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Abstract
Anomaly Detection (AD) is to identify samples that differ from training observations in some
way. Those samples that do not follow the distribution of normal data are called outliers or
anomalies. In this thesis, we examined two different challenges related to deep learning-based
anomaly detection methods. The first challenge is the generalizability to outliers. A wide range
of unsupervised anomaly detection methods use deep autoencoders as a foundation. However,
a notable limitation of deep autoencoders is that they generalize to outliers and reconstruct them
with low error. In order to overcome this issue, we propose an adversarial framework consisting
of two competing components, an adversarial distorter, and an autoencoder. During training,
the adversarial distorter produces perturbations that are applied to the encoder’s latent space to
maximize the reconstruction error. The autoencoder attempts to neutralize the effects of these
perturbations to minimize the reconstruction error. Another challenge is the high computational
cost, complexity, and unstable training procedures of deep anomaly detection methods. Despite
being successful at anomaly detection, deep neural networks are difficult to deploy in real-
world applications because of this challenge. We overcome this problem by using a simple
learning procedure that trains a lightweight convolutional neural network. We propose to solve
anomaly detection as a supervised regression problem. We label normal and anomalous data
using two separable distributions of continuous values. As a way to compensate for the lack
of anomalous samples during training, we use straightforward image augmentation techniques
to create a distinct set of anomalous samples. An augmented set has a distribution that is
similar to normal data, but deviates slightly from it, while real anomalies should have a further
distribution. Consequently, training a regressor on normal and these augmented samples will
result in more distinct distributions of labels for normal and real anomalous data points. In
several image and video anomaly detection benchmarks, our methods outperform cutting-edge
approaches.

Keywords: Anomaly Detection, Deep Learning, Unsupervised Methods
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Summary for Lay Audience
The goal of anomaly detection is to recognize samples that differ in some way from the regular
observations. Those samples that are out of the distribution of normal data are called anoma-
lies or outliers. Anomaly detection problems have been largely solved well by deep neural
networks. However, there are some challenges to developing deep learning-based anomaly
detection methods. In this thesis, we have touched upon some critical aspects of anomaly de-
tection methods that have been neglected. The first challenge is generalizability to outliers,
while the second challenge is deployability. To address the aforementioned challenges, we
propose two different solutions in chapters three and four. The proposed methods achieve
state-of-the-art results when applied to anomaly detection tasks.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

The first chapter of the thesis examines recent advances and challenges in the field, as well
as the gaps that encourage this thesis. We also provide an explanation of how the proposed
methods addressed the gaps. Afterward, we discuss previous works and standard benchmarks.
In the next chapter, we briefly explained some background information. In chapter 3 and 4,
we propose two different methods to solve two important challenges in deep learning-based
anomaly detection methods. Lastly, we discussed different aspects of these methods and future
research directions in chapter 5.

In Anomaly Detection (AD), we look for samples that differ from the training data. Out-
liers or anomalies are samples which do not conform to the distribution of normal data. The
outliers in real-world anomaly detection problems are either absent or poorly defined, or have
a limited number of instances. Compared with traditional solutions, deep learning-based meth-
ods achieve excellent results in terms of performance. However, developing these approaches
presents some challenges. In this thesis, we discussed a few critical aspects of anomaly detec-
tion methods that often are missed.

In the rest of this section, we will briefly introduce some related topics, including super-
vised learning, classification and regression problems, and associated metrics, as well as un-
supervised and semi-supervised learning. Our goal is to provide background information on
relevant topics to anomaly detection. Later on, we will look at different categories of anomaly
detection methods, which vary according to the availability of labels, resulting in either su-
pervised, semi-supervised, or unsupervised learning schemes. In addition, since we need to
measure the performance of the anomaly detection methods, we will describe the related met-
rics we used in chapters 3 and 4 of this thesis, such as AUROC, EER, MSE, etc.

In supervised learning, the objective is to create a mapping function that transforms an
input into an output given a set of samples of data. In this learning scheme, every sample con-
tains a set of input objects as well as the desired output value. Classification and regression are
two categories of supervised learning algorithms. In classification, data is divided into classes.
The concept of classification begins with predicting what the target class, label, or category of
a given data point is. As a result, classification models estimate the mapping function from
input variables to discrete output variables. Additionally, there are several types of classifi-
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2 Chapter 1. Introduction and Literature Review

cation tasks, such as binary classification, multiclass classification, imbalanced classification,
etc. In contrast, regression is used to approximate a mapping function from input variables to a
continuous output variable. As discussed above, regression is a different kind of analysis from
classification, which is a way to predict a category or a class label. For instance, predicting
stock market prices is a regression problem, but predicting the trend of the market is a classifi-
cation problem. The regression problem involves predicting a quantity. It is often referred to as
multivariate regression when the problem has more than one input variable. Basically, anomaly
detection is a classification problem where we are trying to differentiate between anomalous
and normal data.

Those that have two classification labels are considered binary classifications. It is typical
in anomaly detection tasks to involve a class representing the normal condition (negative class)
and a class representing the abnormal condition (positive class). As an example, ”benign” is
the state of normal, and ”malignant” is the state of abnormality in tumor detection. Typically,
it is assigned a class label of 0 for the normal state, and a class label of 1 for the abnormal
state. Often, binary classification tasks are represented with a model that predicts Bernoulli
probability distributions for each sample. Bernoulli distribution describes the probability that
an observation will result in either a 0 or 1 as its outcome. The model predicts the likelihood
of an example belonging to the abnormal class.

Classification with more than two categories are multi-class classification tasks. A few ex-
amples are movie genre classification, animal species classification, etc. In contrast to binary
classification, multi-class classification omits the concept of normal and abnormal outcomes.
Rather, examples are classified as belonging to one of several classes. Those tasks that involve
imbalanced classification have unequal distributions of samples per class. An imbalanced clas-
sification task is a binary classification that is composed of a vast proportion of examples in
the training dataset belonging to a normal class and a slight minority belonging to an abnormal
class. Detecting anomalies, outliers, novelty, etc., are examples of this type of classification.
As a result of the ambiguity of the abnormal class, solving anomaly detection in a supervised
manner is not always feasible.

Different metrics can be used to evaluate the performance of various models in a classifi-
cation task. These classification metrics include accuracy, precision, recall, F1-score and area
under the ROC curve. In classification, accuracy is the number of correct predictions out of all
predictions. Usually, classification problems are evaluated based on this metric. This method
would only be applicable when each class has almost the same number of observations (which
often isn’t the case in the real-world situation) and when the prediction errors are of equal im-
portance. Due to class imbalances, accuracy is usually not a good metric in anomaly detection.
Quantifying the number of correct positive predictions is called precision and recall is a metric
that calculates the number of correct positive predictions over all possible positive predictions.

The Receiver Operating Characteristic (ROC) curve shows the performance of a classifica-
tion model by plotting True Positive Rate (TPR) vs. False Positive Rate (FPR) for all classifi-
cation thresholds. False Positive (FP) means predicting an event that did not happen, and True
Negative (TN) is one where the model correctly predicts the negative outcome. Basically, TPR
means recall, and FPR means dividing FP by the addition of FP and TN. When the threshold is
lowered, more items will be classified as positive, resulting in both higher false positives and
true positives. The Area Under the ROC Curve (AUROC or AUC in general) is calculated by
measuring the entire two-dimensional area under the entire ROC curve. AUC determines the



1.2. Anomaly Detection 3

overall performance across all possible classification thresholds. This measures the quality of
the model’s predictions regardless of the threshold used for classification. In this thesis, as a
result of the imbalance in the anomaly detection datasets and to follow the protocols of other
methods, we calculate AUROC as a metric to measure the performance of our methods. In
some anomaly detection benchmarks, Equal Error Rate (EER) is also used to report the perfor-
mance. In a ROC curve, the EER is the point where the false acceptance rate equals the false
rejection rate. As a rule, the lower the equal error rate value, the higher the accuracy of the
biometric system.

In regression problems, MSE is an important loss function. In a dataset, the MSE is cal-
culated as the squared difference between predicted and actual values. By squaring these two
values, the sign is removed, resulting in a positive error value. In addition, squaring has the
effect of magnifying or inflating large errors. This means that the larger the difference between
the predicted and actual values, the larger the squared positive error. As a result, MSE as a loss
function penalizes models more for larger errors. The RMSE can be thought of as an extension
of the mean squared error. RMSE is calculated from the square root of the error, which means
the units are the same as those of the actual target value. In contrast, MAE is linear and in-
tuitive. MSE and RMSE punish larger errors more than smaller errors, thereby increasing the
mean error score. MAE does not assign various weights to different types of errors; instead,
scores increase linearly as errors increase. MAE scores are calculated by averaging the abso-
lute error values. In chapter 4 of this thesis, we used MSE to measure the loss of the model
during the training.

A semi-supervised learning method is a type of machine learning. The term refers to a
learning problem involving a small portion of labeled samples and a vast amount of unlabeled
samples from which a model should learn and make predictions. It is a middle ground between
unsupervised and supervised learning. In addition to unlabeled data, the algorithm is provided
with some supervision for a small subset of the data. In situations where labeling samples is
challenging or expensive, semi-supervised learning algorithms are applied. Semi-supervised
algorithms can perform better than supervised algorithms fitted only to labeled training exam-
ples. We can leverage this training scheme to identify anomalous samples in some anomaly
detection problems by creating a small set of labelled samples.

Unsupervised learning involves discovering patterns from unlabeled data by means of al-
gorithms. As a result of estimation, the machine must build a compact internal representation
of the underlying complex structure of the data. While supervised learning relies on the super-
vision by an expert to do the process, unsupervised methods involve self-organization in which
patterns are captured as probability density functions or a combination of statistical parameter
selections. There are several primary tasks that unsupervised learning models are utilized for,
such as clustering, dimensionality reduction, autoencoding, etc. Due to the lack of anomalous
samples, most anomaly detection problems are unsupervised. Throughout chapter 3, we focus
on autoencoders as our main research method.

1.2 Anomaly Detection
This section discusses the anomaly detection problem and how it is formulated as well as the
challenges in the field. Detecting unusual or rare samples and events in the training data is
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what is known as Anomaly Detection (AD). This actually refers to the process of discovering
unseen concepts. AD is generally associated with a huge number of data instances that follow
the normal class distribution. A sample that is similar to the training data is called an inlier. In
the alternative, if the sample does not match the distribution defined in the training examples,
it is considered an outlier. Therefore, abnormalities may arise from any unknown distribution,
leading to a very complex learning process. In order to compensate for the absence of outlier
samples, anomaly detection methods seek to model the distribution of inlier data [67]. During
the testing stage, the deviation from such a model is what reveals whether this instance is
anomalous. The overall concept of AD is shown in Figure 1.1. The distance between given
instances and the distribution of normal data is computed by D, and the feature extractor F
maps the raw data to a set of discriminative features.

Figure 1.1: This figure illustrates the general concept of AD. In this case, the pedestrian is
considered normal, while the car is an anomaly. F produces a representation of the given data.
As can be seen, pedestrians, which are marked by green dots, follow the distribution of the
target class. Thus, the car indicated by a red dot is an instance outside the distribution. By
measuring D, the calculated distance of the car from the normal data shows the deviation.

AD tasks may face varying difficulties depending on the type of data involved. General-
izability to outliers is a weakness of some of the AD algorithms. The detection of abnormal
events is considered more critical in most AD applications than the recognition of normal data.
In surveillance systems, for instance, ignoring just one anomalous behavior completely com-
promises the system’s reliability and safety. Moreover, some of the AD methods tend to be
computationally expensive [13] [36] [43] [45]. A vast majority of deep learning techniques
devoted to anomaly detection tasks performed exceedingly well and surpassed the state-of-the-
art [42] [46] [43] [45] [21]. However, most of these approaches are too complex to be applied
in real-world applications appropriately. These shortcomings confirm that AD tasks are faced
with numerous challenges that need to be addressed effectively. Studying AD methods from
different perspectives like generalizability, complexity, etc. is an important part of improving
the current state-of-the-art.

Anomaly Detection can be considered as special case of Zero-Shot Learning (ZSL) and
Open-Set Recognition (OSR). In the Zero-Shot Learning problem, a learner observes samples
from non-observed classes at the testing stage and predicts which category they belong to. ZSL
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methods primarily try to combine knowledge of the seen and unseen classes through some types
of auxiliary information. ZSL encodes observable characteristics that distinguish objects. In
spite of not having access to the unseen categories during training, it is able to build models
by using knowledge from previously seen categories. In Open-Set Recognition, only part of
the data is known at training time, and during testing, unknown classes can be evaluated. To
accomplish this, the classifiers need to not only classify the seen classes accurately but also
deal with the unknown classes effectively. In OSR, algorithms are developed to distinguish
between known and unknown data.

For each seen and unseen class, ZSL is usually provided with an additional set of attributes.
In contrast, OSR is an open environment setting without information on unseen classes. The
objective is to generate a classification model based on observed classes that excludes samples
of unseen classes as outliers. In the literature, Novelty Detection (ND) and Anomaly Detection
(AD) are used interchangeably. Novelty detection is a special form of open-set recognition in
which only one class out of N classes is available during the training.

In computer vision, anomaly detection has widespread applications from finding biomedi-
cal markers [51] to monitoring video surveillance footage [31] [54] and defect detection [48].
Commonly, images or video frames are unlabeled with the assumption that most of them con-
form to the distribution of normal data. AD entails determining whether a sample of data
follows target distribution or if there is an abnormality. As a next step, we will discuss the
rationale behind the methods and explain the different categories of AD techniques.

Explicit learning and utilizing distance metrics are challenging due to the high dimension-
ality and diversity of data instances in visual domain. The process of learning a discriminative
representation from raw data, as well as applying a machine-learning approach in order to learn
the distribution of normal data, is required to introduce an effective AD solution. In each of
these steps, numerous viewpoints are investigated. This leads to a wide range of proposed
algorithms.

As mentioned earlier, the widely used approaches for AD have taken advantage of learning
the shared concepts of normal samples. Modeling was initially based on fitting a predefined
distribution, such as a Gaussian distribution [44]. The high dimensionality of samples and
accordingly the complexity of normal data distribution, however, has led to the use of Deep
Neural Networks (DNN) to learn implicitly both the data distribution and detection metric.

The proposed methods for anomaly detection can be classified into three categories, de-
pending on the definition of anomaly and the number of normal, anomalous, and unlabeled
samples available in the training set: (1) supervised (2) semi-supervised, and (3) unsupervised.
Compared to supervised techniques, unsupervised techniques are more applicable to realistic
situations. The following provide a comprehensive explanation of the three major categories
determined based on the availability of data labels.

Supervised: Depending on the application, abnormalities can have different explanations,
such as intrusion in computer networks [22]. Therefore, to build an efficient binary classi-
fier, normal and anomalous samples should be collected and analyzed in a supervised setting.
Although supervised approaches produce highly accurate results, they are not sufficiently gen-
eralizable and are not optimal due to the class imbalance in anomaly detection applications.
Regardless of the definition used for abnormal events, class imbalances remain a concern. A
class imbalance problem occurs when class distributions are highly imbalanced. For infrequent
classes, many classification algorithms have low predictive accuracy. This range of solutions
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is applicable to only a small number of real-world problems.
Semi-Supervised: AD tasks contain a large number of unlabeled data since collecting

anomalous instances is a time-consuming and expensive process. In addition, anomalies tend
to be very diverse and uncommon. In industrial defect detection, for example, there are many
unlabeled samples and few labeled samples. Also, [41, 29] proposes learning a model from
lots of unlabeled samples and a few irregular and normal samples, as a means to make use of
the abnormal and normal concepts. In general, the notion of having access to the full spectrum
of anomalous and normal events for AD application is not attainable and would be costly.

Unsupervised: In an unsupervised setting, the algorithm is trained on unlabeled data. De-
tection of outliers in this scheme is based exclusively on the internal properties of data exam-
ples. The only assumption that can be made in these approaches is that abnormal events are
rarely observed. As anomalies in data only occur in rare instances, specifying real abnormal-
ities can be very complex and time-consuming, especially for applications that lack a precise
definition of what constitutes an anomalous event. Also, even if anomalies can be accessed,
a lack of sufficient data is problematic. The unsupervised methods are essentially One-Class
Classification (OCC) tasks aimed at solving AD problems in a more general way.

In a binary classification problem with samples from the positive and negative classes, a
machine learning algorithm attempts to differentiate between the two categories. By using this
model at test time, unlabeled instances from both groups can be precisely classified. On the
other hand, if there is a class imbalance, the percentage of cases in one class will be much
higher than the number of samples in the other class. As a result, a typical classifier will tend
to favor the negative class since it has a larger number of instances. With traditional binary
classifiers, it is very challenging to classify the positive class accurately when the imbalance
between classes is severe. To solve such a problem, One-Class Classification (OCC) concepts
can be used.

In one-class classification, instances of only one class are examined and analyzed in order
to solve the classification problem, and that class is usually of interest in the problem. In an
OCC setting, labeled samples of the positive class are either not accessible or are not sufficient
to train a supervised classifier. One-class classification appears to be primarily used for outlier
detection and novelty detection. In terms of concepts and applications, outlier detection and
novelty detection differ slightly. In novelty detection, the anomalies are detected in the test
dataset while there are no anomalous data points in the training dataset. Outlier detection
occurs when training data includes both normal and abnormal data points. The goal is to
determine how to distinguish between them. Afterward, the learned model is applied to the test
dataset, which may contain both normal and anomalous samples.

1.3 Reviews of Previous Anomaly Detection Methods
In this section, we review existing works and the literature of anomaly detection. Novelty,
outliers, and anomalies are usually identified using one-class classification. When this type
of problem is encountered, a model attempts to capture the distribution of inliers and then
detect unknown outliers and novel concepts. Traditionally, anomaly detection methods used a
one-class SVM [52, 17] and Principal Component Analysis (PCA) [6, 19] to determine which
subspace best represents the distribution of normal samples. To formulate the distribution of
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normal data, unsupervised clustering techniques have also been used, such as k-means [67]
and Gaussian Mixture Models [62]. These methods, however, usually fail to deal with high-
dimensional visual data. As a result, in the following, we focus on the state-of-the-art deep
learning-based anomaly detection methods.

1.3.1 Reconstruction-based
Autoencoders are unsupervised learning techniques that use neural networks to learn repre-
sentations. With this approach, the goal is to impose a bottleneck in the network in order
to force a compressed representation of the original input. The compression and subsequent
reconstruction would be very challenging if the input features were independent of one an-
other. Conversely, if a pattern can be found in the data, it can be learned and used to force
the input through the network’s bottleneck. During training, the network will minimize the re-
construction error, which measures the difference between its original input and its subsequent
reconstruction. A key characteristic of our network design is the bottleneck; without it, our
network could easily simply learn to memorize input values by passing them along through the
network. Figure 1.2 shows the architecture of an autoencoder.

Figure 1.2: General demonstration of an autoencoder. As a result, input data is compressed
as it passes through the encoder. Then, the output of the encoder will be passed through the
decoder and the image will be reconstructed.

There is a variation on the autoencoder known as a denoising autoencoder [57] that prevents
the network from learning the identity function by adding noise to the input. Additionally, if
the latent space of the autoencoder is too big, it means that the output will be the same as the
input, so the learning of representation or the reduction of dimensionality will not be meaning-
ful in these situations. Denoising autoencoders have been developed to combat this problem
by adding noise to the input values during autoencoding. Context Autoencoders (CAEs) are
capable of reconstructing the content of randomly masked regions of an input image and can
be used for general feature learning. Their representations describe the semantics of the under-
lying training distribution [68].

A number of previous studies have shown that the reconstruction error of an Autoencoder
(AE) can function as a good indicator of whether a sample falls within the distribution defined
in the training examples [60]. For this reason, Autoencoders (AE) are often used to detect
anomalies in images. A Denoising Autoencoder (DAE) can be used to achieve this goal due
to the robust representations and the interpretable anomaly score they provide [2]. It has been
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shown that context autoencoders (CAEs) have been more successful in detecting anomalies
owing to their ability to represent the semantics of the underlying distribution [68]. In general,
one of the biggest drawbacks of AEs is that they often generalize well to reconstruct outliers
well, which sometimes results in poor performance.

Another type of method, such as reconstruction-based approaches, can also take advantage
of learning representation from the input itself. The hypothesis is usually based on the fact that
outlier samples cannot be accurately reconstructed by a model that only learns the distribution
of inlier samples. Using sparse representations for distinguishing between inlier and outlier
samples, Cong et al. [10] proposed a video anomaly and outlier detection model. As outlined
in [63, 42], test samples are reconstructed using inlier representations, and reconstruction error
is used as a novelty detection metric. The reconstruction loss scales between 0 and 1, so a
normal sample will have a score close to 0 and an anomaly will have a score close to 1. In
fact, the majority of deep learning-based models that use encoder-decoder architectures [47,
65, 66, 69, 9] have also used this score to detect anomalies. It is important to note that although
these encoder-decoder based methods are effective, they are limited due to their insufficient
representation of latent space for anomaly detection.

Another category of methods for anomaly detection leverages memory module. In a mem-
ory network, the inference capabilities of the neural network model are applied to a memory
component, which can be read from and written to. Often, neural networks do not have a
mechanism to retain long-term information. It is most likely due to the fact that their existing
memory component is insufficient and poorly organized to allow them to properly recall past
facts. In order to resolve this issue, memory networks are proposed as a solution. Each memory
network is comprised of a memory, which is an array of objects, and four potentially learned
components, such as input feature map, generalization, output feature map, and response. Sup-
pose you have an input x, convert it to an internal representation of features, update memory
items with the new input, and compute output features based on the new input and memory.
Finally, decode output features to give the final outcome. This process is applied at both the
training and testing stages.

The application of memory-augmented networks has been widespread [16, 49, 59]. Graves
et al. [16] adopted content-based attention to increase the capacity of neural networks. Santoro
et al. [49] used a memory network to record information stably. In some works [23, 27] the
external memory has also been used for multi-modal data generation. Gong et al. proposed
a deep autoencoder augmented with a memory module (MemAE) [13] to encode the input to
a latent space with the encoder. The resulting latent vector is used as a query to retrieve the
most relevant memory item for reconstruction with the decoder. Also, in [34], they introduced
a memory module with items that capture prototypical models of inlier class with a new update
system.

1.3.2 Adversarial Training
Some methods for anomaly detection uses adversarial learning framework. A generative ad-
versarial network is a model that consists of two neural networks - a Discriminator network
(D) and a Generator network (G) - that work together to learn complex distributions. Basi-
cally, what a generator network endeavors to do is to generate realistic data from a random
noise vector z. The discriminator’s aim is to differentiate real data from fake data generated
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by the generator. As a result, it is necessary for the discriminator to output a high score for
the real data, and a low score for the fake data, in order to achieve the previous objective. The
network design is one of the most important aspects of GANs. For example in visual domain,
the generator network should take random noise and map it to images in such a way that the
discriminator can’t determine which images come from the training dataset and which ones are
fake. DCGAN (Deep Convolutional Generative Adversarial Networks) is a type of GAN that
utilizes convolutional neural networks as their Generator and Discriminator. This architecture
achieves superior performance on a variety of computer vision tasks.

In [51], AnoGAN is a generative adversarial network (GAN) that makes use of deep con-
volutional generative adversarial networks (GAN) to learn a manifold of biomedical images
and to calculate an abnormality score based on the mapping from image space to a random dis-
tribution of biomedical images. Basically, what the function is supposed to do is to calculate
the corresponding latent mapping z for particular queries. In order to obtain the latent mapping
corresponding to the given pattern, they begin by selecting a random vector, z, and update its
value by backpropagating the loss function. A shortcoming of this method is that calculat-
ing the predicted latent vector of each test image with the use of optimization can take up a
considerable amount of time. Hence, the f-AnoGAN [50] is proposed for fast unsupervised
anomaly detection with the goal of eliminating this disadvantage. A learned encoder is used in
f-AnoGAN instead of the previous optimization procedure which requires many iterations. It
dramatically accelerates the mapping of images into latent space, thereby making it possible to
map more images in a shorter period of time.

Figure 1.3: The Mask Module learns to cover the important parts of the input image adver-
sarially; it consists of a threshold unit and an autoencoder that build a binary mask from an
activation map. Mask Module aims to maximize reconstruction error and Reconstructor aims
to minimize it.

In [45], Sabokrou et al. proposed a one-class classification framework which is composed
of a Reconstructor (R) and a Discriminator (D). A denoising autoencoder performs the function
of R, while a detector performs the function of D. These two networks are learned adversarially
in an end-to-end perspective. R reconstructs the noisy input image X and generates X′ to
deceive D so that it contemplates the reconstructed sample as the original data. On the other
hand, D tries to detect reconstructed samples from the original data by accessing the training
set and learning their distribution. Both modules form a one-class classifier for end-to-end
novelty detection by playing a minimax game.

As an extension of the ALOCC [45], Zaheer et al. [64] further improved the adversarial
one-class classifier training setup by modifying the role of the discriminator to differentiate
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between good and poor quality reconstructions. The network pre-training followed the same
methodology by utilizing the same architecture. Then, they provided two different kinds of
fake images to fine-tune the networks. They introduced bad quality examples xlow and pseudo
anomaly images xpseudo to generate bad quality examples xlow. To this end, an older state of
the generator network is used. The pseudo anomaly image is created by interpolating between
two images of poor quality in the image space. They found that the second phase of training
resulted in more distinct scores for inliers and outliers.

Perera et al. used auto-encoder networks to enforce the normal samples to be distributed
uniformly across the latent space. This model which also benefits from the GAN setup is called
OCGAN [36]. It consists of a denoising auto-encoder which maps a noisy input to the latent
space and learns an inverse mapping back to the image space, a latent discriminator which
learns to distinguish between latent space of real images and noisy samples, a visual discrimi-
nator which learns to discriminate between fake images and real images, and a classifier which
learns to recognize real images from fake images. They firstly trained the classifier for a given
input x while the parameters for other networks are fixed. For the next step, two discriminator
losses Llatent and Lvisual are computed and their weights are updated accordingly. Then, negative
mining is conducted in the latent space by utilizing the classifier’s guidance. Particularly, the
latent sample is adjusted using backpropagation such that it may deceive the learned classifier.
Finally, Llatent, Lvisual and Lmse are used to update auto-encoder weights.

As mentioned earlier, CAEs try to reconstruct a randomly masked image. Although context
masking can enhance the performance of AEs in anomaly detection by learning the semantic
context but most of the time, random masking fails to cover important parts of the input, leading
to learn suboptimal representation. To overcome this issue, OLED [21] is introduced. In this
method, they utilized adversarial setup to train two autoencoders. The first network learns to
mask the input intelligently and other one is a context autoencoder that inpaints the input. The
former is called MaskModule and it generates masks to increase the reconstruction loss when
applied to the input and the latter is called Reconstructor that tries to minimize that loss.

1.3.3 Anomaly Generation
In some real-world cases, anomaly detection methods based on learning the distribution of in-
liers cannot be applied in practice. Anomalies can be generated alongside normal data during
training to turn the problem into a supervised classification task. A GAN can be used to create
anomalous data, which turns anomaly detection into a binary classification problem. Accord-
ing to [37], they trained a Wasserstein GAN on normal data and used the generator before
convergence had been reached. In this way, the generated data deviates from inliers in a con-
trolled manner. Even though they offer new avenues for detecting anomalies, training a neural
network to generate outliers is computationally expensive.

1.3.4 Knowledge-Distillation
In addition, there are methods known as knowledge-distillation methods that attempt to utilize
the knowledge of a larger network. [48] and [12] have attempted to benefit from deep pre-
trained networks by distilling the knowledge where a small student model learns from a large
teacher model. In [48], they utilized a VGG16 [53] to calulate a multi-layer loss from different
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activations for training the student network to calculate the anomaly score. They also incorpo-
rate interpretability algorithms in their framework to localize anomalous regions and perform
anomaly segmentation. Even though these methods could perform anomaly detection with
high performance, they are benefiting from the knowledge achieved by training on millions of
labeled images which is not always helpful like other modalities of data.

1.4 Benchmarks
This section provides a detailed explanation of four datasets that are benchmarks in anomaly
detection. In this thesis, we chose MNIST [25], FMNIST [61], CIFAR-10 [24] and UCSD [61]
for anomaly detection. These benchmark datasets are widely used in the anomaly detection
literature. In the following, we provide descriptions of each dataset as well as the protocols for
evaluation.

Figure 1.4: Each row represents one class in each dataset. In the top, the left image is the
MNIST dataset, the right image is the FMNIST dataset, and the bottom image shows the
CIFAR-10 dataset.

MNIST: MNIST is a dataset of handwritten digits with 60,000 grayscale images with a
resolution of 28 by 28. This is one of the most popular benchmark datasets in anomaly detec-
tion.

FMNIST: A similar dataset, FMNIST contains 60,000 images of 28 by 28 grayscale fash-
ion accessories but since there is a substantial amount of intra-class variation, it is more chal-
lenging for anomaly detection than MNIST.

CIFAR-10: This dataset consists of 10 classes of 32 × 32 RGB images of natural ob-
jects. With high intra-class variance, CIFAR-10 is a more challenging benchmark for anomaly
detection.
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Figure 1.5: These are the four frames from the UCSD anomaly detection dataset. Pedestri-
ans are considered as normal, while vehicles, skateboards, wheelchairs, etc., are considered
anomalies.

For these three datasets, the protocol we follow is to designate one class as normal data
and other classes as outliers. As a measure of anomaly detection performance, we calculate
the Area Under the Curve (AUROC) for each class and report the average for all classes. The
examples of these datasets are shown in Figure 1.4.

UCSD: UCSD video dataset contains outdoor scenes with pedestrians, cars, skateboards,
wheelchairs, and bicycles. A normal frame is defined as only containing pedestrians, whereas
an anomalous frame contains other objects. This dataset has two subsets named Ped1 and Ped2.
Ped1 contains 34 training videos and 36 testing videos, while Ped2 contains 2,550 frames in
16 training videos and 2,010 frames in 12 testing videos, all of which have a resolution of
240 by 360 pixels. This dataset is evaluated using a patch-based protocol where each frame is
divided into 30 by 30 sections. In training, only pedestrians are included in the patches, yet,
the model was evaluated on patches that contained pedestrians or other objects at the test time.
The examples of this dataset are shown in Figure 1.5

1.5 Contributions
As mentioned in Section 1.3.1, there are some anomaly detection algorithms that generalize
well to outliers. In anomaly detection, generalizability to outliers can be problematic. In most



1.5. Contributions 13

AD applications, abnormal events need to be detected. The reliability of a system could be
compromised by ignoring just one anomalous sample, for instance, in medical image analy-
sis. In many unsupervised anomaly detection methods, deep autoencoders serve as the basis.
However, one notable shortcoming of deep autoencoders is that they cannot provide adequate
representations for anomaly detection by reconstructing outliers with low error rates. We pro-
pose a method in chapter 3 of this thesis to solve this issue. This method leverages an adver-
sarial framework that consists of two competing components, an Adversarial Distorter and an
Autoencoder. An Adversarial Distorter generates effective perturbations from a convolutional
encoder and an autoencoder reconstructs the images from the perturbed latent space using a
convolutional architecture. During training, the networks are trained with opposing goals: the
adversarial distorter produces perturbations to be added to the encoder’s latent feature space
to maximize reconstruction error, and the autoencoder tries to neutralize these perturbations
in order to minimize this loss. By applying perturbations to the feature space, the proposed
anomaly detection method learns semantically richer representations.

In real-world anomaly detection problems, outliers often don’t exist, are poorly defined, or
have a very small number of occurrences. Deep neural networks have been effective in solving
anomaly detection problems. However, they often have many parameters, so training them can
be challenging and costly. As explained in Sections 1.3.2 and 1.3.4 of this chapter, anomaly de-
tection methods based on deep learning suffer from high computational costs, complexity, and
unstable training procedures, making them difficult to use in real-world applications. Our so-
lution, in chapter four of this thesis, utilizes a simple learning procedure to train a lightweight
convolutional neural network, thus achieving state-of-the-art performance in anomaly detec-
tion. This chapter proposes the solution of anomaly detection using supervised regression. We
use two separate distributions of continuous values to label normal and anomalous data. To
compensate for the lack of anomalous samples during training time, we create a separate set of
samples as anomalies using simple image augmentation techniques. As expected, the distribu-
tion of the augmented data is similar to that of the normal data, but it deviates slightly from it,
while real anomalies are expected to deviate even further. Thus, training a regression model on
normal and these augmented samples will result in more distinguishable distributions between
samples of normal and anomalous data points.

The results of several experiments conducted on image and video datasets demonstrate the
superiority of the proposed methods over the state-of-the-art approach to anomaly detection.
The last chapter also discussed the limitations and applications of each of these methods. The
contributions of this thesis can be summarized as follows:

• We propose Adversarially Learned Perturbations of Latent Space (ALPS) that leads to
richer representations by reconstructing outliers with higher error to improve the perfor-
mance of autoencoders.

• We propose a simple yet effective approach called Augment to Detect Anomalies with
Continuous Labelling (ADACL), which includes a lightweight CNN trained with regres-
sion, anomaly creation with augmentations, and continuous labelling to improve perfor-
mance stability in anomaly detection.
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1.6 Conclusion
When applied to anomaly detection tasks, deep neural networks can achieve state-of-the-art
performance. Previous studies have shown that the reconstruction error of Autoencoders (AEs)
can be used to determine whether or not a sample follows the distribution specified in the train-
ing examples [60]. Therefore, AEs are commonly used for anomaly detection. However, the
main disadvantage of AEs is that they generalize too well to outliers and therefore learn insuf-
ficient representations for anomaly detection. Furthermore, most of these methods suffer from
expensive computations, high complexity, and training instability. This thesis proposes two
different solutions to rectify these problems. We present Adversarially Learned Perturbations
(ALPS) for the training of AEs that overcomes the generalizability problem. ALPS allows
AEs to learn more effective representations to detect anomalies. To learn these representations,
adversarially generated perturbations will be added to the latent space of the autoencoder. In
addition, we propose an effective and simple methodology (ADACL) for anomaly detection in
order to alleviate the complexity issue. We convert the problem into a supervised regression
task by creating anomalies using data augmentations and training a lightweight convolutional
neural network over continuous labels. Our results on several image and video anomaly detec-
tion benchmarks demonstrate our superiority to cutting-edge methods.



Chapter 2

Basics of Deep Learning

2.1 Neural Network Architectures

The focus of this section is on neural networks, their architectures, and main components. A
Neural Network (NN) is a combination of linear functions that attempt to uncover the connec-
tions between a set of data and identify patterns through a procedure that emulates the way the
human brain works. The term neural network alludes to a group of neurons, either artificial or
biological in nature. With neural networks, the input can change, and the network can generate
the best possible result without having to redesign the output criteria. Over the past few years,
deep neural networks have become increasingly popular. They are used in a variety of appli-
cations within the computer vision domain, such as image classification, object detection, etc.
The term deep networks refers to neural networks with multiple layers of processing. Neu-
ral networks come in a variety of different forms, such as Perceptron, Multi-layer Perceptron
(MLP), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN).

The perceptron is a supervised learning algorithm for linear binary classification problems
with a single layer. They are neural network units that recognize features in input data by
carrying out specific computations. Basically, it is a function that maps its input, which is
multiplied by the weight coefficients and returns an output value. The activation function
checks whether the weighting function’s output is greater than zero. It outputs a signal if the
sum of the inputs reaches a threshold. In accordance with the perceptron learning rule, the
algorithm would automatically learn the appropriate weights. Perceptrons, however, can only
learn linearly separable patterns.

In Artificial Neural Networks (ANNs), Multi-layer Perceptrons (MLPs) are a class of feed-
forward neural networks. The term can sometimes be used to refer to feedforward ANNs,
however, it is more often used to refer to networks composed of multiple layers of perceptrons.
The general rule of thumb is that MLPs should consist of at least three layers of nodes: the
input layer,the hidden layer, and the output layer. When only one hidden layer is present in
a multi-layer perceptron, it is commonly referred to as a vanilla neural network. A neuron,
except for the input nodes, uses a nonlinear activation function. The adjustment of the weights
is performed by the backpropagation optimization technique during the training process. The
main difference between an MLP and a linear perceptron is in its multi-layer structure as well
as its non-linear activation. This structure enables neural networks to be universal function
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approximators.
The activation function in a neural network specifies the output of a neuron given an input.

An example of this is the linear perceptron. However, only nonlinear activation functions are
capable of solving complex tasks using only a few neurons, and they are considered nonlinear-
ities. Activation functions can have different types, such as the sigmoid, relu, tanh, etc.

Convolution is considered to be one of the most important topics in the field of image pro-
cessing. It is an operation that is used to merge two arrays or signals by multiplying them
together. There is no restriction as to how big the arrays can be, the only requirement is that
these two arrays must be of the same dimension. A kernel is a smaller part of the convolution
operation that is used to slide over the larger part. With kernels, the objective is to extract valu-
able information from the input. The kernel can also be described as a mask or a convolutional
matrix. A kernel can be used to achieve many different effects. For example, a kernel can blur
an image, sharpen the image, modify the contrast of the image, etc. The first step in convolv-
ing the mask over an image is to place the mask center on each element of the image. The
next steps are to multiply all the elements of the image, add them all together, and then paste
the result on the element where the mask center is placed. In the next step, we take another
patch from the input and fill in new pixel values. This creates a new image that has the same
characteristics as the original image but in fewer dimensions.

Pooling operation is carried out by sliding a filter over each dimension of the input and
summarizing the features that lie within the scope of the filter. Summarizing can be achieved
by using maximum or average operations. In this way, the feature maps are reduced in size
by discarding some elements in the region of the filter. Thus, there will be fewer parameters
to learn and the number of computations will be reduced when using in the neural networks.
In the neural networks, the operation layer creates a summarised set of features from which
further operations are performed. After carrying out the above operation, the model becomes
more robust to changes in the positions of the features in the input image.

In some cases, it can be problematic to train deep neural networks with many layers since
the networks can be extremely sensitive to initial random weights and settings of the learning
algorithm. In fact, a possible explanation for this difficulty could be that the updated weights
following each mini-batch of input data may affect the distribution of inputs for higher layers
of the network. Learning algorithms are therefore constantly seeking to capture the meaningful
relations and features in the input. Technically, this shift in the distribution of input to layers
within the network is called the internal covariate shift. In Batch Normalization (BN), the
inputs to each layer of a deep neural network are standardized for each mini-batch. As a result,
the learning process is stabilized, thereby dramatically reducing the number of training epochs
necessary to train deep networks.

Convolutional Neural Networks (CNN) are different from typical neural networks by their
excellent performance with the image input. A convolutional, a pooling, and a fully-connected
layer (FC) are the three types of layers in this type of neural network. During training, the CNN
becomes more complex with each layer, allowing it to identify more features in the image. The
earliest layers focus on simple features, such as colors and edges. The image data is processed
by the CNN through successive layers, and as it advances, it detects larger parts or more details
of the object until it recognizes the target.

In a CNN, a convolutional layer forms the core building block of computation. Suppose
that the input is a 3-dimensional color image made up of a matrix of pixels. The input will have
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height, width, and depth, which correspond to the RGB color space in an image. Additionally,
we have a feature detector, also known as a kernel or filter, that verifies if the feature is present
by moving across the receptive fields of the image. The feature detector corresponds to an
array of weights that describe a specific portion of the image and is also employed to specify
the size of the receptive field. The kernel is then applied to an area of the image, and a dot
product between the input pixels and the filter is calculated. This dot product is then fed into
an output array. Afterwards, the kernel shifts by a stride, repeating the process until the entire
image has been scanned. This final output of dot products is called a feature or activation map.

Each value in feature maps does not need to correspond to every pixel in the input image.
The filter only needs to be connected to the receptive field. Convolutional layers can also be
described as local connectivity since they do not require the output array to map directly to
each input value. Also, since the feature detector’s weights remain constant while it moves
across the image, the parameters in convolutional layers are shared. During training, weight
values are adjusted through backpropagation and gradient descent. Before the CNN can be
trained, some hyperparameters that affect the output volume need to be set, such as the number
of filters, stride, padding. Input image depth is influenced by the number of filters and stride
is the number of pixels the kernel moves over the input matrix to produce the output image.
Padding is usually used when filters don’t fit the input image depth. In the convolution step,
usually a Rectified Linear Unit (ReLU) is applied to the feature map, adding nonlinearity to
the model.

In the process of pooling layers, dimensionality is reduced, which decreases the number of
parameters in the input. In the same way as the convolution layer, the pooling operation sweeps
a filter across the input, but this filter does not have any weights. In contrast, an aggregate
function populates an output array with values from the receptive field, which can be either
a maximum or average operation. The pooling layer does lose a great deal of information,
but it also benefits CNN in a number of ways. As a consequence, they decrease complexity
and increase efficiency and robustness. Fully-connected layers can be used to learn non-linear
combinations of the high-level features represented by the convolutional layer. In this layer, a
possibly non-linear function is being learned.

2.2 Neural Network Training
The purpose of this section is to explain various loss functions and how they are used to op-
timize neural network weights. Loss functions quantify a difference between the expected
outcome and the output of a model. In order to update the weights, we can calculate the gra-
dients from the loss function. Loss functions based on cross-entropy are commonly used in
classification problems. Cross-entropy is used to measure the difference between two prob-
ability distributions. In regression problems, mean squared error is used where the expected
and predicted outcomes are real numbers. Across all samples, it is the average of the squared
difference between the expected and predicted value.

The amount of information needed to transmit a randomly selected event from a probability
distribution is called entropy. A distribution where events have equal probability has a larger
entropy while a skewed distribution (imbalanced distribution) has low entropy. When compar-
ing two distributions, the cross-entropy calculates how many bits are required to represent or
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transmit an average event. For example, if a probability distribution P is the target or underly-
ing distribution, and Q is an approximation of P, the cross-entropy of Q from P is the number
of additional bits needed to represent an event using Q. Binary cross-entropy compares each
prediction to the actual output, which is either a zero or a one. Based on the distance from the
expected value, it calculates the score that penalizes the probabilities. The score refers to how
far the probabilities are from the actual values. To put it another way, Binary Cross Entropy is
the negative average of correct predicted probabilities.

Backpropagation is an algorithm for optimizing the weights of neural networks using gra-
dient descent. Given a neural network and a loss function, the algorithm calculates the gradient
of the loss function with respect to the neural network’s weights. As the name implies, the
gradient is computed backward through the network, beginning with a gradient calculated for
the weights in the final layer, and ending with a gradient calculated for weights in the first
layer. In this way, the gradient can be computed efficiently at each layer due to the backward
flow of error information. With the wide adoption of deep neural networks, backpropagation’s
popularity has recently risen.

2.3 Data Augmentation
The purpose of this section is to describe the process of data augmentation in the image domain
and how it is applied to the training of neural networks. With more data available, deep neural
networks often perform better. Augmenting existing training data is a technique for producing
new data through artificial means. Using domain-specific techniques, we are able to create new
and different training samples based on the training data. In the case of image data augmenta-
tion, transformed versions of the original images are created that belong to the same class as
the transformed versions in the training dataset. These operations include shifts, flips, zooms,
and a number of others from the field of image processing.

In order to select the specific data augmentation technique for a dataset, one must carefully
consider the dataset and the knowledge of the problem domain before making a decision. Ad-
ditionally, it can be beneficial to experiment with different data augmentation techniques both
independently and in combination, perhaps using a small sample set, to determine if they lead
to a measurable improvement in model performance.

In a convolutional neural network (CNN), features can be learned that are invariant to their
location in the image. Furthermore, augmentation can support this transform-invariant learning
approach and can further assist the model in learning features that are also invariant to trans-
formations. In general, augmentation is only applied on the training dataset, and not the testing
or validation dataset.



Chapter 3

Adversarially Learned Perturbations of
Latent Space

3.1 Overview

Deep autoencoders serve as a basis for many unsupervised anomaly detection methods. How-
ever, one notable shortcoming of deep autoencoders is that they generalize to outliers by re-
constructing them with low error. In anomaly detection, generalizing to outliers means the
AD model fails to detect them such that they are misclassified as normal data. Although au-
toencoders are not trained on outliers, they can still reconstruct them with a low error, which
results in reduced anomaly detection performance. In this chapter, we will describe what we
propose as a way to decrease the generalizability of autoencoders to outliers. In the following
section, we will provide a description of how we addressed this issue. Later, we will explain
the architecture of our model, the objective functions used during training, and details about
the implementation. We will then discuss a set of experiments that we conducted to evaluate
the performance of the model. This chapter will conclude with a discussion of the proposed
method and its advantages and disadvantages.

3.2 Motivation

Detecting abnormal samples from a group of normal data is the goal of anomaly detection.
Here, our goal for anomaly detection is to find those samples which are different than our
normal data. Anomaly detection differs from common supervised classification problems due
to either poor sampling or inaccessibility of abnormal data during training. Therefore, one-
class classification is an efficient approach for solving this task.

The task of detecting anomalies in images involves identifying whether an image is an inlier
or an outlier based on training data that primarily consists of inlier images. As a solution to the
lack of outlier samples, one-class classification methods attempt to model the distribution of
only the inlier data [67]. A sample that does not match the inlier distribution is considered an
outlier. The high dimensionality in which the data points exist makes it difficult to model the
distribution of image data with conventional methods [67].

19
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Deep learning has contributed to developing methods that effectively produce representa-
tions of high-dimensional data [3]. Of these methods, Autoencoders (AEs) are an unsupervised
class of algorithms that are suitable for modeling image data [4]. A standard AE consists of
two components: an encoder and a decoder. Encoders learn to map images into a latent space,
while decoders learn mappings from the latent space to original images. The model weights
are optimised by minimizing the error between the original image (input to the encoder) and
its reconstruction (output of the decoder).

In many approaches to one-class classification, AEs serve as a powerful unsupervised way
to learn representations for anomaly detection [7]. Prior to detecting abnormal images, the
AE is trained on sets of mostly normal images. An anomaly score is calculated using the
reconstruction error of a sample. As a result, the reconstruction error is expected to be lower
for inliers compared to outliers [60]. However, this assumption is not always true, and the AE
can reconstruct images outside the distribution of the training data as well [69, 13]. This is
particularly evident when abnormal images share patterns with inliers. In anomaly detection,
generalizability to outliers can be problematic.

In more recent methods, the autoencoder’s reconstruction task has become more complex,
so outliers are not reconstructed well [1, 36, 68]. In the Denoising Autoencoders (DAE), the
model learns to remove added noise from an input [58]. DAE has also been demonstrated to
provide more robust representations. A specific type of DAE, context autoencoders (CAE)
[35], has demonstrated excellent performance in anomaly detection. In contrast to adding
noise, random masking is applied to input images, and the reconstruction task involves inpaint-
ing the randomly masked region. In this way, random masking implicitly forces CAEs to learn
semantic information about the distribution of training data [35]. In some cases, CAEs have
difficulties detecting anomalies because of suboptimal representations.

3.3 Method

3.3.1 Adversarially Learned Perturbations (ALPS)

In order to improve anomaly detection using autoencoders (AE), we need to reduce the gen-
eralizability of the model to outliers so that they are reconstructed with higher error. As a
result, they can be detected as anomalies, which improves the overall performance of anomaly
detection. In previous studies, the reconstruction error of AEs have been shown to be a good
metric of whether or not a sample follows the distribution specified in the training examples
[60]. However, the AE can sometimes generalize to outliers and reconstruct them accurately,
which compromises the anomaly detection performance using reconstruction error. To allevi-
ate this issue, we designed an adversarial framework consisting of two competing components,
an Adversarial Distorter, and an Autoencoder. The adversarial distorter aims to maximize the
encoder’s reconstruction error by applying perturbations to the latent space, while the autoen-
coder attempts to minimize it by neutralizing the effects of these perturbations.

The two modules of our framework, the Autoencoder and the Adversarial Distorter, are
trained with two opposing goals. During training, the autoencoder aims to reconstruct per-
turbed inputs with minimal error, whereas the adversarial distorter aims to increase it by adding
perturbations to the latent space. To train the networks, the same input is given to both the au-
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toencoder and adversarial distorter. We add the generated perturbation to the latent space of
the encoder. The perturbed latent space is then passed to the decoder for reconstruction. The
involvement of perturbations introduces a new task for the autoencoder. In addition to re-
construction, the autoencoder will learn to neutralize the effect of added perturbations during
training. Since the autoencoder is optimized only on inliers, it is unable to neutralize the effect
perturbations added to the latent space of the outliers. Because of this, the autoencoder recon-
structs outliers poorly, which reduces its generalizability to outliers. During this procedure, the
perturbations allow the autoencoder to learn different variations in the latent space of inliers.
When tested with an outlier, it will modify its latent space to be similar to that of inliers, which
results in higher reconstruction error. During test time, we pass the input to both modules.

Contrary to previous AE-based approaches, our framework enables autoencoders to learn
semantically richer representations of exclusively normal data by overcoming the added per-
turbation. An overview of the method is shown in Figure 3.1. As part of the training, only
normal data is used and no samples from anomalous data are taken.

The size of the latent space for both the adversarial distorter and encoder should also vary
to adequately represent each dataset. To avoid the dominance of the adversarial distorter, we
update its weights every couple of epochs. In addition, we created a weighted loss for both
modules, giving larger values to the reconstruction loss for the autoencoder due to the high
complexity of its task. Our method can be broken down into two different components, which
we briefly explain in this section.

Autoencoder: The Autoencoder is a convolutional neural network that consists of an en-
coder and a decoder. The encoder maps the input to a latent space through four convolutional
layers followed by a global average pooling. The decoder maps from the latent space back to
the image, beginning with a dense and a reshaping layer followed by six transpose convolu-
tional layers for upsampling. An autoencoder is trained to remove the perturbations produced
by the adversarial distorter.

Adversarial Distorter: The Adversarial Distorter is a convolutional encoder that generates
perturbations from a given input. The perturbations are used to make reconstruction more
difficult for the autoencoder.

Figure 3.1: Overview of ALPS architecture. From the input, the Adversarial Distorter learns
how to produce perturbations. The Autoencoder minimizes reconstruction error, while the
Adversarial Distorter maximizes it.
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3.3.2 Adversarial Training

The adversarial training mechanism involves two networks competing in a minmax game that
progressively enhances their ability to model the underlying distribution of data. This is ac-
complished by training a generator network G and a discriminator network D in this manner.
Taking a noise vector as input, G produces samples that follow the distribution of the training
data. As an alternative, D attempts to discriminate between real samples from the training set
as well as fake samples generated by G. GANs [14] have the following objective when given
an image x sampled from pdata and a random latent vector z sampled from pz:

min
G

max
D
Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z))] (3.1)

G(z) is a sample generated by G with input z and a discriminator’s classification scores are
D(x) and D(G(z)) for a real and generated sample, respectively.

Similarly, the Adversarial Distorter (AD) and Autoencoder (both Encoder and Decoder)
are trained in an adversarial optimization scheme. Adversarial Distorter is able to produce
a higher reconstruction error from the Autoencoder by creating perturbations. The loss used
for training the networks is mean squared difference of the reconstruction of the perturbed
image and the input. A perturbed image is one whose latent space has been distorted by the
adversarial distorter. Given an inlier image x sampled from pdata, objective function of our
methods is defined as:

min
Enc,Dec

max
AD
Ex∼pdata(x)

1
m
∥x − Dec(Enc(x) + AD(x))∥2 (3.2)

where Enc and Dec are components of the Autoencoder, AD denotes the Adversarial Dis-
torter, Dec(Enc(x)+AD(x)) is the reconstruction of the perturbed image with the Autoencoder,
and m is number of elements in the image.

The loss used for training both the Autoencoder and the Adversarial Distorter is the recon-
struction loss. The Autoencoder is trying to minimize this loss while the Adversarial Distorter
is maximizing it. Since the autoencoder learned to remove the effect of added perturbations
to the latent space only on inliers, it is unable to neutralize that effect on outliers. Therefore,
the autoencoder performs poorly with outliers and reconstructs them with higher errors, which
decreases its generalizability.

3.3.3 Anomaly Scores

The loss term in ALPS presents an opportunity for three anomaly scores to be defined: the
normal reconstruction loss, the perturbed reconstruction loss and the average of them both.
Normal reconstruction loss is calculated using mean squared error (MSE) between the input
and the reconstruction. In the perturbed reconstruction loss, we calculate MSE while the latent
space of the input is perturbed. Both losses are scaled between 0 and 1 to calculate the anomaly
scores. The third anomaly score is calculated by averaging between the two losses before
scaling. The best score among these three were reported.
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3.4 Experiments and Results

3.4.1 MNIST and FMNIST
The following section provides a detailed analysis of the proposed method. The results of
ALPS are compared to recent and state-of-the-art methods in the literature on three datasets
that are benchmarks in anomaly detection. Throughout all experiments, the method is trained
exclusively on inlier samples. Moreover, a validation set containing 150 samples from inliers
and 150 samples from outliers from the training set is used to determine the optimal epoch for
selecting models.

In this chapter, we chose MNIST [25], FMNIST [61] and UCSD [8] for anomaly detection.
These benchmark datasets are widely used in the anomaly detection literature. In the following,
we provide descriptions of each dataset as well as the protocols for evaluation.

MNIST is a dataset of handwritten digits with 60,000 grayscale images with a resolution of
28 by 28. This is one of the most popular benchmark datasets in anomaly detection. A similar
dataset, FMNIST contains 60,000 images of 28 by 28 grayscale fashion accessories but since
there is a substantial amount of intra-class variation, it is more challenging for anomaly detec-
tion than MNIST. For these two datasets, following [51][40][52][28][36][1][15], the protocol
we follow is to designate one class as normal data and other classes as outliers. As a measure
of anomaly detection performance, we calculate the Area Under the Curve (AUROC) for each
class and report the average for all classes. Table 3.1 summarizes the AUROC results for each
dataset. The results of our study indicate ALPS is superior to the state-of-the-art autoencoder
methods for anomaly detection. Figure 3.2 shows the visual performance of model on MNIST
and FMNIST datasets, respectively. As shown, the abnormal images are reconstructed similar
to normal images after adding perturbations.

3.4.2 UCSD
As part of our method evaluation, we selected the UCSD video dataset. It contains outdoor
scenes with pedestrians, cars, skateboards, wheelchairs, and bicycles. A normal frame is de-
fined as only containing pedestrians, whereas an anomalous frame contains other objects. This
dataset has two subsets named Ped1 and Ped2. Ped1 contains 34 training videos and 36 testing
videos, while Ped2 contains 2,550 frames in 16 training videos and 2,010 frames in 12 testing
videos, all of which have a resolution of 240 by 360 pixels. Following [64], this dataset is
evaluated using a patch-based protocol where each frame is divided into 30 by 30 sections. In
training, only pedestrians are included in the patches, yet, the model was evaluated on patches
that contained pedestrians or other objects at the test time. A frame-level AUROC and Equal
Error Rate (EER) are calculated in Table 3.2 to report the performance of our method on this
dataset. ALPS surpasses state-of-the-art methods for detecting video anomalies on UCSD. The
visual performance of the model is depicted in Figure 3.3.

3.4.3 Effectiveness of the Perturbations
Furthermore, we demonstrated the effectiveness of the added perturbations in a complementary
experiment. Compared to autoencoders trained with only random noise and a normal autoen-
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Table 3.1: AUROC in % for anomaly detection on MNIST [25] and FMNIST [61] datasets.
Dataset Method 0 1 2 3 4 5 6 7 8 9 Mean
MNIST AnoGAN[51] 96.6 99.2 85.0 88.7 89.4 88.3 94.7 93.5 84.9 92.4 91.3

DSVDD[40] 98.0 99.7 91.7 91.9 94.9 88.5 98.3 94.6 93.9 96.5 94.8
OCSVM[52] 99.5 99.9 92.6 93.6 96.7 95.5 98.7 96.6 90.3 96.2 96.0

CapsNetPP [28] 99.8 99.0 98.4 97.6 93.5 97.0 94.2 98.7 99.3 99.0 97.7
OCGAN[36] 99.8 99.9 94.2 96.3 97.5 98.0 99.1 98.1 93.9 98.1 97.5

LSA[1] 99.3 99.9 95.9 96.6 95.6 96.4 99.4 98.0 95.3 98.1 97.5
Ours (ALPS) 99.68 99.92 94.09 96.19 98.31 97.25 99.64 97.25 95.56 98.65 97.65

Dataset Method T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot Mean
FMNIST DAGMM[69] 30.3 31.1 47.5 48.1 49.9 41.3 42.0 37.4 51.8 37.8 41.7

DSEBM[65] 89.1 56.0 86.1 90.3 88.4 85.9 78.2 98.1 86.5 96.7 85.5
LSA[1] 91.6 98.3 87.8 92.3 89.7 90.7 84.1 97.7 91.0 98.4 92.2

DSVDD[40] 98.2 90.3 90.7 94.2 89.4 91.8 83.4 98.8 91.9 99.0 92.8
OCSVM[52] 91.9 99.0 89.4 94.2 90.7 91.8 83.4 98.8 90.3 98.2 92.8
Ours (ALPS) 94.42 98.46 89.82 90.65 91.68 90.40 80.43 97.88 97.87 97.88 92.94

Table 3.2: Frame-level AUCROC and EER comparison % on UCSD dataset with state-of-the-
art methods.

Method AUCROC (%) EER (%)
TSC [32] 92.2 -
FRCN action [18] 92.2 -
AbnormalGAN [38] 93.5 13
MemAE [13] 94.1 -
GrowingGas [55] 94.1 -
FFP [30] 95.4 -
ConvAE+UNet [33] 96.2 -
STAN [26] 96.5 -
Object-centric [20] 97.8 -
Ravanbakhsh [39] - 14
ALOCC [45] - 13
Deep-cascade [43] - 9
Old is gold [64] 98.1 7
Ours (ALPS) 98.16 6

Table 3.3: Comparison of various autoencoders for anomaly detection on MNIST
Method AUCROC (%)
Vanilla AE 95.42
AE with added random noise 95.95
AE with ALPS 97.65
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coder, adversarially learned perturbations can significantly improve autoencoders’ performance
for anomaly detection. Table 3.3 shows the result of this experiment on MNIST dataset.

Figure 3.2: A visual demonstration of the performance of our method on MNIST and FMNIST
datasets. The left image is the input to the model and the right image is the reconstruction of
the model from the perturbed latent representation.

Figure 3.3: (Left) The first five rows are normal and the last five rows are abnormal patches
from UCSD frames. These patches are used as the input to the model. (Right) The first five
rows are reconstruction of normal and the last five rows are reconstruction of abnormal patches
from UCSD frames.

3.5 Conclusion
In this chapter, we presented an adversarial framework for detecting anomalies in both images
and videos. In particular, our method includes a convolutional encoder-decoder (Autoencoder)
that tries to reconstruct perturbed images and an encoder (Adversarial Distorter) that attempts
to generate effective perturbations from input data. The Adversarial Distorter will increase the
reconstruction loss by perturbing the latent space of the input, while the Autoencoder attempts
to minimize it. Adding perturbations to the latent space of autoencoders decreases the gen-
eralization to outliers and improves anomaly detection performance at test time. The results
demonstrate that ALPS outperforms recent state-of-the-art models for identifying anomalies.
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Augment to Detect Anomalies with
Continuous Labelling

4.1 Overview

Anomaly detection is the problem of identifying abnormal samples among a group of normal
data. This is a deviation from many machine learning problems because the set of abnormal
data is either poorly sampled or unavailable during training. Recently, anomaly detection draws
huge attention and provides many applications in the field of computer vision like marker
discovery in biomedical data [51] and crime detection in surveillance videos [31]. Tackling
these problems involves modelling the distribution of normal visual samples in a way that
anomalies are identified at test time.

Deep neural networks have become a popular choice to reach state-of-the-art performance
in anomaly detection. Despite their good performance, these models suffer from high com-
putational cost, complexity, and training instability, making them difficult to use in practice.
To overcome these limitations, we propose training a relatively shallow CNN with signifi-
cantly fewer parameters with continuous labelling which yields state-of-the-art performance
on anomaly detection in less training time. Specifically, we approach anomaly detection as
a supervised regression problem, where the model’s objective is to map normal and created
anomalous data to highly separable distributions. In continuous labelling, we designate two
continuous intervals for normal and anomalous data to draw labels. Instead of using 0 and 1 to
represent normal and anomalous classes, we used a continuous value in this range. In normal
samples, the labels are continuous values close to 0 (for example 0.2), while in anomalous
samples, they are continuous values near 1 (for example 0.8). For each sample, the value of the
label is drawn from the designated interval using a uniform distribution (for example range of
0 to 0.3 for normal samples and range of 0.7 to 1 for anomaly samples).

Due to the unavailability of anomalies, we apply simple data augmentation techniques on
normal data to create distinct anomalies. With the new set of anomalous data, we can treat
anomaly detection as a supervised learning problem. Since there are now two classes, it is
intuitive to treat this as a binary classification problem. However, we show that using regression
instead of classification improves anomaly detection performance. Furthermore, we introduce
continuous labelling as a favorable means of performance stability. The distribution of the

26



4.2. Motivation 27

augmented set is similar but slightly deviated from the normal data, whereas real anomalies
are expected to have an even further distribution. Therefore, training a regressor on these
augmented samples will result in more separable distributions of labels for normal and real
anomalous data points.

We evaluated our proposed method, Augment to Detect Anomalies with Continuous La-
belling (ADACL), on various benchmark datasets for anomaly detection. ADACL outperforms
most state-of-the-art methods using significantly fewer parameters. We also provide a thorough
study on loss functions, the choice of labels and the effects of the different augmentations. In
this chapter, our contributions are the following:

• We propose a novel method of anomaly detection which includes a lightweight CNN
trained with regression, anomaly creation with augmentations and continuous labelling
to improve performance stability.

• Our method is simple yet outperforms most state-of-the-art approaches.

• We study the effects of various losses, data augmentations and continuous labelling on
anomaly detection performance.

4.2 Motivation

4.2.1 Complexity of Deep Methods for Anomaly Detection
Some of the deep learning-based methods for anomaly detection, which rely on learning the
distributions of only inliers to detect anomalies, cannot be applied to real-world problems due
to their complexity, training instability, high computational cost, etc.[48][12][13][36][45][64].
These problems make them difficult to deploy in real-world applications. [48] and [12] have
attempted to benefit from deep pre-trained networks by distilling the knowledge where a small
student model learns from a large teacher model. In [48], they utilized a VGG-16 deep neural
network [53] to calculate a multi-level loss from different activations for training the student
network to determine the anomaly score. They also incorporate interpretability algorithms in
their framework to localize anomalous regions and perform anomaly segmentation. Although
knowledge-distillation methods could perform anomaly detection with high performance, they
benefit from pre-training on millions of labeled images which is not effective in other modal-
ities of data. Also, in practice, knowledge-distillation methods may not be suitable due to
computationally expensive inference. As our proposed method does not use pre-trained net-
works or contrastive learning paradigms, we consider our work complementary and do not
compare it to these approaches.

4.2.2 Anomaly Generation for Detection
Generating anomalies alongside the available normal data build an informative training set for
the task of anomaly detection. Employing GANs for generating anomalous data turns the prob-
lem of anomaly detection into a binary classification problem. This method can also be used
for data augmentation for anomalous data. In [37], they trained a Wasserstein GAN on normal
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samples and utilized the generator before convergence. In this case, generated irregular data
have a controlled deviation from inliers. Although they set a new research direction in anomaly
detection, training a network to generate outliers is computationally expensive. Instead of us-
ing GANs to generate anomalies, we propose a simpler method that turns the problem into a
supervised task. Furthermore, we demonstrated the effectiveness of continuous labelling on
various benchmarks.

4.3 Method

4.3.1 Augment to Detect Anomalies with Continuous Labelling (ADACL)
As previously mentioned, deep neural networks often have a large number of parameters, mak-
ing them difficult and expensive to train. Not only that, most of them suffer from training
instability, complexity, and is intractable to deploy in real-world applications. To overcome
these issues, we propose Augment to Detect Anomalies with Continuous Labelling (ADACL),
where we follow an intuitive and stable training procedure which also exceeds state-of-the-art
performance. ADACL is simple to implement and has relatively few parameters, leading to
inexpensive training and fast inference time. Therefore, it is more suitable for use in real world
scenarios.

4.3.2 Regression for Anomaly Detection
To improve performance in anomaly detection, it is desirable to produce representations of
normal and anomalous samples that have distinct distributions. In our method, we redefine
anomaly detection as a supervised regression problem. However, the training data consists
mainly of normal samples, which makes supervised learning a cumbersome task. To solve
this issue, we leverage straightforward data augmentations to create anomalous samples during
training. The use of data augmentations is more efficient in terms of computation. Moreover,
learning to classify between normal and augmented data is more difficult due to their similarity
and when the model learns this task, it can classify real anomalies more accurately since they
are more deviated.

We utilize a lightweight convolutional neural network (CNN) to train on the normal and
created anomalies. This CNN as a regressor contains four convolutional layers followed by a
global max-pooling layer and two fully-connected layers. It receives an image as input and in
the last layer, there is one neuron that produces a value ranging from 0 to 1 to represent normal
and anomalous data. The network has no activation function on the last layer, and its value is
simply clipped between 0 and 1. Even though this can be considered a binary classification
problem, we show that regression offers faster convergence and high performance in anomaly
detection.

Here we will explain the different configuration options we have for our method. As ex-
amples, we explain why we did not use sigmoid in the last layer of the CNN and instead used
value clipping as well as why Mean Squared Error (MSE) was chosen over Binary Cross En-
tropy (BCE) as the loss function. In the case of binary classification, equation 4.3 shows that
the rate of change of the sigmoid function is always decreasing as the prediction approaches
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the ground truth target. Also, as shown in Figure 4.1, the value of gradients are nearing zero
in the same manner. Due to the saturation of gradients near the target, updating the weights
will be less effective, resulting in slow convergence. Hence, choosing sigmoid as the activation
function in the last layer is not appropriate. We instead clipped the values of the last layer of
the CNN between 0 and 1. A similar problem exists in binary classification with BCE. Neg-
ative log likelihood in BCE also exhibits a decreasing rate of change as the predicted value
approaches the ground truth target. Referring to Figure 4.2, MSE provides stronger gradients
as the prediction approaches the target, which results in faster convergence. Thus, we selected
MSE as the loss function. Moreiver, we perform anomaly detection experiments on ADACL
and find not only that MSE converges faster, but also manages to maintain consistently high
performance across multiple training runs. Consequently, we transform anomaly detection into
a regression problem to reach the optimal solution faster.

h(x) =
1

1 + e−x
(4.1)

h′(x) = h(x)(1 − h(x)) (4.2)

f or x < 0 : h′(x) − h′(x − 1) > 0
f or x > 0 : h′(x − 1) − h′(x) > 0

(4.3)

Figure 4.1: Sigmoid function and the first derivative of the sigmoid function. Rate of change
of sigmoid decreases to 0 as predictions approach its target.

4.3.3 Continuous Labelling
In the anomaly detection problem, we can label normal and anomalous data as 0 and 1, respec-
tively. We call this Discrete Labelling (DL). However, experimental results show that this leads
to high variance in anomaly detection performance. Instead, we use Continuous Labelling
(CL), where we designate two continuous intervals corresponding to normal and anomalous
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Figure 4.2: The first derivatives of MSE and BCE. Notice that the gradients of MSE become
larger than BCE after a certain point. With mean square error, X represents the difference
between two terms, while with binary cross-entropy, it represents a probability.

Figure 4.3: Overview of ADACL architecture. Normal examples and created anomalies are
assigned continuous value intervals and fed into the CNN. This regression model outputs a
continuous value between 0 and 1 as an anomaly score. At test time, the model is evaluated
with real anomalies.
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data, and sample labels from them using a uniform distribution. The intuition behind contin-
uous labelling is that the expected value of MSE over predictions is lower in comparison to
using discrete labelling. Let a discrete label ∈ {0, 1} and a continuous label ∈ {[0, XL], [XH, 1]}.
XL is the upper bound of the interval of normal class and XH is the lower bound of the interval
of anomaly class. Because we sample from a uniform distribution, A = E([0, XL]) = XL

2 and
B = E([XH, 1]) = XH+1

2 . A and B are the expected values of prediction for the normal and
anomaly classes, respectively. The MSE function takes two numbers as the input to calculate
the loss. As shown in equation 4.4, we let the prediction of our model be 0.5 (highest distance
to the lower and upper bounds). The following inequalities show that the value of the MSE
loss is always lower when using continuous labelling compared to discrete labelling:

MS E(0.5, A) < MS E(0.5, 0) i f A > 0
MS E(0.5, B) < MS E(0.5, 1) i f 1 > B

(4.4)

Therefore:

E(MS E(prediction,CL)) <
E(MS E(prediction,DL))

(4.5)

According to equation 4.5, if we choose continuous labelling over discrete labelling, the
expected value for the loss is lower during training and thus, convergence is slower. Therefore,
it should increase training stability. The experimental results in Figures 4.8 and 4.9 supports
this hypothesis.

Figure 4.4: Various Augmentations applied to create anomalies. The first, second, and third
rows contain normal and created anomalies with different augmentations of images from UCSD
[8], MNIST [25] and CIFAR-10 [24], respectively.

4.3.4 Anomaly Creation with Augmentation
Solving anomaly detection as a supervised regression problem requires a dataset containing
both normal and anomalous data. To compensate for the unavailability of anomalies, we uti-
lize data augmentation techniques to create them during training. Examples of these augmen-
tations are shown in Figure 4.4. Our goal was to choose image augmentations in a manner that
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modifies the structure (not color) of the image slightly. The following are descriptions of our
proposed augmentations for ADACL:

• Cut-Paste: Randomly select patch from image and place it in a random location.

• Puzzling: Take quarters of the image and shuffle them.

• Rotation: Rotate the image 90 degrees one or three times

• Mix-up: Add a rotated image to the original one. Prior to adding, the rotated and original
image are multiplied by respective coefficients.

To assign training labels to normal and created anomalies, we pick two separate continuous
intervals from which we uniformly sample. For example, normal and anomalous labels are in
the range of [0, 0.3] and [0.7, 1], respectively.

4.4 Experiments and Results
Our method which is depicted in Figure 4.3, uses a simple CNN with less than 300k parame-
ters. As a regressor, this model outputs a continuous value which is clipped between 0 and 1.
It is trained on the inlier samples and created anomalies which are augmented versions of the
normal data. We use different variations of the Adam optimizer in conjunction with a cyclic
learning rate. Also, we designate a constant number of epochs for training on each dataset. This
method uses much fewer epochs than many state-of-the-art methods for all datasets. For ex-
ample, the model can reach the optimal solution on MNIST [25] dataset in less than 10 epochs.
Then, based on the validation set, we use early stopping techniques to terminate training. This
validation set consists of 150 randomly selected samples of normal data and the augmented
version of them as anomalies. This random selection maintains consistency by using a random
seed.

4.4.1 MNIST, FMNIST and CIFAR-10
Following [51][40][52][28][36][1][15], the protocol we follow for these three datasets is to
consider one class as normal data and the rest as anomalies. For each inlier in these datasets, we
randomly select from the previously explained data augmentations and apply them. Therefore,
we have an equal number of samples of normal and generated data for training our model. In
the training, we only use normal data and generated anomalies with data augmentation. At the
test stage, the model is evaluated with normal data and real anomalies. To measure anomaly
detection performance, we calculate Area Under the Curve (AUROC) for each class and report
the average of all classes as the final performance. AUROC on these datasets are shown in table
4.1. From our results, ADACL outperforms recent state-of-the-art anomaly detection methods.
It is noted that all other methods we compared against also used the same protocol for this
experiment. Moreover, Figure 4.5 depicts the model’s predictions on normal, augmented and
anomalous samples over different datasets. Figure 4.6 shows the 3D distributions of learned
representations of normal and anomalous samples on class 1 and 8 of MNIST. This figure
shows the separability of learned representations.
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Figure 4.5: Predictions of the model on normal, augmented and anomalous samples from
UCSD, MNIST, and CIFAR-10.

Figure 4.6: 3D visualization of learned representation of class 1 and 8 of the MNIST dataset.
As shown, there are separable and distinct distributions of normal and anomalous embeddings.
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Table 4.1: AUROC in % for anomaly detection on MNIST [25], Fashion-MNIST [61] and
CIFAR-10 [24] datasets.

Dataset Method 0 1 2 3 4 5 6 7 8 9 Mean
MNIST AnoGAN[51] 96.6 99.2 85.0 88.7 89.4 88.3 94.7 93.5 84.9 92.4 91.3

DSVDD[40] 98.0 99.7 91.7 91.9 94.9 88.5 98.3 94.6 93.9 96.5 94.8
OCSVM[52] 99.5 99.9 92.6 93.6 96.7 95.5 98.7 96.6 90.3 96.2 96.0

CapsNetPP [28] 99.8 99.0 98.4 97.6 93.5 97.0 94.2 98.7 99.3 99.0 97.7
OCGAN[36] 99.8 99.9 94.2 96.3 97.5 98.0 99.1 98.1 93.9 98.1 97.5

LSA[1] 99.3 99.9 95.9 96.6 95.6 96.4 99.4 98.0 95.3 98.1 97.5
Ours (ADACL) 99.37 99.30 98.58 97.36 97.57 98.43 99.56 98.09 93.46 98.38 98.01

Dataset Method T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot Mean
Fashion-MNIST DAGMM[69] 30.3 31.1 47.5 48.1 49.9 41.3 42.0 37.4 51.8 37.8 41.7

DSEBM[65] 89.1 56.0 86.1 90.3 88.4 85.9 78.2 98.1 86.5 96.7 85.5
LSA[1] 91.6 98.3 87.8 92.3 89.7 90.7 84.1 97.7 91.0 98.4 92.2

DSVDD[40] 98.2 90.3 90.7 94.2 89.4 91.8 83.4 98.8 91.9 99.0 92.8
OCSVM[52] 91.9 99.0 89.4 94.2 90.7 91.8 83.4 98.8 90.3 98.2 92.8

Ours (ADACL) 94.42 99.46 89.82 91.05 92.68 90.40 80.43 97.88 97.14 98.88 93.22
Dataset Method Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

CIFAR-10 OCSVM[52] 63.0 44.0 64.9 48.7 73.5 50.0 72.5 53.3 64.9 50.8 58.56
CapsNetPP[28] 62.2 45.5 67.1 67.5 68.3 63.5 72.7 67.3 71.0 46.6 61.2
AnoGAN[51] 67.1 54.7 52.9 54.5 65.1 60.3 58.5 62.5 75.8 66.5 61.79
DSVDD[40] 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1 64.81

LSA[1] 73.5 58.0 69.0 54.2 76.1 54.6 75.1 53.5 71.7 54.8 64.1
OCGAN[36] 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4 65.66

CAVGA-Du[56] 65.3 78.4 76.1 74.7 77.5 55.2 81.3 74.5 80.1 74.1 73.7
DROCC[15] 81.66 76.74 66.66 67.13 73.62 74.43 74.43 71.39 80.02 76.21 74.23

Ours (ADACL) 73.89 83.87 67.47 70.66 69.51 77.91 72.66 83.04 87.64 81.35 76.80

Table 4.2: Frame-level AUCROC and EER comparison % on UCSD dataset with state-of-the-
art methods.

Method AUCROC (%) EER (%)
TSC [32] 92.2 -
FRCN action [18] 92.2 -
AbnormalGAN [38] 93.5 13
MemAE [13] 94.1 -
GrowingGas [55] 94.1 -
FFP [30] 95.4 -
ConvAE+UNet [33] 96.2 -
STAN [26] 96.5 -
Object-centric [20] 97.8 -
Ravanbakhsh [39] - 14
ALOCC [45] - 13
Deep-cascade [43] - 9
Old is gold [64] 98.1 7
Ours (ADACL) 98.4 5
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Table 4.3 compares our results with those of two other methods that use the knowledge
distillation framework. Methods such as these rely on pre-trained networks which have been
trained on millions of labelled images. To learn from these pre-trained or teacher networks,
these methods have been trained over many epochs. These methods are computationally ex-
pensive and require a long time for inference, which prevents their use in real-world scenarios.
Our method takes less time and computation to train even though the results are slightly lower
as shown in the table.

Table 4.3: Comparison of AUROC in % for anomaly detection on MNIST [25] and CIFAR-10
[24] datasets with knowledge distilation methods.

Dataset Method 0 1 2 3 4 5 6 7 8 9 Mean Epoch
MNIST U-Std[5] 99.9 99.9 99 99.3 99.2 99.3 99.7 99.5 98.6 99.1 99.35 -

Multiresolution KDAD [48] 99.82 99.82 97.79 98.75 98.43 98.16 99.43 98.38 98.41 98.1 98.71 50
Ours (ADACL) 99.37 99.30 98.58 97.36 97.57 98.43 99.56 98.09 93.46 98.38 98.01 10

Dataset Method Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean Epoch
CIFAR-10 U-Std[5] 78.9 84.9 73.4 74.8 85.1 79.3 89.2 83 86.2 84.8 81.96 -

Multiresolution KDAD [48] 90.53 90.35 79.66 77.02 86.71 91.4 88.98 86.78 91.45 88.91 87.18 200
Ours (ADACL) 73.89 83.87 67.47 70.66 69.51 77.91 72.66 83.04 87.64 81.35 76.80 15

4.4.2 UCSD

To evaluate our method on video anomaly detection, we selected the UCSD dataset [8]. This
dataset contains multiple outdoor scenes with mobile objects such as pedestrians, cars, wheelchairs,
skateboards and bicycles. Frames with only pedestrians are considered as the normal class,
while frames containing other objects are anomalies. This dataset contains two subsets named
Ped1 and Ped2. Ped1 includes 34 training video samples and 36 testing video samples and
Ped2 contains 2,550 frames in 16 training videos and 2,010 frames in 12 test videos with a
resolution of 240 × 360 pixels.

Following [64], we follow a patch-based protocol to evaluate on this dataset where each
frame is divided into 30 x 30 sections. For training, we include only patches that include
pedestrians. We applied the previously mentioned data augmentations to each pedestrian patch
to create anomalies for training. However, the model was evaluated on patches that contain
pedestrians or other objects (At test time, no generated anomalies are being used). As evaluated
in [64], to report the performance on this dataset, frame-level Area Under the Curve (AUROC)
and Equal Error Rate (EER) are calculated in table 4.2. Results show that ADACL surpasses
state-of-the-art methods for video anomaly detection on UCSD.

4.4.3 BCE vs. MSE

As part of this and the following sections we have done some complementary experiments as an
ablation study. Based on our experimental results, we use MSE over BCE because it converges
faster but still has good performance over multiple training runs. The Figure 4.7 shows that
our experimental results are aligned with this hypothesis. Figure 4.7 compares the average of
the test AUROC of the model on the CIFAR-10 dataset over 10 runs when using MSE versus
BCE.
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Figure 4.7: Average test AUROC taken over 10 training runs on CIFAR-10. MSE achieves
higher AUROC in a shorter number of epochs.

Table 4.4: Experiments on different intervals
Interval Mean AUROC (%) Variance

[0, 0.1] − [0.9, 1] 97.14 1.50 × 10−5
[0, 0.2] − [0.8, 1] 96.93 8.83 × 10−5
[0, 0.3] − [0.7, 1] 97.42 1.29 × 10−5

4.4.4 Continuous vs. Discrete Labelling

Referring back to the method section, we define an early stopping criteria based on validation
AUROC. In this experiment, we study how labelling affects anomaly detection performance
on the CIFAR-10 dataset. We keep the entire training procedure the same and only modify
the labelling scheme. Results show that discrete labels cause higher variance in the validation
and test AUROC. With higher instability, it is increasingly difficult to create an accurate stop-
ping criteria. As shown in Figure 4.8, continuous interval labelling yields lower variance in
validation AUROC. Knowing this, Figure 4.9 shows that with continuous labelling, a stopping
criteria over a validation set with lower AUROC variance is mostly able to produce more con-
sistent test AUROC values per class. Therefore, continuous labelling is the better choice when
using a stopping criteria for anomaly detection.

4.4.5 Effects of Augmentations

Variations in anomaly detection performance occur when using data augmentation to create
anomalies. In this experiment, we study the effect of each augmentation used to create anoma-
lies during training. In Figure 4.10, the performance of each solo augmentation is shown. As
can be seen, the best performing solo augmentation is Cut-paste. But, the best anomaly detec-
tion results are achieved by using combination of all augmentations. This experiment is done
on the MNIST dataset.
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Figure 4.8: Variance of Average Validation AUROC over all classes in each epoch. The aver-
ages are taken over 10 training runs of CIFAR-10. It can be observed that continuous labelling
consistently produces lower variance in higher epochs. Thus, a stopping criteria based on the
validation set yields more stable test AUROC when continuous labels are used.

Figure 4.9: Variance in anomaly detection AUROC when using continuous labelling versus
discrete labelling for all classes taken over 10 training runs of CIFAR-10. More often than
not, using the same stopping criteria with continuous labels produces lower variance in test
AUROC.
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Figure 4.10: The effects of the augmentations like Cut-paste, puzzling, one and three times ro-
tation and various mix-ups on AUROC. The most effective augmentation was Cut-paste, how-
ever using all augmentations in the process of creating outliers yields the highest performance
in anomaly detection.

4.4.6 Interval Selection
In previous experiments, we show that continuous labelling improves anomaly detection by en-
abling better early stopping. This is achieved through lower variance in validation AUROC. To
further examine the implications of label selection, We analyze different sized intervals when
training the model on the MNIST dataset to see their effects on anomaly detection performance.
As shown in table 4.4, the choice of interval has low impact on AUROC.

4.5 Conclusion
Deep neural networks can achieve state-of-the-art performance when applied to anomaly de-
tection tasks. However, most of them suffer from expensive computations, high complexity and
training instability. In this chapter, we alleviate these issues by proposing a simple and effective
methodology for anomaly detection. We convert the problem into a supervised regression task
by creating anomalies using data augmentations and training a lightweight convolutional neu-
ral network over continuous labels. In further experiments, we analyze the effects of MSE Loss
versus BCE Loss, continuous labelling, interval size, and various augmentations. Results on
several image and video anomaly detection benchmarks show our superiority over cutting-edge
methods.
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Conclusion

5.1 Conclusion and Discussions

Anomaly Detection (AD) is to identify examples that vary in some respect from the training ob-
servations. These examples which do not conform to the distribution of normal data are called
outliers. In real-world anomaly detection problems, the outlier class is absent, poorly sam-
pled, or not well-defined. Hereupon, one-class classification methods are preferred to model
this problem. Recently, anomaly detection draws huge attention and provide many applica-
tions in the computer vision field. In this thesis, we explored the limitations of current deep
learning-based approaches for visual data and focused on solving two existing challenges.

The reconstruction error of Autoencoders (AEs) was shown to be useful in determining
whether or not a sample follows the distribution specified in the training examples [60]. Yet,
the main disadvantage of AEs is that they generalize very well to outliers and learn insufficient
representations for the anomaly detection task. Chapter 3 of this thesis proposes a method to
fix this problem. We propose an adversarial setting for identifying anomalies in both images
and videos. Particularly, our method contains an encoder-decoder convolutional architecture
that tries to reconstruct perturbed images and an encoder that attempts to generate effective per-
turbations from input data. This encoder is called Adversarial Distorter. Using the Adversarial
Distorter, the reconstruction loss will be significantly increased, while the encoder-decoder
network strives to reduce it. By perturbing the latent space of autoencoders, they can learn
richer representations and perform better at anomaly detection. The results demonstrate that
our method exceeds recent state-of-the-art models for anomaly detection.

Deep learning-based methods can accomplish state-of-the-art performance when applied
to anomaly detection tasks. Nevertheless, most of them suffer from costly computations, high
complexity, and training instability. In chapter 4, we ameliorate these issues by proposing
a simple and practical method for anomaly detection. We transform the anomaly detection
problem into a supervised regression task by creating anomalies using data augmentations.
Then, we trained a simple convolutional neural network with continuous labels. In further
experiments, we investigate the effects of MSE Loss versus BCE Loss, continuous labelling,
interval size, and various augmentations. Results on several image and video anomaly detection
benchmarks demonstrate our superiority over cutting-edge methods.

In conclusion, we researched the limitations of current deep neural network-based methods

39
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for anomaly detection in images and videos. We identified generalizability and complexity
as two important challenges in current methods, and in this thesis, we propose two different
approaches to address these two issues.

5.2 Applications
In general, anomaly detection is a task when the majority of the data is considered to be normal
or there is no precise definition of anomalies. Anomaly detection has many applications in both
industry and research. Applications of anomaly detection retain fraud detection in banking,
fault detection in manufacturing, intrusion detection in computer networks, monitoring sensor
readings in an aircraft. In computer vision, anomaly detection has widespread applications
like medical problems in health data [51], monitoring video surveillance cameras [31] [54] and
defect detection [48].

5.3 Limitations
Although both proposed methods are shown to be effective in their scope of comparison, there
are some limitations for them. In chapter 3, we propose Adversarially Learned Perturbations
(ALPS) method to solve the generalizability of Autoencoders (AEs). Even though ALPS is
very successful to prevent AEs from generalizing to outliers, it is sensitive to the amount of
perturbations added to the latent space or the strength of the adversarial distortion. We can
either add coefficients to the loss for each network or train the Adversarial Distorter every
couple of epochs to smooth out the effects of perturbations or the dominancy of the perturbation
generator network during training. In the case of very complex video or image datasets, this
method might be inapplicable.

In chapter 4, we propose Augment to Detect Anomalies with Continuous Labelling (ADACL)
to alleviate the problem of complexity of some of the current methods by turning anomaly de-
tection into a supervised problem by creating anomalies with data augmentation. Although
ADACL has shown to achieve great performance on different anomaly detection benchmarks,
it may not be able to perform defect detection. Defect detection is one type of anomaly detec-
tion in which the abnormality appears in a small part of the image. The reason for this issue
is that the defects are very challenging to detect due to their size. In ADACL, we aimed to
propose a method for detecting anomalies in general where the entire image is different from
normal data, not specific to small changes in the texture of the image.

5.4 Future Research
In addition to addressing the two challenges we described earlier for anomaly detection, the
current thesis could be continued to fix the limitations of the proposed methods. With ALPS,
we can control the effects of added perturbations or change the convolutional architecture of
the autoencoder to transformers [11] which were recently shown to be very effective for han-
dling visual data. For ADACL, we can study more image augmentations and investigate their
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effect on anomaly detection performance. Evaluations of these new augmentations on defect
detection tasks can be conducted to determine their effectiveness.
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