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Abstract

Regular chains, introduced about twenty years ago, have emerged as one of the major

tools for solving polynomial systems symbolically. In this thesis, we focus on different

algorithmic aspects of the study of regular chains, from theoretical questions to high-

performance implementation issues.

The inclusion test for saturated ideals is a fundamental problem in the theory of

regular chains. By introducing a notion of primitivity for regular chains, we show

that a regular chain generates its saturated ideal if and only if it is primitive. As

a consequence, we obtain new criteria for the inclusion test, which are effective in

practice.

Computing regular greatest common divisors (GCDs) of two polynomials modulo

a regular chain is one of the key routines in the various methods for solving polynomial

systems by means of triangular decomposition. By revisiting the relations between

polynomial subresultants and GCDs, we propose a novel bottom-up algorithm for

this task, which improves the previous algorithm in a significant manner and creates

opportunities for parallel execution.

In a third part, we present our efforts for accelerating the solving of bivariate

polynomial systems the context of massively parallel architectures, such as graphics

processor units (GPUs). Our building blocks like Fast Fourier transform (FFT) over

finite fields and FFT-based subresultant chain constructions run faster by several

orders of magnitude on GPUs than CPU counterparts.

Keywords. symbolic computation, solving polynomial system, regular chain, prim-

itivity, inclusion test, regular GCD, subresultant, fast Fourier transform, GPU com-

puting, CUDA.
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Chapter 1

Introduction

1.1 Background

Solving systems of polynomial equations is one of the most fundamental and most

studied subjects in mathematical sciences. If the case of linear systems is theoretically

well understood, the implementation of efficient linear solvers, in particular with very

large and very sparse matrices, is still a popular research area.

The case of non-linear systems is, by essence, richer and more complex. Thus,

research in this area covers theory, algorithms, implementation techniques and appli-

cations. Until the advent of computers, the theoretical part was obviously dominant.

With the work of the algebraists of the early 20th century, Emmanuel Lasker, Emmy

Nöther, David Hilbert, Bartel Leendert van der Waerden, Wolfgang Gröbner, the

theoretical question of solving polynomial systems was, to some sense, solved by

the notion of a primary decomposition of a polynomial ideal and that of the irre-

ducible decomposition of an algebraic set. With the advent of computers, the quest

for algorithms eligible to implementation began. In 1965, the PhD thesis of Bruno

Buchberger (Student of W. Gröbner) brought the first such algorithm, based on the

concept of a Gröbner basis together with a first computer implementation.

Before the work of Buchberger, several algorithms for solving certain types of

algebraic or differential polynomial systems were proposed, but some details were

often ignored since these algorithms could not be implemented or even performed

manually (except on toy examples) due to their high complexity. Among them is

the so-called characteristic set method, originally proposed for systems of ordinary

differential equations, by Joseph Fels Ritt in the 1930’s. The Chinese mathematician,

Wen Tsún Wu, as he was employed in a semi-conductor plant during the cultural

revolution, realized the power of computers. When he returned to the academia, he
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bridged the gaps in the work of Ritt toward a practical algorithm and realized an

implementation in the early 1980’s.

Gröbner bases and characteristic sets are in fact one of the ways of representing

the solutions of a polynomial system. Gröbner bases which, in some sense extend

Gaussian elimination techniques to polynomial systems, have been widely studied

and implemented since the PhD thesis of Buchberger. Today, some solvers based

on Gröbner bases process large and difficult input systems, in particular when co-

efficients are computed modulo a prime number. Characteristic sets have required

and still require more theoretical development. Indeed, they reveal more geometri-

cal information from the input problem than Gröbner bases. One key step in this

research effort on characteristic sets was the notion of a regular chain introduced

independently in 1991 by Michael Kalkbrener (student of Bruno Buchberber) in his

PhD thesis and, by Lu Yang and Jingzhong Zhang in [84].

These necessary theoretical advances explain why the realization of efficient solvers

based on regular chains is still in its infancy. However, this is a very promising re-

search direction for a variety of reasons. First, complexity results [76, 23] show that

the space requirements for encoding the solutions of polynomial systems via regular

chains can be regarded as nearly optimal, among all possible symbolic representations.

Secondly, regular chains and their related techniques, by reducing multivariate arith-

metic to univariate arithmetic, offer opportunities for making use of asymptotically

fast algorithms (based on Fast Fourier Transform).

At the time of starting this thesis, several questions, combining theoretical, algo-

rithmic and implementation aspects were hot topics in the theory of regular chains.

As previous work in this area has illustrated, pursuing research simultaneously on

these different aspects benefit to each of them.

1.2 Contributions of this thesis

In the multivariate polynomial ring k[x] = k[x1, . . . , xn], over the field k, we assume

that the variables are ordered as x1 ≺ · · · ≺ xn. Thus, any non-constant polynomial

f can be viewed as a univariate polynomial in its largest variable, also called the

main variable and denoted by mvar(f). The leading coefficient of f as a univariate

polynomial in mvar(f) is called the initial of f , and denoted by init(f).

A triangular set T is defined as a set of non-constant multivariate polynomials

in k[x1, . . . , xn] such that polynomials in T have distinct main variables. The fun-

damental algebraic object associated to a triangular set is its saturated ideal sat(T )
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defined as

sat(T ) := 〈T 〉 : h∞ = {q ∈ k[x] | ∃e ≥ 0 s.t. heq ∈ 〈T 〉},

where h is the product of initials in T and 〈T 〉 is the ideal generated by T in k[x].

Assuming T not empty, we write T as T ′ ∪ {t} where t is the polynomial in T with

largest main variable. Then T is a regular chain if and only if T ′ is empty or, if T ′ is

a regular chain and init(t) is not a zero-divisor modulo sat(T ′).

Primitive regular chains. One way of solving a polynomial system F is to de-

compose F into a finite set of regular chains T1, . . ., Te such that we have:

V (F ) = V (sat(T1)) ∩ · · · ∩ V (sat(Te)),

where V (I) denotes the set of common solutions (over the algebraic closure of k) of

the polynomials in the ideal I. Due to the special shape of regular chains, many geo-

metrical information is revealed by this decomposition, such as the possible emptiness

of V (F ) or its dimension, etc.

Redundant (or superfluous) components are generated by all known methods de-

composing the solutions of a polynomial system, whether these methods are purely

symbolic or numeric. This is the case, in particular, for those methods based on reg-

ular chains. Once redundant components are removed, the size of the decomposition

is often reduced in a significant manner; moreover a better insight on the geometry

of those components can be obtained. For this reason, a fundamental problem in

the theory of regular chains is that of the inclusion test for saturated ideals, that is,

deciding whether sat(T ) ⊆ sat(U) holds for two regular chains T and U .1

Towards this problem, we have gained some results by studying the primitivity

of polynomials over a commutative ring. In Section 2.4, we introduce the notion of

primitivity for regular chains, which is a non-trivial generalization of the usual notion

of primitivity for polynomials over unique factorization domains. Our main theorem

in Section 2.4 can be stated as

Theorem 1. Let T ⊂ k[x1, . . . , xn] be a regular chain. Then T is primitive if and

only if 〈T 〉 = sat(T ) holds.

1By means of Gröber basis computations, a set of generators of sat(T ) can be computed, which in
turn solves the inclusion test problem. However, the computations involved are extremely expensive.
Our goal is to look for Gröbner-free algorithms for the inclusion test problem.
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In Section 2.6, we present an efficient routine, Algorithm 1, to check whether a

regular chain T is primitive. As an application of these theoretical results, a certain

type of inclusion tests can be detected very efficiently as shown in Section 2.7.

This joint work with François Lemaire, Marc Moreno Maza and Yuzhen Xie is

reported in [47] and the enhanced version is reported in [46].

A bottom-up regular GCD algorithm. The second objective of this thesis is to

revisit key subroutines used in the Triade (TRIangular DEcomposition) algorithm of

Marc Moreno Maza [65]. This algorithm is based on regular chains and is implemented

in three computer algebra systems, including Maple, as part of the RegularChains

library. At the core of the Triade algorithm, a generalized concept of polynomial GCDs

extends the standard definition to the cases where coefficients are in a polynomial ring

modulo a saturated ideal, as defined in Section 3.2.1.

Definition 1. Let P , Q be polynomials in k[x, y] and T be a regular chain in k[x]

such that init(P ) and init(Q) are regular modulo sat(T ). Then G ∈ k[x, y] is a regular

GCD of P,Q modulo sat(T ), if the following conditions hold

1. the leading coefficient lc(G, y) of G in y is regular modulo sat(T ),

2. there exist u, v ∈ k[x, y] such that G− uP − vQ ∈ sat(T ), and

3. if deg(G, y) > 0 holds, then P ∈ sat(T ∪ {G}) and Q ∈ sat(T ∪ {G}) hold too.

The calculation of these GCDs relies on the theory of subresultants which permit

to work with polynomial coefficients. Indeed, the standard Euclidean algorithm is

limited to univariate polynomials over a field. The original GCD procedure of the

Triade algorithm has advantages like controlling the expression swell and splitting the

computation for reducing algebraic complexity. However, it is a top-down “Euclidean-

like” algorithm, each computation step relying on the results from the previous steps.

This type of algorithms offer very limited opportunities for concurrent execution.

In Section 3.3 of Chapter 3, we closely examine the relations between the sub-

resultant chain and the regular GCDs. The notion of a candidate regular GCD in

Definition 5 is a very practical approximation of that of a regular GCD. According to

Lemma 14, a candidate regular GCD is in fact a regular GCD, provided that sat(T )

is a radical ideal.

Let m = min(deg(P, y), deg(Q, y)). Then the subresultant chain of P , Q in y

consists of m polynomials S0, . . . , Sm−1 in k[x, y], defined formally in Section 3.2.3.
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For each i, the degree of Si in y is at most i, and hence the subresultant chain can

be written as

Sm−1 = sm−1,m−1y
m−1 + sm−1,m−2y

m−2 + · · ·+ sm−1,0

Sm−2 = sm−2,m−2y
m−2 + · · ·+ sm−2,0

· · ·
S2 = s22y

2 + s21y + s20

S1 = s11y + s10

S0 = s00

where sij are polynomials in k[x]. Therefore, the subresultant chain can be viewed

as a collection of m(m+1)
2

polynomials.

The distinction between the candidate regular GCD and the regular GCD is clari-

fied by Lemma 13, based on which in Section 3.4 we present a novel algorithm RGSZR

for computing regular GCDs. In this algorithm, the set of candidate regular GCDs

is built by “regularizing” polynomials in order s00, s11, s10, etc, from the bottom to

the top of the subresultant chain. This step stops if coefficient sdd is regular modulo

sat(T ), for some 0 ≤ d < m. The second step is to regularize coefficients sii with

respect to sat(T ) along the diagonal in the subresultant chain, for all d < i < m.

Comparing to the classical algorithms for computing regular GCDs, there are a

number of advantages in the bottom-up algorithm RGSZR. First, the subresultant

chain computation is separated from the computation of regular GCDs. In fact, The

subresultant chain could be given by a black box, by which a subresultant Si or a

coefficient sij can be supplied whenever needed. This feature allows us to use modular

methods for computing subresultant chains. We evaluate P and Q at sufficiently many

points, and subresultants are only given by values. Whenever needed, Si or sij are

interpolated from their images. Secondly, we observe that, in practice, a regular GCD

of P,Q has a lower degree than P and Q. Therefore only O(m) coefficients sij are

needed in this case.

In Chapter 4, we discuss the implementation techniques of computing subresul-

tant chains over finite fields and analyze the complexity of the regular GCD algorithm

under certain genericity assumptions. The subresultant chain of P and Q will be eval-

uated by means of (multi-dimensional) fast Fourier transforms (FFT). The univariate

subresultant algorithm is conducted at each evaluation image, and the resulting data

structure is called the subresultant cube (or SCube for short). This serves as the

black box mentioned above: a subresultant Si or a coefficient sij can be interpolated

by inverse FFTs.
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Assume that T is a zero-dimensional regular chain and that sat(T ) is a radical

ideal. Let {d1, . . . , dn} be the set of main degrees of polynomials in T , and let dn+1

be the minimum of deg(P, y) and deg(Q, y). The complexity result in Corollary 5 of

Section 4.4 shows that the cost of computing regular GCDs of P,Q w.r.t T depends

“quadratically” on the product of the degrees d1, . . . , dn, dn+1 and that the constant

factor is approximately 2n.

Under the same hypotheses, in [22], the authors achieve a running estimate

which depends “linearly” (up to logarithmic factors) on the product of the degrees

d1, . . . , dn, dn+1. However, their “exponential factor” is of the form cn where c ≥ 700.

Since practical values for d1, . . . , dn, dn+1 are often below the hundreds, in particular

for dn+1 with n large, this suggests that the algorithms presented in Chapter 4 are

more suitable for implementation than those of [22].

This joint work with Xin Li and Marc Moreno Maza is reported in [49]. Our im-

proved regular GCD algorithm has been incorporated into the RegularChain library

for arbitrary coefficient rings. Over finite fields, the C implementation in the library

modpn demonstrates the high efficiency of our algorithm.

GPU acceleration. Solving polynomial systems involves intensive computations,

as demonstrated in the resultant and GCD computations. The third objective of

this thesis is to accelerate the symbolic computation algorithms by means of GPU

(graphics processing unit) computing. In Appendix B, we briefly introduce the basics

of GPU computing on Nvidia graphics cards, using CUDA (an acronym for Compute

Unified Device Architecture).

Our first routine for GPU acceleration is fast Fourier transform (FFT) over finite

fields, which is a basic routine for asymptotically fast algorithms for dense polynomial

multiplications and divisions. It is also the starting point of the FFT based modular

method for computing subresultants in Chapter 6. In Chapter 5 we report how

to generate basic CUDA kernels for composing FFT formulas based on Kronecker

product [73, 32]. In Section 5.6, we compare our implementation and optimization

issues of Cooley-Tukey FFT and Stockham FFT. Comparing to the optimized serial

C code in the library modpn, our CUDA Stockham FFT achieves a speedup factor of

37 for large input sizes. This joint work with Marc Moreno Maza is reported in [57].

In Chapter 6, we describe how to accelerate the FFT based subresultant chain

computation for multivariate polynomials over finite fields. The multivariate problem

is turned into that of bivariate or trivariate ones, by means of Kronecker’s substitu-

tions. Due to the special requirements of the FFT based modular method, the leading
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coefficients of the input polynomials cannot vanish at any evaluation point. In Sec-

tion 6.4, we present and analyze the method of using linear translations to enlarge

the applicable range of FFT based methods. In Section 6.5 and Section 6.6, we re-

visit Brown’s subresultant algorithm, estimate the size and cost of computing the

subresultant evaluation cube. Experimental results reported in Section 6.7, show a

significant speedup factor between our fine-grained implementation and the modpn

counterpart. Our CUDA routines are approximately 25 times faster in the bivariate

case and approximately 47 times faster in the trivariate case.
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Chapter 2

Primitive Regular Chain

2.1 Introduction

Triangular decompositions are one of the most studied techniques for solving poly-

nomial systems symbolically. Invented by J.F. Ritt in the early 30’s for systems of

differential polynomials, their stride started in the late 80’s with the method of [83]

dedicated to algebraic systems. Different concepts and algorithms extended the work

of Wu. In the early 90’s, the notion of a regular chain, introduced independently by

[41] and by [84], led to important algorithmic discoveries.

In Kalkbrener’s vision, regular chains are used to represent the generic zeros of

the irreducible components of an algebraic variety. In the original work of Yang

and Zhang, they are used to decide whether a hypersurface intersects a quasi-variety

(given by a regular chain). Regular chains have, in fact, several interesting properties

and are the key notion in many algorithms for decomposing systems of algebraic or

differential equations.

Regular chains have been investigated in many papers, among them are those

of [6], [16] and [42]. Several surveys [8, 39] are also available on this topic. The

abundant literature on the subject can be explained by the many equivalent definitions

of a regular chain. Actually, the original formulation of Kalkbrener is quite different

from that of Yang and Zhang. In the papers by [14] and [82], the authors provide

bridges between the point of view of Kalkbrener and that of Yang and Zhang.

The key algebraic object associated with a regular chain is its saturated ideal. Let

us review its definition. Let k be a field and x1 ≺ · · · ≺ xn be ordered variables.

For a regular chain T ⊂ k[x1, . . . , xn], the saturated ideal of T , denoted by sat(T ) is

defined by sat(T ) := 〈T 〉 : h∞, where h is the product of the initial polynomials of T .

(The next section contains a detailed review of these notions.) Given a polynomial
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p ∈ k[x1, . . . , xn], the memberships p ∈ sat(T ) and p ∈
√

sat(T ) can be decided by

means of pseudo-divisions and GCD computations, respectively. One should observe

that these computations can be achieved without computing a system of generators

of sat(T ). In some sense, the regular chain T is a “black box representation” of sat(T )

since the assertions p ∈ sat(T ) and p ∈
√

sat(T ) can be evaluated without using an

explicit representation of sat(T ).

Being able to compute a system of generators of sat(T ) remains, however, a fun-

damental question. For instance, given a second regular chain U ⊂ k[x1, . . . , xn], the

only general method to decide the inclusion sat(T ) ⊆ sat(U) goes through the compu-

tation of a system of generators of sat(T ) by means of Gröbner bases. Unfortunately,

such computations can be expensive [see 7] whereas one would like to obtain an inclu-

sion test which could be used intensively in order to remove redundant components

when computing the triangular decompositions of Kalkbrener’s algorithm or those

arising in differential algebra. Note that for other kinds of triangular decompositions,

such as those of [65] and [82], this question has been solved in [15].

Therefore, testing the inclusion sat(T ) ⊆ sat(U) without Gröbner basis compu-

tation is a very important question in practice. Moreover, this can be regarded as

an algebraic version of the Ritt problem in differential algebra. One case presents no

difficulties: if sat(T ) is a zero-dimensional ideal, the product of the initial polynomials

of T is invertible modulo 〈T 〉 [see 67, Proposition 5] and thus T generates sat(T ). In

this case the inclusion test for saturated ideals reduces to the membership problem

mentioned above.

In positive dimension, however, the ideal sat(T ) could be strictly larger than that

generated by T . Consider for instance n = 4 and T = {x1x3 +x2, x2x4 +x1}, we have

〈T 〉 = 〈x1, x2〉 ∩ 〈x1x3 + x2,−x3x4 + 1〉.

Thus, we have

sat(T ) = 〈T 〉 : (x1x2)
∞ = 〈x1x3 + x2,−x3x4 + 1〉.

In this article, we give a necessary and sufficient condition for the equality 〈T 〉 =

sat(T ) to hold. Looking at the above example, one can feel that the ideal 〈x1, x2〉
can be regarded as a “sort of content” of the ideal 〈T 〉, which is discarded when

computing sat(T ). We observe also that the polynomials x1x3 + x2 and x2x4 + x1 are

primitive in (k[x1, x2])[x3] and (k[x1, x2])[x4] respectively. Thus, the “usual notion”
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of primitivity (for a univariate polynomial over a UFD) is not sufficient to guarantee

the equality 〈T 〉 = sat(T ). This leads us to the following two definitions.

Let R be a commutative ring with unity. We say that a non-constant polynomial

p = aex
e + · · · + a0 ∈ R[x] is weakly primitive if for any β ∈ R such that ae divides

βae−1, . . . , βa0 then ae divides β as well. This notion and its relations with similar

concepts are discussed in Sections 2.3, 2.4, and 2.5.

We say that the regular chain T = {p1, . . . , pm} is primitive if for all 1 ≤ k ≤ m,

the polynomial pk is weakly primitive in R[xj], where xj is the main variable of pk

and R is the residue class ring k[x1, . . . , xj−1]/〈p1, . . . , pk−1〉.
The first main result of this chapter is the following: the regular chain T generates

its saturated ideal if and only if T is primitive. This result, generalizing the concept of

primitivity from univariate polynomials to regular chains, is established in Section 2.4.

Looking at regular chains from the point of view of regular sequences, we obtain

our second main result: an algorithm to decide whether a regular chain generates its

saturated ideal or not. The pseudo-code and its proof are presented in Section 2.6.

This algorithm relies on a procedure for computing triangular decompositions. How-

ever, being applied to input systems which are regular sequences and “almost regular

chains”, this procedure reduces simply to an iterated resultant computation. As a

result, the proposed algorithm performs very well in practice and is Gröbner basis

free. In Section 2.8 we report on experimentation, where we confirm the efficiency of

this algorithm. Meanwhile, we observe that primitive regular chains are often present

in the output of triangular decompositions.

Section 2.7, which is a new development w.r.t. our ISSAC paper [47], proposes

several criteria for testing the inclusion of saturated ideals. We point out that the

notion of primitivity of regular chains provides a helpful tool for dealing with this

question in practice. Section 2.9, which is also enhanced w.r.t. [47], offers concluding

remarks and open problems.

This joint work with François Lemaire, Marc Moreno Maza and Yuzhen Xie is

reported is reported in [46].

2.2 Preliminaries

2.2.1 Triangular set and regular chain

We denote by k[x ] the ring of multivariate polynomials with coefficients in a field k

and with ordered variables x = x1≺ · · · ≺xn. For a non-constant polynomial p ∈ k[x ],
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the greatest variable appearing in p is called main variable, denoted by mvar(p). We

regard p as a univariate polynomial in its main variable. The degree, the leading

coefficient, the leading monomial and the reductum of p as a univariate polynomial in

mvar(p) are called main degree, initial, rank and tail of p; they are denoted by mdeg(p),

init(p), rank(p) and tail(p) respectively. Thus we have p = init(p)rank(p) + tail(p).

Let R be a commutative ring with unity and F be a subset of R. Denote by 〈F 〉
the ideal it generates, by

√

〈F 〉 the radical of 〈F 〉, and by R/〈F 〉 the residue class

ring of R with respect to 〈F 〉. For an element p in R, we say that p is zero modulo

〈F 〉 if p belongs to 〈F 〉, that is, p is zero as an element in R/〈F 〉. An element p ∈ R

is a zerodivisor modulo 〈F 〉, if there exists q ∈ R such that p /∈ 〈F 〉 and q /∈ 〈F 〉 but

pq ∈ 〈F 〉. We say that p is regular modulo 〈F 〉 if it is neither zero, nor a zerodivisor

modulo 〈F 〉. Furthermore, p is invertible in R if there exists a q ∈ R such that p q = 1.

Example 1. Consider the polynomials in k[x1, x2, x3]

p1 = x2
2 − x2

1, p2 = (x2 − x1)x3 and p3 = x2x
3
3 − x1.

The above notions are illustrated in the following table.

mvar init mdeg rank tail

p1 x2 1 2 x2
2 −x2

1

p2 x3 x2 − x1 1 x3 0

p3 x3 x2 3 x3
3 −x1

The initial x2 − x1 of p2 is a zerodivisor modulo 〈p1〉, since (x2 + x1)(x2 − x1) is in

〈p1〉, while neither x2 + x1 nor x2 − x1 belongs to 〈p1〉. However, the initial x2 of p3

is regular modulo 〈p1〉.

In what follows, we recall the notions of regular chain and saturated ideal, which

are the main objects in our study.

A set T of non-constant polynomials in k[x ] is called a triangular set, if for all

p, q ∈ T with p 6= q we have mvar(p) 6= mvar(q). For a nonempty triangular set T , we

define the saturated ideal sat(T ) of T to be the ideal 〈T 〉 : h∞, that is,

sat(T ) := 〈T 〉 : h∞ = {q ∈ k[x ] | ∃e ∈ Z≥0 s.t. heq ∈ 〈T 〉},

where h is the product of the initials of the polynomials in T . The empty set is also

regarded as a triangular set, whose saturated ideal is the trivial ideal 〈0〉.
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One way of solving (or decomposing) a polynomial set F ⊆ k[x ] is to compute

triangular sets T1, . . . , Te ⊆ k[x ] such that

√

〈F 〉 =
√

sat(T1) ∩ · · · ∩
√

sat(Te).

It is thus desirable to require sat(T1), . . . , sat(Te) to be proper ideals. This observation

has led to the notion of a regular chain which was introduced independently in [41, 84].

Definition 2 (Regular chain). Let T be a triangular set in k[x ]. If T is empty, then

it is a regular chain. Otherwise, let p be the polynomial of T with the greatest main

variable and let C be the set of other polynomials in T . We say that T is a regular

chain, if C is a regular chain and init(p) is regular modulo sat(C).

In commutative algebra [see 29] there is a closely related concept called regular

sequence which is a sequence r1, . . . , rs of nonzero elements in the ring k[x ] satisfying

1. 〈r1, . . . , rs〉 is a proper ideal of k[x ];

2. ri is regular modulo 〈r1, . . . , ri−1〉, for each 2 ≤ i ≤ s.

When we sort polynomials in a regular chain by increasing main variable, the following

example says that the resulting sequence may not be a regular sequence of k[x ].

Example 2. Let T = {t1, t2} be a triangular set in k[x1, x2, x3] with t1 = x1x2 and

t2 = x1x3. Then {t1} is a regular chain with sat({t1}) = 〈x1x2〉 : x∞
1 = 〈x2〉. Since

init(t2) = x1 is regular modulo sat({t1}), the triangular set T is a regular chain with

sat(T ) = 〈x1x2, x1x3〉 : x∞
1 = 〈x2, x3〉.

However, t1, t2 is not a regular sequence since t2 = x1x3 is not regular modulo 〈x1x2〉.
Here, the saturation operation discards the content introduced by the initials.

2.2.2 Properties of regular chains

We recall several important results on regular chains and saturated ideals, which

will be used throughout this chapter. Pseudo-division and iterated resultant are

fundamental tools in this context.

Let p and q be polynomials of k[x ], with q 6∈ k. Denote by prem(p, q) and

pquo(p, q) the pseudo-remainder and the pseudo-quotient of p by q, regarding p and

q as univariate polynomials in x = mvar(q). Using these notations, we have

init(q)ep = pquo(p, q)q + prem(p, q), (2.1)
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where e = max{deg(p, x) − deg(q, x) + 1, 0}; moreover either r := prem(p, q) is null

or deg(r, x) < deg(q, x). Pseudo-division generalizes as follows given a polynomial p

and a regular chain T :

prem(p, T ) =

{

p if T = ∅,
prem(prem(p, t), T ′) if T = T ′ ∪ {t},

where t is the polynomial in T with greatest main variable. We have the pseudo-

division formula [83]: there exist non-negative integers e1, . . . , es and polynomials

q1, . . . , qs in k[x ] such that

he1

1 · · ·hes

s p =
s∑

i=1

qiti + prem(p, T ), (2.2)

where T = {t1, . . . , ts} and hi = init(ti), for 1 ≤ i ≤ s.

We denote by res(p, q) the resultant of p and q regarding them as univariate poly-

nomials in mvar(q). Note that res(p, q) may be different from res(q, p), if they have

different main variables. For a polynomial p and a regular chain T , we define the

iterated resultant of p w.r.t. T , denoted by iterRes(p, T ), as follows:

iterRes(p, T ) =

{

p if T = ∅,
iterRes(res(p, t), T ′) if T = T ′ ∪ {t},

where t is the polynomial in T with greatest main variable.

Theorem 2. For a regular chain T and a polynomial p we have:

1. p belongs to sat(T ) if and only if prem(p, T ) = 0,

2. p is regular modulo sat(T ) if and only if iterRes(p, T ) 6= 0,

3. p is a zerodivisor modulo sat(T ) if and only if iterRes(p, T ) = 0 and prem(p, T ) 6=
0.

For the proofs, we refer to [6] for item (1), and to [82, 14] for item (2). Item (3)

is a direct consequence of (1) and (2).

Remark 1. Theorems 2 and 3 highlight the structure of the associated primes of

sat(T ) which makes regularity test easier than with an arbitrary polynomial ideal.

In general, deciding if a polynomial p is regular modulo an ideal I is equivalent to

checking if p does not belong to any associated primes of I.
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An ideal in k[x ] is unmixed, if all its associated primes have the same dimension.

In particular, an unmixed ideal has no embedded associated primes.

Theorem 3. Let T = C ∪ {t} be a regular chain in k[x ] with t having greatest main

variable in T . The following properties hold:

1. sat(T ) is an unmixed ideal with dimension n− |T |,

2. sat(T ∩ k[x1, . . . , xi]) = sat(T ) ∩ k[x1, . . . , xi],

3. sat(T ) = 〈sat(C) ∪ {t}〉 : init(t)∞.

For the proofs, we refer to [8, 16] for item (1), to [6] for item (2), and to [43] for

item (3). From (1), we deduce that the saturated ideal of a regular chain T consisting

of n polynomials has dimension 0.

2.3 Primitivity of polynomials

In this section, we introduce the notion of weak primitivity of a polynomial in a

general univariate polynomial ring, and then present several of its properties.

The following Lemma 1 may be seen as a generalization of Gauss’s lemma over an

arbitrary commutative ring with unity. It will be used in the proof of our main the-

orem. We found that this lemma is not new and can be deduced from the Dedekind-

Mertens Lemma (See [4, 20, 80] and the references therein). For the sake of reference,

we include our direct proof here. In the sequel, the ring R is a commutative Noethe-

rian ring with unity. We say that p divides q, denoted by p | q, if there exists r such

that q = p r holds.

Lemma 1. Let p =
∑m

i=0 aiy
i and q =

∑n
i=0 biy

i be polynomials in R[y] with deg(p) =

m ≥ 0 and deg(q) = n ≥ 0. Then for each h ∈ R,

(i) h | pq implies h | b0a
n+1
i for 0 ≤ i ≤ m,

(ii) h | pq implies h | bna
n+1
i for 0 ≤ i ≤ m.

Proof. First, we prove (i). Considering first the special case m = 0, we observe that

h | pq implies h | a0b0 and the conclusion follows. Now we assume that m > 0 holds.

For i = 0, the claim is also clear, for the same reason as the case m = 0. For

1 ≤ i ≤ m, we introduce the polynomials Ai and Bi below in order to simplify our
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expressions:

Ai =
i−1∑

j=0

ajy
j, and Bi = −

m∑

j=i

ajy
j. (2.3)

Clearly, we have p = Ai − Bi. The key observation is to consider the polynomial

p̃ = An+1
i − Bn+1

i , as suggested by the forms of our claims. To avoid talking about

the degree of a zero polynomial, we assume that both An+1
i and Bn+1

i are nonzero

polynomials.

According to the construction of Ai and Bi in (2.3), we have the following degree

estimates:

deg(An+1
i ) ≤ deg(Ai)(n + 1) ≤ (i− 1)(n + 1), (2.4)

trdeg(Bn+1
i ) ≥ trdeg(Bi)(n + 1) ≥ i(n + 1), (2.5)

where trdeg(·) denotes the trailing degree, that is, the degree of the term with lowest

degree in a polynomial. Therefore there is no term cancellation between An+1
i and

Bn+1
i . With the assumption that Ai and Bi nonzero, the polynomial p̃ is nonzero too.

Now we write p̃ in the form

p̃ = (Ai −Bi)(A
n
i + · · ·+ Bn

i ) = p(An
i + · · ·+ Bn

i ).

It follows that p | p̃ holds. Therefore h | p̃q holds since we have h | pq. Observe now

that if qAn+1
i is nonzero, then

deg(qAn+1
i ) ≤ (i− 1)(n + 1) + n < i(n + 1). (2.6)

Similarly, if qBn+1
i is nonzero, then its trailing degree is bounded

trdeg(qBn+1
i ) ≥ i(n + 1). (2.7)

Combining (2.6) with (2.7), we know that in qp̃ = qAn+1
i − qBn+1

i , the polynomial

qAn+1 only contributes to terms with degree smaller than i(n + 1). Thus we have

coeff(qp̃, yi(n+1)) = coeff(−qBn+1
i , yi(n+1)) = b0a

n+1
i (2.8)

which implies h | b0a
n+1
i , as desired.

Now we handle the special cases where An+1
i = 0 and Bn+1

i = 0. It is easy to
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see that An+1
i = 0 does not affect the proof above. When Bn+1

i = 0, simply we have

an+1
i = 0, and then the claim is also clear.

Finally, we prove (ii). Let P = ymp(1/y) and Q = ynq(1/y). Since h | pq, h will

also divide PQ = ym+n(pq)(1/y). Assume that

a0 = · · · = ar−1 = 0, ar 6= 0,

b0 = · · · = bs−1 = 0, bs 6= 0.

Then r ≤ m and s ≤ n hold. According to (i), for any r ≤ i ≤ m, h | bna
s+1
i . It

follows that h | bnan+1
i for any 0 ≤ i ≤ m.

Definition 3. Let p = a0+ · · ·+aex
e ∈ R[x] with e ≥ 1. The polynomial p is strongly

primitive if the ideal generated by {a0, . . . , ae} is the whole ring R. The polynomial p

is weakly primitive if for any β ∈ R such that ae | βai holds for all 0 ≤ i ≤ e− 1, we

have ae | β as well.

Proposition 1. Strong primitivity implies weak primitivity.

Proof. We use the same notation as in Definition 3. Let p be strongly primitive.

Then there exist ce, . . . , c0 ∈ R such that ceae + · · ·+ c0a0 = 1. Let β ∈ R such that

for 0 ≤ j ≤ e − 1, we have ae | βaj. Then there exist d0, . . . , de−1 ∈ R such that

aedj = βaj. Since βceae + · · ·+ βc0a0 = β, we have ae(βce + de−1ce−1 · · ·+ d0c0) = β.

Thus, we have ae | β, and therefore p is weakly primitive.

Remark 2.

(1) If any ai is invertible, then p is strongly primitive and so it is weakly primitive.

As a particular case, p is weakly primitive if one of its coefficients is a nonzero

constant of a field.

(2) Weak primitivity does not imply strong primitivity. For example, let R = Z[t]

and p = tx + 2 ∈ Z[t][x]. Then p is not strongly primitive, since 〈t, 2〉 6= 〈1〉R.

In R[x], the polynomial p is weakly primitive. If t | 2β, then t | β must hold.

(3) The definition of strongly primitive does not depend on the order of the coeffi-

cients in p. However, the definition of weakly primitive relies on it. Indeed, let

R = Z4[t], p = 2̄x + t and q = tx + 2̄ . Then we have

(a) p is weakly primitive in R[x]. For any β ∈ R[x], if 2̄ | tβ then 2̄ | β.

(b) q is not weakly primitive in R[x]. Let β = t + 2̄ ∈ R[x]. Then we have

t | 2̄(t + 2̄) = 2̄t, and t ∤ (t + 2).
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(4) Weak primitivity may not be extended. That is to say, if p is weakly primitive,

assuming that deg(p) = e>0, then p̄ = p + qxe+1 may not be weakly primitive.

For example, let R = Z4[t], p = 2̄x + t and p̄ = p + tx2 = tx2 + 2̄x + t. Then p

is weakly primitive, and p̄ is not weakly primitive. Indeed taking β = t + 2̄, we

have t | tβ and t | 2̄β, but t ∤ β.

According to Proposition 2 the notion of weak primitivity turns out to be a gener-

alization of the ordinary notion of primitivity (the gcd of the coefficients of a univariate

polynomial is 1).

Proposition 2. Let R be a UFD and p =
∑e

i=0 aix
i ∈ R[x] with ae 6= 0 and e ≥ 1.

Then, the following statements are equivalent

(i) p is weakly primitive in R[x].

(ii) content(p) := gcd(a0, . . . , ae) = 1.

Proof. We prove (i)⇒ (ii). Assume that gcd(a0, . . . , ae) 6= 1. Then there is a prime

factor f of gcd(a0, . . . , ae). Let β = ae/f . Then ae | βai, for 0 ≤ i ≤ e − 1. Since

ae ∤ β, p is not weakly primitive, a contradiction.

We prove (ii)⇒ (i). Assume that there exists β ∈ R such that

∀ ( 0 ≤ j ≤ e− 1) ae | βaj and ae ∤ β.

Then ae | content(βp) = βcontent(p). Since ae ∤ β, some prime factor f of ae divides

content(p), a contradiction.

The following property on weak primitivity will be used in the next section. It

states the following fact: if one raises each coefficient of a weakly primitive polynomial

p to some power, then the resulting polynomial is still weakly primitive. To avoid the

cancellation of the leading coefficient of p, we assume that this coefficient is a regular

element of the ground ring.

Proposition 3. Let p =
∑e

i=0 aix
i ∈ R[x] with ae being regular in R, and {ni | 0 ≤

i ≤ e} be a set of non-negative integers. Define q =
∑e

i=0 ani

i xi. Then if p is weakly

primitive, q is also weakly primitive.

The proof directly follows from the following two lemmas.

Lemma 2. Let p = a0 + · · · + aex
e ∈ R[x] with ae being regular in R and n be a

non-negative integer. If p is weakly primitive, then pn = a0 + · · ·+ ae−1x
e−1 + an

e x
e is

also weakly primitive.
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Proof. By induction on n ≥ 0. The case n = 0 follows from Remark 2. So we assume

that the claim is true for n − 1, that is, pn−1 is weakly primitive, with n ≥ 1. Let

β ∈ R such that an
e | aiβ, for 0 ≤ i ≤ e − 1. There exist h0, . . . , he−1 ∈ R such that

we have

an
e hi = aiβ, 0 ≤ i ≤ e− 1. (2.9)

Since pn−1 is weakly primitive and since we have an−1
e | aiβ, we deduce an−1

e | β, that

is, there exists h′ ∈ R such that

an−1
e h′ = β. (2.10)

With (2.9) and (2.10) we have an
e hi = aia

n−1
e h′, and then aehi = aih

′, since ae is

regular. Hence ae | aih
′. By the weak primitivity of p, ae | h′ holds, that is, there

exists h′′ ∈ R such that

aeh
′′ = h′. (2.11)

By (2.10) and (2.11) we have an
e h

′′ = β. So an
e | β and pn is weakly primitive.

Lemma 3. Let p = a0+· · ·+aex
e ∈ R[x] with ae 6= 0 and n be a non-negative integer.

Let j be an index such that 0 ≤ j ≤ e− 1. Define q = a0 + · · ·+ an
j x

j + · · ·+ aex
e =

p + (an
j − aj)x

j. If p is weakly primitive, then q is also weakly primitive.

Proof. The claim is clear if n = 0, so we assume n ≥ 1. Let β ∈ R such that, for

0 ≤ i ≤ e− 1 and i 6= j

ae | aiβ, and ae | an
j β. (2.12)

We prove that ae | β holds. We have, for 0 ≤ i ≤ e− 1 and i 6= j

ae | ai(a
n−1
j β), and ae | aj(a

n−1
j β).

Define β′ = an−1
j β. Hence ae | β′ holds, since p is weakly primitive. With (2.12), for

0 ≤ i ≤ e− 1 and i 6= j we have

ae | aiβ, and ae | an−1
j β. (2.13)

We deduce that ae | an−2
j β holds. Continuing in this manner, we reach ae | β. Thus

q is also weakly primitive.
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2.4 Primitive regular chain

In this section, we generalize the notion of primitivity to any regular chain T . Then

we prove that sat(T ) = 〈T 〉 holds if and only if T is primitive.

Definition 4. Let T = {p1, . . . , pm} ⊂ k[x ] = k[x1, . . . , xn] be a regular chain with

mvar(p1) ≺ · · · ≺ mvar(pm). We say that T is primitive if for all 1 ≤ k ≤ m, pk is

weakly primitive in R[xj] where xj = mvar(pk) and

R = k[x1, . . . , xj−1]/〈p1, . . . , pk−1〉.

Proposition 4 (Base case of Theorem 4). Let p = aex
e + · · · + a0 ∈ k[y ][x] and

c = gcd
k[y ](a0, . . . , ae), where e ≥ 1 and y is a finite set of variables. Then we have

〈p〉 = 〈p〉 : a∞
e ⇐⇒ c = 1.

Proof. First we prove that 〈p〉 ( sat(p) := 〈p〉 : a∞
e if c 6= 1. Denote p̄ = p/c. Then

aep̄ = aep/c ∈ 〈p〉, hence p̄ ∈ sat(p). Assume that p̄ is in 〈p〉. Then there exists

q ∈ k[y ][x] such that p/c = p̄ = pq. It follows that qc = 1 which is a contradiction

since c /∈ k. Therefore p̄ is in sat(p) but not in 〈p〉.
Conversely, we prove that if c = 1 then sat(p) ⊆ 〈p〉. For any q ∈ sat(p), there

exist n ∈ Z≥0 and β ∈ k[y ][x] such that an
e q = βp . Taking the content w.r.t. x, we

have

an
e content(q, x) = content(β, x) content(p, x)

= content(β, x)

Thus an
e | β. There exists β′ ∈ k[y ][x] such that β = an

e β
′. So we have an

e q = βp =

an
e β

′p, and then q = β′p, that is, q ∈ 〈p〉.

Remark 3. Let T = {p1} be a regular chain consisting of a single polynomial. By

definition, T is primitive if and only if p1 is weakly primitive in R = k[x1, . . . , xj−1],

where xj = mvar(p1). Since R is a UFD, it follows from Proposition 2, that T is

primitive if and only if p1 is primitive in the ordinary sense, that is, whenever the

gcd of the coefficients of p1 (as a univariate polynomial in R[xj]) is 1. Therefore, the

notion of primitivity for a regular chain extends that of primitivity for a polynomial.

Theorem 4. Let T ⊂ k[x1, . . . , xn] be a regular chain. Then T is primitive if and

only if 〈T 〉 = sat(T ).
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Proof. We prove the theorem by induction on the number of polynomials in T . The

base case is Proposition 4, where |T | = 1. Now assume that T = {p1, . . . , pm} consists

of m ≥ 2 polynomials with mvar(p1) ≺ · · · ≺ mvar(pm). We denote by Tk the regular

chain consisting of the first k polynomials in T .

First, assume indirectly that T is not primitive. We need to prove that 〈T 〉 is

a proper subset of sat(T ). Let k be the smallest integer such that pk is not weakly

primitive in R[y], where y = xj = mvar(pk) and R = k[x1, . . . , xj−1]/〈Tk−1〉. By

Proposition 4, we know k ≥ 2.

Let pk = aey
e + · · · + a0. By induction, sat(Tk−1) = 〈Tk−1〉 holds and thus ae is

regular in R. Since pk is not weakly primitive over R, there exists β ∈ k[x1, . . . , xj−1]

such that, in R, we have

(∀0 ≤ r ≤ e− 1) ae | βar and ae ∤ β.

Define qk = βpk/ae. Then qk ∈ R[y], since

β

ae

pk = βye +
∑

0≤r<e

βar

ae

yr.

We claim that qk ∈ 〈pk〉 : a∞
e and qk /∈ 〈pk〉 in R[y], which leads to sat(Tk) 6= 〈Tk〉.

Indeed, we have aeqk = βpk ∈ 〈pk〉 in R[y]. Thus, qk ∈ 〈pk〉 : a∞
e . Now if qk ∈ 〈pk〉,

there exists α ∈ R[y] such that qk = αpk in R[y]. By the construction of qk, deg(qk, y)

equals deg(pk, y). Hence α ∈ R and β − αae = 0 in R. This contradicts ae ∤ β.

Secondly, we assume that T is primitive and show 〈T 〉 = sat(T ). By induction,

sat(Tk−1) = 〈Tk−1〉 holds. We shall prove that sat(Tk) = 〈Tk〉 holds, too. To do so,

we consider p ∈ sat(Tk) and show that we have p ∈ 〈Tk〉. Let mvar(p) = xi and

mvar(pk) = xj. If i > j, then p ∈ sat(Tk) if and only if all coefficients of p w.r.t

xi are in sat(Tk), since Tk is a regular chain. So we can concentrate on the case

p ∈ k[x1, . . . , xj].

Let hpk
be the leading coefficient of pk w.r.t. y = xj, that is, w.r.t. the main

variable of pk. By virtue of Theorem 3 we have

sat(Tk) = 〈sat(Tk−1), pk〉 : h∞
pk

= 〈〈Tk−1〉, pk〉 : h∞
pk

.

By virtue of Theorem 2 we have prem(p, Tk) = 0, since p ∈ sat(Tk). Consequently,

prem(p, pk) is in sat(Tk−1) = 〈Tk−1〉. Now the pseudo-division formula (2.1) in Sec-
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tion 2.2 leads to

hα
pk

p = pquo(p, pk)pk + prem(p, pk), (2.14)

where α = max{0, deg(p, y) − deg(pk, y) + 1}. If deg(p, y) < deg(pk, y), then

p = prem(p, pk) ∈ 〈Tk−1〉 ⊂ 〈Tk〉 holds and we are done. From now on, we as-

sume deg(p, y) ≥ deg(pk, y) and we write α = deg(p, y)− deg(pk, y)+1. With (2.14)

we observe that we have the following equation in R[y]

hα
pk

p = q pk. (2.15)

We consider a more general situation: let s ∈ sat(Tk), let δ be a non-negative

integer and let u ∈ k[x1, . . . , xn] such that

hδ
pk

s = u pk (2.16)

holds in R[y]. In order to prove that p ∈ 〈Tk〉 holds, we prove that s ∈ 〈Tk〉 by

induction on the number of terms in u. For simplicity, we denote

pk =
e∑

i=0

aiy
i and u =

f
∑

i=0

biy
i,

with ae 6= 0 and bf 6= 0. Note that ae = hpk
.

If u = 0 in R[y], then ae
δs = 0 in R[y]. Since ae is regular in R, we deduce s = 0

in R[y], that is, s ∈ 〈Tk−1〉 and thus s ∈ 〈Tk〉. Assume u 6= 0 in R[y]. Let f ′ be the

largest integer such that bf ′ /∈ 〈Tk−1〉 and write u′ =
∑f ′

i=0 biy
i. We have

aδ
es = u′pk in R[y]. (2.17)

By Lemma 1, for any 0 ≤ i ≤ e, we have aδ
e | bf ′af ′+1

i in R. Since pk is weakly primitive

in R[y], by Proposition 3 we have aδ
e | bf ′ in R. Thus there exists γ ∈ k[x1, . . . , xj−1],

γ 6= 0 in R, such that

aδ
eγ = bf ′ in R. (2.18)

We define

s′ = s− γyf ′

pk. (2.19)
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Since s ∈ sat(Tk) we have s′ ∈ sat(Tk). Moreover we have

u′ = aδ
eγyf ′

+ tail(u′).

Therefore, the following holds in R[y]:

aδ
es

′ = tail(u′)pk. (2.20)

By induction hypothesis we have s′ ∈ 〈Tk〉. With (2.19) we conclude s ∈ 〈Tk〉, as

desired.

2.5 Weak primitivity test

In this section, we point out the component-wise nature of weak primitivity. That is,

if R can be written as a direct product of rings, then checking weak primitivity over

R reduces to checking weak primitivity over each of its “components”.

Lemma 4. Let R1, . . . , Rn be commutative rings with 1. Let R = Πn
i=1Ri be their

direct product and let πk be the canonical projection from R to Rk. Let a, b ∈ R. Then

a | b in R if and only if πk(a) | πk(b) for each 1 ≤ k ≤ n.

The proof of this lemma is straightforward, and thus is omitted.

Proof. It is clear that a | b implies πk(a) | πk(b) for all k. On the another hand,

assume that πk(a) | πk(b) for each 1 ≤ k ≤ n. Then there exists uk ∈ Rk such

that πk(a)uk = πk(b). Define u = (u1, . . . , un) ∈ R. Then πk(u) = uk. Hence

πk(a)πk(u) = πk(b), that is, au − b ∈ ker(πk). So au − b ∈ ∩n
k=1 ker(πk) = 〈0〉. We

have a | b in R.

Proposition 5. Let R = Πn
i=1Ri be a direct product of rings and let πk be the canonical

projection from R to Rk and τk be the canonical injection from Rk to R. Let p =
∑e

i=0 aix
i ∈ R[x] be a polynomial with ae being regular in R. Then p is weakly

primitive in R[x] if and only if πk(p) =
∑e

i=1 πk(ai)x
i is weakly primitive in Rk[x] for

each 1 ≤ k ≤ n.

Proof. For any 1 ≤ k ≤ n, denote pk = πk(p). Since ae is regular in R, πk(ae) 6= 0 for

each k, and then each pk is a polynomial of degree e.

First we prove that if all pk are weakly primitive then p is also weakly primitive.

Let β ∈ R satisfying ae | aiβ for 0 ≤ i ≤ e− 1. By definition, we need to prove that

ae | β in R.



23

Applying πk to ae | aiβ, we have πk(ae) | πk(ai)πk(β), for 0 ≤ i ≤ e − 1. By the

weak primitivity of pk, we have πk(ae) | πk(β). So there exists uk ∈ Rk such that

πk(ae)uk = πk(β). Define u = (u1, . . . , un) ∈ Πn
i=1Ri. Then πk(u) = uk, and hence

πk(ae)πk(u) = πk(β), for each 1 ≤ k ≤ n. By Lemma 4, ae | β in R. We proved that

p is weakly primitive in R[x].

On the other hand, we prove that, if pk is not weakly primitive over Rk for some

1 ≤ k ≤ n then p is not weakly primitive over R. For simplicity, we assume k = 1.

So, there exists β1 ∈ R1 such that π1(ae) | π1(ai)β1 for 0 ≤ i ≤ e− 1, but π1(ae) ∤ β1.

Define β = τ1(β1) = (β1, 0, . . . , 0) ∈ R. Then we claim that ae ∤ β and ae | aiβ for

0 ≤ i ≤ e− 1. This implies that p is not weakly primitive over R, as desired.

Indeed, first we have ae ∤ β, since π1(ae) ∤ π1(β) = β1. Second, to prove ae | aiβ

for 0 ≤ i ≤ e− 1, by Lemma 4, we need to prove that πk(ae) | πk(aiβ) for 1 ≤ k ≤ n

and 0 ≤ i ≤ e− 1. If k = 1, it follows from the choice of β1. If 2 ≤ k ≤ n, we have

πk(aiβ) = πk(ai)πk(β) = πk(ai) · 0 = 0

for 1≤ i≤e− 1. Thus πk(ae) |πk(aiβ) holds for 1≤ i≤e− 1.

Example 3. Let T = {p1, p2} be a regular chain in Q[t ≺ x ≺ y] with p1 = x(x −
t), p2 = (x + t)y + t. Since p1 = x2− tx is strongly primitive in (Q[t])[x], p1 is weakly

primitive in (Q[t])[x]. Let R = Q[t, x]/〈x(x− t)〉. Then we have

R = R1 ×R2 = Q[x, t]/〈x〉 ×Q[x, t]/〈x− t〉 ≃ Q[t]×Q[t].

Over R1, p2 = ty + t is not weakly primitive, since t is not invertible over R1 and

according to the definition we can choose β = 1. Hence T is not a primitive regular

chain.

In order to generalize the construction of the above example into an algorithm,

one would need to use algebraic factorization. In the next section, we propose a

primitivity test for regular chains which avoids algebraic factorization, relying instead

on polynomial GCDs modulo regular chains. Based on the algorithms and software

tools available today we view it as a practical solution, as confirmed in Section 2.8.

2.6 A primitivity test algorithm

In Section 2.4, we define the notion of primitive regular chain which generalizes that of

primitive polynomial over a UFD. In this section, we present another characterization
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on primitivity in terms of regularity of a polynomial. As a consequence, we obtain

an algorithm to test whether a regular chain is primitive or not.

Lemma 5, 6, 7 and 8 are well-known facts. The proofs of Lemma 5 and Lemma 8

are straightforward. Lemma 6 can be found as Lemma 9.2.3 in [40] whereas Lemma 7

is in [80], Lemma 7.

Lemma 5. Let I be a proper ideal of R and let h be an element of R. Then h is

regular modulo I if and only if I = I : h∞ holds.

Proof. Assume that h is regular modulo I. For any f ∈ I : h∞, there exists a

nonnegative integer m such that fhm ∈ I. Since h is regular modulo I, hm is also

regular modulo I. So f ∈ I holds.

Conversely, assume that I = I : h∞ holds. Since I is a proper ideal, h cannot

belong to I. If h is not regular modulo I, then there exists an element g ∈ R \ I such

that gh ∈ I. Hence g ∈ I : h∞ = I holds, a contradiction.

Lemma 6. Let a and b be two regular elements of R. Assume that a and b are not

invertible. If a is regular modulo 〈b〉 then b is also regular modulo 〈a〉.

Proof. Observe that, since a and b are not invertible, both 〈a〉 and 〈b〉 are proper.

First, we prove that b is not in 〈a〉. Suppose b is in 〈a〉. There exists an x ∈ R such

that b = xa. Since a is regular modulo 〈b〉, x is in 〈b〉, that is, there exists an x′ ∈ R

such that x = bx′. It follows that b = bax′ holds. Since b is a regular element of

R, ax′ = 1 holds in R, which contradicts to the fact that a is not invertible. Now

according to the definition, we only need to show that x ∈ 〈a〉 holds, for any x ∈ R

satisfying bx ∈ 〈a〉. Indeed, there exists x′ ∈ R such that bx = ax′. Since a is regular

modulo 〈b〉, we have x′ ∈ 〈b〉, that is, there exists x′′ ∈ R such that x′ = bx′′. So

bx = ax′ = bax′′ holds. Since b is a regular element of R, x = ax′′ ∈ R holds, as

desired.

Lemma 7 (Mc Coy Theorem). A non-zero polynomial f ∈ R[x] is a zerodivisor if

and only if there exists a non-zero element a ∈ R such that af = 0 holds.

Lemma 8. Let f ∈ R[x] be a non-constant polynomial. If its leading coefficient is a

regular element in R, then f is not a unit.

Proposition 6. Let R be a Noetherian commutative ring with 1. Consider a polyno-

mial f =
∑n

i=0 aix
i ∈ R[x]. Assume that n is at least 1 and an is regular in R. Then

〈f〉 = 〈f〉 : a∞
n holds if and only if an is invertible in R, or tail(f) is regular modulo

〈an〉.
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Proof. If an is invertible in R, then clearly 〈f〉 : a∞
n = 〈f〉 holds. So we assume that

an is not invertible in R. Note that both an and f are regular in R[x]; this follows

from Lemma 7. Since an is not invertible in R, an is not invertible in R[x] either.

Since an is regular in R, it follows from Lemma 8 that f is not invertible in R[x].

Then, applying Lemma 5 and 6, we deduce

〈f〉 = 〈f〉 : an
∞ ⇐⇒ an is regular modulo 〈f〉
⇐⇒ f is regular modulo 〈an〉
⇐⇒ tail(f) is regular modulo 〈an〉.

This completes the proof.

The following corollary may be seen as another characterization of the primitivity

of a regular chain. This also provides an algorithm for checking whether a regular

chain is primitive or not.

Corollary 1 (Primitivity test of a regular chain). Let T ⊂ k[x1, . . . , xs−1] be a prim-

itive regular chain. Let p =
∑e

i=0 aix
i
s ∈ k[x1, . . . , xs] with ae being regular modulo

sat(T ). Denote tail(p) =
∑e−1

i=0 aix
i
s. Then T ∪ {p} is a primitive regular chain if

and only if ae is invertible modulo sat(T ), or tail(p) is a regular polynomial modulo

〈T ∪ {ae}〉.

Proof. This is a direct consequence of Proposition 6, Theorem 4 and the definition of

a regular chain.

Thus the problem of checking whether a regular chain T ∪{p} is primitive or not,

reduces to checking whether the polynomial tail(p) is regular or not modulo 〈T∪{ae}〉.
We next show that (T, ae) in Corollary 1 generates an unmixed ideal; this result is

crucial in view of Algorithm 1 below. Indeed, it allows us to deal with the following

subtle point: a polynomial p regular modulo the radical
√

I of an ideal I may not

be regular modulo I. For example, consider p = y and I = 〈xy, x2〉. Then y is a

zerodivisor modulo I but y is regular modulo
√

I = 〈x〉. If I is unmixed, then p is

regular modulo I if and only if p is regular modulo
√

I.

Lemma 9. Let R = k[x1, . . . , xn] and T be a primitive regular chain of R. If t ∈ R

is regular but not invertible modulo sat(T ), then (T, t) is a regular sequence of R and

the ideal 〈T, t〉 is unmixed with dimension n− |T | − 1.
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Proof. Denote Ti = T ∩ k[x1, . . . , xi]. Since T is primitive, sat(Ti) = 〈Ti〉 holds for

each i. Thus T is already a regular sequence of R. Now since t is regular but not

invertible modulo sat(T ) = 〈T 〉, by definition (T, t) is a regular sequence.

Let I = 〈T, t〉 and d = |T |. According to the Principal Ideal Theorem [see 29,

Theorem 10.2] the dimension dim(I) of I is at least n − (d + 1). On the other

hand, since (T, t) is a regular sequence of length d + 1, the dimension of I is at most

n − (d + 1). Hence, dim(I) = n − (d + 1) and then I is unmixed, by Macaulay

Unmixedness Theorem [see 79, Theorem 5.7].

Algorithm 1: IsPrimitive(T )

Input : T , a regular chain of k[x1, . . . , xn]
Output : true if T is primitive, false otherwise

1 if |T | = 1 then
2 t← the defining polynomial of T
3 if content(t, mvar(t)) ∈ k then
4 return true

5 else return false

6 else
7 write T as T ′ ∪ {t}, where t has the greatest main variable
8 if not IsPrimitive(T ′) then
9 return false

10 else
11 h← init(t), r ← tail(t)
12 for U ∈ Triangularize(T ′ ∪ {h}) do
13 if iterRes(r, U) = 0 then return false

14 return true

Remark 4. Before proving the correctness of the above algorithm, we comment on

its subprocedures and possible optimization.

(1) The function Triangularize decomposes a polynomial system F into a finite set

of regular chains Ui such that
√

〈F 〉 = ∩i

√

sat(Ui) holds; this is called a tri-

angular decomposition of F in the sense of Kalkbrener [7]. According to the

above specification, the set of the associated primes of
√

〈F 〉 are “implicitly”

represented by Ui’s .

Triangularize is one of the core functions in the RegularChains library in

Maple [48]; it implements the triangular decomposition algorithm of [65].
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While computing in Kalkbrener’s sense, it has the same specification as the

function solven in [41], although the algorithms of [64] and [41] are quite

different.

Apart from Kalkbrener’s sense, Triangularize can also work in the Lazard

sense [see 7], where all solutions of the input systems will be explicitly rep-

resented by means of regular chains. In general, this function runs faster in

Kalkbrener’s sense, since only generic solutions will be represented explicitly.

(2) The use of Triangularize seems hard to avoid. The purpose is to represent all

associated primes of the ideal 〈T ∪ {h}〉 by means of regular chains. Geometri-

cally, it is the intersection of the zero set of T with the hypersurface defined by

h.

(3) Algorithm 1 can be optimized using Item (1) of Remark 2: if a coefficient ai of

t = aex
e + · · · + a0 is an invertible constant, then lines 11-13 can be skipped

since t is strongly primitive.

Proof. We prove the above algorithm IsPrimitive. Termination of the algorithm follows

from the fact that in each recursive call the number of polynomials in the input regular

chain decreases by 1.

For the correctness, we proceed by induction on the number of polynomials in the

regular chain T . When |T | = 1, correctness follows from Remark 3. So we assume

|T | > 1. Definition 4 and Theorem 4 imply that if T is primitive then T ′ is also

primitive. So we assume that T ′ is primitive and branch to line 10.

Let U be the output of Triangularize in line 10 and let I = 〈T ′ ∪ {h}〉. From the

specification of Triangularize, we have

⋂

U∈U

√

sat(U) =
√

I.

By Corollary 1, we need to distinguish two cases: h is invertible (resp. not invertible)

modulo 〈T ′〉 = sat(T ′).

If h is invertible modulo 〈T ′〉 then U is empty, and the algorithm correctly returns

true. Assume from now on that h is not invertible modulo 〈T ′〉. In this case by

Lemma 9, the triangular decomposition U is not empty. So T is primitive if and only

if r is regular modulo I. By Lemma 9 again, the ideal I is unmixed and therefore T is

primitive if and only if r is regular modulo
√

I. This holds if and only if r is regular

modulo sat(U) for each U ∈ U . Finally, the correctness of Algorithm 1 follows from

Theorem 2.
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Example 4. Let R = k[z ≺ y ≺ x] be a polynomial ring and T = {t1, t2} be a regular

chain of R with t1 = y5 − z4, t2 = zx− y2. Clearly, {t1} is a primitive regular chain.

Let I = 〈t1, lc(t2)〉 = 〈t1, z〉 = 〈z, y5〉. In Algorithm 1 the call to Triangularize will

produce
√

I =
√

sat(U) where U = {z, y} is a regular chain. Thus, the computation

iterRes(tail(t2), U) = iterRes(−y2, U) = 0

implies that tail(t2) = −y2 is not regular modulo I. Thus T is not primitive. In fact,

the prime ideal sat(T ) = 〈x3 − yz, xz − y2, z2 − x2y〉 can not be generated by only

two polynomials [see 21, page 43]. Hence, in any variable ordering, one cannot find

a primitive regular chain C such that 〈C〉 = sat(T ).

2.7 An application to inclusion test

A fundamental problem in the theory of regular chains is the inclusion test for satu-

rated ideals, that is, deciding if sat(T ) ⊆ sat(U) holds for two regular chains T and

U . For a regular chain T , denote by mvar(T ) the set of main variables of polynomials

in T , which is also called the set of algebraic variables of T . In this section, we first

show that when T and U share the same set of algebraic variables the inclusion test

is simple. Then we point out that the notion of primitivity presented in this chapter

solves the inclusion test problem partially.

Lemma 10. Let T and U be two regular chains. If sat(T ) ⊆ sat(U) and |T | = |U |
hold, then each associated prime of sat(U) is also an associated prime of sat(T ).

Proof. Let T and U be the set of associated primes of sat(T ) and sat(U) respectively.

Then we have
√

sat(T ) =
⋂

P∈T

P and
√

sat(U) =
⋂

Q∈U

Q.

Since sat(T ) ⊆ sat(U) implies
√

sat(T ) ⊆
√

sat(U), for each Q ∈ U there exists

P ∈ T such that P ⊆ Q. Since T and U are unmixed with same height, dim(P )

equals dim(Q), which implies Q = P . Hence U is a subset of T .

Proposition 7. Let T and U be two regular chains with the same set of algebraic

variables. Write T as T = T ′ ∪ {t} with t having largest main variable. Then

sat(T ) ⊆ sat(U) if and only if sat(T ′) ⊆ sat(U) and prem(t, U) = 0.

Proof. Clearly, we only need to show that sat(T ) ⊆ sat(U) holds if sat(T ′) ⊆ sat(U)

and prem(t, U) = 0.
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Denote by h the initial of t. We first prove that h is regular modulo sat(U). Since

h is regular modulo sat(T ′), h is not contained in any associated prime of sat(T ′). Let

u be the polynomial in U such that mvar(t) = mvar(u) and define U ′ = U \{u}. Then

we have sat(T ′) ⊆ sat(U ′). By Lemma 10, h is not contained in any associated prime

of sat(U ′). Hence h is regular modulo sat(U ′). It follows that h is regular modulo

sat(U) since the main variable of h is smaller than that of u.

For arbitrary f ∈ sat(T ), we have prem(f, t) ∈ sat(T ′) ⊆ sat(U). By the pseudo-

division formula, hef = prem(f, t)+q t for some e ≥ 0 and some q. Since prem(t, U) =

0, we have t ∈ sat(U). Therefore hef belongs to sat(U), which implies f ∈ sat(U)

since h is regular modulo sat(U).

The above proposition handles the case in which two regular chains have the same

set of algebraic variables.

Example 5. Let R = k[x ≺ y ≺ z] and let T = {xz + y} and U = {x, y} be regular

chains of R. Then sat(T ) = 〈xz + y〉 ( 〈x, y〉 = sat(U) holds, although we have

mvar(T ) = {z} and mvar(U) = {x, y}.

In practice, the inclusion sat(T ) ⊆ sat(U) is often established by proving that

〈T 〉 ⊆ sat(U) holds and that all initials in T are regular modulo sat(U). This simple

criterion follows immediately from the definition of a saturated ideal and Lemma 5.

Now with the notion of primitivity for a regular chain, we have another useful

way to detect if sat(T ) ⊆ sat(U) holds. That is, sat(T ) ⊆ sat(U) holds whenever

〈T 〉 ⊆ sat(U) holds and T is primitive. In the above example, the initial of zx + y

is not regular modulo sat(U). However, we know that sat(T ) is contained in sat(U),

since T is primitive and 〈T 〉 ⊆ sat(U) holds. In the following Section 2.8, we shall see

that algorithm IsPrimitive is efficient and primitive regular chains appear quite often

in practice.

Corollary 2 below is a direct consequence of Proposition 7, which shows that it

is an easy task to check whether two regular chains have the same saturated ideal.

Actually, testing sat(T ) = sat(U) can be done “directly” without testing the inclusions

sat(T ) ⊆ sat(U) and sat(U) ⊆ sat(T ). The algorithm concluding this section combines

together the different criteria reported above for testing the inclusion of saturated

ideals. Observe that this algorithm is not always able to check whether the inclusion

holds or not.

Corollary 2. Let T = T ′ ∪ {t} and U = U ′ ∪ {u} be two regular chains with t and

u having the greatest main variable in T and U respectively. The equality sat(T ) =

sat(U) holds if and only if the following conditions hold
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1. sat(T ′) = sat(U ′),

2. mvar(t) = mvar(u),

3. t ∈ sat(U) and u ∈ sat(T ) .

Algorithm 2: IsIncluded(T, U)

Input : T and U , regular chains of k[x1, . . . , xn]
Output : If true (resp. false) is returned then sat(T ) ⊆ sat(U) holds

(resp. does not hold). If fail is returned then the inclusion
could not be proved nor disproved.

1 if T = ∅ then return true
2 if U = ∅ then return false
3 if mvar(T ) = mvar(U) then
4 v ← max(mvar(T )), T ′ ← T \ {Tv}
5 if IsIncluded(T ′, U) and prem(Tv, U) = 0 then return true

6 if T ⊆ sat(U) then
7 if iterRes(

∏

t∈T init(t), U) 6= 0 then return true
8 if IsPrimitive(T ) then return true

9 return fail

2.8 Experimentation

We have implemented algorithm IsPrimitive on top of the RegularChains library

in Maple [48]. The experimentation, described hereafter, was conducted on well-

known problems used in [14]1, and the tests were performed in Maple 11 on an

Intel Pentium 4 machine (3.20GHz CPU, 2.0GB memory).

First, we computed triangular decompositions using the Triangularize command in

the sense of Kalkbrener. Then, we applied the IsPrimitive algorithm to each regular

chain in the output.

In Table 2.1, we summarize the features of the problems and our experimental

results. The name of the problems are listed in the first column. The second column

gives the number n of variables and the maximal total degree d. For each triangular

decomposition (which is a list of regular chains) we record the total running time (in

seconds) of IsPrimitive in the third column. The last column is the result of mapping

1The defining polynomial systems can be found at http://www.orcca.on.ca/~panwei/
issac08/
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IsPrimitive to each triangular decomposition: in each of these patterns Y stands for

true and N for false.

These data show that the procedure IsPrimitive is efficient in practice. This agrees

with the fact that, in Algorithm 1, the input polynomial set in each call to Triangularize

is rather structured. We also observe that primitive regular chains appear quite often

in the output of triangular decompositions.

Table 2.1: Tests for IsPrimitive on 14 examples

System (n, d) Time Pattern

KdV575 (26, 3) 3.525 [Y, Y, Y, Y, Y, Y, Y]

MontesS11 (6, 4) .001 [Y]

MontesS16 (15, 2) .103 [Y, Y, Y, N, Y, Y, Y]

Wu-Wang2 (13, 3) 0.099 [Y, N, Y, Y, Y]

MontesS10 (7, 3) .145 [N]

Lazard2001 (7, 4) 2.314 [Y, Y, Y, N, Y, N]

Lanconelli (11, 3) .062 [N, Y]

Wang93 (5, 3) .142 [N]

Leykin-1 (8, 4) .228 [Y, Y, Y, Y, Y, Y, Y, Y, N, Y, Y, Y, N, N]

MontesS14 (5, 4) 1.171 [Y, N, N]

MontesS15 (12, 2) .312 [N]

Maclane (10, 2) .157 [Y, Y, N, Y, N]

MontesS12 (8, 2) .042 [N]

Liu-Lorenz (5, 2) 1.117 [N, Y]

2.9 Discussion

We have generalized the notion of primitivity from univariate polynomials to regular

chains. This has allowed us to establish a necessary and sufficient condition for a

regular chain T to generate its saturated ideal sat(T ). Assume that T is not empty

and write T = T ′ ∪ {p} where p is the polynomial of T with largest main variable.

Theorem 4 states that the equality 〈T 〉 = sat(T ) holds whenever 〈T ′〉 = sat(T ′) holds

and the polynomial p is weakly primitive over k[x]/〈T ′〉. This latter property is a

generalization of the usual notion of primitivity for polynomials over a UFD.

Examining the proof of Theorem 4, we make the following observation. When p is

not weakly primitive over k[x]/〈T ′〉, the proof exhibits a polynomial q which belongs

to sat(T ) but not to 〈T 〉. When p is weakly primitive over k[x]/〈T ′〉, the proof shows

that every polynomial q of sat(T ) belongs to 〈T 〉. The argument is constructive



32

providing that one has at hand an algorithm for dividing a by b modulo 〈T ′〉, where b

is a polynomial regular modulo 〈T ′〉 and is a multiple of the polynomial a modulo 〈T ′〉.
This can be done via Gröbner basis computations [see 60]. An algorithmic solution

based on the algorithms of the RegularChains library is an ongoing research work.

Theorem 4 and its proof do not lead directly to an algorithm for testing the equal-

ity 〈T 〉 = sat(T ). Algorithm 1 provides such a decision procedure. This algorithm

reduces to testing whether a polynomial is regular modulo an ideal. Fortunately the

involved ideal is unmixed which allows us to rely on the algorithms of the Regu-

larChains library avoiding Gröbner basis computations. Our experimentation il-

lustrates the practical efficiency of Algorithm 1.

Algorithm 1 does not generalize easily in the differential setting. Indeed, consider

the polynomial p = u2
x − 4u as in [74, example 1 page 120]. We recall hereafter that

we have [u2
x − 4u] ( [u2

x − 4u] : {ux}∞. This indicates that even in the case of a

single polynomial, the problem is much harder in the differential setting since the

case of a single polynomial in the algebraic setting is obvious (line 3 of Algorithm 1).

It is obvious to show that uxx − 2 ∈ [u2
x − 4u] : {ux}∞ since dp/dx = 2ux(uxx − 2).

However uxx − 2 /∈ [u2
x − 4u] holds for the following reason: the solution u = 0

for [u2
x − 4u] does not cancel uxx − 2 which implies: uxx − 2 /∈ [u2

x − 4u]. Thus,

we have; [u2
x − 4u] ( [u2

x − 4u] : {ux}∞. In [6] the authors have shown that any

lexicographical reduced Gröbner basis of a prime ideal P contains a regular chain T

such that sat(T ) = P holds. One would like to be able to reverse this construction,

that is, retrieving from T a Gröbner basis of P . Kalkbrener’s formula (Property (3)

in Theorem 3) and the notion of primitive regular chains seem to form a good starting

point for investigating this question.

In general a primitive regular chain is not a lex Gröbner basis with the same

variable ordering. Over the ring Q[x ≻ y ≻ z ≻ v ≻ u ≻ r ≻ t], the following regular

chain T is primitive:

T =







v − rt,

ztu− 1,

yr − t2u− 1,

xu− xr − 2 x− u− 2 t4 + 1.

The ideal sat(T ) = 〈T 〉 has the reduced lex Gröbner basis G in lex order x ≻ y ≻
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z ≻ v ≻ u ≻ r ≻ t, which consists of 6 polynomials.

G =







v − rt,

ztu− 1,

yr − t2u− 1,

xu− xr − 2 x− u− 2 t4 + 1,

rtzx + 1− zt− x + 2 ztx + 2 t5z,

ztx + t2x− yzt− xy + y + 2 yztx + 2 t5yz

Moreover, in the same variable ordering, its reduced degree reverse lex Gröbner basis

G2 consists of 12 polynomials. Clearly, when T is a primitive regular chain, no other

generating set of the saturated ideal sat(T ) can can have fewer elements than T ; in

addition T provides nice algorithmic properties (membership test, regularity test) as

Gröbner bases do.

G2 =







−v + rt,

t2u + 1− yr,

ztu− 1,

yr2 − vut− r,

yzr − z − t,

xu2 − xru− 2 yvt− 2 xu− u2 + 2 t2 + u,

vzu− r,

yvz − zt− t2,

−xu + xr + 2 x + u + 2 t4 − 1,

2 vt3 − xru + xr2 + 2 xr + ru− r,

xur2 − xr3 − 2 v2t2 − 2 xr2 − r2u + r2,

xzvr3 + 2 zv3t2 + 2 vzxr2 − zvr2 − xr3 + r3.

As discussed in Section 2.7, an application of Algorithm 1 is in the removal of re-

dundant components for triangular decompositions in the sense of Kalkbrener. How-

ever, this Algorithm 2 provides only a criterion for removing redundant components.

Obtaining a decision algorithm, free of Gröbner basis computations, for testing the

inclusion of saturated ideals, remains an open problem.

Another possible research direction is to investigate the relations between primi-

tive regular chains and the minimum number of generators of saturated ideals. For

instance, it is natural to ask whether a prime ideal P of height h can be generated
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by h elements if and only if there exists a variable ordering and a primitive regular

chain C (w.r.t. this variable ordering) such that C generates P .
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Chapter 3

Regular GCD : a Bottom-up

Algorithm

3.1 Introduction

Triangular decomposition of polynomial systems are based on a recursively univariate

vision of multivariate polynomials. Most of the methods computing these decompo-

sitions manipulate polynomial remainder sequences (PRS). Moreover, these methods

are usually “factorization free”, which explains why two different irreducible compo-

nents may be represented by the same regular chain. An essential routine is then

to check whether a hypersurface f = 0 contains one of the irreducible components

encoded by a regular chain T . This is achieved by testing whether the polynomial f

is a zero-divisor modulo the saturated ideal of T . This univariate vision on regular

chains allows to perform regularity test by means of GCD computations. However,

since the saturated ideal of T may not be prime, the concept of a GCD used here is

not standard.

The first formal definition of this type of GCDs was given by Kalkbrener in

[41]. But in fact, GCDs over non-integral domains were already used in several

papers [28, 35, 45] since the introduction of the celebrated D5 Principle [24] by Della

Dora, Dicrescenzo and Duval. Indeed, this brilliant and simple observation allows one

to carry out over direct product of fields computations that are usually conducted

over fields. For instance, computing univariate polynomial GCDs by means of the

Euclidean Algorithm.

To define a polynomial GCD of two (or more) polynomials modulo a regular chain

T , Kalkbrener refers to the irreducible components that T represents. In order to
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improve the practical efficiency of those GCD computations by means of subresultant

techniques, Rioboo and Moreno Maza proposed a more abstract definition in [67].

Their GCD algorithm is, however, limited to regular chains with zero-dimensional

saturated ideals.

While Kalkbrener’s definition cover the positive dimensional case, his approach

cannot support triangular decomposition methods solving polynomial systems incre-

mentally, that is, by solving one equation after another. This is a serious limitation

since incremental solving is a powerful way to develop efficient sub-algorithms, by

means of geometrical consideration. The first incremental triangular decomposition

method was proposed by Lazard in [44], without proof nor a GCD definition. Another

such method was established by the Moreno Maza in [65] together with a formal no-

tion of GCD adapted to the needs of incremental solving. This concept, called regular

GCD, is reviewed in Section 3.2 in the context of regular chains. A more abstract

definition follows.

Let B be a commutative ring with unity. Let P , Q and G be non-zero univariate

polynomials in B[y]. We say that G is a regular GCD of P,Q if the following three

conditions hold:

(1) the leading coefficient of G in y is a regular element of B,

(2) G lies in the ideal generated by P and Q in B[y], and

(3) if G has positive degree w.r.t. y, then G pseudo-divides both P and Q, that is,

the pseudo-remainders prem(P,G) and prem(Q,G) are null.

In the context of regular chains, the ring B is the residue class ring of a polynomial

ring A := k[x1, . . . , xn] over a field k by the saturated ideal sat(T ) of a regular chain

T . Even if the leading coefficients of P,Q are regular and sat(T ) is radical, the

polynomials P,Q may not necessarily admit a regular GCD (unless sat(T ) is prime).

However, by splitting T into several regular chains T1, . . . , Te (in a sense specified in

Section 3.2) one can compute a regular GCD of P,Q over each of the rings A/sat(Ti),

as shown in Section 3.4.

In this and the following chapter, we propose a new algorithm for this task, to-

gether with a theoretical study and implementation report, providing dramatic im-

provements w.r.t. previous work [41, 65].

Section 3.3 exhibits sufficient conditions for a subresultant of P,Q (regarded as

univariate polynomials in y) to be a regular GCD of P,Q w.r.t. T . Some of these

properties could be known, but we could not find a reference for them, in particular

when sat(T ) is not radical.
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These results reduce the computation of regular GCDs to that of subresultant

chains. More precisely and reusing the above notations, Theorem 5 in Section 3.4

states that the regular chain T can be split into regular chains T1, . . . , Te such that

for each i = 1 · · · e, one of the subresultants of P and Q is a regular GCD of P,Q

over A/sat(Ti).

This chapter is based on the ISSAC 2009 article [49]. We include a formal pre-

sentation of Algorithm 3 together with a complete proof.

3.2 Preliminaries

Let k be a field and let k[x] = k[x1, . . . , xn] be the ring of polynomials with coefficients

in k, with ordered variables x1 ≺ · · · ≺ xn. Let k be the algebraic closure of k. If u

is a subset of x then k(u) denotes the fraction field of k[u]. For F ⊂ k[x], we denote

by 〈F 〉 the ideal it generates in k[x] and by
√

〈F 〉 the radical of 〈F 〉. For H ∈ k[x],

the saturated ideal of 〈F 〉 w.r.t. H, denoted by 〈F 〉 : H∞, is the ideal

{Q ∈ k[x] | ∃m ∈ N s.t. HmQ ∈ 〈F 〉}.

A polynomial P ∈ k[x] is a zero-divisor modulo 〈F 〉 if there exists a polynomial Q

such that PQ ∈ 〈F 〉, and neither P nor Q belongs to 〈F 〉. The polynomial P is

regular modulo 〈F 〉 if it is neither zero, nor a zero-divisor modulo 〈F 〉. We denote by

V (F ) the zero set (or algebraic variety) of F in k
n
. For a subset W ⊂ k

n
, we denote

by W its closure in the Zariski topology.

3.2.1 Regular chains and related notions

Polynomial. If P ∈ k[x] is a non-constant polynomial, the largest variable appear-

ing in P is called the main variable of P and is denoted by mvar(P ). We regard P as

a univariate polynomial in its main variable. The degree and the leading coefficient

of P as a univariate polynomial in mvar(P ) are called main degree and initial of P ;

they are denoted by mdeg(P ) and init(P ) respectively.

Triangular Set. A subset T of non-constant polynomials of k[x] is a triangular set

if the polynomials in T have pairwise distinct main variables. Denote by mvar(T ) the

set of all mvar(P ) for P ∈ T . A variable v ∈ x is algebraic w.r.t. T if v ∈ mvar(T );

otherwise it is free. For a variable v ∈ x we denote by T<v (resp. T>v) the subsets of

T consisting of the polynomials with main variable less than (resp. greater than) v.
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If v ∈ mvar(T ), we denote by Tv the polynomial P ∈ T with main variable v. For T

not empty, Tmax denotes the polynomial of T with largest main variable.

Quasi-component and saturated ideal. Given a triangular set T in k[x], denote

by hT the product of the init(P) for all P ∈ T . The quasi-component W (T ) of T is

V (T ) \ V (hT ), that is, the set of the points of V (T ) which do not cancel any of the

initials of T . We denote by sat(T ) the saturated ideal of T , defined as follows: if T is

empty then sat(T ) is the trivial ideal 〈0〉; otherwise it is the ideal 〈T 〉 : h∞
T .

Regular chain. A triangular set T is a regular chain if either T is empty, or T \
{Tmax} is a regular chain and the initial of Tmax is regular with respect to sat(T \
{Tmax}). In this latter case, sat(T ) is a proper ideal of k[x]. From now on T ⊂ k[x]

is a regular chain; moreover we write m = |T |, s = mvar(T ) and u = x \ s. The ideal

sat(T ) enjoys several properties. First, its zero-set equals W (T ). Second, the ideal

sat(T ) is unmixed with dimension n−m. Moreover, any prime ideal p associated to

sat(T ) satisfies p∩k[u] = 〈0〉.
Given P ∈ k[x] the pseudo-remainder (resp. iterated resultant) of P w.r.t. T ,

denoted by prem(P, T ) (resp. iterRes(P, T )) is defined as follows. If P ∈ k or no

variables of P is algebraic w.r.t. T , then prem(P, T ) = P (resp. iterRes(P, T ) = P ).

Otherwise, we set prem(P, T ) = prem(R, T<v) (resp. iterRes(P, T ) = iterRes(R, T<v))

where v is the largest variable of P which is algebraic w.r.t. T and R is the pseudo-

remainder (resp. resultant) of P and Tv w.r.t. v. We have: P is null (resp. regular)

w.r.t. sat(T ) if and only if prem(P, T ) = 0 (resp. iterRes(P, T ) 6= 0).

Regular GCD. Let I be the ideal generated by
√

sat(T ) in k(u)[s]. Then

L(T ) := k(u)[s]/I is a direct product of fields. It follows that every pair of univari-

ate polynomials P,Q ∈ L(T )[y] possesses a GCD in the sense of [67]. The following

GCD notion [65] is more convenient since it avoids considering radical ideals. Let

T ⊂ k[x1, . . . , xn] be a regular chain and let P,Q ∈ k[x, y] be non-constant polyno-

mials both with main variable y. Assume that the initials of P and Q are regular

modulo sat(T ). A non-zero polynomial G ∈ k[x, y] is a regular GCD of P,Q w.r.t. T

if these conditions hold:

(1) lc(G, y) is regular with respect to sat(T );

(2) there exist u, v ∈ k[x, y] such that g − up− vt ∈ sat(T );

(3) if deg(G, y) > 0 holds, then 〈P,Q〉 ⊆ sat(T ∪G).
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In this case, the polynomial G has several properties. First, it is regular with

respect to sat(T ). Moreover, if sat(T ) is radical and deg(G, y) > 0 holds, then the

ideals 〈P,Q〉 and 〈G〉 of L(T )[y] are equal, so that G is a GCD of (P,Q) w.r.t. T in

the sense of [67]. The notion of a regular GCD can be used to compute intersections

of algebraic varieties. As an example we will use Formula (3.1) which follows from

Theorem 32 in [65]. Assume that the regular chain T is simply {R} where R =

res(P,Q, y), for R 6∈ k, and let H be the product of the initials of P and Q. Then,

we have:

V (P,Q) = W (R,G) ∪ V (H,P,Q). (3.1)

Splitting. Two polynomials P,Q may not necessarily admit a regular GCD w.r.t.

a regular chain T , unless sat(T ) is prime, see Example 1 in Section 3.3. However, if T

“splits” into several regular chains, then P,Q may admit a regular GCD w.r.t. each

of them. This requires a notation. For non-empty regular chains T, T1, . . . , Te ⊂ k[x]

we write T −→ (T1, . . . , Te) whenever

√

sat(T ) =
√

sat(T1) ∩ · · · ∩
√

sat(Te),

mvar(T ) = mvar(Ti) and sat(T ) ⊆ sat(Ti) hold for all 1 ≤ i ≤ e. Observe that during

splitting any polynomial H regular w.r.t sat(T ) is also regular w.r.t. sat(Ti) for all

1 ≤ i ≤ e.

3.2.2 Fundamental operations on regular chains

We list below the specifications of the fundamental operations on regular chains used

in this and the following chapter. The names and specifications of these operations

are the same as in the RegularChains library [48] in Maple.

Regularize. For regular chain T ⊂ k[x] and polynomial P ∈ k[x], the operation

Regularize(P, T ) returns regular chains T1, . . . , Te of k[x] such that, for each 1 ≤ i ≤ e,

P is either zero or regular modulo sat(Ti) and we have T−→(T1, . . . , Te).

RegularGcd. Let T be a regular chain and let P,Q ∈ k[x, y] be non-constant

with mvar(P ) = mvar(Q) = y 6∈ mvar(T ) and such that both init(P ) and init(Q) are

regular w.r.t. sat(T ). Then, the operation RegularGcd(P,Q, T ) returns a sequence

(G1, T1), . . . , (Ge, Te), called a regular GCD sequence, where G1, . . . , Ge are polyno-
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mials and T1, . . . , Te are regular chains of k[x], such that T−→(T1, . . . , Te) holds and

Gi is a regular GCD of P,Q w.r.t. Ti for all 1 ≤ i ≤ e.

NormalForm. Let T be a zero-dimensional normalized regular chain, that is, a

regular chain whose saturated ideal is zero-dimensional and whose initials are all in

the base field k. Observe that T is a lexicographic Gröbner basis. Then, for P ∈ k[x],

the operation NormalForm(P, T ) returns the normal form of P w.r.t. T in the sense

of Gröbner bases.

3.2.3 Subresultants

We follow the presentation of [25], [85] and [30].

Determinantal polynomial. Let B be a commutative ring with identity and let

m ≤ n be positive integers. Let M be a m× n matrix with coefficients in B. Let Mi

be the square submatrix of M consisting of the first m − 1 columns of M and the

i-th column of M , for i = m · · ·n; let det Mi be the determinant of Mi. We denote

by dpolM the element of B[y], called the determinantal polynomial of M , given by

dpol(M) = det Mmyn−m + det Mm+1y
n−m−1 + · · ·+ det Mn.

Note that if dpol(M) is not zero then its degree is at most n−m. Let P1, . . . , Pm be

polynomials of B[y] of degree less than n. We denote by mat(P1, . . . , Pm) the m× n

matrix whose i-th row contains the coefficients of Pi, sorted in order of decreasing

degree, and such that Pi is treated as a polynomial of degree n − 1. We denote by

dpol(P1, . . . , Pm) the determinantal polynomial of mat(P1, . . . , Pm).

Subresultant. Let P,Q ∈ B[y] be non-constant polynomials of respective degrees

p, q with q ≤ p. Let d be an integer with 0 ≤ d < q. Then the d-th subresultant of P

and Q, denoted by Sd(P,Q), is

Sd(P,Q) = dpol(yq−d−1P, yq−d−2P, . . . , P, yp−d−1Q, . . . , Q).

This is a polynomial which belongs to the ideal generated by P and Q in B[y]. In

particular, S0(P,Q) is res(P,Q), the resultant of P and Q. Observe that if Sd(P,Q)

is not zero then its degree is at most d. When Sd(P,Q) has degree d, it is said

non-defective or regular; when Sd(P,Q) 6= 0 and deg(Sd(P,Q)) < d, Sd(P,Q) is said
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defective. We denote by sd the coefficient of Sd(P,Q) in yd. For convenience, we

extend the definition to the q-th subresultant as follows:

Sq(P,Q) =

{

γ(Q)Q, if p > q or lc(Q) ∈ B is regular

undefined, otherwise

where γ(Q) = lc(Q)p−q−1. Note that when p equals q and lc(Q) is a regular element in

B, Sq(P,Q) = lc(Q)−1Q is in fact a polynomial over the total fraction ring of B. We

call specialization property of subresultants the following statement. Let D be another

commutative ring with identity and Ψ a ring homomorphism from B to D such that

Ψ(lc(P )) 6= 0 and Ψ(lc(Q)) 6= 0. Then

Sd(Ψ(P ), Ψ(Q)) = Ψ(Sd(P,Q)).

Divisibility relations of subresultants. Subresultants Sq−1(P,Q), Sq−2(P,Q),

. . ., S0(P,Q) satisfy relations which induce an Euclidean-like algorithm for computing

them. Following [25] we first assume that B is an integral domain. For convenience,

we simply write Sd instead of Sd(P,Q) for each d. We write A ∼ B for A,B ∈ B[y]

whenever they are associated over fr(B), the field of fractions of B. Then for d =

q − 1, . . . , 1, we have:

(rq−1) Sq−1 = prem(P,−Q), the pseudo-remainder of P by −Q,

(r<q−1) if Sq−1 6= 0, with e = deg(Sq−1), then the following holds:

prem(Q,−Sq−1) = lc(Q)(p−q)(q−e)+1Se−1,

(re) if Sd−1 6= 0, with e = deg(Sd−1) < d− 1, thus Sd−1 is defective, and we have

(1) deg(Sd) = d, thus Sd is non-defective,

(2) Sd−1 ∼ Se and lc(Sd−1)
d−e−1Sd−1 = sd

d−e−1Se, thus Se is non-defective,

(3) Sd−2 = Sd−3 = · · · = Se+1 = 0,

(re−1) if both Sd and Sd−1 are nonzero, with respective degrees d and e then we have

prem(Sd,−Sd−1) = lc(Sd)
d−e+1Se−1.

We consider now the case where B is an arbitrary commutative ring, following The-

orem 4.3 in [30]. If Sd, Sd−1 are nonzero, with respective degrees d and e and if sd is
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regular in B then we have

lc(Sd−1)
d−e−1Sd−1 = sd

d−e−1Se.

Moreover, there exists Cd ∈ B[y] such that

(−1)d−1lc(Sd−1)seSd + CdSd−1 = lc(Sd)
2Se−1.

In addition Sd−2 = Sd−3 = · · · = Se+1 = 0 also holds.

From these formula we derive the following observation to which we will refer

as the block structure of subresultants. Let Si, Sj, Sk be three non-zero subresultants

with indices q ≥ i > j > k ≥ 0. Assume that for all ℓ = i−1, . . . , j+1, j−1, . . . , k+1

we have Sℓ = 0. Assume that Sj is defective. Then Si is non-defective and we have

j = i− 1. Moreover Sk is non-defective and we have Sj ∼ Sk. Observe also that the

non-zero subresultant Sd of smallest index d, sometimes called the last subresultant

of P and Q and denoted by lsr(P,Q), is a non-defective subresultant.

3.3 Subresultants and regular GCDs

Throughout this section, we assume n ≥ 1 and we consider P,Q ∈ k[x1, . . . , xn+1]

non-constant polynomials with the same main variable y := xn+1 and such that

p := deg(P, y) ≥ q := deg(Q, y) holds. We denote by R the resultant of P and Q

w.r.t. y. Let T ⊂ k[x1, . . . , xn] be a non-empty regular chain such that R ∈ sat(T )

and the initials of P,Q are regular w.r.t. sat(T ). We denote by A and B the rings

k[x1, . . . , xn] and k[x1, . . . , xn]/sat(T ), respectively. Let Ψ be both the canonical ring

homomorphism from A to B and the ring homomorphism it induces from A[y] to B[y].

For 0 ≤ j ≤ q, we denote by Sj the j-th subresultant of P,Q in A[y].

Let d be an index in the range 1 · · · q such that Sj ∈ sat(T ) for all 0 ≤ j < d.

Lemma 13 and Lemma 14 exhibit conditions under which Sd is a regular GCD of P

and Q w.r.t. T . Lemma 11 and Lemma 12 investigate the properties of Sd when

lc(Sd, y) is regular modulo sat(T ) and lc(Sd, y) ∈ sat(T ) respectively.

Lemma 11. If lc(Sd, y) is regular modulo sat(T ), then the polynomial Sd is a non-

defective subresultant of P and Q over A. Consequently, Ψ(Sd) is a non-defective

subresultant of Ψ(P ) and Ψ(Q) in B[y].

Proof. When d = q holds, we are done. Assume d < q. Suppose Sd is defective,

that is, deg(Sd, y) = e < d. According to item (re) in the divisibility relations of
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subresultants, there exists a non-defective subresultant Sd+1 such that

lc(Sd, y)d−eSd = sd−e
d+1Se,

where sd+1 is the leading coefficient of Sd+1 in y. By our assumptions, Se belongs

to sat(T ), thus lc(Sd, y)d−eSd ∈ sat(T ) holds. It follows from the fact lc(Sd, y) is

regular modulo sat(T ) that Sd is also in sat(T ). However the fact that lc(Sd, y) =

init(Sd) is regular modulo sat(T ) also implies that Sd is regular modulo sat(T ). A

contradiction.

Lemma 12. If lc(Sd, y) is contained in sat(T ), then all the coefficients of Sd regarded

as a univariate polynomial in y are nilpotent modulo sat(T ).

Proof. If the leading coefficient lc(Sd, y) is in sat(T ), then lc(Sd, y) ∈ p holds for all

the associated primes p of sat(T ). By the Block Structure Theorem of subresultants

(Theorem 7.9.1 of [58]) over an integral domain k[x1, . . . , xn−1]/p, Sd must belong to

p. Hence we have Sd ∈
√

sat(T ). Indeed, in a commutative ring, the radical of an

ideal equals the intersection of all its associated primes. Thus Sd is nilpotent modulo

sat(T ). It follows from Exercise 2 of [5] that all the coefficients of Sd in y are also

nilpotent modulo sat(T ).

Lemma 12 implies that, whenever lc(Sd, y) ∈ sat(T ) holds, the polynomial Sd will

vanish on all the components of sat(T ) after splitting T sufficiently. This is the key

reason why Lemma 11 and Lemma 12 can be applied for computing regular GCDs.

Indeed, up to splitting via the operation Regularize, one can always assume that either

lc(Sd, y) is regular modulo sat(T ) or lc(Sd, y) belongs to sat(T ). Hence, up to splitting,

one can assume that either lc(Sd, y) is regular modulo sat(T ) or Sd belongs to sat(T ).

This leads to the following notion of a candidate regular GCD, which plays a central

role for computing the regular GCD sequence of P and Q.

Definition 5 (Candidate regular GCD). Let Sd be the last nonzero subresultant of

P and Q such that Sd /∈ sat(T ). Then Sd is called a candidate regular GCD of P , Q

with respect to T , if the leading coefficient of Sd in y is regular modulo sat(T ).

Example 6. If lc(Sd, y) is not regular modulo sat(T ) then Sd may be defective. Con-

sider for instance the polynomials P = x2
3x

2
2 − x4

1 and Q = x2
1x

2
3 − x4

2 in Q[x1, x2, x3].

We have prem(P,−Q) = (x6
1− x6

2) and R = (x6
1− x6

2)
2. Let T = {R}. The last subre-

sultant of P,Q modulo sat(T ) is prem(P,−Q), which has degree 0 w.r.t x3, although

its index is 1. Note that prem(P,−Q) is nilpotent modulo sat(T ).
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In what follows, we give sufficient conditions for the subresultant Sd to be a regular

GCD of P and Q w.r.t. T . When sat(T ) is a radical ideal, Lemma 14 states that

the assumptions of Lemma 11 are sufficient. This lemma validates the search for a

regular GCD of P and Q w.r.t. T in a bottom-up style, from S0 up to Sℓ for some ℓ.

Lemma 13 covers the case where sat(T ) is not radical and states that Sd is a regular

GCD of P and Q modulo T , provided that Sd satisfies the conditions of Lemma 11

and provided that, for all d < k ≤ q, the coefficient coeff(Sk, y
k) 1 is either null or

regular modulo sat(T ). This is our first main theoretical result.

Lemma 13. We reuse the notations and assumptions of Lemma 11. Then Sd is a

regular GCD of P and Q modulo sat(T ), if Sd is a candidate regular GCD and for all

d < k ≤ q, the coefficient sk of yk in Sk is either null or regular modulo sat(T ).

Proof. There are three conditions to satisfy for Sd to be a regular GCD of P and Q

modulo sat(T ):

(1) lc(Sd) is regular modulo sat(T );

(2) there exists polynomials u and v such that Sd − uP − vQ ∈ sat(T ); and

(3) both P and Q are in I := sat(T ∪ {Sd}).

We write Ψ(r) as r̄ for brevity 2, and will prove the lemma in three steps.

Claim 1: If Q and Sq−1 are in I, then Sd is a regular GCD of P , Q modulo sat(T ).

The properties of Sd imply Conditions (1), (2) and we only need to show that

the Condition (3) also holds. If d = q holds, then Sq−1 ∈ sat(T ) and we are done.

Otherwise, Sq−1 = prem(P,−Q) is not null modulo sat(T ), because S̄q−1 = 0 implies

that all subresultants of P̄ and Q̄ with index less than q vanish over B. By assumption,

both Q and Sq−1 = prem(P,−Q) are in I, P is also in I, since lc(Q) is regular modulo

sat(T ) and is also regular modulo I. This completes the proof of Claim 1.

To prove that Q and Sq−1 are in sat(T ), we define the following set of indices

J = {j | d < j < q, coeff(Sj, y
j) /∈ sat(T )}.

1Let f = ad xd + · · · + a0 be a nonzero univariate polynomial in x. Then the leading coefficient
and the coefficient in xd might be different. We have coeff(f, xi) = ai for all 0 ≤ i ≤ d, and the
leading coefficient of f is lc(f) = as where s is the largest index such as 6= 0. Hence coeff(f, xd) may
differ from lc(f).

2The degree of S̄k may be less than the degree of Sk, since its leading coefficient could be in sat(T ).
Hence, lc(Sk) may differ from lc(S̄k). We carefully distinguish them when the leading coefficient of
a subresultant is not regular in B.
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By assumption, coeff(Sj, y
j) is regular modulo sat(T ) for each j ∈ J . Our arguments

rely on the Block Structure Theorem (BST) over an arbitrary ring [30] and Ducos’

subresultant algorithm [25, 65] along with the specialization property of subresultants.

Claim 2: If J = ∅, then Si ∈ I holds for all d < i ≤ q.

Indeed, the BST over B implies that there exists at most one subresultant Sj such

that d < j < q and Sj /∈ sat(T ). Therefore all but Sq−1 are in sat(T ), and thus S̄q−1

is defective of degree d. More precisely, the BST over B implies

lc(S̄q−1)
eSq−1 ≡ lc(Sq)

eSd mod sat(T ) (3.2)

for some integer e ≥ 0. According to Relation (3.2), lc(S̄q−1) is regular in B. Hence,

we have Sq−1 ∈ I. By the definition of Sd, we have prem(S̄q,−S̄q−1, y) ∈ sat(T ) which

implies Sq ∈ I. This completes the proof of Claim 2.

Now we consider the case J 6= ∅. Write J explicitly as J = {j0, j1, . . . , jℓ−1},
with ℓ = |J | and we assume j0 < j1 < · · · < jℓ−1. For convenience, we write jℓ := q.

For each integer k satisfying 0 ≤ k ≤ ℓ we denote by Pk the following property:

Si ∈ I, for all d < i ≤ jk.

Claim 3: The property Pk holds for all 0 ≤ k ≤ ℓ.

We proceed by induction on 0 ≤ k ≤ ℓ. The base case is k = 0. We need to show

Si ∈ I for all d < i ≤ j0. By the definition of j0, S̄j0 is a non-defective subresultant

of P̄ and Q̄, and coeff(Si, y
i) is in sat(T ) for all d < i < j0. By the BST over B, there

is at most one d < i < j0 such that Si /∈ sat(T ). If no such a subresultant exists,

then we know that prem(S̄j0 ,−S̄d) is in sat(T ). Consequently, Sj0 ∈ I holds, which

implies Sj ∈ I for all d < i ≤ j0. On the other hand, if Si0 is not in sat(T ) for some

d < i0 < j0, then S̄i0 is similar to S̄d over B. To be more precise, we have

lc(S̄i0)
eS̄i0 ≡ lc(S̄j0)

eS̄d mod sat(T ) (3.3)

for some integer e ≥ 0. With the same reasoning as in the case J = ∅, we know that

lc(S̄i0) is regular modulo sat(T ) and we deduce that Si0 ∈ I holds. Also, we have

prem(S̄j0 ,−S̄i0) ∈ sat(T ), by definition of Sd. This implies Sj0 ∈ I from the fact that

lc(S̄i0) is regular modulo sat(T ) (and thus regular modulo I). Hence, we have Si ∈ I
for all d < i ≤ j0, as desired. Therefore the property Pk holds for k = 0.

Now we assume that the property Pk−1 holds for some 1 ≤ k ≤ ℓ. We prove that
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Pk also holds. According to the BST over B, there exists at most one subresultant

between S̄jk−1
and S̄jk

, both of which are non-defective subresultants of P̄ and Q̄. If

Si ∈ sat(T ) holds for all jk−1 < i < jk, then we have

prem(S̄jk
,−S̄jk−1

) ≡ lc(S̄jk
)eS̄u mod sat(T )

for some d ≤ u < jk−1 and some integer e ≥ 0. Thus, prem(S̄jk
,−S̄jk−1

) ∈ I by

our induction hypothesis, and consequently, Sjk
∈ I holds. On the other hand, if all

subresultants Si (for jk−1 < i < jk) but Sik (for some index ik such that jk−1 < ik < jk)

are in sat(T ), then S̄ik is similar to S̄jk−1
over B, that is,

lc(S̄ik)
eS̄ik ≡ lc(S̄jk

)eS̄jk−1
mod sat(T ) (3.4)

for some integer e ≥ 0. By Relation (3.4), lc(S̄ik) is regular modulo sat(T ), and thus

is regular modulo I. Using Relation (3.4) again, we have Sik ∈ I, since Sjk−1
is in I.

Meanwhile, we have

prem(S̄jk
,−S̄ik) ≡ lc(S̄jk

)eS̄u mod sat(T )

for some d ≤ u < jk−1 and some integer e ≥ 0. By the induction hypothesis, we

deduce Su ∈ I, which implies Sjk
∈ I together with the fact that lc(S̄ik) is regular

modulo I. This shows that Si ∈ I holds for all d < i ≤ jk. Therefore, property Pk

holds.

Finally, we apply Claim 3 with k = ℓ, leading to Si ∈ I for all d < i ≤ jℓ = q,

which completes the proof of our lemma.

The consequence of the above corollary is that we ensure that Sd is a regular GCD

after checking that the leading coefficients of all non-defective subresultants above Sd,

are either null or regular modulo sat(T ). Therefore, one may be able to conclude that

Sd is a regular GCD simply after checking the coefficients “along the diagonal” of the

pictorial representation of the subresultants of P and Q.

On the left of Figure 3.1, P and Q have five nonzero subresultants over k[x], four

of which are non-defective and one of which is defective.Let T be a regular chain in

k[x] such that lc(P ) and lc(Q) are regular modulo sat(T ). Further, we assume that

lc(S1) and lc(S4) are regular modulo sat(T ), however, lc(S6) is in sat(T ). The right

hand side is a possible configuration of the subresultant chain of P̄ and Q̄. In the

proof of Claim 3, the set J is {j0 = 4} and j1 = 7, whereas i0 = 2 and i1 = 6 are the
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indices of defective subresultants over k[x]/sat(T ). In this case, S1 is a regular GCD

of P and Q modulo sat(T ).

S1

S2

S4

S5

S6

Q = S7

P

S̄1

S̄2

S̄4

S̄6

Q̄ = S̄7

P̄

Figure 3.1: A possible configuration of the subresultant chain of P and Q.

Lemma 14. With the assumptions of Lemma 11, assume sat(T ) radical. Then, Sd

is a regular GCD of P,Q w.r.t. T .

Proof. As for Lemma 13, it suffices to check that P , Q belong to sat(T ∪{Sd}). Let p

be any prime ideal associated with sat(T ). Define D = k[x1, . . . , y]/p and let L be the

fraction field of the integral domain D. Clearly Sd is the last subresultant of P, Q in

D[y] and thus in L[y]. Hence Sd is a GCD of P, Q in L[y]. Thus Sd divides P, Q in

L[y] and pseudo-divides P, Q in D[y]. Therefore prem(P, Sd) and prem(Q,Sd) belong

to p. Finally prem(P, Sd) and prem(Q,Sd) belong to sat(T ). Indeed, sat(T ) being

radical, it is the intersection of its associated primes.

3.4 A regular GCD algorithm

Following the notations and assumptions of Section 3.3, we propose an algorithm to

compute a regular GCD sequence of P,Q w.r.t. T . as specified in Section 3.2.2. Then,

we explain how to relax the assumption R ∈ sat(T ). First, the subresultants of P,Q

in A[y] are assumed to be known. We explain in Section 4.2 how we compute them

in our implementation. Secondly, we rely on the Regularize operation specified in

Section 3.2.2. Lastly, we inspect the subresultant chain of P,Q in A[y] in a bottom-

up manner. Therefore, we view S1, S2, . . . as successive candidates and apply either

Lemma 14, (if sat(T ) is known to be radical) or Lemma 13.
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3.4.1 Case where R ∈ sat(T ).

By virtue of Lemma 11 and Lemma 12 there exists regular chains T1, . . . , Te ⊂ k[x]

such that T −→ (T1, . . . , Te) holds and for each 1 ≤ i ≤ e there exists an index

1 ≤ di ≤ q such that the leading coefficient lc(Sdi
, y) of the subresultant Sdi

is regular

modulo sat(Ti) and Sj ∈ sat(Ti) for all 0 ≤ j < di. Such regular chains can be

computed using the operation Regularize. If each sat(Ti) is radical then it follows

from Lemma 14 that (Sd1
, T1), . . . , (Sde

, Te) is a regular GCD sequence of P,Q w.r.t.

T . In practice, when sat(T) is radical then so are all sat(Ti), see [9]. If some sat(Ti)

is not known to be radical, then one can compute regular chains Ti,1, . . . , Ti,ei
⊂ k[x]

such that Ti −→ (Ti,1, . . . , Ti,ei
) holds and for each 1 ≤ ℓi ≤ ei there exists an index

1 ≤ dℓi
≤ q such that Lemma 13 applies and shows that the subresultant Sdℓi

is

regular GCD of P,Q w.r.t. Ti,ℓi
. Such computation relies again on Regularize. The

complete procedure of computing regular GCD sequence is given by the algorithm

RGSZR.

Theorem 5. The algorithm RGSZR terminates and computes a regular GCD sequence

of P and Q with respect to T .

Proof. We need to show the termination of two while-loops in the algorithm. The

first one is the while-loop from Line 4 to Line 15. Observe that if an item [i, C] out

of Tasks satisfies i = mdeg(Q), then both Si and ci are regular modulo sat(C). Then

no true splitting will happen (i.e. C = D at Line 11) while calling Regularize(Si, C).

Moreover, item [i,D] will only be inserted into Candidates (Line 15). In other words,

no item [i,D] with i > mdeg(Q) will appear during the computation. Since only items

[i + 1, D], replacing the item [i, C] from Tasks, can be inserted back at Line 9 and

Line 13, this while-loop terminates eventually. The second while-loop is from Line

22 to Line 29. According to Line 24 and 25, no item [j,D] with j > mdeg(Q) will

appear during the computation. Hence the latter while-loop terminates as well. This

completes the proof of the termination of the algorithm.

Now we prove the correctness of the algorithm. During each iteration of the while-

loop from Line 4 to Line 15, from the specification of Regularize, regular chains in

Regularize(Si, C) form a splitting of C. This implies a loop invariant: regular chains

in Tasks and Candidates form a splitting of T . What we need to show is: each item

[i,D] of Candidates satisfies that Si is a candidate regular GCD of P , Q w.r.t D and

lc(Si, y) is regular modulo sat(D).

We first prove a loop invariant for items in Tasks: During each iteration of the

first while-loop, each item [i, C] in Tasks satisfies Sk ∈ sat(C) for all k < i.
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Algorithm 3: RGSZR(P,Q, T )

RGSZR(P,Q, T )

Input : P and Q are polynomials ∈ k[x][y] such that lc(P, y), lc(Q, y)
are regular modulo sat(T ), resP,Q, y ∈ sat(T ), and
deg(P, y) ≥ deg(Q, y) > 0

Output : a regular GCD sequence of P , Q w.r.t T

1 Compute subresultants Si of P and Q in y for 1 ≤ i ≤ mdeg(Q)
// Compute regular GCD candidates

2 Find the smallest index i such that Si /∈ sat(T )
3 Candidates← ∅, Tasks← {[i, T ]}
4 while Tasks 6= ∅ do
5 Take and remove an item [i, C] out of Tasks
6 ci ← lc(Si, y)
7 if ci ∈ sat(C) then
8 for D ∈ Regularize(Si, C) do
9 Tasks← Tasks ∪ {[i + 1, D]}

10 else
11 for D ∈ Regularize(Si, C) do
12 if ci ∈ sat(D) then
13 Tasks← Tasks ∪ {[i + 1, D]}
14 else
15 Candidates← Candidates ∪ {[i,D]}

// Check all regular GCD candidates

16 if sat(T ) is known to be radical then
17 for [i, C] ∈ Candidates do
18 Results← Results ∪ {[Si, C]}
19 else
20 for [i, C] ∈ Candidates do
21 Tasks← {[i, C]}, Split← ∅
22 while Tasks 6= ∅ do
23 Take and remove an item [j,D] out of Tasks
24 if j = mdeg(Q) then
25 Split← Split ∪ {D}
26 else
27 Find the smallest k > j, s.t. sk = coeff(Sk, y

k) 6∈ sat(D)
28 for E ∈ Regularize(sk, D) do
29 Tasks := Tasks ∪ {[j + 1, E]}

30 for E ∈ Split do
31 Results← Results ∪ {[Si, E]}

32 return Results
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Firstly, for each item [i + 1, D] inserted back into Tasks at Line 9, we need to

show Si ∈ sat(D) for each D ∈ Regularize(Si, C). Since ci ∈ sat(C), by Lemma 12, Si

is a nilpotent modulo sat(C), and thus Si cannot be regular modulo sat(D). By the

specification of Regularize, Si ∈ sat(D) for each D. Secondly, for each item [i + 1, D]

inserted back into Tasks at Line 13, we know ci 6∈ sat(C) but ci ∈ sat(D), and need

to show Si ∈ sat(D). Lemma 12 still applies, which implies that Si is a nilpotent

modulo sat(D). Since D is a regular chain in Regularize(Si, D), Si must be null modulo

sat(D). This proves the loop invariant.

Now for each item [i,D] inserted into Candidates at Line 15, ci = lc(Si, y) is

regular modulo sat(D), since we have ci 6∈ sat(D) and D ∈ Regularize(Si, C). It

follows from the fact that [i, C] is taken from Tasks, Sk ∈ sat(D) holds for all k < i.

Therefore, for each [i,D] in Candidates, Si is a candidate regular GCD of P,Q w.r.t

D, as desired.

If sat(T ) is known to be radical, then we are done according to Lemma 14.

To finalize the proof, we show the correctness of the procedure checking each

candidate regular GCD (Lines 16 to 31). With a similar reasoning as above, during

each iteration of the for-loop from Line 20 to Line 31, all regular chains appearing in

Candidates and Results still form a splitting of T . We only need to show that each

item [Si, E] inserted into Results satisfies that Si is a regular GCD of P,Q w.r.t E.

Indeed, a key invariant of the while-loop from Line 22 to Line 29 is: each item

[j,D] from Tasks satisfies that coeff(Sk, y
k) is null or regular modulo sat(D) for each

i < k ≤ j. This invariant is clearly maintained by Lines 27, 28 and 29. After finishing

this while-loop, the set Split consists of regular chains E such that coeff(Sk, y
k) is

null or regular modulo sat(E) for each i < k ≤ mdeg(Q). According to Lemma 13, Si

is a regular GCD of P,Q w.r.t E, which will be added into Results at Line 31.

Recall the definition of a candidate regular GCD. Given a regular chain T in

k[x], and polynomials P , Q in k[x][xn+1] such that mvar(P ) = mvar(Q) = xn+1,

mdeg(P ) ≥ mdeg(Q), and initials of P , Q are regular modulo sat(T ). Assume that

there exists an index d in the range 1 · · · q = mdeg(Q) such that Sd 6∈ sat(T ) and

Sj ∈ sat(T ) for all 0 ≤ j < d. The subresultant Sd is called a candidate regular GCD

of P and Q w.r.t T . The following corollary is a direct consequence of Theorem 5.

Corollary 3 (Existence of regular GCDs). The subresultant Sd may not be a regular

GCD of P,Q w.r.t T . However, there exists a splitting T → (T1, . . . , Tm) and a

sequence d1, . . . , dm such that for each i in 1 · · ·m, d ≤ di ≤ q and Sdi
is a regular

GCD of P,Q w.r.t. Ti.
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According to the definition of a regular GCD, Sdi
is a polynomial of positive degree

di in xn+1 and its leading coefficient sdi
= lc(Sdi

, xn+1) is regular modulo sat(Ti), which

implies that Sdi
is of positive degree di modulo sat(Ti). In other words, regular GCD

of positive degree exists in each branch of T .

3.4.2 Case where R 6∈ sat(T ).

We explain how to relax the assumption R ∈ sat(T ) and obtain a general algorithm for

the operation RegularGcd. The principle is straightforward. Let R = res(P,Q, y). We

call Regularize(R, T ) obtaining regular chains T1, . . . , Te such that T −→ (T1, . . . , Te).

For each 1 ≤ i ≤ e, we compute a regular GCD sequence of P and Q w.r.t. Ti as

follows:

(1) If R ∈ sat(Ti) holds then we proceed with Algorithm RGSZR;

(2) otherwise R 6∈ sat(Ti) holds and the resultant R is actually a regular GCD of P

and Q w.r.t. Ti by definition.

Observe that when R ∈ sat(Ti) holds the subresultant chain of P and Q in y is

used to compute their regular GCD w.r.t. Ti. This is one of the motivations for the

implementation techniques described in Sections 4.2 and 4.3 of Chapter 4.

3.5 An example

In this section, we illustrate the algorithm RGSZR by running a nontrivial example.

Let P,Q be bivariate polynomials in Z2[a, x]

P = x6 + ax5 + a2x4 + x3 +
(
1 + a2 + a

)
x + a2 + a

Q = x5 + x4 + a2x3 + x2

The subresultant chain of P and Q w.r.t x is

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S4 = s44x
4 + s43x

3 + s42x
2 + s41x + s40

S3 = s33x
3 + s32x

2 + s31x + s30

S2 = s22x
2 + s21x + s20

S1 = s11x + s10

S0 = s00
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where the coefficients are

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s40 = (a + 1) a

s41 = 1 + a2 + a

s42 = a + 1

s43 = (a + 1) a2

s44 = a + 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s30 = (a + 1)4 a

s31 = (a + 1)2 (a3 + a + 1)

s32 = (a + 1) (a3 + a + 1)

s33 = (a + 1)6

∣
∣
∣
∣
∣
∣
∣

s20 = (a + 1)4(1 + a2 + a)a4

s21 = (a + 1)2(1 + a2 + a)a3(a3 + a + 1)

s22 = (a + 1)(1 + a2 + a)(a3 + a2 + 1)

∣
∣
∣
∣
∣

s10 = (a + 1)(a4 + a3 + 1)(a4 + a + 1)(1 + a2 + a)2a

s11 = (a10 + a8 + a6 + a + 1)(1 + a2 + a)2

∣
∣
∣ s00 = (a + 1)2(1 + a2 + a)4a2(a6 + a5 + 1)

Consider regular chain T consisting of a single polynomial T = {(a+1)2(1+a2+a)4a2}.

Search for candidates. Initially, the set C of candidates is empty.

(1) Process s00.

Since s00 ∈ sat(T ) = 〈(a + 1)2(1 + a2 + a)4a2〉, proceed to the next level.

(2) Process s11.

Since s11 is a zero-divisor modulo sat(T ), we regularize s11 w.r.t T , which de-

composes T into three components T1 = {(a + 1)2a2}, T2 = {(1 + a2 + a)2} and

T3 = {(1 + a2 + a)2}. Over T1, s11 is regular and we add the pair [S1, T1] into

C. Over T2 or T3, s11 is zero and we continue to the next coefficient s10 in S1.

(3) Process s10.

Since s10 is in sat(T2) or sat(T3), proceed to the next level.



53

(4) Process s22.

Since s22 is a zero-divisor modulo sat(T2) = 〈(1 + a2 + a)2〉, we regularize s22

w.r.t T2, which decompose T2 into two components T4 = T5 = {1+ a2 + a}. For

the same reason, we decompose T3 into two components T6 = T7 = {1+a2 +a}.
For all components, we continue to the next coefficient s21 in S1.

(5) Process s21.

Since s21 is in sat(T4), sat(T5), sat(T6) or sat(T7), we continue to the next coef-

ficient s20 in S1.

(6) Process s20.

Since s20 is in sat(T4), sat(T5), sat(T6) or sat(T7), we proceed to the next level.

(7) Process s33.

Since s33 is regular modulo sat(T4), sat(T5), sat(T6) or sat(T7), we add pairs

[S3, T4], [S3, T5], [S3, T6] and [S3, T7] into C.

Once completed the searching for candidate regular GCDs, the set of candidate is

C = {[S1, T1], [S3, T4], [S3, T5], [S3, T6], [S3, T7]},

where T1 = {(a + 1)2a2} and T4 = T5 = T6 = T7 = {1 + a2 + a}.

Check candidates. Initially, the set G of output is empty.

� Check the candidate [S1, T1].

(1) Process s22.

Since s22 is a zero-divisor modulo sat(T1) = 〈(a + 1)2a2〉, we regularize

s22 w.r.t T1 which decomposes T1 into three components T8 = {a2} and

T9 = T10 = {a + 1}.
(2) Process s33.

Since s33 is regular modulo sat(T8), we proceed to the next level. Since s33

is in sat(T9) or sat(T10), we proceed to the next level.

(3) Process s44.

Since s44 is regular modulo sat(T8), we add [S1, T8] to G. Since s44 is in

sat(T9) or sat(T10), we add [S1, T9] and [S1, T10] into G.

� Check the candidate [S3, Ti] for i = 4, 5, 6, and 7.
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(1) Process s44.

Since s44 = a + 1 is regular modulo sat(Ti) = 〈1 + a2 + a〉 for i = 4, 5, 6,

and 7, we add [S1, T4], [S1, T5], [S1, T6], [S1, T7] into C.

The output. The regular GCD sequence of P and Q modulo sat(T ) is

[S1, {a2}], [S1, {a + 1}], [S1, {a + 1}],
[S3, {1 + a2 + a}], [S3, {1 + a2 + a}], [S3, {1 + a2 + a}], [S3, {1 + a2 + a}],

in which there are three different regular GCDs for P and Q.

The algorithm RGSZR proceeds in a bottom-up manner. Once constructed the

candidate regular GCDs, the checking phase only uses coefficients of subresultants

along the diagonal. For practical problems, the regular GCDs often have degree

one, which implies only O(deg(Q)) coefficients are needed, while the total number of

coefficients in the subresultant chain is (deg(Q)+1)deg(Q)
2

. In the example, coefficients

s40, s41 and s42 are not used at all.

3.6 Summary

The concept of a regular GCD extends the usual notion of polynomial GCD from

polynomial rings over fields to polynomial rings modulo saturated ideals of regular

chains. Regular GCDs play a central role in triangular decomposition methods. Tra-

ditionally, regular GCDs are computed in a top-down manner, by adapting standard

PRS techniques (Euclidean Algorithm, subresultant algorithms, . . . ).

In this chapter, we study carefully the relations between subresultants and regular

GCD sequence of two polynomials modulo a regular chain. Our main result in this

chapter is Algorithm RGSZR, in which the computation of regular GCDs is separated

from the computation of subresultants. This has three benefits. First, this algorithm

is well-suited to employ modular methods and fast polynomial arithmetic. Secondly,

we avoid the repetition of (potentially expensive) intermediate computations. Lastly,

we avoid, as much as possible, computing modulo regular chains and use polynomial

computations over the base field instead, while controlling expression swell.

In the following chapters, we discuss issues surrounding the algorithm, which

includes the design of subresultant chain data structure, the complexity of computing

regular GCDs, efficient implementation of regular GCDs, and GPU acceleration of

subresultant chain construction.
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Chapter 4

Implementation and Complexity

Analysis

4.1 Introduction

This chapter is a continuation of Chapter 3, with focuses on the implementation and

complexity analysis. The bottom-up algorithm RGSZR provides a general framework

for computing regular GCD sequence modulo a regular chain. It is well-suited to

employ modular methods and fast polynomial arithmetic.

In Section 4.2 we describe our implementation for subresultant chain computation.

We observe that, during the computation of triangular decomposition, whenever a

regular GCD of P and Q w.r.t. T is needed, the resultant of P and Q with respect to

y is likely to be computed too. This suggests to organize calculations in a way that

the subresultant chain of P and Q is computed only once. To this end, we evaluate

the subresultant chain of P and Q at sufficiently many values of (x1, . . . , xn) such that

any coefficient of any subresultant P and Q can be interpolated whenever needed. In

our implementation, this evaluation-interpolation scheme is based on FFT techniques.

It is available in Maple in the module FastArithmeticTools of the RegularChains

library.

The use of fast arithmetic for computing regular GCDs was proposed in [22]

for regular chains with zero-dimensional radical saturated ideals. Algorithm 3 in

Section 3.4 of Chapter 3, however, does not suffer from any such restrictions: the

saturated ideal of T may be non-radical or of positive dimension. Algorithm 3 relies

on a procedure for testing whether a polynomial is regular w.r.t the saturated ideal of



56

a regular chain. In Section 4.3, we propose a new algorithm for this task in dimension

zero, see Algorithm 4.

Under genericity assumptions, we establish running time estimates for both Algo-

rithms 3 and 4, see Theorem 6 and Corollary 5. We explain in Section 4.3 why these

results suggest that Algorithms 3 and 4 are probably more suitable for implementation

than the algorithms of [22].

The experimental results of Section 4.5 illustrate the efficiency of our algorithms.

We obtain speedup factors of several orders of magnitude w.r.t. the algorithms of

[65] for regular GCD computations and regularity test. Our code compares and often

outperforms packages with similar specifications in Maple and Magma.

This chapter is a joint work with Xin Li and Marc Moreno Maza, based on our

ISSAC 2009 article [49].

4.2 Subresultant chain computation

In this section, we report implementation techniques and complexity analysis on

constructing subresultant chains. Our encoding of the subresultant chain of P,Q

in k[x1, . . . , xn][y] will be used in both our implementation and complexity results.

For simplicity our analysis is restricted to the case where k is a finite field whose

characteristic is large enough. The case where k is the field Q of rational numbers

could be handled in a similar fashion, with the necessary adjustments. We follow the

notations introduced in Section 3.3. However we do not assume that R = res(P,Q, y)

necessarily belongs to the saturated ideal of the regular chain T .

One motivation for the design of the techniques presented in this chapter is the

solving of systems of two equations, say P = Q = 0. Indeed, this can be seen as

a fundamental operation in incremental methods for solving systems of polynomial

equations, such as the one of [65]. We make two simple observations. Formula 3.1

p. 39 shows that solving this system reduces essentially to computing R and a regular

GCD sequence of P, Q modulo {R}, when R is not constant. This is particularly

true when n = 1 since in this case the variety V (H,P,Q) is likely to be empty for

generic polynomials P,Q.

The second observation is that, under the same genericity assumptions, a regular

GCD G of P,Q w.r.t. {R} is likely to exist and have degree one w.r.t. y. Therefore,

once the subresultant chain of P,Q w.r.t. y is calculated, one can obtain G essentially

at no additional cost. At the end of this section, we shall return to these observations

and deduce complexity results from them.
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The subresultant chain of P and Q is represented by homomorphic images: follow-

ing [18], we evaluate (x1, . . . , xn) at sufficiently may points such that the subresultants

of P and Q (regarded as univariate polynomials in y = xn+1) can be computed by

interpolation. To be more precise, we need some notations. Let di be the maximum

of the degrees of P and Q in xi, for all i = 1, . . . , n + 1. Observe that bi := 2didn+1

is an upper bound for the degree of R (or any subresultant of P and Q) in xi, for all

i. Let B be the product (b1 + 1) · · · (bn + 1).

Specialization grid (SCube). We proceed by evaluation/interpolation; our sam-

ple points are chosen on an n-dimensional rectangular grid. We call specialization grid

or simply SCube the data consisting of this grid and the values that the subresultant

chain of P,Q takes at each point of this grid. This is precisely how the subresultants

of P,Q are encoded in our implementation. Of course, the validity of this approach

requires that our evaluation points cancel no initials of P and Q. Even though finding

such points deterministically is a difficult problem, this creates no issue in practice.

Whenever possible (typically, over suitable finite fields), we choose roots of unity as

sample points, so that we can use FFT (or van der Hoeven’s Truncated Fourier Trans-

form [38]); otherwise, standard fast evaluation/interpolation algorithms are used, like

the subproduct-tree technique [34].

In order to reconstruct all subresultants of P and Q, from their SCube, one needs

to perform O(dn+1) evaluations and O(d2
n+1) interpolations. Since our sample points

lie on a grid, the total cost (including the computation of the images of the subresul-

tants on the grid) becomes

O

(

Bd2
n+1

n∑

i=1

log(bi)

)

or O

(

Bd2
n+1

n∑

i=1

M(bi) log(bi)

bi

)

,

depending on the choice of the sample points (see e.g. [71] for similar estimates). Here,

as usual, M(b) stands for the cost of multiplying univariate polynomials of degree less

than b, see [34, Chap. 8]. Using the estimate M(b) ∈ O(b log(b) log log(b)) from [12],

this respectively gives the bounds

O(d2
n+1B log(B)) and O(d2

n+1B log2(B) log log(B)).

These estimates are far from optimal. A first important improvement consists in

interpolating in the first place only the leading coefficients of the subresultants, and
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recover all other coefficients when needed. This is sufficient for the algorithm of

Section 3.4. This idea brings the following result.

Lemma 15. Constructing the SCube can be done within

O(d2
n+1B + dn+1Blog2(B)loglog(B))

operations in k. If multi-dimensional FFT can be used then this estimate becomes

O(d2
n+1B + dn+1B log(B)) operations in k.

Another desirable improvement would consist in using fast arithmetic based on

Half-GCD techniques [34], with the goal of reducing the total cost to O (̃dn+1B),

which is the best known bound for computing the resultant, or a given subresultant.

However, as of now, we do not have such a result, due to the possible splittings.

We return now to the question of solving two equations. Our goal is to estimate the

cost of computing the polynomials R and G in the context of Formula 3.1 p. 39. We

propose an approach where the computation of G essentially comes for free, once R has

been computed. This is a substantial improvement compared to traditional methods,

such as [41, 65], which compute G without recycling the intermediate calculations

of R. With the above assumptions and notations, we saw that the resultant R can

be computed in at most O(dn+1Blog(B) + d2
n+1B) operations in k. In many cases

(typically, with random systems), G has degree one in y = xn+1. Then, the GCD G

can be computed within the same bound as the resultant. Besides, in this case, one

can use the Half-GCD approach instead of computing all subresultants of P and Q.

This leads to the following result in the bivariate case; we omit its proof here.

Corollary 4. With n = 1, assuming that V (H,P,Q) is empty, and assuming

deg(G, y) = 1, solving the input system P = Q = 0 can be done in O∼(d2
2d1) op-

erations in k.

4.3 Regularity test in dimension zero

The operation Regularize specified in Section 3.2.1 of Chapter 3 is a core routine in

methods computing triangular decompositions. It has been used in the algorithm

RGSZR presented in Section 3.4 of Chapter 3. Algorithms for this operation appear

in [41, 65].

The purpose of this section is to show how to realize efficiently this operation.

For simplicity, we restrict ourselves to regular chains with zero-dimensional saturated
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ideals, in which case the separate operation of [41] and the regularize operation [65] are

similar. We also restrict ourselves to reduced and normalized regular chains, which

implies that these regular chains are reduced lexicographical Gröbner bases.

For such a regular chain T in k[x] and a polynomial p ∈ k[x], we denote by

RegularizeDim0(p, T ) the function call Regularize(p, T ). In broad terms, it “separates”

the points of V (T ) that cancel p from those which do not. The output is a set of

regular chains {T1, . . . , Te} such that the points of V (T ) which cancel p are given by

the Ti’s modulo which p is null.

Algorithm 4 differs from those with similar specification in [41, 65] by the fact that

it creates opportunities for using modular methods and fast polynomial arithmetic.

Our first trick is based on the following result (Theorem 1 in [14]): the polynomial p

is invertible modulo T if and only if the iterated resultant of p with respect to T is

non-zero. The correctness of Algorithm 4 follows from this result, the specification of

the operation RegularGcd and an inductive process. Similar proofs appear in [41, 65].

A complexity analysis of Algorithm 4, under some genericity assumptions, is reported

at the end of this section.

The main novelty of Algorithm 4 is to employ the fast evaluation/interpolation

strategy described in Section 4.2. In our implementation of Algorithm 4, at Line

6, we compute the SCube representing the subresultant chain of q and Cv. This

allows us to compute the resultant r and then to compute the regular GCDs (g, E) at

Line 14 from the same SCube. In this way, intermediate computations are recycled.

Moreover, fast polynomial arithmetic is involved through the manipulation of the

SCube.

In Algorithm 4, a routine RegularizeInitDim0 is called, whose specification is given

below. See [65] for an algorithm. Briefly speaking, this routine splits a regular chain T

into regular chains T1, . . . , Te according to a polynomial p such that for each i = 1 · · · e
the polynomial p reduces modulo sat(Ti) to a constant polynomial or to a polynomial

with a regular initial.

4.4 Complexity analysis

We shall now estimate the running time of Algorithm 4 under the following two

genericity assumptions.

(H1) T generates a radical ideal,
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Algorithm 4: Regularize a polynomial in dimension zero

RegularizeDim0(p, T )

Input : T normalized reduced zero-dimensional regular chain and p
polynomial, both in k[x1, . . . , xn], with p reduced w.r.t. T .

Output : see the specification in Section 3.2.2.

1 Results← ∅
2 for (q, C) ∈ RegularizeInitDim0(P, T ) do
3 if q ∈ k then Results← {C} ∪Results
4 else
5 v ← mvar(q)
6 r ← res(q, Cv, v)
7 r ← NormalForm(r, C<v)
8 for D ∈ RegularizeDim0(r, C<v) do
9 s← NormalForm(r,D)

10 if s 6= 0 then
11 U ← {D ∪ {Cv} ∪ C>v}
12 Results← {C} ∪Results

13 else
14 for (g, E) ∈ RegularGcd(q, Cv, D) do
15 g ← NormalForm(g, E)
16 U ← {E ∪ {g} ∪D>v}
17 Results← {C} ∪Results
18 c← NormalForm(quo(Cv, g), E)
19 if deg(c, v) > 0 then
20 Results←

RegularizeDim0(q, E ∪ c ∪ C>v) ∪Results

21 return Results

(H2) none of the calls to RegularizeDim0 splits its second argument into several reg-

ular chains.

Ensuring that Hypothesis (H1) holds is standard. This is done by adapting the

squarefree part computation of univariate polynomial with coefficients in a field to

coefficients in products of fields, see [65]. Hypothesis (H1) holds if T generates a

maximal ideal. It is also likely to hold on a random dense input, as observed in

our experimentation. Analyzing the running time of Algorithm 4 without Hypothesis

(H2) leads to additional difficulties which can be handled using the techniques of [22].

In order to proceed with our analysis, we need some notations. We define

logp(x) = log2(max(2, x)) and llogp(x) = logp(logp(x)) for any real value x. Ob-
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Algorithm 5: Regularize the initial of a polynomial in dimension zero

RegularizeInitDim0(p, T )

Input : T a normalized zero-dimensional regular chain and p a
polynomial, both in k[x1, . . . , xn]

Output : A set of pairs {(pi, Ti) | i = 1 · · · e}, in which pi is a
polynomial and Ti is a regular chain, such that either pi is a
constant or its initial is regular modulo sat(Ti),
p ≡ pi mod sat(Ti) holds, and we have T −→ (T1, . . . , Te).

p← NormalForm(p, T )
Tasks← {(p, T )}
Results← ∅
while Tasks 6= ∅ do

Take a pair (q, C) out of Tasks
if q ∈ k then

Results← {(q, C)} ∪Results

else
for D ∈ RegularizeDim0(init(q), C) do

t← NormalForm(tail(q), D)
h← NormalForm(init(q), D)
if h 6= 0 then

Results← {(h rank(q) + t,D)} ∪Results

else
Tasks← {(t,D)} ∪ Tasks

return Results

serve that for all a, b we have logp(ab) ≤ logp(a)logp(b). Let di be the degree in xi of

the polynomial Txi
. Let s1, . . . , sn be positive integers and let s ∈ k[x1, . . . , xn]

be a polynomial satisfying deg(s, xi) < si for all i = 1 · · ·n. We denote by

NF(s1, . . . , sn, d1, . . . , dn) an upper bound for the number of operations in k per-

formed when computing the normal form of s w.r.t. T . If no confusion is possible, we

simply write NF(s1, . . . , sn) instead of NF(s1, . . . , sn, d1, . . . , dn). Next, we denote by

RZ(d1, . . . , dn) (resp. MT (d1, . . . , dn)) an upper bound for the number of operations

in k performed when computing RegularizeDim0(p, T ) where p is reduced w.r.t. T

(resp. when multiplying modulo 〈T 〉 two polynomials reduced w.r.t. T ). In [52] it is

shown that there exists a constant K > 1 such that

MT (d1, . . . , dn) ≤ 4n K Dn logp(Dn)llogp(Dn)
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holds where Dk = d1 · · · dk. By convention D0 = 1.

Lemma 16. With the above notations, we have:

NF(s1, . . . , sn) ≤ 5 K logp(σ) llogp(σ) logp(Dn−1) llogp(Dn−1)
n∑

i=1

4i−1SiDi−1,

where we define σ = max(s1, . . . , sn) and Si = si · · · sn, for all i = 1 · · ·n.

Proof. Let c0, . . . , ct be the coefficients of s w.r.t. xn such that s writes
∑t

i=0cix
i
n.

To compute NormalForm(s, T ) we start by computing s′ which is
∑t

i=0c
′
ix

i
n where c′i

is NormalForm(ci, T<xn
). Since t < sn, this first step costs at most snNF(s1, . . . , sn−1)

operations in k. Then, we compute the remainder in the Euclidean division of s′ by

Txn
modulo 〈T<xn

〉. Using the results of Chapter 9 in [34], this latter step amounts

to at most 5M(sn)MT (d1, . . . , dn−1). This leads to the following inequality

NF(s1, . . . , sn) ≤ snNF(s1, . . . , sn−1) + 5M(sn)MT (d1, . . . , dn−1).

Unrolling this relation yields

NF(s1, . . . , sn) ≤ 5sn · · · s2M(s1) +
n∑

i=2

5sn · · · si+1M(si)MT (d1, . . . , di−1).

Therefore, we have

NF(s1, . . . , sn) ≤ 5Klogp(σ) llogp(σ) logp(Dn−1) llogp(Dn−1)
n∑

i=1

4i−1SiDi−1.

�

Lemma 17. With notations of Lemma 16, assuming dn+1 ≥ 2 and si = 2didn+1 for

all i = 1 · · ·n, we have

NF(s1, . . . , sn) ≤ 80 K n 2n dn
n+1 Dn logp2(Dn) llogp2(Dn).

Proof. We apply Lemma 16. First, we observe that logp(σ) ≤ 2 logp(Dn) holds

if n > 1. However, to cover n = 1, we use the estimate logp(σ) ≤ 4 logp(Dn).

Since logp(Dn) ≥ 1 holds, we deduce llogp(σ) ≤ 4 llogp(Dn). Next, we observe that
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Si = (2dn+1)
n−i+1di · · · dn holds which brings

n∑

i=1

4i−1SiDi−1 = 2ndn
n+1Dn

n∑

i=1

(2/dn+1)
i−1 ≤ n 2n dn

n+1 Dn

and the conclusion follows. �

As in Section 4.2 we consider two polynomials P,Q ∈ [x1, . . . , xn, xn+1] with pos-

itive degree in y = xn+1 such that we have 0 < deg(Q, xn+1) ≤ deg(P, xn+1) =: dn+1.

We assume that the initials of P,Q are regular w.r.t. sat(T ), that the resultant of

P,Q w.r.t. xn+1 belongs to sat(T ) and that all coefficients of P and Q w.r.t. xn+1

are reduced w.r.t. T . Let us denote by SRC(d1, . . . , dn, dn+1) an upper bound for the

number of operations in k necessary to construct the SCube of P,Q. It follows from

Lemma 15 that there exists a constant C > 0 such that

SRC(d1, . . . , dn, dn+1) ≤ C
(
d2

n+1Bn + dn+1Bnlogp2(Bn)llogp(Bn)
)

(4.1)

where Bn = 2ndn
n+1Dn. Moreover, one can choose C such that each coefficient

w.r.t. xn+1 of a subresultant of P and Q w.r.t. xn+1 can be interpolated within

C Bnlogp2(Bn)llogp(Bn) operations in k.

We denote by GCD(d1, . . . , dn, dn+1) an upper bound for the number of operations

in k performed when computing a regular GCD sequence of P,Q modulo sat(T ). We

have the following result.

Lemma 18. Under Hypotheses (H1) and (H2), we have:

GCD(d1, . . . , dn+1) ≤ SRC(d1, . . . , dn, dn+1) + RZ(d1, . . . , dn)+
dn+1(dn+1+1)

2

(
C Bnlogp2(Bn)llogp(Bn) + NF(s1, . . . , sn)

)

where si = 2didn+1 for all i = 1 · · ·n.

Proof. Recall that Hypothesis (H2) means that computations do not split. This im-

plies that when Algorithm 3 calls RegularizeDim0(ci, C) with a (reduced, normalized,

zero-dimensional) regular chain C and with a polynomial ci reduced w.r.t. C, then

ci is either null or invertible modulo 〈C〉. Consider now the candidate search phase

(Lines 4 to 15) in Algorithm 3. With the notations of this algorithm, consider an

item [i, C] at Line 5. If ci belongs to sat(C) then the whole subresultant Si belongs to

sat(C). This follows from Lemma 12 and the fact that sat(C) is radical (Hypothesis

(H2)). If ci does not belong to sat(C) then ci is invertible modulo sat(C) and thus
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Si is a candidate. This implies that, in the worst case, the candidate search phase is

accomplished by:

� interpolating all subresultant of P and Q w.r.t. xn+1 from the SCube,

� computing the normal form of all these coefficients w.r.t. T ,

� performing one regularity test of a polynomial which is not in 〈T 〉.

Finally, Hypothesis (H1) together with Lemma 14 implies that the candidate is ac-

tually a regular GCD of P,Q modulo sat(T ). Hence the candidate check phase of

Algorithm 3 comes at no cost. The conclusion follows. �

Lemma 19. Under Hypotheses (H1) and (H2) and assuming dn+1 ≥ 2, we have

GCD(d1, . . . , dn+1) ≤ O(n2 2n dn+2
n+1 Dn Ln) + RZ(d1, . . . , dn),

where Ln = logp(n) logp2(dn+1) llogp(dn+1) logp2(Dn) llogp2(Dn).

Proof. From Lemma 18 and Equation (4.1) we have

GCD(d1, . . . , dn, dn+1) ≤ C
3(dn+1+1)dn+1

2
Bnlogp2(Bn)llogp(Bn)

(dn+1+1)dn+1

2
NF(s1, . . . , sn) + RZ(d1, . . . , dn)

(4.2)

We shall simplify the above inequality. Since Bn = 2ndn
n+1Dn and n ≥ 1, we deduce

logp(Bn) ≤ n + nlog2(dn+1) + log2(Dn) ≤ 3 n logp(dn+1) logp(Dn),

and

llogp(Bn) ≤ 2 logp(n) llogp(dn+1) llogp(Dn),

which leads to

Bn logp2(Bn) llogp(Bn) ≤ 18 n2 2n dn
n+1 Dn Ln. (4.3)

Next, we deduce from Lemma 17 that

NF(s1, . . . , sn) ≤ 80 K n 2n dn
n+1 Dn Ln (4.4)

Using 1
2
(dn+1 + 1)dn+1 ≤ d2

n+1 together with (4.2), (4.3) and (4.4) we obtain

GCD(d1, . . . , dn, dn+1) ≤ (54 C n + 80 K) n 2n dn+2
n+1 Dn Ln + RZ(d1, . . . , dn).

This completes the proof. �
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Theorem 6. Under Hypotheses (H1) and (H2) and assuming di ≥ 2 for all i = 1 · · ·n
we have, for n ≥ 2

RZ(d1, . . . , dn) ≤ O(n2 2n−1) dn+1
n Dn−1 Ln−1 + 2 RZ(d1, . . . , dn−1) (4.5)

which implies

RZ(d1, . . . , dn) ∈ O∼(2n)
n∑

i=2

(
i2 di

i Di

)
. (4.6)

Proof. We follow Algorithm 4, which computes RegularizeDim0(p, T ). Recall that

the input polynomial p is reduced w.r.t T . Since we are looking for an upper bound

for RZ(d1, . . . , dn) we can assume that the main variable of p is xn. Hypothesis

(H2) implies that init(p) is invertible modulo 〈T 〉 and thus that executing Line 2

amounts at most to RZ(d1, . . . , dn−1). Observe that at Line 5 we have q = p and

Cv = Txn
. The next cost is at Lines 6 and 7 with the computation of the SCube of

p and Txn
w.r.t. xn, the interpolation of their resultant r and the computation of

NormalForm(r, T<xn
). We observe that this cost is included in (resp. dominated by)

the estimate of GCD(d1, . . . , dn−1, dn) given by Lemma 18, if NormalForm(r, T<xn
) = 0

(resp. r is invertible modulo 〈T<xn
〉). The next cost is at Line 8 with the call

RegularizeDim0(r, T<xn
), amounting at most to RZ(d1, . . . , dn−1). Hypothesis (H2)

implies that Line 9 comes at no cost. At this point either r 6∈ sat(T<xn
) holds

and the algorithm terminates, or the next expense is at Line 14 which fits within

GCD(d1, . . . , dn−1, dn). In this latter case, (H2) implies deg(g, xn) = deg(q, xn) and

no other computations take place. Finally, we obtain Relation (4.5) by virtue of

Lemma 19. �

Corollary 5. Under Hypotheses (H1) and (H2) and assuming di ≥ 2 for all i =

1 · · ·n we have, for n ≥ 2

GCD(d1, . . . , dn, dn+1) ∈ O∼(n2 2n)dn+2
n+1Dn + O∼(2n)

n∑

i=2

(
i2 di

i Di

)
. (4.7)

Proof. The claim follows from Theorem 6 and Lemma 19. �

Essentially, Relation (4.7) depends “quadratically” on the product of the degrees

d1, . . . , dn, dn+1. This is clear when d1 = · · · = dn = dn+1 holds. Moreover the

“exponential factor” is only 2n. In [22], the authors provide an algorithm with the

same specification as Algorithm 4. Under the same hypotheses, they achieve a running

estimate which depends “linearly” (up to logarithmic factors) on the product of the

degrees d1, . . . , dn, dn+1. However, their “exponential factor” is of the form cn where
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c ≥ 700. Since practical values for d1, . . . , dn, dn+1 are often below the hundreds, in

particular for dn+1 with n large, this suggests that the algorithms presented in this

chapter are probably more suitable for implementation than those of [22].

4.5 Experimentation

We have implemented in the C language all the algorithms presented in the previous

sections. The corresponding functions rely on the asymptotically fast arithmetic oper-

ations from our modpn library [50]. For this new code, we have also realized a Maple

interface, called FastArithmeticTools, which is a new module of the RegularChains

library [48].

In this section, we compare the performance of our FastArithmeticTools com-

mands with Maple’s and Magma’s existing counterparts. For Maple, we use its

latest release, namely version 13; For Magma we use Version V2.15-4, which is

the latest one at the time of writing this chapter. However, for this release, the

Magma commands TriangularDecomposition and Saturation appear to be some

time much slower than in Version V2.14-8. When this happens, we provide timings

for both versions.

We have three test cases dealing respectively with the solving of bivariate systems,

the solving of two-equation systems and the regularity testing of a polynomial w.r.t.

a zero-dimensional regular chain. In our experimentation all polynomial coefficients

are in a prime field whose characteristic is a 30-bit prime number. For each of our

figure or table the degree is the total degree of any polynomial in the input system.

All the benchmarks were conducted on a 64-bit Intel Pentium VI Quad CPU 2.40

GHZ machine with 4 MB L2 cache and 3 GB main memory.

For solving bivariate systems we compare the command Triangularize to the

command BivariateModularTriangularize of the module FastArithmeticTools.

Indeed both commands have the same specification for such input systems. Note that

Triangularize is a high-level generic code which applies to any type of input system

and which does not rely on fast polynomial arithmetic or modular methods. On

the contrary, BivariateModularTriangularize is specialized to bivariate systems

(see Corollary 4 in Section 4.2) is mainly implemented in C and is supported by the

modpn library. BivariateModularTriangularize is an instance of a more general

fast algorithm called FastTriangularize; we use this second name in our figures.

Since a triangular decomposition can be regarded as a “factored” lexico-

graphic Gröbner basis we also benchmark the computation of such bases in
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Figure 4.1: Timing for bivariate generic dense systems

Maple and Magma. Figure 4.1 compares FastTriangularize and (lexicographic)

Groebner:-Basis in Maple on generic dense input systems. On the largest input

example the former solver is about 20 times faster than the latter.
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Figure 4.2: Highly non-equiprojectable bivariate systems

Figure 4.2 compares FastTriangularize and (lexicographic) Groebner:-Basis

on highly non-equiprojectable dense input systems; for these systems the number
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Figure 4.3: Highly non-equiprojectable systems

of equiprojectable components is about half the degree of the variety. At the total

degree 23 our solver is approximately 100 times faster than Groebner:-Basis.

Figure 4.3 compares FastTriangularize, GroebnerBasis in Magma and

TriangularDecomposition in Magma on the same set of highly non-equiprojectable

dense input systems. Once again our solver outperforms its competitors.

For solving systems with two equations, we compare FastTriangularize with

GroebnerBasis in Magma. On Figure 4.4 these two solvers are simply referred

as Magma and Maple. For this benchmark the input are generic dense trivariate

systems.

Figures 4.5, 4.6 and 4.7 compare our fast regularity test algorithm (Algorithm 4)

with the RegularChains library Regularize and its Magma counterpart. More pre-

cisely, in Magma, we first saturate the ideal generated by the input zero-dimensional

regular chain T with the input polynomial P using the Saturation command. Then

the TriangularDecomposition command decomposes the output produced by the

first step. The total degree of the input i-th polynomial in T is di.

For Figure 4.5 and Figure 4.6, the input T and P are randomly generated such

that the intermediate computations do not split. In this non-splitting cases, our fast

Regularize algorithm is significantly faster than the other commands. For Figure 4.7,

the input T and P are constructed such that many intermediate computations need to

split. In this case, our fast Regularize algorithm is slightly slower than its Magma
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Figure 4.4: Generic dense trivariate systems

d1 d2 Reg. Fast Reg. Magma d1 d2 Reg. Fast Reg. Magma

2 2 0.052 0.016 0.000 20 38 69.876 0.776 3.660

4 6 0.236 0.016 0.010 22 42 107.154 0.656 6.600

6 10 0.760 0.016 0.010 24 46 156.373 1.036 10.460

8 14 1.968 0.020 0.050 26 50 220.653 2.172 17.110

10 18 4.420 0.052 0.090 28 54 309.271 1.640 25.900

12 22 8.784 0.072 0.220 30 58 434.343 2.008 42.600

14 26 15.989 0.144 0.500 32 62 574.923 4.156 57.000

16 30 27.497 0.208 0.990 34 66 746.818 6.456 104.780

18 34 44.594 0.368 1.890

Figure 4.5: bivariate random dense

counterpart, but still much faster than the generic (non-modular and non-supported

by modpn) Regularize command of the RegularChains library. The slow down w.r.t.

d1 d2 d3 Reg. Fast Reg. Magma d1 d2 d3 Reg. Fast Reg. Magma

2 2 3 0.240 0.008 0.000 8 14 21 168.910 2.204 8.250

3 4 6 1.196 0.020 0.020 9 16 24 332.036 14.764 23.160

4 6 9 4.424 0.032 0.030 10 18 27 >1000 21.853 61.560

5 8 12 12.956 0.148 0.200 11 20 30 >1000 57.203 132.240

6 10 15 33.614 0.360 0.710 12 22 33 >1000 102.830 284.420

7 12 18 82.393 1.108 2.920

Figure 4.6: trivariate random dense
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d1 d2 d3 Reg. Fast Reg. V2.15-4 V2.14-8

2 2 3 0.184 0.028 0.000 0.000

3 4 6 0.972 0.060 0.000 0.010

4 6 9 3.212 0.092 >1000 0.030

5 8 12 8.228 0.208 >1000 0.150

6 10 15 21.461 0.888 807.850 0.370

7 12 18 51.751 3.836 >1000 1.790

8 14 21 106.722 9.604 >1000 2.890

9 16 24 207.752 39.590 >1000 10.950

10 18 27 388.356 72.548 >1000 19.180

11 20 30 703.123 138.924 >1000 56.850

12 22 33 >1000 295.374 >1000 76.340

Figure 4.7: trivariate dense with many splittings

the Magma code is due to the (large) overheads of the C -Maple interface, see [50]

for details.

4.6 Summary

In this chapter, we report our C implementation of subresultant chain construction

and regular GCD algorithm. The running time estimates of Section 4.3 suggests that

the algorithms presented in this chapter are more suitable for implementation than

those of [22]. Our experimental results of Section 4.5 illustrate the high efficiency of

our algorithms.
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Chapter 5

Modular FFT on GPUs

5.1 Introduction

Polynomials and matrices are the fundamental objects on which most computer al-

gebra algorithms operate. In the past 15 years, significant efforts have been deployed

by different groups of researchers for delivering highly efficient software packages for

computing symbolically with polynomials and matrices, like Linbox, MAGMA, and

NTL [54, 1, 77]. However, most of these works are dedicated to serial implementa-

tions, in particular in the case of polynomials. Only a few studies [61, 68, 69] report

on parallel implementation (targeting multicores) of polynomial arithmetic. None of

the computer algebra software packages available today takes advantage of graphics

processing units (GPUs) in support of libraries for polynomial arithmetic. The work

reported in this chapter aims at filling this gap.

This contrasts sharply with the state of affairs in numerical linear algebra and

in digital signal processing. For instance, the commercialized software system

MATLAB with its Parallel Computing Toolbox [56] and GPU Toolbox [37] pro-

vides programming support for different parallelism paradigms (data-parallelism,

MPI, multithreading) and parallel architectures (GPUs, multicores, clusters) together

with many library functions taking advantage of this support. In digital signal pro-

cessing, in particular for the computation of Fast Fourier Transforms (FFTs), the use

of hardware acceleration technologies, notably GPUs, has been investigated in several

works [33, 63, 36, 70].

In this chapter, we present a GPU implementation of fast polynomial multiplica-

tion. We focus on dense univariate polynomials over prime fields for the following

reasons. First, many algorithms in symbolic computation tend to densify intermedi-

ate data, even if the input and output are sparse. Second, multivariate polynomial



72

multiplication can be reduced to univariate multiplication through the so-called Kro-

necker’s substitution. Third, computation with polynomials over non-prime fields can

be reduced to the prime field case by means of modular techniques. We refer to the

landmark book Modern Computer Algebra [34] for an extensive presentation of these

ideas.

This reduction to dense univariate polynomials over coefficient fields Z/pZ, where

p is a prime, allows us to rely on FFT techniques, which is the basis of fast polynomial

arithmetic [12]. However, as detailed in Section 5.2.3, FFT computations over finite

fields present specific challenges. For this reason, techniques for FFTs with floating

point number coefficients are not sufficient for supporting polynomial multiplication

over finite fields. This motivates the work reported in this chapter.

Most serial implementations of FFT over finite fields, see [31] and the references

therein, rely on the radix-2 Cooley-Tukey Formula [19]. On multicores, the row-

column FFT algorithm is used successfully, see [68, 69]. In the case of GPUs, to

which this chapter is devoted, it is natural to revisit the popular FFT formulas of

Cooley-Tukey and Stockham [78] in the context of finite fields. We review these

formulas in Section 5.2.2. As in [73, 13] we take advantage of the formalism of

tensorial calculus to generate code and identify our GPU kernels. The Cooley-Tukey

and Stockham formulas differ only in the way that intermediate computations are

stored. We concentrated our efforts on these two formulas, despite of the existence

of other formulas for computing FFTs, for the following reasons. First, the radix-

2 Cooley-Tukey formula is well understood in the context of finite fields. Second,

in numerical computing, the Stockham formula seems to be well-suited for GPU

implementation [33].

In this work, we present our detailed implementations of the Cooley-Tukey and

Stockham FFT formulas, aiming at utilizing the horsepower of Graphics Processing

Units (GPUs). The organization of the chapter is as follows. In Section 5.2, we first

formalize FFTs in terms of Kronecker (tensor) product, then we discuss an efficiency-

critical operation in a finite field, namely modular multiplication. Sections 5.4 and

Section 5.5 focus on our CUDA [2] implementation of the Cooley-Tukey and Stockham

FFTs. We present experimental results in Section 5.6 and draw conclusions in the

end.

This joint work with Marc Moreno Maza is reported in [57].
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5.2 Preliminaries

This section reviews the Fast Fourier Transform (FFT) in the language of tensorial

calculus, see [55] for an extensive presentation. This formalism facilitates code gen-

eration as explained in [13, 32], and in particular it helps identifying GPU kernel

specifications. We also highlight the specific features of FFTs over finite fields and

refer to [69] for details. Throughout this chapter, we denote by k a field. In practice,

this field is often a prime field Z/pZ where p is a prime number greater than 2.

5.2.1 Basic operations on matrices

Definition 6. Let n,m, q, s be positive integers and let A,B be two matrices over k

with respective formats m× n and q × s. The tensor (or Kronecker) product of A by

B is an mq × ns matrix over k denoted by A⊗B and defined by

A⊗B = [akℓB]k,ℓ with A = [akℓ]k,ℓ (5.1)

Example 7. Let A and B be 2× 2 matrices,

A =

[

0 1

2 3

]

and B =

[

1 1

1 1

]

.

Then their tensor products are

A⊗B =









0 0 1 1

0 0 1 1

2 2 3 3

2 2 3 3









and B ⊗ A =









0 1 0 1

2 3 2 3

0 1 0 1

2 3 2 3









.

We summarize several properties of tensor product as follows:

Proposition 8. Assume A, B, C, and D are matrices of suitable sizes. Then we

have

(1) A⊗ (B + C) = A⊗B + A⊗ C,

(2) (B + C)⊗ A = B ⊗ A + C ⊗ A,

(3) (λ A)⊗B = A⊗ (λ B) = λ(A⊗B), with λ being a scalar,

(4) (A⊗B)⊗ C = A⊗ (B ⊗ C) = A⊗B ⊗ C,
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(5) (A⊗B)(C ⊗D) = (AC)⊗ (BD), the mixed-product property.

The first three properties say that the tensor product operator is bilinear, that is,

linear for both operands. The fourth property says that the operator ⊗ is associative.

Denoting by In the identity matrix of order n, we emphasize two particular types

of tensor products, In ⊗Am and An ⊗ Im, where Am (resp. An) is a square matrix of

order m (resp, n) over k. The following pseudo C-code implements the endomorphism

(linear map) of knm defined x 7−→ y := (In ⊗ Am)x:

for (k = 0; k < n; ++k) {

for (i = 0; i < m; ++i) {

t = 0;

for (j = 0; j < m; ++j) {

t += A[i][j] * x[k*m+j];

}

y[k*q+i] = t;

}

}

The cost of above code is Θ(m2n), while computing the product of an mn × mn

matrix by a vector uses Θ(m2n2) arithmetic operations. This type of saving comes

from the utilization of special structures in the tensor products. This can be viewed

as an opportunity for block-level parallelism as illustrated by the example below:

I4 ⊗DFT2 =



















1 1

1 −1

1 1

1 −1

1 1

1 −1

1 1

1 −1



















in which blocks share the same computations while on different sub-vectors.

Whereas the pseudo C-code below implements the endomorphism of knm defined

by x 7−→ y := (An ⊗ Im)x:

for (k = 0; k < n; ++k) {

for (i = 0; i < m; ++i) {
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t = 0;

for (j = 0; j < n; ++j) {

t += A[k][j] * x[j*m+i]

}

y[k*q+i] = t;

}

}

The cost of above code is also Θ(m2n) which saves a factor of n comparing to the

standard matrix-vector multiplications. It can also be viewed as an opportunity for

vector-parallelism as illustrated below:

DFT2 ⊗ I4 =



















1 1

1 1

1 1

1 1

1 −1

1 −1

1 −1

1 −1



















in which the same operations are performed across the data vector (one addition and

one subtraction here).

Definition 7. The direct sum of A and B is an (m + q) × (n + s) matrix over k

denoted by A⊕B and defined by

A⊕B =

[

A 0

0 B

]

. (5.2)

More generally, for n matrices A0, . . . , An−1 over k, the direct sum of A0, . . . , An−1

is defined as

n−1⊕

i=0

Ai = A0 ⊕ A1 ⊕ · · · ⊕ An−1 =









A0

A1

. . .

An−1









. (5.3)
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It is easy to show the following formula

In ⊗ A = ⊕n−1
i=0 A = diag(A,A, . . . , A). (5.4)

Definition 8. The stride permutation Lmn
m permutes an input vector x of length mn

as follows

x[in + j] 7→ x[jm + i], (5.5)

for all 0 ≤ i < m and 0 ≤ j < n. Let ei be the vector of kmn whose j-th entry is

the Kronecker symbol δij
1. The matrix representation of Lmn

m in the basis {ei | 1 ≤
i ≤ mn} is denoted by Lmn

m . If x is viewed as an n ×m matrix, then Lmn
m performs

a transposition on this matrix.

Example 8. Let n = 4 and m = 2. Then

L8
2([x0, x1, x2, x3, x4, x5, x6, x7]) = [x0, x2, x4, x6, x1, x3, x5, x7]. (5.6)

Thus {e1, . . . , e8} forms a basis of V = k8, and we have

L8
2(e1, e2, e3, e4, e5, e6, e7, e8) = (e1, e3, e5, e7, e2, e4, e6, e8). (5.7)

The matrix representation of L8
2 in the basis {ei | i = 1 . . . 8} is

L8
2 =



















1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1



















. (5.8)

5.2.2 Discrete Fourier transform

In this subsection, we fix an integer n ≥ 2. An element ω in k is an n-th primitive

root of unity if n is the smallest positive integer such that ωn = 1 in k.

Definition 9. The n-point Discrete Fourier Transform (DFT) at ω is a linear map

from the k-vector space kn to itself, defined by x 7−→ DFTn x with the n-th DFT

1That is, δij = 1 if i = j otherwise δij = 0.
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matrix

DFTn = [ωkℓ]0≤k, ℓ<n. (5.9)

In particular, the DFT of size 2 corresponds to the butterfly matrix

DFT2 =

[

1 1

1 −1

]

. (5.10)

Given DFTn, computing the product of DFTn by x costs Θ(n2) arithmetic operations

in k via the standard linear algebra methods. The ability to compute DFTs fast is of

great importance to a wide variety of applications, from digital signal processing and

solving partial differential equations, etc.. The well-known Cooley-Tukey Fast Fourier

Transform (FFT) [19] in its recursive form is a procedure for computing DFTn x based

on the factorization of the matrix DFTn.

Theorem 7. For any integers positive q, s such that n = qs, we have:

DFTqs = (DFTq ⊗ Is)Dq,s(Iq ⊗DFTs)L
qs
q , (5.11)

where Dq,s is the diagonal twiddle matrix defined as

Dq,s =

q−1
⊕

j=0

diag(1, ωj, . . . , ωj(s−1)), (5.12)

where ω is a n-th primitive root of unity.

Example 9. Let n = 4 and ω be a 4-th primitive root of unity. The following matrix

factorization illustrates Theorem 7.

DFT4 = (DFT2 ⊗ I2)D2,2(I2 ⊗DFT2)L
4
2

=









1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ω

















1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

















1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1









=









1 1 1 1

1 ω −1 −ω

1 −1 1 −1

1 −ω −1 ω









=









1 1 1 1

1 ω1 ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9









.
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Let n = 2k and let C(n) be the number of arithmetic operations in k performed

to compute DFTn(x). We apply Equation 5.11 with q = 2 and s = n/2, obtaining

DFTn(x) = (DFT2 ⊗ In/2)D2,n/2(I2 ⊗DFTn/2)L
n
2 (x).

Observe that matrix Ln
2 only permutes the input data x, D2,n/2 scales a vector and

DFT2 ⊗ In/2 on a vector costs Θ(n) operations. Therefore, we have

C(n) = 2C(n/2) + Θ(n),

which gives C(n) = Θ(n log n).

5.2.3 FFTs over finite fields

As mentioned in the introduction, for FFT computations, the case where k is a

finite field offers specific challenges in comparison to the case where k is the field C of

complex numbers. This explains why FFT techniques used for numerical computation

do not adapt straightforwardly to symbolic computation.

On the algebraic side, the most obvious difference is that the prime field Z/pZ

admits an n-th primitive root of unity if and only if n divides p − 1. In addition,

radix 2 FFTs are often preferred to others in symbolic computation, since many

algorithms, such as those for polynomial factorization, require the prime p to be small,

say p = 3, 5, 7, . . .. Since the radix must be invertible in Z/pZ, this essentially imposes

the restriction to radix 2 FFTs. See [34] for details on these algebraic considerations.

On the implementation side, multiplying two elements a, b of Z/pZ is obviously a

key routine. Unlike the case of single and double precision floating point arithmetic,

the operation (a, b, p) 7−→ (ab) mod p, for a, b, p ∈ Z, is not provided directly by

hardware. This operation is thus an efficiency-critical low-level software routine that

the programmer has to take care of. When p is a machine word size prime, which is the

assumption in this chapter, two techniques are popular in the symbolic computation

community.

The first one takes advantage of hardware floating point arithmetic, see [27]. We

call double mul mod our implementation of this technique, for which our C code is

shown below. The fourth argument pinv is the inverse of p which is precomputed in

floating point.

int double_mul_mod(int a, int b, int p, double pinv) {

int q = (int) ((((double) a) * ((double) b)) * pinv);
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int res = a * b - q * p;

return (res < 0) ? (-res) : res;

}

In our implementation, double precision floating point numbers are encoded on 64

bits and make this technique work correctly for primes p up to 30 bits.

The second technique, called the Montgomery reduction [62], relies only on hard-

ware integer arithmetic. We summarize this elegant trick. Consider a positive integer

R ≥ p such that gcd(R, p) = 1. Hence there exists integers R−1, p′ such that we have:

RR−1 − p p′ = 1 and 0 < p′ < R. (5.13)

Consider an integer x, satisfying 0 ≤ x < p2, and for which we want to compute

x/R mod p. Let c and d (resp. e and f) be the quotient and remainder in the

Euclidean division of x by R (resp. dp′ and R). Then, it is easy to prove that there

exists an integer q such that x + fp = qR holds, that is, satisfying q ≡ x/R mod p.

If p > 2 then R can be chosen to be a power of 2. Therefore, with this choice,

computing x/R mod p amounts to 2 multiplications, 2 additions and 3 shifts. Now,

in order to compute products in Z/pZ, one “represents” any residue class a mod p by

aR mod p. Then, applying the previous trick to x = (aR)(bR) mod p one obtains

efficiently (ab)/R mod p, that is, the representative of (ab) mod p. An improved

version of this trick was proposed in [53].

5.3 Iterative FFT formulas

There are abundant variations of the FFT algorithm which run in Θ(n log n) time.

However, the program structures and the performance vary greatly for different hard-

ware architectures. The idea of choosing suitable FFT algorithm for different (serial

or parallel) architectures has been applied thoroughly in the SPIRAL project [32, 72].

In this section we present two iterative FFT algorithms which will be implemented

and examined in detail.

Assume that n is a power of 2, say n = 2k. Applying Formula (5.11) once with

q = 2 and s = n/2, we have

DFTn = (DFT2 ⊗ In/2)D2,n/2(I2 ⊗DFTn/2)L
n
2 . (5.14)

Before continuing to unroll the DFT matrix DFTn/2, we introduce a new notation to
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simplify the presentation. For integers i, j, h ≥ 1, define

∆(i, j, h) = (Ii ⊗DFTj ⊗ Ih) (5.15)

which is a square matrix of size ijh. Applying the same factorization to n/2 = 2×n/4

and combining with Equation 5.14, we have

DFTn = (DFT2 ⊗ In/2)D2,n/2(I2 ⊗ ((DFT2 ⊗ In/4)D2,n/4(I2 ⊗DFTn/4)L
n/2
2 ))Ln

2

= (DFT2 ⊗ In/2)D2,n/2(I2 ⊗DFT2 ⊗ In/4)(I2 ⊗D2,n/4)(I4 ⊗DFTn/4)(I2 ⊗ L
n/2
2 )Ln

2

= ∆(1, 2, 2k−1)D2,2k−1

︸ ︷︷ ︸
∆(2, 2, 2k−2)(I2 ⊗D2,2k−2)
︸ ︷︷ ︸

(I4 ⊗DFTn/4)(I2 ⊗ L
n/2
2 )Ln

2 .

Continuing to unroll I4⊗DFTn/4 with the factorization n/4 = 2×n/8, until reaching

the base case DFTm with some m | n), we have the following theorem.

Theorem 8 (Iterative Cooley-Tukey DFT factorization with a base case). Let n = 2k

and m = 2ℓ such that 0 < ℓ < k. The following matrix factorization holds: 2

DFT2k =

(
k−ℓ−1∏

i=0

∆
(
2i, 2, 2k−i−1

) (
I2i ⊗D2,2k−i−1

)

)

(I2k−ℓ⊗DFTm)
0∏

i=k−ℓ−1

I2i⊗L2k−i

2 .

(5.16)

When the base size m = 2, then the above factorization reduces to the well-known

iterative Cooley-Tukey factorization

DFT2k =

(
k−1∏

i=0

∆
(
2i, 2, 2k−i−1

) (
I2i ⊗D2,2k−i−1

)

)
0∏

i=k−1

(I2i ⊗ L2k−i

2 ). (5.17)

Given Equation 5.16 or Equation 5.17, computing DFTn(x) is not through matrix-

vector multiplications, since ∆(2i, 2, 2k−i−1) = I2i ⊗ DFT2 ⊗ I2k−i−1 , I2i ⊗ D2,2k−i−1

and I2i ⊗ L2k−i

2 are all n × n structured sparse matrices. The cost of applying these

matrices on x are all linear in n. Expressing a FFT algorithm in terms of DFT

matrix factorizations also provides solid understanding towards the algorithm. In the

following paragraphs, we present in details how those matrices operate on the input

data x. In the later sections, we report our implementation details.

Permutation By definition, how I2i ⊗L2k−i

2 operates on x is equivalent to treating

x as 2i equal-length subvectors of size 2k−i and applying L2k−i

2 on each subvector.

2Matrix multiplications are not commutative. Throughout, the product
∏s

i=1
Mi stands for

M1M2 · · ·Ms, while
∏

1

i=s Mi means MsMs−1 · · ·M1.
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According to Definition 8, L2k−i

2 permutes a subvector of x, or transposes a subvector

of x when treating it as a 2k−i−1 × 2 matrix.

Example 10. Let k = 4, i = 2 and x = (0, 1, 2, . . . , 15) be a vector of length n = 16.

Then I2i ⊗ L2k−i

2 = I4 ⊗ L4
2 permute x as follows:

(0, 1, 2, 3) =⇒ (0, 2, 1, 3)

(4, 5, 6, 7) =⇒ (4, 6, 5, 7)

(8, 9, 10, 11) =⇒ (8, 10, 9, 11)

(12, 13, 14, 15) =⇒ (12, 14, 13, 15),

from which it follows I4 ⊗ L4
2(x) = (0, 2, 1, 3, 4, 6, 5, 7, 8, 10, 9, 11, 12, 14, 13, 15).

Twiddling By Definition 5.12, the matrix D2,2k−i−1 is an 2s × 2s diagonal matrix

of the form

D =

















1
. . .

1

1

ωi

. . .

ωi(s−1)

















,

where s = 2k−i−1 and ω is a n-th primitive root of unity. Thus I2i ⊗ D2,2k−i−1 is an

n× n diagonal matrix with 2i copies of D along the diagonal.

Butterfly By the definition of tensor product, DFT2 ⊗ I2k−i−1 is a 2s × 2s square

matrix with s = 2k−i−1 of the form

B =















1 1
. . . . . .

1 1

1 −1
. . . . . .

1 −1















,

Thus I2i ⊗DFT2 ⊗ I2k−i−1 is an n× n matrix with 2i copies of B along the diagonal.

Remark 5. Formula (5.16) reduces the computation of DFT2k to composing lists



82

of permutations, DFTm, diagonal twiddling and butterflies. This is the basis of the

implementation presented in Section 5.4. which needs the assumption that the basis

size m is a multiple of 16.

There exists another way to factorize n, exactly opposite to the process of deriving

Formula (5.16). That is, we apply Theorem 7 with n = n/2× 2, n/2 = n/4× 2, etc:

DFT2k = (DFT2 ⊗ I2k−1)(D2,2k−1 ⊗ I1)(L
2k

2 ⊗ I1)

(DFT2k−1 ⊗ I2)

= (DFT2 ⊗ I2k−1)(D2,2k−1 ⊗ I1)(L
2k

2 ⊗ I1)

(DFT2 ⊗ I2k−1)(D2,2k−2 ⊗ I2)(L
2k−1

2 ⊗ I2)

(DFT2k−2 ⊗ I4)

= (DFT2 ⊗ I2k−1)(D2,2k−1 ⊗ I1)(L
2k

2 ⊗ I1)

(DFT2 ⊗ I2k−1)(D2,2k−2 ⊗ I2)(L
2k−1

2 ⊗ I2)

(DFT2 ⊗ I2k−1)(D2,2k−3 ⊗ I4)(L
2k−2

2 ⊗ I4)

(DFT2k−3 ⊗ I8)

= · · ·

=
k−1∏

i=0

(DFT2 ⊗ I2k−1)(D2,2k−i−1 ⊗ I2i)(L2k−i

2 ⊗ I2i),

from which we derive another factorization of DFTn.

Theorem 9 (Iterative Stockham DFT factorization). The matrix DFT2k can be writ-

ten as a product of matrices

DFT2k =
k−1∏

i=0

(DFT2 ⊗ I2k−1)(D2,2k−i−1 ⊗ I2i)(L2k−i

2 ⊗ I2i). (5.18)

The Stockham FFT factorization can be found in the paper [78]. Comparing with

the iterative Cooley-Tukey factorization, there is a key difference. For the Cooley-

Tukey factorization, the identity matrix Is only appears on the left for twiddling and

permutation. For the Stockham factorization, the identity matrix Is only appears

on the right. As we shall see in the later sections, this difference brings a significant

performance gap. The Stockham factorization based implementation will be presented

in Section 5.5.
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5.4 Implementation of the Cooley-Tukey FFT

We stick to the notations and hypotheses introduced in Section 5.2.2. Our purpose

is to describe our CUDA implementation of Formula (5.16). The idea behind this

formula is that the base case DFTm can be implemented efficiently, for m small

enough, typically m = 16. 3 This formula can be interpreted as the composition of

three computational steps:

S1: x 7−→∏0
i=k−ℓ−1(I2i ⊗ L2k−i

2 )x,

S2: x 7−→ (I2k−ℓ ⊗DFTm)x,

S3: x 7−→∏k−ℓ−1
i=0 (I2i ⊗DFT2 ⊗ I2k−i−1)

(
I2i ⊗D2,2k−i−1

)
x.

According to the definition, the step S2 essentially reduces to execute a sequence

of base DFTm, each of which operates on a sub-vector of x, independently. Therefore,

we focus hereafter on S1 and S3. Note that in step S3, we fuse the twiddling with the

butterfly to reduce memory accesses. For steps S1 and S2 we need to double-buffer

the array to avoid synchronizations among different CUDA thread blocks, see Section

B.1 for related discussions. That is, at the same time, we have two vectors X and Y

of length n, one of which is the input and the other is the output, and they switch

their role after a kernel application on the input.

Implementation of step S1

Step S1 consists of a sequence of calls to the following GPU kernel, with s ranging

from 1 to n
2m

. Its specification is

/**

* Compute Y = (I_s x L_2^{n/s})X

*

* @X, input array of length n

* @Y, output array of length n

*/

void list_transpose_kernel(int *Y, int *X, int n, int s);

Applying the matrix Is ⊗ L
n/s
2 on a vector x of length n is equivalent to

3There are several reasons to set m being a multiple of 16, mainly from the implementation point
of view. Firstly, in CUDA, a basic unit that could be scheduled is called a warp, 16 threads with
consecutive thread indices. For m = 2ℓ ≥ 16, memory accesses to the GPU global memory are easier
to get well-aligned. Secondly, the kernel for permuting data has been simplified due to the choice of
m, where no complicated internal permutations are needed.
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(i) dividing x evenly into s sub-vectors,

(ii) regarding each sub-vector as a n
2s
× 2 matrix and transposing it.

Therefore, step S1 essentially consists of s matrix transpositions of size n
2s
× 2. Fol-

lowing the spirit of [75] for matrix transposition, we realized an efficient subroutine

to transpose a list of matrices. Note that we could not directly adapt their code since

each matrix has only two columns. Without padding the input data with zeros, our

implementation is still able to utilize the shared memory of CUDA devices effectively.

For simplicity, we present our implementation with the following example.

Example 11. Let M be a 16× 2 matrix. We set the thread block size to 16× 2 with

indices (i, j) for 0 ≤ i < 16 and j = 0, 1. Then we first read M into an array Ms of

size 32 residing in the shared memory space as follows

int i = threadIdx.y * 16 + threadIdx.x;

M_s[i] = M[i];

That is, the above segment of code transforms M into the shared array Ms via two

coalesced reads, without changing the data layout. Still, we look at the shared array

Ms as a 16× 2 matrix, then we achieve the transposition by writing the data back to

the global memory column-wise as follows

int i = threadIdx.y * 16 + threadIdx.x;

M[i] = M_s[threadIdx.x * 2 + threadIdx.y];

The first 16 threads (a half warp) {(i, 0) | 0 ≤ i < 16} read in Ms[0],Ms[2], . . . ,Ms[30],

and write to M [0],M [1], . . . ,M [15]. On the other hand, the second half warp

of threads {(i, 1) | 0 ≤ i < 16} read in Ms[1],Ms[3], . . . ,Ms[31] and write to

M [16],M [17], . . . ,M [31]. Again all the writes to global memory are coalesced.

The above example can be generalized to transpose a list of m× 2 matrices with

only coalesced reads and writes for any m ≥ 16, which satisfies the specification of

the kernel list transpose kernel.

5.4.1 Implementation of step S3

We are going to map the formula

(I2i ⊗DFT2 ⊗ I2k−i−1)(I2i ⊗D2,2k−i−1), 0 ≤ i ≤ k − ℓ− 1 (5.19)
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to a GPU kernel. According to Proposition 8, the following relation holds

(I2i ⊗DFT2 ⊗ I2k−i−1)(I2i ⊗D2,2k−i−1) = I2i ⊗
(
(DFT2 ⊗ I2k−i−1)D2,2k−i−1

)
(5.20)

Hence step S3 consists of a sequence of calls to the following GPU kernel, with q

ranging from n
2

to m. Its specification is

/**

* Compute Y = (I_{n/2q} x (DFT_2 x I_q) D_{2, q}) X

*

* @X, input array of length n

* @Y, output array of length n

*/

void list_butterfly_kernel(int *Y, int *X, int n, int q);

We notice that (DFT2⊗Iq)D2,q is, in fact, the classical butterfly operation, which can

be realized as,

for (i = 0; i < q; ++i) {

Y[i] = X[i] + X[q+i] * W[i];

Y[q+i] = X[i] - X[q+i] * W[i];

}

with W [i] = wi and w is a (2q)-th primitive root of unity. The formula

(DFT2 ⊗ Iq)D2,q will be applied to a segment of data of length 2q. Hence, with

n/2 threads, one can realize list butterfly kernel which implements the formula

I2i−1⊗
(
(DFT2 ⊗ I2k−i)D2,2k−i

)
for each i. The following simplified kernel handles the

case where one thread block performs more than one groups of butterflies.

__global__ void

list_butterfly_kernel_a(int q, int *Y, int *X, int w, int p)

{

int gval = threadIdx.x / q; // group index

int rval = threadIdx.x % q; // index inside a group

int offset = blockIdx.x * 2 * blockDim.x + gval * 2 * q + rval;

int x1 = X[offset];

int x2 = X[offset + q];

int wi = pow_mod(w, rval, p); // twiddle factor
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int t = mul_mod(x2, wi, p); // t = x2 * wi mod p

Y[offset] = add_mod(x1, t, p); // y1 = x1 + t mod p

Y[offset + q] = sub_mod(x1, t, p); // y2 = x1 - t mod p

}

5.5 Implementation of the Stockham FFT

Recall that the Stockham FFT factorization (5.18) is

DFT2k =
k−1∏

i=0

(DFT2 ⊗ I2k−1)(D2,2k−i−1 ⊗ I2i)(L2k−i

2 ⊗ I2i).

For each fixed 0 ≤ i < k, there are three computational steps:

A1: x 7−→ (L2k−i

2 ⊗ I2i)x,

A2: x 7−→ (D2,2k−i−1 ⊗ I2i)x,

A3: x 7−→ (DFT2 ⊗ I2k−1)x.

Comparing to the Cooley-Tukey FFT, the Steps A2 and A3 are relatively easy to be

mapped into GPU kernels, while it is rather tricky to map Step A1 into GPU kernels.

Similar to the implementation of the Cooley-Tukey FFT, we use double-buffers in

these steps.

5.5.1 Implementation of step A1

We describe how to map the formula L
n/s
2 ⊗ Is to GPU kernels, where n is the FFT

size and s is called the stride size. Let M be an (n/s − 1) × 2s matrix stored in

the row-major layout. The effect of this stride permutation on M is to perform the

following reordering:

M =












S0 S1

S2 S3

S4 S5

...
...

S(n/s−2) S(n/s−1)












=⇒ T =

[

S0 S2 S4 · · · S(n/s−2)

S1 S3 S5 · · · S(n/s−1)

]
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where Si, called a slice, denotes the elements of M with indices is · · · (is + s − 1).

When we regard M as an (n/s − 1) × 2 matrix (each Si is a single element of M),

the output matrix T , of size 2× (n/s− 1), is the matrix transposition of M .

Example 12. Consider n = 26 = 64. Then all the formulas are L64
2 ⊗ I1, L32

2 ⊗ I2,

L16
2 ⊗ I4, L8

2 ⊗ I8, L4
2 ⊗ I16, and L2

2 ⊗ I32. Some of these transpositions are:

L32
2 ⊗ I2 :









0 1 2 3

4 5 6 7
...

...
...

...

60 61 62 63









=⇒
[

0 1 4 5 · · · 60 61

2 3 6 7 · · · 62 63

]

L8
2 ⊗ I8 :









0 1 2 3 4 · · · 15

16 17 18 19 20 · · · 31

32 33 34 35 36 · · · 47

48 49 50 51 52 · · · 63









=⇒
[

0 · · · 7 16 · · · 23 32 · · · 39 48 · · · 55

8 · · · 15 24 · · · 31 40 · · · 47 56 · · · 63

]

L4
2 ⊗ I16 :

[

0 1 2 3 4 · · · 31

32 33 34 35 36 · · · 63

]

=⇒
[

0 1 2 3 · · · 15 32 · · · 47

16 17 18 19 · · · 31 48 · · · 63

]

As shown above, for a thread block of some fixed number of threads, the map between

threads and element of the matrix are rather complex.

To achieve coalesced memory accesses for all threads, we use the shared memory

space. Let τ be the number of threads in a thread block, typically τ = 128. To

use the shared memory space efficiently, τ should be a multiple of 16. Under the

above setting, the number of threads blocks required is given by λ = n
τ
. We need to

distinguish the following two cases

(1) s ≥ τ , that is, δ = s
τ

blocks are needed to move a slice of length s,

(2) s < τ , that is, a thread block moves δ = τ
s

slices of data.

The reason to have such a case discussion is that the relation between τ and s deter-

mines the behavior of each thread block, specified in detail as follows.
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Proposition 9 (Case s ≥ τ). Given a thread block of index 0 ≤ i < λ, we define

iq = quo(i, δ) and ir = rem(i, δ).

Then the output offset for the thread block i is given by the following formula:

rem(iq, 2) ∗ n

2
+ quo(iq, 2) ∗ s + ir ∗ τ. (5.21)

Moreover, each thread block does a direct copy.

Proof. Here iq determines the slice index which thread block i is working on and ir

determines the offset inside this slice. If iq is a multiple of 2 then Siq appears in the

first row of the output matrix, otherwise it appears in the second row. Since s ≥ τ ,

each thread block only move a portion of a slice. Hence threads in a block move data

directly, without performing any in-block shuffle.

Example 13. Again let n = 64, s = 16 and x = (0, 1, . . . , 63). Assume the number

of threads in a block is τ = 8. Then the number of blocks is n
τ

= 8, two of which move

one slice. Then L4
2 ⊗ I16 permutes x as follows

[

S0 S1

S2 S3

]

=⇒
[

S0 S2

S1 S3

]

where Si = (16i, . . . , 16i + 15) for i = 0, 1, 2 and 3. Thus thread blocks 0 and 1 move

S0, blocks 2 and 3 moves S1, blocks 4 and 5 move S2, and blocks 6 and 7 move S3.

Threads in each block move data according to the offset for the block and its thread

index.

Proposition 10 (Case s < τ). Given a thread block of index 0 ≤ i < λ, there are

two output offsets for threads in the block

offset0 = i ∗ quo(τ, 2) and offset1 = i ∗ quo(τ, 2) +
n

2
. (5.22)

Those Si’s with even indices will be moved with offset0, while the others will be moved

with offset1.

Proof. For each thread block, half of the threads moves data to the first row and the

remaining half moves data to the second row. Then the conclusion follows from the

fact that each row consists of n/2 elements.
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Example 14. Let n = 64, s = 4 and x = (0, 1, . . . , 63). Assume the number of

threads in a block is τ = 8. Then the number of blocks is n
τ

= 8, each of which moves

2 slices. Then L16
2 ⊗ I4 permutes x as follows



















S0 S1

S2 S3

S4 S5

S6 S7

S8 S9

S10 S11

S12 S13

S14 S15



















=⇒
[

S0 S2 S4 S6 S8 S10 S12 S14

S1 S3 S5 S7 S9 S11 S13 S15

]

where Si = (4i, . . . , 4i + 3) for i = 0 · · · 15. Thread block i moves slices S2i and S2i+1,

where S2i uses offset0 and S2i+1 uses offset1.

We note that in the implementation each thread block first reads τ
s

consecutive

slices into the shared memory, then performs an in-block shuffle inside the shared

memory, and in the end writes slices back with coalesced writes. This approach

achieves high performance in terms of memory accesses.

5.5.2 Implementation of steps A2 and A3

According to its definition, D2,2k−i−1 is a diagonal matrix of size 2k−i and thus

D2,2k−i−1 ⊗ I2i is again a diagonal matrix of size n, with each diagonal element re-

peated 2i times. Hence step A2 simply scales x with powers of the primitive root

of unity ω. On the other hand, step A3 is a list of basic butterflies with stride size

n/2. This step accesses data in a very uniform manner. In the following section, we

discuss the performance implications of steps A2 and A3.

5.6 Experimentation

We have realized in CUDA 2.2 both Cooley-Tukey FFT and Stockham FFT, and con-

ducted a series of benchmarks using a Geforce GTX 285 graphics card on a desktop

with the processor Intel Core 2 Quad CPU Q9400 @ 2.66GHz and 6 GB main memory.

This graphics card has the compute capability 1.3, consists of 30 multiprocessors, each

of which has 8 cores for integer and single-precision floating-point arithmetic opera-

tions. However, each multiprocessor has only 1 double-precision floating-point unit.
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This is an important characteristic for our double mul mod routine implementing the

map (a, b, p) 7→ (ab) mod p, as described Section 5.2.3. We note that for the most

recent Nvidia graphics cards having the compute capability 2.x, the ability to perform

double-precision floating-point operations has been greatly enhanced.

The experimentation is described in the following three subsections. Section 5.6.1

is dedicated to modular multiplication, and more precisely, to a comparative imple-

mentation of the map (a, b, p) 7→ (ab) mod p on both CPU and GPU. Section 5.6.2

presents the results for our GPU implementation of the FFT formulas of Cooley-

Tukey and Stockham, as described in Sections 5.4 and 5.5. Section 5.6.3 compares

the performance of FFT-based univariate polynomial multiplication codes for CPU

and GPU.

5.6.1 Modular multiplication

Figure 5.1 and Figure 5.2 are experimental results for modular multiplication on

CPU and GPU respectively. In both cases, each slot of an input array of length

n = 2k consisting of machine word size integers is multiplied by a given machine

word size integer ω. This type of calculation is typical for FFT algorithms. For both

CPU and GPU we compare our implementations of the Montgomery reduction and

double mul mod. For the GPU kernel, we could choose to have a single thread or

multiple threads. In our experimentation, we use the latter and in this case each

multiprocessor can only process a double-precision floating-point operation at a time

which downgrades the performance. Both the array length and the time are scaled

by the base 2 logarithm.

Figure 5.1 shows that double mul mod is about 1.5 faster than the method based

on the Montgomery reduction, when running serial C code on the CPU. On the

GPU, Figure 5.2 shows that double mul mod is still slightly better than the method

based on the Montgomery reduction, which is a surprise to us. When we increase the

number of modular multiplications, the one relying on double-precision floating point

computations outperforms the one relying on the Montgomery reduction. We do the

same test as in Figure 5.1 on GPU, and run the kernels with massive threads.

5.6.2 Cooley-Tukey verses Stockham FFT

It is challenging to figure out what are the best implementation techniques for each of

the two formulas. During our experiments, we realized that the pre-computation of

the powers 1, ω, ω2, . . . , ωn/2−1 is a necessity, for an n-point FFT. This step is rather
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Figure 5.1: Modular multiplications on CPU

Figure 5.2: Modular multiplications on GPU
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time-consuming if we implement it naively, that is, first compute those powers in

the host sequentially, and then transfer them to the GPU device. Fortunately, this

preprocessing is a special form of the exclusive prefix sum and the pre-computation

can be achieved by a sequence of GPU kernel calls to a subroutine double expand,

which takes an array {1, ω, . . . , ωs−1} of length s as input and returns {ωs, . . . , ω2s−1}
by multiplying each element of the input array with ωs.

We have noticed that step S3 of the Cooley-Tukey FFT (as described in Sec-

tion 5.4.1) was accessing the powers of ω by performing larger and larger jumps. For

example, while the following formula (DFT2 ⊗ I2k−i)(I2i−1 ⊗ D2,2k−i) operates on a

sub-vector of length 2k−i+1, the powers {1, ω2i

, (ω2i

)2, . . . , (ω2i

)2k−i−1} get accessed.

We call jumped powers at level i these latter powers. Therefore, we considered pre-

computing not only the powers {1, ω, . . . , ωn/2−1} but also all jumped powers at level

i for each i.

Figure 5.3: Cooley-Tukey FFT with pre-computed jumped powers

To visualize the performance of our implementation, we use the Nvidia’s visual

profiler cudaprof to analyze CUDA kernel calls. It is very helpful to find out the

bottlenecks of an implementation. For instance, Figure 5.3 shows the kernel statistics

where the pre-computation of jumped powers has been done on the host, In this

figure, the x-axis shows the CUDA kernel call indices in chronological order and the

y-axis is proportional to the GPU time for each kernel. The second kernel moves the
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extra n/2 powers of the primitive root of unity to the device memory, which affects

the overall performance. Note that those method names a or b as a suffix, since we

implement the same algorithm for handling input data in different ranges.

Figure 5.4: Cooley-Tukey FFT without pre-computed jumped powers

If the jumped powers were not computed in advance, the accesses to those pow-

ers harm the performance heavily as shown by Figure 5.4, since those memory ac-

cesses to the global memory are non-coalesced, in the step S3 of the Cooley-Tukey

FFT. The time spent by the kernel list butterfly kernel increases significantly,

which greatly downgrades the overall performance. To our knowledge, it is hard to

achieve coalesced accesses without pre-computing jumped powers in implementing

the Cooley-Tukey FFT.

However, the Stockham FFT avoids such a problem. Indeed, all the accesses to

a power of ω are packed together, resulting in a broadcasting inside a thread block.

Figure 5.5 shows the kernel statistics of the Stockham FFT of size 226, which is our

best GPU univariate FFT implementation.

Without computing jumped powers, our Stockham FFT only pre-computes

all powers use an extremely fast kernel double expand ker. The steps A1, A2

and A3 are realized by stride transpose2 kernel, stride twiddle kernel and

butterfly kernel, respectively. The first and last kernels are for the input and

output data transfer. All of them are running very efficiently.

For completeness, in Figure 5.6 we compare our two GPU implementations for

FFT against our C code from modpn [50]. This latter library is shipped with the
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Figure 5.5: Stockham FFT on GPU

CT CT + transfer Stockham Stockham + transfer modpn

12 1 1 2 2 1
13 2 2 2 3 1
14 1 2 2 3 3
15 2 2 3 3 4
16 3 3 3 4 10
17 4 5 3 5 16
18 6 9 4 7 37
19 11 15 6 10 71
20 22 28 9 16 174
21 44 56 16 28 470
22 83 105 29 52 997
23 165 210 56 101 2070
24 330 418 113 201 4194
25 667 842 230 405 8611
26 1338 1686 473 822 17617

Figure 5.6: Timing of FFT codes on CPU and GPU in milliseconds

computer algebra system Maple and is considered as a reference code for FFT com-

putations over finite fields. The first column is the logarithm of FFT size in base 2.

The second and the fourth columns show the timing of our Cooley-Tukey and Stock-

ham FFT implementations, without counting the data transfer between GPU and

CPU, respectively. The third and the fifth columns show these FFT implementations

with the data transfer. The last column shows the modpn FFT timing.
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Figure 5.7: Comparison among GPU FFT implementations

Without considering the time spent in host-device data transfer, the speedup we

achieve is about 37 for the FFT size 226 (this speedup is about 21 if the data movement

time is counted). As shown in Figure 5.7, where both the FFT size and the time are

scaled by the base 2 logarithm, our Stockham FFT code is about 2 times faster than

our Cooley-Tukey FFT code, mainly due to the jumped powers pre-computation.

5.6.3 Univariate polynomial multiplication over finite fields

As a direct application of fast Fourier transforms, we have implemented FFT based

univariate polynomial multiplications over finite fields. Figure 5.8 compares the modpn

FFT based polynomial multiplication against our GPU Stockham FFT-based one

(the data transfer has been counted for the GPU code). The input two polynomials

are randomly generated with the same given degree. When the degree is relatively

large, the speedup we achieved is about 21 - 37, comparing to the modpn polynomial

multiplication.
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Figure 5.8: FFT-based dense polynomial multiplication on GPU and CPU

5.7 Summary

We have presented in detail various issues in implementing efficient fast Fourier trans-

forms over finite fields on the GPU. Our experimental results show that the Stockham

formula is well-suited for massively-threaded architectures. In particular, it avoids

pre-computing extra powers of primitive roots of unity in a natural way, without

downgrading the performance. Our implementation exhibits a significant performance

improvement over a reference C implementation. For multiplying two dense univari-

ate polynomials, we have achieved about a speedup of 30 with respect to the best

code available to us. As our future work, we would like to implement multidimen-

sional FFTs, and to revisit various modular algorithms in symbolic computation, like

evaluation/interpolation based subresultant computations.
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Chapter 6

Computing Subresultants

In Chapter 3, we have proposed a bottom-up algorithm for computing the regular

GCDs of two polynomials modulo a regular chain. One of the key ingredients in the

algorithm is that the computation of subresultants only needs to be computed once

without modulo the regular chain, which brings the opportunity of using FFT based

asymptotically fast algorithms. This chapter devotes to the computation of subresul-

tants via an FFT based modular algorithm, and we report our GPU acceleration for

this task.

6.1 Overview

Let n ≥ 1 and let P,Q ∈ k[x1, . . . , xn+1] be non-constant polynomials with the same

main variable y := xn+1 such that p := deg(P, y) ≥ q := deg(Q, y). We denote by A

the ring k[x1, . . . , xn] and by Sj the j-th subresultant of P,Q in A[y], for 0 ≤ j < q.

For given positive integers m1, . . . , mn, we call the following finite set Θ a grid in kn

Θ = Θ1 ×Θ2 × · · · ×Θn

= {(u1, . . . , un) | ui ∈ Θi for each i} (6.1)

where Θi is a finite subset of k with size mi for each i. If mi is a power of 2 for each

i, there exists a special type of grid, called DFT grid, where

Θi = {ωj
i | j = 0 · · ·mi − 1}

and ωi is a mi-th primitive root of unity for each i. The format of Θ is (m1, . . . ,mn)

and its size is the product m1 · · ·mn. We say the grid Θ is valid for a polynomial
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f ∈ k[x1, . . . , xn][y], if the leading coefficient of f in y does not vanish at any point

in Θ.

The evaluation-interpolation method for computing subresultants Sj, proposed by

Collins in [18], proceeds as follows.

(S1) Compute an upper bound for the degree deg(S0, xi) and set mi to it, for i =

1 · · ·n,

(S2) Construct a grid Θ of format (m1, . . . ,mn), valid for both P and Q,

(S3) Evaluation: compute P (u, y) and Q(u, y) for each u ∈ Θ,

(S4) For each u ∈ Θ, for each 0 ≤ j < q, compute the subresultants Sj(u) of P (u, y),

Q(u, y) in y,

(S5) Interpolation: for each 0 ≤ j < q, construct the subresultant Sj from the image

set {Sj(u) | u ∈ Θ}.

For Step (S1), a well-known degree bound can be derived from the Sylvester

matrix of P and Q, see the paper of Monagan [59] for detailed discussions. For Step

(S2), let h be the product of the leading coefficients of P and Q in y, which is a

nonzero polynomial in k[x1, . . . , xn]. Constructing a valid grid for h deterministically

is difficult. In practice, one can generate a grid at random and check whether the

grid is valid or not. Step (S4) is equivalent to computing the subresultant chains of m

univariate polynomial pairs. A standard tool for doing this is Brown’s subresultant

algorithm [10].

Step (S3) and Step (S5) are instances of the so-called multipoint evaluation and

multipoint interpolation problems, respectively. In general, these operations can be

performed by means of subproduct tree techniques [34]. We do not analyze this point

of view further since our focus is on DFT grids. If Θ is a DFT grid, then FFT-based

multipoint evaluation and interpolation run in 3
2
M(m) log(m) operations in k. 1

The approach presented in this chapter is summarized in Figure 6.1, where all

the computations are converted into the bivariate case, by means of Kronecker’s sub-

stitutions. This turns multivariate FFT computations into univariate ones, which

simplifies both the analysis and the implementation. In practice, it is wiser to con-

duct large univariate FFTs (or large bivariate FFTs, see [68] for details) rather than

multivariate FFTs with small sizes along one or more dimensions.

1In this chapter, M(m) denotes the number of arithmetic operations for computing the product
of two univariate polynomials of degree less than m over a field. For those fields supporting FFTs,
we have M(m) = O(m log(m)).
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P , Q in Zp[x1, . . . , xn, y]

F , G in Zp[x, y]

F ′, G′ in Zp[x, y]

F ′(ωi, y), G′(ωi, y) in Zp[y]

exit, if several random
choices a failed

subres(F ′(ωi, y), G′(ωi, y), y)

subres(F ′(x, y), G′(x, y), y)

subres(F (x, y), G(x, y), y)

subres(P, Q, y) ∈ Zp[x1, . . . , xn, y]

Kronecker’s substitution

Random translation φa

FFT

Brown’s algorithm

Inverse FFT

Inverse φa

Inverse Kronecker

Direct computation

Figure 6.1: Compute the subresultant chain via a FFT based modular algorithm.

We organize this chapter as follows. Section 6.2 reviews the Kronecker substi-

tutions. In Section 6.3, we recall properties of subresultants that are not covered

in Section 3.2.3 of Chapter 3. In Section 6.4, we introduce and analyze the linear

translation method for finding a valid DFT grid in the subresultant computations.

Section 6.5 reviews Brown’s subresultant algorithm for univariate polynomials. In

Section 6.6, we analyze the over cost and memory consumption of building subre-

sultant evaluation cube. In Section 6.7, we report our GPU implementation and

experimental results on FFT based subresultant chain construction for bivariate and

trivariate input.

6.2 Kronecker’s substitution and its inverse

The Kronecker’s substitution [34] is a well-known technique to transform a multi-

variate problem into the univariate one. In this section, we review some elementary

properties of the Kronecker substitution and present an extension of it.

Definition 10. Let k be a field and f ∈ k[x1, . . . , xn] such that deg(f, xi) < ei for
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i = 1 · · ·n. The Kronecker’s substitution with respect to (e1, . . . , en) is defined as

δ : k[x1, . . . , xn] −→ k[x],

δ(x1) = x,

δ(xi) = xe1e2···ei−1 , i = 2 · · ·n

δ
(∑

ca1···an
xa1

1 · · ·xan

n

)

=
∑

ca1···an
δ(x1)

a1 · · · δ(xn)an . (6.2)

That is, δ directly substitutes each variable xi by a predefined power of x.

Proposition 11. Let U = {f ∈ k[x1, . . . , xn] | deg(f, xi) < ei, for 1 ≤ i ≤ n} and

let V = {g ∈ k[x] | deg(g) < e1 · · · en}. The following properties hold

(1) δ(m1) = δ(m2) ⇐⇒ m1 = m2 for monomials m1,m2 ∈ U .

(2) δ(f + g) = δ(f) + δ(g) for f, g ∈ U .

(3) Map δ gives a vector space isomorphism between U and V . This is to say,

polynomials in U can be uniquely recovered from their image under δ.

(4) δ(fg) = δ(f)δ(g) if deg(f, xi) + deg(g, xi) < ei for i = 1 · · ·n.

Proof. We first show that for all i = 1 · · ·n− 1 the following inequality holds

t1 + t2e1 + · · ·+ tie1e2 · · · ei−1 < e1 · · · ei, (6.3)

whenever ti < ei for i = 1 · · ·n − 1. We prove by induction on i. If i = 1, Inequal-

ity (6.3) holds since t1 < e1. For any i > 1, we have

t1 + t2e1 + · · ·+ ti−1e1e2 · · · ei−2 + tie1e2 · · · ei−1

< e1 · · · ei−1 + tie1e2 · · · ei−1 (by induction hypothesis)

≤ e1 · · · ei−1ei (since ti + 1 ≤ ei).

For (1), let m1 = xa1

1 · · ·xan
n ∈ U and m2 = xb1

1 · · ·xbn
n ∈ U . Then we have

δ(m1) = δ(m2) =⇒ a1 + · · ·+ ane1e2 · · · en−1 = b1 + · · ·+ bne1e2 · · · en−1

=⇒ an = bn (take the quotient by e1 · · · en and use Inequality (6.3))

Continuing in this way, we derive ai = bi for all i = 1 · · ·n. (2) is a direct consequence

of (1) and the definition of δ.
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For (3), from Equation (6.2) and (2), δ gives an injective linear map from U to

V . We deduce (3) from the fact that dimk U = dimk V = e1 . . . en. For (4), if f is a

term, that is, f can be written as cm for a monomial m = xa1

1 · · ·xan
n ∈ U and c ∈ k,

then

δ(fg) = δ
(

cm
∑

cb1b2···bn
xb1

1 · · ·xbn

n

)

= δ
(∑

ccb1b2···bn
xa1+b1

1 · · ·xan+bn

n

)

=
∑

ccb1b2···bn
δ(x1)

a1+b1 · · · δ(xn)an+bn

= cδ(x1)
a1 · · · δ(xn)an

∑

cb1b2···bn
δ(x1)

b1 · · · δ(xn)bn

= δ(f)δ(g).

For an arbitrary f , we write f =
∑

i fi with fi being terms. By (2), we have

δ(fg) = δ

(
∑

i

fig

)

=
∑

i

δ(fig) =
∑

i

δ(fi)δ(g) =

(
∑

i

δ(fi)

)

δ(g) = δ(f)δ(g).

This completes the proof.

The above proof indicates a way to recover a polynomial in U from its image

monomial by monomial. Each exponent a in the monomial xa uniquely defines a

sequence (a1, . . . an) as follows:

an = a quo e1 · · · en−1 rn−1 = a mod e1 · · · en−1

an−1 = rn−1 quo e1 · · · en−2 rn−2 = rn−1 mod e1 · · · en−2

· · ·
a2 = r2 quo e1 r1 = r2 mod e1

a1 = r1.

Then monomial xa1

1 · · ·xan
n is the desired pre-image of xa.

Example 15. Let f = 1 + 2x1 + 3 x2
2 + 4 x3

3 + 5 x1x2 + 6 x1x2x3 ∈ Q[x1, x2, x3] and

let (e1, e2, e3) = (2, 4, 4). Then δ maps (x1, x2, x3) to (x, x2, x8) and

δ(f) = h(x) = 1 + 2x + 3 x4 + 4 x24 + 5 x3 + 6 x11.
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The pre-image δ−1(h) of h is

δ−1(h) = 1 + 2 δ−1(x) + 3 δ−1(x4) + 4 δ−1(x24) + 5 δ−1(x3) + 6 δ−1(x11)

= 1 + 2x1 + 3 x2
2 + 4 x3

3 + 5 x1x2 + 6 x1x2x3.

For instance, δ−1(x11) = x1x2x3 is from the following calculations:

a3 = 11 quo 8 = 1 r2 = 11 mod 8 = 3

a2 = 3 quo 2 = 1 r1 = 3 mod 2 = 1

a1 = 1.

The classic Kronecker substitution can be adapted to turn a multivariate into a

bivariate one, which is also useful for some cases. This bivariate transformation is

called contraction in [68] where it is used to optimize parallelism and cache complexity

of dense multivariate polynomials in a multi-core implementation.

Definition 11. Let k be a field and f ∈ k[x1, . . . , xn] such that deg(f, xi) < ei for

i = 1 · · ·n. The bivariate Kronecker’s substitution with respect to (e1, . . . , en) and an

index 2 ≤ j ≤ n is defined as

δj : k[x1, . . . , xn] −→ k[x, y],

δj(x1) = x,

δj(xi) = xe1e2···ei−1 , i = 2 · · · j − 1

δj(xj) = y,

δj(xi) = yejej+1···ei−1 , i = j + 1 · · ·n

δj

(∑

ca1···an
xa1

1 · · ·xan

n

)

=
∑

ca1···an
δj(x1)

a1 · · · δj(xn)an . (6.4)

Similar to Proposition 11, it is not hard to verify the following properties for

bivariate Kronecker’s substitutions δj.

Proposition 12. Let U = {f ∈ k[x1, . . . , xn] | deg(f, xi) < ei, for 1 ≤ i ≤ n} and

let

V = {g ∈ k[x, y] | deg(g, x) < e1 · · · ej−1, deg(g, y) < ej · · · en},

for some 2 ≤ j ≤ n. The following properties hold

(1) δj(m1) = δj(m2) ⇐⇒ m1 = m2 for monomials m1,m2 ∈ U .

(2) δj(f + g) = δj(f) + δj(g) for f, g ∈ U .
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(3) Map δj gives a vector space isomorphism between U and V .

(4) δj(fg) = δj(f)δj(g) if deg(f, xi) + deg(g, xi) < ei for i = 1 · · ·n.

6.3 Resultants and subresultants

Resultant, as a powerful tool in the elimination theory, has been widely used in

various triangular decomposition algorithms. The Triade algorithm developed by

Moreno Maza [65] has been using it extensively. Let P,Q ∈ R[y] be two non-zero

polynomials of respective degree m and n such that n,m > 0. Suppose that

P = amym + · · ·+ a1y + a0 and Q = bny
n + · · ·+ b1y + b0.

Definition 12. The Sylvester matrix of P and Q is a square matrix of order n + m

with coefficients in R, denoted by sylv(P,Q, y) and defined by

sylv(P,Q, y) =

























am am−1 · · · · · · · · · · · · a0

am am−1 · · · · · · · · · · · · a0

. . . . . . . . .

am am−1 · · · · · · · · · · · · a0

bn bn−1 · · · b1 b0

bn bn−1 · · · b1 b0

. . . . . . . . .
. . . . . . . . .

. . . . . . . . .

bn bn−1 · · · · · · b0

























whose determinant, denoted by res(P,Q, y), is called the resultant of P and Q.

An important relation between the gcd and the resultant of P and Q is given by

the following proposition, which tells in what condition that P,Q have a nontrivial

common factor over an integral domain R, like the ring Z of integers. In particular, if

R is a field, then P and Q have a common solution in R if and only if res(P,Q, y) = 0.

Proposition 13 ([58]). If R is a unique factorization domain (UFD), then gcd(P,Q)

is non-constant in R[y] if and only if res(P,Q, y) = 0 in R.
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Example 16. Let P = ay2 + by + c and let Q = 2ay + b be the derivative of P w.r.t

y. Then the Sylvester matrix of P and Q w.r.t y is

S =






a b c

2a b 0

0 2a b






whose determinant is det(S) = a(4ac−b2). Whenever a 6= 0, P and Q have a common

solution (or equivalently, P = 0 has a solution of multiplicity 2) if and only if the

resultant res(P,Q, y) is zero.

The notion of subresultant is a refinement of resultant. Each subresultant of P

and Q is a polynomial in y whose coefficients are minors of its Sylvester matrix.

Definition 13 (Determinantal polynomial). Let m ≤ n be positive integers. Let M

be a m × n matrix with coefficients in a commutative ring R. Let Mi be the square

submatrix of M consisting of the first m−1 columns of M and the i-th column of M ,

for i = m · · ·n; let det Mi be the determinant of Mi. The determinantal polynomial

of M , denote by dpol(M), is a polynomial in R[y], given by

dpol(M) = det Mmyn−m + det Mm+1y
n−m−1 + · · ·+ det Mn.

If dpol(M) is nonzero then its degree is at most n −m. Let P1, . . . , Pm be poly-

nomials of R[y] of degree less than n. We denote by mat(P1, . . . , Pm) the m × n

matrix whose i-th row contains the coefficients of Pi, sorted in order of decreasing

degree, and such that Pi is treated as a polynomial of degree n − 1. We denote by

dpol(P1, . . . , Pm) the determinantal polynomial of mat(P1, . . . , Pm).

Example 17. Let n = 4, m = 2, P1 = a3y
3 +a2y

2 +a1y+a0 and P2 = b2y
2 +b1y+b0.

Then

mat(P1, P2) =

[

a3 a2 a1 a0

0 b2 b1 b0

]

,M2 =

[

a3 a2

0 b2

]

,

M3 =

[

a3 a1

0 b1

]

, and M4 =

[

a3 a0

0 b0

]

.

Consequently, we have dpol(P1, P2) = a3b2y
2 + a3b1y + a3b0.

Definition 14. Let P,Q ∈ R[y] be non-constant polynomials of respective degrees p, q

with q ≤ p. Let k be an integer with 0 ≤ k < q. Then the k-th subresultant of P and
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Q, denoted by subresk(P,Q, y), is

subresk(P,Q, y) = dpol(yp−k−1P, yp−k−2P, . . . , P, yq−k−1Q, . . . , Q).

Observe that if subresk(P,Q, y) is not zero then its degree is at most k. When

subresk(P,Q, y) has degree k, it is said to be regular; when subresk(P,Q, y) 6= 0 and

deg(subresk(P,Q, y)) < d, subresk(P,Q, y) is said to be defective.

It is easy to show that subres0(P,Q, y) is res(P,Q, y), the resultant of P and Q.

Example 18. Let P = b2y
2 + b1y + b0 and Q = a3y

3 + a2y
2 + a1y + a0. Then

subres0(P,Q, y) = dpol(y2P, yP, P, yQ,Q) = dpol











b2 b1 b0

b2 b1 b0

b2 b1 b0

a3 a2 a1 a0

a3 a2 a1 a0











= b2a
2
2b

2
0 − 2b2

2a2b0a0 − a2b
2
0a3b1 + b3

2a
2
0 + 3b2a0a3b1b0

− b1b2a1a2b0 − b1b
2
2a1a0 + b2

1a1a3b0 + b2a2b
2
1a0

− a3b
3
1a0 + b0b

2
2a

2
1 − 2b2a1a3b

2
0 + a2

3b
3
0

and

subres1(P,Q, y) = dpol(yP, P,Q) = dpol






b2 b1 b0

b2 b1 b0

a3 a2 a1 a0






= (b2
2a1 − b2a3b0 − b2a2b1 + a3b

2
1) y − b2a2b0 + b2

2a0 + a3b1b0.

In particular, when P = y(y − 3) = y2 − 3y and Q = y(y − 1)(y + 1) = y3 − y2, we

have subres0(P,Q) = 0 and subres1(P,Q) = 6y, which in fact reflects gcd(P,Q) = y.

Proposition 14. Let R be a UFD and P,Q be polynomials in R[y] with degrees p

and q. If for some 0 < k < min(p, q), subresk(P,Q, y) 6= 0 and subresi(P,Q, y) = 0

for all i < k, then we have deg(gcd(P,Q)) = k. In fact, subresk(P,Q, y) is simi-

lar to gcd(P,Q) in the sense that there exist nonzero constants α and β such that

α gcd(P,Q) = β subresk(P,Q).

According to the above proposition, subresk(P,Q, y) is a regular subresultant,

and we usually call it the last subresultant of P,Q, which is in fact the last nonzero
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subresultant. This terminology is used in the PRS package of Lionel Ducos in AXIOM

and in the RegularChains library in Maple.

In what follows, we review some known bounds on the resultants. They are

of particular importance for computing subresultants using modular methods. We

focus on the degree estimates on the resultant of two multivariate polynomials in the

polynomial ring k[x1, . . . , xn, y], where k is a field.

Proposition 15. Let f, g ∈ k[x1, . . . , xn, y]. When writing dy = deg(f, y), d′
y =

deg(g, y), di = deg(f, xi), and d′
i = deg(g, xi) for i = 1 · · ·n, we have

deg(res(f, g, y), xi) ≤ d′
ydi + dyd

′
i, (6.5)

for each i = 1 · · ·n.

Proof. According to the definition, the resultant of f and g in y is the determinant

of its Sylvester matrix, which can be expanded as a sum of (dy + d′
y)! terms. Each

nonzero term has d′
y factors from the coefficients of f , and dy factors from coefficients

of g. Thus in each term, the partial degree in xi is at most d′
ydi + dyd

′
i, which implies

the claim.

In [59], the author refined Proposition 15 by expanding the Sylvester matrix S of

f and g in y in a different way. Define

µir = max
1≤s≤dy+d′y

deg(Srs, xi) and νis = max
1≤r≤dy+d′y

deg(Srs, xi)

for i = 1 · · ·n. Expanding S along the columns gives the following row bound

deg(res(f, g, y), xi) ≤
dy+d′y∑

r=1

µir. (6.6)

Expanding S along the rows gives the following column bound

deg(res(f, g, y), xi) ≤
dy+d′y∑

s=1

νis. (6.7)

For the bivariate case, there is a special bound on the degree of the resultant, which

sometimes gives a tighter estimate.
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Proposition 16 (Bézout Bound). Let f, g ∈ k[x, y]. Then

deg(res(f, g, y), x) ≤ deg(f)deg(g), (6.8)

where deg is the total degree.

Proof. This is a direct consequence of the Bézout Theorem, which says that the

number of roots of res(f, g, y) is bounded by deg(f)deg(g).

Example 19. Consider two polynomials f and g over Q[x, y] defined as

f = x2y − x2 + 6 y − 6− xy2 − x,

g = xy2 − y2 + 6 x− 6− x2y − y.

The Sylvester matrix of f and g w.r.t y is

S =











−x x2 + 6 −x2 − 6− x 0

0 −x x2 + 6 −x2 − 6− x

x− 1 −x2 − 1 6 x− 6 0

0 x− 1 −x2 − 1 6 x− 6











.

Let r(x) = res(f, g, y). Then the Sylvester bound in Equation (6.5) gives deg(r, x) ≤
2× 2+2× 2 = 8, the row bound in Equation (6.6) gives deg(r, x) ≤ 2+2+2+2 = 8,

the column bound in Equation (6.7) gives deg(r, x) ≤ 1+2+2+2 = 7, and the Bézout

bound in Equation (6.8) gives deg(r, x) ≤ 3 × 3 = 9. Hence, the tightest one is the

column bound deg(r, x) ≤ 7. In fact, we have

r(x) = 2 x6 − 22 x5 + 102x4 − 274 x3 + 488x2 − 552 x + 288,

which has degree 6.

6.4 Finding a valid DFT grid

Let P and Q be polynomials in k[x, y], where x stands for x1, . . . , xn,. We assume

that p = deg(P, y) ≥ q = deg(Q, y) > 0 holds. We write P and Q as

P =

p
∑

i=0

ai y
i and Q =

q
∑

j=0

bj yj,
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where ai’s and bj’s are polynomials in x1, . . . , xn. Our goal is to compute the subre-

sultant sequence Se−1, . . . , S1, S0 of P and Q in y, where Sk = subresk(P,Q, y).

As presented in Figure 6.1, where n = 1 is assumed, the first step is to evaluate

P and Q at a DFT grid by means of fast Fourier transforms. The FFT sizes mi

are determined by the degree in xi of the resultant S0 = res(P,Q, y). According to

Proposition 15, Equation (6.7), Equation (6.6) and Proposition 6.8, we calculate an

estimate on the degree bound D of S0 in xi, for all i.

There are other practical issues to be elaborated. For instance, assuming n = 1,

if one of the leading coefficients has a factor x1 − 1, then we can never find a valid

DFT grid, since the DFT grid is of the form [1, ω1, . . . , ω
m1−1
1 ], in which 1 cancels one

leading coefficient. More generally, it is possible that one of the leading coefficient

vanishes at a power of ω1. In this case, inverse FFTs can not be applied to recover

subresultants correctly from specialized images. The following example illustrates the

problem and shows how to overcome it by means of linear translations.

Example 20. Let k = Z/pZ with p = 97 and consider bivariate polynomials

F = (x− 1)y2 + (−x2 − 1)y + (6 x− 6) and G = −xy2 + (x2 + 6)y + (−x2 − x− 6).

The degree bound (in x) of subresultants is D = 7, and hence we could set the FFT

size to m = 8. Since the leading coefficient of F is x− 1, there is no valid DFT grid

for F and G. We transform F and G by a “random” translation φ : x 7→ x + 21, and

denote by F ′ = φ(F ) and G′ = φ(G):

F ′ = (x + 20) y2 +
(
33 + 55x + 96 x2

)
y + 6 x + 23

G′ = (96x + 76) y2 +
(
59 + x2 + 42 x

)
y + 96 x2 + 54 x + 17

We have a 8-th primitive root of unity ω = 33, which defines an DFT grid

Θ = [1, ω, . . . , ω7] = [1, 33, 22, 47, 96, 64, 75, 50].

The product H of the leading coefficients of F ′ and G′ is 96 (x+21) (x+20). Evaluating

H at Θ gives [23, 48, 37, 3, 8, 38, 95], which implies that Θ is a valid DFT grid for F ′

and G′.

In what follows, we formally define linear translations and analyze in which case

it is possible to overcome this problem. First, the specialization property of subresul-
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tants as stated in Corollary 6 says that one can recover the subresultants of F , G in

y from the ones of F ′, G′ in y.

Theorem 10 (Subresultants under specialization). Let A and B be commutative rings

with unity, and φ : A → B be a ring homomorphism2. Let F and G be univariate

polynomials in A[y] with degrees d and e, respectively. Assuming that d ≥ e and

φ(lc(F )lc(G)) 6= 0 hold. Then we have the identity

φ(subresi(F,G, y)) = subresi(φ(F ), φ(G), y), for all 0 ≤ i < e. (6.9)

Proof. See the proof from [58].

Example 21. For any positive integer m, the map φ : Z → Z/mZ, k 7→ k mod m,

is a ring homomorphism. For any commutative ring A with unity and a ∈ A, the

translation map φ : A[x] → A[x], f(x) 7→ f(x + a) is a homomorphism from A[x] to

itself.

Definition 15. For any a = (a1, . . . , an) ∈ kn, define the translation map φa with

respect to a as follows

φa : k[x, y] −→ k[x, y]

f(x1, . . . , xn, y) 7→ f(x1 + a1, . . . , xn + an, y).

It is easy to check that the inverse translation of φa is φ−a defined by −a =

(−a1, . . . ,−an).

Corollary 6. Let P,Q be polynomials in k[x, y] with positive degrees in y. Let φa

be a translation map such that neither φa(lc(P, y)) nor φa(lc(Q, y)) is zero. Then the

following identity holds

φ−a(subresj(φa(P ), φa(Q), y)) = subresj(P,Q, y), for all 0 ≤ j < e, (6.10)

where e = min(deg(P, y), deg(Q, y)).

Proof. A translation map φa is a ring homomorphism from k[x] to itself.

In the following two subsections, we analyze when a translation φa permits a valid

DFT grid of size m for φa(P ) and φa(Q). We restrict ourselves to the case where k

is a finite field and n = 1 or n = 2.
2A ring homomorphism is a function from A to B such that φ(1A) = 1B , φ(a + b) = φ(a) + φ(b)

and φ(ab) = φ(a)φ(b).
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6.4.1 Translations over a finite field with n = 1

Let k = Z/pZ for some prime p > 2. Write p in the form c 2k + 1 with c being odd, 3

and let f(x) ∈ k[x] be a monic univariate polynomial of degree at most d.

Given a grid size m ≤ 2k and an m-th primitive root of unity ω ∈ k, we bound

the number of translations φa such that the DFT grid [1, . . . , ωm−1] is valid for φa(f).

Equivalently, we measure the size of the set

A(f,m, ω) = {a ∈ k | φa(f) = f(x + a) does not vanish at any power of ω}. (6.11)

Since ω is an m-th primitive root of unity, ωi ≡ ωi mod m mod p holds for all positive

integers i. The equality
m−1∏

i=0

(x− ωi) = xm − 1

(which is easily proved by evaluating both sides at each power of ω) implies that the

set A can be reformulated as

A(f,m, ω) = {a ∈ k | gcd (f(x + a), xm − 1) = 1}. (6.12)

An important implication of Equation (6.12) is: the set A(f,m, ω) is independent of

the choice of ω. Consequently, we also write A(f,m, ω) as A(f,m).

Without computing the gcd, condition gcd (f(x + a), xm − 1) = 1 can be checked

via FFT computations. The following simple subroutine isGoodShift(f,m, a) checks

if a ∈ A(f,m) holds or not, in the sense that f(x + a) vanishes at no powers of any

m-th primitive roots of unity.

Algorithm 6: isGoodShift(f,m, a)

Input : Polynomial f in Z/pZ[x], the DFT grid size m, and a ∈ Zp

Output : true if a ∈ A(f,m), false otherwise

1 Compute f̂(x)← f(x + a)

2 Compute v← DFTm(f̂ , ω) for some m-th primitive root of unity ω
3 if v[i] = 0 for some 0 ≤ i < m then return false
4 return true

3In this form k is called the Fourier degree of p and 2k is called the Fourier size. Over Z/pZ, the
longest data length for a fast Fourier transform is the Fourier size of p, since there is no primitive
root of unity with order more than 2k.
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Proposition 17. The Algorithm 6 runs in O(d2+m log m) operations in Z/pZ, where

d is the degree of f .

Proof. The cost to compute f̂ is in O(d2). According to the Horner’s rule we can

write f̂(x) as

f(x + a) = f0 + (x + a)(f1 + · · ·+ (x + a)(fd−1 + fd(x + a)) · · · ),

where f(x) =
∑d

i=0 fi x
i. Denote by C(d) the additions and multiplications by a

performed in the above Horner’s formula. We have the following recurrence relation

C(d) = C(d− 1) + 2d, C(1) = 3,

which gives C(d) ∈ O(d2). The total cost in step 2 and 3 is in O(m log m + m) =

O(m log m). Hence the total cost is in O(d2 + m log m) as desired.

Remark 6. Note that computing f̂ = f(x + a) is also known as Taylor shift. The

fast algorithms in [81] can achieve M(d) = O(d log d) operations in k. Therefore, the

overall cost of Algorithm 6 can be improved to O(d log d + m log m).

The following lemma characterizes when a is an element in A(f,m), which can be

used to bound its cardinality.

Lemma 20. The condition a ∈ A(f,m) holds if and only if λ(a) 6= 0 where λ(u) is

a univariate polynomial in Z/pZ[u] defined by

λ(u) = res(f(x + u), xm − 1, x).

Moreover, the degree of λ(u) is m× deg(f).

Proof. By definition,

a ∈ A(f,m)⇐⇒ gcd(f(x + a), xm − 1) = 1

⇐⇒ res(f(x + a), xm − 1, x) 6= 0

⇐⇒ λ(a) 6= 0.



112

Since xm − 1 =
∏m−1

i=0 (x− ωi) holds for an m-th primitive root of unity, we have

λ(u) = res(f(x + u), xm − 1, x) =
m−1∏

i=0

res(f(x + u), x− ωi, x)

=
m−1∏

i=0

f(u + ωi).

For each i, f(u+ωi) has the same degree as f . Hence deg(λ) = m×deg(f) holds.

Example 22. Let p = 97, k = Z/pZ, m = 16 and f(x) = x4+45 x3+82 x2+92 x+71.

Then the set A(f,m) is







1, 3, 4, 5, 6, 7, 8, 10, 11, 14, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 30, 31, 32, 33,

36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 52, 53, 55, 56, 57, 58, 59, 60, 62, 64,

66, 67, 68, 69, 72, 73, 75, 77, 78, 79, 81, 82, 83, 85, 87, 88, 91, 92, 93, 94, 96







.

Its complement is

{

0, 2, 9, 12, 13, 15, 19, 23, 28, 29, 34, 35, 40, 44, 48, 50,

51, 54, 61, 63, 65, 70, 71, 74, 76, 80, 84, 86, 89, 90, 95

}

.

The cardinality of A(f,m) is 66.

In Example 22, if we pick an a ∈ {0, . . . , p − 1} uniformly at random, then the

probability of a being a “good” translation for f is approximately 0.68. The following

proposition gives a condition in which such a probability is at least 1/2.

Proposition 18. If the degree of f is at most p
2 m

, then the cardinality of A(f,m) is

at least p
2
.

Proof. According to Lemma 20, the degree of λ(u) = res(f(x + u), xm − 1) is

m× deg(f) ≤ m× p

2 m
=

p

2
.

Hence the number of solutions of λ(u) in Z/pZ is at most p
2
, and consequently the

cardinality of A(f,m) is at least p
2
.

For example, let p = 469762049 = 7 × 226 + 1 be a large machine prime. If

m = 220 and deg(f) ≤ 448, then at least half of a in Z/pZ give “good” translations

for f . This bound is already quite practical. Note that the bound in Proposition

18 is pessimistic, since it ignores the structure of f at all. In Example 22, f =
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(x−1)(x3 +46 x2 +31 x+26) is the product of x−1 and a randomly generated degree

3 monic polynomial. The cardinality bound is #A(f,m) ≥ p−m× deg(f) = 33. In

fact, its cardinality is 66.

6.4.2 Translations over a finite field with n = 2

Similarly, we define the set of “good” translations of a bivariate polynomial f(x, y)

as follows

A2(f,m1,m2, ω1, ω2) =

{

(a, b) ∈ k2

∣
∣
∣
∣
∣

f(x + a, y + b) does not vanish at

any point (ωi
1, ω

j
2) for i, j ≥ 0

}

, (6.13)

where ωi is mi-th primitive root of unity. It turns out that the polynomial

λ(u, v) = res(res(f(x + u, y + v), xm1 − 1, x), ym2 − 1, y)

= res

(
m1−1∏

i=0

f(ωi
1 + u, y + v), ym2 − 1, y

)

=

m1−1∏

i=0

m2−1∏

j=0

f(u + ωi
1, v + ωj

2)

decides whether a pair (a, b) ∈ k2 belongs to A2(f,m1,m2, ω1, ω2) or not. Again,

Definition 6.13 is independent of the choice of ω1 and ω2. The partial degree of

λ(u, v) in u (or v) is bounded by m1 × m2 × deg(f, x) (or m1 × m2 × deg(f, y)),

respectively. Similar to Lemma 20, we have

Proposition 19. The condition (a, b) ∈ A2(f,m1,m2) holds if and only if λ(a, b) 6= 0.

The number of solutions of λ(u, v) is at most m1 m2 p min(deg(f, x), deg(f, y)).

Proof. For an arbitrary choice v = v0 ∈ Zp, λ(u, v0) is an univariate polynomial in u

with degree at most m1 m2 deg(f, x), which implies that the number of solutions of

λ(u, v) in Zp × Zp is at most m1 m2 p deg(f, x). The above argument also holds if we

switch u and v, and we prove the claim.

In practice, we choose a sequence of pairs a = (a1, a2) ∈ k2 uniformly at random,

and check whether each a belongs to A2(f,m1,m2) or not. If several consecutive

trials fail (say 5 to 10), it is most likely that the size m = m1m2 is too big to the field

characteristic p.
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6.5 Brown’s subresultant algorithm

To compute the GCD of two univariate polynomials over a domain, the polynomial

remainder sequence (PRS) derived from the Euclidean algorithm suffers from the

phenomenon of explosive coefficient growth, which fortunately is not inherent to the

problem. The key to controlling coefficient growth is the discovery of subresultants,

where each subresultant is in fact proportional to a polynomial in the PRS, [10, 11,

17]. The specialization property of subresultants makes it possible to apply modular

techniques, while this property does not hold for a PRS.

In Algorithm 7, we list the subresultant algorithm of Brown [10] for two univariate

polynomials over a field. This algorithm preallocates space for all subresultants and

initialize them to zero. Then, this algorithm writes the nonzero subresultants, until

it exists from the loop or detects termination at Line 7. The loop condition checks

whether all remaining subresultants are zero or not, and Line 7 checks whether all

subresultants are computed (the last one has index 0).

In total, there are at most deg(G) iterations from Line 3 to Line 8, since each

iteration produces at least one new subresultant. The loop invariant is

A is a regular subresultant with A = Sd, B = Sd−1, and δ ≥ 1. 4

At Line 8, the algorithm advances one step by replacing B with a proper multiple of

prem(A,−B, x) and replacing A with Se. If δ = 1 at Line 6, then we have Sd−1 = Se

which implies that no new subresultant has been produced in this step.

Algorithm 7: Brown’s subresultant algorithm

Input : polynomials F,G ∈ k[x] such that deg(F ) ≥ deg(G) > 0
Output : the subresultant chain of F and G

1 Si ← 0 for 0 ≤ i < deg(G)
2 B ← prem(F,−G, x), A← G, α← deg(F )− deg(G)
3 while B 6= 0 do
4 d← deg(A), e← deg(B), δ ← d− e
5 Sd−1 ← B

6 Se ← lc(A)α(1−δ)lc(B)δ−1 B
7 if e = 0 then break
8 B ← lc(A)−αδ−1prem(A,−B, x), A← Se, α← 1

9 return Si for 0 ≤ i < deg(G)

4For convenience, we regard the input polynomial G as a regular subresultant of index deg(G).
Subresultant Sd−1 might not be a regular subresultant, i.e, δ = d− e > 1.
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Example 23. Consider univariate polynomials

F = 5 x5 + 4 x4 + 2 x2 + 3 x3 + x and G = 9 x4 + 7 x3 + 5 x2 + 3 x + 1

in Z/17Z[x]. The first pseudo-division (Line 2) produces

S3 = prem(F,−G, x) = 11x3 + 5 x2 + 16 x + 16,

which is a regular subresultant, i.e. δ = d− e = 4− 3 = 1. Thus Line 6 gets skipped.

The second pseudo-division (Line 8) produces

S2 = lc(G)−2prem(G,−S3, x) = 4 x,

which is a defective subresultant, i.e. δ = d − e = 3 − 1 = 2. Thus Line 6 computes

the regular subresultant S1 associated to S2

S1 = lc(S3)
−1lc(S2)S2 = 3 x.

The third pseudo-division (Line 8) produces

S0 = lc(S3)
−3prem(S3,−S2, x) = 6,

which is the last subresultant of F and G. The subresultant chain of F and G is

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S3 = 11 x3 + 5 x2 + 16 x + 16

S2 = 4 x

S1 = 3 x

S0 = 6

in which S3, S1, S0 are regular and S2 is defective.

The major subroutine needed is pseudo-remainder computation. Recall that given

f(x), g(x) in k[x], the pseudo-division with remainder of f w.r.t. g computes q, r ∈
k[x] with

lc(g)1+deg(f)−deg(g)f = qg + r, deg(r) < deg(g), (6.14)

assuming g 6= 0. The polynomials q and r are uniquely determined by the Equa-

tion (6.14) and we also denote r by prem(f, g, x), which can be computed by the

Algorithm 8. The polynomials q and r are called respectively the pseudo-quotient

and pseudo-remainder of f(x) w.r.t. g(x).
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Algorithm 8: Compute the pseudo-remainder prem(f, g, x)

Input : polynomials f, g ∈ k[x] such that deg(f) ≥ deg(g) > 0
Output : the pseudo-remainder of f by g in x

1 r ← f
2 for i← deg(f)− deg(g) down to 0 do
3 r ← lc(g)r − lc(f)xig

4 return r

Algorithm 8 runs in deg(f)− deg(g)+ 1 iterations. Iteration i costs deg(g)+ i+1

multiplications to compute lc(g) r; it costs deg(g) + 1 multiplications to compute

lc(f)xig and deg(g) + i + 1 subtractions to compute r. Hence the total number of

field operations performed to compute the pseudo-remainder prem(f, g, x) is

deg(f)−deg(g)
∑

i=0

(deg(g) + i + 1) + (deg(g) + 1) + (deg(g) + i + 1)

=

deg(f)−deg(g)
∑

i=0

(3 deg(g) + 2i + 3)

= (3 deg(g) + 3 + deg(f)− deg(g))(deg(f)− deg(g) + 1)

= (deg(f) + 2 deg(g) + 3)(deg(f)− deg(g) + 1). (6.15)

Thus, we obtain the following complexity result.

Lemma 21. The pseudo-remainder of f , g ∈ k[x] with deg(f) ≥ deg(g) can be

computed with O(deg(f)2) arithmetic operations in k.

For F,G ∈ k[x] with deg(F ) ≥ deg(G) > 0, like the Euclidean algorithm, Brown’s

subresultant algorithm costs 3deg(F )2 + O(deg(F )) field operations in k, as implied

by [25]. Theorem 11 is a slightly refined cost estimate, but only for the case of finite

fields, in which the sizes of coefficients are bounded. Let ℓ be the degree of G, and

denote by di the degree of i-th subresultant Si = subresi(F,G, x) for 0 ≤ i < ℓ. For

convenience, we write dℓ = ℓ = deg(G) and dℓ+1 = deg(F ).

Theorem 11. Algorithm 7 uses

d2
ℓ+1 + d2

ℓ + dℓ+1dℓ + O(dℓ+1)

operations in k, where dℓ+1 = deg(F ) ≥ dℓ = deg(G).
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Proof. We first consider the normal case, where degree drops exactly by one at each

iteration of Algorithm 7, that is, di = i for 0 < i < ℓ. Note that in the normal case,

Line 6 will get skipped since all subresultants are regular. Thus the total cost is

ℓ∑

i=1

(di+1 + 2 di + 3)(di+1 − di + 1)

= (dℓ+1 + 2 dℓ + 3)(dℓ+1 − dℓ + 1) +
ℓ−1∑

i=1

(di+1 + 2 di + 3)(di+1 − di + 1)

= (dℓ+1 + 2 dℓ + 3)(dℓ+1 − dℓ + 1) +
ℓ−1∑

i=1

(6 i + 8)

= (dℓ+1 + 2 dℓ + 3)(dℓ+1 − dℓ + 1) + (3 d2
ℓ + 5 dℓ − 8)

= d2
ℓ+1 + dℓ+1dℓ + d2

ℓ + 4 dℓ+1 + 4 dℓ − 5

∈ d2
ℓ+1 + dℓ+1dℓ + d2

ℓ + O(dℓ+1).

Now we consider general cases. Assume that there exits a block of subresultants

satisfying the following conditions (1) Sk+1 is regular, (2) Sk has degree e < k. In

this case, we have Sk−1 = · · · = Se+1 = 0 and Se is regular. At Line 6, the algorithm

computes Se = α Sk−1 with the cost at most

e + 1 + 2 log2(k − e + 1),

where α is a power of a field element. 5 At Line 8, the algorithm computes Se−1 =

β prem(Sk+1, Sk, x) with the cost

(k + 2 e + 3)(k − e + 1) + 2 log2(k − e + 1)

where β is a power of a field element. In this case, the total cost to compute Sk−1,

. . ., Se, Se−1 is

e + 1 + (k + 2 e + 3)(k − e + 1) + 4 log2(k − e + 1)

= k2 + ke− 2 e2 + 4 k + 4 + 4 log2(k − e + 1). (6.16)

However if subresultants Si’s are regular for all e ≤ i ≤ k, then the total cost to

5By repeated squaring, xn can be computed in 2 log
2
(n) multiplications.
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compute Sk−1, . . ., Se, Se−1 would be

k∑

i=e

(di+1 + 2 di + 3)(di+1 − di + 1) + (k − e + 1)

=
k∑

i=e

(6 i + 8) + (k − e + 1)

= 3 k2 + 12 k − 3 e2 − 6 e + 9 (6.17)

Thus, according to Equation (6.17) and Equation (6.16), the cost difference for com-

puting Sk−1, . . . , Se−1 between the normal case and the general case is

3 k2 + 12 k − 3 e2 − 5 e + 9− (k2 + ke− 2 e2 + 4 k + 4 + 4 log2(k − e + 1))

= (2 k − e)(k − e) + 4 k − 2 e + 5 + 4(k − e− log2(k − e + 1)) > 0

since k > e ≥ 0 and x ≥ log2(1 + x) for x > 0.

Note that the subresultants with index smaller than e − 1 will only depend on

Se and Se−1. Hence one can proceed to the next block in the similar manner. In

summary, the total cost for the normal case is strictly larger than the non-normal

cases. Consequently, the Brown’s subresultant algorithm runs in

d2
ℓ+1 + dℓ+1dℓ + d2

ℓ + O(dℓ+1),

field arithmetic operations.

6.6 The complexity of FFT based subresultant

chain construction

In this section, we analyze the memory consumption and the cost for constructing

the subresultant chain of two dense multivariate polynomials P,Q in Zp[x1, . . . , xn, y]

with the routines shown in Figure 6.1.

To simplify our presentation, assume that

(a) max(deg(P, xi), deg(Q, xi)) ≤ di, for 1 ≤ i ≤ n,

(b) deg(P, y) = dn+2 ≥ deg(Q, y) = dn+1 > 0.

In practice, the FFT based subresultant chain of P and Q is stored in a data struc-

ture, called the subresultant cube of P and Q, in which a subresultant or one of its
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coefficients can be interpolated via inverse FFTs whenever necessary. Quite often,

the size of the cube becomes really large. Hence it is necessary to know if such an

FFT based approach works.

For dense polynomials P and Q, the degree bounds given by the Sylvester bound

(Equation (6.5)), the row bound (Equation (6.6)) and the column bound (Equa-

tion (6.7)) are in fact the same:

deg(res(P,Q, y), xi) ≤ (dn+2 + dn+1)di for 1 ≤ i ≤ n. (6.18)

Define ei = (dn+2 + dn+1)di + 1 for 1 ≤ i ≤ n. The Kronecker substitution δ with

respect to (e1, . . . , en) can be used to map P and Q to bivariate polynomials F = δ(P )

and G = δ(Q) in Zp[x, y]. The following proposition claims that the subresultants of

F and G in y can be recovered by the inverse of δ with respect to (e1, . . . , en).

Proposition 20. The following properties hold:

(a) δ(subresj(P,Q, y)) = subresj(F,G, y), for any 0 ≤ j < dn+1,

(b) deg(F, x) ≤ d1 + e1d2 + · · ·+ e1 . . . en−1dn,

(c) deg(G, x) ≤ d1 + e1d2 + · · ·+ e1 . . . en−1dn.

Proof. By the choice of ei, we have

deg(subresj(P,Q, y), xi) ≤ deg(res(P,Q, y), xi) < ei,

for any 0 ≤ j < dn+1 and 1 ≤ i ≤ n. According to Proposition 11, δ from

Zp[x1, . . . , xn] to Zp[x] satisfies properties

(1) δ(1) = 1,

(2) δ(a + b) = δ(a) + δ(b),

(3) δ(ab) = δ(a)δ(b), whenever deg(ab, xi) < ei for all i.

With the spirit of Theorem 10 6, we have δ(subresj(P,Q, y)) = subresj(F,G, y), which

proves (a). Both (b) and (c) follow from the definition of δ, since δ(xd1

1 · · ·xdn
n ) =

xd1+e1d2+···+e1...en−1dn holds.

6By the definition, each coefficient of subresultants is a minor of the Sylvester matrix. These
three properties grantee that δ is commutable with the operator of computing subresultants.
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From the above proposition, we derive the degree bound B of res(F,G, y) as

deg(res(F,G, y), x) ≤ B = (dn+1 + dn+2)(d1 +
n∑

i=2

e1 · · · ei−1di) (6.19)

Let m be the smallest power of 2 such that m > B and ω be an m-th primitive root of

unity in Zp. Then the FFT size for evaluating F and G at x is m. Since translations

on F and G do not change their partial degrees in each variable, we assume that

no translation is needed for F and G. For each evaluation x = ωi, the size of the

subresultant chain of F (ωi, y) and G(ωi, y) is dn+1(dn+1 + 1)/2, with the completely

dense encoding. From this, we derive the size of the evaluation cube:

Theorem 12. Let P,Q in Zp[x1, . . . , xn, y] be dense multivariate polynomials such

that deg(P, y) = dn+2 ≥ deg(Q, y) = dn+1 and max(deg(P, xi), deg(Q, xi)) ≤ di for

each 1 ≤ i ≤ n. The size of the evaluation cube for computing the subresultant of P

and Q in y (through Kronecker’s substitution) is

mdn+1(1 + dn+1)

2
, (6.20)

where m is the smallest power of 2 such that

m > (dn+1 + dn+2)(d1 +
n∑

i=2

e1 · · · ei−1di)

= (dn+2 + dn+1)

(

d1 +
n∑

i=2

di

i−1∏

j=1

(dn+2dj + dn+1dj + 1)

)

.

When dn+2 = dn+1 = · · · = d1 = d, the FFT size is Θ(2nd2n) and the size of the

evaluation cube is Θ(2nd2n+2).

In Table 6.1 we list the FFT degree required and the evaluation cube size for

computing the subresultant chain of P and Q, when n can be regarded as the number

of “parameters”, d is the partial degree for each variable. Since the cube size is

exponential with respect to the number n of parameters, the number of variables

involved should be at most 6, (five of which are parameters).

Theorem 13. Let P,Q in Zp[x1, . . . , xn, y] be dense multivariate polynomials such

that deg(P, y) = dn+2 ≥ deg(Q, y) = dn+1 and max(deg(P, xi), deg(Q, xi)) ≤ di for

each 1 ≤ i ≤ n. The number of field operations in Zp for computing the subresultant
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n d FFT Degree Cube Size n d FFT Degree Cube Size
1 80 14 203 3 6 19 42
1 100 15 632 3 8 22 576
1 120 15 908 3 10 23 1760
1 140 16 2468 4 5 23 480
2 15 18 120 4 6 25 2688
2 20 20 840 5 3 22 96
2 25 21 2600 5 4 26 2560

Table 6.1: The FFT degree required and the evaluation cube size in megabytes

of P and Q in y is

O(m log m(dn+1 + dn+2 + 2) + m(d2
n+1 + d2

n+2 + dn+1dn+2))

where m is the smallest power of 2 such that

m > (dn+1 + dn+2)(d1 +
n∑

i=2

e1 · · · ei−1di)

= (dn+2 + dn+1)

(

d1 +
n∑

i=2

di

i−1∏

j=1

(dn+2dj + dn+1dj + 1)

)

.

Proof. We use the same notations as in Proposition 20, and define β = d1 + e1d2 +

· · ·+ e1 . . . en−1dn. We observe that there is no cost (in terms of operations in Zp) for

converting the polynomials P and Q into bivariate polynomials F and G.

According to Remark 6, the cost to apply a linear translation to F (resp. G) is

O(K1) (resp. O(K2)) with K1 := (dn+2 + 1)β log β and K2 := (dn+1 + 1)β log β. If

the number of valid translations in Zp is at least p/2, then the expected number of

trials is 2. This implies that the expected cost of applying linear translations to F

and G is O(K1 + K2).

The cost to evaluate F by means of univariate FFTs of size m is O(K3) with

K3 = (dn+2 + 1)m log m. Similarly, the cost to evaluate G is O(K4), with K4 =

(dn+1 + 1)m log m.

Finally, the cost to run the subresultant algorithm for each evaluation point is

O(K5) with K5 = m(d2
n+2 + dn+1dn+2 + d2

n+1 + O(dn+2)). It is clear that K1 + K2 is

dominated by K3 + K4. Hence the total cost is

O(m log m(dn+1 + dn+2 + 2) + m(d2
n+1 + d2

n+2 + dn+1dn+2)).
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When dn+2 = dn+1 = · · · = d1 = d, the cost to build the FFT based evaluation

cube is O(2nd2n+2).

6.7 Implementation and experimental results

In this section, we present our CUDA implementation of constructing FFT based

subresultant cube for bivariate polynomials.

The first step is to evaluate the input polynomials F,G ∈ Zp[x, y]. For our imple-

mentation, univariate polynomials are all dense, encoded as a vector of coefficients.

Multivariate dense polynomials with n variables are encoded recursively as a uni-

variate polynomial with (n − 1)-variable polynomials as coefficients. For example,

F = 1 + 2x + 3xy + 4x2 + 5y2 can encoded as a vector [1, 2, 4, 0, 3, 0, 5, 0, 0], read as

F = (1 + 2x + 4x2) + (0 + 3x + 0x2)y + (5 + 0x + 0x2)y2.

We have realized a CUDA subroutine list fft univariate to perform a list of

univariate FFTs on a list polynomials of the same size. For n = 2k and q ≥ 1, the

Stockham DFT factorization implies

Iq ⊗DFTn =
k−1∏

i=0

(Iq ⊗DFT2 ⊗ I2k−1)(Iq ⊗D2,2k−i−1 ⊗ I2i)(Iq ⊗ L2k−i

2 ⊗ I2i), (6.21)

According to Section 5.3 and Section 5.5 of Chapter 5, list fft univariate can be

implemented by extending the three CUDA kernels used in Section 5.5.

Example 24. Let F = a(x) + b(x)y + c(x)y2 + d(x)y3 be a bivariate polynomial

where a, b, c, d, have degree less than 8. Let ω be a 8-th primitive root of unity. After

evaluating F (x, y) at x = (1, w, w2, w3, w4, w5, w6, w7), the layout of the evaluation

data is

M =









a(1) a(ω) a(ω2) a(ω3) a(ω4) a(ω5) a(ω6) a(ω7)

b(1) b(ω) b(ω2) b(ω3) b(ω4) b(ω5) b(ω6) b(ω7)

c(1) c(ω) c(ω2) c(ω3) c(ω4) c(ω5) c(ω6) c(ω7)

d(1) d(ω) d(ω2) d(ω3) d(ω4) d(ω5) d(ω6) d(ω7)









The i-th column corresponds the univariate polynomial F (ωi, y) in y for i = 0 · · · 7.
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Transposing matrix M gives

M t =



















a(1) b(1) c(1) d(1)

a(ω) b(ω) c(ω) d(ω)

a(ω2) b(ω2) c(ω2) d(ω2)

a(ω3) b(ω3) c(ω3) d(ω3)

a(ω4) b(ω4) c(ω4) d(ω4)

a(ω5) b(ω5) c(ω5) d(ω5)

a(ω6) b(ω6) c(ω6) d(ω6)

a(ω7) b(ω7) c(ω7) d(ω7)



















.

We assume that the leading coefficient d(x) in y of F (x, y) does not vanish at any

power of ω. Then each row of the matrix M t can be seen as a univariate polynomial

of degree 3.

As illustrated in the above example, the second step is to transpose the evaluated

F and G for preparing the subresultant constructions. The major cost is to compute

the subresultant chains at all evaluation points. To accelerate the overall perfor-

mance, we implemented the Brown’s subresultant algorithm in CUDA for computing

a sequence of subresultant chains in a highly parallel manner and we present two

different approaches for this task.

Coarse-grained approach The most direct way is to let each CUDA thread run a

univariate Brown’s subresultant algorithm. We called it the coarse-grained approach.

This approach works all the time and for practical problems the number of threads can

easily reach a big value, say 215, which can bring a significant speedup. However, there

is a potential problem for this approach, due to unfavored memory access pattern

to the GPU memory space, or more precisely threads in a thread warp are always

accessing different memory regions.

Fine-grained approach The second approach is to break a list of univariate

Brown’s subresultant computations into a sequence of lists of univariate polynomial

pseudo-divisions. Provided that at each step all Aj have the same degree and all Bj

have the same degree 7, Algorithm 7 could be turned into the list version Algorithm 9.

Initially, all Fj have the same degree according to the choice of ω, (as all Gj do).

For two univariate polynomials P (x) and Q(x), let Sk1
, . . ., Skℓ

be all the regular

resultants of P and G, such that 0 ≤ k1 < · · · < kℓ < deg(Q). Then (k1, . . . , kℓ) is

7We distinguish 0 and nonzero constant polynomials. The degree of a nonzero constant is 0,
while the degree of 0 is −1.
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called the degree sequence of P and Q. In fact, they are the degrees of all remainders

in the Euclidean algorithm with the input P and Q. Therefore, the above generic

assumption says: the degree sequences of all images F (ωi, y) and G(ωj, y) are the

same.

Algorithm 9: Running a list of Brown’s algorithm in parallel

Input : A list of pairs of polynomials Fj, Gj ∈ k[x] for 0 ≤ j < m such
that deg(Fj) ≥ deg(Gj) > 0, all Fj having the same degree,
and all Gj having the same degree too.

Output : the subresultant chain of Fj and Gj, for 0 ≤ j < m.

1 Sj
i ← 0 for 0 ≤ i < deg(Gj) and 0 ≤ j < m

2 Bj ← prem(Fj,−Gj, x), Aj ← Gj, α← deg(Fj)− deg(Gj), for
0 ≤ j < m

3 while Bj 6= 0 do
4 d← deg(Aj), e← deg(Bj), δ ← d− e, for 0 ≤ j < m

5 Sj
d−1 ← Bj for 0 ≤ j < m

6 Sj
e ← lc(Aj)

α(1−δ)lc(Bj)
δ−1 Bj for 0 ≤ j < m

7 if e = 0 then break
8 Bj ← lc(Aj)

−αδ−1prem(Aj,−Bj, x), Aj ← Sj
e , α← 1, for 0 ≤ j < m

9 return Sj
i for 0 ≤ i < deg(Gj), for 0 ≤ j < m

Note that in Algorithm 9, the generic assumption implies

Line 3. If Bj = 0 for some 0 ≤ j < m, then all Bj are zero.

Line 4. All Aj have the same degree d, and all Bj have the same degree e.

Line 6. All Sj
e can be computed by a CUDA kernel.

Line 8. All pseudo-divisions can be computed by a CUDA kernel.

The key subroutine is to perform a list of pseudo-divisions in a fine-grained way.

Example 25. Let f = a3x
3 + a2x

2 + a1x + a0 and g = b2x
2 + b1x + b0. To obtain the

pseudo-remainder prem(f,−g, x) of f and g, we compute

(1) h2 = −b2f + a3xg = c2x
2 + c1x + c0,

(2) h1 = −b2h2 + c2g = d1x + b0.
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Alternatively, the pseudo-remainder prem(f,−g, x) can be computed in two steps:

(S1) c2 =

∣
∣
∣
∣
∣

a3 a2

b2 b1

∣
∣
∣
∣
∣
, c1 =

∣
∣
∣
∣
∣

a3 a1

b2 0

∣
∣
∣
∣
∣
, c0 =

∣
∣
∣
∣
∣

a3 a0

b2 0

∣
∣
∣
∣
∣
;

(S2) d1 =

∣
∣
∣
∣
∣

c2 c1

b2 b1

∣
∣
∣
∣
∣
, d0 =

∣
∣
∣
∣
∣

c2 c0

b2 b0

∣
∣
∣
∣
∣
.

As illustrated in the above example, the basic unit is to perform a single reduction

step. The following CUDA kernel list reduce kernel takes two lists of univariate

polynomials LF and LG, and computes

hi = lc(gi)fi − lc(fi)x
deg(fi)−deg(gi)gi,

where fi is the i-th polynomial in LF and gi is the i-th polynomial in LG. We assume

that polynomials in LG have the same degree dG, and polynomials in LF have the

same degree dF. The result LH consists of hi’s computed.

__global__ void

list_reduce_kernel(int *LH, int dF, int *LF, int dG, int *LG, int p)

{

int bid = blockIdx.x; // block index

int tid = bid * blockDim.x + threadIdx.x; // thread index

int qtid = tid / dF; // pair index

int rtid = tid % dF;

int *F = LF + qtid * (dF + 1); // first polynomial

int *G = LG + qtid * (dG + 1); // second polynomial

int *H = LH + qtid * dF; // output polynomial

// The configuration is the following

// u ...... a

// v ...... b

// where a is the current coefficient to be eliminated,

// b is the current leading coefficient (nonzero),

// and u, v are cofficients to be adjusted.

// For each pair (u, v), compute a * v - u * b mod p

// and store it to H[rtid];
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int dgap = dF - dG;

int a = F[dF]; // the leading coefficient of F

int b = G[dG]; // the leading coefficient of G

int u = F[rtid];

int v = ((rtid >= dgap) ? G[rtid - dgap] : 0);

int t1 = mul_mod(a, v, p); // t1 = a * v mod p

int t2 = mul_mod(b, u, p); // t2 = b * u mod p

H[rtid] = sub_mod(t1, t2, p);

}

In terms of CUDA kernel list reduce kernel, a list of pseudo-remainders can

be computed as in Algorithm 10 using a double-buffer method.

Algorithm 10: Computing a list of pseudo-remainders in parallel

Input : Two lists LF, LG of polynomials such that LF [i] = Fi,
LG[i] = Gi for 0 ≤ i < m, deg(Fi) ≥ deg(Gi) > 0, all Fi having
the same degree dF, and all Gi having the same degree dG.

Output : Compute the list LH of polynomials such that
LH[i] = Hi = prem(Fi,−Gi, x) for 0 ≤ i < m.

// We use the double-buffer method, and the buffers

// LX and LY are of the same size as LF

// reduce once and store the result into LX

1 list reduce(m, LX, dF, LF, dG, LG, p)
2 for d← dF − 1 downto dG do

// reduce once and store the result into LY

3 list reduce(m, LY, d, LX, dG, LG, p)
// switch the role of LX and LY

4 swap(LX, LY)

5 Copy out the result from LX to LH

In Figure 6.2, we report our preliminary experimentation on computing the subre-

sultant chains of random dense square bivariate polynomials with partial degree d in

both x and y. The characteristic of the finite field is p = 943718401 = 225× 222 + 1.

The second column shows the estimated size of the subresultant chain data structure

in megabytes. The third column reports the time spent by the FFT based serial code

in the C library modpn. In the fourth column, we list the timing of coarse-grained
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d size(MB) modpn coarse modpn
coarse

fine modpn
fine

10 0.0 0.000 0.030 0.0 0.010 0.0
15 0.2 0.010 0.040 0.2 0.010 1.0
20 0.7 0.040 0.030 1.3 0.010 4.0
25 2.3 0.110 0.030 3.6 0.020 5.5
30 3.4 0.120 0.030 4.0 0.020 6.0
35 9.3 0.310 0.060 5.1 0.040 7.7
40 12.2 0.400 0.060 6.6 0.040 10.0
45 15.5 0.470 0.070 6.7 0.050 9.3
50 38.3 1.330 0.160 8.3 0.060 22.1
55 46.4 1.300 0.170 7.6 0.080 16.2
60 55.3 1.900 0.210 9.0 0.100 18.9
65 130.0 3.410 0.380 8.9 0.140 24.3
70 150.9 3.810 0.530 7.1 0.170 22.4
75 173.4 4.290 0.590 7.2 0.190 22.5
80 197.5 4.730 0.670 7.0 0.210 22.5
85 223.1 5.500 0.550 10.0 0.230 23.9
90 250.3 7.460 0.840 8.8 0.260 28.6
95 558.1 12.710 1.840 6.9 0.500 25.4
100 618.8 13.790 2.120 6.5 0.540 25.5
105 682.5 15.650 2.280 6.8 0.590 26.5
110 749.4 16.280 2.480 6.5 0.650 25.0
115 819.4 17.520 2.750 6.3 0.690 25.3

Figure 6.2: Bivariate subresultant chain construction in seconds

implementation, and its speedup factor to modpn is listed in the fifth column. The

sixth column reports the timing of fine-grained implementation and its speedup factor

to modpn is listed in the last column.

As shown in Figure 6.2, when the partial degree d is larger than 20, GPU code

starts to outperform the C code. The coarse-grained GPU code has a limited speedup

factor, due to the lack of parallelism. Notice that the speedup factor starts to drop

as d grows from d = 90. The main reason is that threads inside each thread block

are constructing the subresultant chain for different evaluation images, which implies

much more accesses to the global memory space. On the other hand, the fine-grained

GPU code achieves a speedup factor approximately 20 to 28 when d ≥ 50 and the

speedup factor also maintains for larger partial degrees.

The reason that fine-grained approach outperforms the coarse-grained one is in

the fine-grained implementation threads in a thread block are cooperatively han-

dling the same task, i.e. mainly running list reduce kernel. Figure 6.3 shows the

statistics for constructing bivariate subresultant chain data structure with d = 100.
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The hot spot of the implementation is the CUDA kernel list reduce kernel (a.k.a.

list poly reduce defective ker).

As discussed in Section 6.1, the other applicable approach for modular subresul-

tant chain constructions is to map the multivariate problems into the trivariate ones.

The evaluation step is then performed by means of bivariate FFTs. The main ad-

vantage is that this could use primitive roots of unity in lower order, which in turn

enlarges the set of available Fourier prime numbers.

Given trivariate polynomials F (x, y, z) and G(x, y, z) in k[x, y, z], we first evaluate

F and G at a valid grid for F and G,

Θ = {(ωi
1, ω

j
2) | 0 ≤ i < m1, 0 ≤ j < m2},

where ωi is an mi-th primitive root of unity, m1 and m2 are computed from the

degree bound in x and y respectively. With the tool introduced in Chapter 5, the

two dimensional DFTm1×m2
is defined as the tensor product of two one dimensional

DFTs, and the row-column algorithm [26] can be expressed in terms of the tensor

product as follows

DFTm1×m2
= DFTm1

⊗DFTm2
= (DFTm1

⊗ Im2
)(Im1

⊗DFTm2
).

Notice that Equation (6.21) is a general form of Im1
⊗DFTm2

and

DFTm1
⊗ Im2

=
k−1∏

i=0

(DFT2 ⊗ I2k−1+s)⊗ (D2,2k−i−1 ⊗ I2i+s)⊗ (L2k−i

2 ⊗ I2i+s),

where m1 = 2k and m2 = 2s. Thus, bivariate FFTs could be implemented using the

CUDA kernels developed to compose a list of univariate FFTs.

After evaluating F and G at the grid Θ, we have m1 × m2 pairs of univariate

polynomials, for each of which we construct their subresultant chain by means of

Brown’s algorithm. Once again, we could do it in a coarse-grained manner or in a

fine-grained one. In practice, the latter is tried first, and if an error is raised, then we

switch the former.

In Figure 6.4, we report our experimentation on computing the subresultant chains

of random dense square trivariate polynomials with partial degree d in x, y, and z. The

characteristic of the finite field is p = 943718401 = 225× 222 + 1. The second column

shows the estimated size of the subresultant chain data structure in megabytes. The

third column reports the time spent by the FFT based serial code in the C library
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Figure 6.3: Fine-grained subresultant chain construction



130

n Size(MB) modpn coarse modpn
coarse

fine modpn
coarse

6 0.2 0.020 0.040 0.5 0.010 2.0
7 1.3 0.160 0.040 4.0 0.010 16.0
8 1.8 0.160 0.040 4.0 0.010 16.0
9 9.0 0.860 0.050 17.2 0.030 28.6
10 11.2 0.850 0.060 14.1 0.020 42.5
11 13.8 0.940 0.070 13.4 0.030 31.3
12 16.5 1.070 0.070 15.2 0.050 21.4
13 78.0 6.170 0.190 32.4 0.120 51.4
14 91.0 5.380 0.230 23.3 0.130 41.3
15 105.0 6.290 0.250 25.1 0.150 41.9
16 120.0 7.070 0.290 24.3 0.160 44.1
17 544.0 32.090 1.170 27.4 0.670 47.8
18 612.0 34.670 1.290 26.8 0.730 47.4
19 684.0 36.980 1.250 29.5 0.770 48.0

Figure 6.4: Trivariate subresultant chain constructions in seconds

modpn. In the fourth column, we list the timing of coarse-grained implementation,

and its speedup factor to modpn is listed in the fifth column. The sixth column reports

the timing of fine-grained implementation and its speedup factor to modpn is listed in

the last column.

From Figure 6.4, first we observe that the size of the subresultant chain grows

rapidly with the partial degree d, as predicted in Section 6.6. In trivariate case, the

modpn C implementation perform worse than in bivariate case. The coarse-grained

implementation is approximately 25 faster, when the partial degree n is at least 13.

The fine-grained implementation is approximately 47 times faster than the modpn C

implementation. The underline reason is probably due to the complicated structure

of the multivariate FFT and frequent data transpositions therein. This also suggests

that it is worth to map large multivariate problems into bivariate or trivariate ones

at the cost of Kronecker’s substitutions.

6.8 Summary

In this chapter, we have proposed a complete modular algorithm to construct the

subresultant chain of two multivariate polynomials over a finite field. This algorithm

relies on Fast Fourier Transforms based evaluations and interpolations, and efficient

implementation of Brown’s subresultant algorithm.

We analyzed the various issues in this algorithm. Transforming multivariate poly-
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d Maple modpn modpn with GPU
20 4.080 0.112 0.040
25 12.509 0.240 0.036
30 32.566 0.204 0.060
35 74.480 0.496 0.100
40 160.246 0.808 0.120
45 315.996 0.944 0.156
50 594.525 1.620 0.244
55 - 2.461 0.276
60 - 2.732 0.396
65 - 5.640 0.596
70 - 6.341 0.700
75 - 7.140 0.916
80 - 8.001 1.052
85 - 7.380 1.376
90 - 9.113 1.664
95 - 16.529 2.408
100 - 18.213 2.636

Figure 6.5: Computing resultants of bivariate dense polynomials in seconds

nomials into univariate or bivariate ones can be accomplished by means of Kronecker’s

substitutions. Finding valid primitive roots of unity can be done via linear transla-

tions. For most practical problems, valid translations can be found when the charac-

teristic of the finite field is sufficiently large.

Based on univariate and bivariate FFTs developed in Chapter 5, we have realized

a coarse-grained Brown’s subresultant algorithm and a fine-grained one. Our fine-

grained implementation is approximately 25 times faster than modpn C counterpart

for the bivariate inputs, and approximately 47 times faster for the trivariate inputs.

There are a number of problems to address from both the theoretical and imple-

mentation point of view. For example, it is of great interest to know how to predict

if the fine-grained code will fail due to the break of the generic assumption proposed

in Section 6.7. We observe that if we write the Fourier prime p as p = c 2n + 1, the

generic assumption rarely breaks for random dense bivariate inputs, whenever c is

large, such as a few hundreds.

Our initial plan was to construct subresultant chain cube via GPU kernels, then

interpolate subresultants via inverse FFTs of modpn. In Figure 6.5, we compared the

timing for computing the resultant of two random dense square polynomials with

Maple code (Column 2), modpn serial code (Column 3), and modpn code with the

subresultant chain cube constructed inside the GPU (Column 4). Comparing to
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d t0 t1 t1/t0
30 0.23 0.29 1.3
40 0.23 0.43 1.9
50 0.27 1.14 4.2
60 0.27 1.53 5.7
70 0.31 3.95 12.7
80 0.32 4.88 15.3
90 0.35 5.95 17.0
100 0.50 19.10 38.2
110 0.53 17.89 33.8
120 0.58 19.72 34.0

Figure 6.6: Computing resultants for bivariate dense polynomials in seconds

Figure 6.2, the speedup factor drops from 25 to 7. The major reason is that inside

modpn all subresultant cubes have the same data layout while the cubes constructed

inside GPU are different. There is an expensive conversion in between. A possible

solution to this problem is to refactor the interface, and let the interpolation process

reside in GPU too.

Further, observe that for the regular GCD algorithm developed in Chapter 3 not

all subresultants need to be interpolated. It is possible to keep the subresultant chain

cube inside the GPU global memory all the time and we interpolate subresultants or

coefficients of their subresultants whenever needed.

6.9 Complementary Experimental Results

In this section, we include our recent experimental results in [66] for computing sub-

resultant chain cubes and resultants. We use a GPU card Nvidia Telsa C2050, which

is different from the one used in other sections, namely the Nvidia Geforce GTX

285. The other improvement is that we interpolate resultants by means of GPU

based inverse FFT, which avoid transfering subresultant chain cubes back to the

main memory.

Figure 6.6 reports the timing for computing resultant res(F1, F2, y) with bivari-

ate random dense polynomials F1, F2 ∈ Zp[x, y] such that p = 469762049 and

d = deg(Fi, x) = deg(Fi, y) for i = 1, 2. In the figure, the first column, labelled

by d, shows the partial degree d. The second one, labelled by t0, is the timing for

GPU FFT-based scube method, which includes the time for moving result back to the

main memory. The third column, labelled by t1, shows the CPU FFT based scube

serial C code in the modpn library [51]. The last column reports the ratio between
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d t0 t1 t1/t0
7 0.22 0.16 0.7
8 0.23 0.76 3.3
9 0.24 0.85 3.5
10 0.25 0.98 3.9
11 0.24 1.10 4.6
12 0.30 4.96 16.5
13 0.31 5.52 17.8
14 0.32 6.07 19.0
15 0.78 8.95 11.5
16 0.65 31.65 48.7
17 0.66 34.55 52.3
18 3.46 47.54 13.7
19 0.73 51.04 69.9
20 0.75 43.12 57.5

Figure 6.7: Computing resultants for trivariate dense polynomials in seconds

the two implementations. Note that all the resultants in this experimentation are

computed with the fine-grained method and that we interpolate the resultants inside

the GPU inverse FFT, keeping the subresultant chain cube inside the GPU global

memory. The maximal speedup we achieve is approximately 38.

Figure 6.7 lists our experimental results for computing resultants for trivariate

random dense polynomials in k[x, y, z]. The first column shows the common partial

degree d in x, y and z. The other three column have the same meaning as in the

bivariate case. Note that all but d = 15 and d = 18 are based on fine-grained scube’s.

When the coarse-grained method is forced to be used, the speedup it achieves drops

significantly.

We observe that the GPU based implementation achieves a much larger speedup

factor in the trivariate case (approximately 70 for the best cases) than in the bi-

variate case (approximately 38). The underline reason may be that the GPU based

implementation could take advantage of the assumption that the input are trivariate

to avoid unnecessary data transpositions, in both FFT evaluations and the Brown’s

algorithm.
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Chapter 7

Conclusions and Future Work

The computation of polynomial GCDs is at the core of the theory of regular chains and

its application to polynomial system solving by means of triangular decomposition.

In this context, polynomials take their coefficients in rings which have less algebraic

structure than in the classical setting of unique factorization domains (UFDs).

The formalization of polynomial GCDs modulo (saturated ideals of) regular chains

started less than twenty years ago, with the PhD thesis of Michael Kalkbrener. Our

work relies on the definition proposed by Marc Moreno Maza, which is more suitable

for algorithm design.

In this thesis, we have presented the first algorithm, called RGSZR, which, for

the purpose of computing the so-called regular GCDs, is both practically efficient

and based on fast polynomial arithmetic and modular techniques. We have reported

on two implementations: a serial one in C language and parallel one supported by

graphics card (GPU) code.

The latter one currently performs the main computational step of our algorithm,

namely the construction of the so-called subresultant cube. This already yields promis-

ing experimental results. We are now working on completing this implementation such

that the whole RGSZR can be supported by GPU code. From there, the natural ques-

tion is how much a complete polynomial system solver (such as the Triangularize

command of the RegularChains library) can take advantage of GPU support.

We have also estimated the algebraic complexity of the RGSZR algorithm, under

standard genericity assumptions. In this setting and for the problem sizes that are

of practical interest, our complexity estimate brings new favorable results. Relaxing

these genericity assumptions (in particular the dimension zero assumption) is, of

course, part of our future objectives.

Regular GCDs are used directly or indirectly in all main subroutines of the
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Triangularize command. The design of the underlying Triade algorithm was mo-

tivated by controlling intermediate expression swell, in particular, by avoiding re-

dundant computational branches. By generalizing the classical notion of polynomial

primitivity from UFDs to general commutative rings (with unity) we have obtained

new criteria for detecting that the saturated ideal of a regular chain is contained in

another such saturated ideal. Although these criteria do not cover all possible cases,

they have provided significant improvements in practice. Deciding saturated ideal

inclusion (without computing generator systems as this can be extremely expensive)

remains an open and very exciting question.
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Appendix A

A Review of Concepts on

Polynomial System Solving

In this chapter, we list some definitions and basic constructions appeared in the thesis.

A.1 Polynomials

A field k is an algebraic structure with notions of addition, subtraction, multiplication,

and division, satisfying certain axioms. The multivariate polynomial ring k[x1, . . . , xn]

is formed from the set of polynomials in x1, . . ., xn with coefficients in k. A field K

is said to be algebraically closed if every polynomial of degree one in K[x] has a root

in K. For example, the field of complex numbers C is algebraically closed, while the

field of rational numbers Q is not.

A polynomial ideal I is a subset of k[x1, . . . , xn] satisfying fg ∈ I for any f ∈
k[x1, . . . , xn] and g ∈ I. For any subset G ⊆ k[x1, . . . , xn], the ideal generated by G,

denoted by 〈G〉, is the set

〈G〉 = {f ∈ k[x1, . . . ,xn] | f =
k∑

i=1

aigi, ai ∈ k[x1, . . . , xn], gi ∈ G, and k ≥ 1}.

When G = {g1, . . . , gs} is a finite set, we also write 〈G〉 = 〈g1, . . . , gs〉. The radical√
I of an ideal I is defined as the set of polynomials

{f ∈ k[x1, . . . , xn] | fm ∈ I for some m ≥ 1},

which is also an ideal in k[x1, . . . , xn].
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Let K be algebraically closed and k ⊆ K. The algebraic variety or algebraic set

of G, denoted by V (G), is defined as

V (G) = {(a1, . . . , an) ∈ Kn | g(a1, . . . , an) = 0, for all g ∈ G},

which is the common zeros over K of polynomials in G. It is not hard to show

V (G) = V (〈G〉) = V (
√

〈G〉).
We conclude this section by the celebrated Hilbert’s Basis Theorem and Hilbert’s

Nullstellensatz.

Theorem 14 (Hilbert’s Basis Theorem). Every ideal in k[x1, . . . , xn] can be generated

by a finite number of polynomials.

Theorem 15 (Hilbert’s Nullstellensatz). The ideal I ⊆ k[x1, . . . , xn] contains 1 if

and only if the polynomials in I do not have any common zeros in Kn, i.e. V (I) = ∅.

The Nullstellensatz is a generalization of the fundamental theorem of algebra. The

Basis Theorem implies that every algebraic set over field can be described as the set

of common roots of finitely many polynomial equations. Hilbert’s proof only shows

the existence and does not give an algorithm to produce the finitely many basis

polynomials. One can determine basis polynomials using the method of Gröbner

bases.

A.2 Gröbner Basis

A Gröbner basis is a particular kind of generating subset of an ideal I in k[x1, . . . , xn],

which generalizes the Gaussian elimination for linear systems. The Gröbner basis

theory for polynomial rings was developed by Bruno Buchberger in 1965, who named

them after his advisor Wolfgang Gröbner.

Given the variable ordering x1 < . . . < xn, let M = {xe1

1 · · ·xen
n | ej ≥ 0} be the

set of monomials generated by x1, . . . , xn. A monomial order on M is a total order,

satisfying the following two properties:

� If u < v and w is any other monomial, then uw < vw.

� Every non-empty subset of M has a minimal element.

For example, the lexicographical order is defined as

xe1

1 · · ·xen

n <lex xf1

1 · · ·xfn

n ⇐⇒ fk > ek and ei = fi for i = 1 · · · k − 1.
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Given a polynomial f and a monomial ordering σ, the leading term of f , denoted

by LMσ(f), is the greatest monomial appearing in f . For an ideal I ⊆ k[x1, . . . , xn],

a finite set G ⊂ I is a Gröbner basis of I w.r.t monomial ordering σ if the following

equality holds

〈LMσ(I)〉 = 〈LMσ(G)〉,

that is, the ideal generated by the leading monomials of polynomials in I equals the

ideal generated by the leading monomials of polynomials in G.

The well-known Buchberger’s algorithm is a method transforming a given set of

generators for a polynomial ideal into a Gröbner basis with respect to some monomial

order. The following list of questions can be answered by means of Gröbner basis

computations.

Theorem 16. Let I be a polynomial ideal in k[x1, . . . , xn]. Then the following prob-

lems are solvable by means of Gröbner basis computations.

� (Ideal Membership) Decide if f ∈ I for any f ∈ k[x1, . . . , xn].

� (Radical Membership) Decide if f ∈
√
I for any f ∈ k[x1, . . . , xn].

� (Elimination) Compute a set of generators for the ideal I ∩ k[x1, . . . , xi] for

some 1 ≤ i ≤ n.

We emphasize that the above three problems can be extended or generalized to

solve numerous problems in computational commutative algebra, invariant theory,

etc.
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Appendix B

GPU Programming with CUDA

In this chapter, we briefly introduce the technology of conducting general-purpose

computations on graphics processing units (GPUs), with a focus on Nvidia CUDA

(an acronym for Compute Unified Device Architecture) enabled graphics cards.

GPUs are high-performance many-core processors capable of very high computa-

tion and data throughput. They are specially designed for computer graphics appli-

cations and are well-known for their difficulty to program. Today’s GPUs are general-

purpose parallel processors with support for accessible programming interfaces and

industry-standard languages such as C. Developers who port their applications to

GPUs often achieve speedups of orders of magnitude compared to optimized CPU

implementations.

In 2006, Nvidia Corporation released the initial version of CUDA, a parallel com-

puting architecture. CUDA is the computing engine in Nvidia GPUs and is accessible

to software developers through variants of standard C programming language. As of

2010, CUDA has been applied to broad-ranging applications including image and

video processing, computational biology and chemistry, fluid dynamics simulation,

ray tracing, etc.

This chapter is organized as follows. In Section B.1 and B.3, we present the pro-

gramming and memory model of CUDA. Section B.2 introduces the CUDA hardware

architecture. In the end, we introduce several key factors related to the performance

of CUDA programs. Detailed explanations on CUDA can be accessed through the

CUDA Programming Guide [3].
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B.1 CUDA programming model

CUDA is a heterogeneous serial-parallel programming model. A CUDA program

executes serial code on the host (CPU) interleaved with parallel threads execution

on the device (GPU). A single CUDA kernel, or simply kernel, consists of a number

(usually large) of threads, which run the same code. Each thread has a unique ID

which is used to compute memory addresses and to make control decisions.

Example 26. The following simple CUDA program increments each entry of a vector.

It is a C program with some additional keywords. For instance, a kernel is defined

using the declaration specifier global .

// kernel definition

__global__ void increment_dev(int *X_d, int n)

{

int idx = threadIdx.x;

X_d[idx] += 1; // increment the entry idx

}

Each of the threads that executes this kernel is given a unique thread ID which is

accessible within the kernel through the built-in variable threadIdx. When called, the

above kernel is executed in parallel by n different CUDA threads.

void increment_host(int *X, int n)

{

// first copy data from host X to device X_d,

// to be completed later

// kernel invocation

increment_dev<<<1, n>>>(X_d, n);

// copy data back from devicen X_d back to host X,

// to be completed later

}

To manage a large number of threads that can work cooperatively, CUDA groups

them into thread blocks. Each block contains up to 512 threads that can share data in

fast on-chip memory and synchronize with barriers, as explained in Figure B.1. For

convenience, threadIdx is a 3-component vector, so that threads can be identified
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using a one-dimensional, two-dimensional, or three-dimensional thread index. This

provides a natural way to invoke computation across the elements of a data structure,

such as a vector or a matrix.

  block (0, 1)

thread (0, 0) thread (1, 0) thread (2, 0) thread (3, 0)

thread (1, 1) thread (2, 1) thread (3, 1)thread (0, 1)

Figure B.1: A block is composed of threads

These multiple blocks are organized into a one-dimensional or two-dimensional

grid of thread blocks as illustrated by Figure B.2. The dimension of the grid is

specified by the first parameter of the <<< · · · >>> syntax. Each block within the

grid can be identified by a one-dimensional or two-dimensional index accessible within

the kernel through the built-in variable blockIdx. The dimension of the thread block

is accessible within the kernel through the built-in variable blockDim.

grid

  block (0, 1)   block (1, 1)

  block (1, 0)  block (0, 0)

Figure B.2: A grid is composed of blocks
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B.2 CUDA architecture

The CUDA architecture is built around a scalable array of multithreaded multiproces-

sors, as illustrated in Figure B.3. A multiprocessor consists of eight scalar processor

(SP) cores, or arithmetic logic unit (ALU) as shown in Figure B.4. The multiprocessor

creates, manages, and executes concurrent threads in hardware with zero scheduling

overhead. The multiprocessor employs an SIMT (single-instruction multiple-thread)

architecture: the multiprocessor maps each thread to one scalar processor core, and

each thread executes the same program independently on different data.

Figure B.3: Nvidia G80 architecture

When a CUDA program on the host CPU invokes a CUDA kernel, the blocks of

the grid are enumerated and distributed to multiprocessors with available execution

capacity. The threads of a thread block execute concurrently on one (and only one)

multiprocessor. As thread blocks terminate, new blocks are launched on the vacant

multiprocessors.

Since thread blocks are arranged in a grid and execute independently from each

other, an important consequence is that there is no synchronization among the threads
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ALU ALU ALU ALU ALU ALU ALUALU

Multiprocessor

memory

Shared

Globel memory

Figure B.4: Multiprocessor inside a Nvidia GPU

from different thread blocks in a grid. Therefore, algorithms with sequentially depen-

dent computations must be decomposed into a series of CUDA kernels. Meanwhile,

threads in the same block of a kernel are allowed to cooperate using barrier synchro-

nization, with the single instruction syncthreads. This paradigm enables transpar-

ent scalability for a kernel since all thread blocks can be scheduled to any of the

available multiprocessors. This scheduling is determined by the runtime system.

B.3 CUDA memory model

CUDA memory hierarchy is mainly built on 4 memory spaces.

� Register file is a set of physical registers (for instance 16Kb per multiprocessor)

split evenly between all active threads of a block.

� Local memory is a private space used for per thread temporary data and register

spills.

� Each multiprocessor has low-latency on-chip shared memory which can be ac-

cessed by all threads of a block.
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Type Accessibility Lifetime
registers per thread data thread

local memory per thread off-chip memory thread
shared memory per thread block on-chip memory block
global memory all threads as well as CPU application
CPU memory not directly accessible by CUDA threads -

Table B.1: CUDA memory hierarchy

� Global memory is visible to all thread blocks of a grid and its lifetime is that of

the application.

Table B.1 summarizes these types of memory spaces.

Global memory has no on-chip cache 1 and is of much higher latency than shared

memory. Global memory bandwidth is used most efficiently by the following strategy.

Observe first that inside a multiprocessor, threads are not scheduled individually; the

smallest unit of threads to be scheduled together is called a half-warp which consists of

16 threads with consecutive IDs. High throughput is achieved when the simultaneous

memory accesses in a half-warp can be coalesced into a single memory transaction of

64, 128 or 256 bytes. The conditions to achieve coalesced accesses are:

1. threads must access 4-byte words, 8-byte words or 16-byte words,

2. all 16 words must lie in the same segment of size equal to the memory transaction

size, and

3. threads must access the words in sequence: the k-th thread in the half-warp

must access the k-th word. 2

If a half-warp does not fulfill all the requirements above, a separate memory transac-

tion is issued for each thread and throughput is significantly reduced.

A good usage of shared memory space requires to achieve memory coalescing to

the global memory. As illustrated in Figure B.4, threads running in a multiprocessor

may reference shared memory in a scattered manner, once data has been loaded from

the global memory.

1As of 2010, the third generation cards (Fermi series) do provide configurable on-chip cache. Part
of shared memory space is served as cache.

2The second generation Nvidia cards (GT200 series) are much less restrictive in what concerns
the memory access patterns for which coalescing can be achieved. The last requirement has been
relaxed as random access within an aligned chunk.
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Example 27. Example 26 only works for a small range n. In this example, we

present a general version including data transfer between the global memory and main

memory. This illustrates the typical pattern of a heterogeneous CUDA program.

// kernel definition

__global__ void increment_dev(int *X_d, int n)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x;

X_d[idx] += 1;

}

// Assume n is a multiple of NUM_THREADS = 512

void increment_host(int *X, int n)

{

// copy X into the global memory of the GPU

int *X_d;

cudaMalloc((void**)&X_d, n * sizeof(int));

cudaMemcpy(X_d, X, n*sizeof(int), cudaMemcpyHostToDevice);

// setup kernel invocation

const int NUM_THREADS = 512;

dim3 nThread(NUM_THREADS, 1, 1);

dim3 nBlock(n / NUM_THREADS, 1, 1);

// kernel invocation

increment_dev<<<nBlock, nThread>>>(X_d, n);

// copy incremented X_d back to X

cudaMemcpy(X, X_d, n*sizeof(int), cudaMemcpyDeviceToHost);

// release the resource

cudaFree(X_d);

}

The above program launches a CUDA kernel with n/512 blocks and each block has

512 threads. Each thread resets a single entry of X.
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GPU G80 GT200 Fermi
Cores 128 240 512
SPFP 128 MADD 240 MADD 512 FMA
DPFP none 30 FMA 256 FMA

Shared Memory 16KB 16KB 48KB or 16KB
L1 Cache none none 48KB or 16KB
L2 Cache none none 768KB

Concurrent kernels no no up to 16
C++ in device no no yes

Table B.2: Key features of CUDA enabled Nvidia graphics cards

B.4 Performance consideration

CUDA technology is rapidly moving forward in both hardware and software perspec-

tive. In Table B.2, we summarize several key features for general purpose CUDA

programming. For Nvidia G80 series, there is no double precision floating point

computations in hardware. This is due to the fact that single precision is already suf-

ficient for most graphics applications. However, for many non-graphics ones, higher

precision floats are much more demanded. The second generation GT200 series start

to support double precision floats, but with limited performance, since each multi-

processor in the GPU has only one double precision floating point unit. The third

generation Fermi series moves one step further, which fully supports double precision

computations in hardware.

Writing runnable parallel programs is usually not very difficult. However, writ-

ing efficient parallel code has never been an easy task. This rule holds for CUDA

applications too. While attempting to optimizing CUDA code, it is unavoidable to

know how to measure the performance accurately and to understand key factors for

performance.

log2 n memset cudaMemcpy cudaMemcpy memsetKer
(MB/s) (MB/s) (MB/s) (GB/s)

23 1600.0 1363.9 1553.3 61.6
24 1600.0 1376.7 1560.5 69.9
25 1422.2 1382.2 1569.0 75.0
26 1422.2 1312.1 1541.5 77.4
27 1462.9 1386.7 1527.2 79.0

Table B.3: Bandwidth tests for clearing a large array

Bandwidth is one of the most important factors for performance, which could be

dramatically affected by the choice of memory in which data is stored, and how the
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data is accessed. In Table B.3, we list some experimental data collected with functions

“memset”, “memsetKer”, and “cudaMemcpy” to clear a large array of integers. The

experiments were completed on a desktop with Intel Core 2 Quad CPU Q9400 @

2.66GHz and 6GB main memory. The graphics card is the GeForce GTX 285, 1GB

global memory with 30× 8 SP cores.

The first column of Table B.3 shows the base 2 logarithmic of the array size n.

The second column shows the bandwidth in megabytes per second while calling the C

function “memset”. Third column shows the bandwidth in megabyte per second while

calling CUDA API “cudaMemcpy” to move data from main memory to GPU global

memory. The fourth column shows the bandwidth in megabyte per second while

calling CUDA API “cudaMemcpy” to move data from GPU global memory back to

main memory. The last column shows the bandwidth in gigabytes per second of the

CUDA kernel shown below, which clears an array residing in GPU global memory

with a massive number of threads.

__global__ void memsetKer(int *X, int n) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n) X[i] = 0;

}

Observe that memset has a comparable bandwidth with cudaMemcpy, but their

bandwidth is much smaller than that of memsetKer. The theoretical peak bandwidth

of this card is 141.6 GB/sec, which is approximately the double of that of memsetKer.

From the collected data, one can deduce that CUDA programs should be really data

intensive and it is unwise to move small computations into GPUs.

In the CUDA kernel memsetKer, the ith thread accesses the i-th entry of the

array. This is the most favorable access pattern to the global memory, where the

small accesses are coalesced into big accesses. On the contrary, if code accesses the

global memory in a scattered or misaligned manner, the performance may downgrade

in a significant manner.
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Appendix C

Sample CUDA Code

We provide some sample source code for implementing the Stocham FFT.

/**

* @X, input data array of length n = 2^k residing in the device

* @W, Powers of the primitive root of unity have been precomputed

* @p, fourier prime number

*

* X will be filled with DFT_n(X)

*/

void stockham(int *X, int n, int k, const int *W, int p)

{

int *Y;

cudaMalloc((void **)&Y, sizeof(int) * n);

butterfly(Y, X, k, p);

for (int i = k - 2; i >= 0; --i) {

stride_transpose2(X, Y_d, k, i);

stride_twiddle2(X, W, k, i, p);

butterfly(Y, X, k, p);

}

cudaMemcpy(X, Y, sizeof(int)*n, cudaMemcpyDeviceToDevice);

cudaFree(Y);

}

The function stockham is the top level one, which calls C subroutines:

� butterfly implements DFT2 ⊗ I2k−1 ,
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� stride transpose2 implements D2,2k−i−1 ⊗ I2i ,

� stride twiddle2 implements L2k−i

2 ⊗ I2i .

The following CUDA kernel butterfly ker implements the subroutine butterfly.

/**

* @X, device array of length n = 2^k

* @Y, device array of length n = 2^k (output)

*

* Y = DFT2 @ I_{2^{k - 1}}(X)

*/

__global__ void butterfly_ker(int *Y, const int *X, int k, int p)

{

int bid = blockIdx.y * gridDim.x + blockIdx.x;

int halfn = ((int)1 << (k - 1));

const int *A = X + bid * blockDim.x;

int *B = Y + bid * blockDim.x;

int m = threadIdx.x + halfn;

B[threadIdx.x] = add_mod(A[threadIdx.x], A[m], p);

B[m] = sub_mod(A[threadIdx.x], A[m], p);

}

This kernel requires that threads in each thread block are indexed only by the x

component.



150

Bibliography

[1] Magma computational algebra system. http://magma.maths.usyd.edu.au.

[2] Nvidia CUDA. http://www.nvidia.com/object/cuda home new.html.

[3] Nvidia CUDA programming guide 2.3. 2009.

[4] J. Arnold and R. Gilmer. On the contents of polynomials. Proc. Amer. Math.

Soc., 224:556–562, 1970.

[5] M. F. Atiyah and L. G. Macdonald. Introduction to commutative algebra.

Addison-Wesley, 1969.

[6] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.

J. Symb. Comp., 28(1-2):105–124, 1999.

[7] P. Aubry and M. Moreno Maza. Triangular sets for solving polynomial systems:

A comparative implementation of four methods. J. Symb. Comp., 28(1-2):125–

154, 1999.

[8] F. Boulier, F. Lemaire, and M. Moreno Maza. Well known theorems on triangular

systems. Technical Report LIFL 2001–09, Université Lille I, LIFL, 2001.
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[29] D. Eisenbud. Commutative algebra. Springer, Springer-Verlag, 1994.

[30] M. El Kahoui. An elementary approach to subresultants theory. J. Symb. Comp.,

35:281–292, 2003.

[31] A. Filatei, X. Li, M. Moreno Maza, and É Schost. Implementation techniques for
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[39] É. Hubert. Notes on triangular sets and triangulation-decomposition algorithms.

I. Polynomial systems. In Symbolic and numerical scientific computation (Ha-

genberg, 2001), volume 2630 of LNCS, pages 1–39. Springer, 2003.

[40] F. Ischebeck and R. A. Rao. Ideals and reality, projective modules and number

of generators of ideals. Springer-Verlag, 2005.

[41] M. Kalkbrener. A generalized Euclidean algorithm for computing triangular

representations of algebraic varieties. J. Symb. Comp., 15:143–167, 1993.

[42] M. Kalkbrener. Algorithmic properties of polynomial rings. Dep. of math., Swiss

Federal Institute of Technology, Zurich, 1995. Habilitation Thesis.

[43] M. Kalkbrener. Algorithmic properties of polynomial rings. J. Symb. Comp.,

26(5):525–581, 1998.

[44] D. Lazard. A new method for solving algebraic systems of positive dimension.

Discr. App. Math, 33:147–160, 1991.

[45] D. Lazard. Solving zero-dimensional algebraic systems. J. Symb. Comp., 15:117–

132, 1992.

[46] F. Lemaire, M. Moreno Maza, W. Pan, and Y. Xie. When does 〈T 〉 equal sat(t)?

J. of Symbolic Computation, to appear.

[47] F. Lemaire, M. Moreno Maza, W. Pan, and Y. Xie. When does 〈T 〉 equal sat(t)?

In Proc. ISSAC’20008, pages 207–214. ACM Press, 2008.

[48] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Ilias

S. Kotsireas, editor, Maple Conference 2005, pages 355–368, 2005.

[49] X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains. In

In ISSAC’09, pages 239–246. ACM Press, 2009.

[50] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The modpn library: Bringing
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