator in proposing the biased split gains some leeway to
manipulate the posteriors.

This shortcoming of the equal-split proposal is shared by all other proposals whose
equilibria prescribe both Accept and Reject as on-path actions for each player. That
leaves us only those proposals whose equilibria have one of the players choose Accept
always, similar to the lopsided one described above. Among such lopsided proposals, the
one that offers the unfavored contestant the largest possible share is our optimum, as it
maxes out the welfare for the unfavored contestant while still securing acceptance from
the favored one. This lopsided solution also satisfies both the Intuitive and D1 Criteria
of refinement.

Albeit based on a stylized model, our result conveys a new insight that it should not
be taken for granted, even from a benevolent social planner’s standpoint, that a peace
proposal should offer a fair share to each contestant. Counterintuitively, a lopsidedly
biased proposal is conducive to peacemaking because it makes the favored party willing
to accept the deal without fearing that the acceptance might reveal some information that
might be used against it later. The favored party fully incentivized, the mediator is less
constrained and hence able to devote resources for the other party. From this perspective,
it is not surprising to see the number of Arab League countries that agree to establish
diplomatic relations with Israel jump suddenly2 soon after the United States announced
its embassy relocation to Jerusalem in 2018. The US embassy relocation can be viewed
as a proposal—and a message-independent one, as the US President did not appear to

2The number jumped from two—Egypt and Jordan—to six, including Bahrain, the United Arab
Emirates, Sudan and Morocco.
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have consulted either side before making the announcement—for a new status quo that
recognizes Israel’s full ownership of Jerusalem, the most contested “prize” between the
Arab League and Israel. Another example of a lopsided proposal is the Vatican mediation
of the Beagle Channel Dispute between Argentina and Chile. In the shadow of a war
between the two countries, the Pope issued a proposal that awarded Chile all of the
disputed islands, granting Argentina only the navigation rights in the area waters and a
shared resource right in a part of the sea. Chile immediately accepted the proposal while
Argentina was initially reluctant but eventually accepted it. We shall describe it in more
detail in Section 2.53

Endogenizing the initial status quo through a mediator’s decision, our study comple-
ments the conflicts literature where contestants themselves take the initiative to mitigate
or escalate the conflict with an implicitly exogenous status quo that defines the sequence
of actions. In Baliga and Sjöström (2004), the two contestants decide simultaneously
whether to escalate the conflict. In Baliga and Sjöström (2020), given an exogenous ini-
tial status quo, each contestant decides whether to challenge it. In Lu et al. (2021), one
of the two contestants has the bargaining power to make a take-it-or-leave offer to the
other player for a peace settlement. The focus in this literature is the dynamic interaction
between the contestants given the implicit status quo. We simplify this interaction into
a static all-pay auction game and focus instead on the determination of the initial status
quo.

The method in this chapter is related to information design in the sense that the me-
diator’s choice of posterior systems amounts to “splitting” each player’s prior distribution
into two posterior distributions, one conditional on the action Accept, the other condi-
tional on the action Reject. Correspondingly, a player’s interim expected payoff—which
guides the player’s action in response to the proposal—becomes a convex combination of
the player’s post-mediation payoffs that are determined by such posteriors. Differently,
the designer in information design frameworks can split a prior distribution into any
convex combination of any posterior distributions as long as the combination satisfies
Bayes’s rule (cf. Kamenica and Gentzkow, 2011 and, more recently, Doval and Smolin,
2021). While Le Treust and Tomala (2019) have extended the framework to allow for
capacity constraints, the choice set for the designer is still completely determined by the
primitives of the agent under consideration. In our model, by contrast, the convex com-
bination of the posteriors for one player is not only constrained by Bayes’s rule but is also

3If we view trade unions as settlements among countries to avoid potential trade conflicts, the
Maestricht Treaty for the UK to join the European Union is yet another episode of lopsided proposals.
The treaty offered UK the opt-outs from the single currency mandate and the Social Chapter of employ-
ment regulations, while none of the other member nations were offered such opt-outs (cf. Baun, 1995
and Burton, 2021, Chapter 5).
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interdependent with the convex combination of the posteriors for the other player. That
is because the former convex combination needs to rationalize the equilibrium strategy as
a best response to the equilibrium strategy rationalized by the latter convex combination,
and vice versa. Constrained by Bayes’s rule only in a separate, agent-by-agent manner,
the designer in information design frameworks attains the optimum on either the convex
or the concave closure of an agent’s ex post payoff as a function of the posterior distri-
bution. The mediator in our model, by contrast, is subject to an endogenous constraint
consisting of Bayes’s rule for each player and mutual best response across players. Con-
sequently, neither the convex nor the concave closure attains the optimum, as neither
minimizing a player’s interim expected payoff in the conflict, nor maximizing thereof, is
necessarily on the right direction of maximizing the sum of ex ante payoffs across the
players.4

Such equilibrium constraints faced by the mediator are different in nature from those
faced by the sender in the information design models with multiple, interacting receivers
such as Mathevet et al. (2020). In Mathevet et al. (2020), as in its single-receiver coun-
terpart, receivers each get their signals directly from the sender and then interact with
one another conditional on the signals. By contrast, in our model, the mediator cannot
directly send any signal to a player. Instead, it is the players who send signals to one an-
other through their responses to the mediator’s proposal, and their responses are chosen
to best-reply one another.

Balzer and Schneider (2021a) have considered a conflict management model where
full preemption of conflict is also impossible. They consider communication mechanisms
that minimize the probability of conflict and focus on the case where the designer is
an arbitrator with full commitment power. While they also consider a mediation case,
the mediator is assumed able to communicate separately and confidentially to the con-
testants so that the two can learn from each other only if the mediation fails. These
assumptions allow them to apply the information design method commented above. In
our model, by contrast, a mediator wants to maximize the sum of the contestants’ ex
ante expected payoffs, and can only indirectly influence the posterior systems through
a message-independent peace proposal, to which the contestants’ responses, commonly
observed, cannot be misrepresented.

4The only exception is the case where full preemption of conflict is possible and one considers those
equilibria where both players for sure accept the peace/collusion proposal on path, as do Celik and Peters
(2011), Zheng (2019b), and Balzer and Schneider (2021b). Then Reject becomes off-path for each player,
and the designer needs only to choose for each player a convex combination of off-path posteriors that
minimizes the player’s interim expected payoff from rejecting the peace proposal. As long as the size of
the prize is larger than the sum of such interim expected payoffs across the players, full preemption of
conflict obtains as an equilibrium. This chapter, by contrast, consider a model where full preemption of
conflict is mathematically impossible.
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After defining the model next, we derive in Section 2.3 the contestants’ interim ex-
pected payoffs through the semi-information-design method just mentioned, illustrated
by Figures 2.3–2.5, and then derive the ex ante expected payoffs. Section 2.4 presents
the result. It starts with the statement of the proposition and continues with the main
structure of the proof. Section 2.5 describes the Vatican mediation of the Beagle Channel
Dispute as an example for lopsided proposals in the real world. Section 2.6 concludes
and mentions a couple of possible extensions. The appendix contains all omitted details.

2.2 The Model

Two players, named 1 and 2, compete for a prize. Each player’s type is independently
drawn from the same binary distribution, whose realization is either w (“weak”) with
probability θ, or s (“strong”) with probability 1−θ, such that 0 < θ < 1 and s > w > 0.5

Denote
α := 1 − w/s.

Thus 0 < α < 1. After each player’s type ti is drawn and privately known to the player,
a neutral mediator proposes a peaceful split of the prize of size one:6

(x1, x2) ∈ [0, 1]2 such that x1 + x2 = 1.

Then each player independently and publicly announces whether to accept (A) or reject
(R) the proposal. If both choose A, the game ends with player i getting a payoff equal
to xi (∀i). If at least one chooses R, then conflict takes place in the form of an all-pay
auction: Each player i, after observing the actions (choices between A and R) of both,
submits a sealed bid bi ∈ R+; the higher bidder wins the prize, with ties broken randomly
with equal probabilities; the payoff for player i of type ti is equal to 1

α

(
1 − bi/ti

)
if i wins,

and equal to 1
α
(−bi/ti) otherwise. Then the game ends. Thus, a player’s bid represents

the player’s total amount of warring efforts in the conflict, and the reciprocal 1/ti of a
player’s type ti represents the player’s marginal cost of warring efforts in the conflict.7

5Our assumption of binary types is in line with much of the conflict resolution literature such as
Balzer and Schneider (2021a,b), Hörner et al. (2015), and Meirowitz et al. (2019),

6Our formulation of a peaceful split implicitly assumes that the mediator cannot diminish the size
of the prize thereby making x1 +x2 < 1. This assumption is in line with our motivation of capturing the
situations where the mediator’s instruments are severely restricted, which is the case in most international
conflicts.

7We scale up the payoff from the conflict by the parameter 1/α purely for notational cleanliness.
That is because α emerges as a multiple of each player’s expected payoff from any equilibrium of the
conflict continuation game (Section 2.3.1), and our scalar 1/α cancels out the multiple. Without the
scalar 1/α to cancel out α, α would appear in most expressions in the chapter thereby complicating
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Each peace proposal (x1, x2) determines a two-stage game, for which perfect Bayesian
equilibrium (PBE) is the solution concept. We measure the social welfare achieved by
a peace proposal by the social surplus generated on path of the PBE admitted by the
proposal. By social surplus we mean the sum of the two players’ ex ante expected
payoffs (before realization of types). A peace proposal of particular interest is the equal
split (1/2, 1/2), treating the two ex ante identical players equally. Another proposal of
interest is (θ, 1 − θ), splitting the prize according to the prior probabilities assigned to
the weak and strong types.

Throughout the chapter we assume

θ > 1/2. (2.1)

The assumption is to avoid triviality of the problem. Otherwise, θ ≤ 1/2 would guarantee
existence of a peace proposal accepted by both players for sure at equilibrium, attaining
the largest possible social surplus.8

2.3 Interim Payoffs and Posterior Beliefs

2.3.1 The Post-Mediation Payoff in the Conflict

Let us start by considering the continuation game where conflict ensues. Recall that this
stage is reached if at least one player has chosen Reject to the peace proposal. At the start
of the stage, the belief about a player is updated conditional on the player’s response to
the proposal. For each player i ∈ {1, 2}, denote pi for the posterior probability of player i
being type s (strong). This, together with the players’ private information of their own
types ti, defines a Bayesian game. Consider any Bayesian Nash equilibrium (BNE) of the
all-pay auction given the posteriors (p1, p2). If G−i is the c.d.f. of the bid from player −i
at equilibrium, and if i’s type is ti, then i’s expected payoff from bidding b is equal to

1
α

(
G−i(b) − b

ti

)

them, though all our results remain true.
8To see this, apply (Zheng, 2019b, Example 4). Since we have scaled up the payoff in the conflict

to 1/α times the quantity assumed in Zheng (2019b), the peace-implementability threshold c∗ = αθ there
becomes (1/α)c∗ = θ. Thus the necessary and sufficient condition for peace implementability becomes
2θ ≤ 1. If 2θ ≤ 1, one can split the prize such that each player gets a share at least as large as θ, and it
is an equilibrium for both to accept any such splits, the equal split (1/2, 1/2) being one of them.
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unless b is an atom of G−i. According to the all-pay auction literature, there exists a
unique equilibrium and the (G1, G2) is characterized by the first-order condition

G′
i(b) =

 1/s if G−i(b) > 1 − p−i

1/w if G−i(b) < 1 − p−i

for each i ∈ {1, 2}. Without loss of generality, let p1 ≥ p2. Coupled with the boundary
condition that Gi(0) = 0 for at least one player, this differential system admits a unique
solution.9 One way to solve it is to start with the maximum bid b, common to both
players, and trace the graphs of G1 and G2 according to the differential system when the
bid decreases from b to zero. One can see that their graphs are as depicted in Figure 2.1.
Both graphs start by decreasing at the rate equal to 1/s. Then the graph of G1 changes to

bid

cumulative mass

0

1− p1

b

1

1− p2

G1, G2

G2

G2

G1

G2(0)

t2 = s

t1 = s

slope= 1/s

slope= 1/w

Figure 2.1: The equilibrium in the all-pay auction

the steeper slope 1/w at the bid b for which G2(b) = 1 − p2, while G2 remains decreasing
at the 1/s, because p1 ≥ p2, until G1(b) = 1 − p1. Thus, when the bid decreases down
to zero, G2(0) ≥ G1(0). Since the zero bid cannot be an atom for both bidders (or an
equilibrium condition is violated), G1(0) = 0. That pins down b and G2(0):

b̄/s = 1 − (1 − w/s)(1 − p2) = 1 − α(1 − p2),
G2(0) =

(
1 − w/s

)
(p1 − p2) = α(p1 − p2),

9Since Gi and G−i need not be differentiable, the differential system holds only for almost all b in
their common support. However, one can prove that Gi and G−i are each absolutely continuous and
hence the system coupled with a boundary condition admits a unique solution. See Zheng (2019b) for
details.
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where we have used the notation α := 1 − w/s. Thus the equilibrium is determined.10

From the above derivation we obtain the expected payoff U t
i (pi, p−i) in any BNE of

the continuation game, for all players i ∈ {1, 2} and all types t ∈ {s, w}:

U s
1 (p1, p2) = 1

α

(
1 − b̄/s

)
= 1 − p2 = 1 − min{p1, p2},

Uw
1 (p1, p2) = 1

α

(
G2(0) − 0/w

)
= p1 − p2 = p1 − min{p1, p2},

Uw
2 (p2, p1) = 0 = p2 − min{p2, p1}.

Without the assumption p1 ≥ p2, one can easily generalize the above to:

U s
i (pi, p−i) = 1 − min{pi, p−i}, (2.2)

Uw
i (pi, p−i) = pi − min{pi, p−i}, (2.3)

which is the expected payoff, for each player i ∈ {1, 2} and each type t ∈ {s, w}, in any
equilibrium of the continuation game given any posterior beliefs (p1, p2).

The functions U s
i (pi, ·) and Uw

i (pi, ·) are graphed in Figure 2.2. These conflict payoffs

p−i

payoff

pi

pi

1 − pi

1

0

Us
i (pi, ·)

Uw
i (pi, ·)

Figure 2.2: Payoff in the conflict as a function of the opponent’s posterior

play a similar role as the ex post payoff that a designer would like to concavify in the
information design framework, except that in our game concavification need not bring
about larger social surplus, as they are the payoffs only in the event of conflict.

10In a nutshell, there is a unique BNE. Both players randomly select their bids (effort levels) from
an interval

[
0, b
]
. The strong type of a player selects its bid from an upper subinterval of

[
0, b
]
, and

the weak type of the player, from the complement of the upper subinterval. The player whose posterior
probability pi of being the strong type is lower than the other’s bids zero (exerting zero effort) with a
positive probability when its type is weak, while the other player bids zero with zero probability and
hence enjoys a positive probability of winning even with zero effort.
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Remark 2.1 It is clear from Figure 2.2 that an increase in pi hurts the strong type of
player i—shifting the graph of U s

i (pi, ·) downward—and benefits the weak type of i—
shifting the graph of Uw

i (pi, ·) upward. That is, due to the all-pay nature of the conflict,
a strong type would hide, and a weak type would exaggerate, its strength in the conflict.

2.3.2 Interim Payoffs in Mediation

Given any proposal-PBE pair, denote qi for player i’s (∀i ∈ {1, 2}) ex ante probability
(before realization of i’s type) of choosing Reject, and pA

i (resp. pR
i ) for the posterior

probability of player i being type s conditional on i’s having chosen Accept (resp. Re-
ject) in response to the peace proposal. Given type t ∈ {w, s} and anticipating the
continuation payoff U t

i in the event of conflict, player i’s expected payoff from choosing
Accept is equal to

V A
i (t) := q−iU

t
i

(
pA

i , p
R
−i

)
+ (1 − q−i)xi, (2.4)

and that from choosing Reject is equal to

V R
i (t) := q−iU

t
i

(
pR

i , p
R
−i

)
+ (1 − q−i)U t

i

(
pR

i , p
A
−i

)
. (2.5)

By Bayes’s rule, we have qip
R
i = (1−θ)σi(s) and (1−qi)pA

i = (1−θ)(1−σi(s)), with σi(s)
the equilibrium probability with which player i of type s chooses Reject. Sum the two
equalities to obtain the next condition, called Bayesian plausibility in the information
design literature.

qip
R
i + (1 − qi) pA

i = 1 − θ. (2.6)

Thus, the point (1 − θ, V R
i (t)) is the convex combination between the two points on the

graph of U t
i (pR

i , ·) whose horizontal coordinates are pR
−i and pA

−i. This is illustrated by
Figure 2.3, where the positioning of pA

−i ≤ 1 − θ ≤ pR
−i comes from an intuitive fact

that Reject (thereby triggering conflict) signals one’s strength more than Accept does
(Lemma A.2, Appendix A.1).

Remark 2.2 From Figure 2.3 the followings are obvious: (a) The interim payoff for the
weak (w) type in the conflict is bounded from above by θ, and attains this upper bound
when pi = 1. (b) The interim payoff for the strong (s) type in the conflict is bounded
from below by θ, and attains this lower bound when pi ≥ p−i. (c) It follows from (b) that,
in any proposal-PBE pair, the strong type of each player can always secure an interim
payoff no less than θ through choosing Reject thereby triggering conflict.
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p−i

payoff

pRi

pRi
1 − pRi

1

0

Us
i (pi, ·)

Uw
i (pi, ·)

V R
i (s)

V R
i (w)

pA−i pR−i
1 − θ

Figure 2.3: Interim expected payoffs as convex combinations

2.3.3 Lopsided versus Non-Lopsided Solutions

By solution we mean a pair of peace proposal (x1, x2) and a PBE (σi, p
A
i , p

R
i )2

i=1 admit-
ted by the game given the proposal, with σi := (σi(w), σi(s)) mapping player i’s type
t ∈ {w, s} to a probability σi(t) of choosing Reject, pR

i the posterior probability that
his type is strong (s) conditional on his having chosen Reject, and pA

i the counterpart
conditional on having chosen Accept. Given any solution, the ex ante probability qi

with which player i chooses Reject is determined. Thus we shall denote a solution by
(xi, σi, p

A
i , p

R
i , qi)2

i=1.

One can show (Lemma A.1, Appendix A.1) that there are exactly two kinds of solu-
tions in our model. One kind, called lopsided, consists of the solutions where one player
accepts the proposal for sure regardless of his type, and the other player rejects it for
sure if her type is strong, and mixes between Accept and Reject if her type is weak.
The other kind, called non-lopsided, consists of all the solutions where Reject is a best
response for both types of each player. Except for the trivial solutions where conflict
occurs for sure (e.g., a player always rejects a proposal because he expects the same from
the opponent), both Accept and Reject are on-path actions for each player in any non-
lopsided solution. Roughly speaking, the proposed split of the prize in a non-lopsided
solution is even-handed enough for each type of each player to find it a best response to
reject it.
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2.3.4 The Social Surplus in Any Non-Lopsided Solution

By social surplus we mean the sum of equilibrium ex ante expected payoffs (before realiza-
tion of types) across the two players. Given any non-lopsided solution (xi, σi, p

A
i , p

R
i , qi)2

i=1,
since Reject is a best response for both types of each player, the social surplus is equal
to ∑2

i=1

(
θV R

i (w) + (1 − θ)V R
i (s)

)
. The next lemma provides a tractable formula for this

sum.

Lemma 2.1 In any non-lopsided solution (xi, σi, p
A
i , p

R
i , qi)2

i=1 such that pR
i ≥ pR

−i, the
social surplus is equal to 2θpR

i + (qi − θ)
(
pR

i − pR
−i

)
.

The lemma stems from the idea behind Figure 2.3. First, the condition pR
i ≥ pR

−i

means that the positions of pR
i and pR

−i in that figure are switched, so that the figure
becomes Figure 2.4 for the weak type, and Figure 2.5 for the strong type. Then one
readily obtains

V R
i (w) = pR

i − 1 + θ, (2.7)
V R

i (s) = θ. (2.8)

Second, note that V R
i (w) − V R

−i(w) is equal to the length |B′C ′| of segment B′C ′ in
Figure 2.4. By similar triangles,

|B′C ′|
|BC|

= pR
i − (1 − θ)
pR

i − pA
i

= 1 − qi,

where the second equality follows from the Bayesian plausibility condition (2.6). Since
|BC| = pR

i − pR
−i, we have

V R
−i(w) − V R

i (w) = − (1 − qi)
(
pR

i − pR
−i

)
. (2.9)

Analogously, from inspection of Figure 2.5 and the similar triangles therein we obtain

V R
−i(s) − V R

i (s) = qi

(
pR

i − pR
−i

)
. (2.10)

By Eqs. (2.9) and (2.10), due to the posterior probability difference ∆pR := pR
i − pR

−i,
the interim payoff for player −i is smaller than that for player i by (1 − qi)∆pR if both
are of the weak type, and larger than that for player i by qi∆pR if both are strong. Sum
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Figure 2.4: Rejection payoffs for the weak type
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Figure 2.5: Rejection payoffs for the strong type

the two differences to obtain the ex ante payoff difference between the two players as
(
θV R

−i(w) + (1 − θ)V R
−i(s)

)
−
(
θV R

i (w) + (1 − θ)V R
i (s)

)
=

(
−(1 − qi)θ + qi(1 − θ)

)
∆pR

= (qi − θ)∆pR.

This, combined with (2.7) and (2.8), implies that ∑2
i=1

(
θV R

i (w) + (1 − θ)V R
i (s)

)
is equal

to 2θpR
i + (qi − θ)

(
pR

i − pR
−i

)
.

2.4 The Optimality of a Lopsided Solution

A lopsided solution (defined in Section 2.3.3) has the advantage that one of the players
chooses Accept independently of his own type. Thus, the player accepts the peace pro-
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posal without fearing that his acceptance may betray some information that the opponent
may use against him later. Put differently, the mediator can manipulate the posterior
about the other player’s type without having to watch out for the posterior about the
former player, as the on-path posterior about the former is fixed at the prior, and the
off-path posterior can be chosen in whatever level that the mediator desires.

Choosing among the lopsided solutions, in which the favored player accepts the pro-
posal for sure, the mediator would transfer a tiny bit of the share from the favored player
to the other player thereby increasing the chance for the latter to accept the proposal
as well. Since the strong type of a player can always secure an expected payoff no less
than θ through Reject (Remark 2.2), the mediator cannot offer a share less than θ to the
favored player and still guarantee acceptance from him. Thus the mediator would reduce
the share offered to the favored player down to θ (note that θ is still the larger share due
to (2.1)):

Proposition 2.1 If 2/3 ≤ θ ≤ 3/4, the proposal that maximizes the sum of the ex ante
expected payoffs for the two players (among all proposals that admit PBEs) is to offer θ
to one player and 1 − θ to the other player.

Before proving the proposition, we make two remarks:

First, the assumption 2/3 ≤ θ ≤ 3/4 in the proposition, albeit partially relaxable
with more calculations, reflects an intuition that the equal-split (1/2, 1/2) proposal is
likely to be optimal when θ is close to 1/2 or 1. Since conflict can be fully preempted by
the equal split when θ ≤ 1/2 (cf. Section 2.4.1 or Footnote 8), the equal-split proposal
might remain optimal when θ is just slightly above 1/2. When θ ≈ 1, the social surplus
puts a heavy weight on the weak type, and one can show that the total expected payoff
for the weak type of both players under the equal-split proposal is almost equal to the
full size of the prize.11

Second, while the PBE in a lopsided solution involves an off-path posterior, with the
favored player expected to accept the proposal always, the optimal solution stated in the
proposition satisfies both the Intuitive and D1 criteria of refinement (Appendix A.2).

The proof of the proposition is essentially to show how the social surplus—the sum of
ex ante expected payoffs for the two players—varies with the larger share maxi xi offered
in a peace proposal. The relationship between the two is depicted in Figure 2.6. When
maxi xi is larger than or equal to θ, the PBE is lopsided. Section 2.4.2 constructs the PBE

11In a PBE under the equal-split proposal, pR
1 = pR

2 = 1/2 (Lemma A.5, Appendix A.5) and hence
each player’s weak type gets pR

1 − (1 − θ) = θ − 1/2 (Figure 2.4). Thus the total expected payoff for
them, 2θ − 1, converges to one as θ → 1.
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Social Surplus

maxi xi

1/2 1θξ

Figure 2.6: The lopsided proposal (θ, 1 − θ) as the global optimum

for any such lopsided proposal. Section 2.4.3 shows that any proposal with maxi xi > θ is
outperformed by maxi xi = θ. When maxi xi is smaller than θ, the PBE is non-lopsided
and converges to the lopsided one at maxi xi = θ when maxi xi converges to θ from below.
Section 2.4.4 shows that the graph is upward-sloping and concave on a sufficiently small
interval (ξ, θ) to the left of θ. When maxi xi falls below ξ, the corresponding PBE changes
to other kinds of non-lopsided solutions. Section 2.4.5 outlines our treatments of those
cases, the details of which are relegated to the appendix.

In the rest of the chapter, without loss of generality, let player 1 be the one offered θ
in the proposal stated in the proposition. That is, write the proposal as (θ, 1 − θ).

2.4.1 A More Detailed Intuition

While the proof of the proposition involves lengthy calculations, the gist of the proof is an
elaboration of the intuitive idea before the statement of the proposition: The advantage
of lopsided solutions is that they provide more leeway for the mediator to manipulate
the posterior beliefs. In a non-lopsided solution, both Accept and Reject being on-path
for each player, each component of the posterior system (pA

i , p
R
i )2

i=1 is constrained by
Bayes’s rule. In a lopsided PBE, by contrast, Reject is off-path for one of the players,
say player 1; hence the posterior probability pR

1 for this player to be the strong type
conditional on his having played Reject is unconstrained by Bayes’s rule.

How does such unconstrained posterior turn into a gain in the social surplus? Let us
recall the main insight in the previous literature (e.g., Zheng, 2019b) that the optimal
posterior system is to have pR

i = 1, namely, taking Reject to mean that the player is
the strong type for sure. As noted in Remark 2.2, with pR

i = 1, the interim payoff from
Reject is minimized to θ for the strong type of player i, and maximized to θ for the
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weak type of i. This would have constituted an optimal solution should each player be
offered a share at least as large as θ so that each is willing to accept the proposal and the
interim payoffs from Reject, being off-path, do not matter to the social surplus. Given
our assumption θ > 1/2, however, such proposals do not exist, as any split of the prize
(of size one) renders the share for some player below θ. Thus, any PBE of any proposal
sees some player choose Reject on path. Consequently, a player’s interim payoff from
Reject becomes part of the social surplus. This, coupled with the fact that an increase
in pR

i benefits the weak and hurts the strong (Remark 2.1), means that the calculus of pR
i

is more complicated than that in the previous literature.

Nonetheless, there are two intuitive reasons why the previous insight of achieving
optimality through maximizing pR

i might still work. First, since a strong type incurs less
marginal cost in the conflict than a weak type does, one would expect that a strong type
is more inclined than a weak type to reject a peace proposal. Thus, if we are to pick a
type to deter it from Reject, it would be the strong type. To deter it from Reject, we
minimize its interim payoff from Reject. Second, the assumption θ > 1/2 implies that,
from the ex ante viewpoint, any quantity of payoff to a weak type contributes more to
the social surplus than the same quantity of payoff to a strong type does. Thus, one
would expect that the social surplus enlarges with an increase in pR

i , which benefits the
weak at the expense of the strong. It is therefore conceivable that, the less constrained
is pR

i , the more can pR
i be maxed out and hence the larger is the social surplus.

2.4.2 Construction of Lopsided PBEs

Consider any proposal (x1, x2) for which x1 ≥ θ (and hence x1 > 1/2 > x2). We shall
construct a PBE where player 1 chooses Accept always, and player 2 chooses Reject for
sure when the type is strong and mixes between Accept and Reject when the type is
weak.

First, the strong type of player 2 chooses Reject for sure and gets an expected payoff
equal to θ on path: Since player 1 always accepts the proposal on path, the posterior
probability for player 1 to be the strong type remains to be the prior 1 − θ. Thus
the strong type of player 2 gets θ from rejecting the proposal (Eq. (2.2) together with
pR

2 ≥ 1 − θ = pA
1 ), and she gets only x2 ≤ 1 − θ < θ (since x2 = 1 − x1 and θ > 1/2) from

accepting it.

Second, the strong type of player 1 chooses Accept for sure. By playing Accept,
his expected payoff is at least θ: If player 2 also accepts the proposal, player 1 gets
the share x1 ≥ θ as offered; if player 2 rejects the proposal, the post-mediation payoff
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for the strong type of player 1 (in the conflict) is equal to θ (Eq. (2.2) coupled with
pR

2 ≥ 1 − θ = pA
1 ). If player 1 deviates to Reject, the off-path posterior pR

1 can be chosen
such that pR

1 ≥ pR
2 , which according to Figure 2.5—or Eq. (2.8)—yields θ as the interim

payoff for the strong type of player 1. Thus Accept is a best response for the strong type
of player 1.

Third, the weak type of player 2 is indifferent between Accept and Reject, and she
gets an expected payoff equal to pR

2 − 1 + θ on path. Since player 1 is expected to always
choose Accept, player 2 gets the offered share x2 from choosing Accept. If she plays
Reject instead, player 2, of the weak type, gets the payoff pR

2 − (1 − θ) that results from
the conflict (Eq. (2.3) together with pR

2 ≥ 1 − θ = pA
1 ). Thus, the weak type of player 2

is indifferent between Accept and Reject if and only if

pR
2 = 1 − θ + x2. (2.11)

Since the strong type of player 2 chooses Reject for sure, the Bayesian formula of pR
2 is

pR
2 = (1 − θ)/q2, namely, the ex ante probability q2 for player 2 to choose Reject is equal

to
q2 = 1 − θ

1 − θ + x2
.

Fourth, the weak type of player 1 chooses Accept for sure. His interim payoff from
Accept is equal to (1 − q2)x1 = (1 − q2)(1 − x2): If player 2 chooses Accept, player 1 gets
the offered share x1; else player 1’s post-mediation payoff in the conflict is equal to zero
according to Eq. (2.3) and the fact pR

2 ≥ 1 − θ = pA
1 . The interim payoff from Reject

for the weak type of player 1 is equal to pR
1 − (1 − θ): This follows from the condition

pR
1 ≥ pR

2 , which we use to incentivize the strong type of player 1 (the second step in the
above), combined with Figure 2.4 (or Eq. (2.7)). Thus, for the weak type of player 1 to
choose Accept, it suffices to have (1 − q2)(1 − x2) ≥ pR

1 − (1 − θ), namely,

pR
1 ≤ 1 − θ + x2

1 − θ + x2
(1 − x2).

This, combined with the conditions pR
1 ≥ pR

2 and pR
2 = 1−θ+x2 explained above, implies

that the PBE is valid if x2 ≤ θ/2. Since x2 ≤ 1 − θ by the choice of the proposal and
θ ≥ 2/3 by the assumption of the proposition, x2 ≤ θ/2 holds and the PBE is valid.
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2.4.3 Why Raising the Larger Share above θ Is Suboptimal

First, observe that, for any proposal (x1, x2) such that x1 ≥ θ, the social surplus based on
the PBE constructed above is strictly increasing in pR

2 . The ex ante expected payoff for
player 2 is strictly increasing in pR

2 because her on-path interim expected payoff is equal
to pR

2 −1+θ when her type is weak (Step 3, Section 2.4.2), and θ when her type is strong
(Step 1, Section 2.4.2). To see the same monotonicity property for player 1, observe
that player 1—as long as he always plays Accept according to the equilibrium—prefers
smaller q2 (probability of player 2 choosing Reject) to larger q2: If player 2 chooses Accept,
player 1 gets x1 ≥ θ; else player 1 gets θ if his type is strong (Step 2, Section 2.4.2),
and zero if his type is weak (Step 4, Section 2.4.2); hence smaller q2 makes player 1’s ex
ante expected payoff strictly larger. Thus, both players considered, the social surplus is
maximized among all proposals (x1, x2) with x1 ≥ θ when pR

2 is maximized.

By (2.11), maximizing pR
2 is equivalent to maximizing x2 subject to x1 ≥ θ, namely,

x2 ≤ 1−θ. Thus, social surplus attains its maximum at x2 = 1−θ. That is, any proposal
with x1 > θ is outperformed by setting x1 = θ.

2.4.4 Why Perturbing the Larger Share below θ Is Suboptimal

When the larger share x1 offered in the proposal falls below θ, the lopsided PBE ceases to
exist. That is because the strong type of the favored player 1 can always secure an interim
payoff at least θ from Reject, while Accept gives him an interim payoff less than θ: From
Accept, he gets x1 < θ if player 2 chooses Accept, and θ if player 2 chooses Reject (Step
2, Section 2.4.2). Consequently, the strong type of player 1 chooses Reject sometimes.
Then the weak type of player 1 would chooses Reject sometimes as well. Otherwise, the
action Reject from the player would reveal that he is for sure the strong type, pR

1 = 1.
Given this posterior, the weak type of the player would deviate to Reject thereby getting
an interim payoff equal to θ (Remark 2.2.a) rather than a smaller payoff from Accept.

Thus, when the larger offered share x1 is less than θ, the lopsided PBE is not valid,
and both types of the favored player 1 would mix between Accept and Reject. Meanwhile,
player 2’s strategy remains similar to those in the lopsided ones provided that the share x2

offered to her is sufficiently near to 1 − θ: As in the lopsided PBE, she plays Reject for
sure if her type is strong, and mixes between Accept and Reject if her type is weak.
Specifically, when x2 < x1 < θ (hence x2 > 1 − θ) and x2 is sufficiently close to 1 − θ, the
PBE satisfies:

σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR
1 ≥ pR

2 . (2.12)
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Furthermore, as x2 converges to 1 − θ from above, one can show that the PBE converges
to the lopsided PBE under the proposal (θ, 1 − θ) (Eqs. (A.34)–(A.38), Appendix A.7.1).
It follows that the social surplus under the proposal (x1, x2) for which x1 > x2 > 1 − θ

converges to the social surplus produced by (θ, 1 − θ) when x2 converges to 1 − θ from
above.

Therefore, to show that the proposal (θ, 1 − θ) outperforms any proposal (x1, x2) for
which x1 > x2 > 1 − θ and x2 is sufficiently close to 1 − θ, it suffices to show that the
social surplus is strictly decreasing when x2 enlarges from 1 − θ as long as (2.12) remains
valid in the PBE. To that end, one can calculate the PBE (σi, p

R
i , p

A
i , qi)2

i=1 according
to (2.12) (detailed in Lemma A.11, Appendix A.7.1) and then obtain

pR
1 = 3 − 2θ − x2

2 ,

pR
2 = 2 − 2θ,

q1 = 2(θ − 1 + x2)
2θ + x2 − 1 .

(In the above displayed, the first equation signifies a main difference between non-lopsided
PBEs and lopsided ones: In a lopsided PBE, there is no equation to constrain the pos-
terior pR

1 of the favored player 1 when he chooses Reject.) By Lemma 2.1, the social
surplus given any PBE (σi, p

R
i , p

A
i , qi)2

i=1 that satisfies (2.12) is

S(x2) := 2θpR
1 + (q1 − θ)

(
pR

1 − pR
2

)
,

where we denote the social surplus as a function of x2 because the variables on the right-
hand side are each a function of x2 according to the above-displayed equations. It suffices
to show d

dx2
S(x2) < 0 for any x2 > 1 − θ sufficiently close to 1 − θ. To that end, use the

above-displayed equations to obtain

d

dx2
S(x2) = (q1 + θ)dp

R
1

dx2
+
(
pR

1 − pR
2

) dq1

dx2
= −q1 + θ

2 +
(
pR

1 − pR
2

) 2θ
(2θ + x2 − 1)2 .

In other words, an increase of x2 (decrease of x1) makes player 1 more willing to choose
Reject. This has two opposite effects on the social surplus. On one hand, with player 1
more willing to choose Reject, Reject signals the strength of player 1 less and so pR

1

decreases (whereas in a lopsided solution the pR
1 , off path, is subject to no such influ-

ence), which reduces the social surplus by Lemma 2.1. On the other hand, player 1
choosing Reject more often means that q1 increases, which enlarges the social surplus
(by Lemma 2.1). Despite the countervailing effects, from the above equations one readily
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sees that d
dx2
S(x2) is strictly decreasing when x2 increases, as −(q1 + θ)/2, pR

1 − pR
2 (non-

negative), and dq1
dx2

(nonnegative) are each strictly decreasing in x2. Furthermore, from
the above equations one can show

lim
x2↓1−θ

d

dx2
S(x2) = − 1

2θ
(
(θ − 3)2 − 5

)
,

which is negative because the assumption θ ≤ 3/4 in the proposition implies θ < 3−
√

5.
It follows that d

dx2
S(x2) < 0 for all x2 > 1 − θ such that (2.12) holds, as desired.

2.4.5 Why Any Drop of the Larger Share below θ Is Suboptimal

When x1 is further below θ, the PBE changes to other kinds of non-lopsided ones. First,
since the further decrease of the share x1 offered to the favored player 1 implies that he
is willing to reject the offer more even if his type is weak, the posterior pR

1 of his type
being strong drops further so that pR

1 is less than pR
2 . Thus the PBE changes from (2.12)

to
σ1(s), σ1(w), σ2(w) ∈ (0, 1), σ2(s) = 1, and pR

1 < pR
2 . (2.13)

Second, when x1 is further lower so that it is near to (or equal to) 1/2 (the equal-split
share), one of two changes happens: either the favored player 1 finds the share x1 offered
to him so near to the equal split that he rejects it for sure when his type is strong:

σ1(w), σ2(w) ∈ (0, 1) and σ1(s) = σ2(s) = 1; (2.14)

or the unfavored player 2 finds the share x2 (= 1 − x1) offered to her large enough so
that she mixes between Accept and Reject even when her type is strong:

∀i ∈ {1, 2} : σi(w), σi(s) ∈ (0, 1). (2.15)

The PBEs of the form (2.13) are handled by Lemma A.14, Appendix A.7.2: For any
solution in this case, the smaller share x2 in the proposal is greater than 2θ − 1 and less
than 1/2. With x2 < 1/2 and the assumption 2/3 ≤ θ ≤ 3/4 in the proposition, one can
show q2 < θ. Consequently, the social surplus, by Lemma 2.1 applied to the case i = 2,
is less than 2θpR

2 . This quantity can be shown less than the social surplus generated by
the optimal proposal (θ, 1 − θ), due to x2 > 2θ − 1.

The PBEs of the form (2.14) are handled by Appendix A.5. There, we show that the
PBE of the form (2.14) under the equal-split proposal (1/2, 1/2) maximizes the social
surplus among all the solutions of the form (2.14). Then we show that the social surplus
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generated by this local maximum is still less than the one generated by the lopsided
solution under (θ, 1 − θ) (where we use the assumption θ ≤ 3/4.)

The PBEs of the form (2.15) are handled by Appendix A.6. The method is similar
to that for (2.13): One can show that PBEs of the form (2.15) satisfy pR

2 ≥ pR
1 and

q2 < θ. Consequently, the social surplus, according to Lemma 2.1, is less than 2θpR
2 .

This quantity can be shown less than the social surplus under the optimal proposal
(θ, 1 − θ), due to our assumption θ ≥ 2/3.

2.5 Example: The Beagle Channel Dispute

A lopsided peace proposal was crucial to the eventual peace settlement in the Beagle
Channel Dispute between Argentina and Chile. The dispute centered on the claims by
Argentina and Chile over the three islands south of Tierra Del Fuego and the surrounding
waters. Figure 2.7 is a map from Garrett (1985) showing the area under dispute. The

Figure 2.7: Argentina claimed from the northeast down to the dashed line; Chile claimed from
the southwest up to the dotted line.
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dispute dated back to the Boundary Treaty of 1881, aimed at resolving all the boundary
disputes between the two countries upon independence. However, it fell short of its aim
for the Beagle Channel and both countries claimed sovereignty over it. Under the treaty
all the area south of the Beagle channel would belong to Chile. However, the treaty
was ambiguous on path of the Beagle Channel and where it should end. In Figure 2.7,
the dashed line is what Argentine perceived as path of the channel, and the dotted line
represents Chile’s claim. The disputed area is rich in natural resources and is strategically
important in defining the maritime zones and territorial claims in Antarctica.

After several decades of failed negotiations and arbitration, the two countries were
on the verge of a war in December 1978 when Pope John Paul II intervened. The Pope
launched a mediation effort and in December 1980 issued a proposal that awarded Chile
all the three disputed islands and offered Argentina only the right, which it would need to
share with Chile, of navigation and resource in the surrounding seas (cf. Garrett Garrett
(1985), and Greig and Diehl Greig and Diehl (2012)). This is clearly a proposal lopsid-
edly favoring Chile. Meanwhile, the proposal did not grant Chile as much navigation
and resource right as the legal maritime zone would have if it were implied by Chile’s
ownership of the three disputed islands. That is consistent with our theoretical finding
that the optimal peace proposal, while offering a larger share of the prize to one side,
still keeps the larger share in check.

Chile accepted the Pope’s proposal immediately, which is understandable in light of
our theoretical insight that the party favored by a peace proposal is willing to accept it
without fearing that its acceptance might betray its weakness. Argentina, also under-
standably in light of our theoretical finding that the unfavored party would mix between
Reject and Accept, was initially reluctant to accept. After several years of ups and downs,
the two country agreed to the Vatican proposal and signed a peace treaty in November
1984 thereby officially ending the Beagle Channel Dispute (ibid).

It is reasonable to regard the Pope as the neutral, benevolent mediator in our model,
the majorities of both countries in the Beagle Dispute identifying as Roman Catholic.
Also similar to the mediator with limited power in our model, the Pope had no resource
to enforce his decision on the two countries, nor any control over the military conflict
had it erupted. The main instrument the Pope resorted to was to propose a split of the
disputed region and request the two countries to respond to the proposal by a certain
date (mid-January 1981, ibid). That resembles the peace proposal in our model.
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2.6 Conclusion

Humanity is often trapped in conflict situations where full preemption of conflict is im-
possible. In such situations, it is inadequate for a benevolent social planner to aim merely
at minimizing the likelihood of conflict, as the social welfare in both the event of peace
and the event of conflict should be taken into account. This chapter contributes to the
conflict mediation literature by incorporating both conflict and peace into maximiza-
tion of social surplus and presenting an explicit solution for the maximization problem.
Our solution respects a realistically relevant constraint that a mediator, restricted in
instruments, cannot effect any information structure deemed desirable with tailor-made
communication mechanisms, but rather can only indirectly influence the outcome through
simple mechanisms whose integrity is easy to trust. Thus, techniques in the information-
design literature are not readily available, and this chapter contributes an explicit analysis
on how a mediator can nonetheless achieve a constrained optimal posterior information
structure given simple, message-independent mechanisms.

Our solution produces a surprising implication: Even though the adversaries are ex
ante identical, and are assigned equal welfare weights, the socially optimal peace proposal
is to lopsidedly favor one adversary against the other. Thus it should not be taken for
granted that a peace proposal should offer a fair share to each contestant even from the
viewpoint of a benevolent mediator. The insight conveyed by our result is that a peace
proposal lopsidedly biased towards one side may, counterintuitively, achieve better social
welfare than an unbiased one because the favored side is willing to accept the peace
deal without fearing being viewed to be weak and taken advantage of later, so that the
mediator can devote more resources to compensate the unfavored side.

While the design objective considered in this chapter is to maximize the social surplus,
which incorporates the players’ ex ante payoffs in both peace and conflict, the social
welfare merit of a lopsided peace proposal demonstrated by our result is extendable to
models where the design objective is to minimize the probability of conflict. In fact,
given the same intermediary range of the weak-type probability θ for which the lopsided
proposal maximizes social surplus, one can show that the lopsided proposal also minimizes
the probability of conflict. In addition, the equal-split proposal minimizes the probability
of conflict when the probability of being weak is very high or when it is low enough to be
near to the region where peace can be guaranteed. This is similar to the pattern when
the objective is to maximize the social surplus (cf. the remark below the statement of
the Proposition).

An open question is what happens if a contestant can renege on its acceptance of a
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peace deal. After Iran accepted the nuclear deal in 2015, the United States withdrew
from the agreement in 2018 thereby resuming the hostile relationship. It is conceivable
that Iran, in retrospect, would attribute the US withdrawal to Iran’s acceptance of the
deal in 2015, which might have revealed Iran’s weak position in the conflict. That taken
into account, Iran will be more reluctant to accept any nuclear deal in the future than
before, for fear of its weakness being further revealed and exploited. Thus we conjecture
that the inscrutability of a contestant’s response to a peace proposal can only become
more important when contestants may renege. In the sense that a lopsided solution
guarantees acceptance from the favored side thereby making its private information in-
scrutable from its acceptance, the optimality of lopsided solutions may be robust to such
limited commitment situations.

For tractability, and for a clear contrast with the lopsided solution, we assume that
the two contestants are ex ante identical with a common value of the contested prize. A
natural question is to what extent a lopsided solution may remain optimal when ex ante
asymmetry or private values are considered. While we conjecture that the inscrutability
advantage that a lopsided solution provides for the favored party remains crucial, the
ex ante asymmetry between the two sides is likely to bring about new questions such as
which side should be favored and which side could benefit more from being inscrutable
during negotiation.
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Chapter 3

Favoritism in Manipulative Conflict
Mediation

3.1 Introduction

International conflicts among countries are frequently subject to third-party mediation,
the goal of which is usually conflict resolution or mitigating the probability of conflict.
The mediator of such conflicts faces two important challenges. First, conflicting parties
are sovereign countries, and the mediator cannot enforce her decision on them. Second,
conflict mediation is informative. Adversaries fear that by participating in the mediation
and announcing their decisions they might reveal information that might be used against
them in the conflict. This chapter is interested in a situation where two adversaries are
having a dispute over a prize and face the possibility of conflict if they cannot settle their
dispute. A mediator, who can put forward economic incentives and threats, proposes a
split of peace surplus of an agreement that if the players do not agree on conflict occurs.
Participation in the mediation is voluntary and nonparticipation triggers conflict. The
mediator’s objective is to design proposals that minimize the probability of conflict among
those that guarantee the full participation of players in her mechanism. Although full
participation, in general, cannot be assumed without loss of generality, it is a realistic
assumption to make in the context of international conflicts as part of the practical and
political motivations of a mediator.1 In such an environment, this chapter asks should a
mediator shows favoritism among ex-ante identical rivals to minimize the probability of
conflict subject to the full participation constraint?

1In Henry Kissinger words “A reputation for success tends to be self-fulfilling. Equally, failure feeds
on itself: A Secretary of State who undertakes too many journeys that lead nowhere depreciates his
coin.”(Kissinger, 2011).
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To attain conflict minimizing goal, the mediator should somehow make conflict, which
happens if the mediation breaks down, more costly. But conflict rules are beyond the me-
diator’s control. The mediator can only indirectly, through the manipulation of posterior
beliefs that players form about each other after observing each others’ decisions, affect
players’ strategies in the conflict. A common intuition is that the less disparity between
the players and the more symmetric players’ beliefs about each other types the larger
the cost of conflict.2 Asymmetry between players can make conflict more appealing:
the player that looks stochastically dominant would be complacent and the stochasti-
cally dominated one would be intimidated leading to devoting fewer costly efforts and
resources by both to the conflict. Therefore, if players are ex-ante identical, it seems
intuitive that the mediator offers unbiased proposals: (i) directly, biased proposals could
increase the chance of rejection by the less favored player, (ii) indirectly, biased proposals
could induce asymmetry between players; making the outside option appealing.

If the peace surplus from the agreement is not large enough to fully preempt conflict,
then any proposal will sometimes be rejected by at least one player. In such situa-
tions, players anticipate that by participating and making decisions at the mediation
they might reveal information that can be used against them once the mediation fails.
This can render participation more costly compared to nonparticipation that shuts down
such communications. The mediator should take into account this information revelation
effect in the design of her fully participating conflict minimizing proposals. Therefore,
full participation constraint poses important challenges to the mediator’s design of con-
flict minimizing proposals. With nonparticipation off-path in any fully participating
equilibrium, the deviating player will not learn anything about her opponent while her
opponent, who observes this off-path behavior, will form an arbitrary belief about the de-
viating player’s type distribution. The off-path posterior belief information structure can
take any arbitrary asymmetric form while, given the ex-ante identical players, the equal
proposal admits symmetric posterior beliefs information structure for both players. As
explained above, asymmetric off-path posterior beliefs can make nonparticipation, which
triggers conflict, appealing. Can the equal proposal by inducing symmetric information
structure makes nonparticipation more appealing? If yes, are there biased proposals
that can induce asymmetric information structure and make players better off compared
to nonparticipation? Can the indirect information effect, i.e., the asymmetric beliefs,
override the direct equal treatment effect and leads to a higher probability of peace?

To answer these questions, this chapter considers a conflict mediation model where
two players are disputing over a prize for which each has a private valuation drawn from

2This intuition is rooted in the theory of the Balance of Power in Political Science literature and the
Economics literature in which conflict is modeled as an all-pay auction game.
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an i.i.d binary distribution, i.e., players are ex-ante identical. They have either a high or
low valuation for the prize. A neutral mediator announces a peace proposal that is a type-
independent split of the peace surplus of an agreement. Proposals can be deterministic
or stochastic. The primitives of the model are so chosen that the mediator cannot
fully preempt conflict: there does not exist any peace proposal that admits a perfect
Bayesian equilibrium (PBE) in which conflict occurs with zero probability. If parties do
not participate in the mediation or do not agree on the peace proposal, conflict ensues.
Conflict is costly for both and winner-take-all; whoever devotes the highest level of effort
and resources wins. Since the two players are ex-ante identical, and the mediator is
neutral, the unbiased proposal is the equal split of the peace surplus. Any other proposals
mean favoritism toward the player who is receiving the lion’s share.

The mediator considers proposals admissible if the ensuing multistage game admits a
fully participating PBE. Albeit stylized, our model highlights the important informational
ramifications of the mediation by allowing the mediation procedure to affect the posterior
belief information structure at the conflict stage and the strategies that are pursued at
it.

I examine the set of all equilibria, each consisting of a peace proposal and a PBE of
the continuation game given the proposal. Participation in the mediation for a player
depends on the payoff from deviating to nonparticipation and triggering conflict. The
payoff at this zero probability event is endogenous and depends on beliefs at this event,
which for the deviating player does not follow Bayes’s rule. To provide a full charac-
terization of admissible peace proposals, I examine players’ nonparticipation incentives
given all possible off-path beliefs. The presence of a type-dependent outside option poses
a challenge. The worst and the best off-path belief about the deviating player depends
on her type. The high type benefits from being perceived as a “weak” player, i.e., being
perceived to be a low type with a higher probability than the prior probability, and the
low type benefits from being perceived as a“strong” player, i.e., being perceived to be a
low type with a lower probability than the prior. In brief, the participation constraint
is not necessarily monotone. Therefore, the type for which the participation constraint
binds cannot be identified a priori.3

This chapter’s results show that if the probability of being a low type is high and
the peace surplus from the agreement is lower than a threshold, then admissible conflict
minimizing proposals are a specific category of biased proposals, which I call lopsided

3Albeit in a different environment, the non-monotone participation constraint resembles the coun-
tervailing incentives literature on the adverse selection with exogenous type-dependent outside options.
For further references see Jullien (2000), Lewis and Sappington (1989), and Maggi and Rodriguez-Clare
(1995).
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proposals, and if the peace surplus is above the threshold, then the equal proposal min-
imizes the probability of conflict (Theorem 3.1). The lopsided proposals are such that
they all admit the same probability of peace. Given these proposals, in equilibrium, the
favored player always accepts and thereby does not reveal any information about her
type, while the less favored player follows a fully revealing strategy to reject if she is a
high type and accept if she is a low type.

The deterministic proposals are admissible if the off-path posterior about the deviat-
ing player is that she is a low type with a lower probability than the prior. However, if
the reverse holds, then the high type of a player will benefit from being perceived as a low
type with a higher probability than the prior upon nonparticipation. In that case, the
equal proposal is not admissible because it reveals too much information and lowers the
interim payoff of the high type. The lopsided proposals, by not revealing any information
about the favored player, make her better off compared to nonparticipation. However,
these proposals by admitting a fully revealing strategy for the less favored player, harm
her and provide her high type an incentive to not participate. This asymmetric revelation
of information provides room for the mediator to make these proposals admissible by us-
ing an equal probability randomization device (Theorem 3.2). Intuitively, randomization
between the roles of the two players helps to subsidize the type that is hurt by partic-
ipation through taxing the type that gains from the participation. The equal proposal
by treating the two players equally does not provide such a possibility for the mediator,
while the lopsided proposals do.

The mediation style studied in this chapter is sometimes referred to as manipulative
mediation (Zartman, 2007). This is the most intensive form of mediation where the
mediator not only facilitates discussions and develops peace proposals but also actively
uses its resources to leverage an agreement with incentives like financial aid or threats
like economic sanctions. According to the International Crisis Behavior Project, almost
forty percent of conflicts mediated in 1918-2001 were conducted by such powerful medi-
ators (See Wilkenfeld et al., 2007). The examples are many, among which is the Camp
David Accords mediated by the United States between Egypt and Israel in 1978.4 The
Camp David mediation agenda included several issues including the dispute over the
Sinai Peninsula, which Israel had captured during the Six-Day War in 1967, security
arrangements between the two countries, and the Israel-Palestine conflict. The media-

4Other examples for further reference are the numerous events that the United States mediated
between Israel and Palestine such as the Oslo Process (Lasensky, 2004) as well as the most recent
peace plan proposed in 2020, the numerous treaties mediated by major powers in the nineteenth century
Europe at the time known as the Concert of Europe like the Treaty of Constantinople (1832) between
the Ottoman Empire and Greece (Brewer, 2011), and the Dayton Accords (1995) that end the Bosnian
War.
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tion ended in a peace agreement which led to the normalization of relations between the
two countries and the withdrawal of Israel from the Sinai Peninsula. The economic aid
promised by the USA was calculated roughly to be $2 billion in the case of Egypt and
$ 3 billion for Israel annually (Quandt, 2015). The agreement can be seen as arguably
a lopsided proposal where the contested prize, the Sinai Peninsula, is recognized in the
full ownership of Egypt.

As a robustness check on these surprising results, I extend the analysis to a continuum
of types and study monotone cutoff mediation strategies. I find that equal proposal is not
admissible (Theorem 3.3). This holds for a non-degenerate set of off-path beliefs includ-
ing the passive updating assumption, i.e., whenever a player observes nonparticipation
behavior she maintains her prior belief about the opponent. I find that depending on the
assumption on the off-path beliefs, either the high types or mid-range types of a player
have incentives to not participate. Given mild assumptions on the prior’s CDF that en-
sure its concavity, stochastic lopsided proposals are implementable (Theorem 3.4). Given
such proposals, the favored player always accepts, and the less favored player follows a
monotone cutoff strategy where she accepts if her type is below a threshold and rejects
if above. Thus, the mechanism is not too revealing.

To study the information effect of mediation, it is germane that conflict is viewed
as an endogenous outcome. The economics literature in studying conflict management
(Baliga and Sjöström, 2020, Bester and Wärneryd, 2006, Compte and Jehiel, 2009, Fey
and Ramsay, 2011, Hörner et al., 2015, Meirowitz et al., 2019, and Spier (1994)) assumes
that the outcome of conflict is determined by an exogenous lottery, abstracting from the
information externality of mediation on the conflict’s payoff. Among them, Hörner et al.
(2015), in a binary type environment and using a more general class of mechanisms, show
that a mediator, whose objective is conflict minimization, offers an equal split of the prize
when the players’ types are the same, whereas in this chapter I show that equal proposal
is not always implementable.

The closest papers in the literature to this one are Balzer and Schneider (2019, 2021a),
Kamranzadeh and Zheng (2022), Lu et al. (2021a), and Zheng (2019b). Given a binary
type distribution, Balzer and Schneider consider the problem of an arbitrator with en-
forcement power and a mediator who wants to minimize the probability of litigation. The
mediator makes separate confidential proposals to the players. Allowing for more general
classes of mechanisms and conflict games, they characterize optimal proposals in terms
of optimal information structure once the mediation fails. In my model, the mediator’s
proposals are public, which means players can learn from both accept and reject decisions
of their opponent, which reduces the mediator’s control of the information structure once
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mediation fails.

Kamranzadeh and Zheng (2022) consider the problem of a mediator who proposes a
peaceful split of a common value prize to players. With social surplus maximization as
the objective, they show suboptimality of the equal proposal when the type distribution
is binary. In my model, participation in the mediation is voluntary which in turn affects
the admissibility of the equal proposal. Zheng (2019b) identifies necessary and sufficient
conditions, in terms of the prior distributions, under which there exists a mechanism for
the mediator to fully preempt conflict. In the current chapter, the prior distribution does
not satisfy those conditions and the mediator cannot propose any mechanism that would
fully avoid conflict. Lu et al. (2021a) study similar conditions for peace as Zheng (2019b)
but in a setup where one player, instead of a mediator, proposes a peace proposal to the
other.

In the received literature on mechanism design when the outside option is type-
dependent or endogenous, it is not without loss of generality to restrict attention to
full participation in the mechanism even for general negotiation mechanisms (Jullien,
2000, Celik and Peters, 2011). Similarly, in the conflict mediation literature with an en-
dogenous outside option, full participation is not implied by the revelation principle. The
exceptions are Zheng (2019b) which focuses attention on peace guaranteeing equilibria,
which are not mathematically feasible in the current chapter, and Balzer and Schneider
(2021a) where the arbitrator has enforcement power.

The full participation objective of the mediator is related to the mechanism design
literature on bidding collusion (Balzer and Schneider, 2021b, Lu et al., 2021b, Pavlov,
2008, and Zheng, 2019a), where if privately informed firms cannot agree on a collusion
mechanism, a default game is triggered. To study players’ incentive to collude, one
must calculate the default game payoffs. In my model, the mediator lacks enforcement
power and the primitives are so chosen that the default game cannot be fully preempted.
Moreover, I consider a non-degenerate set of off-path beliefs that include both passive
updating and extreme off-path beliefs, usually assumed in this literature.5

The conflict game in my model is analogous to independent private value all-pay
auction. In solving the continuum of type all-pay auction game, I extend the approach
introduced in Amann and Leininger (1996) and Kirkegaard (2008). Amann and Leininger
solve a class of two bidder all-pay auctions in which types are drawn from different
distributions with common type space. Kirkegaard solves similar games with partially
overlapping type spaces that have different upper bounds. I extend their analysis to

5The exception is Zheng (2019a) that characterizes the possibility of collusion given the off-path
belief most conducive to it.



3.2. The Model 38

handle all asymmetric cases that arise endogenously in my model, where the posteriors
are a truncated distribution of the prior, type spaces overlap, and have different lower
bounds and upper bounds (Appendix B.7.2).

Political science literature also studies the effectiveness of a biased mediator (see
Kydd, 2003 and Kydd, 2006, Smith and Stam, 2003, and Rauchhaus, 2006). They
consider the mediator as a strategic player with biased preferences among disputants
or the issue at stake. Whereas, in my model, the mediator is neutral and favoritism
arises endogenously.6

I shall present the model and preliminary analysis in Section 3.2, report the findings
and intuitions for the binary type distributions in Section 3.3 and the continuum of types
distribution in Section 3.4. Appendix B presents the formal arguments and calculation
details.

3.2 The Model

Two players, named 1 and 2, compete for a prize. Each player has a private valuation,
or type, for the prize. Each player’s type is independently drawn from the same binary
distribution, whose realization is either a (“low”), with probability θ, or 1 (“high”) with
probability 1 − θ, such that θ ∈ (0, 1), 0 < a < 1.7 After privately learning their types,
players simultaneously and publicly announce whether they participate in the mediation.
Conditional on participation, if a peace proposal is accepted by both players, they avoid
conflict. If at least one player chooses nonparticipation or if no peace proposal is accepted
by both, then the game enters a conflict stage.

The conflict is a winner-take-all. Each player i, after observing the announced actions
of both, simultaneously chooses a level of effort bi ∈ R+ to devote to conflict. The player
that exerts the greatest efforts wins the prize, with ties broken randomly with equal
probabilities; the payoff for player i of type ti is equal to ti − bi if i wins, and equal to
−bi otherwise.

At the mediation, a neutral mediator makes a type independent peace split

ν := (ν1, ν2) ∈ [0, S]2 such that ν1 + ν2 = S, (3.1)

6The political science literature on conflict mediation is vast and cannot be done justice here. For a
recent review of bargaining models of war, see Ramsay (2017), Kydd (2010), and Baliga and Sjostrom
(2013). For further reference, including empirical literature, see Wilkenfeld et al. (2007).

7Normalizing one of the types to 1 is without loss of generality because only the ratio of the types
matter. It helps to clean up the calculations.
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where S is the expected surplus of a multi-dimensional peace agreement and (ν1, ν2) are
interpreted as the splits of the peace surplus between two players. The mediator can
augment her mechanism with an equal probability randomization device.

At the mediation, each player simultaneously announces whether she will Accept or
Reject the proposal. If both accept, the game ends with player i getting a payoff equal
to νi. If at least one of them rejects the proposal, then the game enters the conflict stage.

Once the mediator has chosen a mediation mechanism in the form of a (stochastic)
peace proposal, the ensuing multistage game is defined for which I use perfect Bayesian
equilibrium (PBE) as the solution concept. The mediator’s objective is to minimize
the probability of conflict subject to the full participation of players in her mechanism.
Hence, nonparticipation is an off-equilibrium path event.

A PBE is said to be fully participating if and only if on its path deviation to nonpar-
ticipation occurs with zero probability relative to the prior distribution. A (stochastic)
peace proposal is said to be admissible if and only if the multistage game given the pro-
posal admits a fully participating PBE. A peace proposal is optimal if it minimizes the
probability of conflict subject to admissibility.

The following assumption about the parameters is maintained throughout this chap-
ter:

0 < S < 2θ(1 − a). (3.2)

As demonstrated in Zheng (2019), the minimum peace proposal that is required to guar-
antee peace in our game is θ(1 − a), i.e., once each player is offered this peace split, they
will Reject it with zero probability on the path of equilibrium. Hence, if S = 2θ(1 − a),
then an equal split that offers θ(1 − a) to each player guarantees peace. The above
assumption on the parameters is to avoide the triviality of the problem.

3.2.1 The Continuation Equilibrium during Conflict

Given any proposed split (νi, ν−i), let σi(νi; t) denote the probability with which player i
of type t rejects the proposal (∀i ∈ {1, 2},∀t ∈ {a, 1}) in the mediation stage. Given any
strategy profile (σi)2

i=1, one can obtain player i’s ex-ante probability qA
i of accepting the

proposal (before realization of her type), and his probability qR
i of rejecting it at a fully

participating PBE:

qA
i = θ

(
1 − σi(νi; a)

)
+ (1 − θ)

(
1 − σi(νi; 1)

)
, (3.3)

qR
i = θσi(νi; a) + (1 − θ)σi(νi; 1). (3.4)
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Denote πA
i (resp. πR

i ) for the posterior probability of “t = a” conditional on i’s
accepting (resp. rejecting) the proposal. By Bayes’s rule,

πA
i q

A
i = θ

(
1 − σi(νi; a)

)
, (3.5)

πR
i q

R
i = θσi(νi; a). (3.6)

The posteriors satisfy the Bayes’s consistency condition, which means that the expected
posteriors equal to the prior

qA
i π

A
i + qR

i π
R
i = θ. (3.7)

To understand the working of the model, I start with the last stage which is the
conflict stage. Whether this stage is entered because someone rejected the proposal, or
one deviated and did not participate in the mediation, the game is the same. Each player
knows their type, the history of the game, and has a posterior belief about the rival’s
type based on that history. Denote πi for the posterior probability of player i being type
ti = a. Denote G (πi, π−i) for the continuation game at the conflict stage such that πi is
the posterior distribution of player i’s type for each i ∈ {1, 2}. At any G (πi, π−i) each
player simultaneously chooses a level of effort/resources bi to devote to the conflict and
the outcome is determined. This conflict game is analogous to an independent private
value all-pay auction where each player submits a sealed bid bi ∈ R+.

The solution to such games is well known and is solved in Kamranzadeh and Zheng
(2022).8 There it has been shown that one can characterize the cumulative distribution
function (CDF) of player i’s effort at the BNE of the conflict game. In any BNE, the
union of all types’ efforts’ (bidding) support is a bounded interval that is the same for
each player, and both players mix down to zero. There is a unique monotone BNE, where
the high type of each player exerts higher effort than the low type, i.e., the interior of
the support of the effort distribution is disjoint and the high type’s support ranges over
higher effort levels than the low type. There will be common maximal effort; at most
one atom at zero; and no gap. Thus, given any pair (πi)2

i=1 of posterior probabilities, the
expected payoff for each player-type in the continuation game of conflict is determined
according to the next lemma:

Lemma 3.1 (Kamranzadeh and Zheng (2022)) Given any pair (πi)2
i=1 of posterior prob-

abilities at the start of the conflict stage, the expected payoff for each player i at any

8For a general treatment of all-pay auction games given any arbitrary type distribution see Zheng
(2019b).
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Bayesian Nash equilibrium in the conflict stage is equal to

U1
i (πi, π−i) = (1 − a) max{πi, π−i}, (3.8)

Ua
i (πi, π−i) = a(1 − a) (π−i − πi)+ . (3.9)

For player i, given a belief about her opponent type distribution π−i, the expected
payoff of t = a is weakly decreasing in πi and that of t = 1 is weakly increasing in πi.
Player i is referred to as “weak”, and player −i as “strong”, if πi > π−i.

This chapter studies admissible peace proposals as defined above. Nonparticipation is
an off-path event that triggers conflict. This outside option is endogenous and depends on
the beliefs over the distribution of types. Suppose player −i unilaterally deviates and does
not participate in the mediation. Denote the off-path belief upon nonparticipation by
π̃np

−i. In that event, Bayes’s rule implies πi = θ, as player i participates in the mechanism
almost surely. π̃np

−i is off-path and hence arbitrary. I maintain the assumption that the
off-path belief π̃np

−i is independent of πi along with the “no signaling what you don’t know”
assumption of Fudenberg and Tirole (1991). Payoff of the deviating player depends on the
posterior beliefs at the continuation game G

(
πi, π̃

np
−i

)
, where πi = θ and π̃np

−i is arbitrary
and in [0, 1].

Given any (stochastic) peace proposal, a fully participating PBE of the game amounts
to a pair of mediation strategy (σi)i=2

i=1, and belief system
(
πA

i , π
R
i , π̃

np
i

)i=2

i=1
, such that,

for each player i, σi best replies to σ−i given the continuation values determined by(
πA

i , π
R
i , π̃

np
i

)i=2

i=1
according to Eqs. (3.8)-(3.9), and

(
πA

i , π
R
i , π̃

np
i

)i=2

i=1
obey Bayes’s rule

whenever applies.

Call a PBE always-conflict if and only if σi(νi; a) = σi(νi; 1) = 1 for some player
i ∈ {1, 2}. It is easy to show that any peace proposal admits an always-conflict PBE,
supported by posteriors πA

i = πR
i = θ, on or off path, for each i ∈ {1, 2}.

Remark 3.1 Due to the dynamic nature of the multistage game, the action to partici-
pate and announce Reject for a player is not equivalent to nonparticipation. By partici-
pating and announcing Reject, the player observes her opponent’s decisions and thereby
learns about her type, which affects strategies in conflict. Whereas, nonparticipation, a
unilateral deviation, shuts down all communication and the player does not learn about
her opponent. Thus, full participation translates itself into an interim participation con-
straint (Section 3.2.2). Moreover, any peace proposal admits a PBE where each type of
each player fully participates and announces Reject. At this PBE the on-path posterior
is the same as the prior (c.f. proof of Lemma B.1). This is a suboptimal PBE because it
admits conflict with probability one.



3.2. The Model 42

3.2.2 The Equilibrium Condition during Mediation

For notational convenience, denote

r := 1/(1 − a). (3.10)

Using the definition of r, a neutral mediator makes a peace proposal

x := (x1, x2) ∈ [0,M ]2 such that x1 + x2 = M, (3.11)

interpreted as a peaceful split (x1/r, x2/r) of the peace surplus, where M = Sr.

Conditional on participation in the mediation, given any strategy profile (σi)2
i=1 and

the associated probability and belief system (qA
i , q

R
i , π

A
i , π

R
i )2

i=1 defined by Eqs. (3.3)–
(3.6), each player i’s interim expected payoff from rejecting or accepting a peace proposal
(xi, x−i) for each i ∈ {1, 2} is determined. Using the definition of r,

V A
i (xi; t) := qA

−ixi + qR
−irU

t
i

(
πA

i , π
R
−i

)
, (3.12)

V R
i (xi; t) := qA

−irU
t
i

(
πR

i , π
A
−i

)
+ qR

−irU
t
i

(
πR

i , π
R
−i

)
. (3.13)

That is, V d
i (xi; t) is r times the expected payoff of player i of type t from choosing

d ∈ {A,R}. The difference between the two expected payoffs is summarized by a vector:

 ∆i(1)
∆i(a)

 := qA
−i

 max
{
πR

i , π
A
−i

}
− xi

a
(
πA

−i − πR
i

)+
− xi

+ qR
−i

 max
{
πR

i , π
R
−i

}
− max

{
πA

i , π
R
−i

}
a
(
πR

−i − πR
i

)+
− a

(
πR

−i − πA
i

)+

 .
(3.14)

Hence,

σi(νi; t) > 0 ⇒ ∆i(t) ≥ 0, (3.15)
σi(νi; t) < 1 ⇒ ∆i(t) ≤ 0. (3.16)

Suppose player i unilaterally deviates to nonparticipation. Then, Bayes’s rule implies
π−i = θ. π̃np

i is off-path and arbitrary. Let Ũ t
i

(
π̃np

i , θ
)

denote the maximum expected
off-path payoff for type t of player i. Let Ṽ np

i (t) := rŨ t
i

(
π̃np

i , θ
)
. Hence, by Eqs. (3.8)

and (3.9)

Ṽ np
i (1) = max{π̃np

i , θ}, (3.17)

Ṽ np
i (a) = a

(
θ − π̃np

i

)+
. (3.18)
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If π̃np
i ≤ θ, then Ṽ np

i (1) = θ, Ṽ np
i (a) = a

(
θ − π̃np

i

)
. If π̃np

i ≥ θ, then Ṽ np
i (1) =

π̃np
i , Ṽ np

i (a) = 0.

Let Vi(t) denote r times the interim payoff of type t of player i at the participation
stage. With probability 1/2 player i is the favored one and is offered xi > x−i and with
the complementary probability she is offered x−i. Conditional on participation and once
the proposals are announced, player i announces d ∈ {A,R} and m ∈ {A,R}. Thus,

Vi(t) := V d
i (xi; t)/2 + V m

i (x−i; t)/2. (3.19)

where V d
i (xi; t) for each d ∈ {A,R} and V m

i (xi; t) for each m ∈ {A,R} is defined by
Eqs. (3.12) and (3.13). A proposal satisfy full participation condition if and only if for
each t ∈ {a, 1}

Vi (t) ≥ Ṽ np
i (t) (3.20)

3.3 Main Findings

For tractability I assume that the parameters (M, θ, a) satisfy:

θ + a ≤ M < 2θ and a < θ. (3.21)

where by Eq. (3.11), M = Sr. By the definition of r in Eq. (3.10), Ineq. (3.2) is equivalent
to:

0 < M < 2θ. (3.22)

If M = 2θ then the equal split can guarantee peace. Therefore, the first clause of
Ineq. (3.21) states that the level of peace surplus is low enough that peace cannot be
guaranteed. If a ≥ θ and θ+a ≤ M , then M ≥ 2θ, implying there exists a peace proposal
that fully prevents conflict.

Note that θ + a ≤ M guarantees that the level of peace surplus is larger than a
threshold which is the sum of the minimum expected payoff that the high type can get
by triggering conflict, i.e., θ, and the highest payoff that is achievable for the low type,
a. Accordingly, a < θ implies that the minimum expected payoff of the high type from
triggering conflict is larger than the maximum payoff that the low type can get from such
an action. Together with M < 2θ, they imply that the level of peace surplus is high but
not too high that peace can be fully guaranteed.

I find that if some player i ∈ {1, 2} rejects peace proposal with strictly positive
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probability, then the mediation strategies are increasing in type, i.e., σi(νi, a) < σi(νi, 1)
(Lemma B.4, Appendix B.1). Given the dynamic nature of the game, the monotone
mediation strategies are not obvious a priori. On the one hand, the high type may have
the incentive to feign weakness and play the same action as the low type at the mediation.
Being perceived as a low type would make the conflict less intense and costly, and the
high type can gain a larger payoff (Eq. 3.8). This strategic behavior is sometimes called
sandbagging. On the other hand, the weak type may have the incentive to bluff and play
the same action as the high type. Being perceived as high type increases her payoff in
the conflict that ensues the mediation (Eq. 3.9). The reasons for monotone mediation
strategies are monotonicity of the conflict’s payoff in type (Eqs. 3.8 and 3.9) and that
proposals are type independent, i.e., types only matter at conflict.

Monotone mediation strategies coupled with Eqs. (3.5) and (3.6) implies that in any
fully participating PBE such that 0 < qR

i < 1,

πR
i < (≤) πA

i ⇐⇒ σi(νi; 1) > (≥) σi(νi; a) ⇐⇒ πR
i < (≤) θ < (≤) πA

i . (3.23)

If player i announces Accept (resp. Reject), then her opponent by observing this decision
infers that she is a low type with a higher (resp. lower) probability compared to the prior.
The following proposition summarizes all possible fully participating PBEs that are not
sub-optimal and do not admit always-conflict PBEs. The proof for this proposition, and
all other proofs, are provided in Appendix B.

Proposition 3.1 Suppose 3.21. Given any peace proposal (ν1, ν2), there are two possible
classes of fully participating PBEs that are not always-conflict and not suboptimal:
(i) Lopsided: For some i ∈ {1, 2}, σ−i(νi; a) = σ−i(νi; 1) = 0 = σi(νi; a) < 1 = σi(νi; 1),
(ii) Mutually partially mixed (MPM): For each i ∈ {1, 2}, σi(νi; a) = 0, σi(νi; 1) ∈ (0, 1).

MPM PBE is admitted by equal proposal (Lemma B.8, Appendix B.2) and Lopsided
PBEs by lopsided proposals (hence the denomination) such that min {x1, x2} ∈

[
aθ, M̄

]
,

where
M̄ := M −

(
θ + 1 − θ

θ
π̃R

−i

)
(3.24)

for some off-path posterior π̃R
−i ∈ [0, 1] (Lemma B.7, Appendix B.2). By Ineq (3.22), one

can verify that M̄ < M
2 .

To see intuitions on possible classes of PBEs that are not suboptimal (Appendix
B.1) note that by the Bayes’s consistency requirement (3.7), the ex-ante probability of
accept is equal to qA

i = θ−πR
i

πA
i −πR

i
. Thus, maximizing probability of peace, is equivalent to
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maximizing qA
i q

A
−i = ∏2

i=1

(
θ−πR

i

πA
i −πR

i

)
. If the mediator can somehow decrease πA

i and πR
i of

each player, it increases probability of peace. By the monotone mediation strategies, if
the players participate and Reject is a best reply for at least one type of a player, then
πR

i ≤ θ ≤ πA
i (Eq. 3.23). But the mediator only indirectly and through the proposals

can affect the posterior beliefs.

The ex-ante probability of Accept, by Eq. (3.3), is a convex combination of (1 −
σi(νi; a)) and (1−σi(νi; 1)). If the mediator can somehow decrease πR

i , then by Eqs. (3.8)
and (3.9), it increases payoff at conflict for the high type of player i, incentivizing her
to announce Reject, while hurt the low type, discouraging her from announcing Reject.
Therefore, in choosing the proposal that admits these beliefs, the mediator must make a
trade off which type she wants to discourage from Reject. The mediator cannot induce
strategies that high type of both players Accept (Lemma B.1, Appendix B.1). Then, to
maximize probability of peace, the mediator may want to minimize σi(νi; a) = 0. This,
by Eq. (3.3), means qA

i ≥ θ, a large probability of Accept especially for large values of θ.
Moreover, by Eq. (3.6), σi(νi; a) = 0 means πR

i = 0, which is the best belief for the low
type of player i and the worst belief for her high type. Thus, it minimizes the interim
payoff of Reject for high type of player i and maximizes that of her low type.

If player i plays a fully revealing strategy, i.e., σi(νi; a) = 0 and σi(νi, 1) = 1 and her
rival always Accept, then qA

i = θ and qA
−i = 1 (Eq. (3.3)) and the probability of peace is

θ. It turns out such a class of PBEs works as a benchmark for comparison of probability
of peace. Then, any PBE where both players Reject with strictly positive probability
and σi(νi; 1) = 1 for at least one, is outperformed by this benchmark (Lemma B.3,
Appendix B.1). Thus, one can conclude that to find proposals that are admissible and
maximize probability of peace it suffices to investigate four possible classes of PBEs
(Appendix B.1, Table B.1 ). Moreover, by assumption (3.21), this class of PBEs shrinks
further (Lemmas B.5 and B.6, Appendix B.2) as stated in Proposition 3.1.

3.3.1 Conflict Minimizing Proposals

By Proposition 3.1, given any peace proposal (x1, x2), there are two possible PBEs that
are not always conflict and not sub-optimal: MPM PBEs admitted by the equal split
(Lemma B.8, Appendix B.2) and Lopsided PBEs admitted by lopsided splits (Lemma
B.7, Appendix B.2). Hence, for each of these PBEs, one can characterize the strategy pro-
file (σi)2

i=1, which in turn, by Eq. (3.3), determines an ex-ante probability of Accept. Let
P (xmin) denote the ex-ante probability of conflict generated by any not-always-conflict
PBE given a peace proposal (x1, x2) where xmin := min{x1, x2}. Let P (0) := 1, as the
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equilibrium given xmin = 0 is always conflict. Ex-ante probability of conflict is uniquely
determined for the equal proposals by P

(
M
2

)
= 1 − (qA)2, where qA is characterized by

Lemma B.8, and for lopsided proposals by P (xmin) = 1 − θ (Corollary B.1).

Suppose player i unilaterally deviates to nonparticipation. Given an off-path posterior
belief π̃np

i , a proposal, to be admissible, must satisfy the participation constraint (3.20).
The payoff upon deviation to nonparticipation depends on how the deviating player is
perceived compared to her rival. The deviating player does not learn more than prior
about her rival while her rival forms an arbitrary belief about her. Hence the off-path
continuation game is G

(
π̃np

i , θ
)
. If upon nonparticipation she is perceived to be low type

with a higher probability than her rival, i.e., π̃np
i > θ, then these beliefs are optimistic

forecast of deviation for the high type (Eq. (3.17)) and pessimistic for the low type
(Eq. (3.18)) delivering the low type zero payoff and the high type’s payoff is equal to π̃np

i .
If π̃np

i ≤ θ, then the high type’s deviation payoff is equal to θ and that of low type is
equal to a(θ − π̃np

i ).

By the definition of MPM PBEs, given in Proposition 3.1, the weak type of both
players always accept. Thus, by Bayes’s rule, in MPM PBEs πR

1 = πR
2 = 0. These are

the best beliefs for the weak type of each player and gains her the highest feasible interim
payoff if she announces Reject, i.e., V R

i (xi; a) = aθ and the worst belief for the high type
of each player, delivering V R

i (xi; 1) = θ. By Eqs. (3.17) and (3.18), if π̃np
i ≤ θ then the

nonparticipation payoffs for each type are Ṽ np
i (1) = θ and Ṽ np

i (a) = a(θ − π̃np
i ) and if

π̃np
i > θ then the nonparticipation payoffs are Ṽ np

i (1) = π̃np
i > θ and Ṽ np

i (a) = 0. Thus,
in MPM PBEs, if π̃np

i > θ, the high type deviates to nonparticipation. If π̃np
i ≤ θ, both

types fully participate.

Proposition 3.2 For any π̃np ≤ θ the equal proposal is admissible. For any π̃np > θ,
given the equal proposal, the high type prefers nonparticipation and the proposal is not
admissible.

Intuitively, randomization between the roles of the two players can help to subsidize
the type that is hurt by participation through taxing the type that gains from the par-
ticipation. The equal proposal by treating the two players equally does not provide such
a possibility for the mediator. Hence, the equal proposal is not admissible even with ran-
domization, if the off-path beliefs penalize the high types of both players and incentivize
them to not participate.

In Lopsided PBEs, the favored player, labeled as −i, receives a larger share, always
Accept, and reveals no further information than the prior, i.e., πA

−i = θ. The larger share
that the favored player receives and the fact that she does not reveal any information
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about her type while learns about her opponent by participation results in her full partic-
ipation. The less favored player, labeled as i, follows a fully revealing pure strategy: Ac-
cept if she is low type and Reject if she is high type. Thus, πA

i = 1 and πR
i = 0 by Bayes’s

rule. By participation, the high type’s interim payoff is V R
i (x; 1) = θ (Eqs. (3.12) and

(3.13)) and that of her low type, by revealed preference argument V A
i (xi; a) ≥ V R

i (xi; a),
is at least V R

i (xi; a) = aθ. By Eqs. (3.17) and (3.18), if π̃np
i ≤ θ then the nonparticipa-

tion payoffs for this player are Ṽ np
i (1) = θ and Ṽ np

i (a) = a(θ − π̃np
i ) and if π̃np

i > θ then
the nonparticipation payoffs are Ṽ np

i (1) = π̃np
i > θ and Ṽ np

i (a) = 0. Thus, if π̃np
i ≤ θ,

both players fully participate and if π̃np
i > θ, the less favored player’s high type prefers

nonparticipation.

Proposition 3.3 For any π̃np ≤ θ lopsided proposals are admissible. For any π̃np > θ,
given lopsided proposals, the favored player and the low type of the less favored player
prefer participation while the less favored player’s high type prefers nonparticipation.

In contrast to the equal proposal that treats two players equally, lopsided proposals
provide different payoffs for the players. Hence, the mediator can randomize between the
roles of the two players to subsidize the type that is hurt by participation by taxing the
type that gains from the participation. Through this channel, she can guarantee the full
participation of both players in the mechanism.

Given (M, θ, a) and π̃np, one can characterize admissible conflict minimizing proposals.
By Propositions 3.2 and 3.3, if π̃np ≤ θ, then both the equal and lopsided proposals are
admissible. The following theorem provides the optimal proposal for such off-path beliefs.
Denote,

θ∗ := 6 − a− 4
√

2 − a, (3.25)

Theorem 3.1 Suppose (M,a, θ) satisfy Ineq. (3.21). For any π̃np ≤ θ:

a. if a < θ < θ∗ then the equal proposal is the unique optimal proposal;

b. if θ∗ ≤ θ then there exists a unique M∗ ∈ [θ + a, 2θ) such that: (i) if M > M∗ then
the equal proposal is the unique optimal proposal, (ii) if M < M∗ then there will be
multiple optimal proposals each being lopsided and admitting the same probability
of conflict, (iii) if M = M∗ both the equal and lopsided proposals are optimal.

By Proposition 3.2, if π̃np > θ, then the equal proposal is not admissible. Since the
equal proposal provides both players with similar payoffs, randomization does not help.
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However, by Proposition 3.3, if π̃np > θ, then given the lopsided proposals, the favored
player’s high type prefers participation while that type of the less favored player prefers
nonparticipation. This unequal treatment provides room for the mediator to randomize
the role of players and satisfy full participation constraint by averaging the participation
payoffs among the player that is hurt by participation with the one that benefits from it.
The following Theorem states this result.

Theorem 3.2 Suppose (M,a, θ) satisfy Ineq. (3.21), θ ≥ 1
2−a

, and any π̃np ∈
(
θ, 2θ

1+θ

]
.

Then, lopsided proposals augmented with an equal probability randomization device are
the only admissible conflict-minimizing proposals.

Remark 3.2 Note that stochastic lopsided proposals from an ex-ante point of view, by
using a fair coin to assign the role of players, treat players symmetrically. However, the
splits, after the realization of the role of each player, are lopsided. The unequal interim
payoff admitted by the lopsided proposals provides room for randomization by a fair coin.
Without this interim favoritism, the lopsided proposals would not be admissible. This
is precisely the reason that the equal proposal is not admissible even if augmented by a
fair coin.

3.4 Robustness: Continuum of Types Distributions

Previous sections show that for identical binary type prior distributions the equal pro-
posal is sometimes suboptimal or not admissible and the mediator may show favoritism
to admit a conflict minimizing proposal. To verify that these results are not driven by
the assumption of two types, as a robustness check, I extend the analysis to a continuum
of types distribution.

Two players, indexed by i ∈ {1, 2}, compete for a prize. Each player i’s type ti,
privately known to i, is drawn independently from a commonly known cumulative distri-
bution function F with the support [0, 1]. F possesses positive density f . At the outset,
and after knowing their types, each player decides whether to participate in a mediation
mechanism or pursue conflict directly. The rest of the model is identical to the binary
type private model (Section 3.2).

The following assumption about the parameters is maintained throughout this chap-
ter:

0 < S < 2c∗, (3.26)



3.4. Robustness: Continuum of Types Distributions 49

where c∗ is a function of the primitives and defined as

c∗ := inf
{
c ∈ [0, 1] :

∫ 1

c

1
F−1(s)ds ≤ 1

}
. (3.27)

c∗ is the payoff that type t = 1 of player i gains in a continuation game G (δ1, F ), where
she is perceived to be type {1}, i.e., the Dirac measure at 1 denoted by δ1, and her
rival’s type distribution is the prior. As demonstrated in Zheng (2019b), δ1 is the most
penalizing belief for type t = 1 at G (δ1, F ), and c∗ is the minimum proposal required to
guarantee peace, i.e., once it is offered to each player they Reject it with zero probability
on the path of equilibrium. Thus, Ineq. (3.26) (analogous to (3.2) for the binary type
distributions) states that if S < 2c∗, any peace proposal would be rejected with positive
probability on the path of equilibrium.

Given any proposed split, a multi stage game is defined. This chapter studies equi-
libria in which each player i ∈ {1, 2}, conditional on participation in the mediations,
employs monotone cutoff strategy σi(νi; ti) with cutoff value λi ∈ [0, 1]:

σi(νi; ti) =

 Accept if ti ∈ [0, λi]
Reject if ti ∈ [λi, 1].

(3.28)

Given cutoff strategies, beliefs are updated via Bayes’s rule, whenever it applies.
Therefore, conditional on participation, for each player i ∈ {1, 2} at the continua-
tion game of conflict the posterior probabilities are truncated distribution denoted by
CDF Fm

i , where m ∈ {A,R} is the announced decisions at the mediation stage. A

stands for Accept and R for Reject. Hence, whenever Bayes’s rule applies, FA
i (resp.

FR
i ) is a truncation of the prior F and it has the support [0, λi] (resp. [λi, 1]). The den-

sities are defined respectively. Deviation to non-participation by player i is an off-path
event, where the off-path belief about i is denoted by F̃ np

i . Analogous to the binary case,
I maintain the assumption that the off-path belief F̃ np

i is independent of F−i. Player 1 is
referred to as “weak”, and player 2 as “strong”, if F h

2 first order stochastically dominates
F l

1, where h ∈ {A,R, np} and l ∈ {A,R, np}.

Whether the conflict is triggered because someone rejected the mediator’s offer, or
because one deviated and did not participate, the game is the same. Each player knows
their type, the history of the game, and has a posterior belief about the rival’s types
based on that history. I extend the methodology of Amann and Leininger (1996) and
Kirkegaard (2008) to handle all asymmetric continuation games of conflicts that arise
endogenously where the posterior beliefs can have overlapping supports. This game has
a unique BNE; both players exert effort (bid) over common support; one player exerts
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effort that is strictly increasing in type while that of the other is weakly increasing in
type: types below a threshold put zero effort and those above the threshold exert strictly
increasing effort in type (Appendix B.7.2).

Thus, given any (stochastic) peace proposal, a full participation PBE of the game
amounts to, a pair of mediation cutoff strategy (σi)i=2

i=1 defined by (3.28), and belief
system

(
FA

i , F
R
i , F̃

np
i

)i=2

i=1
, such that, for each player i, σi best replies to σ−i given the

continuation values determined by the belief system that obeys Bayes’s rule whenever
applies.

I study two classes of proposals that admit equilibria resembling those of the binary
type distribution. One is the equal proposal that admits symmetric PBEs. The other
one is the lopsided proposals, which admit Lopsided PBEs where player i who is offered
the larger share always announces Accept, and player −i follows cutoff strategies at the
mediation.

3.4.1 Symmetric Equilibrium

A symmetric equilibrium means a PBE where the two players fully participate and use
the same cutoff strategy at the mediation. To be explicit:

σ(νi; t) =

 Accept if t ∈ [0, λ]
Reject if t ∈ [λ, 1],

(3.29)

and the associated posteriors are FA
i and FR

i . The cutoff type is indifferent between
Accept and Reject. Conditional on participation, equal proposal admits symmetric me-
diation strategies (Appendix B.7.3). Analysis of participation decisions of players is based
on the characterization of payoffs at the continuation game of conflicts and comparative
statics analysis of how these payoffs change if one player is stochastically perceived as
stronger or weaker by the rival. The general insight is that the low (resp. high) types of
a player are better off if she is perceived as stronger (resp. weaker) at the conflict (impli-
cations of Corollaries B.3 and B.4, Appendix B.7.2). Thus, in analyzing the incentives
to deviate to nonparticipation, one needs to calculate on-path and off-path payoffs of all
types for different off-path beliefs that can take any arbitrary form, a demanding task
with a continuum of types. In particular, the difficulty arises because the participation
constraint is not necessarily monotone in type. If players are perceived to be strong upon
the off-path event of nonparticipation, then these beliefs penalize the strong types the
most and provide incentives for them to participate in the mediation while the same be-
liefs are beneficial for the weak types in the event of nonparticipation and can encourage
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them to not participate.

One of the most commonly used off-path beliefs in the literature is the passive up-
dating assumption: whenever a player observes any off-path behavior she does not learn
anything about her opponent, i.e., F̃ np

i = F . The equal proposal admits symmetric
strategies defined by Eq. (3.29), where associated posterior belief upon announcing Re-
ject FR

i has the support [λ, 1] and stochastically dominates the prior distribution F while
FA

i has the support [0, λ] is stochastically dominated by F . Hence, conditional on par-
ticipation, the high types including ti = 1, who always announces Reject (Eq. (3.29))
and signal strength, at the event G

(
FR

i , F
A
−i

)
, face a stochastically weaker opponent and

at the event G
(
FR

i , F
R
−i

)
a stochastically of similar strength opponent. One can show a

non-degenerate set of high types are worse off by this information revelation compared
to nonparticipation, where the players do not learn anything about each other. With the
same token, since high types are better off if they are perceived weaker at the conflict,
off-path beliefs with the support

[
0, t̄
]

such that t̄ ≤ 1 also rationalize nonparticipation
by benefiting these types at G (F̃ np

i , F ). These intuitive ideas are used to prove the fol-
lowing Proposition (in Appendix B.7.3) which states that given passive updating upon
nonparticipation or off-path beliefs that are a truncation of the prior distribution from
above, the equal proposal is not admissible. This is because the high types have will be
better off by nonparticipation where they do not learn anything about their opponent but
are also perceived weakly weaker compared to the prior distribution and benefit from this
perception. Moreover, since the equilibrium is symmetric randomization between players
cannot help to make the equal split admissible.

Proposition 3.4 Suppose the assumption on off-path posterior belief is passive updating
or any truncation of the prior with the support

[
0, t̄
]

for any t̄ < 1. Given any 0 < S <

2c∗, the equal proposal is not admissible.

Suppose upon nonparticipation the off-path beliefs are truncation of the prior with
support [t, 1] where t ∈ (λ, 1] meaning that it is perceived that the deviating player’s type
is above the cutoff defined by Eq. (3.29). These off-path beliefs incentivize mid-range
types including the cutoff λ to not participate in the mediation. At the off-path event of
nonparticipation, these types are perceived stochastically stronger compared to the prior
distribution while at the same time they do not learn anything about their opponent. If
these types participate, they reveal that they are weak (if they are below threshold λ) and
learn that the opponent is strong upon observing her Reject announcement and thereby
be exploited by her in the event of a conflict. Therefore, this information revelation makes
these types worse off compared to nonparticipation. For instance, the extreme case is
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F̃ np
i = δ1: whenever a player observes any off-path behavior, she believes her opponent

is the highest type {1}, i.e., F̃ np = δ1. This is the most penalizing off-path belief for
t = 1 at G (δ1, F ) (Zheng, 2019b) and makes participation appealing for her. However,
it renders the mid-range types high nonparticipation payoffs that even the possibility of
gaining an equal proposal cannot compensate. These arguments are used to prove the
following proposition (In Appendix B.7.3) which states that given the equal proposal and
the aforementioned off-path beliefs mid-range types do not participate in the mediation
and since the equilibrium is symmetric randomization cannot help to make the equal
proposal admissible.

Proposition 3.5 Suppose off-path posterior belief is any truncation of the prior with the
support [t, 1] for any t ∈ (λ, 1], where λ is the cutoff type at the symmetric continuation
game of mediation. Given any 0 < S < 2c∗, the equal proposal is not admissible.

To summarize these results, given the equal proposal, I assume the off-path posterior
belief F̃ np

i is any truncation of the prior distribution with supports that are specified in:

ξi :=
{
F̃ np

i : supp F̃ np
i =

[
0, t̄
]

∀t̄ ∈ (0, 1] or supp F̃ np
i = [t, 1] ∀t ∈ (λ, 1]

}
, (3.30)

where λ is the cutoff of symmetric strategies defined by Eq. (3.29). This set of off-path
beliefs includes passive updating and the Dirac measure at {1}. The following Theorem
is a direct implication of Propositions 3.4 and 3.5.

Theorem 3.3 Given any 0 < S < 2c∗ and any F̃ np
i ∈ ξi, the equal proposal is not

admissible.

3.4.2 Lopsided Equilibrium

This section, motivated by the binary type results, studies biased proposals that admit
PBEs, called Lopsided PBEs, where a player that receives the larger share always an-
nounces Accept. To be explicit, given any peace proposal (ν1, ν2), relabeling the players,
if necessary, suppose ν2 < ν1, i.e., ν2 ∈

[
0, S

2

)
. Hereafter, without loss of generality,

I denote the favored player as player 1 and the less favored player as player 2. Given
(ν1, ν2), in any fully participating Lopsided PBEs both players fully participate, player
1 always announces Accept while player 2 follows a monotone cutoff strategy where she
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would announce Accept if her type is below a threshold and announces Reject otherwise:

σ1(ν1; t) = Accept for all t ∈ [0, 1] and σ2(ν2; t) =

 Accept if t ∈ [0, λ]
Reject if t ∈ [λ, 1].

(3.31)

The cutoff type of player 2 is indifferent between Accept and Reject. Conflict happens
on the path of equilibrium only when player 2 announces Reject. Since player 1 always
announces Accept, one needs to make an assumption on F̃R

1 , the off-path belief about her
if she deviates to Reject. Also, an assumption on F̃ np

i at the off-path event that player
i deviates to nonparticipation is needed. I construct the Lopsided PBEs by picking
the arbitrary off-path beliefs FR

1 = F̃ np
i = δ1: whenever a player observes any off-path

behavior, she believes her opponent is the highest type {1}.

Given the off-path belief δ1, let C∗
RA(1;λ) and C∗

RR(1;λ) denote payoff of type t = 1
of player 1 at off-path continuation games G

(
δ1, F

A
2

)
and G

(
δ1, F

R
2

)
. For tractability, I

assume:

Assumption 3.4.1 For any λ ∈ (0, 1), the prior distribution’s CDF, F, satisfies

F (λ)C∗
RA(1;λ) + (1 − F (λ))C∗

RR(1;λ) > c∗.

c∗, C∗
RA(.), and C∗

RR(.), all functions of primitives, are defined by Eqs. (3.27), (B.58),
and (B.59).

This assumption, for example, is satisfied by power distributions where F (t) = tα for
α ∈ (0, 1) and support t ∈ [0, 1] (Lemma B.20, Appendix B.7.6). An intuitive explanation
of this assumption can help. Suppose player 1, that is supposed to always announces
Accept at Lopsided PBEs, deviates to Reject and triggers conflict, and that the belief
about her upon this deviation is δ1, i.e., she is perceived to be the highest type t = 1.
Player 2 follows cutoff strategy and announces Accept if her type is below the cutoff type λ
and announces Reject if her type is above λ. Player 1 by observing these decisions updates
her belief about her opponent and her highest type t = 1 at the continuation game of
conflict G

(
δ1, F

A
2

)
gains the expected payoff C∗

RA(1;λ) (defined by Eq. (B.58)) and at the
continuation game of conflict G

(
δ1, F

R
2

)
gains the expected payoff C∗

RR(1;λ) (defined by
Eq. (B.59)). Thus, the interim payoff of t = 1 of player 1 would be F (λ)C∗

RA(1;λ) + (1 −
F (λ))C∗

RR(1;λ). Moreover, suppose the continuation game of conflict G (δ1, F ), where,
as before, the belief about player 1 is δ1, while the belief about player 2 is the prior
distribution. In this case player 1 has not learned anything new about her opponent
and the payoff of the highest type of player 1 at this continuation game is c∗ (defined
by Eq. ((3.27)). Assumption 3.4.1 implies that the highest type of player 1 is better off
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under the scenario that she learns about her opponent compared to when she does not
learn anything new. Since c∗, C∗

RA(1;λ), and C∗
RR(1;λ) are all functions of primitives

(defined by Eqs. (3.27), (B.58), and (B.59)) and the cutoff type λ can takes any value in
(0, 1), this assumption is solely on the primitives. In construction of Lopsided PBEs in
Appendix B.7.4 and B.7.5, Assumption 3.4.1 is utilized to verify incentive compatibility
and participation constraint of t = 1 of the favored player, i.e., player 1.

The off-path belief δ1 is the most penalizing for t = 1 if she deviates to nonpartic-
ipation. Given lopsided proposals and off-path beliefs δ1, the following lemma states
the favored player always participates while mid-range types of the less favored prefer
nonparticipation. One can show that there exist lopsided proposals that admit Lopsided
PBEs where all types of the favored player prefer participation and always announce
Accept because of receiving a larger share. The off-path belief δ1 is beneficial for the
mid-range type of the less favored player because they will be perceived to be the highest
type at the off-path event of non-participation. Since this player is less favored and re-
ceives a small share if she participates and announces Accept, then these mid-range types
of her prefer nonparticipation and triggering conflict. Thus, the participation constraint
for the less favored player is not monotone in type. These arguments are used to prove
this Lemma in Appendix B.7.5.

Lemma 3.2 Suppose Assumption 3.4.1 and F np = δ1. For any c∗ ∈
(

1
2 , 1

)
, and any

S ∈ [S ′, 2c∗), where S ′ is a function of primitives defined by Eq. (B.60), given lopsided
proposals, favored player prefers participation and mid-range types of less favored player
such that t ∈

(
t, t̄
)

where 0 < t < t̄ < 1 prefer nonparticipation.

Similar to the binary type distribution, the unequal treatment of players by the lop-
sided proposals allows the mediator to randomly assign the role of the favored player,
with equal probability, and satisfy the full participation constraint. The following Theo-
rem states this result. In essence, the randomization allows the mediator to transfer the
payoffs from the favored players to the less favored and distribute payoffs evenly between
them such that they are both better off compared to nonparticipation. These arguments
are used to prove the following Theorem in Appendix B.7.5.

Theorem 3.4 Suppose Assumption 3.4.1 and F np = δ1. For any c∗ ∈
[

3
4 , 1

)
, and any

S ∈ [S ′, 2c∗), where S ′ is a function of primitives defined by Eq. (B.60), stochastic lop-
sided proposals are admissible.

c∗ is the payoff of t = 1 of the deviating player at G (δ1, F ) and it is a function of the
primitives. The stochastically weaker F the larger c∗ (Zheng, 2019b). c∗ ≥ 3

4 , means
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F has a high weight on low types. Note that S ′ ≤ 1 (Eqs. (B.58) and (B.60)). Hence,
the lopsided proposals are admissible even if the expected peace surplus is less than the
maximum valuation of the prize by players. The idea of the proof (provided in detail in
Appendix B.7.5) is based on the observation that Lemma 3.2 implies the participation
constraint for the less favored player is not monotone in type. By randomization be-
tween the two players, one can establish a monotone and weakly decreasing participation
constraint that is satisfied if the ex-ante probability of announcing Accept by the less
favored player is higher than a threshold F (λ) ≥ 2−2c∗ (Lemma B.17, Appendix B.7.5).
Intuitively, since the off-path belief δ1 is the most penalizing for the highest type and re-
warding for the low types, the weakly monotone participation constraint implies that high
types receive the lowest information rent by participation. Also, one can show that the
lopsided proposals that admit Lopsided PBEs admit a cutoff type λ such that the ex-ante
probability of announcing Accept by the less favored player is F (λ) > 1/2 (Lemma B.15,
Appendix B.7.4). Hence, to satisfy the condition F (λ) ≥ 2 − 2c∗ that guarantees full
participation, it suffices that 1/2 ≥ 2 − 2c∗, or in other words c∗ ≥ 3/4 as stated in
Theorem 3.4. Technically, the higher c∗ the easier to satisfy condition F (λ) ≥ 2 − 2c∗.
Intuitively speaking, the higher c∗ the lower the information rent for the strong types by
participation in the mediation. Given the stochastic lopsided proposals the participation
constraint is weakly decreasing in type, this also means full participation is guaranteed
at the expense of the high types.

Remark 3.3 One can show that given passive updating assumption, if the prior is power
distribution F (t) = tα where α ∈ (0, .5) and 1 ≤ S < 2c∗, then stochastic lopsided
proposals are admissible. This prior satisfies Assumption 3.4.1 and c∗ > 1/2. Given
passive updating, the less favored player’s high types prefer nonparticipation while the
favored player prefers participation. By participating, the less favored player does not
learn about her rival while revealing information by announcing Reject, making her
high types worse off compared to nonparticipation. Because of the unequal treatment,
randomization can help with admissibility.

3.5 Conclusion

Pre-conflict negotiations are often hindered by asymmetric information of adversaries and
their strategic incentive to not reveal their hidden information. This, throughout history,
has provided room for intervention by third parties to resolve or reduce the probability of
conflict. These institutes, especially those with “muscle”, design mediation mechanisms
coupled with incentives and threats. Yet, according to the International Crisis Behavior
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Project data set, only 67 percent of this mediation style terminated in agreement (See
Wilkenfeld et al., 2007).

This chapter emphasizes on information effect of mediation on the design of conflict
minimizing proposals for a mediator who wants to guarantee full participation of adver-
saries in her negotiation mechanism. To study these effects, conflict is modeled as an
endogenous outcome. Despite ex-ante identical players, if the peace surplus is not large,
optimal proposals among those that guarantee full participation are so lopsided that one
player always accepts and the other pursues a fully revealing strategy (Theorem 3.1).
Even if the peace surplus is large yet the high type of players has an optimistic forecast
of vetoing a mediation and triggering conflict, then only the stochastic lopsided proposals
are optimal (Theorem 3.2). These results are robust even when the distribution has con-
tinuum of types: the equal proposal is not admissible (Theorem 3.3) yet the stochastic
lopsided proposals are (Theorem 3.4). In all these results, the peace surplus from the
multidimensional agreement can be less than the highest valuation of the adversaries for
the prize. Thus, the agreement can contain both punishment and incentives.

This chapter investigates fully participating mediation mechanisms. A question for
future research is how the mediation mechanism is affected if non-participation is ad-
missible. Then beliefs at such events are not arbitrary and follow Bayes’s rule, posing a
challenge for the design. Can the mediator achieve an even lower probability of conflict?
Could on-path nonparticipation decisions lead to strategic behaviors such as bluffing and
sandbagging?

This chapter studies the information effects of failed mediation. But even successful
mediation reveals crucial information. Does such revelation lead to reneging of an agree-
ment by a player who infers her rival is weak by acceptance of a biased proposal? Could
this explain the short-term success but the long-term failure of mediation documented
by empirical literature (Beardsley, 2008)?
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Chapter 4

Peace Settlements with Possibilities
to Renege

4.1 Introduction

Conflicts are prevalent and costly. One ubiquitous practice in conflict management is
intervention by third parties like mediators to help adversaries settle their dispute by
setting up negotiation mechanisms and proposing peace agreements. In the context of
international conflicts, the effectiveness and short-term and long-term impact of these
interventions have been vastly studied (Beardsley, 2008, Gartner, 2008). Although me-
diators have short-run success in securing an agreement and avoiding conflict, in the
long run, these agreements are prone to reneging by adversaries and hence recurring
conflicts. For example, the Russia-Ukraine conflict in 2022 resumed a few years after
Minsk Agreement II (2015), which was mediated by European countries to secure peace
between the two countries. Russia reneged on this agreement by officially recognizing the
independence of Luhansk and Donetsk in Ukraine’s eastern region of Donbas and initi-
ated a war (Kramer, 2022). Beardsley (2008) found that half of all mediated crises in
the International Crises Behavior data project, which includes crises from 1918 to 2003,
recur.

One common explanation for the recurrence of conflict is that mediators, especially
those with leverage, by providing economic incentives or threats directly manipulate
adversaries’ incentives for pursuing conflict and thereby secure peace agreements. If these
incentives cannot be sustained over time then there is a chance for recurring conflicts.
However, even a mediation mechanism in which a mediator has very limited power and
only formulates a peace proposal provides valuable information to adversaries, reduces

60
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their uncertainty about each others’ private information, and thereby indirectly provides
incentives for them to renege on a previously reached agreement in the light of the new
information. A real-world episode is the United States withdrawal from the Iran Nuclear
Deal in 2018. Iran accepted the agreement in 2015. After the change of administration
in the US in 2017, the new administration perceived Iran’s acceptance of the deal as a
sign of weakness, withdrew from the agreement, and resumed hostility (Landler, 2018).

This chapter studies the conflict mediation problem where the mediator has very
limited power and cannot provide any economic incentives or impose any threats and
the adversaries lack commitment. The mediator merely proposes a nonbinding peace
proposal that if adversaries do not agree upon or renege on them after they made an initial
agreement, they can trigger conflict. This style of mediation is often called formulative
mediation and it is prevalent in international conflicts (Wilkenfeld et al., 2007). The
only way that the mediator can affect the decision of the adversaries is through her peace
proposal and indirectly through the information that players learn about each other in
the mediation process. They can use this information to assess the expected payoff from
conflict. In this sense, when players lack commitment, even in a successful mediation
they can reveal important information about themselves that they can use to evaluate
the benefits of reneging on an accepted agreement.

In this chapter, I ask how should a mediator with very limited power design peace
proposals that leads to renege-proof agreements in an environment where adversaries lack
commitment? The renege-proof motivation of a mediator can be justified as part of a
long-term motivation of a mediator who does not want to develop a reputation that she
proposes agreements that the adversaries later renege on.

To answer this question, conflict mediation is modeled as a multi-stage game. In the
mediation stage, a neutral mediator proposes a peace settlement. If the rivals accept
the proposal, then either with some exogenous probability the game ends and each rival
gets a payoff equal to their share of the prize or with the complementary probability, the
game enters a rectification stage. In the rectification stage, any player can renege on the
peace settlement and trigger conflict. Decisions are simultaneously announced. If the
deal is ratified the game ends with the rivals getting a payoff equal to the peaceful split.
If the proposal is rejected by at least one of the players at the mediation stage or the
agreement is reneged on at the rectification stage, conflict ensues. The conflict stage is
modeled as an all-pay auction. It is costly for both and winner-take-all; whoever devotes
the highest level of resources and efforts wins. The rivals have private information about
their marginal cost of exerting effort. They are either strong or weak. Conflict is less
costly for the strong type. These types are drawn from a common prior distribution.
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Therefore, the players are ex-ante identical.

The exogenous probability that the rectification stage occurs is motivated by exoge-
nous changes in the environment, e.g., changes of decision-makers on one side. It can
also be motivated by the time that it takes until an agreement becomes official and
reneging on it become prohibitively costly. To keep the problem tractable and focus
on the dynamic features of conflict mediation, I assume that mediation mechanisms are
message-independent splits, and adversaries’ types are binary. The primitives of the
model are such that conflict cannot be fully avoided. In other words, there does not
exist any negotiation mechanism that the mediator can use and fully prevent conflict.
Any proposal would be rejected with a positive probability by at least one of the players.
This is because the prior probability of being weak is relatively high. Therefore, the
strong type of one player always has an incentive to reject a peace proposal and triggers
conflict. Since conflict happens on the path of equilibrium, the mediation mechanism is
informative in the sense that players can signal information about their type, i.e., their
willingness or hesitancy to go to conflict, by announcing their decisions.

This chapter contributes to the conflict mediation literature by presenting an explicit
answer to the following policy question: What are the renege-proof mediation settlements
that a neutral benevolent mediator should propose when the mediator lacks enforcement
power and rivals lack commitment? The objective of the mediator is to maximize social
surplus, or the sum of the two adversaries’ expected payoffs before the realization of
types, subject to renege-proof constraint.

To characterize the optimal renege-proof peace proposals, I characterize all possible
cases of renege-proof equilibria. For a peace settlement to be renege-proof, i.e., renege
does not occur on the path of equilibrium, either each type of each adversary should find
the accepted proposal better than triggering conflict or the type that has an incentive
to renege would reject the proposal, to begin with, at the mediation stage, meaning
that the tempted type is not present at the rectification stage. I show that only two
sets of perfect Bayesian equilibrium (hereafter, PBE) survive renege-proof conditions
(Lemma 4.2). One case of renege-proof PBEs is Mutually Partially Mixed , hereafter
MPM. These PBEs are such that strong types of both players reject the settlement at
the mediation, while their weak types mix between accept and reject and do not renege
at the rectification. The other case of PBEs is Lopsided. The peace settlements that
admit these PBEs are so biased that the favored player always accepts and ratifies it.
The less favored player rejects this proposal if she is strong, mixes if she is weak, and
ratifies it at the rectification stage.

I show the main result of this chapter by Theorem 4.1. It states that if the probability
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of the rectification stage is higher than a threshold or the prior probability of being weak is
lower than a threshold, then the only peace settlement that is renege-proof and maximizes
social surplus is the lopsided split. If the probability of the rectification stage is lower
than a threshold then the social-surplus maximizer is either the lopsided split or the
equal split. In this case, if the prior probability of being weak is higher than a threshold,
the equal split is the social surplus maximizer, and the lopsided split is optimal when
the probability is below this threshold. When the probability of the rectification stage
is high and the equal split is proposed, the strong type of both players, similar to their
weak type, has an incentive to accept the proposal and then renege at the rectification
stage. Hence, the equal split is not renege-proof in such an environment.

Instead of maximizing social surplus, the mediator’s objective could be minimizing
the ex-ante probability of conflict. This objective is well studied in the conflict man-
agement literature. Theorem 4.2 states that the optimal solution for these two different
objectives is qualitatively the same. This is surprising because the social surplus maxi-
mization objective in this environment in which peace cannot be guaranteed takes into
account both the payoffs from peace and conflict while to attain the conflict minimization
objective, the mediator wants to minimize the expected payoff from conflict to dissuade
players from triggering it. Therefore, these two objectives are not necessarily aligned.

The economics literature in studying conflict management (Bester and Wärneryd,
2006, Compte and Jehiel, 2009, Fey and Ramsay, 2011, Hörner et al., 2015 and Spier,
1994) assume that outcome of the conflict is determined by an exogenous lottery, thereby
turning the mediator’s decision into a standard mechanism design problem. Among these
papers, Hörner et al. (2015), albeit in a static framework, compares the optimal design
of arbitration rule to that of mediation. Mediators lack enforcement power compared to
arbitrators. They show that mediators can be as effective as arbitrators in preventing
conflict. However, in my framework, the conflict is endogenous and it depends on what
rivals learn about each other in the mediation, and the players lack commitment.

The outcome of conflict depends on the resources that the adversaries choose to spend
on it. The adversaries make these decisions based on the beliefs that they have about each
other and what they have learned about each other in the mediation. When adversaries
lack commitment, even after the event that they both have agreed on a peace settlement,
they learn about each other, update their beliefs, assess the cost of conflict, and decide
whether to renege on an accepted proposal and trigger conflict. A mediator with very
limited power that seeks renege-proof mediation mechanisms can only indirectly, through
manipulating the posterior beliefs at the end of the mediation stage, affect the cost of
conflict and adversaries’ decisions to renege. As long as the conflict occurs with a positive
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probability on the path of the equilibrium, these posterior beliefs are interdependent
with the equilibrium strategy profile via Bayes’s rule. The interdependence between
the strategy profiles and the posterior beliefs makes the problem of finding an optimal
peace settlement more challenging. With conflict endogenous and adversaries’ lack of
commitment, no optimal solution to the mediator’s social-surplus maximization problem
has been found, however stylized is the model, as long as it precludes the possibility of
full preemption of conflict.

The closest papers in the literature that considers the design problem of conflict medi-
ation in a dynamic setting similar to this chapter are Balzer and Schneider (2021),Kam-
ranzadeh and Zheng (2022), and Zheng (2019). These papers also model conflict as an
endogenous outcome. However, adversaries are committed to the agreement they reach.
Balzer and Schneider (2021), taking minimization of the probability of conflict as their
design objective, provides a characterization of the conflict-minimizing solution in terms
of the on-path posterior belief system in the equilibrium associated with the mediator’s
mechanism. Zheng (2019) proposes two notions of full preemption of conflict that differ
in the mediator’s coordination ability regarding off-path continuation plays. For each
notion, Zheng provides a necessary and sufficient condition, in terms of the primitives,
under which there exists a mechanism for the mediator to fully preempt conflict. This
chapter is based on a case that does not satisfy those conditions. Kamranzadeh and
Zheng (2022), hereafter KZ, under the assumption that the mediation mechanism takes
the form of a fixed split, provides an explicit characterization of optimal peace proposal in
a conflict mediation where the outcome of the conflict is endogenous and full preemption
of conflict is impossible.1

Relaxing rivals’ commitment assumption substantially affects the design of the opti-
mal proposal. In section 4.2.3, I show that the optimal lopsided proposal of KZ is not
renege-proof. This optimal proposal is so biased that the in the PBE that it admits
the favored player always accepts the proposal while her rival, the player who receives a
smaller share, rejects it if her type is strong, and rejects it with a probability in (0, 1) if
her type is weak. If both players have accepted the proposal, the favored player learns
her adversary is weak with probability one while the less favored player does not learn
anything new about her opponent (because her rival always accepts the proposal). Thus,
the players partially learn about each other’s type after a successful round of negotiations.

1The term dynamic mechanism design often has been used to refer to the cases where private
information evolves exogenously over time and the principal has full control throughout the game,
whereas in my setup an agent’s private information is given at the outset and the principal lacks control of
the game after the mechanism and hence can only indirectly influence the outcome through manipulating
the posterior beliefs via her mechanism. For a useful survey of dynamic mechanism design with exogenous
evolution of information over time see Pavan (2017).
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If reneging is allowed, the strong type of the favored player exploits the information that
her opponent is weak and triggers conflict which provides him a higher expected payoff
than the split she has previously agreed on. Therefore, the optimal lopsided split of the
renege-banning model is not renege-proof. The renege-proof lopsided split is even more
biased than the optimal lopsided split in the renege-banning model of KZ. This more
biased split satisfies the favored player that always accepts to never renege while the less
favored player follows the same mediation strategies as in the renege-banning model. In
other words, the mediator internalizes the lack of commitments in its proposal and this
constraint leads to more extreme biased proposals.

Another literature that this chapter relates to is the mechanism design problems where
agents lack commitment. Bester and Strausz (2001) extend the revelation principle to
the environments where the mechanism designer has limited commitment and cannot
commit to the outcome admitted by the mechanism. However, compared to them, in
this chapter, agents lack commitment and the designer lacks enforcement power which
makes the problem more challenging (for a more recent treatment see Doval and Skreta,
2021, Skreta, 2015, and Bester and Strausz, 2007). Hence, for tractability, I consider
only message-independent splits. Moreover, this chapter, at a higher level, relates to the
notion of posterior implementability introduced by Green and Laffont (1987). They study
mechanisms where players have no commitment but they do not change their message
in the mechanism and sign the agreement obtained by the mechanism. Similarly, in
our environment, albeit given message-independent splits, the renege-proof PBEs are
such that the players ratify an agreement even if the chance of reneging on a previously
accepted agreement presents itself. 2

This chapter also relates to the bargaining models of war. For a recent review of
these models see Ramsay (2017) and Baliga and Sjostrom (2013). In these models, war
is modeled as an exogenous outcome and one of the two players can make a take-it-
or-leave-it offer in the form of the split of the prize in dispute to avoid the war. This
literature studies the dynamic interaction between adversaries in this environment. Fey
et al. (2013) relaxes commitment to make an agreement or fight in this environment
and study how this would impact the peace proposals that are made by one of the
players. Compared to them, I study the design of optimal splits that are offered by a
neutral benevolent mediator. Moreover, to study the effect of information revelation from
mediation on the design of peace proposals, I model conflict as an endogenous outcome.

I shall present the model and preliminary analysis in Section 4.2. Section 4.2.3 pro-

2Another literature that deals with environments where players lack commitment is an optimal
auction with resale. For instance, Zheng (2002) provides the design of seller-optimal auctions while
allowing for resale by winning bidders.
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vides theoretically compelling evidence that the optimal split of the renege-banning model
is not renege-proof. Section 4.3 characterizes all possible cases of renege-proof PBEs.
Section 4.4 reports the main findings and intuitions Appendix C presents the formal
arguments and calculation details.

4.2 Model

Two players, named 1 and 2, compete for a prize. Each player’s type is independently
drawn from the same binary distribution, whose realization is either w (“weak”), with
probability θ, or s (“strong”) with probability 1 − θ, such that θ ∈ (0, 1), and s > w > 0.

At the outset, each player i’s type ti is drawn from the above distribution and is
privately known to i. In the mediation stage, a neutral mediator makes a peaceful split

ν := (ν1, ν2) ∈ [0, 1]2 such that ν1 + ν2 = 1, (4.1)

Then each player independently and simultaneously announces whether they Accept
or Reject the proposal. If both announce Accept, then with an exogenous probability
α ∈ [0, 1) the game enters the rectification stage where they can renege on an accepted
proposal, and with probability 1 − α the game ends with each player i getting a payoff
equal to the agreed split νi. If at least one of the players announces Reject at the
mediation stage or reneges on an accepted proposal at the rectification stage, then the
game enters conflict stage.

In the rectification stage any player can renege on the agreed peace settlement and
trigger conflict. At this stage players simultaneously announce whether they ratify the
accepted proposals or renege on them. If any player reneges the game enters the conflict
stage. Otherwise, the game ends with player i getting a payoff equal to νi according to
the peaceful split that they agreed on in the mediation stage.

In the conflict stage, each player i submits a sealed bid bi ∈ R+. The player who sub-
mits the higher bid (spends higher resources) wins the prize, with ties broken randomly
with equal probabilities. The game ends, with player i getting a payoff equal to 1 − bi/ti

if i wins the prize, and equal to −bi/ti if otherwise. The bids are interpreted as the level
of resources that a player chooses to devote to conflict.

Once the mediator has chosen a mediation mechanism in the form of a peace split, the
ensuing multistage game is defined for which I use perfect Bayesian equilibrium (PBE)
as the solution concept.
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A PBE is said to be renege-proof if and only if on its path renege occurs with zero
probability relative to the prior distribution. A peace split is said to be renege-proof if
and only if the multistage game given the split admits a renege-proof PBE. A peace split
is optimal if it maximizes the social surplus, the sum of the ex-ante payoffs of players,
subject to renege-proof constraint. The mediator’s objective is to maximize the social
surplus subject to the renege-proof constraint.

The following assumption is maintained throughout this chapter:

(
1 − w/s

)
θ > 1/2. (4.2)

As demonstrated in Zheng (2019), the minimum peace proposal that is required to guar-
antee peace in our game is θ(1 − w/s), i.e., once each player is offered this peace split,
they will Reject it with zero probability on the path of equilibrium. Hence, if the pa-
rameters are such that 2θ(1 − w/s) is less than or equal to 1, i.e., the size of the prize,
then an equal split that takes the form of θ(1 − w/s) and is offered to each payer would
guarantee peace. The above assumption is to avoid the triviality of the problem.

As a benchmark, the renege-banning model is a variant of the above-defined model
that is obtained from removing the rectification stage so that a player cannot renege on
his acceptance of a peace proposal, i.e., α = 0.

Remark 4.1 From the point of view of the actual conflict mediation procedure, the pos-
sibility of reneging can capture the exogenous changes in the environment, e.g., changes
in decision-makers, or the fact that once an agreement is reached between parties, the
formal procedure until the agreement becomes an official document usually takes time.
Once the formal agreement is signed then it is either enforceable by a third party (for
example in the context of a dispute between firms) or sufficiently costly to renege (for
example in the context of international conflicts). Until the agreement is signed, either
side can still refuse to sign and trigger conflict. Even when an agreement is signed, the
change in decision-makers on one or both sides can provide a chance for reneging on
the agreement and triggering conflict. This is especially common and important in the
international conflicts where players are sovereign states and agreements are not usually
third-party enforceable. In this context, α can be attributed to the possibility of change
in decision-makers. Thus, one expects α to be higher in environments where adversaries
are democratic states. From a theoretical point of view, this possibility is important due
to information revelation from the mediation process. Not only a failed mediation process
reveals important information about players’ types that can be exploited against them in
the event of a conflict, but also a successful mediation can provide valuable information
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about players types who have agreed on a proposal. The fact that one player has agreed
on a less favorable proposal may convey important information about her hesitancy to
go into conflict, i.e., her type being weak, which may provide reason for her rival to
renege on the agreement if the possibility presents itself. In Section 4.2.3, I show that
the optimal proposal of the renege banning model of KZ is not renege-proof.

4.2.1 The Continuation Equilibrium During Conflict

Given any proposed split (νi, ν−i) a multi-stage game is defined. Let σi(ti) denote the
probability with which each player i of type ti rejects the proposal in the mediation stage.
Given any strategy profile (σi)2

i=1, we obtain player i’s ex-ante probability qA
i of accepting

the proposal (before realization of his type), and his probability qR
i of rejecting it:

qA
i = θ

(
1 − σi(w)

)
+ (1 − θ)

(
1 − σi(s)

)
, (4.3)

qR
i = θσi(w) + (1 − θ)σi(s). (4.4)

Denote πA
i for the posterior probability of “ti = w” conditional on i’s accepting the

proposal, and πR
i for the posterior probability of “ti = w” conditional on i’s rejecting it.

By Bayes’s rule,

πA
i q

A
i = θ

(
1 − σi(w)

)
, (4.5)

πR
i q

R
i = θσi(w). (4.6)

Sum the two equalities to obtain

πA
i q

A
i + πR

i q
R
i = θ. (4.7)

Note from Eqs. (4.5) and (4.6) that, for any i ∈ {1, 2}, if 0 < σi(w) < 1 then

πR
i < (resp. ≤) πA

i ⇐⇒ σi(s) > (resp. ≥) σi(w) ⇐⇒ πR
i < (resp. ≤) θ < (resp. ≤) πA

i .

(4.8)

To understand the working of the model, I start with the last stage which is the
conflict stage. Whether this stage is entered because someone rejected the proposal, or
one accepted a proposal at the mediation stage and then reneged at the rectification
stage, the game is the same. Each player knows their type, the history of the game,
and has a posterior belief about the rival’s type based on that history. Denote πi for the
posterior probability of player i being type ti = w. Denote G (πi, π−i) for the continuation
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game at the conflict stage such that πi is the posterior distribution of player i’s type for
each i ∈ {1, 2}. At any G (πi, π−i) each player simultaneously choose bi and the outcome
is determined. This conflict game is analogous to an all-pay auction where each player
submits a sealed bid bi ∈ R+ and each player has private information about their marginal
cost of exerting effort, which is their types.

Any pair (πi)2
i=1 of posterior probabilities determines the expected payoff for each

player-type in the continuation game of conflict according to the next lemma:

Lemma 4.1 (Kamranzadeh and Zheng (2022)) Given any pair (πi)2
i=1 of posterior prob-

abilities at the start of the conflict stage, the expected payoff for each player i at any
Bayesian Nash equilibrium in the conflict stage is equal to 3

U s
i (πi, π−i) = (1 − w/s) max{πi, π−i}, (4.9)

Uw
i (πi, π−i) = (1 − w/s) (π−i − πi)+ . (4.10)

This chapter studies renege-proof peace proposals as defined above. Therefore, renege
is an off-path event at the rectification stage and it triggers conflict. This outside option of
conflict is endogenous and its payoff depends on the beliefs players have about each others’
type distribution. Suppose player −i unilaterally deviates and reneges on a previously
accepted proposal in the mediation. Denote the off-path belief upon renege by πD

−i. In
that event, Bayes’s rule implies πi = πA

i , as player i has accepted the proposal before
entering the rectification stage. πD

−i is off-path and hence arbitrary. I maintain the
assumption that the off-path belief πD

−i is independent of πA
i along with the “no signaling

what you don’t know” assumption of Fudenberg and Tirole (1991). Payoff of the deviating
player depends on the assumption on the posterior beliefs at the continuation game
G
(
πA

i , π
D
−i

)
, where the type distribution πD

−i is arbitrary and in [0, 1].

Thus, given any peace proposal (x1, x2), a PBE of the multi-stage game amounts
to a pair of mediation strategy profile (σi)2

i=1 and belief system (πA
i , π

R
i , π

D
i )2

i=1 such
that, for each player i, σi best replies to σ−i given the continuation values determined
by (πA

i , π
R
i , π

D
i )2

i=1 according to Lemma 4.1, and (πA
i , π

R
i , π

D
i ) obey Eqs. (4.5) and (4.6).

4.2.2 The Equilibrium Condition During Mediation

Given any mediation strategy profile, each player i’s interim expected payoff from reject-
ing or accepting a peace proposal (x1, x2) is determined. Given type t ∈ {w, s}, player i’

3y+ := max{y, 0}.
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expected payoff from choosing Reject is equal to

V R
i (νi; t) := qA

−iU
t
i

(
πR

i , π
A
−i

)
+ qR

−iU
t
i

(
πR

i , π
R
−i

)
. (4.11)

and that from choosing Accept is equal to

V A
i (νi; t) := qA

−i

[
(1 − α)νi + αmax{νi, U

t
i

(
πD

i , π
A
−i

)
}
]

+ qR
−iU

t
i

(
πA

i , π
R
−i

)
, (4.12)

Here, the term max{νi, U
t
i

(
πD

i , π
A
−i

)
} reflects the type-t of player i’s choice at the rectifica-

tion stage between reneging, thereby getting a payoff equal to U t
i

(
πD

i , π
A
−i

)
, or remaining

committed to the accepted proposal and thereby getting νi (as player −i is expected
never to renege in a renege-proof PBE). The rectification stage happens with probability
α. Thus, the possible payoff from this stage is multiplied by α.

A proposal admits a renege-proof PBE if and only if for each player i ∈ {1, 2} and
for an off-path belief πD

i ∈ [0, 1] either (i) type t of player i ratifies a proposal at the
rectification stage, i.e., νi ≥ U t

i (πD
i , π

A
−i), or (ii) type t of player i announces Reject at

the mediation stage, i.e., V R
i (νi, t) ≥ V A

i (νi, t). Condition (ii) means that even if type t
will renege at the rectification stage, its reneging is not observed on the equilibrium path
because it would reject the proposal at the mediation stage, to begin with. Hence, this
type is not present at the rectification stage.

Call a PBE always-conflict if and only if σi(s) = σi(w) = 1 for some player i ∈ {1, 2}.
It is easy to show that any peace proposal admits an always conflict PBE, supported by
posteriors πA

j = πR
j = θ, on or off path, for each j ∈ {1, 2} (Lemma C.2).

4.2.3 The Optimal Solution of the Renege-Banning Model Is
Not Renege-Proof

A perfect Bayesian equilibrium (PBE) in the renege-banning model, given some mediation
mechanism, is said renege-proof iff its strategy profile, coupled with “no type of any player
ever reneges in the rectification stage,” constitutes a PBE in the renege-allowing model,
given the same mediation mechanism. In the renege-banning model of KZ, the lopsided
split νi = θ and ν−i = 1 − θ maximizes the social-surplus. Lopsided in the sense of
giving a larger share, i.e., νi = θ, to some player i ∈ {1, 2} such that she always accepts
the proposal, while giving a smaller share, i.e., ν−i = 1 − θ, to the less favored player.
Player −i, rejects this proposal if she is of strong type and mixes between accepting and
rejecting if she is weak type (Proposition 1 of Kamranzadeh and Zheng (2022)).
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We observe that this lopsided PBE is not renege-proof. Suppose, to the contrary,
that it is renege-proof. Consequently, given the same proposed split (θ, 1 − θ), in the
renege-allowing model, at the rectification stage where both players have accepted the
proposal, the posterior belief about player i, who always announces Accept, by Bayes’s
rule remains equal to the prior πA

i = θ, whereas the posterior about player −i, who
always announces Reject if her type is t−i = s, is that her type is equal to t−i = w, i.e.,
πA

−i = 1. But then in the rectification stage, player i of type s strictly prefers to renege:
If she reneges, conflict ensues and by Lemma 4.1, scaled by 1/(1−w/s) to be comparable
with KZ’s conflict payoff, her expected payoff is equal to

U s
i (πA

i , π
A
−i) = max{πA

i , π
A
−i} = max{θ, 1} = 1,

wherease, if she does not renege, she gets the peaceful share θ, which is less than 1. There-
fore, the strong type of the favored payer always has the incentive to renege, implying
the optimal proposal of the renege-banning model is not renege-proof.

Intuitively, the strong type of the favored player at the rectification stage by observing
that her opponent has accepted the smaller share of a lopsided split infers that her
opponent’s type is weak with probability 1. Thus, if the possibility to renege presents
itself, this player figures that she can be better off by triggering conflict rather than
committing to the share she initially agreed on at the mediation stage. This is despite
the fact that this player has already received a favorable split. But, this favorable split
is not large enough to convince her to not renege in the presence of the new information
she inferred about her opponent after a successful round of mediation. She will be better
off by reneging and triggering conflict because she will encounter a weak opponent and
she can win such a conflict at a very low cost.

4.3 All Possible Cases of a Renege-Proof Equilib-
rium

The following lemma categorizes all possible cases of renege-proof PBEs. The proof for
this lemma, and all other proofs, are provided in Appendix C.

Lemma 4.2 Suppose any (θ, w, s) satisfying (4.2) and any α ∈ (0, 1). There are only
two possible classes of renege-proof PBEs that are not always-conflict:

a. For some i ∈ {1, 2}, at the mediation σi(s) = σi(w) = 0 < σ−i(w) < 1 = σ−i(s).
Player i and type w of player −i ratify at the rectification stage. Call this case
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Lopsided PBEs.

b. For each i ∈ {1, 2}, at the mediation 0 < σi(w) < 1 = σi(s). Type w of both players
ratify at the rectification stage. Call this case mutually partially mixed (MPM)
PBEs.

In Section 4.2.2, I characterize player i’s interim-expected-payoff from announcing
Reject and Accept the proposal, expecting the other player to never renege. I also specify
the renege-proof conditions. In Appendix C.1, I categorize all possible cases of renege-
proof PBEs, and then use the best responses conditions and renege-proof conditions
to show that only two classes of renege-proof PBEs are possible. This is shown by
Lemmas C.1 -C.5, which are then used to prove Lemma 4.2 in Appendix C.1.1.

In Appendix C.1, I show that if the strong type of both players accepts a proposal
with a positive probability then they would renege on a proposal at the rectification stage
unless the proposal is very biased such that one player always accepts it. A player by
announcing Accept signals weakness. Thus, to convince the strong type of each player
to ratify a proposal at the rectification stage one should offer them a large share, which
is not possible given the size of the prize. Therefore to have a renege-proof PBE either a
strong type of each player should reject the proposal at the mediation stage or one player
should receive a very large share that she always accepts and ratifies and her opponent
rejects if she is strong and accepts and ratifies if she is weak. Lemma 4.2 summarizes
these results in two cases of Lopsided and MPM PBEs respectively. In other words,
Lemma 4.2 implies that it is not possible to have a proposal that both players ratify at
the rectification stage. But we can have a renege-proof proposal that one player always
accepts and ratifies while her opponent rejects if she is a strong type and accepts with
positive probability if she is weak, and ratifies at the rectification stage. Moreover, there
is another possible class of renege-proof PBEs where the strong type of both players
reject a proposal while their weak types follow a mix strategy at the mediation stage and
ratify at the rectification stage. The next section characterizes these classes of PBEs.

4.3.1 Characterization of Renege-Proof Equilibria

Lemma 4.2 states that the only two possible classes of renege-proof PBEs are Lopsided
and MPM PBE. In this section, I characterize these two classes of PBEs. To that end
and for notational convenience, denote

r := 1/(1 − w/s). (4.13)
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Using the definition of r, a neutral mediator makes a peace proposal

x := (x1, x2) ∈ [0, r]2 such that x1 + x2 = r, (4.14)

interpreted as a peaceful split (x1/r, x2/r) of the prize. Thus, using the definition of r
the maintained assumption (4.2) on the parameters is equivalent to

1 < r < 2θ < 2. (4.15)

Given any mediation strategy profile, each player i’s interim expected payoff from
rejecting or accepting a peace proposal (x1, x2) is determined by Eqs. (4.11) and (4.12).
Plugging in the conflict payoffs for the strong and weak type, i.e., Eqs. (4.9) and (4.10) ,
into Eqs. (4.11) and (4.12) and using the above mentioned definition of r, the difference
between the two payoffs is summarized by a vector:

 ∆i(s)
∆i(w)

 = qA
−i

 max
{
πR

i , π
A
−i

}
−
(

(1 − α)xi + αmax
{
xi, π

D
i , π

A
−i

})
(
πA

−i − πR
i

)+
−
(

(1 − α)xi + αmax{xi,
(
πA

−i − πD
i

)+
}
)


+ qR
−i

 max
{
πR

i , π
R
−i

}
− max

{
πA

i , π
R
−i

}
(
πR

−i − πR
i

)+
−
(
πR

−i − πA
i

)+

 . (4.16)

Here, the term max
{
xi, π

D
i , π

A
−i

}
on the top line reflects the type s of player i’s choice be-

tween reneging, provided that rectification is possible with probability α , thereby getting
a payoff equal to αmax{πD

i , π
A
−i}, and not reneging thereby getting αxi. Analogously,

the term max
{
xi,
(
πA

−i − πD
i

)+
}

on the bottom line is for type w of player i.

Thus, a proposal admits a renege-proof PBE if and only if for each player i ∈ {1, 2}
for an off-path belief πD

i ∈ [0, 1] all the followings hold:

a. either (i) type w ratifies at the rectification stage, i.e., xi ≥
(
πA

−i − πD
i

)+
, or (ii)

type w announces Reject in the mediation, i.e., ∆i(w) ≥ 0;

b. either (i) type s ratifies at the rectification stage, i.e., xi ≥ max
{
πD

i , π
A
−i

}
, or (ii)

type s announces Reject in the mediation, i.e., ∆i(s) ≥ 0.

Alternative (ii) in each of these conditions means that even if the type would renege
its reneging is not observed on the path because it would reject the proposal, to begin
with. This means that either each type finds the accepted proposal better than triggering
conflict or she would have rejected it at the mediation stage.
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Lopsided PBEs

As defined in Lemma 4.2, a PBE belongs to renege-proof Lopsided PBEs if and only if

σi(w) = σi(s) = 0 < σ−i(w) < 1 = σ−i(s), and player i and type w of −i ratify. (4.17)

The Bayes’s rule implies πA
i = θ and πA

−i = 1. The best response conditions for (4.17)
to constitute a renege-proof PBE are that V R

i (s) − V A
i (s) ≤ 0, V R

i (w) − V A
i (w) ≤ 0,

V R
−i(s) − V A

−i(s) ≥ 0, V R
−i(w) − V A

−i(w) = 0, xi ≥ max{πD
i , π

A
−i}, xi ≥

(
πA

−i − πD
i

)+
, and

x−i ≥
(
πA

i − πD
−i

)+
.

First, we verify that xi ≥ 1 in any renege-proof Lopsided PBEs. Player i always
announces Accept and ratifies a proposal at the rectification stage. By monotonicity of
conflict’s payoff in type (Lemma 4.1), the most tempted type of this player to renege at
the rectification stage is ti = s. Thus, the best response condition for player i to ratify
the peace proposal at the rectification stage is

xi ≥ U s
i (πD

i , π
A
−i) = max{πD

i , π
A
−i} = max{πD

i , 1} = 1.

Thus, given the split xi ≥ 1, both types of player i ratify a proposal in Lopsided PBEs.

By Eq. (4.8), πR
−i < θ < πA

−i. Moreover, by (4.17), the Bayes’s rule implies πA
i = θ

and πA
−i = 1. By plugging these posterior beliefs in Eq. (4.16) one obtains:

∆i(s) = qA
−i(1 − xi) + qR

−i

[
max

{
πR

i , π
R
−i

}
− 1

]
,

∆i(w) = qA
−i

[
1 − πR

i − xi

]
+ qR

−i

[(
πR

−i − πR
i

)+
]
,

∆−i(s) =
[
max{πR

−i, θ} − (1 − α)x−i − αmax{x−i, π
D
−i, θ}

]
,

∆−i(w) =
[(
θ − πR

−i

)+
− (1 − α)x−i − αmax{x−i,

(
θ − πD

−i

)+
}
]
.

Pick the off-path posteriors πD
i ∈ [0, 1] and πD

−i ∈ [θ − x−i, θ]. Thus,

∆−i(w) =
[(
θ − πR

−i

)+
− (1 − α)x−i − αmax{x−i,

(
θ − πD

−i

)+
}
]

= θ − πR
−i − x−i.

Agent −i of type w follows mixed strategies at the mediation. Thus, the best response
condition is V R

−i(w) − V A
−i(w) = 0, or equivalently ∆−i(w) = 0. Equilibrium strategies

and beliefs would be uniquely determined by this equation:

σ−i(w) = (1 − x−i/θ)(
1 + x−i/(1 − θ)

) , πA
i = θ, πA

−i = 1, πR
−i = θ − x−i.
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Third, given xi ≥ 1, x−i ≤ r − 1 and the off-path posteriors πD
i ∈ [0, 1], πD

−i ∈
[θ − x−i, θ], and πR

i ∈ [0, 1], one can use the above displayed equations for ∆i(s), ∆i(w),
and ∆−i(s) to verify the best response conditions for mediation strategies of player i and
type s of player −i are satisfied:

∆i(s) ≤ qA
−i(1 − 1) + qR

−i

[
max

{
πR

i , π
R
−i

}
− 1

]
< 0,

∆i(w) ≤ qA
−i

[
1 − πR

i − 1
]

+ qR
−i

[(
πR

−i − πR
i

)+
]
< 0,

∆−i(s) ≥
[
θ − (1 − α)(r − 1) − αmax{x−i, π

D
−i, θ}

]
= (1 − α)(θ − (r − 1)) > 0,

where the equality in the last line is due to max{x−i, π
D
−i, θ} = θ by πD

−i ∈ [θ − x−i, θ],
x−i ≤ r− 1, and θ > r/2 and r ∈ (1, 2) by assumption (4.15), which also verifies the last
inequality in the above displayed set of inequalities. Hence, best response conditions such
that splits xi ≥ 1, x−i ≤ r − 1 admit mediation strategies defined by (4.17) is satisfied.

Lastly, I check that given the lopsided proposals and off-path beliefs πD
−i, renege-

proof conditions for type w of player −i is satisfied. Weak type of player −i would get
x−i ≤ r − 1 if she stays committed to the accepted proposal. If she reneges she would
get (θ − πD

−i)+ which is less than x−i by πD
−i ∈ [θ − x−i, θ]. Thus, she doe not renege at

the rectification stage. At the mediation, weak type of player −i is indifferent between
accepting and rejecting the proposal. As shown above, strong type of player −i Reject the
proposal at the mediation. These results are summarized in the following Proposition.

Proposition 4.1 Suppose any (θ, r) satisfying Ineq. (4.15) and any α ∈ (0, 1). For some
i ∈ {1, 2} any lopsided proposal such that xi ≥ 1 and x−i ≤ r− 1, where x−i < xi, admits
a renege proof Lopsided PBE that is characterized by:

σi(w) = σi(s) = 0, σ−i(w) = (1 − θ) (θ − x−i)
θ (1 − θ + x−i)

, σ−i(s) = 1.

πA
i = θ, πA

−i = 1, πR
−i = θ − x−i, π

R
i ∈ [0, 1] , πD

i ∈ [0, 1] , and πD
−i ∈

[
πR

−i, θ
]
.

MPM PBEs

A PBE belong to MPM PBEs if and only if its strategy profile satisfies

∀i ∈ {1, 2} : 0 < σi(w) < 1 = σi(s) and type w of player i ratifies. (4.18)

In other words, in this case of PBEs, weak type of both agents mixes between announcing
Accept and Reject in the mediation stage and ratifies in the rectification stage while the
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strong type of both players announces Reject in the mediation. The strong type of both
players has rejected the proposal and are not present at the rectification stage.

The best response conditions for (4.18) to constitute a PBE are V R
i (w) −V A

i (w) = 0,
V R

i (s) − V A
i (s) ≥ 0, and xi ≥ Uw

i

(
πD

i , π
A
−i

)
for each player i. This in turn is equivalent

to ∆i(w) = 0, ∆i(s) ≥ 0, and xi ≥
(
πA

−i − πD
i

)+
.

By (4.18), Bayes’s rule implies πA
i = 1 for each player i and hence (by Eq. (4.7)),

qR
i (1 − πR

i ) = 1 − θ for each player i. By Eq. (4.8), πR
i < θ < πA

i for each i ∈ {1, 2}. By
plugging in these posterior beliefs in Eq. (4.16), one obtains:

 ∆i(s)
∆i(w)

 = qA
−i

 (1 − α) (1 − xi)(
1 − πR

i

)
−
(

(1 − α)xi + αmax{xi,
(
1 − πD

i

)
}
) 

+ qR
−i

 max
{
πR

i , π
R
−i

}
− πA

i(
πR

−i − πR
i

)+

 .
Recall that πD

1 and πD
2 are off-path beliefs. Pick 1 − xi ≤ πD

i ≤ 1 for each i ∈ 1, 2. Thus,
the above set of equations simplify to:

 ∆i(s)
∆i(w)

 = qA
−i

 (1 − α) (1 − xi)(
1 − πR

i

)
− xi

+ qR
−i

 max
{
πR

i , π
R
−i

}
− πA

i(
πR

−i − πR
i

)+

 . (4.19)

At the MPM PBEs, the equilibrium strategies σi(w) ∈ (0, 1) implies a system of equations
∆i(w) = 0 while σi(s) = 1 implies ∆i(s) ≥ 0 for each player i. Since the defining
condition of this PBE is symmetric between the two players, let us assume, without loss
of generality, that πR

2 ≥ πR
1 . Hence, the equation system ∆i(w) = 0 uniquely determines

the strategy profile (σi(w))2
i=1 and the on-path posteriors (πA

i , π
R
i )2

i=1. Then plug this
solution into the system of inequalities to simplify equilibrium conditions ∆1(s) ≥ 0 and
∆2(s) ≥ 0. Hence, a split (x2, x1) admit renege-proof MPM equilibria if and only if it
satisfies

qR
i = 1 − θ

1 − πR
i

and πA
i = 1 ∀i ∈ {1, 2}, πR

2 = 1 − x2, π
R
1 = θ (x2 − x1) + x1 (1 − x2)

x2
,

(4.20)

and,

∆1(s) ≥ 0 ⇐⇒ qA
2 (1 − x1)(1 − α) ≥ (1 − qA

2 )x2, (4.21)
∆2(s) ≥ 0 ⇐⇒ qA

1 (1 − x2)(1 − α) ≥ (1 − qA
1 )x2. (4.22)
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By (4.20), the inequality πR
2 ≥ πR

1 is equivalent to

1 − x2 ≥ θ (x2 − x1) + x1 (1 − x2)
x2

⇐⇒ (1 − x2 − θ) (x2 − x1) > 0,

The last inequality displayed above is equivalent to either (i) r− 2x2 ≥ 0 and x2 ≥ 1 − θ

or, (ii) r − 2x2 ≤ 0 and x2 ≤ 1 − θ, which is impossible due to Ineq. (4.15) . Thus,

πR
2 ≥ πR

1 ⇐⇒ 1 − θ ≤ x2 ≤ r/2. (4.23)

Hence, the equal proposal is the upper bound of splits that can admit renege-proof
MPM PBEs. One can show that the social surplus function of MPM PBEs and the
probability of peace within this class of PBEs is strictly increasing in xmin = min{x1, x2}
(By Lemmas C.9 and C.11). Therefore, in the rest of this section I characterize conditions
under which the equal proposal, the upper bound for x2, admits renege-proof MPM PBEs.

These results are summarized in the following proposition. It implies that when
probability of rectification stage is higher than a threshold or the probability of being
weak is lower than a threshold, the equal proposal is not renege-proof. When probability
of the rectification stage is high enough, the strong type of each player would rather
accept the proposal at the mediation stage and then renege on it at the rectification
stage than rejecting the split for sure. Denote this threshold as

Γ(θ, r) := 4θ − 3 − (r − 1)2

(2 − r)(r + 2θ − 2) . (4.24)

Proposition 4.2 Suppose any (θ, r) satisfying Ineq. (4.15) and any α ∈ (0, 1). There
exists a Γ(θ, r) ∈ (0, 1) such that if and only if α < Γ(θ, r) and θ ≥ 3+(r−1)2

4 , then the equal
proposal admits a symmetric renege-proof MPM PBE that for each player i ∈ {1, 2}:

σi(w) = (1 − θ)(2 − r)
θr

, σ−i(s) = 1, πA
i = 1, πR

i = 1 − r/2, and πD
i ∈

[
πR

i , 1
]
.

4.4 Main Findings

In the previous section, I show that there are only two classes of PBEs that are renege-
proof: MPM and Lopsided PBEs. Moreover, in Proposition 4.2, I verify the uniqueness
and existence of MPM PBEs admitted by the equal split. This split is of interest because
by Lemmas C.9 and C.11 in the Appendices C.3 and C.4, it maximizes the social surplus
and the probability of peace among the proposals that admit MPM PBEs. This section
compares the equal split with the lopsided proposals for two different objectives for the
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mediator. One is social-surplus maximization and the other is conflict minimization. I
show that if the probability of the rectification stage is above a threshold or the prior
probability of being weak is below a threshold, then the only renege-proof social-surplus
maximizer proposal is the lopsided split (w/s, 1 − w/s). These results hold even when
the objective is minimizing the ex-ante probability of conflict.

4.4.1 The Social Surplus Maximizing Proposal

Pick any peace proposal (x1, x2) such that without loss of generality x2 ≤ x1, i.e., x2 =
min{x1, x2} =: xmin. Let (σ, π) denote the associated equilibrium and q the associated
probability system defined in (4.3)–(4.4). Thus, for any xmin ∈ (0, r/2], let S(xmin)
denote the social surplus generated by any not-always-conflict PBE given a peace proposal
(x1, x2) such that min{x1, x2} = xmin; and let S(0) denote the social surplus generated by
the always-conflict PBE (which one can show is the only kind of PBEs given xmin = 0).
For notation convenience we scale up the social surplus S(xmin) by the positive parameter
r and denote S̃(xmin) := rS(xmin).

First, by Lemma C.2 (Appendix C.1), we know that always-conflict PBEs admits
social surplus equals to S̃ = 2θ(1 − θ). These PBEs are always outperformed by the
equal proposal. This is because by Lemma C.7 (Appendix C.3), the equal proposal
admits social surplus S̃ = rS = θ, which by Ineq. (4.15) is higher than that of always-
conflict PBEs.

By Lemmas C.6 and C.7, in the Appendix C.3, the social surplus admitted by the
Lopsided and the MPM PBEs can be summarized as:

i. Given peace proposal (x1, x2) such that x2 < x1, then Lopsided PBEs admits social
surplus that is equal to:

rS(x, q, π) = qA
2 x1 + θ(1 − θ)qR

2 + θ
(
1 − πR

2

)
; (4.25)

ii. Given peace proposal (x1, x2) such that x2 ≤ x1, then MPM PBEs admits social
surplus that is equal to:

rS(x, q, π) = θ − θ
(
πR

1 + πR
2

)
+ qA

1 π
A
1 + qR

1 π
R
2 . (4.26)

By Lemmas C.8 and C.9, in Appendix C.3 , the social surplus function admitted
by the splits admitting the Lopsided and MPM PBE are strictly increasing in xmin =
min{x1, x2}. The equal proposal, i.e., x1 = x2 = r/2, is the upper bound of xmin =
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min{x1, x2} that admit MPM PBEs (Ineq. 4.23). Moreover, by Propositions 4.1, x2 =
min{x1, x2} = r−1 is the upper bound of the proposals that admit renege-proof Lopsided
PBEs. Thus, the only candidate for social surplus maximum are the equal proposal
(r/2, r/2) and the lopsided proposal (r − 1, 1), or respectively the equal split (1/2, 1/2)
and the lopsided split (w/s, 1 − w/s). The following theorem states the main result of
this chapter. To that end, define threshold ϕ(r):

ϕ(r) := max
{
r +

√
r2 + 8r − 8

4 ,
3 + (r − 1)2

4

}
. (4.27)

Theorem 4.1 For any (θ, r) satisfying Ineq. (4.15) and any any α ∈ (0, 1) there exists
a Γ(θ, r) ∈ (0, 1) and a ϕ(r) ∈ (r/2, 1) such that a unique renege-proof ν∗ ∈ (0, 1/2]
maximizies the social surplus according to:

arg maxνmin∈[0,1/2]S(νmin) =



{w/s} if α ≥ Γ(θ, r) or θ < 3+(r−1)2

4 ,

{w/s} if α < Γ(θ, r) and θ < ϕ(r) ,
{w/s, 1/2} if α < Γ(θ, r) and θ = ϕ(r) ,
{1/2} if α < Γ(θ, r) and θ > ϕ(r) .

Thus, if the probability of the rectification stage is high, then only the lopsided split
(w/s, 1 − w/s) is renege-proof and maximizes the social surplus. The same results hold
when the prior probability of being weak is lower than a threshold. When there is a very
high chance that the rectification stage is available and the equal split is proposed, the
strong type of both players prefer to accept a proposal with a positive probability similar
to the weak types, partially revealing information by pooling with the weak types, and
then renege at the rectification stage. Analogously, when the prior probability of players
being weak is relatively high, the strong type of both players prefer to accept a proposal
with a positive probability and then renege at the rectification stage.

The lopsided proposal does not provide any such incentives because one player is
receiving a very large share of the prize that she always accepts and never reneges while
the strong type of her opponent rejects at the mediation stage and is not present at
the rectification stage. However, when the rectification stage is available with a lower
probability, then depending on how high the prior probability of being weak and the
relative strength w/s are, either the lopsided or the equal split is the renege-proof social
surplus maximizing proposal. In these cases, when players are weak with a very high
probability, the strong types always have an incentive to reject a proposal. By Lemma C.8
(Appendix C.3), the social surplus function in Lopsided PBEs is strictly increasing in
xmin = w/s, thus the lower w/s the lower the social surplus admitted by it. Hence, the
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equal split outperforms the lopsided split for high θ and low w/s values. Figure 4.1,
shows the region where the lopsided or the equal split is optimal when the probability
of the rectification stage is low. Recall that r, on the horizontal axes in this Figure, by
Eq. (4.13) is strictly increasing in w/s.

Figure 4.1: Parameter spaces where the equal and the lopsided split are the welfare-
maximizing proposal when α < Γ(θ, r).

4.4.2 The Conflict Minimizing Proposal

Instead of maximizing social-surplus the mediator objective could be minimizing the
ex-ante probability of conflict. This is an objective well studied in the conflict manage-
ment literature. For any xmin ∈ (0, r/2], let P (xmin) denote the ex-ante probability for
conflict to occur in the not-always-conflict equilibrium given the peace proposal (x1, x2)
with min{x1, x2}; let P (0) := 1, as the equilibrium given xmin = 0 is always conflict. By
Lemmas C.10 and C.11 in the Appendix C.4, when xmin increases in [0, r/2], P (xmin) is
strictly decreasing on [0, r− 1] and on [1 − θ, r/2]. Hence the lopsided proposal (r− 1, 1)
and the equal proposal (r/2, r/2), or respectively the lopsided split (w/s, 1 − w/s) and
the equal split (1/2, 1/2), are again the only two candidates for the optimal solution.

If the probability of the rectification stage is higher than a threshold or the prior
probability of being weak is lower than a threshold, i.e., α ≥ Γ(θ, r) or θ < 3+(r−1)2

4 then
the only renege-proof conflict minimizer proposal is the lopsided split (1 − w/s, w.s), or
equivalently the lopsided proposal (r − 1, 1). If α < Γ(θ, r) then I show that there is a
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threshold, higher than that in the case of surplus maximization, such that the conflict
minimizing proposal is the equal split when θ is above the threshold, and (w/s, 1 −w/s)
when θ is below the threshold. Denote,

ψ(r) := max
{

1 +
√

3r2 − 4r + 1
2 ,

3 + (r − 1)2

4

}
. (4.28)

Theorem 4.2 For any (θ, r) satisfying Ineq. (4.15) and any α ∈ (0, 1) there exists a
Γ(θ, r) ∈ (0, 1) and a ψ(r) ∈ (r/2, 1) such that a unique renege-proof ν∗ ∈ (0, 1/2]
minimizes the probability of conflict according to:

arg minνmin∈[0,1/2]P (νmin) =



{w/s} if α ≥ Γ(θ, r) or θ < 3+(r−1)2

4 ,

{w/s} if α < Γ(θ, r) and θ < ψ(r) ,
{w/s, 1/2} if α < Γ(θ, r) and θ = ψ(r) ,
{1/2} if α < Γ(θ, r) and θ > ψ(r).

Figure 4.2 shows the region where the lopsided or the equal split is the conflict min-
imizing split when the probability of the rectification stage is lower than the threshold
specified in Theorem 4.2. Comparing Figure 4.2 to Figure 4.1, it is evident that the
equal split is the conflict minimizing proposal when the prior probability of weak is
weakly higher compared to when it is the social surplus maximizing proposal.

Figure 4.2: Parameter spaces where the equal and the lopsided split are the conflict
minimizing proposal when α < Γ(θ, r).
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To see intuitions behind these results, note that on the one hand, the optimal lopsided
proposal guarantees acceptance by one player. It is the smallest renege-proof proposal
such that this favored player never reneges. Therefore, it can increase the probability
of peace by securing acceptance from one player, even though this is at the cost of a
higher chance of rejection by the less favored player. On the other hand, the equal split
treats players equally and admits symmetric posterior belief information structure. Thus,
it makes conflict very costly and less appealing for the strong types. Therefore, these
two classes of splits are the candidates for conflict minimizing proposals. However, if
the probability of the rectification stage is high or the prior probability of being weak
is relatively small, then if the players are proposed with an equal split, the strong types
of them have an incentive to accept with a positive probability, similar to their weak
types, and then renege at the rectification stage. Thus, in these environments, the equal
split is not renege-proof. If the probability of the rectification stage is low and the prior
probability that agents are weak is very high, then the lopsided proposal does not admit
a high probability of peace because the less favored player announces Reject with a very
high probability while the equal split does not suffer from the same issue by treating
the player symmetrically. Thus, the equal split admits a lower probability of conflict
compared to the lopsided split in such an environment.

4.5 Conclusion

The intervention of mediators in settling a dispute between adversaries could alter their
incentives and harm the long-term prospect of peace. This is especially true if these
interventions take the form of hard interventions like providing economic incentives or
imposing threats. In this chapter, I show that even when the mediator has very limited
instruments and just makes peace proposals, players can learn about each other in the
mediation process and this information can have important impact on recurring conflicts.
I study situations where mediators can only through indirect manipulation of beliefs affect
the decisions of players in the conflict. I show that the possibility to indirectly affecting
the posterior belief information structure of adversaries has an important impact on the
design of renege-proof proposals. In particular, I show that the optimal proposal in an
environment where reneging is banned is not renege-proof when the possibility of reneging
is present (Section 4.2.3).

I show if the possibility of reneging is present with a high probability or if the prior
probability of players being weak is relatively low, then a mediator that is interested in
maximizing welfare subject to renege-proof constraint should make the lopsided peace
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proposal to ex-ante symmetric players (Theorem 4.1). This proposal is so biased that
the favored player always accepts it and does not renege on it, while her rival accepts
with positive probability and does not renege on it if her type is weak and rejects it if
she is a strong type. The intuitive equal split offer in this symmetric environment is only
optimal when the possibility to renege has a low probability and the prior probability
that agents are weak is high. I also show that when the objective of the mediator is
changed to conflict minimization the same results hold (Theorem 4.2). Thus, one can
observe the optimal proposal given the two different objectives qualitatively align. If
the probability of the rectification stage is high or the prior probability of being weak is
relatively small, then if the players are proposed with an equal split, the strong types of
them have an incentive to accept with a positive probability, similar to their weak types,
and then renege at the rectification stage. Thus, in these environments, the equal split
is not renege-proof.

The lopsided split by securing acceptance from one player does not reveal any infor-
mation about her. Therefore, this player is not worried that by announcing Accept she
will sign weakness and will be exploited in the event of a conflict. Given the lopsided
splits, the only event of a conflict on the path of equilibrium is when the less favored
player rejects the proposal. Thus, the mediator by proposing these splits, not only avoids
the event that both players reject a proposal and trigger a conflict but also in the only
event of a conflict on the path of equilibrium, both players are perceived as relatively
strong. Thus such a proposal can increase overall welfare by discouraging players from
exerting mutually detrimental efforts. At the same time, this proposal guarantees accep-
tance by one player. Thus, it can be a candidate for conflict minimization as long as the
prior probability that agents are weak is not very high. If this probability is very high,
to secure acceptance by the favored player, the mediator should offer her a very large
share, which incentivizes the less favored player to reject with a higher probability. Thus,
the equal split in these situations by treating players symmetrically can admit the lower
probability of rejection by both players and outperform the lopsided split.

In this chapter, I focus on renege-proof proposals due to their importance in interna-
tional conflicts applications. However, focusing on the class of renege-proof proposals is
with loss of generality. An open area to study in the future is establishing a renege-proof
principle such that when a mediator announces a general communication mechanism, for
example à la Myerson (1986), it would be without loss of generality to focus on direct
renege-proof mechanisms. Finding conditions that guarantee such a principle is a non-
trivial step given the lack of enforcement power of the mediator, lack of commitment by
players, and presence of an endogenous outside option.
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Appendix A

Appendices to Chapter 2

A.1 Categorization of All Equilibria
The next lemma classifies all the possible cases of solutions (proposal-PBE pairs). Case (b)
corresponds to the set of lopsided solutions. The other cases constitute the set of non-lopsided
solutions. Among them, Case (a) consists of those where conflict always occur. It contains the
trivial equilibrium, which exists under any proposal, where each player chooses Reject for sure,
expecting the other to do the same. Case (c) corresponds to those PBEs that satisfy (2.14),
Case (d) those satisfying (2.15), and Case (e) those satisfying (2.12) or (2.13).

Lemma A.1 For any solution (xi, σi, p
A
i , p

R
i , qi)2

i=1, exactly one of the following is true:

a. qi = 1 for some player i, and the on-path posterior is equal to the prior for both players;

b. for some i ∈ {1, 2}, σi(w) = σi(s) = 0 and 0 < σ−i(w) < 1 = σ−i(s);

c. for each i ∈ {1, 2}, 0 < σi(w) < 1 = σi(s);

d. for each i ∈ {1, 2}, σi(w), σi(s) ∈ (0, 1);

e. for some i ∈ {1, 2}, σi(w), σi(s), σ−i(w) ∈ (0, 1), and σ−i(s) = 1.

Proof The proof is based mainly on an observation summarized by the following table, where
each cell that is filled indicates the property of the corresponding combination of a player i’s
equilibrium probabilities of Reject by the two types.

σi(s) = 0 0 < σi(s) < 1 σi(s) = 1
σi(w) = 0 impossible impossible.

0 < σi(w) < 1 impossible
σi(w) = 1 impossible impossible qi = 1

The table shows that, unless qi = 1 for some player i, there are only three possibilities for a
player i’s equilibrium strategy: σi(w) = σi(w) = 0, or both σi(w) and σi(s) belong to (0, 1), or
only σi(w) ∈ (0, 1). These are listed as the rows and columns in the next table:

86
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σ−i(w) = σ−i(s) = 0 σ−i is totally mixed σ−i is mixed by w
σi(w) = σi(s) = 0 impossible impossible case (b), σ−i(s) = 1
σi is totally mixed impossible case (d) case (e), σ−i(s) = 1
σi is mixed by w case (b), σi(s) = 1 case (e), σi(s) = 1 case (c)

In the above table, the cells (3, 1) and (1, 3)—the first coordinate indicating the row, and
the second coordinate the column—corresponds to Case (b). Likewise, the cell (3, 3) corresponds
to Case (c), the cell (2, 2) corresponds to Case (d), and the cells (3, 2) and (2, 3) Case (e). The
cell (1, 1) is impossible because, as explained in Footnote 8, our assumption θ > 1/2 implies that
it is impossible to have σi(s) = σi(w) = 0 for both players i.

Thus, to complete the proof, it suffices to prove the following claims:

1. If qi = 1 for some player i, the on-path posterior is equal to the prior for each player.

2. If qi < 1 for each player i, then there is no i ∈ {1, 2} for whom:

i. σi(w) = 0 < σi(s) ≤ 1; or
ii. σi(s) = 0 < σi(w) ≤ 1; or
iii. 0 < σi(s) < 1 = σi(w); or
iv. σi(w) = σi(s) = 0 and σ−i(w), σ−i(s) ∈ (0, 1).

Claim 1 completes the statement of Case (a). Claim 2.i implies the impossibility of cells (1, 2)
and (1, 3) in the first table; Claim 2.ii implies the impossibility of cells (2, 1) and (3, 1) in the first
table; Claim 2.iii, that of cell (3, 2) in the first table, and Claim 2.iv, that of cells (1, 2) and (2, 1)
in the second table.

Claim 1 Let qi = 1 for some player i. Then the on-path posterior about i is pR
i = 1 − θ. For

player −i, suppose that the action A is on path and pA
−i is not equal to the prior 1 − θ. Then

Bayes’s rule requires that the other action R be on path as well such that pR
−i , 1−θ and (2.6) be

satisfied. Thus, one of pA
−i and pR

−i is above 1−θ, and the other below 1−θ. If pA
−i > 1−θ > pR

−i,
then by (2.2) and (2.3) (or simply Figure 2.2),

U s
−i(pA

−i, 1 − θ) = θ < 1 − pR
−i = U s

−i(pR
−i, 1 − θ),

Uw
−i(pR

−i, 1 − θ) = 0 < pA
−i − θ + 1 = Uw

−i(pA
−i, 1 − θ);

thus player −i of type s would choose R for sure, and −i of type w, A for sure. That implies
pR

−i = 1 and pA
−i = 0, contradicting pA

−i > 1 − θ > pR
−i. The other case, where pA

−i < 1 − θ < pR
−i,

is self-contradicting analogously. This proves Claim 1.

Claim 2.i Suppose, to the contrary, that σi(w) = 0 < σi(s) ≤ 1 for some player i. By Bayes’s
rule, σi(w) = 0 implies pR

i = 1. Then the two graphs in Figure 2.2 coincide, with pi there equal
to pR

i = 1, and hence V R
i (s) = V R

i (w) = 1−(1−θ) = θ by (2.5)—simply put, the dashed segment
in Figure 2.3 coincides with the solid thick line because any pA

−i and pR
−i are less than or equal

to 1 = pR
i . Recall from (2.4) that V A

i (t) denotes i’s expected payoff from choosing A given type
t ∈ {s, w}. By the best response condition,

σi(w) = 0 ⇒ V A
i (w) ≥ V R

i (w) = θ,

σi(s) > 0 ⇒ V A
i (s) ≤ V R

i (s) = θ.
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Thus V A
i (w) ≥ V A

i (s). Meanwhile, (2.4) implies that V A
i (w) ≤ V A

i (s), as Uw
i (pA

i , ·) ≤ U s
i (pA

i , ·)
for any pA

i ∈ [0, 1]. Consequently, V A
i (w) = V A

i (s). Then (2.4) coupled with q−i > 0 implies
that Uw

i (pA
i , p

R
−i) = U s

i (pA
i , p

R
−i). Compare (2.2) with (2.3)—or simply inspect Figure 2.2—to see

that the equation is possible only if pA
i = 1. But that violates Bayes’s rule given that σi(w) < 1.

Thus Claim 2.i follows.

Claim 2.ii Suppose, to the contrary, that qi < 1 for both players i, and σi(s) = 0 < σi(w) ≤ 1
for some player i. By Bayes’s rule, σi(s) = 0 implies pR

i = 0. By (2.2) and (2.3), U s
i (pR

i , ·) = 1
and Uw

i (pR
i , ·) = 0. It follows from (2.5) that V R

i (s) = 1 and V R
i (w) = 0. By the best response

condition for σi(w) > 0,

0 = V R
i (w) ≥ V A

i (w) (2.4)= q−iU
w
i (pA

i , p
R
−i) + (1 − q−i)xi ≥ (1 − q−i)xi

and hence xi = 0 (since 1− q−i > 0). This coupled with the best response condition for σi(s) = 0
implies

1 = V R
i (s) ≤ V A

i (s) = 0 + q−iU
s
i (pA

i , p
R
−i)

(2.2)= q−i

(
1 − min{pA

i , p
R
−i}
)
.

Thus, q−i = 1, contradiction.

Claim 2.iii Suppose, to the contrary, that qi < 1 for both players i, and 0 < σi(s) < 1 = σi(w)
for some player i. By Bayes’s rule, σi(w) = 1 implies pA

i = 1. It then follows from (2.2)
and (2.3) that U s

i (pA
i , ·) = Uw

i (pA
i , ·) and hence, by (2.4), V A

i (s) = V A
i (w). By the best response

condition, 0 < σi(s) < 1 implies V R
i (s) = V A

i (s), and σi(w) > 0 implies V R
i (w) ≥ V A

i (w). Thus,
V R

i (w) ≥ V R
i (s). This, by inspection of Figure 2.3—or (2.5)—is possible only if pR

i = 1. But
pR

i = 1 violates Bayes’s rule since σi(w) > 0, contradiction.

Claim 2.iv Suppose, to the contrary, that for each player i we have qi < 1 and σi(w) = σi(s) =
0, 0 < σ−i(w) < 1 and 0 < σ−i(s) < 1. With σi(w) = σi(s) = 0, we have qi = 0 and pA

i = 1 − θ.
Plug them into (2.5)—or simply noting that the convex combination in Figure 2.3 degenerates
to the point 1 − θ—to see that V R

−i(w) = pR
−i − (1 − θ) and V R

−i(s) = 1 − (1 − θ) = θ. Since
σ−i(w) > 0, pR

−i < 1 and hence pR
−i − (1 − θ) < θ. Consequently, V R

−i(w) < V R
−i(s). Meanwhile,

by the best response condition and qi = 0,
0 < σ−i(w) < 1 ⇒ x−i = V A

−i(w) = V R
−i(w),

0 < σ−i(s) < 1 ⇒ x−i = V A
−i(s) = V R

−i(s).
Thus V R

−i(w) = V R
−i(s), contradiction. ■

An implication of Lemma A.1 is that the condition pR
i > 1 − θ > pA

i in Figures 2.3–2.5 is
indeed satisfied by any solution unless the posterior degenerates to the prior 1 − θ.

Lemma A.2 For any solution (xi, σi, p
A
i , p

R
i , qi)2

i=1, either qi = 1 for some player i and the on-
path posterior is equal to the prior for both players, or qi < 1 for both players i and, for each
player i, qi > 0 ⇒ pR

i > 1 − θ > pA
i .

Proof By Lemma A.1, either Case (a) is true, which means the on-path posterior is equal to
the prior for both players, or (a) is not true and hence qi < 1 for both players i. In the latter
alternative, if qi > 0 then we have either (I) σi(w), σi(s) ∈ (0, 1)—which is true for both players in
case (d), and player i in case (e), in Lemma A.1—or (II) σi(s) > σi(w) (which is true for player −i
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in case (b), both players in case (c), and player −i in case (e)). In (I), the best response condition
implies

V R
i (s) − V A

i (s) = 0 = V R
i (w) − V A

i (w),
which, by (A.1), simplifies to 1 − pR

i = q−i(1 − pA
i ). This coupled with q−i < 1 implies 1 − pR

i <
1 − pA

i , i.e., pR
i > pA

i . In (II), by Bayes’s rule σi(s) = qip
R
i /(1 − θ) and σi(w) = qi(1 − pR

i )/θ,
and by qi > 0, we have pR

i /(1 − θ) > (1 − pR
i )/θ, namely, pR

i > 1 − θ. Both cases considered, we
have shown that qi > 0 implies pR

i > pA
i or pR

i > 1 − θ. In either case, the Bayesian plausibility
condition (2.6) implies pR

i > 1 − θ > pA
i . ■

A.2 Verification of the Intuitive and D1 Criteria
To prove that the lopsided equilibrium of the proposal (θ, 1 − θ) satisfies both the Intuitive and
D1 refinement criteria, notice first that the only observable deviation from the equilibrium is
player 1 choosing Reject (R). Also note that player 1’s expected payoff from this equilibrium is
equal to V A

1 (s) = θ when his type is s, and equal to V A
1 (w) = θ/2 when the type is w (Steps 2

and 4, Section 2.4.2). For each t ∈ {s, w} and any pR
1 ∈ [0, 1], denote Ṽ R

1 (t, pR
1 ) for type-t

player 1’s expected payoff from the deviation provided that the posterior belief is that pR
1 is the

probability for player 1 to be type s (and the posterior probability for player 2, who abides by
the equilibrium, is pR

2 = 2(1 − θ) according to (2.11) and x2 = 1 − θ).

Intuitive Criterion Denote J for the set of player 1’s types whose equilibrium payoff is
higher than any payoff it could get by playing R, as long as player 2’s action is rationalizable.
That is,

J :=

t ∈ {s, w}
∣∣∣∣∣ V A

1 (t) > max
pR

1 ∈[0,1]
Ṽ R

1 (t, pR
1 )

 .

Observe that J = ∅: s < J because the equilibrium payoff θ is the minimum payoff that a strong
type s can achieve from playing R (Remark 2.2); w < J because the equilibrium payoff θ/2 is
less than θ, which is equal to Ṽ R

1 (w, 1) because pR
1 = 1 > 2(1 − θ) = pR

2 implies via (2.7) that
Ṽ R

1 (w, 1) = 1 − (1 − θ) = θ. Now that J = ∅, the set of distributions of player 1’s type whose
supports exclude J (the empty set) contains the posterior distribution that supports the lopsided
equilibrium. Thus, the equilibrium satisfies the Intuitive Criterion.

D1 Criterion It suffices to falsify the following inequality for each t ∈ {s, w} (and {t′} :=
{s, w} \ {t}):{

pR
1 ∈ [0, 1]

∣∣∣ V A
1 (t) ≤ Ṽ R

1 (t, pR
1 )
}
⊊
{
pR

1 ∈ [0, 1]
∣∣∣ V A

1 (t′) < Ṽ R
1 (t′, pR

1 )
}
.

To that end, consider first t = s (so t′ = w). Since V A
1 (s) = θ is the minimum payoff that a

strong type s can achieve from playing R (Remark 2.2), the left-hand side is equal to [0, 1] and
hence the (strict) inequality cannot hold. Next consider t = w (and so t′ = s). Note that pR

1 = 1
belongs to the left-hand side, as V A

1 (w) = θ/2 < θ = Ṽ R
1 (w, 1), shown in the previous paragraph.

However, pR
1 = 1 does not belong to the right-hand side, because V A

1 (s) = θ and Ṽ R
1 (s, 1) = θ

by (2.8). Thus again the inequality displayed above does not hold. Both cases considered, the
D1 Criterion is satisfied.
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A.3 Three Useful Equations

Lemma A.3 In any solution (xi, σi, p
A
i , p

R
i , qi)2

i=1,

V R
i (s) − V A

i (s) −
(
V R

i (w) − V A
i (w)

)
= 1 − pR

i − q−i(1 − pA
i ) (A.1)

for each player i, and if pR
i ≥ pR

−i ≥ 1 − θ, then
V R

i (w) − V A
i (w) = pR

i − (1 − q−i)xi − 1 + θ, (A.2)
V R

−i(w) − V A
−i(w) = pR

−i − pA
i − x−i. (A.3)

Proof To prove (A.1), note from (2.4) and (2.5) that the left-hand side is equal to

q−i

(
U s

i (pR
i , p

R
−i) − U s

i (pA
i , p

R
−i) − Uw

i (pR
i , p

R
−i) + Uw

i (pA
i , p

R
−i)
)

+(1 − q−i)
(
U s

i (pR
i , p

A
−i) − Uw

i (pR
i , p

A
−i)
)

(2.2),(2.3)= q−i

(
1 − min{pR

i , p
R
−i} − 1 + min{pA

i , p
R
−i} − pR

i + min{pR
i , p

R
−i} + pA

i − min{pA
i , p

R
−i}
)

+(1 − q−i)
(
1 − min{pR

i , p
A
−i} − pR

i + min{pR
i , p

A
−i}
)

= q−i

(
−pR

i + pA
i

)
+ (1 − q−i)

(
1 − pR

i

)
,

which is equal to the right-hand side. To prove (A.2), assume without loss that pR
1 ≥ pR

2 . Thus
for each player i, pR

i ≥ 1 − θ and hence, by the Bayesian plausibility condition (2.6), pA
i ≤ 1 − θ.

Use (2.4) and (2.5) to obtain

V R
1 (w) − V A

1 (w) = q2
(
Uw

1 (pR
1 , p

R
2 ) − Uw

1 (pA
1 , p

R
2 )
)

+ (1 − q2)
(
Uw

1 (pR
1 , p

A
2 ) − x1

)
(2.3)= q2

(
pR

1 − min{pR
1 , p

R
2 } − pA

1 + min{pA
1 , p

R
2 }
)

+ (1 − q2)
(
pR

1 − min{pR
1 , p

A
2 } − x1

)
= q2

(
pR

1 − pR
2 − pA

1 + pA
1

)
+ (1 − q2)

(
pR

1 − pA
2 − x1

)
= pR

1 − q2p
R
2 − (1 − q2)pA

2 − (1 − q2)x1

= pR
1 − (1 − θ) − (1 − q2)x1,

with the third line due to pR
1 ≥ pR

2 ≥ 1 − θ ≥ pA
j for each player j, and the last line due to the

Bayesian plausibility condition (2.6). Thus (A.2) is true. Analogously, (A.3) follows from

V R
2 (w) − V A

2 (w) = q1
(
pR

2 − pR
2 − pA

2 + pA
2

)
+ (1 − q1)

(
pR

2 − pA
1 − x2

)
= (1 − q1)

(
pR

2 − pA
1 − x2

)
. ■

A.4 Supoptimality of Case-(a) Solutions

Since Case-(a) solutions always entail conflict, it is intuitive that they are suboptimal. In partic-
ular, they are outperformed by the lopsided proposal (θ, 1 − θ). First—

Lemma A.4 The social surplus generated by the Case-(b) PBE admitted by the proposal (θ, 1−θ)
is equal to θ(3 − 5θ/2).
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Proof By definition of any Case-(b) solution, q1 = 0 and 0 < σ2(w) < 1 = σ1(s). Thus the
social surplus from (θ, 1 − θ) is equal to

(1 − q2)θ + q2
[
θUw

1 (pA
1 , p

R
2 ) + (1 − θ)U s

1 (pA
1 , p

R
2 )
]

︸                                                                   ︷︷                                                                   ︸
player 1

+ θUw
2 (pR

2 , p
A
1 ) + (1 − θ)U s

2 (pR
2 , p

A
1 )︸                                           ︷︷                                           ︸

player 2

.

By Bayes’s rule, pA
1 = 1 − θ, pA

2 = 0 and q2 = (1 − θ)/pR
2 . By (2.11), pR

2 = 1 − θ+ x2 = 2(1 − θ).
Combine them with (2.2) and (2.3) to calculate the above-displayed sum:

(1 − q2)θ + q2
(
θ · 0 + (1 − θ)(1 − 1 + θ)

)
+ θ(pR

2 − 1 + θ) + (1 − θ)(1 − 1 + θ)

=
(

1 − 1 − θ

pR
2

)
θ + 1 − θ

pR
2

(1 − θ)θ + θ(pR
2 − 1 + θ) + (1 − θ)θ

=
(

1 − 1 − θ

2(1 − θ)

)
θ + 1 − θ

2(1 − θ)(1 − θ)θ + θ(2(1 − θ) − 1 + θ) + (1 − θ)θ

= θ(3 − 5θ/2). ■

Next, we calculate the social surplus generated by any Case-(a) solution. By the Claim 1 in
the proof of Lemma A.1, any PBE that belongs to Case (a) has the on-path posterior equal to
the prior 1 − θ for each player. Since qi = 1 for some player i, conflict takes place for sure and
hence each player’s ex ante payoff from the PBE is equal to

θUw
i (1 − θ, 1 − θ) + (1 − θ)U s

i (1 − θ, 1 − θ) = 0 + (1 − θ)(1 − (1 − θ)) = θ(1 − θ).
Thus, the social surplus generated by the PBE is equal to 2θ(1−θ), which is less than θ(3−5θ/2),
the social surplus generated by the lopsided (θ, 1 − θ). Thus, any PBE that belongs to Case (a)
is suboptimal.

A.5 Suboptimality of Case-(c) Solutions (Eq. (2.14))
First we show that, within the Case-(c) PBEs, the one admitted by the equal-split proposal
maximizes the social surplus.

Lemma A.5 (i) The Case-(c) PBE admitted by the equal-split proposal maximizes the social
surplus among all Case-(c) solutions. (ii) At this Case-(c) optimal solution, pR

1 = pR
2 = 1/2,

q2 = 2(1 − θ), and the social surplus is equal to θ.

Proof As defined in Lemma A.1, a PBE belongs to Case (c) if and only if its strategy profile
satisfies

∀i ∈ {1, 2} : 0 < σi(w) < 1 = σi(s). (A.4)
Then Bayes’s rule implies pA

i = 0 and hence (by (2.6)) qip
R
i = 1 − θ for each player i. The best

response condition for (A.4) to constitute a PBE is that V R
i (w)−V A

i (w) = 0 and V R
i (s)−V A

i (s) ≥
0 for each player i. Since (A.4) is symmetric between the two players, let us assume without loss
that

pR
1 ≥ pR

2 . (A.5)
Then (A.2) and (A.3) apply to the case i = 1 and hence

V R
1 (w) − V A

1 (w) = pR
1 − (1 − θ) − (1 − q2)x1,

V R
2 (w) − V A

2 (w) = (1 − q1)
(
pR

2 − pA
1 − x2

)
= (1 − q1)(pR

2 − x2),
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with the last “=” due to pA
i = 0. Thus, the condition V R

i (w) − V A
i (w) = 0 for both i becomes

pR
1 = 1 − θ + (1 − q2)x1, (A.6)
pR

2 = x2. (A.7)
Plug q2 = (1 − θ)/pR

2 , x1 = 1 − x2 and (A.7) into (A.6) to have

pR
1 = 1 − θ +

(
1 − 1 − θ

x2

)
(1 − x2) = θ + x2(1 − 2θ) − (1 − x2)2

x2
. (A.8)

Thus, Ineq. (A.5), pR
1 ≥ pR

2 , is equivalent to
θ + x2(1 − 2θ) − (1 − x2)2) ≥ x2

2 ⇐⇒ θ(1 − 2x2) + x2(1 − x2) − (1 − x2)2 ≥ 0
⇐⇒ θ(1 − 2x2) + (1 − x2)(x2 − 1 + x2) ≥ 0
⇐⇒ (1 − 2x2)(θ − 1 + x2) ≥ 0.

The last inequality in the multiline displayed above is equivalent to either (i) 1 − 2x2 ≥ 0 and
θ − 1 + x2 ≥ 0, namely 1 − θ ≤ x2 ≤ 1/2, or (ii) 1 − 2x2 ≤ 0 and θ − 1 + x2 ≤ 0, namely
1/2 ≤ x2 ≤ 1 − θ, which is impossible due to (2.1). Thus,

pR
1 ≥ pR

2 ⇐⇒ 1 − θ ≤ x2 ≤ 1/2. (A.9)

Denote S for the social surplus generated by the PBE. By Lemma 2.1, the WLOG condition
pR

1 ≥ pR
2 , and the fact q2p

R
2 = 1 − θ,
S = 2θpR

1 + (q2 − θ)(pR
1 − pR

2 )

= 2θpR
1 +

(
1 − θ

pR
2

− θ

)
(pR

1 − pR
2 ).

Thus S is determined jointly by pR
1 and pR

2 , each a function of x2 via (A.7) and (A.8). It follows
that S is a function of x2. Furthermore, we observe that S is strictly increasing in x2:

∂S

∂pR
1

= θ + q2,

∂S

∂pR
2

= − 1 − θ

(pR
2 )2 (pR

1 − pR
2 ) + θ − q2 = −q2

pR
1 − pR

2
pR

2
+ θ − q2 = θ − q2

pR
1
pR

2
.

Then, by (A.7) and (A.8),
d

dx2
S = ∂S

∂pR
1

dpR
1

dx2
+ ∂S

∂pR
2

dpR
2

dx2

= ∂S

∂pR
1

· 1 − θ − (x2)2

(x2)2 + ∂S

∂pR
2

= (θ + q2)
(

1 − θ

(x2)2 − 1
)

+ θ − q2
pR

1
pR

2

= (θ + q2)
(
q2

x2
− 1

)
+ θ − q2

pR
1
x2

(since q2p
R
2 = 1 − θ and pR

2 = x2)

= q2

(
θ − x2 + q2 − pR

1
x2

)
> 0.
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The inequality at the end holds because, by the fact q2 = (1 − θ)/pR
2 = (1 − θ)/x2 and (A.8),

θ − x2 + q2 − pR
1 = θ − x2 + 1 − θ

x2
− θ + x2(1 − 2θ) − (1 − x2)2

x2

= 3θx2 + 2 − 2θ − 3x2

x2
= (1 − θ)(2 − 3x2)

x2

is strictly positive whenever x2 < 2/3, which is true because x2 ≤ 1/2 due to (A.5) and (A.9).
Now that S is strictly increasing in x2 and x2 ≤ 1/2, S is maximized at x2 = 1/2 among all

the solutions (xi, σi, p
A
i , p

R
i , qi)2

i=1 that belong to Case (c). It follows that the equal-split proposal,
x1 = x2 = 1/2, attains the maximum of S among these solutions. Since it is easy to verify that
the Case-(c) solution under this proposal does constitute a PBE, Claim (i) of the lemma is proved.

To prove Claim (ii) of the lemma, plug x1 = x2 = 1/2 into (A.6)–(A.8) to obtain pR
2 = 1/2,

q2 = (1 − θ)/pR
2 = 2(1 − θ), and pR

1 = 1/2. By pR
1 = pR

2 = 1/2 and Lemma 2.1, the social surplus
is equal to θ. Thus Claim (ii) follows. ■

By Lemma A.5, the largest social surplus that any Case-(c) solution can achieve is equal
to θ. By contrast, the social surplus generated by the lopsided solution (θ, 1 − θ) is equal to
θ(3 − 5θ/2) by Lemma A.4. Our assumption θ ≤ 3/4 in the proposition implies the desired
conclusion θ < θ(3 − 5θ/2).

A.6 Suboptimality of Case-(d) Solutions (Eq. (2.15))
In any PBE that belongs to the Case (d) described in Lemma A.1, each type of each player is
totally mixing between Accept and Reject. That is,

0 < σi(w) < 1, 0 < σi(s) < 1, ∀i ∈ {1, 2}. (A.10)
This being symmetric between the two players, let us assume without loss that

pR
2 ≥ pR

1 . (A.11)

Lemma A.6 A tuple (xi, σi, p
A
i , p

R
i , qi)2

i=1 that satisfies (A.11) constitutes a Case-(d) solution if
and only if it satisfies (A.10) and all the following:

1 − pR
1 = q2(1 − pA

1 ), (A.12)
1 − pR

2 = q1(1 − pA
2 ), (A.13)

pR
1 = pA

2 + x1, (A.14)
pR

2 + θ − 1 = (1 − q1)x2. (A.15)

Proof The best response condition for (A.10) to constitute a PBE is that V R
i (w) − V A

i (w) =
V R

i (s) − V A
i (s) = 0 for each player i. By (A.1), that is equivalent to simultaneous satisfaction

of V R
1 (w) − V A

1 (w) = V R
2 (w) − V A

2 (w) = 0,
(
1 − pR

1

)
= q2

(
1 − pA

1

)
, and 1 − pR

2 = q1(1 − pA
2 ).

To write the condition V R
1 (w) − V A

1 (w) = V R
2 (w) − V A

2 (w) = 0 explicitly, note for each player i
that qi < 1 in this PBE and hence pA

i < 1 − θ < pR
i by Lemmas A.2. This combined with (A.11)

implies that (A.2) and (A.3) apply to the case i = 2 and hence
V R

2 (w) − V A
2 (w) = pR

2 − (1 − θ) − (1 − q1)x2,

V R
1 (w) − V A

1 (w) = (1 − q2)
(
pR

1 − pA
2 − x1

)
.
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Consequently, with q2 < 1,
V R

1 (w) − V A
1 (w) = 0 ⇐⇒ pR

1 = pA
2 + x1,

V R
2 (w) − V A

2 (w) = 0 ⇐⇒ pR
2 + θ − 1 = (1 − q1)x2. ■

Lemma A.7 If (xi, σi, p
A
i , p

R
i , qi)2

i=1 is a Case-(d) solution such that pR
2 ≥ pR

1 , then

σ1(w) = θ + x1 − 1 + q1(1 − 2x1)
θ

, (A.16)

σ1(s) = q1 − θσ1(w)
1 − θ

, (A.17)

σ2(w) = 1 − x2

θ
, (A.18)

σ2(s) = θ − x2

1 − θ
· 1 − θ + x2(1 − q1)

θ + x2(q1 − 1) , (A.19)

x2 < θ, and (A.20)

(q1)3 x2 (1 − 2x2) + (q1)2 x2 (3x2 − 1 − θ) + q1 (3x2 − 1 − θ) (θ − x2) + (θ − x2)2 = 0. (A.21)

Proof Eq. (A.17) follows trivially from q1 = θσ1(w)+(1−θ)σ1(s). To prove the rest, first apply
Bayes’s rule to 1 − pA

2 and then to 1 − pR
2 to obtain

1 − pA
2 = θ(1 − σ2(w))

1 − q2
= (1 − pR

2 )θ(1 − σ2(w))
1 − pR

2 − (1 − pR
2 )q2

= (1 − pR
2 )θ(1 − σ2(w))

1 − pR
2 − θσ2(w)

.

Then

pR
2 − pA

2 = (1 − pA
2 ) − (1 − pR

2 ) = (1 − pR
2 )θ(1 − σ2(w))

1 − pR
2 − θσ2(w)

− (1 − pR
2 ) = (1 − pR

2 )(θ + pR
2 − 1)

1 − pR
2 − θσ2(w)

.

By (A.13) we have q1 = (1 − pR
2 )/(1 − pA

2 ). Plug this into (A.15) to obtain
(θ + pR

2 − 1)(1 − pA
2 ) = (pR

2 − pA
2 )x2.

Plugging into this equation the formulas of 1 − pA
2 and pR

2 − pA
2 obtained above, we have

(θ + pR
2 − 1)(1 − pR

2 )θ(1 − σ2(w))
1 − pR

2 − θσ2(w)
= (1 − pR

2 )(θ + pR
2 − 1)

1 − pR
2 − θσ2(w)

x2,

namely,
θ(1 − σ2(w)) = x2.

Thus (A.18) is true. Then Eq. (A.18) coupled with σ2(w) > 0 implies (A.20).
Second, plug Eqs. (A.13) and (A.14) into Eq. (A.15) to obtain

1 − q1(1 − pR
1 + x1) = 1 − θ + (1 − q1)x2.

eliminate 1 − θ therein by Eq. (2.6) and cancel and combine terms to obtain
(1 − q1)(1 − pA

1 ) = x2 − q1 (x2 − x1) ,
which, by Bayes’s rule, is equivalent to

θ(1 − σ1(w)) = x2 − q1 (x2 − x1) , (A.22)
which in turn is equivalent to Eq. (A.16).

Third, rewrite (A.13) as q1 = (1 − pR
2 )/(1 − pA

2 ) and then rewrite the right-hand side by
Bayes’s rule to obtain

q1 = θσ2(w)
θ(1 − σ2(w)) · θ(1 − σ2(w)) + (1 − θ)(1 − σ2(s))

θσ2(w) + (1 − θ)σ2(s)
(A.18)= θ − x2

x2
· x2 + (1 − θ)(1 − σ2(s))
θ − x2 + (1 − θ)σ2(s) ,
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which implies Eq. (A.19).
Finally, we prove Eq. (A.21). Use Bayes’s rule on player 2 and then use (A.18) to obtain

(1 − q2)(1 − pA
2 ) = θ(1 − σ2(w)) = x2.

Eliminate the q2 in this equation by (A.12), and pA
2 by (A.14), to rewrite the above equation as(

1 − 1 − pR
1

1 − pA
1

)
(1 − pR

1 + x1) = x2,

namely,

(1 − pA
1 )x2 =

(
pR

1 − pA
1

) (
1 − pR

1 + x1
)
. (A.23)

Meanwhile, use Bayes’s rule on player 1 and then use (A.22) to obtain

1 − pA
1 = θ(1 − σ1(w))

1 − q1
= x2 − q1 (x2 − x1)

1 − q1
.

Analogously, use Bayes’s rule on player 1 and then use Eq. (A.16) to obtain

1 − pR
1 = θσ1(w)

q1
= θ + x1 − 1 + q1(1 − 2x1)

q1
.

From the two formulas we get

pR
1 − pA

1 = x2 − q1 (x2 − x1)
1 − q1

− θ + x1 − 1 + q1(x2 − x1)
q1

= −θ − x1 + 1 + q1θ + 2q1x1 − q

q1(1 − q1)

= x2 − θ − q1(x2 − x1 − θ)
q1(1 − q1) (by x1 + x2 = 1).

Replace the 1 − pA
1 , 1 − pR

1 and pR
1 − pA

1 in (A.23) with the above formulas to rewrite (A.23) as
x2 − q1 (x2 − x1)

1 − q1
x2 =

(
x2 − θ − q1 (x2 − x1 − θ)

(1 − q1)q1

)(
θ + x1 − 1 + q1(1 − 2x1)

q1
+ x1

)

=
(
x2 − θ − q1 (x2 − x1 − θ)

(1 − q1)q1

)(
q1x2 + θ − x2

q1

)
,

with the second line due to x1 + x2 = 1. Simplify the above equation into

x2(x2 − q1(x2 − x1)) = x2 − θ − q1(x2 − x1 − θ)
q1

· q1x2 + θ − x2

q1
,

namely,
(q1)2 x2

(
q1x1 + (1 − q1)x2

)
=
(
q1x1 − (1 − q1)(θ − x2)

)
(q1x2 + θ − x2) .

Plug x2 = 1 − x1 into the above displayed equation to obtain
(q1)2 x2

(
q1(1 − x2) + (1 − q1)x2

)
=
(
q1(1 − x2) − (1 − q1)(θ − x2)

)
· (q1x2 + θ − x2)

⇐⇒ (q1)2 x2
(
q1(1 − 2x2) + x2

)
=
(
q1(1 + θ − 2x2) + x2 − θ

)
· (q1x2 + θ − x2) ,

⇐⇒ (q1)3 x2(1 − 2x2) + (q1)2 (x2)2 = (q1)2 (1 + θ − 2x2)x2 + (θ − x2)q1(1 + θ − 3x2) − (θ − x2)2

⇐⇒ (q1)3 x2(1 − 2x2) + (q1)2 x2(3x2 − 1 − θ) + q1(θ − x2)(3x2 − 1 − θ) + (θ − x2)2 = 0.
Thus, Eq. (A.21) is true. ■

Lemma A.8 If (xi, σi, p
A
i , p

R
i , qi)2

i=1 is a Case-(d) solution such that pR
2 ≥ pR

1 , x1 ≥ 1/2 ≥ x2.
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Proof By Bayes’s rule,

1 − pR
1 = θσ1(w)

q1

(A.16)= θ − x2 + q1(2x2 − 1)
q1

,

with the second “=” also using x1 + x2 = 1. Meanwhile, write (A.15) into
1 − pR

2 = θ + x2(q1 − 1).
Thus,

pR
2 ≥ pR

1 ⇐⇒ θ − x2 + q1(2x2 − 1)
q1

≥ θ + x2(q1 − 1)

⇐⇒ (3x2 − 1 − θ) q1 + (θ − x2) ≥ (q1)2 x2

⇐⇒ (3x2 − 1 − θ) (θ − x2) q1 + (θ − x2)2 ≥ (q1)2 x2(θ − x2), (A.24)
with the last line due to θ − x2 > 0 (Ineq. (A.20)). Subtract Ineq. (A.24) by Eq. (A.21) and
cancel some terms to see that Ineq. (A.24) is equivalent to

0 ≥ (q1)3 x2 (1 − 2x2) + (q1)2 x2 (3x2 − 1 − θ) + (q1)2 x2(θ − x2),
namely,

0 ≥ (q1)2 x2 (1 − q1) (2x2 − 1) .
Thus,

pR
2 ≥ pR

1 ⇐⇒ 0 ≥ (q1)2 x2 (1 − q1) (2x2 − 1) ⇐⇒ 0 ≥ 2x2 − 1,
with the second “ ⇐⇒ ” due to the fact q1 < 1 in all Case-(d) PBEs. Thus we have 2x2 ≤ 1,
which by x1 + x2 = 1 means x1 ≥ 1/2 ≥ x2, as claimed. ■

Lemma A.9 If θ ≥ 2/3, then the peace proposal (θ, 1−θ) (or (1−θ, θ)) admits a Case-(b) PBE
that generates strictly larger social surplus than any Case-(d) solution does.

Proof Consider any Case-(d) solution (xi, σi, p
A
i , p

R
i , qi)2

i=1. Without loss of generality, assume
that pR

2 ≥ pR
1 . Then Lemma 2.1 implies that the social surplus generated by this solution is equal

to 2θpR
2 + (q2 − θ)

(
pR

2 − pR
1

)
. First, we observe that

x2 ≥ 1 − θ ⇒ q2 < θ.

To see this, note from (A.18) that
q2 = θσ2(w) + (1 − θ)σ2(s) = θ − x2 + (1 − θ)σ2(s).

Thus, q2 < θ if σ2(s) < x2
1−θ . The latter inequality follows from σ2(s) < 1 (part of the definition

of Case (d)) and 1 − θ ≤ x2.
Thus, if x2 ≥ 1 − θ then the upper bound of social surplus admitted within Case-(d) PBEs

is 2θpR
2 . Since the social surplus generated by the Case-(b) solution under the proposal (θ, 1 − θ)

is equal to θ(3 − 5θ/2) (Lemma A.4), the proof is complete if x2 ≥ 1 − θ and θ(3 − 5θ/2) ≥ 2θpR
2 .

To show θ(3 − 5θ/2) ≥ 2θpR
2 , note from (A.15) that pR

2 = 1 − θ + (1 − q1)x2. Thus,
θ(3 − 5θ/2) ≥ 2θpR

2 is equivalent to 1 − θ/2 ≥ 2x2(1 − q1), which is true if 1 − θ/2 ≥ 1 − q1 (due
to x2 ≤ 1/2 ≤ x1), namely, q1 > θ/2.

To prove q1 > θ/2, note from the definition of Case-(d) PBEs that σ2(s) < 1, which by (A.19)
is equivalent to

θ − x2

1 − θ
· 1 − θ + x2(1 − q1)

θ − x2 + x2q1
< 1.
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Since θ − x2 > 0 by (A.20), the above-displayed inequality can be simplified into

q1 >
θ − x2

1 − x2
.

Consequently, since θ−x2
1−x2

is strictly decreasing in x2 and x2 ≤ 1/2, we have

q1 >
θ − 1/2
1 − 1/2 = 2θ − 1 ≥ θ/2,

with the last inequality due to the assumption θ ≥ 2/3 in the lemma. Thus, q1 > θ/2 and hence
θ(3 − 5θ/2) ≥ 2θpR

2 .
Finally, we verify x2 ≥ 1−θ. By (A.16) and (A.17), the Case-(d) condition σ1(s) < 1 implies

q1 − θ
(
θ + x1 − 1 + q1(1 − 2x1)

)
/θ

1 − θ
< 1,

which simplifies to q1 < 1/2. This, coupled with the previously proved q1 >
θ−x2
1−x2

, implies
θ − x2

1 − x2
<

1
2 ,

namely, x2 > 2θ − 1. Since θ ≥ 2/3 by hypothesis, we have 2θ − 1 ≥ 1 − θ. Thus x2 > 1 − θ
follows. Both x2 ≥ 1 − θ and θ(3 − 5θ/2) ≥ 2θpR

2 established, the proof is complete. ■

A.7 Suboptimality of Case-(e) Solutions (Eqs. (2.12)
or (2.13))

In any Case-(e) PBEs, exactly one of the two players is totally mixing between Accept and Reject
for each type. Relabeling the players if necessary, assume without loss that in any Case-(e) PBEs
it is player 1 who is totally mixing, i.e.,

0 < σ1(w) < 1, 0 < σ1(s) < 1, 0 < σ2(w) < 1, σ2(s) = 1. (A.25)
Call a Case-(e) solution Case (e)-i if pR

2 ≤ pR
1 , and Case (e)-ii if pR

1 < pR
2 .

Lemma A.10 A tuple (xi, σi, p
A
i , p

R
i , qi)2

i=1 constitutes a Case-(e)-i solution if and only if it
satisfies (A.25) and all the following:

1 − pR
1 = q2(1 − pA

1 ), (A.26)
1 − pR

2 ≥ q1, (A.27)
pR

2 ≤ pR
1 , (A.28)

pR
1 + θ − 1 = (1 − q2)x1, (A.29)

pR
2 = pA

1 + x2. (A.30)
A tuple (xi, σi, p

A
i , p

R
i , qi)2

i=1 constitutes a Case-(e)-ii solution if and only if it satisfies (A.25),
(A.26), (A.27) and all the following:

pR
1 < pR

2 , (A.31)
pR

1 = x1, (A.32)
pR

2 + θ − 1 = (1 − q1)x2. (A.33)

Proof The best response condition for (A.25) to constitute a PBE is that V R
1 (w) − V A

1 (w) =
V R

1 (s)−V A
1 (s) = 0 for each player 1 and V R

1 (w)−V A
1 (w) = 0 ≤ V R

1 (s)−V A
1 (s). By (A.1), that is
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equivalent to simultaneous satisfaction of V R
1 (w)−V A

1 (w) = V R
2 (w)−V A

2 (w) = 0 and
(
1 − pR

1

)
=

q2
(
1 − pA

1

)
and 1 − pR

2 ≥ q1 (the last inequality also uses the fact pA
2 = 0 implied by Bayes’s

rule with respect to σ2(s) = 1). To write the condition V R
1 (w) − V A

1 (w) = V R
2 (w) − V A

2 (w) = 0
explicitly, note for each player i that qi < 1 in this PBE and hence pA

i < 1 − θ < pR
i by

Lemmas A.2. If the solution belongs to Subcsae (i) of Case (e), pR
1 ≥ pR

2 , then (A.2) and (A.3)
apply to the case i = 1 and hence

V R
1 (w) − V A

1 (w) = pR
1 − (1 − θ) − (1 − q2)x1,

V R
2 (w) − V A

2 (w) = (1 − q1)
(
pR

2 − pA
1 − x2

)
.

Thus the condition V R
1 (w) −V A

1 (w) = 0 becomes (A.29), and the condition V R
2 (w) −V A

2 (w) = 0
becomes (A.30). Analogously, if it is Subcase (ii) of Case (e), pR

1 ≤ pR
2 , then (A.2) and (A.3)

apply to the case i = 2 and hence
V R

2 (w) − V A
2 (w) = pR

2 − (1 − θ) − (1 − q1)x2,

V R
1 (w) − V A

1 (w) = (1 − q2)
(
pR

1 − pA
2 − x1

)
= (1 − q2)

(
pR

1 − x1
)
,

with the last “=” due to pA
2 = 0 (since σ2(s) = 1). Thus, the condition V R

i (w) − V A
i (w) = 0 for

both players i becomes (A.32) and (A.33). ■

A.7.1 Subcase (i): pR
1 ≥ pR

2 (Eq. (2.12))

Lemma A.11 For any x2 ∈ [0, 1] there is at most one tuple
(
σi, p

A
i , p

R
i , qi

)2

i=1
such that

(
xi, σi, p

A
i , p

R
i , qi

)2

i=1
constitutes a Case-(e)-i solution, and for any such solution, x2 > 1 − θ.

Proof Let x2 ∈ [0, 1] and
(
xi, σi, p

A
i , p

R
i , qi

)2

i=1
be a Case-(e)-i solution. By Lemma A.10, the

tuple satisfies Eqs. (A.26), (A.29) and (A.30). Combine (A.26), (A.29) and (A.30) with the fact
that q2 = θσ2(w)+1−θ, pR

2 = (1−θ)/q2 (Bayes’s rule with respect to σ2(s) = 1) and x1 +x2 = 1
to obtain

σ2(w) = 1 − 1
2θ . (A.34)

Plug this back into the equation system to obtain a unique solution for all components of the
tuple:

q2 = θ

(
1 − 1

2θ

)
+ 1 − θ = 1

2 ,

pR
2 = 1 − θ

q2
= 2 − 2θ, (A.35)

pR
1 = 1 − θ + (1 − 1/2)(1 − x2) = 3 − 2θ − x2

2 , (A.36)

pA
1 = pR

2 − x2 = 2(1 − θ) − x2,

q1 = 1 − θ − pA
1

pR
1 − pA

1
= 2(θ − 1 + x2)

2θ + x2 − 1 , (A.37)

σ1(w) = θ − 1 + x2

θ
. (A.38)
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In particular, (A.38) follows from
θσ1(w) = q1 − (1 − θ)σ1(s) = q1 − pR

1 q1

= 2(θ − 1 + x2)
2θ + x2 − 1

(
1 − 3 − 2θ − x2

2

)
= θ − 1 + x2.

Since σ1(w) > 0 by definition of any Case-(e) solution, (A.38) implies x2 > 1 − θ. ■

Lemma A.12 If θ ≤ 3/4, the Case-(b) PBE admitted by the proposal (θ, 1 − θ) generates larger
social surplus than any Case-(e)-i solution.

Proof By Lemma A.11, any Case-(e)-i solution is uniquely determined by the x2 in the tuple,
with 2 being the label for the player for whom pR

2 ≤ pR
1 . Thus, the social surplus generated by

the solution is uniquely determined by x2. Hence denote Se(x2) for the social surplus generated
by a Case-(e)-i solution that offers x2 to the player −i for whom pR

−i ≤ pR
i . Since Reject is a best

reply for each type of each player in any Case-(e) solution, Lemma 2.1 implies
Se(x2) = 2θpR

1 + (q1 − θ)(pR
1 − pR

2 ). (A.39)
By Lemma A.11, x2 > 1 − θ. Taking the limit of (A.36) and (A.37) as x2 converges to 1 − θ from
above, we have

lim
x2↓1−θ

pR
1 = 2 − θ

2 ,

lim
x2↓1−θ

q1 = 0.

Combine them with the above formula of Se(x2) and (A.35) to obtain
lim

x2↓1−θ
Se(x2) = 2θpR

1 − θ(pR
1 − pR

2 ) = θ(pR
1 + pR

2 )

= θ

(
2 − θ

2 + 2 − 2θ
)

= θ

(
3 − 5

2θ
)
,

which by Lemma A.4 is equal to the social surplus generated by the Case-(b) solution of proposal
(θ, 1 − θ). Thus, it suffices to show that Se(x2) is strictly decreasing in x2.

To show d
dx2
Si(x2) < 0 for all x2 > 1−θ, use (A.39) and dpR

2 /dx2 = 0 (Eq. (A.35)) to obtain

d

dx2
Se(x2) = ∂Se

∂pR
1

dpR
1

dx2
+ ∂Se

∂q1

dq1

dx2
= (q1 + θ)dp

R
1

dx2
+
(
pR

1 − pR
2

) dq1

dx2

= −q1 + θ

2 +
(
pR

1 − pR
2

) 2θ
(2θ + x2 − 1)2 , (A.40)

with the last equality due to (A.36) and (A.37). Note that the expression (A.40) is strictly
decreasing in x2: By (A.35) and (A.36), pR

1 − pR
2 = (2θ − 1 − x2)/2, which is strictly decreasing

in x2; as can be seen above (due to (A.37)),
dq1

dx2
= 2θ

(2θ + x2 − 1)2 > 0

and so − q1+θ
2 is strictly decreasing in x2 as well. Thus, d

dx2
Se(x2) is strictly decreasing in x2.

Now that d
dx2
Se(x2) is strictly decreasing in x2 for all x2 > 1 − θ, and x2 > 1 − θ for any
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Case-(e)-i solution, to show that Se(x2) is strictly decreasing in x2, we need only

lim
x2↓1−θ

d

dx2
Se(x2) < 0.

To show that, take the limit of (A.40) as x2 converges to 1−θ from above and use (A.35), (A.36),
and (A.37) (so limx2↓1−θ q1 = 0 and limx2↓1−θ

(
pR

1 − pR
2

)
= 3θ−2

2 ) to obtain

lim
x2↓1−θ

d

dx2
Se(x2) = −θ

2 + (3θ − 2)
2

2
θ

= −θ2 + 6θ − 4
2θ = − 1

2θ
(
(θ − 3)2 − 5

)
,

which is negative because the condition θ ≤ 3/4 in the lemma implies θ < 3 −
√

5. Thus, the
supremum of d

dx2
Se(x2) is negative among all x2 > 1 − θ, so limx2↓1−θ Se(x2) is the supremum

social surplus among all Case-(e)-i solutions. Since the supremum has been shown equal to the
social surplus generated by the Case-(b) solution (θ, 1 − θ), the lemma is proved. ■

A.7.2 Subcase (ii): pR
2 > pR

1 (Eq. (2.13))

Lemma A.13 For any x2 ∈ [0, 1] there is at most one tuple
(
σi, p

A
i , p

R
i , qi

)2

i=1
such that

(
xi, σi, p

A
i , p

R
i , qi

)2

i=1
constitutes a Case-(e)-ii solution, and for any such PBE, 2θ − 1 < x2 < 1/2.

Proof By Lemma A.10, the tuple satisfies Eqs. (A.26), (A.32) and (A.33). Plug Bayes’s rule
1 − pR

1 = θσ1(w)/q1 into Eq. (A.32) to obtain

σ1(w) = (1 − θ)(1 − x1)
θx1

σ1(s). (A.41)

Eq. (A.32), combined with 1 − pR
1 = θσ1(w)/q1 and x1 + x2 = 1, also implies

q1 = θσ1(w)
x2

. (A.42)

Thus, from Bayes’s rule we have

1 − pA
1 = θ(1 − σ1(w))

1 − q1
= θ − q1x2

1 − q1
.

Plug this into (A.26), replace pR
1 via pR

1 = x1 (Eq. (A.32)) and replace q2 through q2 = (1−θ)/pR
2

(due to (2.6) and pA
2 = 0, the latter due to σ2(s) = 1), and eliminate pR

2 by (A.33). Then

x2 = (1 − θ)
1 − θ + (1 − q1)x2

θ − q1x2

1 − q1
,

which is simplified to a quadratic equation
(q1)2(x2)2 − 2q1(x2)2 + x2 + (1 − θ)(x− θ) = 0,

namely,
x2

2(q1 − 1)2 = (1 − θ)(θ − x2).
We claim that the right-hand side of this equation is strictly positive. To see that, note pA

1 < pR
1

due to Lemma A.2 and σ1(w) < 1 and hence q1 < 1 in any Case-(e) PBE. Then the Bayesian
plausibility condition (2.6) implies pR

1 > 1−θ. This, combined with Bayes’s rule pR
1 = (1−θ)σ1/q1

and 1 − pR
1 = θσ1(w)/q1, implies σ1(w) < σ1(s). Then (A.41 implies 1 − x1 < θ, namely,

θ − x2 > 0. (A.43)
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Thus, the quadratic equation implies x2(q1 − 1) = −
√

(1 − θ)(θ − x2), namely,

q1 = 1 − 1
x2

√
(1 − θ)(θ − x2). (A.44)

Thus, the Case-(e) solution is uniquely determined by x2. In particular,

pR
1

(A.32)= 1 − x2, (A.45)

pR
2

(A.33)= 1 − θ +
√

(1 − θ)(θ − x2), (A.46)

σ1(w) (A.42)= x2 −
√

(1 − θ)(θ − x2)
θ

, (A.47)

q2 = 1 − θ

pR
2
, (A.48)

with (A.48) due to Bayes’s rule with respect to σ2(s) = 1.
Finally we verify that 2θ−1 < x2 < 1/2 in any Case-(e)-ii solution. Recall from the definition

of Case-(e)-ii solutions that pR
2 > pR

1 . By (A.46) and (A.45),

pR
2 > pR

1 ⇐⇒ 1 − θ +
√

(1 − θ)(θ − x2) > 1 − x2

⇐⇒
√

(1 − θ)(θ − x2) > θ − x2. (A.49)

By (A.43), the above inequality is equivalent to(√
(1 − θ)(θ − x2)

)2
> (θ − x2)2,

namely, 1 − θ > θ − x2. Thus
x2 > 2θ − 1. (A.50)

To prove x2 < 1/2, recall that (A.27) holds for any Case-(e)-ii solution (Lemma A.10), namely,
qR

1 ≤ 1 − pR
2 . Plug (A.44) and (A.46) into this inequality to obtain( 1

x2
− 1

) √
(1 − θ)(θ − x2) ≥ 1 − θ,

namely,
(x2)2(1 − θ) ≤ (θ − x2)(1 − x2)2.

This coupled with (A.50) implies
(x2)2(1 − θ) ≤ (θ − x2)(1 − x2)2 < (1 − x2)2(1 − θ)

and hence x2
2 < (1 − x2)2. Thus x2 < 1/2, as asserted. ■

Lemma A.14 If 2/3 ≤ θ ≤ 3/4, then the Case-(b) PBE admitted by the proposal (θ, 1 − θ)
generates larger social surplus than any Case-(e)-ii solution.

Proof In any Case-(e)-ii solution, Reject is a best reply for each type of each player and hence
Lemma 2.1 applies. Thus, since pR

2 ≥ pR
1 in Case-(e)-ii, the social surplus is equal to

S′
e := 2θpR

2 + (q2 − θ)(pR
2 − pR

1 ).
To prove that S′

e is less than the social surplus generated by the Case-(b) solution (θ, 1 − θ),
which is equal to θ(3 − 5θ/2) by Lemma A.4, it suffices to prove q2 < θ and pR

2 < 2 − 2θ for any
Case-(e)-ii solution: If q2 < θ then S′

e < 2θpR
2 because pR

2 − pR
1 > 0 in any Case-(e)-ii solution; if,

in addition, pR
2 < 2 − 2θ, then

S′
e < 2θpR

2 < 2θ(2 − 2θ) ≤ θ(3 − 5θ/2),
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with the last inequality due to the condition θ ≥ 2/3 in the lemma.
Thus, we shall verify that pR

2 < 2 − 2θ and q2 < θ. First, note from (A.46) that pR
2 < 2 − 2θ

is equivalent to

1 − θ +
√

(1 − θ)(θ − x2) < 2 − 2θ ⇐⇒
√

(1 − θ)(θ − x2) < 1 − θ

⇐⇒ 1 − θ < θ − x2 ⇐⇒ 2θ − 1 < x2,

where 2θ − 1 < x2 is true by Lemma A.13. Thus, pR
2 < 2 − 2θ.

Second, to prove q2 < θ, note from (A.46) and (A.48).

q2 < θ ⇐⇒ 1 − θ

1 − θ +
√

(1 − θ)(θ − x2)
< θ

⇐⇒ (1 − θ)2 ≤ θ
√

(1 − θ)(θ − x2)

⇐⇒ x2 ≤ θ − (1 − θ)3

θ2 .

Thus, since x2 < 1/2 by Lemma A.13, it suffices to show 1/2 ≤ θ − (1 − θ)3/θ2, namely,
4θ3 − 7θ2 + 6θ − 2

2θ2 ≥ 0.

Thus we are done if 4θ3 − 7θ2 + 6θ − 2 ≥ 0. To show that, note
d

dθ

[
4θ3 − 7θ2 + 6θ − 2

]
= 12θ2 − 14θ + 6 = 6θ(2θ − 1) + 2(3 − 4θ) > 0

because 2θ > 1 by (2.1) and θ ≤ 3/4 by the hypothesis of lemma. Thus, the term 4θ3−7θ2+6θ−2
is strictly increasing in θ. Since it is equal to 2/27 at θ = 2/3, it follows that 4θ3 −7θ2 +6θ−2 > 0
for all θ ∈ [2/3, 3/4]. This proves q2 < θ, as desired. ■



Appendix B

Appendices to Chapter 3

B.1 Categorizing All Kinds of Fully Participating
PBEs

Lemma B.1 For any i ∈ {1, 2} and in any fully participating PBE, if player i’s strategy
(σi(νi; a), σi(νi; 1)) are specified by a row and column in the following table, then σi has the
property stated in the corresponding cell:

σi(νi; 1) = 0 0 < σi(νi; 1) < 1 σi(νi; 1) = 1
σi(νi; a) = 0

0 < σi(νi; a) < 1 impossible
σi(νi; a) = 1 impossible impossible always conflict

Proof First, suppose 0 < σi(νi; a) < 1 and σi(νi; 1) = 0. Then ∆i(a) = 0 and ∆i(1) ≤ 0 by
Ineqs. 3.15 and 3.16, πR

i = 1 by definition, and πA
i = θ/((θ + (1 − θ)/(1 − σi(νi; a))) < θ by

Eq. (3.5). Thus, 0 ≥ ∆i(1) − ∆i(a) = qA
−iπ

R
i + qR

−i

[
πR

i − max
{
πA

i , π
R
−i

}
+ a

(
πR

−i − πA
i

)+
]
> 0,

where the last inequality can be readily verified for the two possible and exhaustive cases of
πA

i ≥ πR
−i and πA

i ≤ πR
−i coupled with the fact that πA

i < θ < πR
i = 1. The contradiction

displayed above implies this case is impossible, as asserted in the cell.
Second, suppose σi(νi; a) = 1 and 0 ≤ σi(νi; 1) < 1, which corresponds to the cells of the

third row and the first and second columns. Then ∆i(a) ≥ 0 and ∆i(1) ≤ 0 by Ineqs. 3.15 and
3.16, πA

i = 0 by definition, and πR
i = θ/(θ + (1 − θ)σi(νi; 1)) > θ by Eq. (3.6). Thus,

0 ≥ ∆i(1) − ∆i(a) = qA
−i

(
max

{
πR

i , π
A
−i

}
− a

(
πA

−i − πR
i

)+
)

+

qR
−i

[
max

{
πR

i , π
R
−i

}
− πR

−i − a
(
πR

−i − πR
i

)+
+ aπR

−i

]
> 0

where the last inequality can be readily verified for the four possible and exhaustive cases of
πR

i ≥ πR
−i, πR

i ≤ πR
−i, πA

−i ≥ πR
−i, and πA

−i ≤ πR
−i coupled with the fact that πA

i = 0 < θ < πR
i .

Hence this case is impossible, as asserted in the cells.
Finally, consider σi(νi; a) = σi(νi; 1) = 1, the cell of Row Three and Column Three. Then

103
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qA
i = 0, qR

i = 1 and πR
i = θ by definition. Apply Eq. (3.14) to the opponent −i to obtain[

∆−i(1)
∆−i(a)

]
=

 max
{
πR

−i, θ
}

− max
{
πA

−i, θ
}

a
(
θ − πR

−i

)+
− a

(
θ − πA

−i

)+

 . (B.1)

We claim that the posterior probability π−i with which player −i’s type equals a is the same as
the prior: π−i = θ. Suppose otherwise. We derive a contradiction for all possibilities:

1. σ−i(ν−i; a) = 0. Then σ−i(ν−i; 1) > 0, otherwise the claim π−i = θ is true. Thus, πA
−i > θ

by Eq. (3.5), and ∆−i(1) ≥ 0 by Ineq. 3.15. Then Eq. (B.1) implies πR
−i ≥ πA

−i > θ. But
since σ−i(ν−i; a) = 0 and σ−i(ν−i; 1) > 0, πR

−i = 0 by Bayes’s rule: contradiction.

2. σ−i(ν−i; a) = 1. Then σ−i(ν−i; 1) < 1, otherwise the claim π−i = θ is true. Thus, πR
−i > θ

by Eq. (3.6), and ∆−i(a) ≥ 0 by Ineq 3.16. Then Eq. (B.1) implies πA
−i ≥ θ. But since

σ−i(ν−i; a) = 1 and σ−i(ν−i; 1) < 1, πA
−i = 0 by Bayes’s rule: contradiction.

3. 0 < σ−i(ν−i; a) < 1. Then Eq. (3.23) is applicable to player −i. Thus, either πR
−i < θ < πA

−i

or πR
−i > θ > πA

−i. Suppose πR
−i < θ < πA

−i. Then Eq. (B.1) implies ∆−i(1) < 0 and
∆−i(a) > 0; hence σ−i(ν−i; a) = 1 and σ−i(ν−i; 1) = 0 (Ineqs. 3.15 and 3.16). But that is
impossible according to the proved assertion in the cell of Row 3 and Column 1, with −i
playing the role of i in the table. Thus consider the only possibility, πR

−i > θ > πA
−i. Then

Eq. (B.1) implies ∆−i(1) > 0 and ∆−i(a) < 0; hence σ−i(ν−i; a) = 0 and σ−i(ν−i; 1) = 1
(Ineqs. 3.15 and 3.16). But that implies, πR

−i = 0 and πA
−i = 1, contradicting the condition

πR
−i > θ > πA

−i assumed throughout this subcase.

All possible cases considered, I have derived a contradiction and proved π−i = θ. It follows that,
in the conflict stage, which occurs for sure because σi(νi; a) = σi(νi; 1) = 1, the posteriors are
πi = π−i = θ. Hence it always conflict, asserted in the last cell of the table.

Lemma B.2 In any fully participating PBE that is not always-conflict, for any i ∈ {1, 2}, it is
impossible to have:
(i) σ−i(ν−i; a) = σ−i(ν−i; 1) = 0, σi(νi; a) = 0, and 0 < σi(νi; 1) < 1.
(ii) σ−i(ν−i; a) = σ−i(ν−i; 1) = 0, 0 < σi(νi; a) < 1, and 0 < σi(1) < 1.

Proof To prove Case-(i) note that by Eqs. (3.3)-(3.6), σi(νi; a) = 0 and 0 < σi(νi; 1) < 1 implies
πR

i = 0 and πA
i > θ. Analogously, σ−i(ν−i; a) = σ−i(ν−i; 1) = 0 implies πA

−i = θ, qA
−i = 1, and

off-path posterior belief πR
−i is arbitrary and πR

−i ∈ [0, 1]. Hence, by Eqs. (3.14) and Ineqs. (3.15)
and (3.16),

0 < σi(νi; 1) < 1 ⇒ ∆i(1) = 0 ⇐⇒ xi = πA
−i = θ,

σ−i(ν−i; 1) = 0 ⇒ ∆−i(1) ≤ 0 ⇐⇒ qA
i max

{
πR

−i, π
A
i

}
+ qR

i π
R
−i ≤ qA

i x−i + qR
i π

A
−i,⇒ x−i ≥ θ

where the last inequality in the above displayed set of equations can be readily verified for the
two possible and exhaustive cases of πR

−i ≤ πA
i and πR

−i ≥ πA
i . For both of these cases the term

qA
i max

{
πR

−i, π
A
i

}
+ qR

i π
R
−i > qA

i π
A
i = θ, where qA

i π
A
i = θ is by by Eqs. (3.3)-(3.6), σi(νi; a) = 0

and 0 < σi(νi; 1) < 1. Also, πA
−i = θ by ∆i(1) = 0. Thus, one can verify ∆−i(1) ≤ 0 implies

x−i ≥ θ. Hence, by the above displayed equations any Case-(i) PBE of this lemma should satisfy
xi + x−i = M ≥ 2θ, which violates condition (3.22).

To prove Case-(ii) note that by Eqs. (3.3)-(3.6), πA
−i = θ, qA

−i = 1, πR
i > 0, and πA

i > 0.
Moreover, 0 < σi(νi; a) < 1 ⇒ ∆i(a) = 0 and 0 < σi(νi; 1) < 1 ⇒ ∆i(1) = 0. Hence, Eqs. (3.14)
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can be simplified further to max
{
πR

i , π
A
−i

}
− xi = 0 and a

(
πA

−i − πR
i

)+
− xi = 0. Consider the

two exhaustive cases of πA
−i = θ ≥ πR

i or πR
i ≥ θ = πA

−i. If πA
−i = θ ≥ πR

i , then the set of
equations simplifies to xi = θ and xi = a(θ−πR

i ), which is impossible due to πR
i > 0. Otherwise,

if πA
−i = θ ≤ πR

i , then the set of equations simplifies xi = πR
i and xi = 0, which is impossible due

to πR
i > 0. Hence, the impossibility of this class of PBE. ■

Lemma B.3 Any fully participating PBE that has σi(νi; 1) = 1 for player i admits lower ex-ante
probability of peace compared to a PBE where σi(νi; a) = 0, σi(νi; 1) = 1, and qA

−i = 1.

Proof By Eq. (3.3) at any fully participating PBE where σi(νi; 1) = 1 and 0 ≤ σi(νi; a) ≤ 1 the
ex-ante probability of accept is qA

i = θ
(
1 − σi(νi; a)

)
≤ θ. Hence, the ex-ante probability of peace,

i.e., qA
i q

A
−i, at any such PBE satisfies qA

i q
A
−i ≤ θqA

−i. This ex-ante probability of peace is lower
than one admitted by a fully participating PBE where qA

−i = 1 and σi(νi; a) = 0, σi(νi; 1) = 1
rendering qA

i = θ. ■

Thus, by Lemmas B.1-B.3, there are at most four kinds of fully participating PBEs that are
not always-conflict and not sub-optimal:

(i) For some i ∈ {1, 2}, σ−i(ν−i; a) = σ−i(ν−i; 1) = 0 = σi(a) < 1 = σi(νi; 1). Call this
lopsided.

(ii) For each i ∈ {1, 2}, σi(νi; a) = 0 and σi(νi; 1) ∈ (0, 1). Call this mutually partially mixed
(MPM).

(iii) For some i ∈ {1, 2}, σ−i(ν−i; a) = 0, σ−i(ν−i; 1) ∈ (0, 1), σi(νi; a) ∈ (0, 1), and σi(νi; 1) ∈
(0, 1). Call this hybrid.

(iv) For each i ∈ {1, 2}, σi(νi; a) ∈ (0, 1), and σi(νi; 1) ∈ (0, 1). Call this mutually totally
mixed (MTM).

These results coupled with the fact peace cannot be guaranteed due to Ineq. (3.22) are summa-
rized in the Table B.1, where I use the notations σi(ti) instead of σi(νi; ti).

σ−i(a) = 0 σ−i(a) = 0 σ−i(a) = 0 σ−i is 0 < σ−i(a) < 1
σ−i(1) = 0 0 < σ−i(1) < 1 σ−i(1) = 1 totally mixed σ−i(1) = 1

σi(a) = σi(1) = 0 impossible
σi(a) = 0 < σi(1) < 1 impossible MPM
σi(a) = 0, σi(1) = 1 Lopsided suboptimal suboptimal
σi is totally mixed impossible Hybrid suboptimal MTM

0 < σi(a) < 1 = σi(1) suboptimal suboptimal suboptimal suboptimal suboptimal

Table B.1: All possible fully participating PBEs that are not always-conflict

Lemma B.4 In any fully participating PBE that is not always-conflict, if 0 < qR
i < 1 for some

player i ∈ {1, 2}, then mediation strategies are monotone in type, i.e., σi (νi; a) < σi (νi; 1).



B.2. Characterization of Equilibria 106

Proof Table B.1 summarizes results of Lemmas B.1 and B.2 and provides all possible cases of
PBEs that are not always-conflict. The empty cells are the symmetric cases of the filled ones.
By this table, it suffices to prove the claim of the lemma for the MTM and Hybrid PBEs because
in all other possible PBEs, by definition, the strategies are monotone in type.

First, at Hybrid PBEs, for each i ∈ {1, 2}, σ−i(ν−i; a) = 0, 0 < σ−i(ν−i; 1) < 1, 0 <
σi(νi; a) < 1, and 0 < σi(νi; 1) < 1. By Eqs. (3.5) and (3.6), πR

−i = 0 and πA
−i > θ. Moreover,

0 < σi(νi; a) < 1 implies that ∆i(a) = 0, where by Eq. (3.14), ∆i(a) = qA
−i

(
a
(
πA

−i − πR
i

)+
− xi

)
.

By the definition of Hybrid PBEs 0 < qA
−i < 1, then ∆i(a) = 0 is equivalent to either: (i) πR

i < πA
−i

and πA
−i = πR

i + xi/a or (ii) πR
i ≥ πA

−i and xi = 0. (ii) is impossible. Suppose it holds. Note that
by plugging xi = 0, πA

−i ≤ πR
i , and πR

−i = 0 in Eq. (3.14), one obtains ∆i(1) = πR
i − qR

−iπ
A
i . Then,

0 < σi(νi; 1) < 1 implies that ∆i(1) = 0, which coupled with the fact that 0 < qR
−i = 1 − qA

−i < 1
implies that πR

i < πA
i , a contradiction with the assumption that I begin with. Hence, πR

i < πA
−i.

Thus, by Eq. (3.23), σi (νi; a) < σi (νi; 1), as desired.
Second, at MTM PBEs, 0 < σi(νi; a) < 1, and 0 < σi(νi; 1) < 1 for each i ∈ {1, 2}. Hence,

by Ineqs. (3.15) and (3.16), ∆i(1) = ∆i(a) = 0. Proof is by contradiction. Consider the two
exhaustive cases. Case (i): both players follow non-monotone strategies; case (ii): player i follows
non-monotone strategies and her opponent −i follows monotone one.

Case (i): both players follow non-monotone strategies. Then, by implication of Eq. (3.23),
πR

i ≥ θ ≥ πA
i for each i. Since the defining conditions of MTM PBEs are symmetric between the

two players, let us assume, without loss of generality, that πR
i ≥ πR

−i. Plug these posteriors in
Eq. (3.14) to conclude that ∆i(a) = 0 ⇐⇒ 0 = qA

−ixi + qR
−ia

(
πR

−i − πA
i

)
, which by 0 < qR

i < 1
it can hold only if xi = 0 and πR

−i − πA
i . Plug πR

i ≥ θ ≥ πA
i and xi = 0 to Eq. (3.14) to observe

∆i(1) = 0 ⇐⇒ πR
i = qR

−iπ
R
−i, which is impossible by πR

i ≥ πR
−i and 0 < qR

−i < 1.
Case (ii): player i follows non-monotone strategies and her opponent −i follows monotone

one. Then, by implication of Eq. (3.23), πR
i ≥ θ ≥ πA

i and πR
−i < θ < πA

−i. There will be
different subcases. First, suppose that πA

−i < πR
i . Then, plug in these posteriors in Eq. (3.14)

to conclude that ∆i(a) = 0 ⇐⇒ 0 = qA
−ixi + qR

−ia
(
πR

−i − πA
i

)
, which by 0 < qR

i < 1 it can
only hold if xi = 0 and πR

−i ≤ πA
i . Plug in these posteriors in Eq. (3.14) to conclude that

∆i(1) = 0 ⇐⇒ qA
−iπ

A
−i = qR

−i

(
πA

i − πR
i

)
, which by 0 < qA

i = 1 − qR
i < 1 and πR

i ≥ θ ≥ πA
i > 0

is impossible. Second, suppose that πA
−i ≥ πR

i and πA
i ≥ πR

−i. Then, plug these posteriors into

Eq. (3.14) to conclude that ∆i(1)−∆i(a) = 0 ⇐⇒ qA
−i

(
πA

−i − a
(
πA

−i − πR
i

))
= qR

−i

(
πA

i − πR
i

)
,

which is impossible because the left hand side of this equation is strictly positive and the right
hand side is strictly negative by the assumption made at the top of this case. Lastly, suppose
that πA

−i ≥ πR
i and πR

−i > πA
i . Then, plug in these posteriors into Eq. (3.14) to find that

0 = ∆i(1) − ∆i(a) = qA
−i

(
πA

−i − a
(
πA

−i − πR
i

))
+ qR

−i

(
πR

i − πR
−i

)
+ qR

−ia
(
πR

−i − πA
i

)
> 0. In

brief, all possible subcases led to contradiction. Thus, Case (ii) is not possible either. ■

B.2 Characterization of Equilibria

B.2.1 Hybrid and MTM PBEs
Lemma B.5 If M ≥ θ + a then there does not exist any proposal that admits Hybrid PBEs.
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Proof At any Hybrid PBEs, for each i ∈ {1, 2}, σ−i(ν−i; a) = 0, 0 < σ−i(ν−i; 1) < 1, 0 <
σi(νi; a) < 1, and 0 < σi(νi; 1) < 1. By Eqs. (3.5) and (3.6), πR

−i = 0 and πA
−i > θ. The strategies

are monotone (Lemma B.4) and by Ineq. (3.23), πR
i < πA

−i. By 0 < σi(νi; a) < 1 ⇒ ∆i(a) = 0,
plug these posteriors into Eq. (3.14) to find that ∆i(a) = 0 is equivalent to xi = a

(
πA

−i − πR
i

)
which implies xi < a. Analogously, 0 < σ−i(ν−i; 1) < 1 ⇒ ∆−i(1) = 0 which by Eq. (3.14) is

∆−i(1) = 0 ⇐⇒ qA
i π

A
i + qR

i π
R
i︸               ︷︷               ︸

=θ By eqs. (3.5) and (3.6)

−qA
i x−i − qR

i π
A
−i = 0 ⇐⇒ θ = qA

i x−i + qR
i π

A
−i,

The above set of displayed equations coupled with 1 > πA
−i > θ, imply that θ = qA

i x−i + qR
i π

A
−i >

qA
i x−i + qR

i θ ⇒ x−i < θ. Hence, one can conclude by ∆i(a) = 0 and ∆−i(1) = 0 that at any
Hybrid PBEs M = xi +x−i < θ+a. Hence, if M ≥ θ+a, then there does not exist any proposal
that admits Hybrid PBEs. ■

Lemma B.6 If M ≥ θ + a, then there does not exist any proposal that admits MTM PBEs.

Proof The proof is analogous to that of Lemma B.5. At MTM PBEs, 0 < σi(νi; a) < 1, and
0 < σi(νi; 1) < 1 for each i ∈ {1, 2}. Hence, by Ineqs. (3.15) and (3.16), ∆i(1) = ∆i(a) = 0.
Since the defining condition of this PBE is symmetric between the two players, let us assume,
without loss of generality, that πR

i ≥ πR
−i. The strategies are monotone (Lemma B.4) and by

Ineq. (3.23), πA
i > θ > πR

i for each player. By Eq. (3.15) and (3.16), 0 < σi(w) < 1 ⇒ ∆i(a) = 0
and 0 < σ−i(1) < 1 ⇒ ∆−i(1) = 0. Plug these posteriors into Eq. (3.14) to find that ∆i(a) =
0 ⇐⇒ xi = a

(
πA

−i − πR
i

)
⇒ xi < a and ∆−i(1) = 0 ⇐⇒ θ = qA

i x−i + qR
i π

A
−i ⇒ x−i < θ,

where the last inequality is by πA
−i > θ > πR

i . Hence, at any MTM PBEs M = xi + x−i < θ + a.
Thus, if M ≥ θ + a, then there does not exist any proposal that admits MTM PBEs. ■

B.2.2 Lopsided PBEs
Lemma B.7 Suppose a < θ. Conditional on participation, a peace proposal (xi, x−i), where
xi < x−i for some i ∈ {1, 2}, admits Lopsided PBEs if and only if for some off-path belief
π̃R

−i ∈ [0, 1],

aθ ≤ xi ≤ M −
(
θ + (1 − θ)

θ
π̃R

−i

)
. (B.2)

Such a peace proposal exists if and only if θ(1 + a) + (1−θ)
θ π̃R

−i ≤ M < 2θ and
(
θ, a, π̃R

−i

)
satisfies

either: (i) θ ≥ −1+
√

5−4a
2(1−a) , and π̃R

−i ∈ [0, 1] or (ii) a < θ ≤ −1+
√

5−4a
2(1−a) and π̃R

−i ∈
[
0, θ2(1−a)

1−θ

]
.

Proof In any Lopsided PBE, conditional on participation and given peace proposal (xi, x−i),
strategies are σi(νi; a) = 0, σi(νi; 1) = 1, and σ−i(ν−i; a) = σ−i(ν−i; 1) = 0. Thus, by Eqs. (3.3)-
(3.6), πA

i = 1, πR
i = 0, qA

i = θ, πA
−i = θ, qA

−i = 1, and and π̃R
−i is the off-path posterior belief

and hence arbitrary. Couple these observations with Eq. (3.14) and Ineqs. (3.15) and (3.16) to
obtain the best response conditions for these strategies to constitute a PBE for each player:

∆i(a) ≤ 0 ⇐⇒ xi ≥ aθ, ∆i(1) ≥ 0 ⇐⇒ xi ≤ θ, (B.3)

∆−i(a) ≤ 0 ⇐⇒ x−i ≥ a
(
1 − π̃R

−i

)
, ∆−i(1) ≤ 0 ⇐⇒ x−i ≥ θ + (1 − θ)

θ
π̃R

−i. (B.4)

Therefore, by ∆i(1) ≥ 0 and ∆−i(1) ≤ 0 it is necessary that
xi < θ < x−i, (B.5)
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which coupled with M < 2θ, by Ineq. (3.22), implies that xi <
M
2 < x−i. Moreover, by the

assumption θ > a it is immediate that ∆−i(a) ≤ 0 displayed above is redundant because it is
implied by ∆−i(1) ≤ 0. Thus, by Ineqs. (B.3), (B.4), (B.5), and M < 2θ, a peace proposal
(xi, x−i) admits a Lopsided PBE at the continuation game of mediation if and only if aθ ≤ xi ≤
M −

(
θ + (1−θ)

θ π̃R
−i

)
, as noted in the lemma.

Thus, conditional on participation, such a proposal that admits Lopsided PBEs exists if
and only if there exists M that satisfies θ(1 + a) + (1−θ)

θ π̃R
−i ≤ M and simultaneously satisfies

M < 2θ, where the latter inequality is by the condition (3.22). To ensure these conditions are
simultaneously satisfied, pick the arbitrary off-path belief π̃R

−i ∈ [0, 1] such that θ(1 + a) +
(1−θ)

θ π̃R
−i < 2θ ⇐⇒ π̃R

−i < θ2(1−a)
1−θ . Hence, the off path belief should be in 0 ≤ π̃R

−i ≤
min

{
1, θ2(1−a)

1−θ

}
. By a ∈ (0, 1) and θ > a, one can readily verify that θ2(1−a)

1−θ ≤ 1 ⇐⇒ 0 < θ ≤
−1+

√
5−4a

2(1−a) . One can readily verify that −1+
√

5−4a
2(1−a) > a because:

−1 +
√

5 − 4a
2(1 − a) > a ⇐⇒

√
5 − 4a > 1 + 2a(1 − a)

⇐⇒ 5 − 4a > (1 − 2a(1 − a))2 ⇐⇒ 5 − 4a− (1 − 2a(1 − a))2 > 0
⇐⇒ 4(1 + a)(1 − a)3 > 0,

where the last inequality in the above displayed set of inequalities always hold by a ∈ (0, 1).
Thus, one can conclude the two subcases on

(
θ, a, π̃R

−i

)
in the statement of this lemma. ■

Corollary B.1 Lopsided proposals (xi, x−i) such that xi < x−i admit Lopsided PBEs where
πA

i = 1, πR
i = 0, qA

i = θ, πA
−i = θ, qA

−i = 1, and the off-path posterior π̃R
−i can be any element of

nonempty intervals characterized in Lemma B.7. Moreover, the ex-ante probability of conflict is
P (x−i) = 1 − θ.

Proof The proof is an immediate implication of the definition of Lopsided PBEs where given
(xi, x−i) then σi(νi; a) = 0, σi(νi; 1) = 1, σ−i(ν−i; a) = σ−i(ν−i; 1) = 0. Hence, by Eqs. (3.3)-(3.6)
the posteriors and qA

i for each i can be readily characterized. The off-path posterior intervals are
given by Lemma B.7. Then, P (x−i) = 1 − qA

i q
A
−i = 1 − θ. ■

B.2.3 MPM PBEs
Lemma B.8 Conditional on participation, a peace proposal (xi, x−i) admits an MPM PBE if
and only if xi = x−i = M

2 and max
{

2aθ(2 − a), 2(2θ−1)
θ

}
< M < 2θ. Furthermore, given an

equal proposal,

σ(νi; a) = 0, σ(νi; 1) = x− θ +
√
θ2 − xθ

(1 − θ)x , πR = 0, πA > θ, and qA = θ −
√
θ2 − xθ

x
. (B.6)

Proof In any MPM PBEs, conditional on participation and given peace proposal (xi, x−i), the
strategies are σi(νi; a) = 0 and 0 < σi(νi; 1) < 1 for each i ∈ {1, 2}. Hence, by Eqs. (3.5)-(3.6),
πR

i = πR
−i = 0, πA

i > θ, πA
−i > θ, and qA

i π
A
i = θ for each i ∈ {1, 2}. Plug these observations into

Eq. (3.14) coupled with Ineqs. (3.15) and (3.16) to obtain the best response conditions for these
strategies to constitute a PBE for each player:

σi(νi; a) = 0 ⇒ ∆i(a) ≤ 0 ⇐⇒ aπA
−i ≤ xi, (B.7)

0 < σi(νi; 1) < 1 ⇒ ∆i(1) = 0 ⇐⇒ θ = qA
−ixi + qR

−iπ
A
i (B.8)
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Plug qA
−i = θ

πA
−i

in Eq. (B.8) to get πA
−i = θ

(
πA

i −xi

πA
i −θ

)
. Plug πA

−i in Eq. (B.8), with roles of i and

−i reversed, coupled with qA
i π

A
i = θ to verify:

θ = qA
i x−i + qR

i θ

(
πA

i − xi

πA
i − θ

)
⇐⇒ θ

(
πA

i − θ
)

= qA
i x−i

(
πA

i − θ
)

+ qR
i θ
(
πA

i − xi

)
⇐⇒ θ

(
πA

i − θ
)

= θx−i − qA
i x−iθ + (1 − qA

i )θ
(
πA

i

)
− qR

i θxi

⇐⇒ θ
(
πA

i − θ
)

= θx−i − qA
i x−iθ + θπA

i − θ2 − qR
i θxi

⇐⇒ 0 = qR
i θ (x−i − xi) .

Note that by 0 < σi(νi; 1) < 1 then 0 < qR
i < 1. Hence, the latter equation holds if and only

if xi = x−i = M
2 . Thus, the equilibrium is symmetric and I drop the subscript i. Thus, one

can solve for qA by θ = qAx + qRπA ⇐⇒ 2θ = qAx + πA = qAx + θ
qA which is equivalent

to qA = θ±
√

θ2−xθ
x . To have a well defined qA, it is necessary that x < θ which is satisfied by

x = M
2 < θ. This observation also implies that θ+

√
θ2−xθ
x > 1. Hence, qA = θ−

√
θ2−xθ
x . Note that

qA = θ + (1 − θ)(1 − σ(νi; 1)). Hence, σ(νi; 1) = x−θ+
√

θ2−xθ
(1−θ)x , where

0 < σ(νi; 1) < 1 ⇐⇒ 2θ − 1
θ

< x = M

2 < θ (B.9)

By (B.7), a peace proposal admits MPM if aπA ≤ x = M
2 . Plugging in for πA = θ

qA :

aπA ≤ x ⇐⇒ aqAπA ≤ xqA ⇐⇒ aθ ≤ qAx (B.10)
Plugging in for qA by Eq. (B.6) in the above displayed inequality one can obtain

aθ ≤ qAx ⇐⇒ aθ ≤ x
θ −

√
θ2 − xθ

x
⇐⇒ aθ(2 − a) ≤ x. (B.11)

In brief, an equal proposal admits a MPM PBE if and only if Ineqs. (B.11) and (B.9). Hence,
given x = M

2 , these necessary and sufficient conditions are max
{
aθ(2 − a), 2θ−1

θ

}
< M

2 < θ. ■

Corollary B.2 Conditional on participation, MPM PBE exists if and only if either of the fol-
lowing hold: (i) θ ≥ 1

2−a and 2(2θ−1)
θ < M < 2θ or (ii) θ ≤ 1

2−a and 2aθ(2 − a) < M < 2θ.

Proof Proof is an immediate implication of Lemma B.8. An equal peace proposal admits MPM
PBE if and only if max

{
2aθ(2 − a), 2(2θ−1)

θ

}
< M < 2θ. Observe that aθ(2 − a) ≤ 2θ−1

θ ⇐⇒
θ ≥ 1

2−a as stated in statement (i) of the Corollary. Statement (ii) is the complementary case of
(i). It is easy to verify that the stated interval is not vacuous. ■

Lemma B.9 Suppose Ineq. (3.21). Conditional on participation, MPM PBEs exists if and only
if (M, θ, a) satisfies either of the following cases: (i) θ < 4−a−

√
a2−8a+8
2 and θ + a ≤ M or (ii)

θ ≥ 4−a−
√

a2−8a+8
2 and 2(2θ−1)

θ < M .

Proof Ineq. (3.21) states that M ≥ θ+ a and θ > a. Case (i) in the statement of Lemma B.9 is
a direct implication of Corollary B.2, the upper branch of Claim B.1, coupled with easy to verify
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facts that a < 1
2−a and 1

2−a <
4−a−

√
a2−8a+8
2 ⇐⇒ 4(1 − a)2 > 0:

1
2 − a

<
4 − a−

√
a2 − 8a+ 8
2 ⇐⇒ (2 − a)

√
a2 − 8a+ 8 < (4 − a)(2 − a) − 2︸                     ︷︷                     ︸

>0 by a∈(0,1)

⇐⇒
(
(2 − a)

√
a2 − 8a+ 8

)2
<
(
(4 − a)(2 − a) − 2

)2
,

⇐⇒ 4(1 − a)2 > 0.
Analogously, Case (ii) in the statement of of Lemma B.9 is a direct implication of Corollary B.2,
the lower branch of Claim B.1, and the above mentioned fact that a < 1

2−a <
4−a−

√
a2−8a+8
2 for

all a ∈ (0, 1). ■

Claim B.1 Suppose a < θ. Then

max
{
θ + a,

2(2θ − 1)
θ

, 2aθ(2 − a)
}

=

 θ + a iff θ ≤ 4−a−
√

a2−8a+8
2 ,

2(2θ−1)
θ iff θ ≥ 4−a−

√
a2−8a+8
2 .

Proof First note that,
2(2θ − 1)

θ
≤ 2aθ(2 − a) ⇐⇒ θ ≤ 1

2 − a
. (B.12)

Second, θ+ a ≤ 2aθ(2 − a) ⇐⇒ a
2a(2−a)−1 ≤ θ. Whenever this condition is binding it is implied

by Ineq. (B.12) due to easily verifiable fact that a
2a(2−a)−1 ≥ 1

2−a for all a ∈ (0, 1). Hence, there
does not exist (θ, a) such that a < θ < 1 and max

{
θ + a, 2(2θ−1)

θ , 2aθ(2 − a)
}

= 2aθ(2 − a).
Therefore, it suffices to verify (θ, a) such that the outcome of the max operator is either θ+ a or
2(2θ−1)

θ . Note that θ + a ≤ 2(2θ−1)
θ ⇐⇒ 4−a−

√
a2−8a+8
2 ≤ θ ≤ 1 where the equivalence is due to

the a ∈ (0, 1), a2 − 8a + 8 > 0, 4−a+
√

a2−8a+8
2 > 1, and a < 4−a−

√
a2−8a+8
2 < 1 (as shown in the

proof of Lemma B.9). Hence, for any a ∈ (0, 1) and θ > a,

θ + a ≤ 2(2θ − 1)
θ

⇐⇒ 4 − a−
√
a2 − 8a+ 8
2 ≤ θ < 1. ■ (B.13)

B.3 Proof of Proposition 3.1

Conditional on participation in the mediation, as shown in Appendix B.1, and summarized in the
Table B.1, there are at most four kinds of fully participating PBEs that are not always-conflict and
not suboptimal. For each class of these PBEs, use Ineqs. (3.15) and (3.16) and definitions of each
class to uniquely determines the strategy profile (σi)i=2

i=1, on-path posterior beliefs
(
πA

i , π
R
i

)i=2

i=1
by Bayes’s rule whenever it applies, and, if needed, off-path posterior beliefs that rationalizes
equilibrium. Moreover, use the aforementioned system of inequalities and definition of each class
of PBE to find xmin = min {x1, x2} ∈ [0,M ] such that peace proposals (M − xmin, xmin) admits
such PBEs. By Lemmas B.5 and B.6, if θ+a ≤ M then two set of fully participating PBEs from
the four previously mentioned ones are empty and only lopsided and MPM PBEs can possibly
exist. ■
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B.4 Conflict Minimization Details
Lemma B.10 At MPM PBEs, ex-ante probability of Accept qA, is strictly increasing in x.

Proof By Eq. (B.6) d
dxq

A = d
dx

[
θ−

√
θ2−xθ
x

]
= 2θ2−xθ−2θ

√
θ2−xθ

2x2
√

θ2−xθ
. By Lemma B.8 equal proposal

x = M
2 admit MPM PBEs. By Ineq. (3.22), x = M

2 < θ. Hence, to verify d
dxq

A > 0, it suffices to
verify: 2θ2 − xθ − 2θ

√
θ2 − xθ > 0 ⇐⇒

(
2θ2 − xθ

)2
> 4θ2

(
θ2 − xθ

)
⇐⇒ θ2x2 > 0, where

θ2x2 > 0 is always true by θ > 0 and x > 0. ■

Lemma B.11 Assume Ineq. (3.21). Suppose (M, θ, a) are such that x = M
2 = θ+a

2 admits MPM
PBE. Then, ex-ante probability of conflict P

(
θ+a

2

)
≤ 1 − θ if and only if θ ≤ 6 − a− 4

√
2 − a.

Proof By Lemma B.8, the equal proposal admits MPM PBE, which generates an ex-ante
probability of Accept qA. Thus, given the equal proposal, ex-ante probability of conflict is
P (x) = 1 −

(
qA
)2

. Hence, 1 −
(
qA
)2

≤ 1 − θ if and only if
(
qA
)2

≥ θ. By Eq. (B.6), given

x = M
2 = θ+a

2 , we have qA = 2θ−
√

2θ(θ−a)
θ+a . Therefore, it suffices to verify that

(
qA
∣∣∣
x= θ+a

2

)2

≥ θ

which one can readily show it is equivalent to (θ + a)2
[
θ2 + a2 + 2aθ − 12θ + 4a+ 4

]
≥ 0. For

the latter inequality to hold it suffices to find (θ, a) such that the term in the parenthesis is
positive and satisfy θ > a of (3.21). This in turn is equivalent to a ≤ θ ≤ 6 − a− 4

√
2 − a. ■

Proposition B.1 Suppose Ineq. (3.21) and that players fully participate in the mediation:

a. If a < θ < 6 − a− 4
√

2 − a then the equal split is the unique conflict-minimizing proposal;

b. If 6 − a − 4
√

2 − a ≤ θ < 4−a−
√

a2−8a+8
2 then for some π̃R

−i ∈ [0, aθ] there exists a unique
M∗ ∈ [a+ θ, 2θ) such that the conflict-minimizing proposals are the lopsided proposal if
M ≤ M∗ and the equal proposal if M ≥ M∗;

c. If 4−a−
√

a2−8a+8
2 ≤ θ < 1 then for some π̃R

−i ∈
[
0,min

{
2(2θ−1)−θ2(1+a)

1−θ , 1
}]

there exists

a unique M∗ ∈
[

2(2θ−1)
θ , 2θ

)
such that the conflict-minimizing proposals are the lopsided

proposal if M ≤ M∗ and the equal proposal if M ≥ M∗.

Proof Conditional on participation, by Ineq. (3.21) and Lemmas B.5, B.6 it is immediate that
given peace proposals (xi, x−i), there exist only two classes of equilibria: MPM and Lopsided
PBEs. The objective of the mediator is to minimize the ex-ante probability of conflict defined
as P (xmin) = 1 − qA

i q
A
−i or equivalently maximize the ex-ante probability of peace denoted by

Υm(xmin) = qA
i q

A
−i, where m ∈ {MPM,LOP} denotes the class of PBEs. By Corollary B.1 and

Lemma B.8, the ex-ante probability of peace in these two PBEs are:

Υlop(xmin) = θ and ΥMPM(xmin) =
(
qA
)2
. (B.14)

By Lemma B.11, ΥMP M ( θ+a
2 ) > θ, if and only if θ ≤ 6 − a− 4

√
2 − a. Since by implication

of Lemma B.10, ΥMP M (M
2 ) is strictly increasing in M , it is immediate that if and only if θ ≤

6 − a − 4
√

2 − a then for all M ≥ θ + a, ΥMP M > θ = Υlop. Hence, to prove the first claim of
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Proposition B.1, by Lemma B.9, it suffices to show that 6 − a− 4
√

2 − a < 4−a−
√

a2−8a+8
2 . This

can be readily verified by the fact that for all a ∈ (0, 1), 6 −a− 4
√

2 − a < 1
2−a <

4−a−
√

a2−8a+8
2 .

The fact that 1
2−a < 4−a−

√
a2−8a+8
2 for all a ∈ (0, 1) is established in the proof of Lemma B.9.

One can also show that:
1

2 − a
> 6 − a− 4

√
2 − a ⇐⇒

(
4(2 − a)

√
(2 − a)

)2
>
(
(2 − a)(6 − a) − 1

)2
⇐⇒

(
(2 − a)(a+ 2) + 3 − 2a

)
(1 − a)2 > 0

where the latter inequality always holds for all a ∈ (0, 1).
To prove Proposition B.1-(ii), I use the fact 6 − a − 4

√
2 − a < 4−a−

√
a2−8a+8
2 coupled

with implication of Lemma B.11 that if θ > 6 − a − 4
√

2 − a, then ΥMP M ( θ+a
2 ) < θ. Hence,

at M = θ + a, ΥMP M ( θ+a
2 ) < θ and at M = 2θ, ΥMP M (θ) = 1. The latter equality is due to

condition 3.22. By implication of Lemma B.10, ΥMP M (M
2 ) is strictly increasing in M . Therefore,

by Intermediate Value Theorem there exists a unique x∗ = M∗

2 such that at x = x∗ = M∗/2,
ΥMPM(x∗) =

(
qA
)2

= θ and ΥMPM intersects Υlop from below. By Lemma B.7 the lower bound
of M for the Lopsided PBEs is θ(1 + a) + 1−θ

θ π̃R
−i. Hence, it suffices to find some π̃R

−i such that
θ(1 + a) + 1−θ

θ π̃R
−i ≤ θ + a, which holds if and only if π̃R

−i ≤ aθ.
To prove Proposition B.1-(iii) note that by Lemma B.9-(ii) if θ ≥ 4−a−

√
a2−8a+8
2 and

2(2θ−1)
θ ≤ M , then there exist an equal proposal that admits MPM PBEs and satisfies Ineq. (3.21).

Moreover, by Eq. (B.6), at the limit when x = M
2 = 2θ−1

θ , qA = θ. Therefore, at such values of M ,
ΥMPM = θ2 < θ. Moreover, at M = 2θ, ΥMP M (θ) = 1. By Lemma B.10, ΥMP M (M

2 ) is strictly
increasing in M . Therefore, by Intermediate Value Theorem there exists a unique x∗ = M∗

2 such
that at x = x∗, ΥMPM =

(
qA
)2

= θ and ΥMPM intersects Υlop from below. By Lemma B.7 the
lower bound of M for the Lopsided PBEs is θ(1+a)+ 1−θ

θ π̃R
−i. Hence, it suffices to find some π̃R

−i

such that θ(1 + a) + 1−θ
θ π̃R

−i ≤ 2(2θ−1)
θ , or equivalently π̃R

−i ≤ 2(2θ−1)−θ2(1+a)
1−θ . Couple this with

π̃R
−i ∈ [0, 1] to conclude π̃R

−i ∈
[
0,min

{
2(2θ−1)−θ2(1+a)

1−θ , 1
}]

. Lastly, by θ > a and θ + a < 2(2θ−1)
θ

one can readily verify that θ2(1 + a) < 2(2θ − 1). ■

B.5 Proof of Propositions 3.2 and 3.3, and Theo-
rem 3.2

Proof of Proposition 3.2 By Lemma B.8 MPM PBEs are symmetric and πR = 0, πA > θ,
which by Eqs. (3.5)-(3.6) implies qAπA = θ. Thus, by Eqs. (3.9) and (3.13), V R(a) = aqAπA = aθ
and by Eq. (3.18), Ṽ np(a) = a (θ − π̃np)+. By Eq. (3.16), σ(a) = 0 ⇒ V A(x; a) ≥ V R(x; a). Note,
Ṽ np(a) < aθ < V A(x; a) for all π̃np ∈ [0, 1]. Hence, the low type prefers participation.

Following similar steps for the type t = 1, by Eq. (3.15), 0 < σ(νi; 1) < 1 ⇒ V A(x; 1) =
V R(x; 1). Eqs. (3.8) and (3.13) coupled with πR = 0, πA > θ and qAπA = θ implies that
V R(1) = qAπA = θ. Therefore, V A(x; 1) = θ = V R(x; 1). By Eq. 3.17, type t = 1 prefers
participation if π̃np ≤ θ and prefers nonparticipation if π̃np > θ. In summary, if π̃np ≤ θ both
types prefer participation and the equal proposal is admissible. If π̃np > θ, type t = 1 of both
players prefers nonparticipation. Since PBE is symmetric and V R(x, 1) is equal for both players,
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no randomization device exists that can satisfy the full participation constraint. ■

Proof of Propositions 3.3 As before label the favored player as −i and the less favored
player as i. Corollary B.1 coupled with Eqs. (3.9) and (3.13) implies that V R

i (xi, a) = aqA
−iπ

A
−i =

aθ. By Eq. (3.18), Ṽ np
i (a) = a (θ − π̃np)+. By Eq. (3.16), σi(νi; a) = 0 ⇒ V A

i (xi; a) ≥ V R
i (xi; a).

Thus, Ṽ np
i (a) < aθ < V A(x; a) for all π̃np ∈ [0, 1]. Hence, type t = a of player i prefers

participation. Analogously, for type t = 1 of player i, by Eq. (3.15), σi(νi; 1) = 1 ⇒ V A
i (xi; 1) <

V R
i (xi; 1). Corollary B.1 coupled with Eqs. (3.8) and (3.13) implies that V R

i (xi; 1) = θ. By
Eq. (3.17), Ṽ np

i (1) = max{θ, π̃np}. Thus, type t = 1 of player i prefers participation if π̃np ≤ θ
and prefers nonparticipation if π̃np > θ.

Corollary B.1 coupled with Eqs. (3.9) and (3.13), where roles of i and −i is interchanged,
implies that V A

−i(x−i; a) = θx−i. By Eq. (3.18), Ṽ np
−i (a) = a (θ − π̃np)+. By Ineq. (B.5), at

Lopsided PBEs, x−i > θ and by Ineq. (3.21), a < θ. Thus, Ṽ np
−i (a) = a (θ − π̃np)+ < x−iθ =

V A
−i(xi; a) for all π̃np ∈ [0, 1]. Hence, type t = a of player −i prefers participation.

Following similar steps for the type t = 1 of player −i, by Eq. (3.15), σi(νi; 1) = 0 ⇒
V A

−i(x−i; 1) > V R
−i(x−i; 1). By Corollary B.1, Eqs. (3.8), and (3.13), V R

−i(x−i; 1) = θ + (1 − θ)π̃R
−i.

By Eq. (3.17), if π̃np ≤ θ, then type t = 1 of player −i prefers participation. In summary, if
π̃np ≤ θ both players prefer participation and lopsided proposals are admissible. By Eq. (3.17), if
π̃np > θ, then Ṽ np

−i (1) = π̃np. Hence, if one sets π̃R
−i = π̃np and plug in the equation for V R

−i(x−i; 1),
then

V R
−i(x−i; 1) = θ + (1 − θ)π̃ > π̃np = Ṽ np

−i (1) ⇐⇒ θπ̃np < θ,

which holds for all π̃np ∈ [0, 1]. Thus, if π̃np > θ, then type t = 1 of player −i prefers participa-
tion. ■

Proposition B.2 Suppose a < θ and any π̃np ∈ (θ, 2θ
1+θ ]. Lopsided proposals augmented with

equal probability randomization device satisfy participation constraint (3.20).

Proof As before label favored player as −i and the less favored one as i. Given π̃np > θ, by
Proposition 3.3, only t = 1 of the less favored player does not participate. By Corollary B.1
coupled with Eqs. (3.9), (3.8), (3.12), and (3.13), the interim payoffs of t = 1 are:

V R
i (xi; 1) := qA

−iπ
A
−i = θ, (B.15)

V A
−i(x−i; 1) = qA

i x−i + qR
i max

{
πA

−i, π
R
i

}
= θx−i + (1 − θ)θ, (B.16)

V R
−i(x−i; 1) = qA

i max
{
π̃R

−i, π
A
i

}
+ qR

i max
{
π̃R

−i, π
R
i

}
= θ + (1 − θ)π̃R

−i. (B.17)

By Eq. (3.15), σi(νi; 1) = 1 ⇒ V R
i (xi; 1) > V A

i (xi; 1) and σ−i(ν−i; 1) = 0 ⇒ V A
−i(x−i; 1) >

V R
−i(x−i; 1). Hence, to satisfy the participation constraint (3.20), it suffices that interim payoff of

Reject, coupled with the randomization device, is larger than nonparticipation payoff.
Set π̃R

−i = π̃np and plug it into Eqs. (B.15)-(B.17). Then by Eq. (3.19) the expected payoff
each player’s type t = 1 by participation and announcing Reject is V (1) = 1/2

(
θ + (1 − θ)π̃np

)
+

θ/2. By Eq. (3.17), if π̃np > θ, then Ṽ np
−i (1) = π̃np. Hence, if V−i(1) ≥ π̃np = Ṽ np

−i (1), then type
t = 1 of both players prefer participation. Note that V−i(1) ≥ π̃np is equivalent to π̃np ≤ 2θ

1+θ ,
the hypothesis of this proposition. Note that θ < 2θ

1+θ for all θ ∈ (0, 1). ■

Proof of Theorem 3.2 By Ineq. (3.21) and lemmas B.5 and B.6, Hybrid and MTM PBEs
are ruled out. Since π̃np > θ, then Proposition 3.2 rules out admissibility of the equal proposal.
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Given lopsided proposals, by Proposition B.2, a fair coin satisfies participation constraint. The
rest of this proof verifies that π̃np > θ and θ + a < M have non-vacuous intersections with the
sufficient conditions for deterministic Lopsided PBEs (Lemma B.7).

Lopsided PBEs are uniquely determined modulo the off-path posterior belief π̃R
−i. Set this

arbitrary off-path belief π̃R
−i = π̃np. By Lemma B.7, the lower bound of M is θ(1 + a) + (1−θ)

θ π̃R
−i.

Note that

θ + a < θ(1 + a) + (1 − θ)
θ

π̃R
−i ⇐⇒ aθ < π̃R

−i,

where aθ < π̃R
−i is implied by π̃R

−i = π̃np > θ. By Lemma B.7-(i) and (ii), off-path posterior

beliefs should satisfy π̃R
−i ∈

[
0,min

{
θ2(1−a)

1−θ , 1
}]

. Couple these conditions on π̃R
−i with π̃np = π̃R

−i

such that π̃np ∈
(
θ, 2θ

1+θ

]
, it suffices to show that these two intervals have nonempty intersection.

Note that θ ≤ θ2(1−a)
1−θ ⇐⇒ θ ≥ 1

2−a . Also, it is easy to verify that

2θ
1 + θ

≤ θ2(1 − a)
1 − θ

⇐⇒ θ ≥ a− 3 +
√
a2 − 14a+ 17

2 − 2a. .

Moreover, for all a ∈ (0, 1), θ ≥ 1
2−a ⇒ θ ≥ a−3+

√
a2−14a+17

2−2a. . This is true because

1
2 − a

≤ a− 3 +
√
a2 − 14a+ 17

2 − 2a. ⇐⇒ (2 − a)
√
a2 − 14a+ 17 − (a2 − 7a+ 8)

(2 − a)(2 − 2a) ≥ 0

where the last inequality in the above displayed inequalities is because
(2−a)

√
a2 − 14a+ 17 ≥ (a2−7a+8) ⇐⇒ (2−a)2(a2−14a+17) ≥ (a2−7a+8)2 ⇐⇒ 4(1−a)3 ≥ 0.

Hence, if θ > 1
2−a then π̃np = π̃R

−i ∈
[
θ,min

{
θ2(1−a)

1−θ , 2θ
1+θ

}]
is not vacuous. Therefore, the

condition for existence of deterministic Lopsided proposals are satisfied. Lastly, P (xmin) =
1 − qA

i q
A
−i = 1 − θ, as characterized by Corollary B.1. ■

B.6 Proof of Theorem 3.1
By Proposition 3.1, it suffices to consider only two classes of MPM and Lopsided PBEs. Nonpar-
ticipation is off-path. Thus, π̃np is arbitrary. Pick any π̃np ≤ θ. Then by Propositions 3.2 and
3.3, the equal proposal and lopsided proposals are admissible. Proposition B.1, conditional on
participation, states conditions under which the equal proposal or lopsided proposals minimize
probability of conflict. Thus, claim (a) of Theorem 3.1 follows Proposition B.1-(a)

To establish claim (b) of the theorem, one must verify that off-path beliefs that, conditional
on participation, rationalize Lopsided PBEs and are specified in Proposition B.1, satisfy π̃np ≤ θ
assumption. Given Lopsided proposals, the favored player, labeled as −i, always announces
Accept while her rival i Accept if t = a and Reject if t = 1. Hence, Lopsided PBEs are uniquely
determined modulo the off-path belief π̃R

−i. Set this arbitrary off-path belief π̃R
−i = π̃np. Then

Proposition B.1-(b) and (c) implies claim (b) of the theorem. Recall that for all θ∗ ≤ θ <
4−a−

√
a2−8a+8
2 , Proposition B.1-(b) states the off-path belief condition to be π̃np ∈ [0, aθ], which is

implied by the assumption π̃np ≤ θ . If 4−a−
√

a2−8a+8
2 ≤ θ, Proposition B.1-(c) states the off-path

belief condition to be π̃np ∈
[
0, 2(2θ−1)−θ2(1+a)

1−θ

]
, which has none-empty intersection with π̃np ≤ θ.

The latter is true because of the two easy to verify facts: (i) θ ≤ 2(2θ−1)−θ2(1+a)
1−θ ⇐⇒ θ ≥ 2

3−a
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and (ii) 4−a−
√

a2−8a+8
2 ≤ 2

3−a for all a ∈ (0, 1). ■

B.7 Continuum of Types Details

B.7.1 The Equilibrium Condition During Mediation

Let Umn(ti;Fm
i , F

n
−i) denote the payoff at the continuation game of conflict G (Fm

i , F
n
−i) for type ti

of player i who has announced m ∈ {A,R} while facing player −i that has announced n ∈ {A, R}
at the mediation. Conditional on participation, given the cutoff strategies (σi)i=2

i=1 defined by
Eq. (3.28), for each player i associated posterior probabilities Fm

i , ex-ante probabilities of Accept
Fi(λi), and thereby interim payoff from announcing m ∈ {A,R} are determined. Let V A

i (νi, ti)
denote the interim expected payoff of player i’s type ti who announces Accept. Then,

V A
i (νi, ti) := F−i(λ−i)ν1 +

(
1 − F−i(λ−i)

)
UAR(ti;FA

i , F
R
−i), (B.18)

where F−i(λ−i) is the ex-ante probability of Accept by player −i, and 1 −F−i(λ−i) is the ex-ante
probability of Reject. The interim expected payoff of type ti ∈ [0, 1] of player i who announces
Reject is denoted by V R

i (νi, ti) and is characterized as
V R

i (νi, ti) := F−i(λ−i)URA(ti;FR
i , F

A
−i) +

(
1 − F−i(λ−i)

)
URR(ti;FR

i , F
R
−i). (B.19)

Conditional on participation, the cutoff strategies σi(νi; ti) defined by Eq. (3.28) constitutes
an equilibrium if and only if

∀i, ti ∈ [0, λi] : V A
i (νi, ti) ≥ V R

i (νi, ti), (B.20)
and

∀i, ti ∈ [λi, 1] : V R
i (νi, ti) ≥ V A

i (νi, ti), (B.21)
where V A(νi, ti) and V A(νi, ti) are respectively defined by Eqs. (B.18) and (B.19).

Full participation condition translates itself into an interim participation constraint. Suppose
player i unilaterally deviates to nonparticipation. In that event, by Bayes’s rule posterior for
player −i is F−i because she participates in the mechanism almost surely. F̃ np

i is off-path and
hence arbitrary. For each type ti denote the nonparticipation payoff as Vnp(ti).

Vnp(ti) = Unp

(
ti, F̃

np
i , F−i

)
(B.22)

If the mechanism is stochastic, then the mediator would label player i as the favored player with
probability 1/2 and offers her peace proposal ν1 ≥ ν2 and with probability 1/2 she will be offered
ν2. Denote, the interim payoff of type ti at the participation stage by V (ti):

V (ti) = V m
i (ν1, ti)/2 + V n

i (ν2, ti)/2, (B.23)
where V m(ν1, ti) (resp. V n(ν2, ti)) is the interim payoff of type ti of player i, conditional on
participation, receiving proposal ν1 (resp. ν2) and announcing the equilibrium strategy m ∈
{A,R} (resp. n ∈ {A,R}). Hence, to guarantee full participation, for each type ti, the interim
participation constraint should be satisfied which are

V (ti) ≥ Vnp(ti). (B.24)

A tuple
(
νi, S − νi, σi(νi; t), FA

i , F
R
i , F̃

np
i

)2

i=1
constitutes a fully participating PBE if and

only if it satisfies (3.28), (B.20), (B.21), and (B.24).
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B.7.2 Payoffs at the Conflict

I use the pivotal type approach of Amann and Leininger (1996) and Kirkegaard (2008) to char-
acterize the unique BNE and expected payoff at the continuation game of conflict. Whether this
stage is entered because someone rejected the mediator’s offer, or because one deviated and did
not participate in the mediation, the game is the same. Each player knows their type, the history
of the game, and has a posterior belief about the rival’s types based on that history. Since, in this
chapter I am interested in cutoff strategies, in this section, I shall characterize the conflict payoff
for posterior beliefs that are truncated distributions of the prior with intervals as support. After
announcements m ∈ {A,R} and n ∈ {A,R} by players i and −i, respectively, at the mediation
stage, if at least one payer Reject the proposal the game enters the conflict stage G

(
Fm

i , F
n
−i

)
.

By Theorem 6 of Zheng (2019), at any such continuation game of conflict, both players bid
over a common support of

[
0, b̄
]
, where b̄ is the common maximal bid. Moreover, at most one

player would bid zero with positive probability. Denote βmn
i (t) as the bidding strategy at the

continuation game G
(
Fm

i , F
n
−i

)
, where mn is AR, RA, or RR. Respectively, ϕmn

i (b) denote the
inverse bid function of player i ∈ {1, 2} at the continuation game G

(
Fm

i , F
n
−i

)
. Hence, ϕmn

i (0)
is the infimum of the set of bidder i′s type who would bid zero. For the moment, I assume that
bidding strategies βmn

i (t), and respectively their inverse ϕmn
i (b), to be strictly increasing over

(0, b̄], a requirement which will be satisfied in equilibrium.
Player i with valuation ti is faced with the problem of selecting the bid b that maximizes:

maxb tiF
n
−i

(
ϕnm

−i (b)
)

−b. The equilibrium continuation payoff is then denoted by Umn(ti, Fm
i , F

n
i ).

Hence, from the point of view of bidder i who has announced m at the mediation stage,
F n

−i

(
ϕnm

−i (b)
)

is the bidding distribution of the opponent −i who has announced n at the medi-
ation stage.

Symmetric continuation game of conflict: The following lemma characterizes the pay-
off at the continuation game G

(
FR, FR

)
where players have identical truncated distributions.

This is a standard result in the literature and is just summarized here for further reference.

Lemma B.12 Suppose a symmetric continuation game of conflict G
(
FR, FR

)
. Suppose the

truncated CDF FR = F (t)−F (λ)
1−F (λ) has the support [λ, 1]. Then there exist a BNE where type t of

each player would get the equilibrium continuation payoff URR(t, FR, FR) =
∫ 1

λ
F (v)−F (λ)

1−F (λ) dv.

Asymmetric continuation game of conflict: I characterize the payoffs for the continu-
ation games where players follow asymmetric cutoff strategies defined by Eq. (3.28). Without loss
of generality assume that player i announces A and player −i announces R. The continuation
game AR is denoted by G

(
FA

i , F
R
−i

)
, where FA

i ’s support is [0, λi] for all λi ∈ (0, 1] and FR
−i’s

support is [λ−i, 1] for all λ−i ∈ (0, 1) (Note that at λi = 1, we have FA
i = F , the prior). Hence,

player i’s problem is maxb tiF
R
−i

(
ϕRA

−i (b)
)

−b, and player −i’s problem is maxb t−iF
A
i

(
ϕAR

i (b)
)

−b.
The first order conditions are

ti
d

db
FR

−i

(
ϕRA

−i (b)
)

− 1 = 0 and t−i
d

db
FA

i

(
ϕAR

i (b)
)

− 1 = 0,
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which can be rewritten as:
dϕRA

−i (b)
db

= 1
ϕAR

i (b)fR
−i

(
ϕ−i

RA(b)
) and dϕAR

i (b)
db

= 1
ϕRA

−i (b)fA
i

(
ϕAR

i (b)
) .

These equations verify that the bidding functions are increasing in type and players are following
pure strategies. By Theorem 6 of Zheng (2019), at equilibrium, both players bid over common
support, and at most one player can have an atom at zero. Dividing the first order conditions
yields:

dϕAR
i (b)

dϕRA
−i (b)

=
ϕAR

i (b)fR
−i

(
ϕRA

−i (b)
)

ϕRA
−i (b)fA

i

(
ϕAR

i (b)
)

If bidder −i’s type is t−i, I define kRA(t−i;λi, λ−i) as the type of bidder i with whom type t−i

of bidder −i would tie with as in Kirkegaard (2008). λi ∈ (0, 1] denote the cutoff type of player
i, the upper bound of the support [0, λi] of the truncated distribution FA

i . λ−i ∈ (0, 1) denote
the cutoff type of player −i, the lower bound of the support [λ−i, 1] of the truncated distribution
FR

−i. Thus, kRA(t−i;λi, λ−i) is the pivotal type function and is the solution to the initial value
problem
d

dt
kRA(t−i;λi, λ−i) = kRA(t−i;λi, λ−i)fR

−i(t)
tfA

i (kRA(t−i;λi, λ−i))
=
(

F (λi)
1 − F (λ−i)

)(
kRA(t−i;λi, λ−i)f(t)
tf(kRA(t−i;λi, λ−i))

)
and

kRA(1, λi, λ−i) = λi. (B.25)
The boundary condition kRA(1, λi, λ−i) = λi is because the bidders have a common maximal
bid. This differential equation, along with the boundary condition, yields a unique solution to
the pivotal type function kRA(t, λi, λ−i). Eq. (B.25) is a separable differential equation.

1
F (λi)

∫ λi

kRA(t−i;λi,λ−i)

f(x)
x

dx = 1
1 − F (λ−i)

∫ 1

t

f(x)
x

dx. (B.26)

By Eq. (B.25), kRA(t;λi, λ−i) is strictly increasing in t. Hence, its inverse k−1
AR(ti;λi, λ−i) is well

defined for ti ∈
(
kRA(λ−i;λi, λ−i), λi

]
. Characterization of pivotal type function allow us to

determine ϕAR
i (0) = 0 and ϕRA

−i (0) = kRA(λ−i;λi, λ−i) > 0. Then one can couple the pivotal
type function and first order conditions to characterize the bidding function and thereby fully
characterize the unique BNE. Based on the characterization of the unique BNE of conflict, the
following lemma characterizes the payoffs at G

(
FA

i , F
R
−i

)
by using the pivotal type function and

the envelope theorem.

Lemma B.13 Suppose asymmetric continuation game of conflict G
(
FA

i , F
R
−i

)
, where FA

i has
the support [0, λi] and λi ∈ [0, 1] and FR

−i has the support [λ−i, 1] and λ−i ∈ (0, 1). Then there
exist a unique BNE where type t of each player gets the equilibrium continuation payoff

UAR

(
ti;FA

i , F
R
−i

)
=

 0, if ti ∈
[
0, kRA(λ−i;λi, λ−i)

]
,∫ ti

kRA(λ−i;λi,λ−i)
F (k−1

AR(t;λi,λ−i))−F (λ−i)
1−F (λ−i) dt, if ti ∈

[
kRA(λ−i;λi, λ−i), λi

]
,

(B.27)
Furthermore,

URA

(
t−i;FR

−i, F
A
i

)
= λ−i

F (kRA(λ−i;λi, λ−i))
F (λi)

+
∫ t−i

λ−i

F
(
kRA(t;λi, λ−i)

)
dt

F (λi)
, if t−i ∈ [λ−i, 1] .

(B.28)
The continuation payoffs for both players are weakly increasing and weakly convex in t.
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Proof As stated above, existence and uniqueness of the equilibrium is by the unique pivotal
type function that satisfies Eq. (B.26). Note that if ti > kRA(t−i;λi, λ−i), then by the definition
of pivotal type function and monotonicity of bidding functions in type, player i of type ti bids
higher than her opponent that has type t−i and wins at the conflict. Thus, the pivotal type
function determines who wins the conflict. Then the conflict payoffs as stated are an immediate
application of the envelop theorem. Furthermore, by the strictly increasing property of the
(inverse) pivotal function in t and the envelope theorem, it is immediate that continuation game
payoffs are weakly increasing and weakly convex in t. ■

Corollary B.3 Suppose the same hypothesis and notation of Lemma B.13. If type ti ∈ (λi, 1]
deviates and announces Accept then her payoff at the continuation game G

(
FA

i , F
R
−i

)
is

UAR

(
ti;FA

i , F
R
−i

)
= ti−λi+

∫ λi

kRA(λ−i;λi,λ−i)

F (k−1
AR(t;λi, λ−i)) − F (λ−i)

1 − F (λ−i)
dt, if ti ∈ [λi, 1] . (B.29)

If t−i ∈ [0, λ−i) deviates and announces Reject then her payoff at the continuation game G
(
FA

i , F
R
−i

)
is

URA

(
t−i;FR

−i, F
A
i

)
= t−i

F (kRA(λ−i;λi, λ−i))
F (λi)

, if t−i ∈ [0, λ−i] . (B.30)

The continuation payoffs for both players are increasing and weakly convex in t.

Proof Consider maximization problem of deviating type t−i ∈ [0, λ−i) that announces Reject:
max

b
t−iF

A
i (ϕRA

−i (b)) − b.

Since t−i < λ−i, t−i’s rival overestimates her type, the first order condition is never satisfied,
d
db(t−iF

A
i (ϕRA

−i (b)) − b) = t−if
A(ϕRA

−i (b))dϕRA
−i (b)
db − 1 < 0. Thus, the optimal bid for these types

is to mimic the λ−i type at G
(
FR

i , F
A
−i

)
, the minimum of the support [λ−i, 1]. Thus, the payoff

for this deviating type follows Eq. (B.28) where this type bids zero and win with probability
F (kRA(λ−i;λi,λ−i))

F (λi) . Thus, one can immediately obtain Eq. (B.30).
Analogously, the problem of the deviating type ti ∈ (λi, 1] is

max
b
tiF

R
−i(ϕAR

i (b)) − b.

Since ti > λi, ti’s rival underestimates her type, the first order condition is never satisfied,
d
db(tFR

−i(ϕAR
i (b))− b) = tfR

i (ϕAR
i (b))dϕAR

i (b)
db −1 > 0. Thus the optimal bid is to mimic the λi type

at G
(
FA

i , F
F
−i

)
, the upper bound of support [0, λi]. Type λi bids the common maximal bid b̄,

wins with probability one, and gains the payoff UAR(λi;FA
i , F

R
−i) = λi − b̄. Hence, the deviating

type ti ∈ (λi, 1] bids the common maximal bid b̄, wins with probability one, and gains payoff :
UAR(ti;FA

i , F
R
−i) = ti − b̄ = ti − λi + UAR(λi;FA

i , F
R
−i),

where the second equality is because type λi bids b̄ and win with probability one. Thus, one can
use Eq. (B.27) to obtain Eq. (B.29) as stated in the Lemma. By Eqs. (B.30) and (B.29) it is
immediate that payoffs are increasing and linear in t. ■

Next, I characterized payoffs at continuation game G
(
FR

i , F
R
−i

)
where posteriors are trun-

cation of the prior with supports [λi, 1] and [λ−i, ]. Without loss of generality assume λi ≤ λ−i,
meaning player −i is stochastically stronger than her rival. If bidder −i’s type is t−i, I de-
fine kRR(t−i;λi, λ−i) as the type of bidder i with whom type t−i of bidder −i would tie with.
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kRR(t−i;λi, λ−i) is the unique solution to the initial value problem
d

dt
kRR(t−i;λi, λ−i) = kRR(t−i;λ,λ−i)fR

−i(t)
tfR

i (kRR(t−i;λi, λ−i))
=
(

1 − F (λi)
1 − F (λ−i)

)(
kRR(t−i;λi, λ−i)f(t)
tf(kRR(t−i;λi, λ−i))

)
and

kRR(1;λi, λ−i) = 1. (B.31)
Eq. (B.31) is a separable differential equation. Hence, kRR(t−i, λ−i) is the unique solution to

1
1 − F (λi)

∫ 1

kRR(t−i;λi,λ−i)

f(x)
x

dx = 1
1 − F (λ−i)

∫ 1

t

f(x)
x

dx. (B.32)

By Eq. (B.31), kRR(t;λi, λ−i) is strictly increasing in t and its inverse k−1
RR(ti;λi, λ−i) is well

defined for ti ∈
(
kRR(λ−i;λi, λ−i), λi

]
.

Lemma B.14 Suppose asymmetric continuation game of conflict G
(
FR

i , F
R
−i

)
. Suppose 0 <

λi < λ−i < 1. Then, there exist a unique BNE where type t of each player gets the payoff

URR(ti;FR
i , F

R
−i) =

 0, if ti ∈
[
λi, kRR(λ−i;λi, λ−i)

]
,∫ ti

kRR(λ−i;λi,λ−i)
F (k−1

RR(t;λi,λ−i))−F (λ−i)
1−F (λ−i) dt, if ti ∈

[
kRR(λ−i;λi, λ−i), 1

]
.

(B.33)
Furthermore,

URR(t−i;FR
−i, F

R
i ) = λ−i

F (kRR(λ−i;λi, λ−i)) − F (λi)
1 − F (λi)

+
∫ ti

λ−i

F
(
kRR(t;λi, λ−i)

)
− F (λi)

1 − F (λi)
dt, if t−i ∈ [λ−i, 1] .

(B.34)
The continuation payoffs for both players are weakly increasing and weakly convex in t.

Proof The characterization of payoffs is analogous to Lemma B.13. By the strictly increasing
property of the (inverse) pivotal function in t and the envelope theorem, it is immediate that
continuation game payoffs are weakly increasing and weakly convex in t. ■

Corollary B.4 Suppose the same hypothesis and notation of Lemma B.14. If type ti ∈ [0, λi)
deviates and announces Reject then her payoff at the continuation game G

(
FR

i , F
R
−i

)
is

URR

(
ti;FR

i , F
R
−i

)
= 0, if ti ∈ [0, λi) . (B.35)

If t−i ∈ [0, λ−i) deviates and announces Reject then her payoff at the continuation game G
(
FR

i , F
R
−i

)
is

URR

(
t−i;FR

−i, F
R
i

)
= t−i

F (kRR(λ−i;λi, λ−i)) − F (λi)
1 − F (λi)

, if t−i ∈ [0, λ−i) . (B.36)

The continuation payoffs for players −i is increasing and weakly convex in t.

Proof The problem of the deviating type ti ∈ [0, λi) is
max

b
tiF

R
−i(ϕRR

i (b)) − b

then since ti < λi, ti’s opponent overestimated his type, the first order condition is never satis-
fied.Thus the optimal bid is to mimic that of ti = λi, the minimum of the support [λi, 1]. There-
fore, by Eq. (B.35) these types will get zero payoff. Analogously, the deviating type t−i ∈ [0, λ−i)
mimic the bidding behavior of t−i = λ−i, bids zero and wins with the same probability as type
t−i = λ−i. Thus, by Eq. (B.34) one can obtain the payoff for the deviating type as stated in
Eq. (B.36). ■
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B.7.3 Proof of Propositions 3.4–3.5 and Theorem 3.3

A tuple
(
νi, S − νi, σi(νi; t), FA

i , F
R
i , F̃

np
i

)2

i=1
constitutes a fully participating symmetric PBE if

and only if it satisfies (3.29), (B.20), (B.21), and (B.24). Cutoff strategies (3.29) uniquely pin
down ex-ante probability of Accept FA

i and the associated posteriors FA
i and FR

i for each player
i. Due to symmetry, I drop the subscript i. By continuity of conflict payoffs (Lemmas B.12 and
B.13), conditions (B.20) and (B.21) should hold with strict inequality for types [0, λ) and (λ, 1]
and with equality for the cutoff type λ, which by symmetry the latter is equivalent to the equal
proposal νi = ν−i = S

2 and

V A (S/2;λ
)

= V R (S/2;λ
)
.

In other words, t = λ is indifferent between Accept and Reject. Otherwise there will be types
immediately to the right or left of it that would have profitable deviations. Therefore, a tuple(
νi, S − νi, σi(νi; t), FA

i , F
R
i , F̃

np
i

)2

i=1
constitutes a symmetric PBE if and only if it satisfies (3.29),

νi = ν−i = S/2, (B.20), (B.21), and (B.24).
Payoffs at G (FR, FR) are characterized in Lemma B.12. At G (FA, FR) the pivotal type

function is characterized by Eqs. (B.25) or (B.26) after setting λi = λ−i = λ. Hence, denote
ksym(t;λ) := kRA(t;λ, λ), (B.37)

where kRA(t;λi, λ−i) is given by Eq. (B.26). Hence, set λi = λ−i = λ in Eqs. (B.25) and (B.26):
d

dt
ksym(t;λ) =

(
F (λ)

1 − F (λ)

)(
ksym(t;λ)f(t)
tf(ksym(t;λ))

)
, (B.38)

with the boundary condition ksym(1) = λ, or equivalently the separable differential equation
1

F (λ)

∫ λ

ksym(t;λ)

f(x)
x

dx = 1
1 − F (λ)

∫ 1

t

f(x)
x

dx. (B.39)

Similarly, at G (FA, FR) payoffs by Lemma B.13, where λi = λ−i = λ, are:

UAR(t;FA, FR) =


0, if t ∈

[
0, ksym(λ;λ)

]
,∫ t

ksym(λ;λ)(F (k−1
sym(t;λ))−F (λ))dt

1−F (λ) , if t ∈
[
ksym(λ;λ), λ

]
.

(B.40)

Furthermore,

URA(t;FR, FA) = λ
F (ksym(λ;λ))

F (λ) +
∫ 1

λ

F
(
ksym(t;λ)

)
dt

F (λ) for all t ∈ [λ, 1] (B.41)

By Lemma B.12, URR(λ;FR, FR) = 0. Also, by Eq. (B.41) we have URA(λ;FR, FA) =
λF (ksym(λ;λ))

F (λ) . Hence, the equilibrium condition V A
(
S/2;λ

)
= V R

(
S/2;λ

)
for the cutoff is

F (λ)S2 +
(
1 − F (λ)

)
UAR(λ;FA, FR) = λF (ksym(λ;λ)). (B.42)

Therefore, one can use this characterization to prove the following propositions.

Proof of Proposition 3.4 I shall show that, given hypothesis of this proposition, non-
degenerate set of high types gains payoff less than nonparticipation. As shown above, the equal
proposal admits symmetric strategies and thereby, admits equal interim payoffs. Thus, the partic-
ipation constraint (B.24) for the high types, whom by cutoff strategies (3.29) announces Reject,
is simplified to V R

(
S/2, ti

)
≥ Vnp(ti). I shall show, given the hypothesis of this proposition,
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non-degenerate set of high types’ payoff is less than nonparticipation.
First, given passive updating assumption, I show t = 1 is worse off by participation:

F (λ)URA(1;FR, FA) + (1 − F (λ))URR(1, FR, FR)︸                                                                    ︷︷                                                                    ︸
=V R( s

2 ,1)

<

∫ 1

0
F (t)dt = Unp (1, F, F )︸                                ︷︷                                ︸

=Vnp(1)

, (B.43)

where the equality in (B.43) is by passive updating F̃ np
i = F and Lemma B.12 (by setting λ = 0).

By Eqs. (B.40), (B.41), and the fact that at G
(
FA, FR

)
both t = 1 and t = λ are the upper

bounds of supports of FR and FA and bid the common maximal bid we have:

URA(1;FR, FA) = 1 − λ+ UAR(λ;FA, FR) = 1 − λ+

∫ λ
ksymm(λ;λ)

(
F
(
k−1

sym(t;λ)
)

− F (λ)
)
dt

1 − F (λ) ,

URR(1;FR, FR) =
∫ 1

λ

(
F (t) − F (λ)

)
dt

1 − F (λ) .

Plugging the above displayed equations in Ineq. (B.43) and rearrange its right hand side, it is
equivalent to

F (λ)

1 − λ+

∫ λ
ksymm(λ;λ)

(
F
(
k−1

sym(t;λ)
)

− F (λ)
)
dt

1 − F (λ)

+
(
1 − F (λ)

) [∫ 1
λ

(
F (t) − F (λ)

)
dt

1 − F (λ)

]
≤

F (λ)

1 − λ+
∫ λ

0 F (t)dt
F (λ)

+
(
1 − F (λ)

) [∫ 1
λ

(
F (t) − F (λ)

)
dt

1 − F (λ)

]
,

which can be simplified further to∫ λ
ksymm(λ;λ)

(
F
(
k−1

sym(t;λ)
)

− F (λ)
)
dt

1 − F (λ) ≤
∫ λ

0 F (t)dt
F (λ) .

It suffices to verify for all t ∈ [0, λ] the integrands satisfy:
(

F(k−1
sym(t;λ))−F (λ)

)
1−F (λ) < F (t)

F (λ) . By definition
ksym(t;λ) < t for all t ∈ [λ, 1] because it maps these types to [0, λ]. Also, k−1

sym(t;λ) = λ for all
t ∈

[
0, ksym(λ;λ)

]
and k−1

sym(t;λ) > λ > t for all t ∈
(
ksym(λ;λ), λ

]
. Moreover, by Eq. (B.38) and

its implication for inverse function’s derivative, these functions are both strictly increasing in t.
Hence, for all t ∈

[
0, ksym(λ;λ)

]
,(
F
(
k−1

sym(t;λ)
)

− F (λ)
)

1 − F (λ) = 0 < F (t)
F (λ)

and at t = λ we have (
F
(
k−1

sym(λ;λ)
)

− F (λ)
)

1 − F (λ) = 1 = F (t)
F (λ) .

Hence, it suffices to show that for all t ∈
[
ksym(λ;λ), λ

]
the term

F
(
k−1

sym(t;λ)
)

− F (λ)
1 − F (λ) − F (t)

F (λ)
is strictly increasing in t.
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Recall by Eq. (B.38) and properties of inverse functions differentiation
d

dt
ksym(t;λ) = F (λ)

1 − F (λ)
ksym(t;λ)f(t)
tf(ksym(t;λ)) =⇒ d

dt
k−1

sym(t;λ) = 1 − F (λ)
F (λ)

k−1
sym(t;λ)f(t)
tf(k−1

sym(t;λ)) .

Thus, by the above displayed equations,

d

dt

F
(
k−1

sym(t;λ)
)

− F (λ)
1 − F (λ) − F (t)

F (λ)

 =
f(k−1

sym(t;λ))dk−1
sym(t,λ)

dt

1 − F (λ) − f(t)
F (λ) =

(
k−1

sym(t;λ) − t
) f(t)
F (λ) > 0,

where the last inequality is due to k−1
sym(t;λ) > t for all t ∈

(
ksym(λ;λ), λ

]
.

Second, I show there exist a t̃ ∈ [0, 1] such that for all t > t̃ we have V A(S
2 , t) >

∫ t̃
0 F (x)dx.

By Ineq. (B.20), V A
on = F (λ)S

2 . Also, Vnp(0) = 0. As shown above, V R(S
2 , 1) < Vnp(1). The

interim and nonparticipation payoff are continuous in t so by the Intermediate Value Theorem,
there exist a t̃ < 1, such that Vnp(t) =

∫ t
0 F (x)dx crosses V (S

2 , t).
Finally, by Proposition 4 of Kirkegaard (2008), any truncated off-path distribution with the

support
[
0, t̄
]

such that t̄ < 1 would lower the common maximal bid at the off-path continuation
game of conflict compared to the game with passive updating. Type 1 bids the common maximal
bid. Hence, larger payoff and more incentive to not participate. ■

Proof of Proposition 3.5 Upon nonparticipation the continuation game is G
(
F̃ , F

)
where

F̃ is the off-path belief with the support [t, 1]. Hence, payoff of the deviating player follows
Eq. (B.28) in Lemma B.13 and Eq. (B.30) in Corollary B.3, where λi = 1 and λ−i = t, which
can be summarized as

Unp(t; F̃ , F ) =
{
tF (kRA(t; 1, t)) if t ∈ [0, t]
tF (kRA(t; 1, t)) +

∫ t
t F (kRA(t; 1, t))dt if t ∈ [t, 1], (B.44)

where kRA(t; 1, t) is defined by Eq. (B.26) where λi = 1 and λ−i = t. Replace λ with t and use the
notation of Eq. (B.37) to define ksym(t; t) = kRA(t; t, t). Similarly by Eq. (B.45) define klop(t; t) =
kRA(t; 1, t) by replacing λ with t. Hence, Lemma B.18 applies, where by claim i of it kRA(t, t, t) is
strictly increasing in t, by claim (ii) of it kRA(t; 1, t) is strictly increasing in t, and by claim (iii)
of it kRA(t, 1, t) = kRA(t, t, t). Hence, for all t ∈ (λ, 1], kRA(t, 1, t) = kRA(t, t, t) > kRA(λ, λ, λ).
By the upper branch of Eq. (B.44) for all t ∈ [0, t] the nonparticipation payoff is linear in t. Upon
participation, for type t = 0 Eq. (B.18) coupled with Eqs. (B.40), (B.41), and (B.44) implies that
the interim payoff of announcing Accept is equal to V A

on

(
S
2 , 0

)
= F (λ)S

2 which is bigger than non-
participation payoff for this type is equal to Unp(0, F̃ , F ) = 0. Also, at t = λ by Eqs. (B.37) and
(B.42) we have V R

on

(
S
2 , λ

)
= λF (kRA(λ;λ, λ)) and by Eq. (B.44), Unp(λ; F̃ , F ) = λF (kRA(t; 1, t)).

Note that V R
on

(
S
2 , λ

)
= λF (kRA(λ;λ, λ)) < λF (kRA(t; 1, t)) = λF (kRA(t, t, t)) = Unp(λ, F̃ , F ),

where the inequality is by strictly monotone property of kRA(t, t, t) in t (Lemma B.18-(i)) and
t > λ. Hence, type t = λ is worse off by participation. Thus, by continuity of the payoff func-
tions and the Intermediate Value Theorem one can conclude there are mid-range types in the
neighborhood of t = λ that do not have incentive to not participate. Since, the equilibrium is
symmetric, randomization cannot help to secure participation. ■

Proof of Theorem 3.3 Proof is an immediate implication of Propositions 3.4 and 3.5. ■
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B.7.4 Lopsided Equilibrium

A tuple
(
νi, S − νi, σi(νi; t), FA

i , F
R
i , F̃

np
i

)2

i=1
constitutes a fully participating Lopsided PBE if

and only if it satisfies (3.31), (B.20), (B.21), and (B.24). Let (ν1, ν2) be any peace proposal.
Relabeling the players if necessary, suppose ν2 < ν1. Hence, without loss of generality, I denote
the favored player as 1 and the less favored one as 2. Strategies defined by Eq. (3.31) uniquely
pin down ex-ante probability of Accept FA

i and the associated posteriors FA
i and FR

i for each
player i. The cutoff type of player 2, denoted by λlop, is indifferent between Accept and Reject.
Thus, (B.20) and (B.21) hold with equality for her.

Since by Eq. (3.31), player 1 always announces Accept, conflict happens on the path of
equilibrium only if player 2 announces Reject. At this event, FA

1 = F and FR
2 has the support[

λlop, 1
]
. At the off-path event that player 1 announces Reject, the off-path posterior is denoted

by F̃R
1 . At the continuation game G

(
F, FR

2

)
the pivotal type function is given Eq. (B.25), or

Eq. (B.26), by setting λi = 1 and λ−i = λ. Hence, denote
klop(t;λ) := kRA(t; 1, λ), (B.45)

where kRA(t; 1, λ) is characterized by (B.26). Setting λi = 1 and λ−i = λ in Eqs. (B.25) and
(B.26):

d

dt
klop(t;λ) =

(
1

1 − F (λ)

)(
klop(t;λ)f(t)
tf(klop(t;λ))

)
(B.46)

with the boundary condition klop(1;λ) = 1, or equivalently∫ 1

klop(t;λ)

f(x)
x

dx = 1
1 − F (λ)

∫ 1

t

f(x)
x

dx (B.47)

The expected payoffs can be directly derived from Lemma B.13 by setting λi = 1 and λ−i = λ:

UAR(t;F, FR
2 ) =


0, if t ∈

[
0, klop(λ;λ)

]
,∫ 1

klop(λ;λ)
F
(

k−1
lop

(t;λ)−F (λ)
)

dt

1−F (λ) if t ∈
[
klop(λ;λ), 1

]
,

(B.48)

and

URA(t;FR
2 , F ) = λF (klop(λ;λ)) +

∫ t

λ
F (klop(t;λ))dt for all t ∈ [λ, 1] , (B.49)

Thus, the interim expected payoff of Accept and Reject by Eqs. (B.20) amd (B.21) are

V A
1 (ν1, t) =

{
F (λ)ν1 if t ∈

[
0, klop(λ;λ)

]
F (λ)ν1 +

(
1 − F (λ)

)
UAR(t1, F, FR

2 ) if t ∈
[
klop(λ;λ), λ

]
,

(B.50)

V A
2 (ν2, t) = ν2 if t ∈ [0, λ] , (B.51)
V R

2 (ν2, t) = URA(t2;FR
2 , F

A) if t ∈ [λ, 1] (B.52)
Thus equilibrium conditions (B.20) and (B.21) for all t ∈ [0, 1] can be rewritten as :

F (λ)ν1 +
(
1 − F (λ)

)
UAR(t, F, FR

2 )︸                                              ︷︷                                              ︸
=V A

1 (ν1,t)

≥ F (λ)URA(t; F̃R
1 , F

A
2 ) +

(
1 − F (λ)

)
URR(t; F̃R

1 , F
R
2 )︸                                                                    ︷︷                                                                    ︸

=V R
1 (ν1,t)

,

(B.53)
ν2 ≥ URA(t;FR

2 , F
A
1 ), for all t ∈ [0, λ] , (B.54)

URA(t;FR
2 , F

A
1 ) ≥ ν2, for all t ∈ [λ, 1] . (B.55)
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The conflict payoff of the cutoff type by Eq. (B.49) is:
URA(t2 = λ;FR

2 , F ) = λF (klop(λ;λ)). (B.56)
Hence, the cutoff type of player 2 is indifferent between Accept and Reject if and only if

ν2 = URA(t2 = λ;FR
2 , F ) = λF (klop(λ;λ)). (B.57)

Therefore, given (ν1, ν2) strategies defined by Eq. (3.31) constitutes a fully participating Lopsided
PBE if and only if conditions Ineqs. (B.53) - (B.55), (B.57), and full participation constraint
(B.24) simultaneously hold.

I assume that if player 1 deviates to Reject, the off-path posterior distribution of player 1 is
δ1 with support {1}, i.e. F̃R

1 = δ1. Thus at such an event, the off-path continuation games are
G (δ1, F

A
2 ) and G (δ1, F

R
2 ). By a direct implication of Corollary 3 of Zheng (2019):

C∗
RA(1;λ) := URA(1, δ1, F

A
2 ) = inf

{
c ∈ [0, 1] :

∫ 1

c

1
F−1 (sF (λ)

)ds ≤ 1
}
, (B.58)

C∗
RR(1, λ) := URR(1, δ1, F

R
2 ) = inf

{
c ∈ [0, 1] :

∫ 1

c

1
F−1

(
s
(
1 − F (λ)

)
+ F (λ)

)ds ≤ 1
}
. (B.59)

Hence, for any λ ∈ [0, 1], C∗
RA(1;λ) and C∗

RR(1;λ) are function of primitives. Denote,

S′ = C∗
RA(1, λ̃) where λ̃ satsifies F (λ̃) = 1

2 . (B.60)

By Eq. (B.58), C∗
RA(1;λ) ≤ 1 for all λ ∈ [0, 1]. S′ is function of the primitives and S′ ≤ 1.

Lemma B.15 Suppose off-path belief δ1. Conditional on participation, there exist lopsided pro-
posal (ν1, ν2) such that ν1 + ν2 = S, ν2 < ν1, and it simultaneously satisfies:

ν2 = λF (klop(λ;λ)), (B.61)
F (λlop)ν1 + (1 − F (λ))UAR(1;F, FR

2 ) = F (λ)C∗
RA(1;λ) + (1 − F (λlop))C∗

RA(1;λ), (B.62)
where C∗

RA(1;λ) and C∗
RR(1;λ) are defined by Eqs. (B.58) and (B.59). Moreover, if S ≥ S′,

where S′ is defined by Eq. (B.60), lopsided proposal (ν1, ν2) that satisfies Eqs. (B.61) and (B.62)
has the property that it admits a cutoff type λ such that F (λ) > 1

2 .

Proof By Lemma B.18-(ii), the right hand side of Eq. (B.61) is strictly increasing in λ. At
λ = 0, it equals to zero and at λ = 1 to c∗. The latter is because λF

(
klop(λ, λ)

)
by Eq. (B.56) is

the payoff of type λ of player 2 at G
(
F, FR

2

)
. As λ ↑ 1 then FR ↑ δ1 and G

(
F, FR

2

)
converges

to G (F, δ1). Therefore, limλ↑1 λF
(
klop(λ, λ)

)
= c∗ = URA(1; δ1, F ), where c∗ = URA(1; δ1, F ) is

characterized by (3.27). Moreover, ν2 <
S
2 < c∗ (Ineq. (3.26)). Hence, any ν2 <

S
2 would admit

a unique λ that solves Eq. (B.61). To prove the first claim of lemma it suffices to show such a λ
solves Eq. (B.62).

By Lemma B.18-(i), Eqs. (B.27), (B.58), and (B.59), both left and right hand side of
Eq. (B.62) are continuous function in λ. At λ = 0, FR = F . Also, at λ = 0, the left hand
side of Eq. (B.62) equates UAR(1;F, F ), and that of right hand side equals to C∗

RR(1, 0) defined
by Eq. (B.59). Observe that, UAR(1;F, F ) > URR(1; δ1, F ) = C∗

RR(1, 0), where the inequality is
due to the observation that for type t = 1, δ1 is the worst belief for type t = 1.

At λ = 1, we have FA = F . Hence, the left hand side of Eq. (B.62) equates ν1 = S − ν2,
and its right hand side is equal to C∗

RA(1; 1) defined by Eq. (B.58). Note that limλ↑1(S − ν2) =
S − limλ↑1 λF

(
klop(λ, λ)

)
= S − c∗ < c∗ = C∗

RA(1; 1), where limλ↑1 λF
(
klop(λ, λ)

)
= c∗ =

URA(1; δ1, F ) as shown above. The inequality is by Ineq. (3.26). In brief, at λ = 0, the left hand
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side of Eq. (B.62) is strictly greater than its right hand side and at λ = 1 the reverse holds. Both
of these terms are continuous. Hence, by Intermediate Value Theorem there exists a cutoff type
λ that solves this equation. Thus, by Eq. (B.61) and ν1 + ν2 = S, there exists a (ν1, ν2) that
simultaneously satisfy Eqs. (B.61) and (B.62). This proves the first claim of this Lemma.

To prove the last claim of lemma, suppose λ̃ is such that F (λ̃) = 1
2 . As shown above, at

λ = 1 the left hand side of Eq. (B.62) is strictly smaller than it right hand side. Hence, by
Intermediate Value Theorem, it suffices to show at λ = λ̃ the reverse holds such that a λ that
solves Eq. (B.62) is λ > λ̃ and as such F (λ) > F (λ̃) > 1/2 as claimed in this Lemma. In other
words, by plugging in for ν1 = S − λ̃F (klop(λ̃, λ̃) and F (λ̃) = 1

2 in (B.62) we want to show
1
2

(
S − λ̃F

(
klop(λ̃, λ̃)

))
+ 1

2UAR(1;F, FR
2 ) > 1

2C
∗
RA(1, λ̃) + 1

2C
∗
RR(1, λ̃),

which by plugging in for UAR(1;F, FR
2 ) = URA(1;FR

2 , F ) = λ̃F (klop(λ̃, λ̃)) +
∫ 1

λ̃ F
(
klop(t; λ̃)

)
dt

in the previous inequality, the goal is to show∫ 1

λ̃
F
(
klop(t; λ̃)

)
dt− C∗

RR(1; λ̃) > C∗
RA(1; λ̃) − S

By Eq. (B.60), S′ = C∗
RA(1; λ̃). By assumption S ≥ S′ in this lemma, then C∗

RA(1; λ̃)−S ≤ 0.
Hence, to show the inequality of interest, it suffices to prove∫ 1

λ̃
F
(
klop(t; λ̃)

)
dt− C∗

RR(1; λ̃) > 0.

In fact, I show that it holds for all λ. First, δ1 is the worst posterior belief for type t = 1 (Zheng,
2019), implying C∗

RR(1;λ) = URR

(
1; δ1, F

R
2

)
< URR

(
1;FR

2 , F
R
2

)
. Hence, suffices to show∫ 1

λ
F
(
klop(t;λ)

)
dt− URR

(
1;FR

2 , F
R
2 )
)

≥ 0.

Second, plugging in for URR(1;FR
2 , F

R
2 ) by Lemma B.12 in the inequality to obtain∫ 1

λ
F
(
klop(t;λ)

)
dt−

∫ 1

λ

F (t) − F (λ)
1 − F (λ) dt =

∫ 1

λ

F (klop(t;λ)(1 − F (λ)) + F (λ) − F (t)
1 − F (λ) dt ≥ 0.

It suffice to show the numerator of the integrand is positive. Its derivative with respect to t is

f
(
klop(t;λ)

) d
dt
klop(t;λ)(1 − F (λ)) − f(t) =

(
klop(t;λ) − t

)
f(t)

t
< 0,

where the equality is by plugging in for d
dtklop(t;λ) via Eq. (B.46) and the inequality is by

klop(t;λ) < t at G (F, FR
2 ), klop(t;λ) < t (because klop(t;λ) is defined by Eq. (B.47), where

the left hand side of it is strictly monotone in klop(t;λ) and by 1
1−F (λ) > 1, then klop(t;λ) <

t). Thus, the numerator of the integrand takes it minimum value at t = 1 and it is equal to
F (klop(1;λ)(1 − F (λ)) + F (λ) − F (1) = 0, as desired. ■

Lemma B.16 Suppose Assumption 3.4.1. Conditional on participation, given the lopsided pro-
posals characterized in Lemma B.15, if F (λlop) > 1−c∗, cutoff strategies (3.31) admits a Lopsided
PBE.

Proof Given proposal (ν1, ν2), strategies defined by Eq. (3.31) constitutes a Lopsided PBE if
and only if Ineqs. (B.53)-(B.57) hold. In this proof λ refers to the equilibrium cutoff λlop. Player 2
does not deviate from Eq. (3.31). If she Reject her payoff URA(t;FR

2 , F ) is strictly increasing in t
(by Lemma B.13), single crosses ν2, her payoff if she Accept, at t = λ. Thus, Ineqs. (B.54)-(B.57)
are satisfied for this player.
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If player 1 deviates to Reject, given the off-path belief F̃R
1 = δ1, by Eqs. (B.58)-(B.59), and

Lemmas (13) and (14) of Zheng (2019), her interim payoff from deviating to Reject is equal to
V R

1 (ν1, t) = t
[
F (λ)C∗

RA(1;λ) + (1 − F (λ))C∗
RR(1;λ)

]
. (B.63)

By Eq. (B.62) in Lemma B.15, t = 1 of player 1 does not have incentive to deviate to Reject,
satisfying equilibrium condition (B.53) with equality. Also, the interim payoff of Accept function
V A

1 (ν1, t), by Eq. (B.50), is constant for all t ∈
[
0, klop(λ;λ)

]
, strictly increasing and convex in t for

all t ∈
(
klop(λ;λ), 1

]
(Lemma B.13), and differentiable almost everywhere. Thus, d

dtV
A

1 (ν1, t;λ) =
F
(
k−1

lop(t;λ)
)

− F (λ) if t ∈
(
klop(λ;λ), 1

]
. Couple this with linearity of V R

1 (ν1, t) in t (Eq. B.63);
to verify equilibrium condition (B.53) is satisfied for player 1, i.e., V A

1 (ν1, t) ≥ V R
1 (ν1, t) for all

t ∈ [0, 1], it suffices to show that for all t ∈
[
klop(λ;λ), 1

]
, V R

1 (ν1, t)−V A
1 (ν1, t) is strictly increasing

in t and single crosses zero at t = 1 as mentioned before. By previously mentioned facts, if at
t = 1 the on-path payoff is less steeper than the off-path payoff then (B.53) is guaranteed. Hence,
the incentive compatibility condition for player 1 is:

d

dt
V A

1 (ν1, 1) = 1 − F (λ) < F (λ)C∗
RA(1;λ) + (1 − F (λ))C∗

RR(1;λ) = d

dt
V R

1 (ν1, 1). (B.64)

Couple Ineq. (B.64) and Assumption 3.4.1, i.e,. c∗ < F (λ)C∗
RA(1;λ) + (1 − F (λ))C∗

RR(1;λ), to
observe the sufficient condition that implies (B.64) is 1 − F (λ) < c∗, as stated in the lemma. ■

Corollary B.5 Suppose Assumption 3.4.1. For any c∗ ∈
(

1
2 , 1
)
, and any S ∈

[
S′, 2c∗), where

S′ is a function of primitives defined by Eq. (B.60), conditional on participation and given the
lopsided proposals characterized by Lemma B.15, cutoff strategies (3.31) admits a Lopsided PBE..

Proof By Lemma B.16, conditional on participation, the lopsided proposals characterized by
Lemma B.15 admit a Lopsided PBE if 1 − F (λ) < c∗. By Lemma B.15, we know that any
expected peace surplus S such that S′ ≤ S < 2c∗ induces F (λlop) > 1

2 . By assumption c∗ > 1
2 ,

of this Corollary, then 1 − F (λlop) < 1
2 < c∗, as desired. ■

B.7.5 Proof of Lemma 3.2 and Theorem 3.4
Proof of Lemma 3.2 In this proof λ refers to the equilibrium cutoff λlop. Label favored
player as 1 and her rival as 2. By Corollary B.5, conditional on participation, the lopsided
proposals characterized by Lemma B.15 admits a Lopsided PBE. Thus, at any such PBEs,
neither type of any player has incentives to deviate from the cutoff strategies (3.31). Hence,
player 1 always announces Accept implying V A

on(ν1, t) ≥ V R
on(ν1, t) for all types of player 1, where

V R
on(ν1, t), given the off-path belief δ1, is characterized by Eq. (B.63). If player 1 unilaterally

deviates to noparticipation then her payoff by Lemma (14) of Zheng (2019) is
Vnp(t) = tŨ(1, δ1, F ) = tc∗. (B.65)

At any Lopsided PBEs λ > 0. Thus, by Assumption 3.4.1, Eq. (B.63), and revealed preference
argument, V A

on(ν1, t) ≥ V R
on(ν1, t) > tc∗ = Vnp(t). Hence, player 1 is better off by participation.

Player 2’s interim payoffs is characterized by Eqs. (B.51) and (B.52). Observe: (i) for t = 0,
V A

on(ν2, 0) = ν2 > 0 = Vnp(0); (ii) at t = λ, V A
on(ν2, λ) = ν2 = λF (klop(λ, λ)) < λc∗ = Vnp(λ),

where the inequality is by λF (klop(λ, λ)) < λc∗ (shown in the proof of Lemma B.15); (iii) by
Zheng (2019) δ1 is the worst belief for type t = 1 at G

(
F̃ , F

)
: V R

on(ν2, 1) = URA(1, FR
2 , F ) >

U(1, δ1, F ) = c∗ = Vnp(1); (iv) URA(t;FR
2 , F ) is strictly increasing and stictly convex in t

(Lemma B.13 and setting λi = 1 and λ−i = λ in Eq. (B.28)) and Vnp(t) is linear in t. Therefore,



B.7. Continuum of Types Details 127

by the Intermediate Value theorem and these observations there exists t > 0 such that all t ≤ t
are better off by participation. Also, there exists t̄ < 1 such that t̄ > t and t ≥ t̄ are better off
by participation. Thus, t ∈ (t, t̄) are worse off by participation. ■

Lemma B.17 Suppose the same hypothesis of Corollary B.5. If F (λlop) > 2 − 2c∗, then partic-
ipation constraint (B.24) is satisfied.

Proof In this proof , λ refers to the equilibrium cutoff λlop. By Corollary B.5, conditional on
participation, lopsided proposals characterized by Lemma B.15 admit a Lopsided PBE. Couple
the fact that player 1 always Accept with nonparticipation payoff characterized by Eq. (B.65),
then participation constraint Ineq. (B.24) can be simplified further to V (t) = V A(ν1, t)/2 +
V m(ν2, t)/2 > tc∗, where V m(ν2, t) in the interim payoff of player 2 for announcing some m ∈
{A,R}:

V (t) =


F (λ)ν1/2 + ν2/2, if t ∈

[
0, klop(λ;λ)

][
F (λ)ν1 +

(
1 − F (λ)

)
UAR(t1, F, FR)

]
/2 + ν2/2, if t ∈

[
klop(λ;λ), λ

]
,[

F (λ)ν1 +
(
1 − F (λ)

)
UAR(t1, F, FR)

]
/2 + URA(t2, FR, F )/2, if t ∈ [λ, 1].

V (t) is constant in t for all t ∈
[
0, klop(λ;λ)

]
and by direct implication of Lemma B.13 and

Corollary B.3 it is strictly increasing and strictly convex in t for all t ∈
[
klop(λ;λ), 1

]
. By

Eq. (B.65), Vnp = tc∗.
Using strictly increasing and strictly convex property of V (t) in t for all t ∈

[
klop(λ;λ), 1

]
coupled with implication of Lemma 3.2 that V (1) > c∗ = Vnp(1), to guarantee full participation
it suffices to show limt↑1

d
dtV (t) ≤ c∗ = d

dt(tc
∗). If true, then it implies V (t) − tc∗ is strictly

decreasing in t and always positive for all t ∈ [0, 1]. By envelope theorem,
d

dt
V (1) =

(
1 − F (λ)

)
/2 + 1/2.

Hence, (
1 − F (λ)

)
/2 + 1/2 ≤ c∗ ⇐⇒ F (λ) ≥ 2 − 2c∗,

as exposited in the Lemma. ■

Proof of Theorem 3.4 By Lemma B.17, if F (λlop) ≥ 2 − 2c∗, then participation constraint
Ineq. (B.24) is satisfied. Also, F (λlop) ≥ 2 − 2c∗ ⇒ F (λlop) > 1 − c∗, guaranteeing existence
of Lopsided PBEs conditional on participation (Lemma B.16). By Lemma B.15, S ≥ S′ then
F (λlop) > 1

2 . Thus, to guarantee full participation, it suffices to have 2 − 2c∗ ≤ 1/2, which is
always true if c∗ ≥ 3

4 , as assumed in the hypothesis of this theorem. ■

B.7.6 Calculation Details
Lemma B.18 The following properties for pivotal functions hold: (i) dksym(λ;λ)

dλ > 0, (ii) dklop(λ;λ)
dλ >

0, (iii) dklop(t;λ)
dλ < 0 for all t ∈ (λ, 1] and dk−1

lop
(t;λ)

dλ > 0 for all t ∈ [0, λ), and (iv) klop(λ;λ) =
ksym(λ;λ) for all λ ∈ [0, 1] .

Proof Claim (i)-(ii): At t = λ, by implicit differentiation of Eq. (B.39) one can obtain:
dksym(λ;λ)

dλ
= ksym(λ;λ)f(λ)
f
(
ksym(λ;λ)

) (
1 − F (λ)

) [ 1
λ

− 1
1 − F (λ)

∫ 1

λ

f(x)
x

dx

]
.
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The trem in the bracket is strictly positive by the strictly decreasing 1
x . Thus, dksym(λ;λ)

dλ > 0.
Analogously, at t = λ, by Eq. (B.47), one can verify dklop(λ;λ)

dλ > 0.
Claim (iii): By implicit differentiation of Eq. (B.47),

dklop(t;λ)
dλ

= − klop(λ;λ)f(λ)
f
(
klop(λ;λ)

) (
1 − F (λ)

)2 ∫ 1

t

f(x)
x

dx,

where all the terms are strictly positive and hence dklop(t;λ)
dλ < 0. k−1

lop(t;λ) is characterized
analogous to Eq. (B.47),

∫ 1
t

f(x)
x dx = 1

1−F (λ)
∫ 1

k−1
lop

(t;λ)
f(x)

x dx. Thus, by implicit differentiation

dk−1
lop(t;λ)
dλ

=
k−1

lop(t;λ)f(λ)
f
(
k−1

lop(t;λ)
) (

1 − F (λ)
) ∫ 1

k−1
lop

(t;λ)

f(x)
x

dx, (B.66)

where all the terms are strictly positive and hence dk−1
lop

(t;λ)
dλ > 0.

Claim (iv): By Eq. (B.39) at t = λ,
1

F (λ)

∫ λ

ksym(λ;λ)

f(x)
x

dx = 1
1 − F (λ)

∫ 1

λ

f(x)
x

dx.

Denote G(x) :=
∫ f(x)

x dx. Then, G(ksym(λ;λ)) = G(λ)−F (λ)G(1)
1−F (λ) . By Eq. (B.47) at t = λ,∫ 1

klop(λ;λ)

f(x)
x

dx = 1
1 − F (λ)

∫ 1

λ

f(x)
x

dx.

Then, G(klop(λ;λ)) = G(λ)−F (λ)G(1)
1−F (λ) and G(ksym(λ;λ)) = G(klop(λ;λ)). By positive density as-

sumption, dG(x)
dx = f(x)

x > 0. Thus, G(ksym(λ;λ)) = G(klop(λ;λ)) ⇐⇒ ksym(λ;λ)) = klop(λ;λ))
for all λ. ■

Lemma B.19 Suppose the prior CDF F (t) = tα, where α ∈ (0, 1) and t ∈ [0, 1]. Then,

C∗
RA(1;λ) =

(
α

α+(1−α)λ

) α
1−α and C∗

RR(1;λ) = 1
1−F (λ)

(
α

α+(1−α)(1−F (λ))

) α
1−α

− F (λ)
1−F (λ) .

Proof C∗
RA(1;λ) and C∗

RR(1;λ), defined by Eqs. (B.58) and (B.59), are payoff of type t = 1 at
G (δ1, F̃−i), where F̃−i ∈ {FA

−i, F
R
−i}. These payoffs by Lemmas (13) and (14) of Zheng (2019),

equates to c−i ∈ [0, 1], which is the solution to the set of equations cic−i = 0 and

1 − ci =
∫ 1

c−i

1
F̃−1

−i (s)
ds,

where F̃−1
−i is the inverse CDF. First, I characterize C∗

RA(1;λ). F̃A
−i = F (t)

F (λ) with support [0, λ].
Hence, the set of equations is cic−i = 0 and

1 − ci =
∫ 1

c−i

1
F̃−1

−i (sF (λ))
ds ⇐⇒ ci = 1 − α

(1 − α)λ

(
c

α−1
α

−i − 1
)
. (B.67)

By cic−i = 0, we know at most one of ci or c−i could be strictly positive. c−i , 0, otherwise,
ci = 1 + α

(1−α)λ > 1, a contradiction to ci ∈ [0, 1]. Hence, ci = 0 and by Eq. (B.67) one can
characterize

C∗
RA(1;λ) = c−i =

(
α

α + (1 − α)λ

) α
1−α

,

as exposited in the Lemma.
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Second, I characterizes payoff C∗
RR(1;λ). F̃R

−i = F (t)−F (λ)
1−F (λ) with support [λ, 1]. I initially

assume ci = 0, characterize c−i, and later verify that c−i ∈ (0, 1). Thus, c−i solves

1 =
∫ 1

c−i

1(
s(1 − F (λ)) + F (λ)

) 1
α

ds = α

1 − α

 (c−i − c−iλ
α + λα)

1−α
α − 1

(λα − 1) (c−i − c−iλα + λα)
1−α

α

 .
Hence,

c−i =
1 − λα

[
1 + (1−α)

α (1 − λα)
] α

1−α

(1 − λα)
[
1 + (1−α)

α (1 − λα)
] α

1−α

.

Next, I verify that 0 < c−i < 1. c−i < 1 is immediate. To see that c−i > 0, by λ ∈ [0, 1] and
α ∈ (0, 1), it suffices to show the numerator of its displayed equation is positive. One can easily
verify this term is strictly decreasing in λ and take its minimum value at λ = 1 and equates to
0. Thus, for all λ ∈ (0, 1), we have 0 < c−i < 1, as desired. Hence, C∗

RR(1;λ) = c−i, as stated in
the lemma. ■

Lemma B.20 Suppose the prior distribution has CDF F (t) = tα, where α ∈ (0, 1) and t ∈ [0, 1].
Then F (λ)C∗

RA(1;λ) + (1 − F (λ))C∗
RR(1;λ) ≥ c∗ for all λ ∈ (0, 1) .

Proof By Lemma B.19, the inequality of interest exposited in statement of this lemma is(
α

α+(1−α)(1−F (λ))

) α
1−α − c∗ > F (λ)(1 − C∗

RA(1;λ)), where c∗ is defined by Eq. (3.27). Denote:

ζ(λ) :=
(

α

α + (1 − α)(1 − F (λ))

) α
1−α

. (B.68)

Hence, denote
T (λ) := ζ(λ) − c∗ −

(
F (λ)(1 − C∗

RA(λ))
)
.

The goal is to show that T (λ) ≥ 0. c∗ can also can be characterized by c∗ = U(1; δ1, F ) =
limλ↑1 U(1; δ1, F

A) = limλ↑1 C
∗
RA(1;λ) = α

α
1−α . This is because as λ ↑ 1, FA = F (t)

F (λ) with the
support [0, λ] converges to F . So to prove this lemma, one need to check the slope and curvature
of T (λ). It can be readily show,

d

dλ
ζ(λ) = f(λ)ζ(λ)

1
α , (B.69)

d

dλ
C∗

RA(λ) = −
(
C∗

RA(λ)
) 1

α , (B.70)

Denote,
η(λ) := ζ(λ)

1
α

and
ω(λ) := 1 − (1 − λ)

(
C∗

RA(λ)
) 1

α .

Thus,
d

dλ
T (λ) = f(λ)

[
η(λ) − ω(λ)

]
.

By Eq. (B.68), it is immediate that T (0) = 0, T (1) = 0, and T (λ) has positive slope at λ = 0
and zero at λ = 1. Hence, to verify T (λ) ≥ 0 for all λ ∈ [0, 1], I show T (λ) has a unique global
max. To that end, by f(t) > 0 maintained in this chapter and observations (B.71)-(B.74), it
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suffices to show η(λ) − ω(λ) = 0 has a unique root λ∗ ∈ (0, 1). Note that,
d

dλ
η(λ) = d

dλ
(ζ(λ)

1
α ) = f(λ)

α
(ζ(λ))

2−α
α > 0, (B.71)

d

dλ
ω(λ) = d

dλ

(
1 − (1 − λ)

(
C∗

RA(λ)
) 1

α

)
=
(
C∗

RA(λ)
) 1

α

[
1 + α(1 − λ)
α + λ(1 − α)

]
> 0, (B.72)

lim
λ↓0

d

dλ
η(λ) = +∞ >

α + 1
α

= lim
λ↓0

d

dλ
ω(λ), (B.73)

lim
λ↑1

d

dλ
η(λ) = 1 > α

1
1−α = lim

λ↑1

d

dλ
ω(λ), (B.74)

which coupled with the observations η(0) = α
1

1−α > 0 = ω(0) and η(1) = 1 = ω(1), implies that
term ω(λ) starts from below the term η(λ). Because they are both strictly increasing in λ, the
slope of the latter at λ = 1 is higher than the former, and both have the same value at that λ = 1,
it implies that η(λ) approaches ω(λ) from below till they cross at λ = 1. Hence, there exist a
neighborhood around λ = 1 where, η(λ) is below ω(λ). Thus, by intermediate value theorem
there exist λ∗ ∈ (0, 1) at which these two functions crosses each other.

The goal is to show this root is unique. By Eq. (B.72), slope of ω(λ) is strictly positive and
by Claim B.2 this slope is a strictly decreasing and convex function of λ. By Claim B.3, η(λ)
is strictly increasing in λ, it has a unique saddle point, and it’s derivative has a unique global
minimum. By Ineqs. (B.73) and (B.74), term η(λ) has larger slope at both λ = 0 and λ = 1.
At λ = λ∗ where is the first time that ω(λ) crosses η(λ) from below by the strictly increasing
property of these function, it is necessary that limλ→λ∗

d
dλω(λ) > limλ→λ∗

d
dλη(λ). Hence, by the

fact that d
dλη(λ) is U shape and d

dλω(λ) is strictly increasing and convex in λ it is necessary that
these two function crosses each other exactly two times. Denote these points by λ1 and λ2. By
the above mentioned observations on the curvature of the derivative functions, 0 < λ1 < λ∗ and
λ∗ < λ2 < 1. Therefore, η(λ) − ω(λ) has one local maximum at λ = λ1 and one local minimum
at λ = λ2. Hence, after the first time λ = λ∗ that ω(λ) crosses η(λ), it remains above it till λ = 1
where they equates. Thus, λ∗ is unique. ■

Claim B.2 Denote ω(λ) := 1 − (1 − λ)
(
C∗

RA(λ)
) 1

α . Then, d2

dλ2ω(λ) < 0 and d3

dλ3ω(λ) > 0.

Proof By Eqs. (B.70) and (B.72),

d2

dλ2ω(λ) = −
(
C∗

RA(λ)
) 2−α

α

α

[
1 + α(1 − λ)
α + λ(1 − α)

]
−
(
C∗

RA(λ)
) 1

α
1

(α + (1 − α)λ)2 < 0.

Moreover, using the above displayed equation coupled with Eqs. (B.70) and (B.72):

d3

dλ3ω(λ) = −2 − α

α2
(
C∗

RA(λ)
) 2−2α

α
d

dλ
(C∗

RA(λ))
[

1 + α(1 − λ)
α + λ(1 − α)

]
−
(
C∗

RA(λ)
) 2−α

α

α2

[
−1

(α + λ(1 − α))2

]
−

(
C∗

RA(λ)
) 1−α

α

α

d

dλ
(C∗

RA(λ)) 1
(α + (1 − α)λ)2 +

(
C∗

RA(λ)
) 1

α
2(1 − α)

(α + (1 − α)λ)3 > 0.

The sign is by C∗
RA > 0 (Eq. B.58), α ∈ (0, 1), λ ∈ [0, 1], and d

dλ(C∗
RA(λ)) < 0 (Eq. B.70). ■

Claim B.3 Denote η(λ) := ζ(λ) 1
α . η(λ) is strictly increasing in λ, it has a unique saddle point,

and it’s slope has a global minimum.
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Proof By Eq. (B.71), d
dλη(λ) > 0. Also, by Eqs. (B.69) and (B.71), obtain

d2

dλ2 η(λ) = 1
α
ζ(λ)

3−2α
α λα−2(F (λ) + α− 1)).

By F (t) = tα and α ∈ (0, 1], there exist a unique λ̃ that solves F (λ̃) = 1 − α, where for λ < λ̃,
d2

dλ2 η(λ) < 0 and for λ ≥ λ̃ the reverse holds. Also,

d3

dλ3 η(λ) = λα−2

α
ζ(λ)

3−2α
α

(2 − α)
(
λ2α + (α2 + α− 2)λα + 1 − α

)
α + (1 − α)(1 − F (λ))

 > 0,

where the sign is because α ∈ (0, 1), λ ∈ (0, 1), η(λ) > 0 by (B.68), and the term

λ2α + (α2 + α− 2)λα + 1 − α =
(
λα − (1 − α)(α + 2)

2

)2

+ (1 − α)α2(α + 3)
4 > 0.

Hence, η(λ) has the unique saddle point λ̃, and its slope is convex in λ and U shape. ■
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Appendix C

Appendices to Chapter 4

C.1 Categorization of All Renege-Proof Equilibria
As mentioned in Section 4.3.1, in a renege-proof PBE, either both players ratify a proposal at the
rectification stage, or a type that can renege on a proposal at the rectification stage has rejected
the proposal, to begin with, at the mediation stage. Therefore all possible cases of renege-proof
PBEs can be summarized as

a Both players ratify the peace proposal at the rectification stage.

b One player unilaterally rejects the peace proposal. Call this always-conflict.

c One player always ratifies the peace proposal while her opponent ratifies if she is the weak
type and rejects the proposal if she is the strong type.

d One player always ratifies the peace proposal while her opponent ratifies if she is the strong
type and rejects the proposal if she is the weak type.

e Both players always ratify if they are the weak type and reject the proposal if they are the
strong type.

f Both players always ratify if they are the strong type and reject the proposal if they are
the weak type.

Lemma C.1 There does not exist any Case-(a) PBEs.

Proof A Case-(a) PBE exists if both players ratify, which happens if and only if xi ≥ max{πD
i , π

A
−i}

and xi ≥
(
πA

−i − πD
i

)+
. Then player i’s interim-expected-payoff differences between rejecting and

accepting the proposal (4.16) will be simplified to[
∆i(s)
∆i(w)

]
= qA

−i

 max
{
πR

i , π
A
−i

}
− xi(

πA
−i − πR

i

)+
− xi

+ qR
−i

 max
{
πR

i , π
R
−i

}
− max

{
πA

i , π
R
−i

}
(
πR

−i − πR
i

)+
−
(
πR

−i − πA
i

)+

 ,

132
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which is isomorphic to that of the Renege-Banning model of KZ, where they show in their Lemma
3 that for all possible classes of PBEs πR

i ≤ θ ≤ πA
i . By max{πD

i , π
A
−i} ≥

(
πA

−i − πD
i

)+
, that each

type of each player ratifies if xi ≥ max{πD
i , π

A
−i}. Thus, given the observation by Lemma 3 of KZ

that πA
−i ≥ θ, each type of each player ratifies if xi ≥ πA

i ≥ θ. This implies that, xi +x−i = r ≥ 2θ
violating the maintained assumption (4.15). Therefore, this class of PBE cannot exist.

Lemma C.2 There always exists a renege-proof PBE where one player unilaterally rejects a
peace proposal. In such always-conflict PBEs, the on-path posterior is equal to the prior for both
players. Moreover, the social surplus admitted by the PBE is 2θ(1 − θ)/r.

Proof Let qR
i = 1 for some player i, such that player i unilaterally announces Reject. Then the

on-path posterior about player i is πR
i = θ. For the convenience and without loss of generality

denote i := 2. Then, since player 2 unilaterally rejects, we have σ2(s) = σ2(w) = 1, which imply
that πR

2 = θ, qR
2 = 1, and qA

2 = 0. Hence, Eq. (4.16) for player 2 would be simplified to:[
∆1(s)
∆1(w)

]
= qR

2

 max
{
πR

1 , π
R
2

}
− max

{
πA

1 , π
R
2

}
(
πR

2 − πR
1

)+
−
(
πR

2 − πA
1

)+

 =

 max
{
πR

1 , θ
}

− max
{
πA

1 , θ
}

(
θ − πR

1

)+
−
(
θ − πA

1

)+

 .
(C.1)

We claim that the posterior probability π1 with which player 1’s type is equal to w is the same
as the prior: π1 = θ. Suppose otherwise. We derive a contradiction for all possibilities:

1. σ1(w) = 0. Then σ1(s) > 0, otherwise the claim π1 = θ is true. Thus, πA
1 > θ by Eq. (4.5)

applied to 1, and ∆1(s) ≥ 0. Then Eq. (C.1) implies πR
1 ≥ πA

1 > θ. But since σ1(w) = 0
and σ1(s) > 0, πR

1 = 0 by Bayes’s rule: contradiction.

2. σ1(w) = 1. Then σ1(s) < 1, otherwise the claim π1 = θ is true. Thus, πR
1 > θ by Eq. (4.6)

applied to 1, and ∆1(w) ≥ 0. Then Eq. (C.1) implies πA
2 ≥ θ. But since σ1(w) = 1 and

σ1(s) < 1, πA
1 = 0 by Bayes’s rule: contradiction.

3. 0 < σ1(w) < 1. Then Eq. (4.8) is applicable to player 1. Thus, either πR
1 < θ < πA

1
or πR

1 > θ > πA
1 . Suppose πR

1 < θ < πA
1 . Then Eq. (C.1) implies ∆1(s) < 0 and

∆1(w) > 0; hence σ1(w) = 1 and σ2(s) = 0, implying πR
1 = 1 and πA

1 = 0 , contradicting
the condition πR

1 < θ < πA
1 assumed throughout this subcase. Thus consider the only

possibility, πR
1 > θ > πA

1 . Then Eq. (C.1) implies ∆2(s) > 0 and ∆1(w) < 0; hence
σ1(w) = 0 and σ1(s) = 1, implying πR

1 = 0 and πA
1 = 1, contradicting the condition

πR
1 > θ > πA

1 assumed throughout this subcase.

All possible cases considered, I have derived a contradiction. Thus, the claim π1 = θ is true.
It follows that for each i ∈ {1, 2}, in the conflict stage, which occurs for sure because σi(w) =
σi(s) = 1, the posteriors are πi = π−i = θ. Then each player’s expected payoff is equal to θ/r
if his type is high, and equal to zero if his type is low, hence the social surplus is equal to the
always-conflict PBE.

Next, I caclulate the social surplus generated by any Case-(b) PBEs. I show above that
any PBE that belongs to Case-(b) has the on-path posterior that is equal to the prior θ for each
player. Since qR

i = 1 for some player i, conflict takes place for sure and hence each player’s
ex-ante payoff from the PBE is equal to

θ

r
(θ − θ)+ (1 − θ)

r
max{θ, θ} = θ(1 − θ)

r
.

Thus, the social surplus generated by the PBE is equal to 2θ(1−θ)
r .
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Lemma C.3 There does not exist any Case-(d) and Case-(f) PBEs.

Proof Suppose such PBEs exist. Strong type of one player ratify a proposal if and only if xi ≥
max{πD

i , π
A
−i}. By max{πD

i , π
A
−i} ≥

(
πA

−i − πD
i

)+
, one can also conclude that xi ≥

(
πA

−i − πD
i

)+
.

This implies that the weak type ratify the proposal too. Therefore, in these two classes of PBEs,
both players ratify peace proposal. Then result of Lemma C.1 holds, which shows such class of
PBEs are impossible. ■

Lemma C.4 Within Case-(c) PBEs, the only possible equilibria are one where a player that
ratifies a proposal also announces Accept in the mediation stage and the other player rejects the
proposal if her type is strong and mixes between announcing Accept and Reject if her type is weak.
Call this case Lopsided PBEs.

Proof Proof of this proposition is based on two steps. In Step 1, I characterize all the possible
PBEs that satisfy the Case-(c) definition. In Step 2, I explore these possible cases further and
use equilibrium conditions to show that only one possible class of PBEs among them, called
Lopsided PBEs, can exist that satisfies the Case-(c) definition. To that end, without loss of
generality suppose player 1 is the player that always ratifies a proposal and player 2 is the player
that always announces Reject if her type is strong and mixes between Reject and Accept if her
type is weak.

Step 1- In this step, I show that given the Case-(c) definition, only three classes of equilibira
are possible. I verify this observation via the following two claims.

Claim C.1 In the Case-(c) PBEs, the renege-proof proposal admits a PBE where if player 1’s
strategy σ1 is specified by a row and column in the following table then the equilibrium has the
property in the corresponding cell provided that the cell contains a property.

σ1(s) = 0 0 < σ1(s) < 1 σ1(s) = 1
σ1(w) = 0 impossible impossible

0 < σ1(w) < 1 impossible
σ1(w) = 1 impossible impossible always-conflict

Proof By Case-(c) definition, player 1 always ratifies a proposal. Hence, x1 ≥ max{πD
1 , π

A
2 }

and x1 ≥
(
πA

2 − πD
1

)+
. Plugging these inequalities into Eq. (4.16) for i = 1:[

∆1(s)
∆1(w)

]
:= qA

2

 max
{
πR

1 , π
A
2

}
− x1(

πA
2 − πR

1

)+
− x1

+ qR
2

 max
{
πR

1 , π
R
2

}
− max

{
πA

1 , π
R
2

}
(
πR

2 − πR
1

)+
−
(
πR

2 − πA
1

)+

 .
First, suppose that σ1(w) = 0 and 0 < σ1(s) ≤ 1, the case corresponding to the first row

and the second and third columns in the table. Then ∆1(w) ≤ 0 and ∆1(s) ≥ 0, and πR
1 = 0

and πA
1 > θ by Eqs. (4.5) and (4.6). Thus,

0 ≤ ∆1(s) − ∆1(w) = πR
1 − qR

2 π
A
1 = −qR

2 π
A
1 .

Hence 0 ≥ qR
2 π

A
1 . This, with πA

1 > θ > 0, implies qR
2 = 0, i.e., σ2(s) = σ2(w) = 0, which is

impossible since by Case-(b) definition σ2(s) = 1.
Second, suppose 0 < σ1(w) < 1 and σ1(s) = 0. Then ∆1(w) = 0 and ∆1(w) ≤ 0, πR

1 = 1 by
definition, and πA

1 = θ/((θ + (1 + θ)/(1 − σ1(w))) < θ by Eq. (4.5). Thus,
0 ≥ ∆1(s) − ∆i(w) = πR

1 − qR
2 π

A
1 = 1 − qR

2 π
A
1 > 0,
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with the last inequality due to πA
1 < θ < 1. The contradiction displayed above implies this case

is also impossible, as asserted in the cell.
Third, suppose σ1(w) = 1 and 0 ≤ σ1(s) < 1, which corresponds to the cells of the third

row and the first and second columns. Then ∆1(w) ≥ 0 and ∆1(s) ≤ 0, πA
1 = 0 by definition,

and πR
1 = θ/(θ + (1 − θ)σ1(s)) > θ by Eq. (4.6). Thus,

0 ≥ ∆1(s) − ∆1(w) = πR
1 − qR

2 π
A
1 = πR

1 > θ > 0,
contradiction. Hence this case is impossible, as asserted in the cells.

Finally, consider the case σ1(w) = σ1(s) = 1, the cell of Row Three and Column Three.
Then this is an always-conflict PBE where by Lemma C.2 posterior remains the same as the
prior. Hence, the social-surplus equals to that of always-conflict equilibrium. ■

Claim C.2 In the Case-(c) PBEs, it is impossible to have σ1(w) = σ1(s) = 0 = σ2(w).

Proof Since σ1(w) = σ1(s) = 0 = σ2(w), we have σ2(s) = 1. Then qR
2 > 0 and qA

2 > 0, and by
Bayes’s rule, πR

2 = 0 and πA
2 = 1. With σ1(w) = σ1(s) = 0, we have qR

1 = 0, qA
1 = 1 and, by

Bayes’s rule, πA
1 = θ. For this (σ1, σ2) to constitute an equilibrium, the necessary and sufficient

condition is that ∆1(s) ≤ 0, ∆1(w) ≤ 0 and ∆2(s) ≥ 0 ≥ ∆2(w). By Case-(c) definition, weak
type of player 2 ratifies and her strong type announces Reject. Thus,

(
πA

1 − πD
2

)+
≤ x2 <

max{πA
1 , π

D
2 }. Eq. (4.16) applied to player 2 after plugging in these conditions on x2 is simplified

to: [
∆2(s)
∆2(w)

]
=

 max
{
πR

2 , π
A
1

}
−
(
(1 − α)x2 + αmax{πD

2 , π
A
1 }
)

(
πA

1 − πR
2

)+
−
(
(1 − α)x2 + αx2

)


=
[
θ − (1 − α)x2 − αmax{πD

2 , π
A
1 }

θ − x2

]
.

Note, that ∆2(s) ≥ 0 ⇐⇒ θ − (1 − α)x2 − αmax{πD
2 , π

A
1 } ≥ 0 which along with Case-(c)

condition, i.e., x2 < max{πD
2 , π

A
1 }, implies that θ−x2 ≥ 0. Moreover, ∆2(w) ≤ 0 ⇐⇒ θ−x2 ≤

0. Thus, ∆2(s) ≥ 0 ≥ ∆2(w) implies θ − x2 = 0 which implies that x1 = r − θ. However, this
leads to a contradiction since by renege-proof conditions for player 1, x1 ≥ max{πA

2 , π
D
1 } = 1,

which by θ > r/2 and r ∈ (1, 2) leads to the contradiction x1 = r − θ < 1. ■

Thus, by these two claims, all possible cases for any renege-proof equilibrium that satisfies
the Case-(c) definitions are listed in the following table.

0 < σ2(w) < 1 = σ2(s)
σ1(w) = σ1(s) = 0 lopsided
σ1 is totally mixed Case-(c)-ii

0 < σ1(w) < 1 = σ1(s) Case-(c)-iii

Step 2. In this step, I show that there does not exist any Case-(c)-ii and Case-(c)-iii
equilibria. By the definition of Case-(c) PBEs, player 1 always ratifies a proposal. Thus, x1 ≥(
πA

2 − πD
1

)+
and x1 ≥ max

{
πD

1 , π
A
2

}
. Therefore, player 1’s interim-expected-payoff differences

between rejecting and accepting the proposal equals to
∆1(s) − ∆1(w) = πR

1 − qR
2 π

A
1 .



C.1. Categorization of All Renege-Proof Equilibria 136

By definition of Case-(c) PBEs, 0 < qR
2 < 1. If player 1 does not always accept a proposal then

by the above table Reject is always a best response for her, implying that ∆1(s) − ∆1(w) ≥ 0.
This coupled with the above mentioned equality implies πR

1 < πA
1 . Therefore, by definition of πR

1
and πA

1 , it can be easily verified that πR
1 < θ < πA

1 . Moreover, since player 2 always announces
Reject if she is strong and follows mixing strategy if she is weak, then πR

2 < θ < 1 = πA
2 .

By definition of Case-(c) PBEs, x1 ≥ max
{
πD

1 , π
A
2

}
= 1. Then, it is immediate that for this

player the interim payoff of Reject is always less than that of Accept:
qA

2 x1 + qR
2 max{πA

1 , π
R
2 } > qA

2 max{πR
1 , π

A
2 } + qR

2 max{πR
1 , π

R
2 },

where the inequality is by x1 ≥ max
{
πD

1 , π
A
2

}
= 1 = max{πR

1 , π
A
2 } and πA

1 = max{πA
1 , π

R
2 } >

max{πR
1 , π

R
2 }. Thus, accept is always a best response for player 1, given x1 ≥ max

{
πD

1 , π
A
2

}
= 1.

Thus, Case-(c)-ii and Case-(c)-iii cannot exist. ■

Lemma C.5 Within Case-(e) PBEs, the only possible PBE is one where both players always
mix between accept and reject if their type is weak and reject the proposal if their type is strong.
Call this case Mutually Partially Mixed (MPM) PBEs.

Proof Within Case-(e) PBEs, by its definition, for each player i,
(
πA

−i − πD
i

)+
≤ xi < max{πA

−i, π
D
i }.1

First, given a proposal that satisfy the previously mentioned inequalities, one can readily show
there does not exist any equilibrium such that σi(w) = 0 and σi(s) = 1. Plugging

(
πA

−i − πD
i

)+
≤

xi < max{πA
−i, π

D
i } into Eq. (4.16):[

∆i(s)
∆i(w)

]
= qA

−i

 max
{
πR

i , π
A
−i

}
−
(
(1 − α)xi + αmax{πA

−i, π
D
i }
)

(
πA

−i − πR
i

)+
− xi


+ qR

−i

 max
{
πR

i , π
R
−i

}
− max

{
πA

i , π
R
−i

}
(
πR

−i − πR
i

)+
−
(
πR

−i − πA
i

)+

 .
Suppose that σi(w) = 0 and σi(s) = 1. Then ∆i(w) ≤ 0 and ∆i(s) ≥ 0, and πR

i = 0 and πA
i = 1

by Eqs. (4.5) and (4.6). Also, σ−i(s) = 1 ⇒ πA
−i = 1. Thus,

0 ≤ ∆i(s) − ∆i(w) = πR
i − qR

−iπ
A
i − αqA

−i

(
max{πA

−i, π
D
i } − xi

)
≤ πR

i − qR
−iπ

A
i

Hence 0 ≥ qR
−iπ

A
i . This, with πA

i > θ > 0, implies qR
−i = 0, i.e., σ−i(s) = σ−i(w) = 0, which is

impossible since by definition of Case-(e) σ−i(s) = 1.
Recall that by Lemma C.2, any unilateral reject, i.e., σi(s) = σi(w) = 1 for some i ∈ {1, 2}

admit always-conflict equilibrium. Consequently, the only remaining case such within Case-
(e) PBEs that admit renege-proof equilibrium and it is not always-conflict is the one where
0 < σi(w) < 1 and σi(s) = 1 for each i ∈ {1, 2}. ■

C.1.1 Proof of Lemma 4.2
Lemmas C.2-C.5 considers all possible cases of renege-proof PBEs. In section C.1, I categorize
all possible renege-proof PBEs in Cases (a)-(f). Lemmas C.1 and C.3 rules out existence of Case-

1Note that there does not exist any Case-(e) PBE where xi ≥ max{πA
−i, πD

i } and the strong type of
both players always Reject. This is due to the observation that given such proposals each type of each
player would always ratifies the peace proposal. However, Lemma C.1 shows such a PBE does not exist.
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(a), (d), and (f) PBEs. Lemmas C.2, states existence of an always-conflict PBE, i.e., Case-(b).
Since in an always conflict PBE, a player unilaterally rejects a proposal and triggers conflict
it is renege-proof. Lemmas C.4 states that within Case-(c) category only Lopsided PBEs are
possible. Lemma C.5 states that within Case-(e) only MPM PBEs are possible. Thus, all cases
are considered and the only two cases that are not renege-proof are Lopsided and MPM PBEs.
■

C.2 Proof of Proposition 4.2
Pick 1−r/2 ≤ πD

i ≤ 1 for each i ∈ 1, 2. The characterization of equilibrium strategies and beliefs
stated in the proposition would be the same as Eq. (4.20), where x1 = x2 = r/2 is plugged in:

πR
i = πR

−i = 1 − r

2 ,

qR
i = 1 − θ

r
2

Thus, by definition of qR
i in Eq. (4.4) and σi(s) = 1 we have

θσi(w) + (1 − θ) = 1 − θ
r
2

⇐⇒ σi(w) = (1 − θ)(2 − r)
θr

Moreover, σi(s) = 1 implies ∆i(s) ≥ 0 which is characterized by Ineqs. (4.21) and (4.22). Given
the equal split, σ2(w) = σ1(w) ⇐⇒ qA

2 = qA
1 . Thus, Ineqs. (4.21) and (4.22) are equivalent.

Therefore, the necessary and sufficient conditions for the equal split to admit renege-proof MPM
PBE are (4.20) and (4.21). By the characterization of the equilibrium exposited in the statement
of the Proposition 4.2 and Ineq. (4.21) one can readily observe:

∆1(s) ≥ 0 ⇐⇒ qA
2 (1 − x1)(1 − α) ≥ (1 − qA

2 )x2

⇐⇒ qA
2 [1 − α]

(
1 − r

2

)
− qR

2

[
r

2

]
≥ 0

⇐⇒ (αr2 + 2αrθ − 4αr − 4αθ − r2 + 4α + 2r + 4θ − 4)
2r ≥ 0

⇐⇒
α(r − 2)(r + 2θ − 2) −

(
(r − 1)2 + 3 − 4θ

)
2r ≥ 0,

⇐⇒ α ≤ 4θ − (r − 1)2 − 3
(2 − r) (r + 2θ − 2) .

It can be easily verified that 0 < 4θ−(r−1)2−3
(2−r)(r+2θ−2) < 1 and hence such an α ∈

(
0, 4θ−(r−1)2−3

(2−r)(r+2θ−2)

]
that

satisfy the equilibrium condition exists. To that end one can verify r/2 < θ < 1 (Ineq. 4.15):
4θ − (r − 1)2 − 3

(2 − r)(r + 2θ − 2) ≥ 0 ⇐⇒ θ ≥ 3 + (r − 1)2

4 ,

4θ − (r − 1)2 − 3
(2 − r)(r + 2θ − 2) < 1 ⇐⇒ (2 − r)(r + 2θ − 2) −

[
4θ − (r − 1)2 − 3

]
> 0 ⇐⇒ 2r(1 − θ) > 0,

where the first equivalence condition is verified by the assumption θ ≥ 3+(r−1)2

4 in the statement of
this Propositions and the second chain of equivalence conditions is always true since r/2 < θ < 1
by Ineq. (4.15). Hence, this class of PBEs exist if θ ≥ 3+(r−1)2

4 and α ≤ 4θ−(r−1)2−3
(2−r)(r+2θ−2) = Γ(θ, r).

It remains to show that the equal proposal, given the off-path posterior beliefs 1 − r/2 ≤
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πD
i ≤ 1, satisfies renege-proof conditions. We have already shown that given these conditions

strong type of both players reject the proposal at the mediation. Thus, it remains to show that
the weak type of both players does not renege at the rectification. To see this, note that in the
event that the proposal is accepted and the game is in the rectification stage, if player i of type
w reneges she would get (πA

−i − πD
i ) which by πA

−i = 1 and 1 − r/2 ≤ πD
i is less than the equal

split: (πA
−i − πD

i ) ≤ (1 − 1 + r/2) = r/2. Therefore, she ratifies the equal proposal which brings
her a higher payoff. ■

C.3 The Social Surplus Function
Lemma C.6 Given any renege-proof peace proposal (x1, x2) and the associated PBE (σ, q, π),
such that x2 ≤ x1, then
(i) the social surplus admitted by Lopsided PBEs equals to 1/r times

qA
2 x1 + θ(1 − θ)qR

2 + θ
(
1 − πR

2

)
,

(ii) the social surplus admitted by MPM PBEs equals to 1/r times
θ − θ(πR

1 + πR
2 ) + qA

1 π
A
1 + qR

1 π
R
2

Proof Given any renege-proof peace proposal (x1, x2) and the associated PBE (σ, q, π), each
player i’s ex ante expected payoff from announcing Reject is equal to 1/r times

θ

(
qA

−i

(
πA

−i − πR
i

)+
+ qR

−i

(
πR

−i − πR
i

)+
)

+ (1 − θ)
(
qA

−i max
{
πR

i , π
A
−i

}
+ qR

−i max
{
πR

i , π
R
−i

})
,

and that from announcing Accept, equals to 1/r times

qA
−ixi + θqR

−i

(
πR

−i − πA
i

)+
+ (1 − θ)qR

−i max
{
πA

i , π
R
−i

}
.

Pick any peace proposal (x1, x2) such that x2 ≤ x1, i.e., x2 = min{x1, x2} =: xmin. Let (σ, π)
denote the associated equilibrium and q the associated probability system defined in (4.3)–(4.4).
Recall the social surplus function S(xmin) and its normalized version S̃(xmin) := rS(xmin) defined
in Section 4.4.1.

First, when x2 = 0, the equilibrium is always conflict and by Lemma C.2, S̃ = 2θ(1 − θ).
Second, let x2 ∈ (0, r−1]. I shall show that S̃(0) = 2θ(1−θ). Since x2 ∈ (0, r−1], the equilibrium
is lopsided (Proposition 4.1) such that σ1(s) = σ1(w) = 0 < σ2(w) < 1 = σ2(s). Player 1 always
ratifies a proposal at the rectification stage. Then player 1’s equilibrium surplus is equal to his
expected payoff from Accept, and player 2’s surplus equal to her expected payoff from Reject.
Thus, by the above displayed formulas for interim payoff of announcing Accept and Reject, one
can obtain:

rS(xmin) = qA
2 x1 + θ

(
πR

2 − πA
1

)+
+ (1 − θ)qR

2 max
{
πA

1 , π
R
2

}
︸                                                                  ︷︷                                                                  ︸

player 1

+ θ · 1 ·
(
πA

1 − πR
2

)+
+ (1 − θ) · 1 · max

{
πR

2 , π
A
1

}
︸                                                               ︷︷                                                               ︸

player 2

= qA
2 x1 + (1 − θ)qR

2 θ + θ
(
θ − πR

2

)
+ (1 − θ)θ

= qA
2 x1 + θ(1 − θ)qR

2 + θ
(
1 − πR

2

)
,
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with the second equality due to the observation from Proposition 4.1 that πA
1 = θ > θ−x2 = πR

2 .
Thus, it verifies the social surplus function as exposited in the statement of the lemma for the
lopsided PBEs. Note that S̃(0) = 2θ(1 − θ) as qA

2 = 0, qR
2 = 1, and πR

2 = θ when x2 = 0 by
Proposition 4.1, converging to the always-conflict PBE and its social surplus.

Third, by definition of MPM equilibrium, Reject is a best response for each type of each
player. By Ineq. (4.23) in this class of PBEs, x2 ≤ x1 ⇐⇒ πR

2 ≥ πR
1 . Thus, by the above

displayed formulas for interim payoff of announcing Reject, player 1’s surplus is equal to 1/r
times

θ

(
qA

2

(
πA

2 − πR
1

)+
+ qR

2

(
πR

2 − πR
1

)+
)

+ (1 − θ)
(
qA

2 max
{
πR

1 , π
A
2

}
+ qR

2 max
{
πR

1 , π
R
2

})
= θ(qA

2 π
A
2 + qR

2 π
R
2 − πR

1 ) + (1 − θ)(qA
2 π

A
2 + qR

2 π
R
2 )

= θ(θ − πR
1 ) + (1 − θ)θ

= θ − θπR
1 ,

where the first equality is due to πA
i ≥ θ ≥ πR

i for each player i by Ineq. (4.8) and the hypothesis
πR

2 ≥ πR
1 , and the second equality due to qA

i π
A
i + qR

i π
R
i = θ by Eq. (4.7). Similarly, player 2’s

surplus is equal to 1/r times

θ

(
qA

1

(
πA

1 − πR
2

)+
+ qR

1

(
πR

1 − πR
2

)+
)

+ (1 − θ)
(
qA

1 max
{
πR

2 , π
A
1

}
+ qR

2 max
{
πR

2 , π
R
1

})
= θ

(
qA

1

(
πA

1 − πR
2

))
+ (1 − θ)

(
qA

1 π
A
1 + qR

1 π
R
2

)
= qA

1 π
A
1 − θπR

2 + qR
1 π

R
1 ,

where the first equality is due to πA
i ≥ θ ≥ πR

i for each player i by Ineq. (4.8) and the hypothesis
πR

2 ≥ πR
1 , and the second equality is by qA

1 + qR
1 = 1. Then sum the two components displayed

above to obtain the social surplus function as exposited in the statement of the lemma for MPM
PBEs. ■

Lemma C.7 The equal split that admits MPM PBEs generates social surplus equals to θ.

Proof By Proposition 4.2, the equal proposal that admits MPM PBEs, admits a symmetric
PBE where

πR
1 = πR

2 = 1 − r

2 , and πA
1 = πA

2 = 1

Plug these posterior in the social surplus function characterized for the MPM PBEs in Lemma C.6
to obtain

rS(x2) = θ − θ(2πR
1 ) + qA

1 π
A
1 + qR

1 π
R
1 = θ − θ(2πR

1 ) + θ = 2θ(1 − πR
1 ) = rθ,

where the second equality above is due to qA
1 π

A
1 + qR

1 π
R
1 = θ by Eq, (4.7). ■

Lemma C.8 The social surplus function admitted by Lopsided PBEs is strictly increasing in
xmin := min{x1, x2}

Proof I shall show that d
dx2
S̃(x2) > 0 for all x2 ∈ (0, r − 1). That can be verified easily by

plugging into Eq. (4.25) the formula of πR
2 in Proposition 4.1 , and that of (qA

2 , q
R
2 ) based on the

formula of σ2(w) in the same proposition.

S̃(x2) = x2

1 − θ + x2
(r − x2) + θ(1 − θ)2

1 − θ + x2
+ θ (1 − θ + x2) (C.2)

= −(1 − θ)
(
y + r + (1 − θ)2

y

)
+ r + 2(1 − θ),
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where y := 1 − θ + x2, so x2 = y − 1 + θ. Thus,

− 1
1 − θ

d

dy

(
rSlop(x2)

)
= 1 − r + (1 − θ)2

y2 = 1 − r + (1 − θ)2(
1 − (θ − x2)

)2 ,
which is negative because

(
1 − (θ − x−i)

)2 = (1 −πR
−i)2 < 1 < r+ (1 − θ)2, with the equality due

to the formula of πR
2 in Proposition 4.1, and the last inequality due to r > 1 (Ineq. (4.15)). ■

Lemma C.9 The social surplus function admitted by MPM PBEs is strictly increasing in xmin :=
min{x1, x2}

Proof Since the equilibrium is MPM for any x2 ∈ (γ, r/2], combine Eq. (4.26) with Eqs. (4.3)–
(4.5), as well as definition of MPM exposited in, to obtain

d

dx2
rS(x2) = θ − qR

1 − θ

(
x2 + θ

qR
1

(
1 − πR

1

)) d

dx2
σ1(w)

for all splits that admit this class of equilibria. Plug into this equation the formulas of σ1(w)
and πR

1 by Eq. (4.20), and the formula of qR
1 derived from that of σR

1 and Eqs. (4.4). Then
d

dx2
S̃(x2) > 0 is equivalent to

rθM2 > x3
2
(
r(θ + x2 − 1) + (2x2 − r)(1 − θ)

)
,

where M := x2 −
(
θ(x2 − x1) + x1(1 − x2)

)
. Since r/2 ≥ x2, x2

2 ≤ M and hence the left-hand side
of the above-displayed inequality is no less than rθx4

2; meanwhile, the right-hand side is no greater
than x3

2r(θ + x2 − 1). Since 1 > r/2 ≥ x2, rθx4
2 > x3

2r(θ + x2 − 1), hence the above-displayed
inequality is true, thus d

dx2
S̃(x2) > 0, as desired. ■

C.4 The Probability of Conflict
Lemma C.10 The probability of conflict admitted by Lopsided PBEs is strictly decreasing in
xmin := min{x1, x2}

Proof Let x2 = min{x1, x2} for any peace proposal (x1, x2). Recall the conflict probability
P (x2) defined in Section 4.4.2. We shall calculate d

dx2
P . For any x2 ∈ (0, r − 1], the PBE

is lopsided (Proposition 4.1), so qA
1 = 1 and qA

2 = θ(1 − σ2(w)) = x2/(1 − θ + x2). Thus
P (x2) = (1 − θ)/(1 − θ + x2) is strictly decreasing in x2. ■

Lemma C.11 The probability of conflict admitted byMPM PBEs is strictly decreasing in xmin :=
min{x1, x2}

Proof Recall the conflict probability P (x2) defined in Section 4.4.2. For any x2 ≤ r/2 that
admit MPM PBEs by Eq. (4.20) qA

1 = 1−πR
1 +θ−1

1−πR
1

, where πR
1 is also characterized by Eq. (4.20),

and qA
2 = (θ − 1 + x2)/x2. Since d

dx2
P (x2) = qA

1
d

dx2
qR

2 + qA
2

d
dx2
qR

1 ,
d

dx2
P (x2) = θ · θ + x2 − 1

x2

d

dx2
σ1(w) − 1 − θ

x2
2

· (r − x2)(θ + x2 − 1)
M

= (θ + x2 − 1)(1 − θ)
x2M

(
x2

2 + r(θ − 1)
M

− r − x2

x2

)
,
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where M is defined by
M =: x2 −

(
θ(x2 − x1) + x1(1 − x2)

)
.

Since r/2 ≥ x2 (by Ineq. (4.23)) then one can readily verify that x2
2 ≤ M . In the above-displayed

expression for d
dx2
P (x2), the first factor is positive because θ+x2 −1 > 0 due to Ineq. (4.23); and

the second factor, bracketed by (· · · ), is negative: either x2
2 + r(θ − 1) < 0, or x2

2 + r(θ − 1) ≥ 0
and so x2

2+r(θ−1)
M ≤ x2

2+r(θ−1)
x2 (since M ≥ x2

2), which is less than r−x2
x2

. Thus d
dx2
P (x2) < 0. ■

C.5 Proof of Theorem 4.1
By Lemma 4.2, only lopsided and MPM PBEs are renege-proof. Social-surplus function admitted
by lopsided proposals is strictly increasing in xmin = min{x1, x2} (Lemma C.8). Without loss of
generality assume x2 ≤ x1. By Proposition 4.1, x2 = r − 1 is the upper bound of proposal that
admit renege-proof Lopsided PBEs. Hence, the lopsided split ν2 = w/s, or equivalently lopsided
proposal x2 = r − 1, is the one that admits the highest social surplus among the renege-proof
lopsided proposals. Plugging qA

−i and πR
−i from Proposition (4.1) into Eq. (4.25) this split would

admit

rS(r − 1) = 2θ3 − (2r + 2)θ2 + (r2 + 1)θ + r − 1
(r − θ) .

First, by an immediate implication of Proposition 4.2, if α ≥ Γ(θ, r) or θ < 3+(r−1)2

4 , then
the equal proposal does not admit renege-proof PBEs. Thus, the only renege-proof proposal is
x2 = r− 1 and x1 = 1, or respectively ν2 = w/s and ν1 = 1 −w/s, as stated in the upper branch
of the statement of the Theorem.

Second, consider the case where α < Γ(θ, r). By Lemma C.9, social surplus function admitted
by MPM PBEs is strictly increasing in x2. By Ineq. (4.23), the equal proposal is the upper bound
of x2 that admit MPM PBEs. Moreover, Proposition 4.2, verifies existence and uniqueness of
MPM PBEs admitted by the equal proposal. Hence, the equal proposal outperforms all other
splits that admit MPM PBEs. Given the equal proposal, by Proposition (4.2), we know this class
of equilibrium exists and is renege-proof if θ ≥ 3+(r−1)2

4 and α < Γ(θ, r). By Lemma C.7, the
social surplus admitted by the equal proposal is equal to:

rS(r/2) = rθ.

It can be easily shown that:

rS(r − 1) − rSMP M (r/2) = (1 − θ)(rθ − 2θ2 + r − 1)
(r − θ) .

Thus,
rS(r − 1) − rS(r/2) ≥ 0 ⇐⇒ (rθ − 2θ2 + r − 1) ≥ 0

⇐⇒ r −
√
r2 + 8r − 8

4 ≤ θ ≤ r +
√
r2 + 8r − 8

4 .

By maintained assumption θ > r/2 (Ineq. 4.15), the lower bound of the above displayed condition
on θ is not binding. Therefore, if r/2 ≤ θ ≤ r+

√
r2+8r−8

4 , the lopsided proposal (r − 1, 1)
admits higher social surplus than the equal proposal. Moreover, by an immediate implication of
Proposition 4.2, if θ ≤ 3+(r−1)2

4 , then the equal proposal does not admit MPM PBEs. Combine
these two observations to conclude that if θ ≤ max

{
r+

√
r2+8r−8

4 , 3+(r−1)2

4

}
= ϕ(r) and α <
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Γ(θ, r), then the lopsided proposal is the optimal renege-proof proposal. This verifies the second
and fourth branches in the statement of the Theorem. At θ = ϕ(r) the switch is discontinuous.
This verifies the third branch in the statement of the Theorem.

Note that max
{

r+
√

r2+8r−8
4 , 3+(r−1)2

4

}
is not a degenerate set. It is easy to verify that both

of these term are strictly increasing in r and at r ≈ 1.23 we have r+
√

r2+8r−8
4 = 3+(r−1)2

4 . ■

C.6 Proof of Theorem 4.2
By Lemma 4.2, only lopsided and MPM PBEs are renege-proof. Relabeling the players if nec-
essary, let x2 = min{x1, x2} in any proposal (x1, x2). By Proposition (4.1) and (4.2) any
x2 ∈ (0, r − 1] and x2 = r/2 determines a unique not-always-conflict and renege-proof PBE
(σi, π

A
i , π

R
i )2

i=1, with the associated (qA
i .q

R
i ) defined by Eqs. (4.3)–(4.4). Recall the conflict prob-

ability P (x2) defined in Section 4.4.2. Thus, P (x2) = 1 − qA
i q

A
−i. By Lemmas C.10 and C.11

, the probability of conflict admitted by Lopsided and MPM PBEs is strictly decreasing in x2.
Thus, the probability of conflict is minimized within each class at the upper bound of x2. By
Ineq. 4.23, this amounts to x2 = r/2 for the MPM PBEs, and by Proposition 4.1, it equals to
x2 = r − 1 for Lopsided PBEs.

First, by an immediate implication of Proposition 4.2, if α ≥ Γ(θ, r) or θ < 3+(r−1)2

4 , then
the equal proposal does not admit renege-proof PBEs. Thus, the only renege-proof proposal is
x2 = r− 1 and x1 = 1, or respectively ν2 = w/s and ν1 = 1 −w/s, as stated in the upper branch
of the statement of the Theorem.

Second, consider the cases where α < Γ(θ, r). For MPM PBEs by Proposition (4.2), at the
equal proposal qR

1 = qR
2 = 1−θ

x2
= 2−2θ

r . Hence,

P (r/2) = 1 − qA
i q

A
−i = 4(1 − θ)(r + θ − 1)

r2

Similarly, by Proposition (4.1), for lopsided solutions qA
1 = 1 and qA

2 = x2
1−θ+x2

. Hence:

P (xmin) = 1 − qA
1 q

A
2 = 1 − qA

2 = 1 − θ

1 − θ + x2
.

Hence, at the extreme lopsided proposal

P (r − 1) = 1 − θ

r − θ
.

Thus;

P (r/2) ≥ P (r − 1) ⇐⇒ 4(1 − θ)(r + θ − 1)
r2 − 1 − θ

r − θ
≥ 0,

⇐⇒ (1 − θ)(3r2 − 4θ2 − 4r + 4θ)
r2(r − θ) ≥ 0,

Where the last inequality holds if and only if

3r2 − 4θ2 − 4r + 4θ ≥ 0 ⇐⇒ 1 −
√

3r2 − 4r + 1
2 ≤ θ ≤ 1 +

√
3r2 − 4r + 1

2
By maintained assumption θ > r/2 (Ineq. 4.15), the lower bound of the above displayed con-
dition on θ is not binding. The only binding inequality in the presence of θ > r/2 is θ >
1+

√
(3r−1)(r−1)

2 . Hence, If θ ≤ 1+
√

3r2−4r+1
2 then the lopsided proposal (r − 1, 1) admits lower

probability of peace than the equal proposal. Combine these two observations to conclude that
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if θ ≤ max
{

1+
√

3r2−4r+1
2 , 3+(r−1)2

4

}
= ψ(r) and α < Γ(θ, r), then the lopsided proposal is the

conflict minimizing renege-proof proposal. This verifies the second and fourth branches in the
statement of the Theorem. At θ = ψ(r) the switch is discontinuous. This verifies the third
branch in the statement of the Theorem. ■



Curriculum Vitae

Name: Ali Kamranzadeh

Post-Secondary Shiraz University
Education and Shiraz, Iran
Degrees: 2000 - 2005 B.Sc.

The Univeristy of Southern California,
Los Angeles, USA
2009 - 2011 M.Sc.

Simon Fraser University,
Burnaby, Canada
2014 - 2015 M.A.

The University of Western Ontario
London, ON
2015 - 2022 Ph.D.

Honours and SSHRC Doctoral Fellowship (2018-2020)
Awards:

Ontario Graduate Scholarship (2017-2018)

Graduate Fellowship
The University of Western Ontario (2015-2019)

Summer Paper Prize
The University of Western Ontario (2017)

Related Work Instructor
Experience: Teaching Assistant

The University of Western Ontario
2015 - 2022

144


	Essays on Conflict Mediation
	Recommended Citation

	tmp.1655827127.pdf.UcH9u

