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Septohippocampal GABAergic Neurons Mediate the Altered Behaviors
Induced by N-methyl-D-Aspartate Receptor Antagonists

Jingyi Ma,1 Siew Kian Tai,1,2 and L. Stan Leung1,2*

ABSTRACT: We hypothesize that selective lesion of the septohippo-
campal GABAergic neurons suppresses the altered behaviors induced by
an N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine or MK-
801. In addition, we hypothesize that septohippocampal GABAergic
neurons generate an atropine-resistant theta rhythm that coexists with
an atropine-sensitive theta rhythm in the hippocampus. Infusion of
orexin-saporin (ore-SAP) into the medial septal area decreased parvalbu-
min-immunoreactive (GABAergic) neurons by �80%, without signifi-
cantly affecting choline-acetyltransferase-immunoreactive (cholinergic)
neurons. The theta rhythm during walking, or the immobility-associated
theta induced by pilocarpine, was not different between ore-SAP and
sham-lesion rats. Walking theta was, however, more disrupted by atro-
pine sulfate in ore-SAP than in sham-lesion rats. MK-801 (0.5 mg/kg
i.p.) induced hyperlocomotion associated with an increase in frequency,
but not power, of the hippocampal theta in both ore-SAP and sham-
lesion rats. However, MK-801 induced an increase in 71–100 Hz gamma
waves in sham-lesion but not ore-SAP lesion rats. In sham-lesion rats,
MK-801 induced an increase in locomotion and an impairment of
prepulse inhibition (PPI), and ketamine (3 mg/kg s.c.) induced a loss of
gating of hippocampal auditory evoked potentials. MK-801-induced be-
havioral hyperlocomotion and PPI impairment, and ketamine-induced
auditory gating deficit were reduced in ore-SAP rats as compared to
sham-lesion rats. During baseline without drugs, locomotion and audi-
tory gating were not different between ore-SAP and sham-lesion rats,
and PPI was slightly but significantly increased in ore-SAP as compared
with sham lesion rats. It is concluded that septohippocampal GABAergic
neurons are important for the expression of hyperactive and psychotic
symptoms an enhanced hippocampal gamma activity induced by keta-
mine and MK-801, and for generating an atropine-resistant theta. Selec-
tive suppression of septohippocampal GABAergic activity is suggested to
be an effective treatment of some symptoms of schizophrenia. VVC 2012
Wiley Periodicals, Inc.

KEY WORDS: hippocampus; theta rhythm; gamma rhythm; auditory
gating; behavioral hyperactivity; prepulse inhibition; schizophrenia;
medial septum; NMDA receptor antagonist

INTRODUCTION

The hippocampal theta rhythm correlates with the
moment-to-moment behavior of an animal (Vander-
wolf, 1969). Theta rhythm may participate in spatial
navigation, sensorimotor processing and sensorimotor
gating (O’Keefe and Nadel, 1978; Bland and Oddie,
2001; Buzsaki, 2002). The integrity of the medial sep-
tum is essential for the hippocampal theta rhythm
(Stewart and Fox, 1990), which may depend on three
types of septohippocampal neurons—cholinergic neu-
rons that contact both hippocampal principal cells

and interneurons (Frotscher and Leranth, 1985),

GABAergic fibers that only contact hippocampal

GABAergic inter neurons (Freund and Antal 1988;

Toth et al. 1997; Takacs et al., 2008), and glutamater-

gic neurons (Sotty et al., 2003; Colom et al., 2005)

that excite pyramidal cells (Huh et al., 2010).
Both atropine-sensitive and atropine-resistant inputs

are involved in generating the hippocampal theta
rhythm during voluntary behavior (Vanderwolf, 1988;
Bland and Colom, 1993; Leung, 1998). Atropine-sen-
sitive theta involves muscarinic cholinergic receptors

and possibly cholinergic septohippocampal afferents.

The atropine-resistant theta is characterized by its lack

of sensitivity to muscarinic antagonists (Vanderwolf,

1975, 1988) or to abolition of the muscarinic cholin-

ergic signaling pathway (Shin et al., 2005). The neu-

rotransmitter underlying atropine-resistant theta has

been suggested to be serotonergic (Vanderwolf, 1988)

or glutamatergic and involving N-methyl-D-aspartate

receptors (Vanderwolf and Leung, 1983; Leung and

Desborough, 1988; Buzsaki, 2002; Leung and Shen,

2004). In addition, atropine-resistant theta may

involve septohippocampal glutamatergic neurons

(Bland et al., 2007; Huh et al., 2010) and septohip-

pocampal GABAergic neurons (Stewart and Fox,

1989; Lawson and Bland, 1993; Lee et al., 1994;

Manseau et al., 2008). Septohippocampal GABAergic

neurons are suggested to be critical for pacing hippo-

campal theta (Simon et al., 2006; Hangya et al.,

2009) by firing at distinct phases of the theta rhythm

(Borhegyi et al. 2004). One aim of the present study

is to study the participation of septohippocampal

GABAergic neurons in theta generation.
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Another aim of this study was to examine the participation
of septohippocampal GABAergic neurons in the psychotic
behaviors induced by NMDA receptor antagonists, ketamine
and MK-801. A low dose of ketamine induced positive and
negative symptoms of schizophrenia in humans (Krystal et al.,
1994; Lahti et al., 2001), including a disruption of prepulse in-
hibition (PPI) and auditory gating (Braff et al., 2001; Boeijinga
et al., 2007). Systemic injection of ketamine and other NMDA
receptor antagonists, such as phencyclidine and MK-801, also
induced schizophrenia-like symptoms in animals that include
increased locomotor activity, loss of PPI (Swerdlow et al.,
1998; Ma and Leung, 2000; Ma et al., 2004) and loss of gat-
ing of hippocampal auditory evoked potentials (Miller and
Freedman, 1995; Ma et al., 2009). NMDA receptor antagonist
was inferred to block atropine-resistant theta in the hippocam-
pus (Vanderwolf and Leung, 1983; Leung, 1985; Buzaki,
2002), but the relation of theta suppression to schizophrenia is
unclear. Instead, GABAergic circuit dysfunction following
NMDA receptor blockade has been proposed as mechanisms
for schizophrenia (Benes and Berretta, 2001; Gonzalez-Burgos
et al., 2011). Schizophrenic symptoms in behaving animals
were accompanied by an increase in hippocampal gamma waves
of 71-100 Hz (Leung, 1985; Whittington et al., 2000; Ma and
Leung, 2000, 2007; Ma et al., 2004, 2009), indicating disrup-
tion of a recurrent inhibitory network (Leung, 1982, 1998;
Mann et al., 2005). In past studies, we showed that infusion of
a GABAA receptor agonist, muscimol, into the medial septum
alleviated the NMDA antagonist-induced changes in hippocam-
pal gamma waves, sensorimotor gating, behavioral hyperloco-
motion and hippocampal auditory evoked potentials (Ma and
Leung, 2007; Ma et al., 2004, 2009), possibly by septal modu-
lation of hippocampal interneurons (Takacs et al., 2008). Here,
we hypothesize specifically that the septohippocampal GABAer-
gic neurons mediate the behavioral deficits following a systemic
NMDA receptor antagonist. Our previous study indicated that
the schizophrenic behaviors induced by NMDA receptor antag-
onist were not alleviated by selective lesion of septal cholinergic
inputs to the hippocampus by 192-IgG-saporin (Ma et al.,
2004).

It has been recently demonstrated that a low dose of the
ribosome toxin saporin (SAP) conjugated to an orexin-2 recep-
tor, or ore-SAP, selectively lesioned the septal GABAergic neu-
rons leaving the cholinergic neurons almost intact (Smith and
Pang, 2005). By selective lesion of the septal GABAergic neu-
rons with ore-SAP, this study examined the involvement of sep-
tohippocampal GABAergic neurons in atropine-resistant hippo-
campal theta rhythm and the psychotic symptoms induced by
an NMDA receptor antagonist.

MATERIALS AND METHODS

Male Long-Evans hooded rats (Charles River Canada, St.
Constance, Quebec, Canada) were housed in pairs in Plexiglas
cages and kept on a 12/12 h light/dark cycle at a temperature

of 22 6 18C, with ad libitum food and water. All experimental
procedures were approved by the local Animal Use Committee.

Under sodium pentobarbital (60 mg/kg i.p.) anesthesia, the
rats were implanted with recording electrodes (125 lm Teflon-
insulated stainless steel wires) in stratum radiatum and stratum
oriens of the hippocampal CA1 region on both sides (AP -3.5,
L 1 2.7), and ventral (V) from skull surface 2.3–3.3; units in
mm), according to the stereotaxic atlas of Paxinos and Watson
(2007). Rats were rested 7 days after surgery.

Lesion of GABAergic neurons in the medial septum was per-
formed using orexin-saporin (ore-SAP; Chemicon, Temecula,
CA). The injection protocol below was modified from that of
Smith and Pang (2005), who reported that 140 ng ore-SAP
selectively lesioned septal GABAergic and not cholinergic neu-
rons. Ore-SAP (100 ng/ll in sterile saline) was infused bilater-
ally into the medial septal area (AP 0.7, L 6 0.5) at 5.7 mm
(0.3 ll) and 7.8 mm (0.4 ll) below the skull surface, giving a
total of 140 ng ore-SAP bilaterally. At each site, a constant
infusion rate of 0.05 ll/ min was maintained by a pump (Har-
vard Apparatus, South Natick, MA) pushing the solution
through a 30-gauge Hamilton syringe (Ma et al., 2004); the
injection needle remained in place for 10 min before retraction
to allow for diffusion. Sham lesion rats were infused with equal
volumes of 0.9% saline. Rats were recorded 2–5 weeks after
infusion.

Immunocytochemistry of choline acetyltransferase (ChAT)
and parvalbumin (Parv) was performed at the end of experi-
ments, using procedures published elsewhere (Ma et al., 2004,
2009). Parv immunopositive cells in the medial septum are
shown to project to the hippocampus and are almost exclu-
sively GABAergic, as shown by colabeling with GABA or
gamma aminobytric acid decarboxylase (GAD) immunoreactiv-
ity (Freund and Antal1989; Gritti et al., 2003). In contrast,
<10% of calbindin-immunopositive or calretinin-immunoposi-
tive cells in the basal forebrain were GAD immunopositive,
and few calretinin-immunopositive cells project to the hippo-
campus (Gritti et al., 2003). Sections of 40-lm thick were cut
from ore-SAP and sham lesion rats and the number of cells
immunopositive to Parv or ChAT was quantified in three repre-
sentative coronal sections (40 lm) at anterior (�AP 0.7), mid-
dle (�AP 0.4) and posterior (�AP 0.2) levels of the medial
septum-diagonal band of Broca region. A digital image of a
selected section was captured by camera at 100 3 magnifica-
tion from a Nikon microscope, and cells were counted from
the digital image. Cell counts were confirmed by a second per-
son who was not aware of the lesion procedures. The sites of
the electrode placements were verified histologically in 40-lm
frozen sections of the brain stained with thionin (Fig. 1A).

Psychotic behaviors in rats were induced by injection of an
NMDA receptor antagonist, ketamine (3 mg/kg, subcutane-
ously s.c.) or MK-801 (0.5 mg/kg intraperitoneally injected
i.p.). Since MK-801 showed more long-lasting effects than ke-
tamine, it was used for the study of prepulse inhibition and
locomotion, while ketamine was used for studying auditory gat-
ing. The dose of ketamine was chosen in accordance with our
previous study showing that ketamine at 3 mg/kg s.c. gave a
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maximal effect on hippocampal auditory gating deficit without
affecting the response amplitude of the conditioning pulse (Ma
et al., 2009). In preliminary experiments, we demonstrated, in
control rats without septal infusion, the effect of MK-801 (0.5
mg/kg i.p.) by itself or in combination with 50 mg/kg i.p. at-
ropine sulfate (injected 15 min before MK-801) on hippocam-
pal theta rhythm and locomotion. MK-801 at dose of 0.5 mg/
kg i.p. was shown to be optimal for inducing coordinated loco-
motor activity without ataxia (Ma and Leung, 2007).

For recording of auditory evoked potentials, a rat was semi-
restrained in a Plexiglas chamber (21 cm 3 10 cm 3 10 cm)
that did not allow the rat to turn around. A loudspeaker was
placed above the chamber, in a fixed position of 308 elevated
and 24 cm away from the rat’s head. Semirestraint reduced
movement artifacts and allowed sound clicks to be delivered at
a relatively constant intensity to both ears of the rat. The same

chamber was used for testing prepulse inhibition (Ma et al.,
2004; Ma and Leung, 2007). The implanted electrodes were
connected to a flexible cable that led through an opening of
the restraining chamber. Auditory evoked potentials were
acquired at the stratum radiatum electrode following auditory
click pairs separated by a conditioning-test (C-T) interval of
500 ms; each click was a white-noise burst of 20 ms pulse du-
ration and at 75 dB. Click pairs were given 15-s apart. Addi-
tional C-T intervals (300 and 1,000 ms) were also used in
selected experiments. Single sweeps of the auditory evoked
potential were stored on the computer and those sweeps with
clear movement or electrical artifacts were rejected online, and
additional sweeps could also be rejected offline.

Baseline recording before drug (25 sweeps) was performed
after habituating a rat for 15 min in the restraining chamber.
Then, the rat was removed from chamber and injected with ke-
tamine (3 mg/kg s.c.) or saline (0.1 ml s.c.). Ten minute after
injection, the rat was placed back in the chamber for post drug
recording. Response to the C or T pulse was measured by the
maximal negative deviation from the baseline of the average
evoked potential (15–25 sweeps). The ratio of the T response
to the C response, or the T/C ratio (normally < 1), was used
to measure auditory gating. A low T/C ratio indicates high gat-
ing, while a high T/C ratio (near 1) indicates low gating.

Prepulse inhibition (PPI) was assessed in a Plexiglas startle
chamber (SR-LAB, San Diego Instruments, San Diego, CA),
using a piezoelectric accelerometer to detect startle amplitude,
as described elsewhere (Ma et al., 2004). After acclimating to
68 dB noise, the rat was given different sound stimuli—a star-
tle pulse only (120 dB 40-ms broad band burst), or a startle
pulse preceded 100 ms by a prepulse intensity of 73, 75, or
80-dB (20-ms broad band noise). For each test session, 50 tri-
als were given in randomized order—10 trials with startle pulse
only, 10 trials with no stimulation, and 10 trials of each one of
the three prepulse intensities followed by a startle pulse. The
intertrial interval was 15 s. PPI was measured as the difference
between the response to the startle pulse alone and the response
to prepulse-startle, or PPI (in percent) 5 100 * [1 - (mean
startle response amplitude after a prepulse /mean amplitude of
response to startle alone)]. In this study, mean values of the
three prepulse intensities of 73, 75, 80 dB (integrated prepulse
intensity) as well as individual prepulse intensities were used to
calculate the PPI.

Horizontal movements (locomotion) of a rat were measured
by the number of interruptions of infrared beams in a Plexiglas
chamber (69 3 69 3 49 cm3). Four independent infrared
sources, at 23 cm intervals, were located on a horizontal plane
5 cm above the floor, with photodiode detectors on the other
side. Interruptions of the beams were counted and transferred
to a microcomputer via an interface (Columbus Instruments).
For spontaneous activity in a novel environment, recording of
beam interruption started immediately after a rat was trans-
ferred from its home cage into the chamber, and 10 min
counts were made for 1 h. For experiments with MK-801
injection, a rat was habituated for at least 1 h in the chamber
before injection. The number of infrared beam interruptions

FIGURE 1. Parvalbumin (PARV) and choline acetyltransferase
(ChAT) immunopositive neurons after medial septal infusion of
orexin-saporin (Ore-SAP-lesion) or saline (Sham-lesion). A: Repre-
sentative sections of ore-SAP and sham lesion rat, showing near
complete loss of GABAergic neurons labeled by PARV immunore-
activity but preservation of cholinergic neurons labeled by ChAT
immunoreactivity. B: Cell counts of ChAT and PARV immunoposi-
tive neurons in the medial septum and diagonal band of Broca at
�A 0.4, Paxions and Watson’s atlas (2007). **P < 0.0003 (Bonfer-
roni adjusted t-test) difference between ore-SAP-lesion and sham-
lesion groups. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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was counted every 10 min, for 30 min during baseline (before
injection), and for 2 h after MK-801 (Ma and Leung, 2007).

EEG Recordings and Analysis

Hippocampal EEGs were recorded before and after drug
treatments. Baseline recordings were collected in all rats during
walking and immobile conditions. Two gross behavioral states
were distinguished: (1) walking, broadly defined to include hor-
izontal movements, rearing and turning, and (2) awake-immo-
bility, defined as staying motionless on the floor of the record-
ing cage with head held up against gravity. The EEG signals
were filtered between 0.3 and 100 Hz, recorded on a polygraph
(Grass 7D) and sampled at 200 Hz by a microcomputer. At
least 30 s of EEG was manually selected from each minute of
EEG recording and subjected to power spectral analysis, using
segments of 5.12 s (1,024 points sampled at 200 Hz; Leung
et al., 1982). The power spectra were plotted in logarithmic
units, with calibration of 6.15 log units 5 1.0 mV peak-to-
peak sine wave. The peak theta rhythm was measured as the
rise in theta power, in logarithmic units, from a minimum at
3–6 Hz to the peak at 4–10 Hz. If no peak was found at 4–10
Hz, theta power was considered to be zero. The rise of theta
reflects accurately the magnitude of theta oscillations at 4–10
Hz; measurement of absolute theta does not distinguish
between oscillatory and nonoscillatory responses (Leung et al.,
1982).

Gamma power was measured by the mean integrated power
in frequency bands of 30–70 Hz and 71–100 Hz. Mean inte-
grated power is defined as the sum of power within a frequency
band divided by the number of frequency bins within the
bandwidth. The power of 58–62 Hz was not used in the sum,
to avoid the 60-Hz line frequency. For analysis of the time
effect of a drug on the integrated EEG power, each power was
normalized by the baseline (100%).

The effect of atropine sulfate (50 mg/kg i.p.) and pilocarpine
(25 mg/kg i.p.) on hippocampal EEG during immobility and
walking (Leung, 1985) was studied in sham and ore-SAP lesion
rats. EEG was recorded during baseline (before drug) and at
15–45 min after atropine sulfate or 15–30 min after pilocar-
pine. Statistical analyses were performed using repeated measure
analysis of variance (ANOVA), followed by Newman-Keuls’s
post hoc test, or by Student’s t test. P-values of < 0.05 were
considered to be statistically significant.

RESULTS

Orexin-Saporin Infused in the Medial Septal
Area Selectively Lesioned GABAergic Neurons

Orexin-saporin was infused into the medial septum to selec-
tively lesion GABAergic septal neurons. As compared to sham
lesion rats, ore-SAP lesion rats showed a large decrease in the
number of Parv-immunopositive, putatively GABAergic neu-

rons (Fig. 1A). The number of Parv-immunopositive neurons
in ore-SAP lesion rats was significantly decreased to �20% of
that in sham lesion rats, and the decrease was significant at
each of the three anteroposterior levels of the septal area (Bon-
ferroni adjusted t-test, P < 0.0003; Fig. 1B). However, there
was no difference in the number of ChAT-immunopositive,
putatively cholinergic neurons as seen in representative sections
(Fig. 1A). Quantitative cell counts confirmed that there was no
significant difference in the ChAT-immunopositive neuronal
counts between sham and ore-SAP lesion rats (t-test, P > 0.13
at each of three sections).

Hippocampal EEG After Ore-SAP Lesion in the
Septum

In the ore-SAP lesion rats as well as sham lesion rats, theta
power was higher during walking as compared with awake-
immobility (Figs. 2A,D). During walking, the rise of the peak
theta power of the ore-SAP lesion rats was not different from
that in sham lesion rats (Fig. 3A). However, atropine disrupted
theta in ore-SAP lesion rats more than sham lesion rats. After
injection of atropine sulfate (50 mg/kg i.p.), theta power dur-

FIGURE 2. Power spectra of hippocampal EEG in representa-
tive sham (left column) and septal orexin-saporin (Ore-SAP, right
column) lesion rats. Recordings were made before (A and D, base-
line) and after injections of 50 mg/kg i.p. atropine sulfate (B and
E) or 25 mg/kg i.p. pilocapine hydrochloride (C and F), and
recorded during walking (WK) or awake-immobile (IM) condi-
tions. Representative EEG tracings at surface or deep hippocampal
electrodes are shown in inset of each part of the figure. [Color fig-
ure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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ing walking decreased by 0.53 1 0.12 log units in ore-SAP
lesion rats, significantly more than the decrease of 0.43 1
0.06 log units in sham lesion rats (P < 0.05; Figs. 2B,E and
3A). Gamma power (30–70 Hz and 71–100 Hz) during
walking was not different between ore-SAP and sham lesion
rats, with or without atropine sulfate injection (data not
shown). An immobility-associated theta rhythm was induced
by injection of 25 mg/kg i.p. pilocarpine in both ore-SAP
and sham lesion rats (Figs. 2C,F), with theta power not sig-
nificantly different between ore-SAP and sham lesion rats
(Fig. 3B).

MK-801-Induced Changes in Hippocampal EEGs
and Effect of Septal Ore-SAP Lesion

NMDA receptor antagonists are known to reduce hippocam-
pal theta power (Leung and Desborough, 1988; Leung and
Shen, 2004), and the combination of an NMDA receptor an-
tagonist and atropine/scopolamine was shown to strongly sup-
press hippocampal theta during walking (Vanderwolf and
Leung, 1983; Leung, 1985; Horvath et al., 1988). Since the
effects of MK-801 had not been reported, we studied hippo-
campal EEG with MK-801 (0.5 mg/kg i.p.) alone, with or
without pretreatment of atropine sulfate (50 mg/kg i.p.). In
confirmation of previous studies on other NMDA receptor

antagonists, MK-801 alone did not affect theta power but the
combination of MK-801 and atropine sulfate strongly sup-
pressed theta, and spontaneous locomotion, in control intact
rats without septal infusion (Supporting Information Fig. 1).

Hippocampal EEGs in sham and ore-SAP lesion rats were
analyzed before and after injection of MK-801. MK-801 (0.5
mg/kg i.p.) injection did not affect the peak hippocampal theta
power in sham lesion rats [F(8,48) 5 1.66, P 5 0.13] or ore-
SAP lesion rats [F(8,48) 5 0.85, P 5 0.56; Fig. 4E]. Both
sham and ore-SAP lesion rats showed an increase in theta peak
frequency after MK-801 injection (Fig. 4F). Repeated measures
two-way ANOVA showed a trend of a higher theta peak fre-
quency in sham as compared with ore-SAP lesion rats [Fig. 4F;
group effect F(1,8) 5 3.70, P 5 0.06], with a significant time
effect [F(1,8) 5 4.14, P < 0.001], although Newman-Keuls
post hoc test did not indicate statistical significance at a specific

FIGURE 4. Hippocampal EEG changes after injection of MK-
801 (0.5 mg/kg i.p.). A,B: Representative hippocampal EEG spec-
tra 20 min after MK-801 as compared with baseline walk (WK)
and awake-immobility (IM) before drug for orexin-saporin lesion
rats (Ore-SAP, B) and sham lesion rats (Sham, A). An increase in
gamma waves was observed in sham but not in Ore-SAP rat after
MK-801. C–E: Normalized change of integrated hippocampal EEG
power (baseline walk 5 100%) of group data (mean 6 standard
error of the mean) of ore-SAP and sham rats, for 71–100 Hz
gamma (C), 30-70 Hz gamma (D) and 5-10 Hz theta rhythm (E).
F: Peak theta frequency in the hippocampus increased in both
sham and ore-SAP lesion rats after MK-801 injection. # P<0.05,
## P<0.01, difference with baseline walking after one-way
repeated ANOVA followed by Newman-Keuls post hoc test. # above
line indicates significant time effect in ANOVA. [Color figure can
be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

FIGURE 3. Effects of systemic injection of 50 mg/kg i.p. atro-
pine sulfate (A) or 25 mg/kg i.p. pilocarpine hydrochloride (B) on
hippocampal theta power in medial septal orexin-saporin lesion
(Ore-SAP lesion) or sham lesion rats. EEGs were recorded under
walking (walk) conditions for atropine-treated rats and under
immobile (IM) conditions for pilocarpine treated rats. *P < 0.05;
**P < 0.01 (t test) difference between Ore-SAP lesion and sham
lesion groups. NS: not significant. Hippocampal theta power was
assessed by the rise of the power peak above minimum (Methods).
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time point. In sham lesion rats, average peak theta frequency
was 7.77 1 0.16 Hz during baseline and 9.34 1 0.89 Hz at
30 min after MK-801 administration. In ore-SAP lesion rats,
the baseline peak theta frequency was 8.12 1 0.44 Hz and
9.04 1 0.13 Hz at 30 min after MK-801 injection.

An increase in gamma activity was observed after MK-801
in sham (Fig. 4A) but not in ore-SAP lesion rats (Fig. 4B).
Group data confirmed that the normalized 71–100 Hz gamma
power after MK-801 was significantly higher in sham lesion
rats as compared with ore-SAP lesion rats [Fig. 4C; two-way
(group 3 time) ANOVA group effect F(1,9) 5 28.7, P <
0.0001, with a nonsignificant (P > 0.4) group 3 time interac-
tion effect F(9,120) 5 0.99]. Only the sham lesion group
shows a significant increase in 71–100 Hz gamma power with
time after MK-801 [Fig.4C; F(9,54) 5 9.47, P < 0.0001,
one-way ANOVA]. The ore-SAP group shows a significant
decrease in 71–100 Hz gamma power at 5 min after injection
(Fig. 4C; one-way ANOVA time effect F(9,54) 5 6.35, P <
0.0001). During baseline walking (before drug), the magnitude
of the integrated 71–100 Hz gamma power was not different
between sham (1.80 1 0.16 log units) and ore-SAP lesion
(1.76 1 0.05 log units) rats (t 5 0.27; P 50.82, t test).

MK-801 injection did not result in a significant difference in
the normalized gamma power of 30–70 Hz between sham and
ore-SAP lesion rats (Fig. 4D) in either group effect F(1,9) 5
3.30, P 5 0.07 or group 3 time effect F(1,9) 5 0.65, P 5
0.75 (two-way ANOVA). However, there was a significant time
effect [F(1,9) 5 4.53, P < 0.0001] although Newman-Keuls
post-hoc test did not reveal statistical significance at a specific
time point. There was no difference in the magnitude of inte-
grated 30–70 Hz gamma power during baseline walking
between sham and ore-SAP lesion rats.

Septal Ore-SAP Lesion Reduced MK-801-
Induced Locomotion

Spontaneous horizontal locomotion, without drug injection,
was assessed in a novel environment. Both sham and ore-SAP
lesion groups showed an initially high level of movements
(beam interruptions) that decreased with time, but the number
of movements per time was not different between groups at
any time [Fig. 5A; two-way repeated measures ANOVA group
effect F(1,72) 5 0.0008, P 5 0.99, time effect: F(5,72)
515.15, P < 0.0001; group 3 time interaction: F(5,72) 5
1.83, P 50.12].

In a separate experiment, locomotor activity induced by
MK-801 (0.5 mg/kg i.p.) injection was assessed. During base-
line before injection of MK-801, there was no difference in the
habituated baseline locomotion between the two groups of rats
(Fig. 5B). After MK-801 injection, locomotor activity increased
greatly in sham lesion rats, significantly more than in ore-SAP
lesion rats (Fig. 5B), as confirmed by a two-way repeated meas-
ures ANOVA [main group effect F(1,12) 5 10.31, P < 0.01,
time effect F(12,144) 5 18.620, P < 0.0001, and group 3
time interaction F(12,144)53.141, P < 0.001].

Septal Ore-SAP Lesion Reduced MK-801-
Induced Impairment of PPI

PPI was assessed in ore-SAP lesion rats as compared to sham
lesion rats. Without drug injection, there was a significant dif-
ference in the PPI between ore-SAP and sham lesion rats when
all the individual prepulse intensities (73, 75, 80 dB) were
included [two-way (group 3 intensity) ANOVA main effect
F(1,30) 5 8.33, P < 0.01; Fig. 6A). Amplitude of the startle
response, without prepulse, was not different between the two
groups (t 51.79. P 5 0.18, Fig. 6B). In the rats given MK-
801 (15 min before the start of PPI testing), as compared with
the respective group without MK-801 (compare Fig. 6C with
Fig. 6A), sham lesion rats showed a marked decrease in PPI
while ore-SAP lesion rats did not show a significant change in
PPI. After MK-801 injection, PPI was significantly different
between ore-SAP-lesion and sham-lesion groups [two-way
ANOVA group effect, F(1,45) 5 26.85, P < 0.0001], with sig-
nificant post hoc differences for the individual prepulse inten-
sities and the integrated intensity (Fig. 6C). There was no sig-

FIGURE 5. Locomotion in open field and after injection of
MK-801. A: Locomotor activity in a novel open field, as indicated
by the number of interruptions of infrared beams, was not signifi-
cantly different between orexin-saporin lesion rats (Ore-SAP) as
compared to sham lesion rats (Sham). B: Horizontal locomotion
before and after 0.5 mg/kg i.p.MK-801, rats were habituated in
the environment before measurements started 30 min before MK-
801. Ore-SAP rats as compared to sham rats showed decreased
number of beam interruptions after MK-801 injection. *P < 0.05,
**P < 0.01 difference between groups; #P < 0.05, ##P < 0.01, dif-
ference with baseline of a particular group, Newman-Keuls post-
hoc test after two-way ANOVA. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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nificant difference in the startle amplitudes between ore-SAP
and sham lesion groups (t 5 0.58, P 5 0.59, Fig. 6D).

Ore-SAP Lesion Reduced Ketamine-Induced
Impairment of Hippocampal Auditory Evoked
Potential

During baseline before drug, both ore-SAP lesion and sham
lesion rats showed auditory gating, or suppression of the test
response (amplitude T) as compared with the conditioning
response (amplitude C) in the average hippocampal auditory
evoked potential (Fig. 7A). Baseline T/C ratio in sham lesion
rats was 0.26 6 0.07, not significantly different from that of
0.33 6 0.06 in ore-SAP lesion rats (t 5 0.79, P 5 0.45; t
test). After injection of ketamine (3 mg/kg s.c.), sham but not
ore-SAP lesion rats showed an increase in T/C ratio (Fig. 7A).
Ketamine increased the T/C ratio from baseline to 0.84 6
0.12 in sham lesion rats (t 5 4.41, P < 0.01, t test). However,
ketamine did not significantly change the T/C ratio of ore-SAP
lesion rats, which was 0.40 6 0.06 after ketamine, similar to
that before injection (t 50.87; P 5 0.41, t test). There was no
significant difference in C amplitude before and after ketamine

in sham lesion rats (before: 0.73 1 0.10 mV, after: 0.58 1
0.08 mV, t 51.08, P 5 0.32) or in ore-SAP lesion rats (before:
0.90 1 0.16 mV, after: 1.05 1 0.17 mV, t 5 0.84, P 5 0.42,
Fig. 7B).

DISCUSSION

This study showed that selective lesion of the septohippo-
campal GABAergic neurons by infusing ore-SAP into the
medial septum suppressed behavioral hyperactivity, auditory
gating and PPI deficits induced by an NMDA-receptor antago-
nist, with minimal disruption of baseline (no drug) locomotion
and hippocampal auditory gating. The results suggest that sep-
tohippocampal GABAergic neurons participate in an atropine-
resistant hippocampal theta rhythm during normal walking,
and in generating the enhanced hippocampal gamma rhythm
of 71–100 Hz induced by an NMDA receptor antagonist.

The two effects of ore-SAP lesion of septohippocampal
GABAergic neurons in this study that of attenuating atropine-
resistant theta and reducing the schizophrenic symptoms

FIGURE 6. Septal orexin-saporin (Ore-SAP) lesion rats, with-
out drugs, showed an increased prepulse inhibition (PPI) across
three individual prepulse intensities (2-way ANOVA), but not for
the integrated prepulse intensity (paired t-test, A). Ore-SAP lesion
alone did not affect startle amplitude (arbitrary units, B) com-
pared to sham lesion rats. PPI decreased after MK-801 (0.5 mg/kg

i.p.) injection in sham-lesion rats as compared to ore-SAP lesion
rats at each prepulse intensity and the integrated intensity (C). D:
Startle amplitude was not different between ore-SAP and sham
lesion rats after MK-801 injection. *P < 0.05, difference between
sham and ore-SAP lesion group after two-way ANOVA (A), and
followed by Newman-Keuls post-hoc test (C).
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induced by an NMDA receptor antagonist, are considered as
independent effects. While septal GABAergic neuronal lesion
reduced both atropine-resistant theta and schizophrenic symp-
toms, there is no evidence that the reduction of atropine-resist-
ant theta after lesion relieves the schizophrenic symptoms,
because little atropine-resistant theta could be demonstrated af-
ter NMDA receptor blockade. Independent of theta generation,
an NMDA antagonist induced disinhibiton in the hippocam-
pus, prefrontal cortex and other brain areas (Grunze et al.,
1996; Li et al., 2002), consistent with the hypothesis that
GABAergic neuronal dysfunction may induce schizophrenic
symptoms (Benes and Berretta, 2001; Gonzalez-Burgos et al.,
2011).

In this study, lesion of septal Parv immunopositive
(GABAergic) but not ChAT immunopositive (cholinergic) neu-
rons resulted from 140 ng of ore-SAP infused into the medial
septal area, confirming the recent results of Lecourtier et al.
(2011). Not all GABAergic neurons in the septum are labeled
by Parv, since Parv immunopositive neurons constitute only a
fraction of GAD immunopositive neurons in the medial sep-
tum (Gritti et al., 2003; Zaborszky et al., 2005; Pang et al.,

2011). However, the Parv immunopositive neurons likely con-
stitute a high proportion of GABAergic neurons that project to
the hippocampus (Freund and Antal, 1989; Gritti et al., 2003).
Smith and Pang (2005) reported that 140 ng of ore-SAP selec-
tively lesioned Parv immunopositive neurons, while 280 ng
resulted in loss of both Parv immunopositive and cholinergic
neurons, and abolished the hippocampal theta rhythm (Gerash-
chenko et al., 2001). The reason of selective loss of GABAergic
as compared to cholinergic neurons at a low ore-SAP dose is
not clear, since both GABAergic and cholinergic neurons have
orexin-2 receptors (Wu et al., 2002, 2004; Stanley and Fadel,
2011). This study did not assess the damage to septohippocam-
pal glutamatergic neurons, and the involvement of these neu-
rons in theta generation or NMDA antagonist-induced behav-
iors in freely moving animals is not known.

Participation of Septal GABAergic Neurons in
Normal and Schizophrenia-Like Behaviors

The study shows that GABAergic septohippocampal neurons
are involved in schizophrenia-like behaviors induced by an
NMDA receptor antagonist. The latter behaviors were also sup-
pressed by infusion of a low dose (0.25 lg) of muscimol into
the medial septum (Ma and Leung, 2007, Ma et al., 2004;
2009) while selective lesion of the cholinergic neurons in the
medial septum by 192-IgG saporin did not affect the PPI defi-
cit and hyperlocomotion induced by phencyclidine (Ma et al.,
2004).

Auditory gating in the hippocampus is likely mediated by
hippocampal inhibitory interneurons (Miller and Freedman,
1995), and blockade of hippocampal GABAB receptor inhibi-
tion induced a hippocampal auditory gating loss (Ma and
Leung, 2011). We infer that the loss of hippocampal auditory
gating may reflect hippocampal disinhibition induced by keta-
mine, an NMDA receptor antagonist (Grunze et al., 1996),
and hippocampal disinhibition is mediated by septohippocam-
pal GABAergic neurons inhibiting hippocampal GABAergic
interneurons (Freud and Antal, 1988; Toth et al., 1997). In
intact animals, hippocampal disinhibition mediated by both
NMDA receptor antagonist and septohippocampal GABAergic
neuronal activity may induce an increase in dopamine release
in the nucleus accumbens (Mogensen et al., 1993; Pennartz
et al., 1994), which results in an increase in locomotion and
PPI. Thus, lesion of septohippocampal GABAergic neurons
may reduce hippocampal disinhibition and normalize locomo-
tor activity and PPI. However, septohippocampal GABAergic
neurons acting on structures outside of the hippocampus, such
as subcortical areas (Semba, 2000), may also contribute to the
behaviors induced by an NMDA receptor antagonist.

Selective lesion of the septohippocampal GABAergic neurons
only marginally affected baseline behaviors in this study. Loco-
motion in a novel open field and baseline auditory gating were
not significantly affected by ore-SAP lesion of the medial sep-
tum. Baseline PPI was, however, increased slightly but signifi-
cantly in ore-SAP lesion as compared to sham lesion rats. In
other studies, selective lesion of septohippocampal GABAergic

FIGURE 7. Auditory gating was disrupted by ketamine (3 mg/
kg s.c.) in sham lesion rats but not in orexin-saporin (Ore-SAP)
lesion rats. Average evoked potential was recorded in CA1 stratum
radiatum of the hippocampus, and the second-click response (red
dotted trace) and the first-click response (black solid trace) were
overlaid, with indication of the measurement of the peak response
to the 1st conditioning click (C) and 2nd test click (T). The T/C
ratio was increased significantly after ketamine in sham lesion rats,
but not in ore-SAP lesion rats (A). There was no difference in the
magnitude of conditioning pulse responses between sham lesion
and septal ore-SAP lesion rats, or before and after ketamine in the
same group (B). ***P < 0.01 (t test). [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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neurons by GAT1-saporin (Pang et al., 2011) did not affect
general locomotion in an open field but disrupted working spa-
tial memory without affecting reference memory in the water
maze (Pang et al., 2011) or radial arm maze (Dwyer et al.,
2007). However, ore-SAP (140 ng in the medial septum) dis-
rupted spatial reference memory retention in the water maze
for several days (Smith and Pang, 2005; Lecourtier et al.,
2011).

Septohippocampal GABAergic Neurons
Participate in Atropine-Resistant Hippocampal
Theta

In this study, selective lesion of the septohippocampal
GABAergic neurons did not significantly affect theta power
during baseline walking, but decreased theta power during
walking after atropine. Hippocampal theta power is suggested
to result from driving of septohippocampal GABAergic neurons
on hippocampal neurons since both septohippocampal cholin-
ergic neuronal firing and muscarinc cholinergic synaptic activity
may be too slow for theta-frequency driving (Stewart and Fox,
1990; Simon et al., 2006). However, in the present study, a
�80% decrease in septohippocampal GABAergic neurons did
not significantly affect theta power during no-drug walking,
suggesting that septohippocampal GABAergic neurons are not
critically important in theta power or frequency during baseline
walking. Alternatively, the loss of septohippocampal GABAergic
neurons may result in compensatory mechanisms, which may
include increase in cholinergic activity in the septum, and/or
an increase in theta-rhythmic driving by septohippocampal glu-
tamatergic neurons. The latter compensatory mechanisms are
speculative since cholinergic and glutamatergic neuronal activ-
ities have not been measured. On the other hand, theta power
during walking after atropine was significantly reduced in ore-
SAP lesion than sham lesion rats, suggesting that septohippo-
campal GABAergic neurons contribute to the atropine-resistant
theta in behaving rats. Disruption of atropine-resistant theta
during walking was also reported in rats with septal ibotenic
acid lesion, but loss of septal GABAergic neurons was not
measured (Leung et al., 1994).

Pilocarpine-induced atropine-sensitive theta in behaving rats
did not differ in power between ore-SAP and sham lesion rats.
This pilocarpine-induced theta activity was atropine-sensitive,
and our result did not support the participation of septohippo-
campal GABAergic neurons in generating a muscarinic receptor
activated theta (Alreja et al., 2000; Wu et al., 2000). However,
a general decrease in amplitude of the hippocampal theta
rhythm in urethane-anesthetized rats and behaving rats was
reported after kainic acid lesion of septohippocampal GABAer-
gic neurons (Yoder and Pang, 2005).

Relation of Hippocampal Gamma Waves to
Schizophrenic Behaviors

After administration of MK-801, hippocampal gamma waves
of 71–100 Hz were significantly increased in sham lesion rats
but not in ore-SAP lesion rats. This suggests that the MK-801

induced hippocampal gamma (71–100 Hz) increase requires
the integrity of the septal GABAergic neurons. Septohippocam-
pal GABAergic input may enhance gamma oscillations through
modulation of a local hippocampal recurrent inhibition net-
work (Leung, 1982, 1998; Mann et al., 2005). The mechanism
of this enhancement is not clear, but disinhibition of pyramidal
cells may increase the operating bias and gain of the pyramidal
cell population (Leung, 1982).

Clinical studies suggested a link between schizophrenia and
aberrant gamma oscillations recorded in the scalp EEG
(Clementz et al., 1997; Baldeweg et al., 1998; Barr et al.,
2010). We have shown here an important role of the
GABAergic septohippocampal neurons in mediating the vari-
ous symptoms of schizophrenia in animals, perhaps in associa-
tion with an enhanced gamma rhythm in the hippocampus.
We suggest that selective inactivation of septohippocampal
GABAergic neurons may control the behavioral symptoms of
schizophrenia.
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