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On Calculating the Current-Voltage Characteristic
of Multi-Diode Models for Organic Solar Cells

———————————————————————————————
Ken Roberts1, S. R. Valluri2

December 11, 2015

Abstract

We provide an alternative formulation of the exact calculation of
the current-voltage characteristic of solar cells which have been mod-
eled with a lumped parameters equivalent circuit with one or two
diodes. Such models, for instance, are suitable for describing organic
solar cells whose current-voltage characteristic curve has an inflection
point, also known as an S-shaped anomaly. Our formulation avoids
the risk of numerical overflow in the calculation. It is suitable for
implementation in Fortran, C or on micro-controllers.

1 Introduction

The current-voltage characteristic of a solar cell is often modeled using an
equivalent circuit with lumped parameters. Different models use one, two or
three diodes in the circuit. These models have an associated implicit equation
which relates the current and voltage measurements, and parameters which
can be adjusted to make the model fit experimental data. The implicit
equations for some models can be solved explicitly to obtain an exact equation
V = f(I) by which the voltage V can be calculated from the current I.

Some of the formulas for the equation V = f(I), as they are usually written,
involve intermediate calculations which, if not handled properly, may produce
arithmetic overflow. Overflow may happen even if the calculation is done
using double or quadruple precision hardware floating point arithmetic. It
may be necessary to use special software, such as a symbolic mathematics
package or a subroutine library for multi-precision arithmetic, in order to
calculate some of the formulas for V = f(I) as usually written. That can
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restrict the applicability of the explicit formula to situations which have
appropriate computer software resources.

The purpose of this paper is to review some of the formulas for V = f(I), and
to rewrite them to avoid possible overflow. The rewritten formulas can be
utilized in Fortran or C with hardware floating point, or on micro-processors
with fixed point arithmetic, in order to calculate V = f(I) with little risk
of overflow. That enables the explicit formulas to be used in field imple-
mentations, such as in test equipment for solar cells, or for load balancing of
solar energy installations. There is no need to have a Lambert W function
implementation in the Fortran, C, or micro-processor environment. We give
a simple algorithm for calculation of an analytic function y = g(x) which
serves the same purpose.

We will start with the one diode model in section 2. That model is often
used for non-organic solar cells. We show how one can rewrite a V = f(I)
formula to avoid overflow. Rewriting of the one diode V = f(I) formula for
computational robustness lays the groundwork for considering the two diode
model situation.

In section 4 we will turn to a particular two diode model. For some organic
solar cells the experimentally measured I − V characteristic curve may have
an inflection point, also called an S-shaped anomaly. A two diode model can
be used to represent the shape of the I − V curve and to achieve a good
fit of the model to the observational data. An inflection point is frequently
associated with poor performance of the organic solar cell. The inflection
point can be altered, or even removed, by annealing of the solar cell. Having
a good analytic formula V = f(I) for the I−V characteristic may be helpful
for understanding how the annealing process works. As well, because two
diode models have more parameters than the one diode model, it may not be
as easy to use numerical search techniques to identify the relevant subspace
of physically achievable solar cells.

Our primary objective in this paper is to obtain methods that will assist with
the computational tasks associated with investigation of organic solar cells,
in particular using two diode models. We also expect that our methods will
be useful for field implementations of load balancing for solar panel arrays of
solar cells, using either one or two diode models.
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Figure 1: One diode model of a solar cell.
Diode reverse saturation current I0 and ideality factor n.
————————————————————————————–

2 One Diode Model

Solar cells can be modeled via an equivalent circuit with lumped parameters
and a single diode [1], as shown in figure 1. This model is described by an
implicit equation which relates the current I and the voltage V in terms of
the cell parameters:

I = I0

(
exp
[ q

nkBT
(V − IRs)

]
− 1
)

+
V − IRs

Rsh

− Iph, (1)

where Iph is the cell’s photocurrent, I0 is the diode’s reverse saturation cur-
rent, n is the diode’s ideality factor, Rs is the series resistance, Rp is the
parallel (shunt) resistance, q is the magnitude of the electron charge, kB is
Boltzmann’s constant, and T is absolute temperature. Here we have written
the current I with the opposite sign to the current convention on pp 14-15 of
[1]. As well, we have assumed unit solar cell area, so that we speak of current
rather than current areal density. This model is descriptive of the solar cell
under some assumed standard illumination, appropriate for the experimental
tests which provide the I, V data points. The photocurrent generated within
the solar cell under illumination is represented by Iph.

This one diode model is adequate for the description of many solar cells. The
implicit equation (1) can be solved to obtain an explicit equation for I as a
function of V , or an explicit equation for V as a function of I [2]. Here we
will focus on just the explicit equation for V as a function of I, as that is the
form which is used in two diode models.
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Jain and Kapoor [2] give an exact explicit formula for V as a function of I.
In our notation and with our sign convention, their formula is

V = f(I) = IRs + (I + Iph + I0)Rp

− nkBT

q
W
( q

nkBT
I0Rpexp

[ q

nkBT
Rp(I + Iph + I0)

])
(2)

The function W is the Lambert W function [3, 4, 5]. The principal branch
of that function is used in these calculations since the argument to W is a
positive real value and the result is also to be a real value.

Suppose we consider a solar cell with parameters Iph = 0.1023 amp, I0 =
0.1036 × 10−6 amp, n = 1.5019, Rs = 0.06826 ohm, Rp = 1000 ohms, at
T = 300 K. These values are the parameters obtained in [6] for the exper-
imental data for the “blue” solar cell. The original experimental data, and
the previous model fit via solution of an equivalent of the implicit equation
(1), are reported in [7]. The I − V characteristic curve for this fitted model
with the above parameters from reference [6] is shown in figure 2.

As a second example, we consider another solar cell, the “grey” solar cell,
which was also experimentally studied and fitted, with results reported in
[7] and further considered in [6]. The parameters obtained in [6] for the
grey solar cell are Iph = 0.5610 amp, I0 = 5.514 × 10−6 amp, n = 1.7225,
Rs = 0.07769 ohm, Rp = 25.9 ohms, at T = 307 K. The I − V characteristic
of the fitted model of the grey solar cell is shown as the solid curve in figure
3.

If the I − V characteristic curve for the blue solar cell, graphed in figure 2,
were to be calculated using the formula given in equation (2) using IEEE-754-
2008 standard [8] hardware floating point in double precision, there would
be an arithmetic overflow exception. For a current I = 0, the argument of
the W () function is 4.59 × 101141. The maximum representable magnitude
in IEEE-754-2008 compliant double precision is about 10323. One might use
quadruple precision floating point, referred to in the standard as “binary128”,
as it is able to represent magnitudes up to about 105107. However, as we will
see with another example below, also using model parameters which were
obtained via fitting the two diode model to experimental data from an actual
solar cell, even quadruple floating point arithmetic can be insufficient to avoid
overflow during the calculation of the V = f(I) function via a formula such
as that written in equation (2).

On the other hand, the calculation of the grey solar cell’s characteristic curve,
shown in figure 3, would not produce an arithmetic overflow. The maximum
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Figure 2: I-V characteristic for the one diode model of the “blue” solar
cell of [7], calculated from the fitted parameters described in [6].
————————————————————————————-

magnitude involved in the calculation of that curve via formula (2) is about
3 × 10138, even for intermediate variables involved in the calculation. That
is compatible with the limitations of standard-compliant hardware double
precision arithmetic.

How is one to know when it is safe to use formula (2) for a calculation? The
blue solar cell is not an anomaly. In fact, the authors of the original study
[7] consider the blue cell to be of better quality compared to the grey cell.
The blue cell has a larger fill factor, lower series resistance, higher shunt
resistance, and lower ideality factor.

Higher shunt resistance in the lumped parameters model is associated with
improvements in solar cell quality. However, higher shunt resistance also
increases the numerical magnitude of the Lambert W function argument in
formula (2). Solar cells are better now, three decades after the study [7].
Thus one can expect to encounter actual solar cells whose model parameters
will produce arithmetic overflow if the formula (2) is applied in a standard
computer language such as Fortran or C, or if an implementation of that
formula is attempted on a micro-controller.
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Figure 3: I-V characteristic for the one diode model of the “grey” solar
cell of [7], calculated from the fitted parameters described in [6].
Shows the two components of the model; a sloped straight line
and a “J”-shape representing the scaled g(x) function.
The sum of these two components is the grey cell’s I − V curve.
————————————————————————————-

How did the authors of the studies [7] and [6] utilize the model parameters
they derived? They did not use the explicit formula (2), instead relying upon
solving the implicit equation (1), and other approximation techniques. One
would like, however, to be able to use a explicit and exact formula such as
(2) because it is analytic, that is has derivatives of all orders, and hence can
be used in optimization studies and other investigations. What is desired
is to obtain a formula to replace (2) which is exact, explicit and analytic,
yet is also robust when used in calculations, and does not pose a risk of
arithmetic overflow. Such a formula is desirable both for laboratory studies,
and for industrial applications (test equipment for a manufacturing line) and
field installations (load balance). It should be suitable for programming in
Fortran or C, or on micro-controllers which may have only a fixed point
arithmetic software package.

A related concern is possible cancellation causing loss of significant digits
in the result. Equation (2) involves some subtractions. For I = 0 for the
blue solar cell, we have a value of 102.300 for the linear terms, from which
is subtracted a value 101.764 representing the scaled value of the Lambert
W function, causing a loss of about two significant digits. Cancellation is
not problematic in this instance. However, if there were a way to reduce
cancellation while rewriting the formula (2), that would be desirable.
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Examples such as these have motivated our introduction of an alternative
technique for calculating a function like V = f(I) as defined by equation
(2). In the next section, we use the function g(x) = log(W (ex)) which was
described in a previous note [9], and rewrite the formula V = f(I) given by
(2) in terms of the function g(x). Here log denotes the natural logarithm
(base e) function, the inverse of the exponential function.

3 Rewrite of Equation (2) Formula

First, we make the general observation that the function g(x) satisfies

g(x) = log(W (ex)) = x−W (ex). (3)

This fact is obtained in [10] as the equivalence of equations (32) and (37) of
that paper. To verify equation (3) directly, it suffices to take the exponen-
tial of both sides of (3) , multiply out, and use the defining property of the
Lambert W function, that W (z) eW (z) = z. Hence, when we have a formula
containing an expression of the form x−W (ex) we can replace it by calcula-
tion of the function g(x). The two forms are mathematically equivalent, but
the form x−W (ex) has a risk of arithmetic overflow when the argument ex

to the W () function is calculated. There is also a risk of possible cancella-
tion causing loss of significant digits when the subtraction is performed. The
function g(x) is well-behaved in numerical calculations.

The function y = g(x) is just the principal branch of the real values of the
Lambert W function in another coordinate system. We have ey = W (ex).
Thus if the function w = W (z), with w and z restricted to positive real
values, were to be graphed on log-log axes, we would see the graph of the
y = g(x) function. The distinction between the two functions is not in their
mathematical properties, but in their computational practicality. In section
5 below we describe how to compute g(x) without overflow. Further details
and discussion of the function g(x) are given in reference [9].

We wish to recast (2) to evaluate W (ex) for some x. Clearly we should write

x = log
[ q

nkBT
I0Rp

]
+

q

nkBT
Rp (I + Iph + I0). (4)
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Transposing the IRs term in equation (2) and multiplying by q
nkBT

we obtain

q

nkBT
(V − IRs) =

q

nkBT
(I + Iph + I0)Rp −W (ex)

=
(
x− log

[ q

nkBT
I0Rp

])
−W (ex)

= g(x)− log
[ q

nkBT
I0Rp

]
.

That is,
q

nkBT
(V − IRs) + log

[ q

nkBT
I0Rp

]
= g(x). (5)

Consider the geometric content of equations (4) and (5). Equation (4) says
that the value of the variable x is obtained by a linear shift and scale change
of the current I. Equation (5) says that the value of the function g(x) is
obtained by a linear shift and scale change of the subcircuit 1 voltage drop
V1 = V − IRs. Hence we expect the graph of V1 = V − IRs = f(I) − IRs

to look like the graph of y = g(x), but with a shift of origin and with linear
scale changes on the two axes.

Figures 4 and 5 show the graph of y = g(x) at two different magnifications.
From close up, −4 ≤ x ≤ 4 in figure 4, the graph looks like a smooth curve
going through the point (1, 0) near the origin. From far away, −1000 ≤ x ≤
1000 in figure 5, the graph looks like a pair of straight lines, represented by
an abrupt change in slope at the origin. Which picture we use for matching
with a part of the V − IRs = f(x) − IRs curve, that is either a smooth
curve or a pair of straight lines joined at what appears to be a sharp corner,
depends upon the particular scales used for I and V . That behavior is
of course modified by the physical limitations on the voltages and currents
within the device being modeled. However, regardless of appearance, whether
a smooth curve or joined straight lines, the function g(x) is analytically
smooth. That is, g(x) has an unlimited number of derivatives, and one can
use it to determine extrema or inflection points, and so on.

The voltage V across the solar cell is given in terms of the function g(x), using
the variable x which is a transformation of the current I, and is calculated
as

V = I RS + n
kBT

q
g(x)

− nkBT

q
log
[ q

nkBT
I0Rp

]
. (6)

8



Figure 4: Graph of y = g(x) = log(W (exp(x)))
for moderate magnitudes of the argument.
——————————————————————————–

Figure 5: Graph of y = g(x) = log(W (exp(x)))
for large magnitudes of the argument.
——————————————————————————–
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Equation (6), with the ancillary equation (4) to define x, is our proposed
replacement for the formula (2). The function g(x) is to be implemented
as described in section 5. The two formulas (2) and (6) are mathematically
equivalent, and each of them explicitly calculates V = f(I), the exact so-
lution for the one diode model. The formulas differ, however, in that our
proposed formula is unlikely to experience overflow, and will likely have less
cancellation error.

When graphing the blue solar cell’s I−V curve to obtain figure 2, formula (2)
can have intermediate values as large as 1.7×101144 in magnitude, which will
produce arithmetic overflow in standard-compliant hardware double preci-
sion arithmetic. In contrast, the calculation of this graph using formulas (4)
and (6) involves intermediate values only up to 3000 in magnitude. For the
grey solar cell, the calculation of the graph in figure 3 using the rewritten for-
mulas involves intermediate values only up to 400 in magnitude, whereas the
original formula involved intermediate values more than 10138 in magnitude.
These low magnitudes of intermediate variables in calculating formulas (4)
and (6) hold for the calculations within both the portion of the code which
implements the evaluation of the g(x) function itself, and the portion of the
code which carries out the rest of the work in formulas (4) and (6). The
magnitudes in the latter portion of the code can of course be adjusted by a
suitable choice of units. The g(x) function is in essence a black box, just as
the Lambert W function was a black box in formula (2). It is important,
when one is going to use a black box function, that it be reliable.

The moderate magnitudes of the intermediate values involved in computing
the V = f(I) function using the g(x) function indicates the rewritten for-
mula’s suitability for implementation in fixed point arithmetic, such as on a
micro-controller.

We can visualize formula (6) geometrically as the sum of two curves, a sloped
straight line plus a copy of the y = g(x) curve. First, recognize that we are
graphing V = f(I) with the V axis horizontal and the I axis vertical, so the
copy of the y = g(x) curve should be flipped over the diagonal line y = x, to
put y horizontal and x vertical. The IRs first term in (6), with axes flipped,
is a straight line with slope 1

Rs
through the origin, and becomes steeper if the

series resistance is lower. The third term in (6), the log() term, is simply a
shift of that straight line left or right (or up or down). The second term of
(6) is the addition of a copy of the flipped y = g(x) curve proportional to the
ideality factor n. Addition of a flipped copy of the y = g(x) curve provides
the J-shape of the I − V curve.

10



This discussion of the method of rewriting the one diode model lays the
groundwork for rewriting of the formulas used for two diode models. We will
see that similar techniques are applicable. The matching of I − V charac-
teristics with one or two inflection points can be interpreted as finding the
appropriate scaling and shift parameters for adding or subtracting flipped
copies of the g(x) function graph to a sloped straight line representing the
series resistance.

Methodological Note: The reader may wish to know how the above-mentioned
intermediate value magnitudes in calculations were obtained. We imple-
mented the formulas (2), (4) and (6) in a software package which does not
have a limitation on numerical magnitudes. We inserted “probe” code at
various points in the calculations, in order to record the magnitudes of the
intermediate values of interest. These probe magnitudes were fed through a
high-water-mark filter, and recorded in global variables. After a set of cal-
culations, such as the preparation of a graph like figures 2 or 3, the global
variables were inspected to determine the peak magnitudes which were in-
volved in the calculations. That enabled us to determine whether a hardware
implementation of the calculation would have produced arithmetic overflow.

4 Two Diode Model

The current-voltage characteristic of some organic solar cells shows an in-
flection point, also known as an “S-shape anomaly”. This has been modeled
by a lumped parameters equivalent circuit using two or three diodes. Each
model’s equivalent circuit has an implicit equation relating the current I and
voltage V . Some of these model configurations are amenable to obtaining
exact and explicit formulas of the form V = f(I), utilizing the Lambert W
function. In this section we will consider a particular two diode model, and
discuss the rewriting of its formulas to reduce the risk of arithmetic overflow
during calculations. Having an explicit function is useful because it enables
rapid and exact calculation of the I − V curve given values of the parame-
ters of the model. Further the explicit function is analytic so it can be used
to perform optimization investigations. There may be eight (or more) pa-
rameters in a multi-diode model, so numerical random search optimization
methods may be time consuming in comparison to analytic methods.

Romero, et al [11] and Garćıa-Sánchez, et al [12] have considered a two diode
model with a reverse-bias second diode and shunt resistor, as shown in figure
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Figure 6: Two diode model of a solar cell, as in references [11, 12].
Subcircuit 1 has the photocurrent source, and a diode
with reverse saturation current I01 and ideality factor n1.
Subcircuit 2 has a reverse bias diode and a shunt resistance.
————————————————————————————–

6. They give an exact solution utilizing eight parameters, which we will write
as

V = f(I) = (I + Iph + I01)Rp1

− n1kBT

q
W
{ q

n1kBT
I01Rp1 exp

[ q

n1kBT
Rp1 (I + Iph + I01)

]}
+

n2kBT

q
W
{ q

n2kBT
I02Rp2 exp

[ −q
n2kBT

Rp2 (I − I02)
]}

+ (I − I02)Rp2 + IRs (7)

We refer to the paper [11] for the derivation. All eight model parameters
Iph, Rs, I01, Rp1, n1, I02, Rp2, n2 are positive numbers, except for Rs which can
be positive or zero.

An example of the S-shape anomaly (inflection point) can be seen in figure 7,
which has been calculated from the model parameters obtained by Romero, et
al [11] for a particular actual organic solar cell whose test data was fitted with
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Figure 7: Graph of V = f(I) for two diode model of organic solar cell.
The axes are switched; that is, I is vertical and V is horizontal.
Agrees with best-fit curve shown in figure 2 of reference [11].
——————————————————————————–

their model. The parameter values used for that figure are Iph = 4.85 × 10−5

amp (photocurrent); Rs = 0 ohm (series resistance assumed equal to zero);
I01 = 1.5 × 10−5 amp (primary diode reverse saturation current); Rp1 =
1.0 × 108 ohms (primary diode shunt resistance); n1 = 2.4 (primary diode
ideality factor); I02 = 2.4 × 10−7 amp (secondary diode reverse saturation
current); Rp2 = 4.6 × 104 ohms (secondary diode shunt resistance); n2 =
9.5 (secondary diode ideality factor). The I values range between about
−5.5 × 10−5 amp and 0.1 × 10−5 amp, and the corresponding V values
range between about -0.42 volt and 0.42 volt.

The presence of an S-shape anomaly has been observed in organic solar cells
produced by a variety of methods, and is associated with poor performance of
the device. See [13] for background and for numerous references to examples
of organic solar cells manufactured by various methods. The authors of [13]
also explore the effect of annealing on changes in the inflection point of a
solar cell. It is desirable to investigate the effect of annealing on changes
in the model parameters of an organic solar cell, using the various two and
three diode models available. It should be mentioned that S-shape anomalies
can also be seen in non-organic solar cells. For instance, a recent paper [14]
on a silicon quantum dot solar cell shows, in its figure 3, an inflection point
in the I − V characteristic of the test device.
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As with the one diode model, there can be arithmetic overflow when the
formula (7) is used for calculations. Hence it is desirable to rewrite the
formula using the g(x) function.

The primary diode circuit (subcircuit 1 in figure 6) is given by an equation
identical to that used for a one diode model, with V1 denoting the voltage
drop across that subcircuit. That is (formula (8) of [11]),

V1 = f1(I) = (I + Iph + I01)Rp1

− n1kBT

q
W
{ q

n1kBT
I01Rp1 exp

[ q

n1kBT
Rp1 (I + Iph + I01)

]}
(8)

This formula can be re-written just as for the one diode model. We obtain

x1 = log
[ q

n1kBT
I01Rp1

]
+

q

n1kBT
Rp1 (I + Iph + I01). (9)

and
q

n1kBT
V1 + log

[ q

n1kBT
I01Rp1

]
= g(x1). (10)

Letting V2 equal the voltage drop across subcircuit 2, which includes the
reverse bias diode and shunt resistance, equation (9) of [11] is a comparable
situation, with no photocurrent source. That is,

V2 = f2(I) = (I − I02)Rp2

+
n2kBT

q
W
{ q

n2kBT
I02Rp2 exp

[ −q
n2kBT

Rp2 (I − I02)
]}

(11)

That formula also can be rewritten. We let

x2 = log
[ q

n2kBT
I02Rp2

]
− q

n2kBT
Rp2 (I − I02). (12)

The result is

− q

n2kBT
V2 + log

[ q

n2kBT
I02Rp2

]
= g(x2). (13)

Once again we see that equations (12) and (13) represent the relationship
between I and V2 in subcircuit 2 as a shift of origin and scale change of the
current I, related to a shift of origin and scale change of the voltage V2, the
relationship being given by the function y = g(x). The origin shifts and
scale changes are however different from those for subcircuit 1, both for the
current transformations and for the voltage transformations.
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The two origin shifts and scale changes for the current are given by equations
(9) and (12). The two origin shifts and scale changes for the voltage are given
by equations (10) and (13).

The voltage V across the solar cell is given by equation (1) of [11],

V = I Rs + V1 + V2 (14)

In terms of the function g(x), using the two variables x1 and x2 which are
transformations of the current I, the voltage V is calculated as

V = I Rs + n1
kBT

q
g(x1)− n2

kBT

q
g(x2)

− n1kBT

q
log
[ q

n1kBT
I01Rp1

]
+

n2kBT

q
log
[ q

n2kBT
I02Rp2

]
. (15)

Equation (15), with the ancillary equations (9) and (12) to define x1 and x2,
is our proposed replacement for formula (7).

The new formula (15) produces the same I − V characteristic curve as the
original formula (7). The parameters above, used to draw figure 7, were
obtained by the authors of [11] from a best fit of the two diode model to
an actual solar cell, with the series resistance Rs forced to zero. With these
parameter values, in the original formula there would be arithmetic overflow
even if hardware quadruple precision arithmetic were used, since the argu-
ment to one of the Lambert W function evaluations is about 1011232 when
using the formula (7) at I = 0. In contrast, for the new formula (15), there
is no overflow since the maximum magnitude of an intermediate variable
involved in the g(x) function calculation is less than 30000, and the maxi-
mum magnitude of an intermediate variable involved in the overall V = f(I)
calculation of (15) is about 108.

We can visualize the formula (15) geometrically as the sum of three curves,
a sloped straight line plus two flipped copies of the y = g(x) curve. One
copy of the y = g(x) curve, flipped, shifted, and scaled proportionally to the
ideality factor n1, is to be added; it represents the subcircuit 1 voltage V1,
the concave-up portion of the I − V curve. The second copy of the y = g(x)
curve, flipped, shifted, and scaled proportionally to the ideality factor n2, is
to be subtracted; it represents the subcircuit 2 voltage V2, the concave-down
portion of the I − V curve.
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The authors of [12] have also proposed a three diode model which provides
an improved fit for an organic solar cell with two inflection points in its I−V
characteristic curve. Their model presents some interesting computational
challenges, related to assumptions regarding the ideality factors of the various
diodes in the model. We have not considered, in this present paper, the
applicability of our calculational methodology to the three diode model of
[12]. We believe that represents an opportunity for further exploration.

5 Implementing the y = g(x) Function

In this section, we describe the implementation of the calculation of the
y = g(x) function. See [9] for full details, including a discussion of the com-
putational stability considerations. Here we present only a straightforward
description of the necessary calculations to obtain g(x).

Context: The function y = g(x) = log(W (exp(x))) is to be calculated. The
variable x is a real number argument, positive or negative. The result variable
y is also a real number. See figures 4 and 5 for the graph of y = g(x). The
computer language should have available exponential and logarithm functions
for the chosen precision, and a stored value of e = exp(1.0).

(a) Make an initial estimate y0 of the result, as follows.

For x ≤ −e, take y0 = x.

For x ≥ e, take y0 = log(x).

For −e < x < e, take y0 as a linear interpolation between the points (−e,−e)
and (e, 1). That is,

y0 = −e +
1 + e

2e
(x + e)

This estimate y0 is very crude. See figure 8 for a graph of the absolute error
g(x)−y0 for −10 < x < 30. The absolute error lies between -0.32 and +0.30.
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Figure 8: Graph of g(x)− y0 for approximation error
for initial estimate of g(x).
———————————————————————

Figure 9: Graph of g(x)− y1 for approximation error
for first iterative refinement of estimate of g(x).
———————————————————————
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(b) Refine the estimate y0 by calculating

y1 = y0 −
2(y0 + ey0 − x)(1 + ey0)

2(1 + ey0)2 − (y0 + ey0 − x)ey0
.

This iteration formula is Halley’s method and has cubic convergence. See
figure 9 for a graph of the absolute error g(x) − y1 for −10 < x < 30. The
absolute error lies between -0.001 and +0.00001.

(c) Further refine the estimate y1 by calculating

y2 = y1 −
2(y1 + ey1 − x)(1 + ey1)

2(1 + ey1)2 − (y1 + ey1 − x)ey1
.

This second iteration produces an estimate which is good enough for most
practical purposes. See figure 10 for a graph of the absolute error g(x)− y2
for −10 < x < 30. The absolute error lies between −10−10 and +10−10.

The computational workload to obtain y2 is two evaluations of the exponen-
tial function and one evaluation of the logarithm function.

(d) If the estimate y2 is not precise enough for the intended application,
perform additional iterations of the refinement formula,

yn+1 = yn −
2(yn + eyn − x)(1 + eyn)

2(1 + eyn)2 − (yn + eyn − x)eyn
.

See figure 11 for a graph of the absolute error g(x)−y3 after three iterations,
for −10 < x < 30. The absolute error lies between −10−33 and +10−55.

Note: If examining the differences |yn+1 − yn| to determine if the result
has converged, one should test for the absolute error, not the relative error.
Because y = 0 for x = 1, a relative error test would be unreliable for x in
the vicinity of 1. Or, one might wish to code to test for absolute error if |yn|
were less than 1, and for relative error for larger magnitudes of |yn|.

The reason the above algorithm does not produce arithmetic overflow is that
at no point is exp(x) calculated. Rather, the calculations involve only x, y,
and exp(y). If hardware arithmetic underflow produces an error exception,
instead of a zero result, then it will be desirable to code a test for negative
values of yn, for example yn < −100, and simply stop iterating in that
circumstance. Further discussion of the method is in reference [9].
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Figure 10: Graph of g(x)− y2 for approximation error
for second iterative refinement of estimate of g(x).
———————————————————————

Figure 11: Graph of g(x)− y3 for approximation error
for third iterative refinement of estimate of g(x).
———————————————————————
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6 Conclusion

We have suggested alternative formulas for computing the explicit function
V = f(I) which gives the exact current-voltage characteristic of the one
or two diode models of a solar cell, in particular a solar cell with the S-
curve property. The alternative formulas are less likely to produce arithmetic
overflow errors when calculated with hardware floating point arithmetic. The
alternative formulas are suitable for implementation in Fortran or C, or on
micro-controllers.

We thank B. Romero and F. J. Garćıa-Sánchez for their helpful comments
during our investigations.
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