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Abstract 

Magnetic resonance imaging utilizes electromagnets to produce anatomical images in both 

clinical and research settings. In the race towards increasing performance head-optimized 

scanners have begun playing a significant role in providing high quality imaging of the head. 

However, they are implemented using smaller geometries and as such fail to allow entrance of 

the patient past their shoulders. This is overcome by designing asymmetric gradient coils which 

have their imaging region located towards one end of the gradient coil, as opposed to the 

geometric center, allowing brain imaging. There exists interest in compact configurations 

which allow imaging further into the cervical spine which is unfeasible using current 

asymmetric gradients. This work seeks to explore the design of asymmetric gradient coils with 

shoulder cut-outs to enable neck imaging by allowing the patient to enter further into the 

gradient coil while maintaining the small inner radius of a head-only platform.  

First, the relative trade-offs in designing an asymmetric shoulder cut-out gradient coil are 

explored and extended by rotating the transverse gradient axes to produce gradient coils which 

compensate for some of the electromagnetic burden due to the loss of conducting surfaces on 

the sides. Next, a complementary set of spherical harmonic active shims are designed and 

explored for implementation within this gradient coil configuration. From there the design of 

a cylindrical radiofrequency coil using gradient design techniques is investigated as 

preliminary work towards implementing these low-frequency design techniques which have 

had success designing gradient coils towards the design of radiofrequency coils. 

Finally, motivated by the complexity of the induced eddy currents in the surrounding 

conductive structures due to asymmetric gradient coils the final project explores the design of 

a multi-coil matrix array aimed at fitting within the compact gradient housing to dynamically 

compensate eddy currents during imaging. 

This work ultimately demonstrates the feasibility of implementing an asymmetric shoulder cut-

out gradient coil with rotated transverse gradient axes to enable neck imaging in a compact 

MRI scanner while providing potential solutions to handle the increased eddy current 

complexity associated with a setup such as this. 
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Summary for Lay Audience 

Magnetic resonance imaging (MRI) uses a series of nested electromagnets to produce 

anatomical images of the body. This thesis explores the design of three of these electromagnets: 

the gradient coil, the radiofrequency (RF) coil, and a set of shim coils. Many clinical MRI 

scans are performed of the head and as such development of “head-optimized” scanners have 

gained popularity. These are smaller than those used for full-body imaging and have limited 

patient entrance due to their small radius. In these systems the entrance into the MRI scanner 

is stopped by the shoulders limiting imaging to the brain region. This thesis asks the question 

“can we design an MRI gradient coil for compact head-optimized geometries which allows 

imaging of the cervical spine.” 

The first chapter of this thesis goes into the necessary background information required to 

understand the work outlined here. The next two chapters in this thesis explore the design of a 

gradient coil with portions of the sides removed to accommodate the patient’s shoulders. This 

allows further entrance into the MRI scanner while maintaining geometries appropriate for a 

head-optimized system. This would allow the neck to slide into the region in the MRI scanner 

where the imaging takes places. I investigated the trade-offs in performance and propose 

designs which fit inside an experimental MRI scanner. This is extended in the fourth chapter 

by designing of a complimentary set of shim coils to improve imaging performance by 

dynamically shimming the MRI imaging environment. Radiofrequency coil design is explored 

in Chapter 5 where I design an RF coil using gradient coil design techniques, construct the coil 

and perform experimental validation. The constructed coil had field artefacts compared to the 

ideal design which I attribute to a violation of an assumption made in the design. Next, the 

sixth chapter investigates the design of a special type of coil to help improve imaging by 

actively compensating for eddy currents which produce parasitic magnetic fields of their own 

that degrade image quality. Finally, in Chapter 7 I summarize the work of the preceding 

chapters and outline some next steps to expand on this thesis. 
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Chapter 1  

1 Introduction 

Diagnostic imaging has found a critically important role in healthcare ranging from 

emergency room imaging to image guidance for irradiation. Magnetic resonance imaging 

(MRI) plays an important role across this entire range with its excellent soft tissue contrast 

and ability to provide a variety of complimentary information without the use of ionizing 

radiation. This has also motivated the design of head-optimized scanners which provide 

anatomical target delineation and functional information which is useful in treatment 

planning and patient triaging. Although the work presented in this thesis is applicable for 

a range of MR applications and environments the focus has been on the implementation of 

these designs within low-field head-optimized platforms currently implemented for point-

of-care imaging. In systems such as these their head-optimized geometry leads to small 

internal radii limiting the room for the various subsystem components, which will be 

discussed within this introduction. This presents design and engineering challenges which 

must be overcome for implementation, a theme which will be maintained throughout the 

following chapters.  

The low-field nature of these systems, the physics of which leads to a lower intrinsic MR 

signal, may be compensated for by using high-performance subsystems to maintain 

diagnostic quality imaging (1, 2). Much work has been performed exploring point-of-care 

low-field MR platforms with low-power requirements which can be implemented closer to 

the patient environment. These don’t have the requirement of a separate equipment room 

for high-power electrical equipment. In this work I focused on the design of a 

complementary point-of-care platform with high-power, high-performance components. 

This choice will dictate some of the design decisions that are made throughout this thesis 

and will impact the final presented electromagnetic designs. 

A traditional MRI machine is a complex set of electromagnets paired with high powered 

amplifiers, electromagnetic shielding, and a variety of other components which allow the 
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MR technologist to interact with and run the MRI scanner. This thesis is focused on the 

exploration and design of three types of electromagnets used in MR. 

1.1 The Physics of Magnetic Resonance Imaging 

MRI makes use of the physical phenomenon known as nuclear resonance in which nuclei 

are perturbed by the presence of a magnetic field. A full detailed treatment of the physical 

phenomenon that leads to image formation is out of the scope of this thesis. However, a 

brief introduction will be presented here to provide the necessary background information 

required to properly understand the following chapters.  

Clinical MRI is primarily concerned with measuring signal from hydrogen nuclei within 

the body which is then used to formulate images of tissue. However, the MRI signal can 

be extended to any atom with a non-zero nuclear spin angular momentum. Classically, 

these nuclei can be thought of as magnetic moments arising due to the spinning of charged 

particles. Magnetic moments within a sample or patient will interact when exposed to 

magnetic fields. At thermal equilibrium these magnetic moments will be randomly oriented 

throughout the sample and no significant net magnetization is observable. In the presence 

of an external magnetic field a small net magnetization will exist parallel, or anti-parallel, 

to the external magnetic field. Although a small proportion of spins will align with the 

magnetic field (~10-6) in a small sample there exists on the order of Avogadro’s number of 

spins (~1023) and this will still result in a large detectible magnetization. At thermal 

equilibrium the net magnetization is proportional as follows: 

 
𝑀 =

𝛾2ℎ2𝑁𝑠𝐵0

4𝑘𝑇
 (1.1) 

Where 𝛾 is the gyromagnetic ratio, h is Planck’s constant, Ns is the number of spins, B0 is 

the applied magnetic field strength, k is the Boltzmann constant, and T is the absolute 

temperature. 

Within this magnetic field the net magnetization will also begin to precess about the 

direction of the polarizing field. The frequency of this precession is proportional to the 

magnetic field as follows: 
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 𝑓 =
𝛾

2𝜋
𝐵0 (1.2) 

This frequency, called the Larmor frequency directly depends on  𝛾 (gyromagnetic ratio) 

and B0 (applied magnetic field strength). From these equations we can see two important 

things: 1) a large applied magnetic field will increase the strength of the magnetization and 

2) if a spatially dependent magnetic field is applied the spins will have a positionally 

dependent frequency and phase information. In an MR experiment the first aspect is 

handled by the main magnet which produces a strong static single-valued uniform magnetic 

field over an imaging region causing spins in that region to precess about it at a known 

frequency. The second is accomplished using gradient coils which are high-powered 

electromagnets which produce linearly varying magnetic field values along the three 

cartesian axes. This causes the nuclei to precess at a different frequency depending on their 

spatial location. With the frequency and phase of the net magnetization containing spatially 

dependent information one can take measurements of this information and form an image 

using the inverse Fourier transform. 

However, to make a measurement of this frequency and phase information the system must 

first be perturbed from its equilibrium. A transmit radiofrequency (RF) coil is used to 

produce a magnetic field perpendicular to the main magnetic field. This results in a torque 

on the magnetization vector causing it to tip into the transverse plane. The duration and 

strength of this transmit field (B1
+) determines the angle at which the magnetization is 

tipped from the longitudinal axis (Z) towards the transverse (XY) plane. For maximum 

energy transfer this B1
+ field is applied using a circularly polarized magnetic field tuned to 

the Larmor frequency. When the radiofrequency field is turned off the magnetization 

begins to realign (relax) along the longitudinal axis and decay in the transverse plane with 

timing governed by three time-constants. These are longitudinal relaxation (T1), reversible 

transverse relaxation (T2’), and irreversible transverse relaxation (T2). T1 describes the 

interaction of the spins and their environment and cannot be reversed with applied RF 

pulses, it is the longest of the constants and is the recovery of the magnetization along the 

longitudinal axis. T2’ is the result of magnetic field inhomogeneities and describes the 

transverse plane dephasing which can be reversed using an RF pulse. T2 is dephasing due 



4 

 

to the spin-spin interactions. It is standard for T2’ and T2 to be described by a combined 

metric T2*.   

This changing magnetic field will induce a voltage in the nearby radiofrequency coil which 

is measured as the received signal. This voltage signal is governed by the principle of 

reciprocity. 

 

𝑉𝑠 = −
𝑑

𝑑𝑡
∫ [𝑀⃗⃗ (𝑟 , 𝑡) ∙ 𝐵1

−⃗⃗ ⃗⃗  ⃗(𝑟 )]𝑑𝑉

𝑆𝑎𝑚𝑝𝑙𝑒

 (1.3) 

From this we can see that the signal is proportional to the sum net sample magnetization 

weighted by the sensitivity profile of the receive coil (B1
-). The signal will then be weighted 

by the density of protons in the sample which allows formation of proton-density images 

as well as the various time constants (T1, T2, T2*) which govern the magnetization 

dynamics. Through specific timing of the electromagnets controlling the electromagnetic 

environment it is possible to change the weighting of the signal between proton density 

and specific time constants. This weighting of the signal by the tissue time constants will 

provide contrast between tissues and enable various tissue weightings to be performed by 

modifying the timing. Advanced techniques allow weighting based on flow and diffusion 

of fluid within the imaging volume are performed in similar ways. 

1.1.1 The Importance of Field Homogeneity 

From the above it is clear the MRI needs to have fine control over the magnetic field 

environment. During an imaging sequence it is ideal that the gradient fields produce the 

only known deviation in the measured frequency of the signal.  

For example, when an x-gradient is applied the nuclei will accrue a positional dependent 

phase as: 

 𝐵(𝒓) = 𝐵0 + 𝑥𝐺𝑥 (1.4) 
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∅𝑡𝑜𝑡𝑎𝑙(𝒓) = 𝛾(𝑥 ∫𝐺𝑥𝑑𝜏)

𝑡

0

= ∅𝑔𝑟𝑎𝑑(𝒓) (1.5) 

However, in the case where the B0 field contains local field inhomogeneities characterized 

by ΔB0(r) then the total phase accrued will no longer be solely proportional to the applied 

gradient field. 

 

 𝐵(𝒓) = 𝐵0 + 𝑥𝐺𝑥(𝒓) + 𝛥𝐵0(𝒓) (1.6) 

 

∅𝑡𝑜𝑡𝑎𝑙(𝒓) = 𝛾(𝑥 ∫𝐺𝑥𝑑𝜏 + ∫𝛥𝐵0(𝒓)

𝑡

0

𝑑𝜏)

𝑡

0

= ∅𝑔𝑟𝑎𝑑(𝑟) + ∅𝛥𝐵0
(𝒓) 

(1.7) 

Therefore, since the phase information is used in the formation of the image the magnetic 

field environment must be homogeneous for image reconstruction to be geometrically 

accurate. In practice this is not the case and the total phase accrued will be affected by 

various static and time varying field inhomogeneities such as imperfections in the MR 

system, macroscopic field variations resulting from the MR sample, and induced eddy 

currents in conducting surfaces within the MR environment. 

1.1.1.1 System Imperfections 

Although much effort is employed to prevent errors during the design and manufacturing 

process of an MR system there will always exist small deviations from the ideal design 

calculations and the final installed scanner at a site. These deviations are a result of physics 

simplifications, machining, and human tolerances during construction and even the local 

magnetic environment at the installation site. These field inhomogeneities are static in 

nature and can be overcome in post-processing or through static shimming at the 

installation site. Static shimming is the process of adding magnetic materials to the 

surrounding environment in a particular way such that the field inhomogeneities induced 

by the local environment are corrected for by the presence of these magnetic materials. 
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These are installed during commissioning in an iterative process in which field error 

measurements are made, corrected for using a shimming algorithm placing magnetic 

materials at strategic locations and repeated until the field inhomogeneity is below 

acceptable limits. Acceptable limits are typically on the order of ppm and are application 

dependent with routine imaging having the most lenient requirements and techniques such 

as magnetic resonance spectroscopy having stricter requirements. These ferromagnetic 

materials are often installed within the gradient housing which limits radial space to 

accommodate the tubing in which they are installed. This process is done during MR 

commissioning and is not repeated unless major structural modifications are made such 

that the MR environment has significantly been changed. 

1.1.1.2 Sample Induced Field Variations 

Differences in tissue magnetic susceptibility will lead to variations in the magnetic field 

causing macroscopic field inhomogeneities. This is most noticeable in areas such as the 

lung or sinuses where air tissue interfaces are large and/or plentiful. Arising from 

differences in magnetic susceptibilities these are static inhomogeneities which vary from 

patient to patient and from sample to sample. Therefore, static shimming methods cannot 

be employed as the variations are unpredictable in nature. Instead, active shim coils are 

used which create spherical harmonic field profiles over the imaging region and are used 

to correct for these inhomogeneities prior to imaging. These electromagnets will be 

discussed in further detail later in the chapter. 

Fluctuations can be induced through normal physiological variations such as patient 

movement during breathing, or flow of fluids throughout the body. Motion of the chest 

wall during a normal breathing cycle will result in spatial and temporal variations in the 

magnetic environment. Hardware timing techniques such as respiratory gating and 

dynamic updating of the resistive shims during the respiratory cycle are two example 

methods of handling physiological motion inhomogeneities.  

1.1.1.3 Eddy Currents 

As per Faraday’s Law of Induction and Lenz’s Law, conducting material in the presence 

of a changing magnetic field will have counter currents induced. These induced currents 
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will create their own time varying magnetic fields which in MR imaging are parasitic in 

nature, as they degrade image quality. As well, they will result in heating of the conducting 

material in the form of Joule Heating. The heating of components can be detrimental due 

to temperature dependent magnetic field shifts as well as the potential for a quench (loss 

of superconducting status). As MRI utilizes changing magnetic fields for image formation 

this is a physical problem that cannot be entirely avoided but can be minimized using either 

hardware modifications or post-processing image algorithms. The primary source of eddy 

current generation in an MR experiment is the changing gradient field as their frequency 

combined with the electromagnetic properties of the surrounding housing and coils result 

in the formation of relatively long-lived eddy currents (50 – 400 ms). A common hardware 

method of handling eddy currents is implementing actively shielded gradient coils with a 

second, larger radii electromagnet run in series with the gradient coil designed to minimize 

the stray magnetic field outside of the gradient coil structure. These actively shielded 

systems have enjoyed great success, as the majority of gradient coils operating today 

employ this solution. However, there is a trade-off in the design as the shielding will 

negatively impact the basic performance of the gradient by decreasing the speed at which 

it can be switched and lowering the gradient efficiency due to the extra current carrying 

wire which is run in series. A common method of handling induced eddy currents outside 

of hardware modifications is through the use of gradient pre-emphasis where the gradient 

waveform is modified to account for the induced eddy currents in the pulse sequence.  

In a point-of-care environment eddy currents can pose an even larger threat. In a cryogen 

free system, the main magnet is often more susceptible to quenching as the windings are 

not submerged in cryogenic liquid. In a cryogen system, this will lead to boil-off of the 

cryogen but has more tolerance for quenching. Depending on the gradient shielding there 

runs the risk of inducing eddy currents in components not part of the MR system such as 

intensive care equipment. This makes proper shielding important when the room in which 

the MR is employed is multipurpose. 

1.1.1.4 Spherical Harmonic Representation of the Magnetic Field 

Within the imaging region there is an absence of internal sources allowing Maxwell’s 

Equations to be conveniently reduced to decoupled equations as follows: 
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 ∇ ∙ 𝑬 = 𝟎 (1.8) 

 ∇ × 𝑬 = 𝟎 (1.9) 

 ∇ ∙ 𝑩 = 𝟎 (1.10) 

 ∇ × 𝐁 = 𝟎 (1.11) 

Considering only the equations for the magnetic fields Equation 1.10 and Equation 1.11 

and the following vector relationship: 

 ∇ × ∇ × 𝐁 = ∇(∇ ∙ 𝑩) − ∇𝟐𝑩  (1.12) 

We can arrive at the familiar Laplace’s equation and if we consider only the z-component 

of the magnetic field we have a simplified equation with its solution of a linear combination 

of spherical harmonic functions: 

 ∇𝟐𝐵𝑧 = 0 (1.13) 

 
𝐵𝑧(𝑟) = ∑ ∑ 𝐶𝑛

𝑚𝑟𝑛𝑃𝑛
𝑚(cos 𝜃)𝑒𝑖𝑚𝜗

𝑛

𝑚=−𝑛

∞

𝑛=0

 (1.14) 

This is the principle behind field inhomogeneity corrections, by performing a field map 

and decomposing the magnetic field into its spherical harmonic components as follows: 

 
𝐵𝑧(𝑟) = 𝐵0 +

𝑑𝐵𝑧

𝑑𝑥
+

𝑑𝐵𝑧

𝑑𝑦
+

𝑑𝐵𝑧

𝑑𝑧
+

𝑑𝐵𝑧

𝑑𝑥𝑦
+

𝑑𝐵𝑧

𝑑𝑧𝑥

+
𝑑𝐵𝑧

𝑑𝑧𝑦
+

𝑑𝐵𝑧

𝑑𝑧2
+

𝑑𝐵𝑧

𝑑(𝑥2 − 𝑦2)
 

(1.15) 

The above equation, expanded to second order, describes the Bz component of the magnetic 

field in terms of our desired field value B0 and the distortion of the magnetic field in three 

linear directions and distortion in five 2nd order directions. By using MR electromagnets to 

produce a set of spherical harmonics and fields with the same size and opposite magnitude 

of the measured spherical harmonic field decomposition the fields are superimposed and 
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the inhomogeneities are corrected. This process is referred to as active shimming of the 

magnetic field. This is performed during the imaging process and is sample dependent. 

1.2 MRI Electromagnets 

MRI relies on the formation of known magnetic fields such that the nuclei of interest can 

be perturbed in a known way. The timing and strength of these magnetic fields is outlined 

by a timing document known as a pulse sequence. This is played out by the MRI equipment 

using controllers, amplifiers, and a series of electromagnets. The electromagnets which 

comprise a typical clinical MRI scanner are: the main magnet, the radiofrequency (RF) 

coils, the shim coils, and the gradient coils.  

An electromagnet, the design of which will be outlined in more detail later in this chapter, 

is made using conductive wire wound in a known pattern that when current is run through 

it will produce a desired electromagnetic field profile. Throughout this thesis I will be 

concerned only with the magnetic field produced, unless otherwise mentioned.  

A brief description of each, as well as configurations used in the research setting, that are 

relevant to this thesis will be given below.  

1.2.1 Main Magnet 

The main magnet (denoted as B0) within an MRI system is designed such that over the 

imaging region (typically 20-25 cm for head-only systems and 50 cm for whole body 

systems) the magnetic field is homogeneous. Essentially, this means that the Bz component 

of this field is equal to the manufacturer specified field strength at each spatial location 

within this imaging region. Main magnet construction typically falls into one of three 

categories: 1) cryogen cooled magnets where the magnet windings are submersed in liquid 

helium, 2) cryogen free magnets where the magnet windings are housed within a vacuum, 

and 3) permanent magnets where the magnetic field is achieved through use of a system of 

permanent magnets. 

While traditional clinical and research MRI scanners have historically employed 

cryogenically cooled magnets with submerged windings these come with an increased 
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complexity and cooling requirements which make them more difficult for acute and 

focused settings. Cryogen free systems, however, have fewer siting requirements including 

not needing additional ventilation for liquid helium ventilation in the case of a quench. 

Lastly, permanent magnet systems require no cryogenic ventilation but are limited in their 

field strength, shape and orientation when compared to electromagnet produced fields. 

The simplest method of producing a homogeneous magnetic field over the imaging region 

is using a Helmholtz Pair in which a circular pair of electromagnets are placed a distance 

equal to their radius apart. This produces a homogeneous magnetic field proportional to 

the winding density and inversely proportional to the radius. Modern systems require active 

shielding and have stricter homogeneity requirements and therefore use modified 

configurations based on this principle in which more coils are strategically added. They 

also implement shielding windings to ensure the stray field is reduced. Figure 1-1 shows 

an example Helmholtz configuration for a single loop of wire with a radius of 0.20 m and 

its corresponding magnetic field profile across the line [0,0, z]. From this it can be seen 

that within a 0.12 m segment the field is within 1% of the central field value and within 

6% at the tips of the coils. 
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Figure 1-1: Helmholtz Coil and Line Profile 
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Example wire configuration and resultant field profile for a standard Helmholtz coil. Colour indicates current 

direction. In a Helmholtz coil each coil carries equal current in the same direction and the coils are spaced a 

distance of r apart where r is the coil radius. 

Modern point-of-care permanent magnetic configurations often use Halbach Array style 

magnet configurations (3–5) which result in a homogeneous main magnetic field 

perpendicular to the traditional Z direction that a wound magnet provides. 

 

Figure 1-2: Halbach Array Configuration 

Standard Halbach array configuration showing the polarization direction of the magnets circling the imaging 

region. This configuration creates a homogeneous magnetic field perpendicular to the cylinder axis. 

1.2.2 RF Coils 

The RF coils are responsible for perturbing the sample within the MRI system through the 

use of the transmit (B1
+) fields and for measuring the sample signal (B1

-) fields. This can 

be done either by using a single transmit/receive coil with a switch to change modes during 

the imaging sequence or using two separate coils one for transmitting and another for 

receiving. Bird cage style coils are the most popular style coil for their high homogeneity 

and strong magnetic field (6, 7). They consist of two circular end-rings connected by an 
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even number of rungs. Capacitors are distributed strategically throughout the coil such that 

the rungs are run out of phase with each other and create a circularly polarized magnetic 

field at the center. When driven using two input ports shifted in phase this produces the 

circularly polarized field however by using a single driven port it is possible to produce a 

linearly polarized field profile. To achieve maximum energy transfer to the imaging 

environment a circularly polarized field is preferred. The produced magnetic field from an 

RF coil is on the order of μT. 

 

Figure 1-3: Bird Cage RF Coil Configuration 

Bird cage style RF coil configuration with distributed capacitors on the end rings. Shown capacitor 

distribution creates a high-pass bird cage coil. 

Receive arrays are sets of loops of wire each with their own sensitivity profile. The multiple 

channels are read simultaneously and used to reconstruct the image using their respective 

profiles. This provides high SNR and can enable accelerated imaging techniques by using 

the redundancy in the imaging profiles. 

1.2.3 Shim and Gradient Coils 

Gradient and shim coils are both designed in similar electromagnets but differ in their 

construction and use. Both sets are designed to produce spherical harmonics over the 
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imaging region. A list of spherical harmonics and their respective order and function are 

given in Table 1-1. First order spherical harmonic generating electromagnets are referred 

to as gradient coils. These produce magnetic fields which vary linearly across the three 

cartesian axes. Higher order spherical harmonic generating electromagnets are referred to 

as shim coils. These produce magnetic fields which vary across higher order axes as 

previously mentioned. Traditionally, shim coils are unshielded low power electromagnets 

run using small amplifiers. They are used for correcting inhomogeneities in the main 

magnetic field on a patient-by-patient and often slice-by-slice basis. Each individual coil 

is designed such that they produce a higher order spherical harmonic field profile over the 

imaging region. Clinical scanners often implement up to 2nd order shim coils with research 

settings utilizing higher orders. Gradient coils typically have field strengths on the order of 

10s of mT whereas shim coils operate with fields closer to 10 µT and both produce fields 

that vary as a function of position. 

Table 1-1: List of Spherical Harmonic Electromagnets 

 Name n m Function 

G
ra

d
ie

n
t 

C
o
il

s Z 1 0 𝑧 

X 1 1 𝑥 

Y 1 -1 𝑦 

S
h
im

 C
o
il

s 

Z2 2 0 𝑧2 − (𝑥2 + 𝑦2)/2 

ZX 2 1 3𝑧𝑥 

ZY 2 -1 3𝑧𝑦 

X2-Y2 2 2 3(𝑥2 + 𝑦2) 

XY 2 -2 6𝑥𝑦 

First and second order (n) spherical harmonic functions. Each order has 2n+1 functions. First order generating 

electromagnets create linear variations in the magnetic field and are referred to as gradient coils. Second 

order generating electromagnets create higher order variations in the magnetic field and are referred to as 

shim coils. 
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Although the shim coils are often static during an imaging sequence dynamic shimming 

has been employed on a slice-by-slice basis using spherical harmonic active shims as well 

as matrix arrays of independently driven current loops. This has found promise at higher 

fields where field homogeneity has a larger impact on imaging performance. In addition to 

being employed to shim the main magnetic field, higher order shims can be used to 

compensate for more complex eddy currents induced by the gradient coils during operation. 

This is important when gradient coils move away from symmetrical designs (such as that 

found in a full-body clinical scanner) towards asymmetric designs. These designs are often 

found in head-only systems where the imaging region is not located at the geometric center 

of the gradient coil but instead is shifted towards the patient end. In systems such as these 

the induced eddy current in the surrounding conducting surfaces is more complex than in 

the symmetric case.  

Gradient coils are traditionally shielded high-powered electromagnets which use strong 

current amplifiers to produce fields which are switched on and off during an imaging 

sequence to induce known frequency and phase information to the nuclei of interest. This 

information is used for spatial localization and advanced imaging techniques such as 

diffusion tensor imaging. The history of gradient coils can be traced back to 1958 when 

Marchel Golay introduced an electromagnet geometry now referred to as a “Golay Coil” 

which was intended to reduce field inhomogeneities for NMR experiments (8). Even 

though the Golay Coil was designed to provide shimming to NMR experiments it formed 

the basis for the eventual large-scale gradient coil. Peter Mansfield in his 1977 seminal 

paper proposed the usage of time dependent magnet field gradients to form two- or three-

dimensional spin density images (9).  

Performance of the gradient is not governed by the electromagnet alone and is dependent 

on the selection of amplifier to use with the coil. It is common to characterize gradient (and 

shim) coil performance in terms of maximum gradient field, defined as the maximum 

gradient field the coil can produce and slew-rate, which is a measure of how fast the 

electromagnet can change in field (10–12). This can also be written as rise-time which is 

the time it takes to reach the maximum magnetic field. This is not necessarily the maximum 

magnetic field possible by the electromagnet but the max field desired.  



16 

 

During the design process the winding density will play a role in the electromagnet 

efficiency which is the magnetic field produced per unit current defined as follows: 

 𝐺 = 𝜂𝐼 (1.16) 

Where  G is the field gradient [mT/m], 𝜂 is the gradient efficiency [mT/m/A], and I is the 

current flowing through the coil. This allows characterizing the maximum gradient field 

and slew rate as follows: 

 𝐺𝑚𝑎𝑥 = 𝜂𝐼𝑚𝑎𝑥 (1.17) 

 
𝑆𝑅 = 𝜂(

𝑉 − 𝑅𝐼

𝐿
) (1.18) 

Where Gmax is the maximum gradient strength the gradient coil axis can provide, 𝜂 is the 

gradient efficiency, and Imax is the maximum current that can be output from the amplifier. 

SR is the slew rate of the gradient coil [T/m/s], V is the voltage of the amplifier, I is the 

current running through the gradient coil, and L and R are the inductance and resistance of 

the gradient coil, respectively. Early gradient coils had typical field gradients on the order 

of 1 mT/m with a slew rate of 1 T/m/s. For comparison, research setting gradient coils 

today can reach 200 mT/m at slew rates of up to 500 T/m/s (13, 14). In the clinic these 

values are typically lower with whole body gradients reaching 50 mT/m at slew rates of 

200 T/m/s and head-gradients having higher average values due to their smaller radius. 

This high switching speed can interact with the nervous system of a patient and produce 

peripheral nerve stimulation. Although not typically a major safety consideration limits are 

placed on operation of gradient coils to certain Gmax and SR values based on experimental 

testing of each gradient coil configuration. This is another practical limitation when 

running a gradient coil and is an active area of research as gradient coils push their 

performance boundaries. 
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Figure 1-4: Magnetostimulation Operational Curve 

An example experimentally derived operational curve indicating Gmax and τ combinations which are 

determined to be safe for minimizing stimulation. The first region of the curve is limited by maximum 

achievable slew-rate, the second is limited by experimentally derived magnetostimulation results, and the 

third is limited by the maximum achievable gradient strength. 

In Figure 1-4 the switching speed is written as τ which is the time it takes to go from 0 to 

Gmax and is the rise-time and related to the slew-rate of the gradient coil. In the regions of 

Figure 1-4 the first region is limited by the slew-rate of the gradient coil, the second is 

limited by experimentally derived magnetostimulation measurements and the third is 

limited by the maximum gradient strength that the gradient coil is able to achieve. In 

general, the smaller radius of head-optimized gradient coils pushes the curve upwards 

enabling stronger gradients and quicker slew-rates before magnetostimulation occurs.  

Construction of gradient coils is an intricate engineering task ensuring that the windings 

are located at the desired location, electrical connections can handle the current and voltage 

the coil will be subjected to, and that the coil does not move during operation from the high 

Lorentz forces it will experience. Modern gradient coils are typically either cut into sheets 
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of copper and affixed to structural support or wound with either hollow or solid wire. It is 

also important that the gradient coil is cooled which can be accomplished using hollow 

wire in which coolant is directly run or through cooling lines in contact with the wire 

structures. In a typical gradient configuration, the X-gradient lays on the left and right of 

the cylindrical structure, the Y-gradient on the top and bottom and the Z-gradient is wound 

around the cylinder. The X- and Y-gradient configurations with current direction and 

produced magnetic fields are shown graphically in Figure 1-5. In this figure the copper 

gradient thumbprints are shown saddling the full cylinder with their respective current 

directions and resultant magnetic field profiles. Large wires are used to handle the currents 

required to drive the gradient coils and traditionally the windings are encased in epoxy to 

prevent motion during operation as a result of the Lorentz forces. Finally, the choice of 

gradient coils for manufacturing are often balanced for forces and torques during the design 

process so that the net values are limited during operation. 

 

Figure 1-5: Traditional Transverse Gradient Configurations 

Cross-sectional view of a gradient coil configuration showing the gradient layers (copper coloured) saddling 

the structural support (black circle). When current is run through the gradient coil a magnetic field is 

produced. Colour indicates the strength of the magnetic field produced. The linear variation in the magnetic 

field produced by the X-gradient and Y-gradient coils is highlighted through contour lines.  
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1.2.4 Symmetric vs Asymmetric Head Gradient Coils 

The anatomical target of an MRI is a significant dictator of the size of the electromagnets 

with head-optimized scanners utilizing small internal radii which poses an inherent issue 

with patient entrance. Symmetric gradient coils have their imaging region located at the 

geometric center of the gradient coil whereas asymmetric gradient coils have their imaging 

region shifted towards the patient side. Figure 1-6 shows a birds-eye view cartoon 

illustration of this for symmetric and asymmetric gradients to scale with a 0.25 m imaging 

region which is typical of a head-optimized system. Here the imaging region offset (IRoffset) 

is the extent to which the imaging region is shifted from the isocenter and the black box 

represents the gradient coil size and shape with everything drawn to scale for a 

representative head-optimized gradient coil. 
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Figure 1-6: Symmetric and Asymmetric Gradient Configurations 
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Birds eye view of a symmetric gradient coil with the imaging region located at the geometric centre and an 

asymmetric gradient coil with the imaging region shifted linearly from the geometric centre by a distance 

IRoffset towards the patient end. 

For a symmetric gradient to encompass the entire brain region this requires short gradient 

coils which are difficult to design. If the design is too long the imaging region only contains 

the upper portion of the head with the lower portion outside of the homogeneous field 

region. This is solved by utilizing asymmetric gradient coils with a shifted linear field 

region allowing the imaging region to completely encompass the head. However, 

asymmetric gradient coils are more difficult to design with poorer shielding, tighter wires 

due to the current density required near the patient end, an increase in eddy current 

complexity, and difficulty balancing for forces and torques during operation. This plays a 

role in limiting the extent to which the imaging region can be moved towards the patient 

end requiring extra consideration in the design process balancing this asymmetry with 

performance goals. 

1.3 Matrix Coil Arrays 

Another method of creating magnetic field profiles which has had success in the research 

setting is arrays of independently driven coil loops. These have been explored for dynamic 

slice-by-slice shimming (15, 16), creating gradient fields (17), and full imaging (18). 

Instead of a single electromagnet producing a single magnetic field profile in the case of a 

matrix array arbitrary magnetic field shapes are produced by driving the individual current 

loops with a predetermined current profile. These matrix array elements are traditionally 

placed near the body and have begun competing with the RF receive chain for spacing. 

This has led to the integration of the multi-coil elements and the RF coil into a single 

integrated system such as the integrated parallel reception excitations and shimming 

(iPRES) coil (19) or the AC/DC coil (20). 

1.4 Quasistatic Electromagnet Design Methods 

1.4.1 Quasistatic Magnetic Fields 

The quasistatic regime is the transition between electrostatics and electrodynamics and 

“refers to the regime for which the finite speed of light can be neglected, and fields treated 
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as if they propagated instantaneously. Said in other, equivalent words, it is the regime 

where the system is small compared with the electromagnetic wavelength associated with 

the dominant time scale of the problem.”  (21). Functionally, this allows one to neglect the 

contribution from Maxwell displacement current to Ampere’s Law (22). This work is 

concerned with magnetoquasistatic fields as the electromagnets that govern the MR 

environment such as the gradient coils fall within this range. It is important to note that RF 

coils typically fall outside this and therefore have a different requirement for their 

electromagnetic design and simulations. In this regime although the magnetic fields are 

varying with time, they are slowly varying with respect to the time scale of the problem 

and therefore at any instance in time can be treated as a static case. Effectively, this means 

no significant wavelength effects and that the magnetic fields fully penetrate the body. This 

assumption greatly simplifies the underlying physics and allows approximations, such as 

the Biot-Savart approximation, to be acceptable methods of computing magnetic fields. 

1.4.2 Boundary Element Method 

There exist many methods of designing wire patterns for electromagnets however, a review 

of all of them is outside of the scope of this thesis. However, this thesis makes significant 

use of a Boundary Element Method (BEM) stream function approach to derive wire 

patterns for MR gradient coils, active shims, and RF coils. A brief introduction to the key 

equations will be presented here with a further derivation included in Appendix A. For the 

interested reader, the author directs them to the following references (23–29). 

1.4.2.1 The Stream Function 

A stream function is a mathematical representation of steady incompressible fluid over a 

surface. The goal in designing an electromagnet using the BEM is to calculate a current 

distribution over any arbitrary surface that produces a desired magnetic field profile at 

chosen target points. In the stream function representation this current distribution can be 

thought of as the fluid flow of electrons over a surface.  

In the case of a current profile with no sources or sinks the electromagnetic continuity 

equation is equal to: 
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 ∇ ∙ 𝑱 = 0 (1.19) 

With the surface current density as a divergence free vector field, it follows that the surface 

current density can be written as the curl of a scaler stream function residing on the surface 

tangential to the normal. This tangential requirement ensures the stream function is 

constrained to the surface itself. 

 𝐉(𝐫) = ∇ × [ 𝜓(𝒓)𝒏(𝒓)] (1.20) 

The problem domain is then discretized with the surface represented as nodes and triangles 

and the stream function approximated by a piece-wise stream function at each node. An 

example planar surface highlighting an example node and its surrounding triangles are 

show in Figure 1-7. 

 

Figure 1-7: Meshed Surface and Element 

Discretized planar surface and example zoomed in node on example node n. Zoomed in node n is surrounded 

by six triangular elements each with an encircling current basis function (vn1,…vn6).  
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With the surface discretized the stream function must be appropriately discretized as well. 

The stream function is approximated as the sum of a piece-wise function of the stream 

function values at each node on the surface multiplied by a surface basis function: 

 

𝜓(𝒓) = ∑ 𝐼𝑛𝜓𝑛(𝒓)

𝑁

𝑛=1

 (1.21) 

 
𝜓𝑛(𝒓) = {

𝑁𝑛𝑗(𝑥̃, 𝑦̃); if 𝐫 is inside Δj 

0; 𝑖f 𝐫 is outside Δj
 (1.22) 

𝜓𝑛 is a set of basis functions consisting of linear shape functions over the elements of the 

discretized surface previously described (25, 26), In is the stream function value at node n 

on a surface with a total of N nodes, and Nnj is the linear shape functions for element j. 

With the stream function discretized in this way the current density is similarly written as: 

 

𝐉(𝐫) = ∑ 𝐼𝑛∇ × [ 𝜓𝑛(𝒓)𝒏(𝒓)]

𝑁

𝑛=1

 (1.23) 

 

𝐉(𝐫) = ∑ 𝐼𝑛𝐽𝑛(𝑟)

𝑁

𝑛=1

 (1.24) 

 

𝐉𝒏(𝐫) = ∑ 𝒗𝑛𝑘

𝐾

𝑘=1

= ∑
𝒆𝑛𝑘

2𝐴𝑘

𝐾

𝑘=1

 (1.25) 

Here, K is the total number of triangular elements which surround the node n, enk is the 

edge vector opposite of node n within element k, and Ak is the area of element k. In Figure 

1-7 the middle node n is surrounded by six triangular elements with encircling current basis 

functions (vn1 … vn6) around the node. They are equivalently equal to the vector of the 

opposite edge divided by twice the elemental area. 

1.4.3 Performance Functional 

Relevant electromagnetic parameters such as produced magnetic field, gradient dissipative 

power, shielding, and forces/torques can be written in terms of the stream function and 
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incorporated into a performance functional. The introduction of a performance functional 

accomplishes two things. First, it allows fine tuning the relative importance of various 

electromagnetic features of the electromagnet such as field homogeneity, heating, and 

shielding. This is important because one desires electromagnets to be designed that achieve 

certain standards. Second, it reduces the problem to a single solution satisfying the design 

problem and functional specifics. I begin by defining a performance functional U and 

incorporating the terms of importance into it to be used in the design process. Full 

derivations of each are included in Appendix A  

 

U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2

𝐾

k=1

+
𝛽

2
𝑃 +

𝛾

2
𝑃𝑐𝑟𝑦𝑜 − 𝜆𝑥𝑀𝑥

− 𝜆𝑦𝑀𝑦 − 𝜆𝑧𝑀𝑧 

(1.26) 

Here, Bz is the produced magnetic field from the stream function, Bz
tar is the target field 

profile used in the design algorithm, both of which are calculated at k target points with 

position values rk. β is the weighting of gradient dissipative power (P), γ is the weighting 

of the induced power in a representative bore surface due to an induced eddy current (Pcryo), 

and Mx, My, and Mz are torque constraints with a corresponding Lagrange multipliers λx, 

λy, and λz. 

With the performance functional complete, it is differentiated with respect to the stream 

function and Lagrange multipliers. This is used to formulate the problem in a series of 

matrix equations which are solved through matrix inversion to calculate the stream function 

value over the surface. An example mesh, solved surface stream function and resultant 

gradient wire pattern are shown in Figure 1-8. 
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Figure 1-8: Example computational mesh, solved stream function and resultant wire 

pattern 

Cylindrical computational mesh and solved stream function over the mesh. Red dots indicate nodes which 

are constrained to the same value to prevent flow over the surface. This process is outlined in Appendix A. 

The solved stream function plot shows surface colour using the stream function value at each node linearly 

interpreted over the elements. Final portion shows resultant wire pattern after contouring the stream function. 

Wire pattern colour indicates the current direction with respect to the azimuthal direction. 

1.4.4 Low vs. High Field 

As outlined in Chapter 1.1 there are direct benefits because of the underlying physics 

towards using higher magnetic field strengths. From Equation 1.1 we see that the initial 

magnetization is directly proportional to the magnetic field strength, the number of spins, 

and is inversely proportional to the temperature. This leads to higher MR signals in 

substances with greater spin density but also allows methods of increasing the signal 

through increased magnetic fields or decreased temperatures. Increasing the spin density 

of tissue is not possible and as an MR experiment is mostly performed in-vivo it is 

impractical to cool the patient for little return in terms of signal. This has resulted in a drive 

towards higher field strengths. 

1.4.5 Point-of-Care MRI 

Point-of-care MRI has no standard definition and can mean a range of different things to 

different works. In this thesis, I define point-of-care MRI as “the use of MRI outside of the 
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imaging department” a simple definition which differentiates traditional usage of MRI 

where a patient is referred to a separate department within a hospital or brought to an 

imaging center. This includes MRI implementations which are housed within a department 

such as emergency medicine but consists of a dedicated unit, often smaller and easier to 

implement, or a design which can be brought directly to patients. In addition, since the 

distribution of imaging scans is not the same across all body parts or pathologies these 

scanner implementations often choose to tackle a small subset of the imaging capability of 

a full scanner. Much work has been geared towards head imaging however some scanners 

have been designed for extremity imaging (30) and concurrent MR and irradiation (31, 32). 

1.4.6 Current Implementations 

There exists great interest in both the research and commercial setting for point-of-care 

MRI platforms. The following sub-chapters will outline a non-exhaustive list of some of 

the further along examples. 

1.4.6.1 Research Implementations 

He et al. (33) has demonstrated the feasibility of their head-only lightweight MRI system 

consisting of a permanent magnet design with a 50.9 mT B0 field strength. The total system 

weight is 350 kg and employ biplanar gradients with the aim of intensive care unit imaging 

of cerebral stroke cases.  

Nakagomi et al. (34) recently demonstrated the feasibility of their 200 mT small joint MRI 

scanner. With a total weight of 280 kg including equipment, it is designed to fit within the 

limited space of a cube van and has demonstrated the utility of this system screening for 

elbow injuries. Their imaging volume was a 0.1 m diameter sphere and employed biplanar 

gradient coils. They demonstrated sufficient but low SNR when compared to a commercial 

scanner. In their experiments room shielding was unavailable so they designed a copper 

shielding box to be placed by the magnet setup and a rectangular aluminum shield for 

placing around the bottom to help alleviate electromagnetic noise. 

O’Reilly et al. (4) designed a Halbach Array style head-optimized MRI with a B0 field 

strength of 50.4 mT and an inner bore diameter of 0.27 m with an imaging region of 0.20 



28 

 

m. The magnet system had a cost of approximately 4000 euros and a total weight of 75 kg 

making it an economical and lightweight choice. This short magnet configuration 

employed gradients of 0.29 m long and 0.25 cm in outer diameter. They demonstrated 

imaging capabilities performing 3D imaging in a brain phantom inside a Faraday cage to 

minimize noise.  

1.4.6.2 Commercial Implementations 

Panther et al. (35) with Synaptive Medical demonstrated the feasibility of their 500 mT 

head-optimized scanner as compared to clinical field strengths. This setup uses a 

superconducting cryogen-free magnet with a separate hot room for electrical connections 

and amplifiers. While not designed to be transported to patients the low siting requirements 

of their magnet setup allows the MRI system to be placed in areas where typical clinical 

MRI scanners would be infeasible given their siting requirements.  

Hyperfine, Inc., created the first FDA-cleared portable MRI system which uses a 

permanent magnet setup with a B0 field of 64 mT which has shown clinical utility imaging 

at the bedside of critically ill patients (36). 

1.5 Thesis Overview 

This thesis outlines computational design work which started as an investigation of the 

question “can we design an MRI gradient coil for compact head-optimized geometries 

which allows imaging of the cervical spine” and evolved into the experimental testing of 

design methods for frequencies greater than gradient operational frequencies and an 

exploration of adapting multi-coil techniques to the demands of complex eddy current 

compensation. Chapter 2 begins the story by investigating the design of a small radius 

gradient coil with shoulder cut-outs to allow patients to further enter the gradient coil and 

enabling neck imaging. Chapter 3 proposes a unique gradient axis configuration, with 

updated gradient geometries to ensure fitting an appropriate range of patients, to mitigate 

some of the performance loss due to employing a shoulder cut-out gradient coil. Chapter 4 

explores the trade-offs in spherical harmonic resistive shim placement in a shoulder cut-

out MRI platform. Chapter 5 tests the design methods used for gradient technologies for 

the application of low-frequency RF coils to enable unique geometries. Chapter 6 proposes 
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the use of a multi-coil matrix array as a method of actively compensating for higher order 

dynamic eddy currents using experimental eddy current data from a high-performance 

research prototype gradient coil. Finally, Chapter 7 outlines a summary and significance of 

the work while discussing the avenues in which this project may go in the future. 
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Chapter 2 

2 Investigation of a Shoulder Cut-out MRI Gradient Coil 

This chapter consists of an expanded version of the peer-reviewed conference abstract: 

Eric J. Lessard, William B. Handler, and Blaine A. Chronik. Preliminary Design 

Exploration for a Head and Neck Gradient Coil: Effect of Shoulder Cut-out Length on 

Performance. International Society for Magnetic Resonance Imaging Annual Meeting 

2019. 

2.1 Introduction 

The primary cause of ischemic stroke is due to narrowing of the arteries which provide the 

brain with blood. Cholesterol deposits within the arteries in the head or neck can either 

dislodge, resulting in it becoming trapped in the narrower arteries downstream in the brain 

(embolism), or they can stay within the artery in which they were initially formed 

(thrombosis). In acute ischemic stroke in which a patient visits the emergency room, 

diagnostic imaging can play an important role in differentiating between patients who need 

immediate intervention and those of which who do not. This is important because in 

treatment of acute ischemic stroke, “time is brain” (1) as every minute a patient does not 

receive appropriate treatment results in neuronal loss. Outside of acute scenarios, 

monitoring of arterial plaque build-up within the carotid arteries (atherosclerosis) is 

important for determining response to treatment and patient screening. 

Magnetic resonance imaging (MRI) plays an important role in diagnostic imaging of the 

head and neck, as it provides excellent soft tissue contrast with no delivered ionizing 

radiation. Typically, neck pathologies are imaged using full-body MRI scanners designed 

for general hospital use. Purpose built head-only MR systems, however, have the potential 

to provide improved imaging of the head compared to using full body systems (2), due to 

their higher peripheral nerve stimulation (PNS) limits and electromagnet scaling 

relationships. Such head only systems are limited for imaging of the neck due to the 

position of the neck and cervical spine outside of the main imaging region, as the patient 
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is unable to slide their shoulders into the gradient coil due to the smaller radius of a head 

only system, typically ~ 20 cm.  

Development of advanced design techniques, specifically the boundary element method 

(BEM) allows design and development of unique geometry gradient coils (3). This 

technique can be implemented to design a wire pattern over a complex geometry which 

produces a desired field profile. Gradient coil performance can be characterized in many 

ways, but end-users are typically concerned with maximum gradient strength (Gm) and 

slew-rate (SR). However, as gradient amplifiers vary in specifications, efficiency (η) is 

often used in the design process which denotes the gradient strength per unit amperage 

(mT/m/A). It is also important to evaluate the gradient coils shielding either in the form of 

stray magnetic fields or in power deposited into the bore surface. Proper shielding is 

paramount because induced eddy currents within conducting surfaces will have major 

impacts on the MR environment. Parasitic magnetic fields resultant from the eddy currents, 

will negatively impact imaging. The eddy currents themselves will contribute to 

temperature build-up within the conducting surfaces of the main magnet which can result 

in helium boil-off, or worse a quench scenario. This temperature build-up will also produce 

temperature dependent field variations in the imaging environment. Therefore, it is 

important that during the design process shielding is appropriately accounted for.  

Much work has been done within the area of gradient coil designs for head and neck 

imaging. Nevertheless, due to geometrical limitations of traditional head-only gradient 

coils they must be designed either asymmetrically, with the imaging region shifted towards 

the patient end leading to an asymmetric wire pattern or with the imaging region at the 

centre of the gradient coil. An imaging region located at the isocentre requires a short 

gradient coil such that the head is located at the isocentre. However, it is possible to 

lengthen the gradient coil and add cut-outs to accommodate the patient’s shoulders while 

moving the extent of the gradient coil imaging region into this cut-out region. Previous 

work has examined a cylindrical gradient coil with square cut outs at the patient end to 

accommodate the patient’s shoulders (4). While other work has explored conical widening 

of the gradient shield to accommodate the shoulders (5). There does exist research head-

only gradient coils with shoulder cut-outs (6) or shoulder-steps (7), however these are 
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optimized for head imaging and do not provide imaging down into the lower cervical spine. 

Overall, there has been no work exploring the effect of cut-out length on performance and 

no evaluation of purpose-built shoulder cut-out head gradient coils for the purpose of 

imaging both the head and neck. 

In this work the effect of shoulder cut-outs for a gradient coil for imaging the head and 

neck is explored.  I hypothesized that the use of shoulder cut outs would allow the imaging 

region of the gradient coil to extend further into the neck and shoulders, while maintaining 

acceptable imaging performance. A secondary objective was to evaluate the effect of 

moving the gradient coils linear region (imaging region) towards the patient end on 

imaging performance. 

2.2 Methods 

Triangular element meshes with shoulder cut-outs (cut-out height: 0.15 m, cut-out length: 

0.07 – 0.21 m) on the primary surface were designed in, and exported from, COMSOL 

Multiphysics (COMSOL, Burlington, MA) for use in MATLAB (Mathworks, Natick, 

MA). The surfaces had between 4000 and 4700 boundary elements and between 320 and 

400 edge elements (example mesh shown in Figure 2-1a with the red lines denoting the 

cut-out on the primary surface and the blue dotted region representing the target linear 

region). Figure 2-1b shows an example 3D rendered image of an example body model 

within a 0.21 m cut-out gradient coil illustrating the potential extent of patient coverage. 

The primary (shield) surface geometries were designed to fit within a bore of diameter 0.60 

m and length 1.0 m and thus the x-, y-, and z-surfaces had internal diameters of 0.41 m 

(0.56 m), 0.44 m (0.58 m) and 0.42 m (0.57 m), respectively with varying lengths of 0.55 

m (no cut-out), 0.62 m (0.07 m cut-out), 0.69 m (0.14 m cut-out), and 0.76 m (0.21 m cut-

out). The shield surface could run the entire length of the bore and therefore had a 

maximum allowable length of 1.0 m.  
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Figure 2-1: Shoulder Cut-out Computational Mesh and Cartoon Illustration 

A) an example meshed surface with a discritized blue sphere showing the imaging region. Red lines are 

included to highlight the shoulder cut-out location. B) cartoon illustration demonstrating the further patient 

entrance achievable using a shoulder cut-out configuration. 

The BEM method was implemented using custom built MATLAB software, taking 

advantage of optimized parallel routines written in C++, aiming for control of field 

uniformity and minimum wire spacing (8). The design algorithm was optimized to provide 

a minimization of the power deposited into the bore surface. In this method a set of field 

targets were chosen and the problem of current density flowing on the surface was solved 

using a stream function based approach (3, 4, 9, 10) solving for the stream function value 

at each of the boundary element nodes. The stream function is then contoured to produce 

a wire pattern which matches the desired field at the targets. The contour spacing can be 

modified to account for design constraints arising from minimum wire spacing. I also 

introduced a set of Lagrange multipliers to ensure that the net torque on the gradient coil 

is zero. This is done by introducing Lagrange multipliers into the functional as follows.  
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(2.1) 

 

Where, U is our functional to be minimized, Bz is the z-component of the produced 

magnetic field (from the gradient coil) and Bz
tar is the magnetic field targets which are set 

as part of the design process (linearly varying field in the case of gradient coil design). P 

and Pbore are the power deposited into the coil and bore surfaces, respectively and their 

relative weighting are given by β and γ. Mx, My and Mz are the torque matrices with Mnx, 

Mny, and Mnz, being the torque on the nth node due to the stream function at that node (In) 

in the x, y, and z directions and λ being the corresponding Lagrange multiplier. The torque 

is calculated using an idealized perfectly homogeneous magnetic field profile. Included in 

the design is an iterative algorithm (8) which modifies functional weights based on a 

designs field uniformity (homogeneity) and wire spacing. The algorithm uses user 

specified values for target maximum field inhomogeneity (Hmax), minimum wire spacing 

(Wmin), and number of times to iterate the algorithm (N). This allows fine tuning the 

inhomogeneity for each design and allowing minimum wire spacing to be directly 

incorporated into the design stage. The minimum wire spacing is the smallest physical 

separation between any wire combination in the derived wire pattern. 

It can be seen from above that there are many design inputs arising from the functional (β, 

the weighting of our gradient coil system power and γ, the weighting of our power 

deposited into the bore surface) and our iterative control of wire spacing and field 

homogeneity algorithm (Wmin, the target acceptable wire spacing, Hmax, the maximum field 

inhomogeneity and N, the number of iterations) produces a 5-dimensional design space of 

input metrics (β, γ, Wmin, Hmax and N). Briefly, this means for a combination of β, γ, Wmin, 

Hmax and N  a single gradient coil is designed.  Each of these parameters is varied to build 

up a design space, where each combination results in a single candidate gradient coil. This 

design space search was performed initially on a coarse mesh, for computational speed. 

The β and γ spacing span a larger range of reasonable values than Wmin, Hmax and N which 

led to the design space being initially filled using coarse spacing between β and γ values. 

In the interest of time this coarse search was used to locate the region in the design space 
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where the solution to our problem is physical, manufacturable, and provides performance 

parameters suitable for imaging. After this region was narrowed down and identified the 

fineness of the spacing between β and γ values was increased to explore the final design 

candidates further. Once a final gradient coil design has been chosen, the fineness of the 

computational mesh was increased so that the final gradient coils had the smoothest wire 

pattern and most accurate calculations of relevant performance parameters. In the design 

algorithm it is possible to set certain metrics. In this work I initially set the efficiency to 

0.10 mT/m/A, this influences the design problem as the minimum separation between wires 

will not necessarily converge on the input Wmin as a certain design may require 

unphysically tight wires in order to achieve the target efficiency. It is possible to increase 

efficiency without increasing wire density on a surface using a third computational surface 

for current to flow. This will increase efficiency at a cost, namely inductance, and was 

deemed unnecessary for this work as the efficiency target was achievable given the two-

surface design approach. 

For this work a target imaging region was chosen as a 0.2 m diameter sphere situated +0.07 

m (control coil), +0.14 m (0.07 m cut-out coil), +0.14 m and +0.21 m (0.14 m and 0.21 m 

cut-out coils), and +0.14 m, +0.21 m and +0.28 m (0.21 m cut-out coil) from the isocenter. 

These additions increased the complexity of our design space. A 3D rendered example of 

this is shown graphically in Figure 2-1b, illustrating an example of a 0.21 m cut-out. 

The large design space grid search and combination of cut-out lengths and IRoffset resulted 

in, for each gradient axis, thousands of candidate coils each with their own performance 

metrics. However, in order to meet the efficiency target a particular candidate may not 

converge onto a manufacturable Wmin and were therefore discarded for analysis if the wire 

spacing required was unphysically small. If such a coil were manufactured using a water-

jet cutter gradient axes required an absolute minimum wire separation of ~3.5 mm and if 

they were manufactured from all hollow wire they would require an absolute minimum 

separation of ~5.5 mm (11). Our in-house manufacturing method involves using a 5-axis 

water-jet cutter to cut the gradient thumbprints into copper sheets which are then rolled to 

a specific radius and mounted to G10. The water-jet cutter uses garnet dust and a fine 

stream of water at high pressure (95,000 psi) and cuts the copper at locations determined 
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by the BEM. This directly couples the manufacturing method with the design method to 

ensure that any design which is chosen from a design study such as this adheres to the 

tolerances of all manufacturing steps.  

Some designs had efficiencies higher than the target efficiency and therefore for evaluation 

of gradient coil performance, I also used a performance metric of gradient coil inductance 

merit value defined as ML=  η/√L  , where L is the gradient coil inductance and η is the 

efficiency. Another important metric is the gradient coils homogeneity over the imaging 

region. I define the gradient homogeneity as the relative deviation in the gradient field at a 

point r = (x, y, z) to the gradient field at the centre of the imaging region.  

 
𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑡𝑖𝑡𝑦 =  

|𝐺(𝑟 ) − 𝐺(𝑟 = 0, 0, 𝐼𝑅𝑜𝑓𝑓𝑠𝑒𝑡 )|

𝐺 (𝑟 = 0, 0, 𝐼𝑅𝑜𝑓𝑓𝑠𝑒𝑡 )
 (2.2) 

Where G(𝑟 ) is the gradient value at a point in space, IRoffset is the distance from the centre 

of the imaging region to the geometric centre of the gradient coil, and G( r = 0, 0, IRoffset) 

is the gradient value at the centre of the imaging region. I use this metric to define our 

DSV30 which is the diameter of a spherical volume over which the inhomogeneity is <30%. 

For this work a 30% deviation in the gradient field was chosen due to advancement in 

gradient unwarping algorithms. However, it is possible to implement a stricter 

inhomogeneity target (i.e <30%) within the design process.  

Post-hoc I incorporated several modifications to the design requirements which were 

raising the target efficiency for the x-gradient (from 0.10 to 0.125 mT/m/A), y-gradient 

(from 0.10 to 0.15 mT/m/A), and z-gradient (from 0.10 to 0.15 mT/m/A) while also 

lowering the minimum wire spacing for the z-gradient (from 5.5 to 3.5 mm). The z- and y-

gradient change was based on preliminary data which led us to believe it was possible to 

achieve a higher efficiency in these axes due to the additional space for current to flow 

(relative to the x-axis). The z-gradient modification was chosen due to the wire patterns 

which are necessary to provide the required gradient field which have a physical profile 

closer to that of a transverse gradient than that of a wound longitudinal gradient. This would 

allow the use of a water-jet for manufacturing the z-gradient wire patterns. 
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With these definitions and requirements in place, designs which did not meet the required 

minimum wire spacing were eliminated from contention. This narrowed down the 

candidate pool however, in the end only one design will be chosen for manufacturing. At 

this point all designs remaining fit engineering requirements and could be manufactured 

however, other performance metrics such as the size of the imaging region (DSV30), 

inductance and effective shielding must be accounted for to ensure the final chosen gradient 

coils provide the best balance of all parameters. Here, we used the induced eddy current 

stream function in a representative bore surface and it’s dissipative power (Bore Power) as 

a measurement of shielding. Ultimately, there is no correct coil choice as gradient coil 

design is a complex balancing act where an increase in one parameter will result in a trade-

off of another. 

2.3 Results 

Table 2-1 provides the theoretical electromagnetic properties of the final selected candidate 

coils. All gradient coils provided fields suitable for imaging, however the final selected 

gradient coils had the best balance of all target metrics. Table 2-2 shows the effect of 

moving the imaging region towards the patient end and the effect of shoulder cut-out length 

(constant IRoffset) on merit value. These metrics are given as averages ± standard deviation 

across all candidates meeting the minimum efficiency and wire spacing thresholds. The 

effect on multiple performance parameters on moving the imaging region for constant cut-

out size and adding cut-outs while keeping the imaging region at the same location are 

shown in Figures 2-3 and 2-4. 
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Figure 2-2: Representative Shoulder Cut-out Gradient Wire Patterns 

Example gradient coil wire patterns with relevant performance parameters in Table 2-1. Wire pattern colour 

indicates direction of current with respect to the azimuthal direction. 

Figure 2-2 shows the final selected gradient coils. Figure 2-5 shows deviations from the 

central value of the gradient field for the final selected gradient coil cut-out length and 

imaging region offset combination. 
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Table 2-1: Selected Gradient Coil Performance Parameters 

Property 
Gradient Coil 

X Y Z 

Cut-out Length (m) 0.21 0.21 0.21 

IRoffset (m) 0.21 0.21 0.21 

Efficiency (mT m-1 A-1) 0.125 0.150 0.150 

Resistance (mΩ) 81 95 69 

Inductance (µH) 225 284 180 

Min Wire Spacing 

(mm) 

3.8 7.1 4.2 

ML (mT m-1 A-1 H-0.5) 8.3 8.9 11.2 

DSV30 (m) 0.25 0.27 0.24 

|Bmax| at 30 cm (mT) 3.8 3.0 4.9 
Relevant electromagnetic performance parameters for coils shown in Figure 2-2. DSV30 = diameter of 

spherical volume where the gradient field deviates <30%. 

2.4 Discussion 

To design a shoulder cut-out gradient coil for improved head and neck imaging, I explored 

a parameter space search of candidate gradient coils and made the following observations: 

(1) The X-gradient axis proved the most challenging to design due to the location of the 

shoulder cut-outs (2) adding longer shoulder cut-outs allowed the imaging region to be 

shifted further down the patient allowing both head and neck imaging (3) shifting the 

imaging region towards the patient end allows imaging of a greater number of anatomical 

regions at the expense of decreased performance.  
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Figure 2-3: Effect of Adding Cut-out Surface 
Box and whisker plots for all candidate coils across all cut-out lengths (7 cm, 14 cm, and 21 cm) when the imaging region is held constant at 14cm A) minimum 

wire spacing, B) Diameter of spherical volume where the gradient field deviates <30% (DSV30), C) Inductance, D) Resistance, and E) Bore Power; a measurement 

of shielding performance. Each candidate coil is one combination of performance functional weighting where the coil had a minimum wire spacing >3.5 mm and 

efficiency >0.125 mT/m/A (for X-gradients) or >0.150 mT/m/A (for Y- and Z-gradients). Candidates with values below those minimums were discarded from 

analysis and are not included in these plots.  
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Figure 2-4: Effect of Moving Imaging Region 
Box and whisker plots for all candidate coils across all imaging region offsets (14 cm, 21 cm, and 28 cm) when the cut-out size is held constant at 21 cm A) 

minimum wire spacing, B) Diameter of spherical volume where the gradient field deviates <30% (DSV30), C) Inductance, D) Resistance, and E) Bore Power; a 

measurement of shielding performance. Each candidate coil is one combination of performance functional weighting where the coil had a minimum wire spacing 

>3.5 mm and efficiency >0.125 mT/m/A (for X-gradients) or >0.150 mT/m/A (for Y- and Z-gradients). Candidates with values below those minimums were 

discarded from analysis and are not included in these plots. 
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Selection of the final gradient coils from the candidate pool was accomplished by first 

eliminating the candidates that did not meet the minimum efficiency or wire spacing 

criteria. Afterwards, the candidate pool was further narrowed by considering effective 

shielding through examining the power deposited into the bore surface. This quantity, 

along with the region of uniformity were used to further narrow down the candidate pool. 

This region of uniformity, after analysis of the successful candidate coils, was aimed to be 

~0.25 m to allow a large imaging region for both head and neck applications. The selected 

imaging region offset, and cut-out length was chosen based on target anatomical regions. 

Although, all combinations allowed imaging further down the patient and into the cervical 

spine region, the longer cut-out allowed the imaging region to extend down towards the 

aortic arch allowing more encompassing imaging of stroke cases.  

I observed a drop in the average merit value as the imaging region was moved further 

towards the patient end of the gradient coil. This was expected due to the tighter wires 

required to produce a field profile which is shifted towards a coil end. This results in an 

increase in inductance which results in a decrease in inductive merit for a fixed efficiency. 

However, this trend was only noticeable for the X- and Y-gradient axes, and not the case 

for the Z-gradient axis. This was an unexpected result and may due to the fact that there 

were less candidate coils for the 0.28 m cut-out as compared to the 0.14 and 0.21 m cut-

outs. However, this does warrant further investigation. 
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Table 2-2: Selected Gradient Coils Merit Values 

 IRoffset 

Gradient Axis 

0.21 m cut-out 
0.14 m 0.21 m 0.28 m 

X Gradient ML (mT m-1 A-1 H-0.5) 9.7 ± 0.9 8.0 ± 0.9 6.0 ± 0.8 

Y Gradient ML (mT m-1 A-1 H-0.5) 8.7 ± 0.8 7.8 ± 0.6 6.9 ± 1.1 

Z Gradient ML (mT m-1 A-1 H-0.5) 10.7 ± 1.1 12.0 ± 0.8 10.0 ± 0.9 

 Cut-out Length 

Gradient Axis 

0.14 m IRoffset 
0.07 m 0.14 m 0.21 m 

X Gradient ML (mT m-1 A-1 H-0.5) 9.8 ± 0.8  8.8 ± 0.9 9.7 ± 0.9 

Y Gradient ML (mT m-1 A-1 H-0.5) 8.8 ± 0.7 8.1 ± 0.7 8.7 ± 0.8 

Z Gradient ML (mT m-1 A-1 H-0.5) 10.2 ± 1.1 10.2 ± 1.1 10.7 ± 1.1 
Calculated gradient coil merit values for all successful candidate gradient coils with constant cut-out length 

(0.21 m) and imaging region offset (0.14 m). A clear decrease in performance is observed for the X- and Y-

gradient axes as the imaging region is shifted towards the patient end. 

Given the complexity of designing a high-performance gradient coil with shoulder cut-outs 

it was anticipated that moving the imaging region towards the patient end of the gradient 

would have a negative impact on performance. This was indeed determined to be the case. 

However, the decrease in performance as the imaging region was moved was most 

noticeable in terms of gradient inductance, observed in the drop-in merit value. 

Surprisingly, I did not observe a discernible trend in merit value as the cut-out length was 

made larger. This may be since the gradient coil length was not held constant and varied 

with each cut-out length change ultimately effecting the overall gradient length. This is 

important as adding cut-outs to a gradient coil without extending the length would be 

expected to have a negative impact on performance due to the decreased area over which 

current can flow. 
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When looking outside of the merit value and at all performance parameters the effect of 

adding cut-outs sees a performance increase in some cases which is clear when looking at 

the results in Figure 2-3 where there is an increase in DSV30 and shielding, as measured by 

the decrease in bore power) while the minimum wire spacing remains relatively the same. 

This is due to the addition of conducting surfaces and the trouble of designing short 

gradient coils. Therefore, by lengthening the gradient and allowing further room for current 

to flow there is a net benefit on the gradient performance regardless of the loss of the cut-

out space along the shoulders. However, when looking at the case where the cut-out is held 

constant in Figure 2-4, and the imaging region is moved towards the patient end it is clear 

this comes with negative performance. This is true for traditional asymmetric gradient coils 

and is observed here. As the imaging region is moved forward the wires tighten around the 

shoulder cut-outs as the field is shifted to one side which is clear from the calculated bulk 

minimum wire spacing. The DSV30 also worsens as the imaging region has less current 

flow on each side of it and the gradient struggles to maintain the homogeneity. Further, 

shielding is decreased as is expected as the gradient becomes more asymmetric. 

Overall, development of a high-performance gradient coil capable of imaging both the head 

and neck has many advantages over a head-only coil. One example is in evaluation of 

strokes. The majority (80%) of all strokes are ischemic strokes resulting from a blocked 

artery which supplies blood to the brain. This is primarily in the form of atherosclerosis 

resulting in fatty plaque deposits forming within the carotid artery. Imaging plays an 

important role in evaluating and identifying patients who require immediate intervention. 

A high-performance gradient can provide the capability to perform magnetic resonance 

angiography of both the neck and intercranial regions with high gradient strength for 

diffusion imaging. This is important for monitoring of arterial health as well as provides 

the possibility for imaging in a point-of-care scenario where time is paramount to save 

neuronal health. This style gradient coil has the potential to ultimately build the foundation 

for an all in one stroke imaging platform. There is at least one modern commercially-

available head-only clinical scanner that employs high-strength gradients, but it does not 

use a shoulder cut-out geometry (12). The addition of a shoulder cut-out gradient to such a 

compact system may enable imaging further into the neck. 
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Simulated gradient coil homogeneity plots showing the percent deviation from central gradient field value 

contour lines across three planes for all three gradient axes. 

A secondary application of this gradient coil design is in radiotherapy contouring. In treatment 

of head and neck cancers targeted radiotherapy applications require contouring of the tumour 

and surrounding tissues. Although MRI within the context of radiotherapy is a relatively new 

field, the multi-parametric capabilities of MR have provided valuable in terms of tumor 

delineation with diffusion (13) and improved soft tissue contrast. With the design of an all-in-

one gradient coil capable of high-resolution imaging of both the head and cervical spine 

Figure 2-5: Selected Gradient Coil Homogeneity Plots 
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treatment planning can be done using high quality imaging of both regions while taking 

advantage of non-contrast enhanced flow and diffusion measurements. This is important 

because visualization of important structures such as the Brachial plexus originating from the 

lower cervical spine are difficult to visualize on conventional treatment planning devices such 

as CT and may serve as a point-of-care head and neck system within a radiotherapy 

department, where a dedicated MRI capable of imaging these fine structures may be 

unavailable.  

Although all gradient coils presented here provide fields suitable for imaging with appropriate 

electromagnetic properties there is some work which must be performed before any of them 

can be used in an actual MRI system. Primarily, it must be ensured that the gradient coil does 

not move or overheat during operation. This requires the wire pattern to be balanced for forces 

using realistic fields of which it will be subjected to. Another important consideration before 

the gradient coils presented here can be used clinically is in development of shoulder cut-out 

shim coils. For the final potted gradient coil to maintain slots for the shoulders the active shims 

must also have cut-outs. This can be accomplished using the BEM method, like how it is 

presented here, using a target field profile of spherical harmonics while accounting for the 

mutual inductance between the shim and gradient layers.  

Another manufacturing issue that may arise is the loss of the Z-gradient in terms of cooling 

during operation. Traditionally, hollow copper wire is used for the z-axis which allows water 

to be run through cooling the gradient during operation (11). Research will be required to 

determine the optimal cooling configuration that minimizes heat build-up and avoids local 

hotspots. 

The study presented here is not without limitations. Primarily, although the final designs 

derived here are balanced for torque during the design process, in order to ensure proper force 

balancing a realistic operational B0 field would be required. This will result in small 

modifications in the wire patterns to ensure that there are no significant net forces when 

operating inside an actual field. Another limitation, touched on above, is the lack of shims 

into the design. They will ultimately need to fit within the already limited radial space 

available. Another important note is in the induced eddy currents within the bore surface. 
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Asymmetric gradient coils produce more complex eddy current patterns within the 

surrounding surfaces and the removal of current carrying surfaces, in the form of shoulder 

cut-outs, can increase this complexity. There does exist BEM approaches to limit the field 

produced by induced eddy currents however, these methods fail to account for the time 

evolution of the eddy currents which can introduce a sense of false shielding. Finally, initial 

calculations to build up the candidate gradient coil pool are calculated over a coarse mesh. 

This ensures a fast solution; however, it leads to slight differences in the calculated inductance 

and resistance between the final gradient coils (calculated using a finer mesh) and the entire 

candidate pool. Importantly, this is not a practical concern as the selection of the final gradient 

coil is made using the information from the course mesh and therefore there is no bias towards 

any gradient coil. The fine mesh is solely used to ensure smooth wire patterns and more 

accurate electromagnetic calculations for the final selected coils. It is also important to note 

that with the addition of shoulder cut-outs the patient or volunteer will be located further into 

the high-performance gradient coil. This may influence cardiac stimulation and PNS 

thresholds compared to a head-only gradient. One possible way to mitigate this would be the 

incorporation of a “head-mode” and “neck-mode” which modifies the maximum allowable 

slew-rate to limit stimulation. This will need to be explored experimentally.  

This present study builds upon previous examples of MRI gradient coils for head and neck 

imaging. Although previous shoulder cut-out gradient coils have been constructed (6) or 

designed theoretically (4), this is the first study to examine the effects of cut-out length and 

imaging region location on performance. Future work will be on incorporation of active shims 

into the radial space available, balancing the design for forces within a realistic field, and 

exploring novel ways of assembling the gradient coil to account for the shoulder cut-outs. 

Once these engineering challenges have been overcome the final selected gradient coils, with 

any small design modifications, will be manufactured in-house. Once built, electromagnetic 

measurements (inductance, resistance, field profile..etc) will be performed to verify the design 

study and operational limits (for peripheral nerve stimulation) will be determined. The final 

constructed coil will be installed in our cryogen-free magnet housed within our lab. This will 

allow eddy current and thermal measurements to be performed to determine shielding 

performance as well as allow testing for imaging performance.  
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2.5 Conclusion 

I have explored the effect of adding shoulder cut-outs of varying length to a head-only 

gradient coil while moving the imaging region towards the patient. I have also presented 

here a proposed design for a high-performance head and neck gradient coil which can be 

used as part of an all-in-one platform for a host of head and neck imaging applications from 

high resolution anatomical images to the demanding needs to functional brain imaging. 
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Chapter 3  

3 The X-Mode Gradient Coil Configuration 

This chapter is an expanded version of the two following peer-reviewed conference 

abstracts: 

Eric J. Lessard, William B. Handler, and Blaine A. Chronik. The X-Mode Gradient: 

Improved Performance for Select Applications. International Society for Magnetic 

Resonance Imaging Annual Meeting 2020. 

Eric J. Lessard, William B. Handler, and Blaine A. Chronik. Development of an MRI 

Gradient Coil for Use in a Compact Head-only MRI Platform Capable of Imaging C7 and 

Below. American Association of Physicists in Medicine and Canadian Organization of 

Medical Physicists Joint Annual Meeting 2020. 

3.1 Introduction 

The drive for higher performance gradient coils has come with an increased use of more 

complex designs. These include head-optimized scanners which utilize asymmetric 

gradient coils (1) and unique geometries like gradient coils with shoulder cut-outs (2,3). 

Shoulder cut-out gradient coils provide a unique design to further enable patient entrance 

into the bore. One example was demonstrated in Poole and Bowtell’s 2007 paper (2) where 

they designed an unshielded shoulder slotted gradient coil as a proof of concept and 

observed a difference between their X- and Y-gradient axis of 17% lower efficiency, 45% 

tighter wire spacing, and 14% higher resistance, when inductances are matched. Looking 

at the figure of merit, a numerical value to compare gradient coil performance showed a 

40% decrease from the Y-gradient for the X-gradient. In addition to this, Siemens has 

designed both the clinical AC84 and experimental AC88 head-gradient coils which 

incorporates varying degrees of cut-outs in their design. Shvartsman et al. explored the 

design of an unshielded shoulder cut-out gradient coil (4) for head imaging however, in 

this proof-of-concept design technique paper they demonstrated the utility of their 

technique by designing an unshielded single axis gradient coil. While they explored some 

of the trade-offs of incorporating shoulder cut-outs such as the complexity of the induced 
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eddy current profile, they did not compare performance between the transverse axes. The 

high-performance MAGNUS gradient (5) utilizes a stepped bore which is analogous to a 

shoulder cut-out style in terms of increasing patient access. The C3T-HG (6) has a stepped 

gradient design which enables imaging into C2-C3 junction with its 0.26 cm imaging 

region extending to the edge of the step. These shoulder slotted and stepped gradients are 

designed for head imaging and fail to provide imaging further into the neck. Previously (7) 

I have proposed the use of a similar style actively shielded gradient coil for head and neck 

imaging in which the imaging region is moved further into the cut-out area. In my previous 

work I noted the difficulty in balancing the transverse axes performance as was seen in (2). 

In this work with fixed efficiencies of 0.125 mT/m/A and 0.150 mT/m/A for the X- and Y-

gradients we observed a difference in inductive merit value of 7%, 54% tighter wire, and 

an 8% decrease in imaging region size. This is due to the location of the X- and Y-gradient 

producing wire patterns relative to the location of the shoulders. When conducting surfaces 

are removed on the left and right of the gradient coil surface this disproportionately affects 

the X-gradient and has a limited effect on the Y-gradient.  

Head-optimized scanners operate with small inner radii with entrance into the bore limited 

by the small size of the head-gradient coil. This limits patient access limiting imaging to 

the head and does not provide imaging of the neck. Asymmetric head gradients use imaging 

regions which are shifted towards the patient end of the gradient coil instead of at the 

geometric center. An asymmetric shoulder cut-out gradient coil with the imaging region 

extending slightly into the cut-out region would provide a unique ability to image both the 

head and neck in a compact head-only scanner. This would have applications in point-of-

care MRI where brain and cervical spine imaging provide important diagnostic information 

used for triaging. As mentioned, previous investigations and current implementations of 

shoulder cut-out gradient coils are limited to head imaging only and do not provide imaging 

down into the cervical spine.  

In this work I propose the design of a shoulder cut-out gradient coil producing linearly 

varying magnetic fields along the diagonals as opposed to the X- and Y-axes. I denote these 

new gradients as the d1- and d2-gradients. In this proof-of-concept study aimed to 

demonstrate the feasibility of this rotated design and hypothesized that by rotating the 
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gradient axes I could design a set of balanced transverse gradient coils for head and neck 

imaging in a compact MR platform. I demonstrate the utility of this configuration by 

extending the imaging region into the cut-out portion to enable imaging further into the 

neck. 

3.2 Methods 

3.2.1 Design Methods 

Using in-house electromagnetic software written in MATLAB I derived wire patterns for 

asymmetric d1- and d2-gradient (orientations shown in Figure 3-1) electromagnets through 

the boundary element method (2, 8-10). In this method a current density over a discretized 

surface is represented as a stream function flowing on that surface. Using a target field 

approach the stream function is solved for which produces the magnetic field targets as 

constrained by a minimization functional. I used a performance functional accounting for 

deviation from the target field points, power deposited into a representative computational 

bore, dissipative power within the gradient coil, and force/torque balancing. The field 

targets were linearly varying X- and Y-gradient fields rotated by 45 degrees, the 

representative bore surface had a radius of 0.30 m and a length of 1.0 m with end flanges 

and the force/torque balancing was done using measured field data from an in-house 

superconductive cryogen-free head-optimized magnet. This functional is as follows: 

 

U =  
1

2
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(3.1) 

Bz(rk) and Bz
tar(rk) are the produced and target magnetic field values at the design point rk, 

𝛽 is the dissipative power weighting, P is the gradient power term, gamma is the bore 

power weighting, Pcryo is the bore power term, λ is a Lagrange multiplier term 

corresponding to the torque (M) and force (F) balancing. In detail the first term describes 

the least-squares difference between the produced magnetic field and ideal and represents 

the importance of homogeneity. The second term describes the power dissipated within the 

gradient coil through Joule Heating and represents power loss. The third term describes the 
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power dissipated in a nearby conducting surface, in this case a representative bore, via the 

induced eddy current and represents a measurement of shielding. The final terms are 

Lagrange Multipliers responsible for constraining our forces and torques such that they are 

balanced during operation. 

 

Figure 3-1: d1- and d2-gradient axes 

Example gradient coil surfaces (primary surface = smaller circle, shielding surface = outer circle) showing 

the rotated d1 and d2 reference frame. 

To select final gradient coils a grid search was performed by varying the design 

performance functional, specifically the β and γ values controlling the relative importance 
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of field homogeneity, dissipative power, and shielding. I made small modifications to the 

design geometry from our previous work (7), which explored a shoulder cut-out gradient 

coil with traditional gradient axis orientation and here I designed the primary and shield 

surfaces based on 95 percentile US adult sizes. The primary (shield) surfaces for the d1- 

and d2-gradients, had radii of 0.22 m (0.27 m), 0.23 m (0.28 m), respectively. The primary 

axis of each had a cut-out height of 0.15 m and a length of 0.225 m whereas the shield 

surface had no cut-out as it was designed to fit outside of the shoulder breadth. The target 

field region was defined as a 0.20 m sphere situated at the geometric centre. The primary 

surface ran from z = -0.4 to 0.3 m for a total allowable length of 0.7m and the shield surface 

from z = -0.45 to 0.45 m for a total allowable length of 0.90 m. This configuration was 

designed to allow the imaging region to partially extend into the cut-out region for neck 

anatomical targets. The geometry of the total system was designed to fit within a 0.6 m 

diameter, 1.0 m long cryogenic bore. An example meshed surface is shown in Figure 3-2 

this figure shows the primary inside surface highlighted in red for visibility and shows an 

example 0.2 m imaging region in blue. 
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Figure 3-2: X-Mode Computational Mesh 

Sample computational mesh used in this study with the inner (primary) surface highlighted in red showing 

the smaller diameter and shoulder cut-out. Blue sphere shows discretized imaging region used in design 

calculations. 

Once the stream function over the surface is known it is contoured in 3D space to derive a 

wire pattern which best approximates the stream function over the surface. With the stream 

function and wire pattern solved for it is simple to calculate performance parameters such 

as: Wmin – the minimum wire spacing, calculated using the stream function contours; 

DSV20 – the diameter of a spherical volume where the gradient field varies <20% from the 
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central field value; efficiency – the gradient field produced per unit current; resistance – 

calculated using the resistivity of the material and the wire pattern; inductance – calculated 

using the wire pattern geometry; slew rate- calculated using the efficiency, inductance, 

resistance and amplifier information; and bore power – calculated using the induced 

stream-function in the bore surface and its induced power. 

To maintain the ability to construct the finalized gradient from the candidate pool a subset 

of candidates with a Wmin of greater than 0.004 m was made. This was based on the wire 

intended to be used plus tolerances in the manufacturing process. Two other subsets were 

determined based on a minimum efficiency of 0.1 mT/m/A and a minimum linearity of a 

DSV20 of 0.15 m. From this, the intersection of the three sets was determined to find the 

candidates which meet the requirements. Since it is difficult to determine the shielding 

metric in which appropriate shielding has been achieved from this set the selected coils are 

the ones with the minimum bore power.  

3.2.2 Analysis 

In addition to using the induced eddy current in the bore surface for the purpose of shielding 

by minimizing the power deposition this eddy current can be used to calculate the magnetic 

field of this induced current. To evaluate the complexity of the induced eddy currents both 

the gradient coil and the induced eddy current on the computational bore surface were 

decomposed into spherical harmonics.  

To explore heating, I calculated the required current through the gradient axes which leads 

to a 30-degree temperature rise in cooling water. The water was assumed to run through 

hollow wire of 4 mm with a variable inner diameter. I varied the inner diameter from 1 mm 

to 3.994 mm in 500 steps and for each configuration calculated the total resistance of the 

wire based on the cross-section and length. Using the inner diameter, the flowrate was 

solved for using the Darcy-Wesibach equation (11) assuming a pressure drop across the 

gradient coil of 3 atm. With the flowrate and resistance information the current required 

for a 30 degree temperature rise was calculated. A technique employed to increase the 

cooling capacity of gradient coils (12) is to break the continuous section of wire into 
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parallel sections and as such I performed this for the total gradient length (L), half gradient 

length (L/2), quarter gradient length (L/4), and eight gradient length (L/8). 

3.3 Results 

Electromagnetic performance parameters for the d1- and d2-gradient coils are given in 

Table 3-1 with their corresponding wire patterns shown in Figure 3-3. Magnetic field maps 

are shown in Figure 3-4. The gradient and eddy current magnetic field profile spherical 

harmonic decomposition is shown in Figure 3-5. Gradient field homogeneity plots are 

shown in Figure 3-6. The current required to induce a 30 ºC temperature change in the 

cooling water as a function of wire inner diameter is given in Figure 3-7. 

3.4 Discussion 

In this work I explored the design of a shoulder cut-out gradient coil that I have named the 

X-Mode Gradient Configuration whereby the X- and Y-gradient axes are rotated by 45º 

creating d1- and d2-gradients to improve transverse axis performance in a shoulder cut-out 

configuration. I designed the gradient coils to have an imaging region extending into the 

shoulder cut-out region allowing head and neck imaging in a compact scanner. Throughout 

this work I observed the following: 1) the X-Mode configuration is a method of designing 

an actively shielded gradient coil for head- and neck-imaging which balances the transverse 

axis performance 2) the strongest harmonic in the eddy-current field is a ZX term, and 3) 

potential improvements include better torque balancing. 
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Table 3-1: X-Mode Gradient Performance Parameters 

 d1-Grad d2-Grad 

Primary Radius [m] 0.22 0.23 

Shield Radius [m] 0.27 0.28 

DSV20 [cm] 25.5 23.5 

DSV30 [cm] 28.5 26.0 

Efficiency [mT/m/A] 0.1 0.1 

Inductance [µH] 142 133 

Resistance [mΩ] 134 132 

Bore Power [AU] 2.8E-5 1.2E-5 

Minimum Wire Spacing [mm] 4.1 4.2 

Slew Rate [T/m/s] 527 568 

DSV20 = diameter of spherical volume where the gradient field deviates <20%, DSV30 = diameter of spherical 

volume where the gradient field deviates <30%. 
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Figure 3-3: X-Mode Gradient Wire Patterns 

Derived wire patterns for the X-Mode transverse gradients with colour indicating the direction of current 

flow with respect to the azimuthal direction. 

The high homogeneity of the achieved designs with DSV20 values of 25.5 and 23.5 cm for 

the d1- and d2-gradient axes is promising for enabling lower cervical spine imaging in a 

platform such as this. The target imaging region of 20 cm was designed to allow overhang 

of the imaging region into the shoulder cut-out region and the designs have acceptable 

inhomogeneity extending even further into the cut-out region. Previous gradient coils such 

as the C2T-HG (6) had imaging regions that reach the tip of the stepped surface which 

allowed imaging into the C2-C3 junction. With an assumption that the mean cervical 

vertebrae size is approximately 1.1 cm the remaining four vertebra would extend 

approximately 4.4 cm further into the cut-out space (13).  In this work the DSV20 extends 

5.25 cm and 4.25 cm into the cut-out region whereas the DSV30 extends 6.5 cm and 5.5 cm 

into the cut-out region for the d1- and d2-gradients, respectively. Looking at the extreme 
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end of the homogeneity both gradient axes have DSV50 values of 30.5 cm which extends 

7.75 cm into the cut-out region. While it may be impractical to image in regions extending 

into that DSV50 edge case advances in gradient unwarping and image reconstruction 

techniques enable improved imaging in cases of known gradient inhomogeneities. With 

the <5 cm of imaging region required to extend into the shoulder cut-out region to 

potentially cover to the C7 space the DSV30 of the presented coils presents an appropriate 

imaging region size to enable lower cervical spine imaging. In addition to the benefit of 

cervical spine imaging performance there is a gain in the application of brain imaging by 

having the homogeneous field extend into the shoulder cut-out region in that when the 

patient is positioned with the brain at the isocenter the important anatomical structures of 

the brain remain within a high homogenous region covering the entire brain. Combining 

this, if the aim is for a 25 cm imaging region which would extend 5 cm into the cut-out 

then the d1- and d2-gradients have inhomogeneities over this imaging region of 23% and 

27%, respectively. Figure 3-4 shows gradient homogeneity plots with contour lines 

showing the deviations from the central gradient field in percent. The red line at z = 7.5 cm 

illustrates the z location of the shoulder cut-out and the extent of the patient entrance where 

the shoulders contact the surface. 
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Figure 3-4: X-Mode Gradient Coil Homogeneity Plots 

Simulated homogeneity plots with contour lines showing the percent deviation from the central gradient field 

value over representative planes. Red lines show the location of the shoulder cut-out surface. 

Many gradient performance metrics such as the efficiency, linearity, and shielding are 

independent of the choice of amplifier. However, it is important to acknowledge the role 

of the amplifier in gradient performance with the maximum gradient strength and slew rate 

achievable being dependent on the choice of amplifier. While modern gradients have 

increased in performance this has been matched by an increase in amplifier capabilities. In 

this work, I calculated maximum gradient strength and slew-rate assuming a 900 A, 2100 

V high-performance amplifier. It is important to note that these high currents will lead to 

large Joule heating potentially limiting the duty cycle at which this could be run, to help 
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mitigate that using all-hollow wire for both axes would greatly increase the cooling 

capacity. I explored this by calculating the current required to raise cooling water by 30 

degrees as it runs through for various inner diameter wire for the 0.004 m wire anticipated 
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Figure 3-5: X-Mode Gradient Field Plots 

 
Simulated magnetic field profiles for the d1- and d2-gradients.  Current running through the coils is 1A.
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to be used in the design of coil such as these. As expected, parallelization of the cooling 

line increases the maximum current. It should be noted that this simplified parallelization 

situation assumes constant pressure across each segment and gives a good approximation 

but is not the complete picture. However, these results indicate that construction of the 

gradient coils presented here should use 0.003 m inner diameter wire to maximize the 

cooling capability of an all hollow design. It is important to note that parallelization of the 

wire pattern may be tricky but at minimum breaking it into two halves is easy to accomplish 

and provides a benefit in cooling capabilities making it worthwhile. 

 

Figure 3-6: Inner Wire Cooling Analysis 

Plot of current required to produce a 30 degree temperature change in cooling water across a range of inner 

diameter wire sizes for 4 gradient coil lengths. 

It is known that as the gradient coil configuration moves away from symmetry the 

complexity of the induced eddy current increases. Shielded symmetric gradients have less 

complex eddy currents than those induced by shielded asymmetric gradients. Previous 

work has demonstrated the increased complexity of the eddy currents induced by a 

symmetric shoulder cut-out gradient axis (4). In this work, with the rotated gradient axes 

coupled with the shoulder cut-out geometry I sought to explore the complexity of the 

induced eddy current field by examining the stream function profile induced on the 

computational bore surface. Both gradients induced eddy current fields with predominant 
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ZX field components. The d2-gradient had approximately half of the fit coefficient of the 

d1-gradient. This is interesting and may be evidence of the increased shielding as seen in 

the bore power reduction between the axes. Although it should be noted that although it is 

lower, both axes are extremely well shielded compared to other designs within the study. 

In both cases the eddy currents also had significant X and Y components which is to be 

expected from the induced eddy currents as they will contain predominant terms on the 

order of the produced field which has primary X and Y components which can be 

compensated using gradient compensation. However, this additional ZX term will remain 

post compensation and either affect imaging or require additional steps to handle. 

Additionally, asymmetric gradient coils are typically not symmetrically torque balanced. 

Acceptable levels of total force and torque are 200 N and 75 Nm for each gradient axis (3). 

In order to evaluate the force and torque balancing I calculated the forces and torques on 

the gradient coils at an operational current of 900 A, the absolute maximum based on the 

chosen amplifier configuration. At this high current the d1-gradient was below these 

thresholds for both total force and torque however, unfortunately the d2-gradient has torque 

as high as 92 Nm. The d2-gradient is below these thresholds when the current is below 733 

A.  

 

Figure 3-7: X-Mode Gradient Eddy Current Analysis 

Spherical harmonic decomposition of the simulated gradient magnetic field and the induced eddy current 

magnetic field. 
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Future work should be focused on development of a complimentary set of spherical 

harmonic active shims to fit within the compact gradient housing. These spherical 

harmonic shim coils consist of layers of low-power electromagnets of which each is 

designed to produce a particular spherical harmonic field profile over the imaging region. 

In a setup like presented here where the inner coils have shoulder cut-outs and the outer 

coils have a full cylinder it would be beneficial to explore the relative trade-offs between 

where to put the shim coils and this is currently on-going work. Evaluation of the electric 

field of these presented coils would be useful for investigating the potential PNS limits in 

a system such as this. Previous work has explored E-field measurements of a similar setup 

(14) but it is important with the imaging region extending further towards the cardiac 

region.  

It is important to note that this study is not without limitations. While the chosen geometries 

were based off the findings of previous work it is impossible to try the infinite number of 

primary and shield surface lengths, ordering and radii. As such, a decision was made to 

place the radii of the primary and shield surfaces dependent on percentile information. This 

already will limit the population that will fit within a gradient coil such as this. Next, the 

evaluation of hollow wire cooling performance is a simplistic case and may benefit from 

further simulations. However, the relative results presented here provide motivation for a 

further study and provide a first step in optimal wire selection. Finally, the chosen 

geometries in this work make a direct comparison with our previous shoulder cut-out 

gradient impractical. This is due to the variation in gradient coil radii and cut-out lengths 

which will significantly impact the final designs. Further, the gradient efficiencies in our 

previous work were different between the X- and Y-gradients and in this work they were 

equal. A rough comparison can be made and, in this work, although the d1-gradient had up 

to 10% better imaging region homogeneity compared to the d2-gradient, as measured by 

DSV, the gradients were effectively matched for efficiency, resistance, wire spacing, and 

slew-rate. Whereas in the previous work the X-gradient had a 7.5% smaller DSV30, 17% 

lower efficiency, 5% lower resistance, 47% tighter minimum wire spacing, and 6% higher 

slew-rate compared to the Y-gradient. Important to note the differences observed in this 

previous work in resistance, wire spacing, and slew-rate would be worse if the wire density 

of the X-gradient was increased to match the Y-gradient efficiency. It may be worth 
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performing additional explorations by designing an X-Mode gradient coil with geometry 

and an image region location that matches a literature study. This would allow direct 

comparison to a previously reported coils performance and is a limitation of this study. 

3.5 Conclusion 

In this proof-of-concept study I have demonstrated the feasibility of designing a rotated 

transverse gradient coil configuration to improve the balance between axis performance 

within a shoulder cut-out system. I have shown the benefit of using an asymmetric design 

where the imaging region extends into the cut-out portion enabling cervical spine imaging 

within a compact inner radius.   
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Chapter 4  

4 Shoulder Cut-out Active Shim Set Design 

This chapter is an expanded version of the peer-reviewed conference abstract: 

Eric J. Lessard, William B. Handler, and Blaine A. Chronik. Spherical Harmonic Active 

Shim Set Design for a Shoulder Cut-out MRI Platform. International Society for Magnetic 

Resonance Imaging Annual Scientific Meeting 2022. 

4.1 Introduction 

A highly homogeneous magnetic field is crucial for high-performance magnetic resonance 

imaging (MRI). Many aspects can contribute to field inhomogeneity with two primary ones 

being the affect of material inside the magnetic environment and induced eddy currents 

and their respective magnetic fields. Active shimming is a method of correcting for 

inhomogeneities in the magnetic field profile due to macroscopic magnetization of samples 

placed in the field. This can be done once per imaging volume or dynamically where the 

optimal shim setup changes on a slice-by-slice basis (1,2). Eddy currents are minimized by 

employing actively shielded gradient designs but ones that persist are handled through 

gradient preemphasis. Shimming the magnetic field is done using either a dedicated set of 

individual electromagnets which produce spherical harmonic fields or using multi-channel 

matrix arrays. In asymmetric gradient systems like head-optimized scanners the eddy 

current field may have higher order terms which cannot be compensated using gradient 

compensation alone. This has motivated work exploring the use of the active shim coils in 

compensating for these residual higher order terms. These exist in situations where the 

symmetry of the gradient coil is broken such as those found in asymmetric designs but also 

non-cylindrical geometries such as a shoulder cut-out platform.  

Both shimming and higher order dynamic eddy current compensation uses independent 

resistive shim coils of which each approximates a spherical harmonic. These shim coils 

can be designed as an insert or incorporated within the gradient coil structure and can be 

implemented like gradient coil compensation to cancel out the induced eddy current 

magnetic field. Other methods of shimming include multi-coil shim arrays composed of an 
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array of independently driven circular loops (3). As opposed to being designed to produce 

a single spherical harmonic, the array is driven with an appropriate current profile which 

in turn corrects for the inhomogeneities in the magnetic field. This allows quick and 

efficient dynamic shimming in real-time. These sorts of methods play an important role in 

high-field MRI due to the large effect that inhomogeneities have on the image quality. 

However, they can also be used to compensate for eddy currents in the same way as 

resistive shim sets. 

Design of electromagnets such as active shims is a multi-stage computational process with 

many factors which must be considered to design the best electromagnet for the job. One 

significant consideration in the design is the radius at which the electromagnet will be 

placed as it plays an important role in performance. This is due to the various scaling 

relationships that govern spherical harmonic electromagnet design (4). 

With this the efficiency of an electromagnet η, defined as magnetic field per unit current, 

is proportional as follows: 

 
𝜂 ∝  

1

𝑟𝑛+1
 (4.1) 

Where η is the efficiency, r is the electromagnet radius, and n is the field order (1 for 

gradients, 2 for 2nd order shim coils).  

For dynamic applications the benefit in slew-rate is even larger with it proportional as: 

 
𝑆𝑅 ∝  

1

𝑟𝑛+2
 (4.2) 

Whereas in general electromagnet resistance and inductance will scale as: 

 𝐿 ∝  𝑟 (4.3) 

 𝑅 ∝  𝑟 (4.4) 

This makes selection of the radius important in the design stage as too large of a radius will 

lead to a decrease in coil performance however physical entrance into the coil is prohibited 
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with too small of a radius. Typically, the shim radius is governed by the other 

electromagnets and their respective geometries. The gradient coil must fit within the main 

magnet bore and the resistive shims must either fit within the gradient housing or in the 

case of an insert coil must fit inside the remaining bore space. In head-optimized scanners 

this real estate is at an even greater premium as radial space is already limited. Previously, 

I have proposed the design of a shoulder cut-out (SCO) actively shielded gradient coil for 

head and neck imaging (5,6). In this, the primary windings consist of partial cylinders with 

rectangular shoulder cut-outs to allow further entrance into the coil whereas the shield 

windings are located further away and outside of the typical bideltoid shoulder breadth.  

For an active spherical harmonic shim set for use in a system such as this the shims can be 

placed with either the primary windings (requiring a shoulder cut-out) or the shield 

windings (complete cylinder). In this work I present the designs of spherical harmonic 

shims with and without shoulder cut-outs at different design radii with a focus on 

performance evaluation through efficiency and field homogeneity. I hypothesize that while 

the shoulder cut-out shim set will see an increase in magnetic field efficiency this will be 

at a cost of field homogeneity due to the removal of conducting surface by the shoulders.  

4.2 Methods 

4.2.1 Design Methods 

An in-house MATLAB function was used to generate computational meshes for use in an 

in-house boundary element method (BEM) software. Two sets of meshes were generated 

with different radii: 0.27 m for fitting outside of the bideltoid shoulder breadth and 0.25 m 

to fit overtop the typical biacromial shoulder breadth just outside from the acromia. The 

shoulder cut-out shim set was designed on a computational surface of r = 0.25 m with a 

square cut-out of 0.225 m along Z and 0.15 m along Y. The cut-out was achieved not by 

removing portions of the mesh but by setting the resistivity of the surface within the cut-

out region such that the cost associated with placing current elements in that region is too 

high and the algorithm places no current there resulting in no wires when contoured. The 

full cylinder shim set was designed on a computational surface of r = 0.27 m. In both cases 

the maximum allowable length was 0.6 m. 
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In the BEM (7-10) the shim surfaces are represented by discretized meshes consisting of 

nodes and triangles and a stream function is defined over the surface which is approximated 

as a weighted sum of basis functions relating the current density to the stream function 

values at each node.  

 

𝜓(𝒓) ≈  ∑ 𝐼𝑛𝜓𝑛(𝒓)

𝑁

𝑛=1

 (4.5) 

 

𝐽(𝑟) = ∇ × [𝜓(𝑟)𝑛(𝑟)] ≈  ∑ 𝐼𝑛∇ × [𝜓(𝑟)

𝑁

𝑛=1

𝑛(𝑟)] =  ∑ 𝐼𝑛𝐽𝑛(𝑟)

𝑁

𝑛=1

 (4.6) 

Where 𝜓(𝑟) is the stream function, 𝐽(𝑟) is the corresponding current density, In is the 

stream function value at node n, 𝐽𝑛(𝑟) is the current density basis and N is the total number 

of nodes on the surface. 

This allows calculation of all relevant electromagnetic parameters solely in terms of the 

stream function. A functional is introduced of relevant coil metrics which is minimized to 

solve for the stream function value at each node. This functional will dictate the final 

performance of the design. Once the stream function is known, it is contoured to produce 

wire patterns which approximate the current density on the surface. In this work, the BEM 

was implemented using a minimum power method utilizing a performance functional as 

follows: 

 

U =  
1

2
∑[∑(𝐼𝑛𝐶𝑛(rk))

𝑁

𝑛=1

− Bz
tar(rk)]

2 +
β

2
∑ ∑ InIm

𝑀

𝑚=1

𝑁

𝑛=1

Rnm

𝐾

k =1

 (4.7) 

 

U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2 +

β

2
𝑃

𝐾

k=1

 (4.8) 

Where Bz(rk) = ∑ (𝐼𝑛𝐶𝑛(rk))
𝑁
𝑛=1  is the z component of the magnetic field at target point rk 

due to the all stream function nodes, Cn(rk) is the field matrix describing the field 

contribution from node n at target point rk, Bz
tar(rk) is the ideal field profile, at point rk, 

defined by a set of magnetic field targets, In and Im are the stream function value at the nth 
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and mth node, respectively; and P = ∑ ∑ InIm
𝑀
𝑚=1

𝑁
𝑛=1 Rnm is the power dissipated in the coil 

surfaces with a resistance matrix Rnm. N is the total number of surface nodes and K is the 

total number of target points. The value β weights the relative importance between 

homogeneity and power minimization. Traditionally, when designing shim coils, one must 

be careful of higher order shims coupling directly with the gradient coils. Incorporating the 

known wire pattern for the gradient coils and using the BEM with an additional mutual 

inductance term introduced to the functional can minimize this coupling (4). As this study 

was primarily focused on the evaluation and comparison of shoulder cut-out and non-

shoulder cut-out spherical harmonic shims this was not employed. In addition to the 

performance functional one can modify the coil by varying the number of contours in 

which the stream-function is contoured.  

In this work shim homogeneity was calculated using two methods: 1) the maximum 

absolute deviation between the ideal magnetic field profile and the produced magnetic field 

profile, as calculated by Biot-Savart calculations, over a sphere of 0.20m: 

 Max Dev = max (|𝐵𝑧(𝑟𝑘) − 𝐵𝑧
𝑖𝑑𝑒𝑎𝑙(𝑟𝑘)|) (4.9) 

Where Bz(rk) is the z-component of the magnetic field produced by the shim coil at the 

target point rk and 𝐵𝑧
𝑖𝑑𝑒𝑎𝑙(𝑟𝑘) is the z-component of the ideal spherical harmonic at the 

target point rk. 

and 2) the Euclidean distance between all ideal magnetic field calculation points and the 

produced magnetic field profile, as calculated by Biot-Savart calculations, over a sphere of 

0.20m: 

 

Inhom = √∑((𝐵𝑧(𝑟𝑘) − 𝐵𝑧
𝑖𝑑𝑒𝑎𝑙(𝑟𝑘))

2)

𝑁

𝑘=1

 (4.10) 

Where Bz(rk) is the z-component of the magnetic field produced by the shim coil at the 

target point rk, 𝐵𝑧
𝑖𝑑𝑒𝑎𝑙(𝑟𝑘) is the z-component of the ideal spherical harmonic at the target 

point rk, and N is the total number of target field points used in the BEM calculations. To 
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account for differences in shim coil efficiencies and the fact that target points are within a 

range of -1 ≤ 𝐵𝑧
𝑖𝑑𝑒𝑎𝑙 ≤ 1 the produced fields are each scaled first so that they fall within the 

same range prior to analysis. 

To select a final set of shim coils for each configuration I selected the candidates which 

minimized the inhomogeneity in the magnetic field while prioritizing slew rate. To 

accomplish this, for each spherical harmonic axis, a subset of coils within 10% of the 

minimum deviation and maximum slew rate were found and from this the coil with the 

highest efficiency was chosen. 

4.2.2 Eddy Current Analysis 

Once a final set of shims coils for each configuration was determined I used previously 

derived wire patterns for an early generation of my X-Mode rotated gradient configuration 

to analyze the eddy current compensation. Since these gradient axes do not lay on the 

traditional X- and Y-axes I denote these as the d1- and d2-gradients. To do this I 

implemented in-house BEM code which solves for the induced eddy current profile on a 

representative bore surface, and it’s associated magnetic field profile at the imaging region. 

With the assumption that the gradient coil is driven by a Heavyside step function, the 

stream function of the induced current in another thin conducting surface, such as a bore 

surface, is calculated as (7): 

 𝐼𝑐𝑟𝑦𝑜 = −[𝐿𝑛𝑚
𝑐𝑟𝑦𝑜

]−1𝑀𝑚𝑞
𝑐𝑜𝑖𝑙/𝑐𝑟𝑦𝑜

 (4.11) 

Where Icryo is the stream function of the induced eddy current, 𝐿𝑛𝑚
𝑐𝑟𝑦𝑜

 is the self inductance 

matrix of the cryostat surface and 𝑀𝑚𝑞
𝑐𝑜𝑖𝑙/𝑐𝑟𝑦𝑜

 is the mutual inductance matrix between the 

coil wire pattern and the cryostat surface. In this work I used a cryostat surface of radius = 

0.3 m and length = 1.0 m to represent a typical head-only MR scanner geometry. Once the 

induced eddy current profile is determined the magnetic field produced is calculated over 

a 0.20 m sphere at the imaging region. This magnetic field profile is then fit to spherical 

harmonics for comparison in eddy current compensation between shim sets. Using the 

known magnetic field profile from each shim a current weighting is solved for each shim 

axis and then the magnetic field profile at that current is summed over all axes. The residual 
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field is then calculated as the difference in the eddy current magnetic field and the summed 

shim fields. This residual field is then fit to spherical harmonics to determine the reduction 

in eddy current magnetic field harmonics. 

Post-hoc to explore increasing the performance of the shim sets I designed two extra coils 

for each configuration using the inverse of the eddy current field data as target points for 

the BEM algorithm. For these, two coils were designed one using the d1-gradient and 

another using the d2-gradient induced eddy current field data. A design study was not 

performed for these coils and only a total of four were designed, one for each gradient axis 

for each radius. 

4.3 Results 

Figure 4-1 shows the final selected shim coils for each configuration with their 

corresponding electromagnetic information given in Table 4-1. Figure 4-2 shows the 

spherical harmonic decomposition for the induced eddy current field and the shim 

compensated residual field profiles. Figure 4-3 shows the spherical harmonic 

decomposition for each spherical harmonic shim coil. Figure 4-4 shows the wire patterns 

for the extra eddy current compensation coils. 

4.4 Discussion 

I performed electromagnetic design simulations to determine the relative performance 

trade-offs between placing spherical harmonic shims inside or outside of the SCO region 

in a SCO gradient platform and observed the following: 1) the SCO set of spherical 

harmonic shims have a higher efficiency and can be driven faster, with a loss in 

homogeneity. 2) the SCO set of spherical harmonic shims perform worse than the complete 

cylinder shims when compensating for example eddy currents produced by a previously 

designed set of X-mode SCO gradient coils, and 3) including a pair of active compensation 

coils designed to cancel out the eddy current fields into the SCO shim set increases the 

performance in compensation of eddy currents. 
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Figure 4-1: Example Shim Wire Patterns 

Derived wire patterns for five spherical harmonic shim axes (XY, Z2, ZX, ZY, X2-Y2) for the full cylinder shim and shoulder cut-out shim cases. Colour indicates 

the direction of current flow with respect to the azimuthal direction.
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The spherical harmonic shim sets presented here were designed such that they would be 

cut into copper clad G10 sheets and as such parameters such as resistance were calculated 

based on that assumption. Outside of that, there is no reason these could not be designed 

using wire press fit into grooves or other techniques. Further, anything calculated with this 

assumption can be easily recalculated using only the exported wire patterns independently 

of the design study. 

Table 4-1: Example Shim Performance Parameters 

 SCO Shims Full Shims 

Parameter X2Y2 XY Z2 ZX ZY X2Y2 XY Z2 ZX ZY 

Slew Rate 

[T/m2/s] 

112 122 509 366 416 87 87 413 290 290 

Efficiency 

[µT/m2] 

46 51 244 83 71 45 45 224 57 57 

Max Dev [AU] 9.7E-4 1.7E-4 1.2E-3 2.4E-3 1.1E-4 9.8E-5 9.3E-5 8.7E-4 5.9E-5 5.9E-5 

Inhom [AU] 7.2E-6 1.8E-7 1.3E-5 2.9E-5 6.3E-6 6.2E-8 6.2E-8 8.8E-6 1.7E-8 1.7E-8 

Max dev = the maximum deviation in the magnetic field between the simulated and ideal fields over a 0.20 

m spherical surface. Inhom = inhomogeneity defined as the root-mean-squared difference between the 

simulated magnetic field profile and the ideal magnetic field profile over a 0.20 m spherical surface. 

As can be seen in Figure 4-2, in terms of reducing the coefficients of the spherical 

harmonics within the eddy current magnetic field the SCO shim set overall performed 

worse than the full cylinder shim set primarily in the Z2, ZX and X2-Y2 cases and in some 

cases increased those components. This motivated performing decomposition on each shim 

axes produced field to determine the possible cause. The individual coil decompositions 

are given and Figure 4-3 and from this although both the SCO and full shim coil designs 

have equal primary spherical harmonic composition the SCO shims have on average higher 

secondary spherical harmonic components which make it more difficult to independently 

shim out specific spherical harmonics in the eddy current field. In all cases there was 

difficulty in compensating for the Z2 term which is interesting. 
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Figure 4-2: Shim Eddy Current Compensation 

Decomposition of the induced eddy current field from example d1- and d2-gradient coils before 

compensation, after compensation with shims, and after compensation with shims + extra coil. Two pairs of 

extra coils (one SCO and one complete cylinder) were designed using the eddy current field data as field 

targets in the design algorithm (outlined in Section 4.2). These extra coils were then included with their 

respective shim set in the compensation algorithm.  
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Figure 4-3: Shim Eddy Current Decomposition 
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SCO Shim = Shoulder cut-out shim, Full Shim = complete cylindrical shim. Decomposition of the produced 

magnetic field profile from each simulated spherical shim coil. All shims had strong primary field 

components of the designed spherical harmonic field. However, the SCO shims had stronger secondary field 

components due to the loss of symmetry in the design surface. 

To further explore compensation of the eddy current fields, I designed two more coils using 

the negative of the d1 and d2 eddy current fields as the field targets for the design. I 

performed this for both cases and did not vary βbut instead chose the same β value and 

number of contours as most designed shims. The individual coil wire patterns are given in 

Figure 4-4 and the corresponding eddy current compensation is given in Figure 4-2. In the 

case of the full cylinder shims the addition of these two coils to the problem did not see 

much of a reduction in the Z2 term but did have the benefit of compensating for lower terms 

such as Z0, X, Y, Z which is typically accomplished using gradient preemphasis. With the 

SCO shims the performance benefit from the addition of this extra pair of coils is more 

noticeable. In addition to compensating most lower terms, there is a noticeable decrease in 

higher order terms with the exception of the X2-Y2 term which is observed in both SCO 

cases, with and without the extra coils. As well, in the SCO case we see a reduction in the 

Z2 term that I did not observe in the full cylinder case. 
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Figure 4-4: Sample Eddy Current Field Coils 

Wire patterns created using the eddy current field data for extra compensation performance. Colour indicates 

the current direction with respect to the azimuthal direction. 

One limitation of this work is in the definition of homogeneity and the homogeneity 

requirements for full dynamic eddy current compensation. While the homogeneity metrics 

presented here are useful for comparing relative performance between the shoulder cut-out 

and full cylinder shim set, they are unhelpful in determining the homogeneity requirements 

in compensating the induced eddy currents. To mitigate this, we implemented spherical 

harmonic decomposition using previously designed X-mode gradient coils and a stream-
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function eddy current solver however, the use of induced eddy current information 

calculated using the BEM is not without limitations. Primarily although this gives a good 

approximation of the complexity and magnitude of the eddy currents it fails to provide 

information on the time evolution. This would require more complex simulations 

incorporating more realistic cryostat surfaces however, for relative comparisons in 

exploring the trade-offs in the design of SCO shims this was considered unnecessary. 

Another limitation in this study is that I did not explore the complexity of the induced eddy 

current by the shim coils themselves. With the SCO shims breaking symmetry it would be 

reasonable to expect the introduction of higher order eddy currents in the cryostat surface. 

However, these would be weaker than those introduced by the gradient switching. This is 

important but still something that may motivate the exploration of actively shielded SCO 

shims. Basically, by combining the inner SCO surface and outer non-SCO surfaces into 

the problem it would be possible to design shims such as those presented here but with 

active shielding. This is a possible avenue for future work. It is important to note that the 

extra compensation coils used the complete eddy current field without gradient pre-

emphasis. In practice the significant X and Y field terms can be compensated using the 

gradients and it may be worth exploring the same design with the field targets calculated 

using the post gradient compensation field. This may be valuable as the original field 

targets have dominate X and Y field terms that would be removed with gradient 

preemphasis. 

This study gives an indication of the trade-offs in the design of active spherical harmonic 

shims with shoulder cut-outs for a head and neck platform. However, two main aspects 

would need to be modified to incorporate shims like those presented here into a finished 

gradient coil. First, the design study would need to incorporate the mutual inductance with 

the gradient layers to avoid unnecessary electromagnetic coupling between the shims and 

the gradient coils. Second, the radii would need small adjustments to account for the 

thickness of copper and tubing. This would push some of the shim coils to a larger radii 

which would have to be chosen appropriately to balance the small electromagnetic trade-

off that comes with that. Lastly, although these shim coils are operated with lower voltages 

and currents than a gradient coil incorporating force and torque balancing into the designs 

may be necessary for implementation in certain platforms. This modification can be made 
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with a simple addition to the performance functional with the addition of Lagrange 

multipliers utilizing the magnetic field profile of the B0 magnet. 

4.5 Conclusion 

Ultimately, this work provides the first direct comparison between SCO and non-SCO 

shims for use in a compact head and neck imaging platform. While the SCO shims are 

stronger and faster which is convenient for dynamic applications the increase in those 

performance metrics over the non-SCO shim coils does not warrant the decrease in 

homogeneity that comes with it. 
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Chapter 5 

5 Design, Construction and Verification of 21MHz 
Radiofrequency Coil 

This chapter consists of an unpublished manuscript titled: 

Eric J. Lessard, Kieffer J. Davieau, Diego F. Martinez, Colin Metrow, William B. Handler, 

and Blaine A. Chronik. A 21 MHz RF Coil Designed Using a Boundary Element Method: 

Theoretical Design, Experimental Results, and Next Steps 

5.1 Introduction 

While the clinical and research MR environment has historically observed a race towards 

high-field platforms recently, low-field MRI has seen a resurgence in terms of research and 

clinical applications (1-3). This has motivated the design of purpose-built MR systems 

using permanent magnets (4-6) and superconducting wire (7). These systems typically 

benefit from simplified siting requirements, decreased capital costs, and lower specific 

absorption rate. The lower magnetic field in these systems corresponds to a lower Larmor 

frequency of the nuclei of interest. Table 5-1 gives a list of MR visible nuclei and their 

Larmor frequency at across a range of field strengths.  

Table 5-1: Larmor Frequency for Various Nuclei 

 0.064T 0.5T 1.5T 3T 7T 

1H 2.7 MHz 21 MHz 64 MHz 128 MHz 300 MHz 

3He 2.1 MHz 16 MHz 49 MHz 97 MHz 230 MHz 

13C 0.7 MHz 5.4 MHz 16 MHz 32 MHz 75 MHz 

19F 2.6 MHz 20 MHz 60 MHz 120 MHz 280 MHz 

129Xe 0.75 MHz 5.9 MHz 18 MHz 35 MHz 82 MHz 
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Examples of MR visible nuclei and their relative frequency across a range of field strengths. Low frequency 

techniques may be possible at comparatively higher field strengths for difference nuclei. 1H = Proton, 3He = 

Helium-3, 13C = Carbon-13, 19F = Fluorine-19, 129Xe = Xenon-129. 

While a lower Larmor frequency will have a negative effect on the MR signal it may allow 

usage of low-frequency development tools towards the design of RF coils. Generally, the 

role of the RF coil in an MR experiment is transmitting and receiving signal from the MR 

environment. The transmit coil generates an RF pulse consisting of a magnetic field 

perpendicular to the B0 direction. This field oscillates at the Larmor frequency which is 

nuclei and B0 dependent.  This provides the goal of exciting the spins within the sample 

and tips them away from their equilibrium. A transmit RF coil has various requirements. 

Among these are: production of a homogeneous magnetic field across the imaging region, 

production of a strong magnetic field to tip the spins in a timely manner and for optimal 

energy transfer it must be tuned to the Larmor frequency of the nuclei of interest within the 

B0 field. 

For head/neck and brain imaging typical types of transmit radiofrequency coils include 

birdcage style, surface coil arrays, dipole antennas, and local shim-array coils (8). 

Considered to be the most successful MR RF coil, the bird cage coil is a volume coil 

consisting of two end-rings and an even number of rungs connecting them (9). The number 

of rungs will influence the homogeneity of the produced magnetic field. Capacitors are 

placed strategically throughout either the centre of the rungs or along the end caps. This 

has the purpose so that the rungs vary in phase during operation and produce a circularly 

polarized transmit field. 

Previously, I have motivated the design of an MR system wherein the gradient coil 

subsystem employs a shoulder cut-out design to enable to patient to enter further into the 

system and within a small radius system allow imaging of both the head and neck (10,11). 

Unfortunately, a bird cage style RF transmit coil is naturally incompatible with a system 

such as this due to the end ring requirement. In the bird cage configuration the end rings 

prevent entrance past the shoulder and cannot be removed. A technique used in the design 

of MRI gradient coils, known as the boundary element method (BEM), allows calculation 

of wires in space which produce a target field profile (12-14). This technique is flexible in 

geometry and allows derivation of wire patterns on arbitrary surfaces. Due to the low 
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frequencies at which gradient coils operate, the electromagnetics operate within a 

magnetoquasistatic regime which allows the simplification of Maxwell’s equations in 

terms of neglecting the displacement current, a consequence of rapidly changing fields 

(15). While this approximation has been demonstrated to be valid at the low operational 

frequencies used in gradient switching this is not the case for the RF coils and as such these 

methods are not employed to design clinical frequency RF coils. Due to this, full-wave 

simulations must be employed when calculating magnetic field profiles from designed RF 

coils. These simulations include Maxwell’s displacement current and are significantly 

more time consuming and it is impractical to design complex, or unique geometries RF 

coils using these techniques.  

With the resurgence of interest in low-field MRI platforms there have been successful 

demonstrations of applying these techniques to ultra-low frequencies such as 2.7 MHz. 

However, there exists clinical interest in low-field scanners operating at 0.5T (7) 

corresponding to a frequency of 21 MHz. In our lab previous work has been done 

comparing BEM derived wire patterns and full-wave simulations however, experimental 

construction and field verification has yet to be performed. 

In this work a cylindrical low-field transmit RF coil consisting of two linearly polarized 

electromagnets is designed, constructed, and verified for use at 21 MHz.  

5.2 Methods 

5.2.1 Computational Methods 

Triangular element meshes were generated using in-house mesh generating software 

written in MATLAB. The length and outer diameter (OD) were chosen to correspond with 

typical bird-cage style coils for head-only applications and as such were designed to be 

installed on tubing of a length of 0.364m and an OD of 0.403 m. The choice was made to 

use CNC cut copper-clad G10 sheets of 0.25 mm thick copper and 0.50 mm thick G10 to 

machine the wire patterns which would then be rolled around the tubing and affixed. 

Choosing to lay the first layer copper side down and the second copper side up to ensure 

appropriate electromagnetic isolation between the two layers lead to a design radius of 

0.2016 m for the X-polarized field and 0.2029 m for the Y-polarized field coils, 
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respectively. Once the meshes had been generated, they were used in a custom in-house 

boundary element method solver (14) which aims to determine wire positions in space 

which when current is ran through best match an input target field profile as constrained 

by a performance functional accounting for field homogeneity and ohmic power loss 

throughout the electromagnet. To accomplish this, I solve for a stream-function value at 

each node on the surface and then contour it to provide wire positions in space. A functional 

is introduced to provide a single solution and balance the relative importance of field 

homogeneity and dissipative power as follows: 

 

U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2

𝐾

k=1

+
𝛽

2
𝑃 

(5.1) 

Here, the first term represents field homogeneity as the sum of squares difference between 

the produced magnetic field and the target profile while the second term represents the 

power dissipated through the RF coil through Joule heating. Once the stream-function is 

calculated, for a particular performance functional weighting, and contoured all 

electromagnetic and design-relevant parameters can be calculated. Interest in this work is 

the minimum wire spacing (Wmin), which is determined by the calculated stream-function 

profile and the number of contours; the RF inhomogeneity calculated as the coefficient of 

variation of the magnetic field inside a sphere of 0.25 m; and the resistance, which is 

calculated using the resistivity of copper and the physical wire information. 

RF inhomogeneity was calculated as the coefficient of variation in the magnetic field 

calculated over equally spaced points in a 0.25 m diameter sphere situated at the isocenter 

of the electromagnet. 

 𝑖𝑛ℎ𝑜𝑚 = |
𝜎𝐵1

𝜇𝐵1

| ∗ 100% 
(5.2) 

A pool of potential coils for each axis was built by varying β, the relative weighting 

between homogeneity and ohmic loss; and the number of contours used. β was varied from 

10-13 to 10-5 in 100 logarithmically spaced steps and the number of contours was varied, 

for each β value, from 4 to 24 in step sizes of 2. Coils considered for manufacturing were 
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narrowed down as the ones with Wmin which was larger than the CNC tolerance for 

manufacturing, an inhomogeneity <2% over 0.25m and from those the lowest resistance 

coil was chosen. 

 

5.2.2 Construction Methods 

Once the final RF coils were determined from the design study they were converted to flat 

planes using in-house MATLAB functions. Elements of the wire pattern were removed and 

individual loops of wire in the wire pattern were joined to make sets of continuous wire. 

The wire pattern was then exported for final touches in SOLIDWORKS (DS Systems, 

France) and machined using CNC routing onto copper clad G10 sheets. Once completed 

final electrical connections were added as needed and the layers were rolled onto the 

structural cylinder surface. Construction photos at various stages are shown in Figure 5-5. 

The coil was matched to 50 Ohms using a matching circuit constructed at the coil input. 

5.2.3 Field Measurements 

Single RF axis fields were produced using a Keysight RF generator operating at 25 dbm at 

an operational frequency of 21 MHz. Field measurements were performed using a 3-axis 

CNC stepped field mapping robot as previously described (16). The fields were measured 

using tuned b-field probes attached to a stepper robot. The b-field probe was attached to an 

oscilloscope which was controlled by the robotic software and read in at the programmed 

field positions. This was done by positioning the center of the b-field probe within the 

geometric center of the radiofrequency coil and defining that as the origin. A plane 

measurement was taken with respect to this center. Due to the size of the probe the probe 

could extend further in one direction than the other.  

5.2.4 Full-Wave Simulations 

Post-hoc, based on measured magnetic field profiles we performed full-wave 

electromagnetic simulations for a single axis using the commercial software Sim4Life 

(ZMT, Switzerland). These simulations were performed using the complete wire path with 

an RF input and output feed attached to the cylindrical wire patterns. The port was driven 
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with a current of 1 A for the simulations. Post-hoc based on these results we decided to 

perform the same simulations with the wire pattern split in half with both halves being 

driven in phase. 

5.3 Results 

Due to the symmetry in the X-polarized and Y-polarized magnets only the Y-polarized 

results will be shown in detail. Figure 5-1 shows β vs a) Wmin, b) Inhomogeneity, and c) 

Resistance across all β and contour combinations for the Y-polarized electromagnet. Figure 

5-2 shows the selected electromagnet wire pattern Figure 5-3 shows the a) simulated 

magnetic field at the isocenter over a full period of 2π. Table 5-2 gives the simulated and 

measured electromagnetic performance parameters for both coils. Figure 5-4 shows a 

representative magnetic field plot from a) Biot-Savart simulations, b) measurement, and c) 

full-simulation, d) split-simulation. Construction photos of the RF coil are shown in Figure 

5-5.  

5.4 Discussion 

I performed electromagnet design, simulation and construction of a low-frequency RF coil 

and observed the following: 1) there is disagreement in the magnetic field between the 

measured and Biot-Savart calculated field profiles. 2) there is qualitative agreement in the 

magnetic field profile between the measured and full-wave simulated field profiles. 3) the 

experimental setup violates the magnetoquasistatic assumption however, I hypothesize that 

this is due to the current path length of the designed coil as motivated by the split coil 

simulation results. 
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Figure 5-1: Performance Parameters vs Beta Value 

Plots demonstrating the effect of changing Beta in the performance functional which varies the relative weighting of homogeneity and power dissipation. Resistance 

given for DC current.  N contours is the number of contour lines used in creation of the RF wire pattern.  As the relative importance of minimizing power dissipation 

is lowered by lowering the beta value the relative importance of field homogeneity is increased. This is observed as an increase in winding density leading to 

smaller minimum wire spacing, lower inhomogeneity and greater coil resistance. As the relative importance of minimizing power dissipation is increased by 

increasing the beta value the relative importance of field homogeneity is decreased. This is observed as a decrease in winding density leading to larger minimum 

wire spacing, higher inhomogeneity, and smaller coil resistance. Increasing the number of contours will increase the coil length and winding density and this is 

observed as a decrease in minimum wire spacing and increase in coil resistance.
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Figure 5-2: RF Coil Wire Patterns 

Derived RF coil wire patterns for the X-polarized and Y-polarized coils. Colour indicates direction of current 

with respect to the azimuthal direction. 

Figure 5-5 shows the various stages of construction and measurement of the final coil. 

Figure 5-5A shows a single layer as received from the machine shop prior to electrical 

connections being soldered on. Figure 5-5B shows the flat coil after electrical connections 

and insulating tape has been added as needed. Figure 5-5C shows the flat layer being 

wrapped around the structural tubing. At this stage the coil is held in place as superglue 

dries and the clamps are moved circumferentially around the coil to complete the adhesion 

to the tubing. Finally, Figure 5-5D shows the coil and the setup of the field measurement 

experiment. Construction photos are shown for both coil layers with measurements only 

performed for a single layer. 



96 

 

 

Figure 5-3: Simulated Field at [0,0,0] vs Time 

Simulated magnetic field at the isocentre for the X-polarized and Y-polarized coils when run separately and 

together at a current of 1A. 

It can be seen from Figure 5-4 that in the Biot-Savart simulations the center point at current 

of 1 A, has a mean magnetic field strength of 3.699 uT, a maximum magnetic field strength 

of 3.72 uT and a minimum magnetic field strength of 3.67 uT over the entire time series 

when the X- and Y-polarized electromagnets are ran π/2 out of phase. This corresponds to 

an overall percent-difference of 1.3% from maximum to minimum. 
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Figure 5-4: Magnetic Field Plots 

Magnetic field plots during coil operation for the A) Biot-Savart simulations calculated as part of the 

quasistatic design process, B) Measured magnetic field using experimental setup shown in Figure 5-5D, C) 

Full-Wave (complete wire pattern) simulation results using Sim4Life, and D) Full-Wave (split wire pattern) 

simulation results using Sim4Life. Full-Wave (complete) uses the complete RF wire pattern driven using a 

single input port and Full-Wave (split) uses the RF wire pattern split into two equal half patterns each driven 

in-phase using separate input ports. 

It is clear from Figure 5-4 that although the Biot-Savart simulations show a strong 

homogeneous field which encompasses the center of the RF coil this is not the case when 

looking at experimental measurements. To explore this further we performed full-wave 

simulations and observed a similar field profile as the experimental. While this difference 

could be due to a manufacturing issue such as a short between two wires this is unlikely 

and to explore this, I systematically measured electric properties of the circuit across the 
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two halves of a single RF axis and between the two layers. The symmetry in the 

measurements implies that it is likely not a manufacturing issue. This was further verified 

with the full-wave simulations showing a qualitatively similar field profile between full-

wave and experimental. It should be noted that the Biot-Savart and full-wave simulations 

use a current of 1 A and the experimental measurements use a 25 dBm and are therefore 

not current matched. Upon further investigation I believe the issue is due to the long current 

path relative to the wavelength. Previous, unpublished work in which the full-wave 

simulations consisted of sets of independently driven current loops as opposed to a single 

current path showed no difference between full-wave and Biot-Savart simulations at this 

frequency. However, as evident here when the full current path is employed there exists 

differences in the simulation results. I believe this to be due to the electromagnetic wave 

delay within the RF circuit due to the finite speed of light. The RF circuit has a current path 

of approximately 19 m and at 21 MHz an electromagnetic wave has a wavelength of is 14 

m in air. The wavelength would be further shortened in a conductor such as copper. 

Combining the fact that the wavelength is much smaller than the current path and the 

previous unpublished results showing agreement between full-wave and Biot-Savart 

simulations when shorter current loops are driven independently the authors believe this 

technique may be possible in the case of shorter coils which may have poorer homogeneity. 

We explored this by performing full-wave simulations with each half of the coil being run 

independently in phase with the other. This corresponds to a current path of approximately 

9 m and from these results it appears to closer match the Biot-Savart simulations. 
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Figure 5-5: RF Coil Construction Photos 
A) Flat coil without all electrical connections as received by the machine shop. B) flat coil with electrical 

connections and insulating tape added. C) in-progress rolling and adhering the coil to the cylindrical surface. 

D) Field measurement setup with B-field probe positioned within the upright RF coil. 

While this work explored the design of a 21 MHz RF coil for 1H imaging at 0.5T from 

Table 5-1 we can see that at the same magnetic field strength different nuclei will have a 

much lower Larmor frequency and in cases this technique may be applicable to multi-

nuclei imaging at a wider range of field strength. For example, current research exploring 

129Xe at 0.074T (0.87 MHz) is promising (17) and this work may motivate the design of 

129Xe coils using low-frequency design techniques such as those outlined here. This is 

especially promising due to the SNR dependence of the hyperpolarized noble gas signal on 

field strength makes low-field imaging attractive (18).  

By choosing coils with appropriate lengths or driving the coil in independently driven 

sections it may be possible to apply these techniques towards development of 21 MHz RF 

coils and design unique geometries such as a shoulder cut-out RF transmit coil. In cases 

where further entrance into a cylindrical bore is required cradle shaped gradient coils have 

been explored and this method could provide similar shaped RF coils in cases where the 
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frequency is low. Permanent magnet style head-cap magnets at much lower frequencies 

have shown the benefit of similar techniques in the design of head-cap RF coils (4). 

However, before this is worth exploring these results must be better understood and to 

accomplish this future work should be focused on designing and testing shorter coils than 

the ones presented here. The constructed coil presented here can still be used to explore 

this as the outer coil can be accessed and run as two separate halves. It may also be possible 

to further reduce this by splitting into four separate quadrants. However, each division 

would require the design of an appropriate RF power splitter to ensure that the 

halves/quarters are receiving equal in-phase power. This makes splitting the wire into equal 

lengths attractive as it ensures the resistance of the path length is equal and therefore makes 

power splitter easier. Lastly, further study on the inductive coupling between the RF wire 

patterns and the gradient coils that would be used is important to ensure that imaging is 

unaffected during operation. This opens up further study through incorporation of the 

gradient wire patterns into the design algorithm and including an additional mutual 

inductive term to minimize the electromagnetic coupling. 

5.5 Conclusion 

Although the constructed coil has field artefacts not captured by the Biot-Savart 

simulations used in the design this work motivates the potential future exploration of 

shorter RF coils designed using magnetoquasistatic design methods for the potential of 

improved B1
+ homogeneity, unique geometries, and quicker designs.  
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Chapter 6 

6 Dynamic Eddy Current Compensation using a Matrix 
Array 

This chapter consists of a manuscript in preparation for submission to Magnetic Resonance 

in Medicine titled: 

Eric J. Lessard, William B. Handler, and Blaine A. Chronik. Dynamic Eddy Current 

Compensation and Spherical Harmonic Shimming using a Matrix Array Coil. 

6.1 Introduction 

The drive for higher performance gradient coils has come with an increased use of 

increasingly complex designs such as asymmetric gradient coils (1, 2) and unique 

geometries like gradient coils with shoulder cut-outs (3–5). As the gradient coil moves 

away from symmetry within the MRI system there is a corresponding increase in the 

complexity of the induced eddy currents and their associated magnetic field profile. This 

is traditionally solved with an increase in shielding performance which has the trade-off of 

a decrease in imaging performance (2, 6, 7). In addition, shielding asymmetric and complex 

geometry gradient coils is a more challenging task than shielding symmetric coils. This 

makes eddy current compensation important and is traditionally employed using gradient 

pre-emphasis to compensate for low order harmonics within the eddy current field. 

However, in certain gradient coil configurations the residual eddy current profile may have 

unwanted higher order field harmonics that remain even with gradient pre-emphasis. This 

poses unique challenges by handling eddy currents through either hardware or post-

processing means. 

Higher order harmonic eddy current compensation can be accomplished using the resistive 

spherical harmonic active shims in a similar way to gradient pre-emphasis through dynamic 

application of the shims during the imaging sequence. Although the shim set is used for 

correcting of inhomogeneities due to the presence of conducting material within the 

magnetic field their higher order harmonic field profiles can also be used to remove the 

unwanted eddy current harmonics. In addition to traditional spherical harmonic shims 
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matrix array, or multi-coil, techniques have been successful at higher fields for slice-by-

slice shimming and even spatial encoding (8–10) and have been proposed as a method of 

producing gradient fields for MRI (11). They have the benefits of being able to produce 

arbitrary magnetic field profiles and are often not optimized for a shape and allow non-

spherical imaging regions to be constructed. Although, these have had success in shimming 

higher order harmonics and improving image quality on a dynamic slice-by-slice basis they 

have not been explored for use of dynamic eddy current compensation. Further, these 

multi-coil implementations require insert sized matrix coils or inclusion into the RF receive 

chain and use large numbers of independently driven channels, often 32 and higher, 

requiring extra hardware that may not be readily available within the MR workflow.  

In head-only MRI platforms where the inner diameter is already limited it would be 

beneficial to implement a matrix array within the gradient housing. However, the radial 

space within a compact gradient is already at a premium and incorporating more layers of 

electromagnet wire limits the space available for the gradient axes, shim set and cooling. 

Therefore, in this work I explored the design of a matrix array coil to replace the traditional 

spherical harmonic shim set within a head-only MRI platform while demonstrating the 

feasibility of dynamically compensating for eddy current fields and the ability to create 

arbitrary magnetic field profiles. 

6.2 Methods 

6.2.1 Theory 

In this work a predefined coil profile consisting of independently driven current loops 

spaced over the surface of a cylinder and a set of field target field points spanning an 

imaging region location was defined: 
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𝐵𝑡𝑎𝑟 = [

𝐵𝑧1

⋮
𝐵𝑧𝑘

] (6.1) 

Where Btar is the target field points and Bzk is the z-component of the magnetic field at field 

target point k. A field matrix describing the field contribution at each target point from 

each loop was constructed as follows: 

 
𝑪 =  [

𝐶11 ⋯ 𝐶𝑛1

⋮ ⋱ ⋮
𝐶1𝑘 ⋯ 𝐶𝑛𝑘

] (6.2) 

Where Cnk is the field contribution from loop n at field point k. From this an individual 

current weighting can be determined for each current loop that approximates the target 

field profile. The field is calculated in this work using the Biot-Savart approximation for 

magnetic fields: 

 

𝐵(𝒓) =  
𝜇0

4𝜋
∫

𝐼𝒅𝓵 × 𝒓′

|𝒓′|3
𝐶

 (6.3) 

Where I is the current flowing along a path C with d𝓵 representing a infinitesimal portion 

of the path at point 𝓵 and r’ = r – 𝓵 is the distance between the infinitesimal current portion 

and the point at which the field is calculated. In this work, currents paths are represented 

as wire patterns described in terms of current elements consisting of an x, y, and z positional 

value for the centre of the element of length dx, dy, dz and a current running through the 

element of 1 A. 

 

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑖 =
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𝑦𝑖

𝑧𝑖

𝑑𝑥𝑖

𝑑𝑦𝑖

𝑑𝑧𝑖

1 ]
 
 
 
 
 
 

 (6.4) 
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With this the z-component of the magnetic field from a single current loop (Loop 1) can 

be calculated through numerical integration of the elements that compose that loop as 

follows: 

 

𝐶1𝑘 = ∑
(𝑑𝑥𝑒𝑙𝑟𝑦

′ − 𝑑𝑦𝑒𝑙𝑟𝑥
′)

|𝑟′|3

𝑁

𝑒𝑙=1

 (6.5) 

Where C1k  is the z-component field contribution of current loop 1 at target point k with r’ 

= (xk, yk, zk) – (dxel, dyel, dzel) and the summation is performed over N current elements. 

This is calculated for all current loops at each field target. Since the total magnetic field at 

the target points is the sum of the fields produced by each loop and the fields will scale 

linearly with current the total field with individual current profiles for each loop can be 

written as: 

 
[
𝐵𝑧1

⋮
𝐵𝑧𝑘

] = [
𝐶11 ⋯ 𝐶𝑛1

⋮ ⋱ ⋮
𝐶1𝑘 ⋯ 𝐶𝑛𝑘

] [

𝑤1

⋮
𝑤𝑛

] (6.6) 

With Wn being the current weighting value for loop n which can be solved as: 

 

𝑊 = [

𝑤1

⋮
𝑤𝑛

] = [
𝐵𝑧1

⋮
𝐵𝑧𝑘

] [
𝐶11 ⋯ 𝐶𝑛1

⋮ ⋱ ⋮
𝐶1𝑘 ⋯ 𝐶𝑛𝑘

]

−1

 (6.7) 

Where W is the current weighting vector and Wn is the current through loop n. This can be 

extended to dynamic eddy current compensation by performing the matrix inversion at 

each measurement time point. 

 

𝑊(𝑡) = [
𝑤(𝑡)1

⋮
𝑤(𝑡)𝑛

] = [
𝐵(𝑡)𝑧1

⋮
𝐵(𝑡)𝑧𝑘

] [
𝐶11 ⋯ 𝐶𝑛1

⋮ ⋱ ⋮
𝐶1𝑘 ⋯ 𝐶𝑛𝑘

]

−1

 (6.8) 

6.2.2 Design Methods 

Using in-house electromagnetic software written in MATLAB matrix coils of 

independently driven current loops were created over surfaces of radius 0.265 m with a 

maximum length of 0.36 m. Three sets of matrix coils were created with 8, 16, and 24 
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current loops. The coil locations were designed to be equally spaced azimuthally around 

the cylinder and along the longitudinal axis. The wire patterns for each matrix coil 

configuration are shown in Figure 6-1. A set of field target points corresponding to a sphere 

of 0.20 m diameter situated around the isocentre were constructed for field calculations. At 

these field points the magnetic field profile was calculated for each current loop, at a current 

of 1 A, using an in-house Biot-Savart solver. 

6.2.3 Spherical Harmonic Field profiles 

To evaluate the matrix coil performance in creating individual spherical harmonic field 

profiles sets of target fields (Bz
tar) were made corresponding to first order spherical 

harmonics (X-, Y- and Z-gradients), and second order spherical harmonics (XY, Z2, ZX, 

ZY and X2-Y2). The idealized gradient profile and spherical harmonics and ones produced 

by the matrix coils were plotted over a 0.20 m diameter spherical surface to visualize the 

produced fields. 

6.2.4 Eddy Current Analysis 

Eddy current analysis was performed two ways: A static eddy current case and a dynamic 

eddy current case. The static eddy current case is derived using a stream function boundary 

element method approach and wire patterns from a previously designed research prototype 

asymmetric X-gradient. With the assumption that the gradient wire pattern is driven with 

a Heavyside step function the stream function of the induced current in another thin 

conducting surface, such as a bore surface, is calculated as (12): 

 𝐼𝑐𝑟𝑦𝑜 = −[𝐿𝑛𝑚
𝑐𝑟𝑦𝑜

]−1𝑀𝑚𝑞
𝑐𝑜𝑖𝑙/𝑐𝑟𝑦𝑜

 (6.9) 

Where Icryo is the stream function of the induced eddy current, 𝐿𝑛𝑚
𝑐𝑟𝑦𝑜

 is the self inductance 

matrix of the cryostat surface and 𝑀𝑚𝑞
𝑐𝑜𝑖𝑙/𝑐𝑟𝑦𝑜

 is the mutual inductance matrix between the 

coil wire pattern and the cryostat surface. The magnetic field from the stream function 

induced in the cryostat surface is calculated as previously described (13, 14). 

Unfortunately, this formulation fails to provide details on the time evolution of the eddy 

current but can give an estimate of the complexity of the resultant field profile. In this work 

the stream function eddy current was solved in a radius of 0.3 m and length of 1.0 m 
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computational bore surface using the mutual inductance between the wire pattern from a 

previously manufactured research prototype X-gradient. This field profile was fit to the 

spherical harmonics before and after compensation. Compensation was performed solely 

with the matrix array coil and did not include any spherical harmonic shims or gradient 

coils. 

For the dynamic eddy current case, I used experimental data for an asymmetric research 

prototype X-gradient coil. The eddy current magnetic field was compensated at each point 

and for each time point a current weighting for each current loop was solved for with the 

residual field calculated as the difference between the experimental field and the simulated 

matrix field profile. I compared these results to dynamic eddy current compensation using 

previously designed research prototype spherical harmonic shim coils combined with 

gradient and B0 fields. This consisted of 10 field profiles used in the spherical harmonic 

compensation: B0, X-grad, Y-grad, Z-grad, XY, XZ, ZX, Z2, Z3, and X2-Y2. 

6.2.5 Power and Energy Analysis 

To evaluate the power dissipated through the current loops in each of the three cases the 

resistance of the wire was calculated. Combining the current time data from the dynamic 

eddy current compensation and the resistance of the current loops the power dissipated 

through each loop was calculated at each time point.  

6.3 Results 

Figure 6-1 shows the matrix array coils. Figure 6-2 shows the eddy current decomposition 

of the simulated induced eddy current profile before and after compensation. Figure 6-3 

shows the spherical harmonic surface profile over a 0.20 m diameter sphere for the 

idealized, 8-channel, 16-channel, and 24-channel cases. Figure 6-4 shows the experimental 

time series eddy current data and the simulated reduced eddy current field. Table 6-1 gives 

the maximum absolute field value for the experimental eddy current pre- and post-

compensation using the 8-, 16-, and 24-channel compensation coils. Calculated resistance 

and inductance information for single channels in each configuration are given in Table 6-

2. Figure 6-5 shows power and energy time curves for the 8-, 16-, and 24-channel 

compensation coils during dynamic eddy current compensation. 
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Figure 6-1: Multi-Coil Wire Patterns 

Multi-coil wire patterns for the 8-, 16- and 24-channel cases. Colour indicates direction of current flow with 

respect to the azimuthal direction. 

6.4 Discussion 

I performed simulations of eddy current compensation using three different matrix array 

coils of 8-, 16-, and 24-channels of independently driven current loops and observed the 

following: 1) there was a noticeable increase in performance as the number of channels 

was increased from 8- to 24-channels, 2) all three configurations can produce a range of 

magnetic field profiles relevant to MRI and 3) the 16- and 24-channel matrix array coils 

performed better at compensating experimental eddy current data in silico than the 

spherical harmonic active shims. 

Table 6-1: Multi-Coil Single Loop Inductance and Resistance 

 Channels 

 8 16 24 

Inductance [µH] 0.44 0.29 0.27 

Resistance [mΩ] 4.7 3.1 2.3 

Inductance and resistance information calculated using the individual current loops. 

In gradient coil configurations utilizing asymmetric or non-cylindrical designs the induced 

eddy current profile increases in complexity. These induced eddy currents can have higher 

order field terms that cannot be compensated using gradient compensation alone. This is 
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typically mitigated using improved magnetic shielding at the cost of gradient coil 

performance. However, the drive for higher performance gradients can make sacrificing 

shielding to increase performance attractive however, this comes with the requirement of 

compensating for eddy currents either through in-line or post-processing methods. 

Appropriate eddy current compensation accounting for these higher order terms can 

improve image quality and allow the use of gradient coils with decreased shielding and 

therefore increased performance while maintaining image quality through dynamic active 

compensation of induced eddy currents.  

One method of evaluating eddy current compensation in this work utilized the boundary 

element method to derive the induced eddy current in a representative bore surface and the 

wire pattern of a research prototype X-gradient. The induced eddy current had prominent 

X and ZX components as shown in Figure 6-2. In all three configurations the residual field 

coefficients were reduced and in the 8-channel case a large component of the ZX 

coefficient remained however, in the 16- and 24-channel configurations this was 

successfully reduced. 

 

Figure 6-2: Multi-Coil Static Eddy Current Compensation 

Spherical harmonic decomposition of the induced eddy current magnetic field from a representative 

asymmetric X-gradient pre- and post-compensation. 

All three configurations were able to recreate spherical harmonics over a 0.20 m diameter 

spherical volume as shown in Figure 6-3 with the 24-channel configuration performing 

better than both the 16- and 8-channels. 
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Figure 6-3: Generating Spherical Harmonic Fields 

Simulated surface magnetic field plots for 1st and 2nd order spherical harmonic fields (gradients and shim 

fields) for the ideal case, 24-channel, 16-channel, and 8-channel cases. 

To evaluate the performance of compensating for dynamic eddy currents I employed 

experimental data and at each measurement time point solved for a current profile within 

the matrix array coil that approximates the inverse of the magnetic field induced by the 

eddy current. The compensated and uncompensated field profiles are shown in Figure 6-4. 

It is clear from this figure that increasing the number of channels decreases the strength of 

the eddy current and increases its decay time. It is important to note that these all used a 

single loop of wire for each channel and as a result the maximum required current for the 

8-, 16-, and 24-channels were 6, 18, and 31 A, respectively. In the case of the smaller loops 

of wires used in the higher channel configurations the current required is outside of the 

range that would be feasible given amplifiers that would be used to drive a setup like this. 

However, this can be solved in the manufacturing process by winding each current loop 

with multiple windings as this will increase the magnetic field efficiency.  
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Figure 6-4: Dynamic Eddy Current Compensation 
Experimental magnetic field profile and simulated post-compensation magnetic field profile for induced eddy current fields. Experimental measurement points are 

distributed over the surface of a spherical volume and each take measurements of the magnetic field over time at their specific location on the sphere.  This is 

represented in the above plots as a single line for each measurement location. The multi-coils are used to create the inverse of the magnetic field at each measurement 

point location over time and the two fields are superimposed leaving a residual field that remains after compensation.
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As shown in Table 6-2 each coil configuration was able to significantly reduce the 

magnitude of the eddy current field when looking at the maximum absolute field point over 

the time series. A maximum reduction of 69% was observed in the 8-channel case and a 

maximum reduction of 92% was observed in both the 16- and 24-channel cases. Although, 

the maximum absolute field reduction was the same in both the 16- and 24-channel cases 

overall there was a greater reduction in the 24-channel case overall with two points 

contributing to the maximum field point in both the 16- and 24-channel cases. 
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Table 6-2: Dynamic Eddy Current Compensation Field Reduction 

  Channels   

 

Uncompensated 8 16 24 

SH Shims + 

Grads + B0 

8-Channel + 

Grads + B0 

Max Absolute Field [µT] 4.2 1.3 0.32 0.33 0.64 0.84 

Percent Reduction [%] 0 69 92 92 85 80 

Max Absolute 

Compensation Current [A] 
0 6.5 18 31 0.3 7 

Comparison with spherical harmonic shim coils in reducing the absolute induced eddy current magnetic field.  
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Since this study was concerned with showing the utility of implementing a matrix array in 

the space normally occupied by spherical harmonic active shims, I also explored dynamic 

eddy current compensation using the B0, gradients, and spherical harmonic active shim 

channels for a total of 10 independently driven channels. The maximum residual field and 

the percent reduction in the eddy current field are given in Table 6-2. Performance of the 

spherical harmonic shim coils in eddy current compensation between the 8- and 16-channel 

cases in reducing the absolute field magnitude. It is important to note that the spherical 

harmonic case utilized B0 and gradient compensation whereas the multi-coil matrix array 

did not. In order to explore this further I performed an additional simulation with the 8-

channel matrix array combined with B0 and gradient compensation. The gradient field 

profiles used for this was the wire pattern from the gradients used in the static eddy current 

case. The addition of the B0 and gradient fields improved the maximum field reduction in 

the 8-channel case however it performed worse than the spherical harmonic active shim 

case. However, this motivates the potential application of using matrix array coils to act as 

shims and actively compensate for eddy currents during an imaging sequence. Especially 

as adding channels to the matrix coil may be more feasible than adding additional spherical 

harmonic layers to the gradient housing. Traditionally designed spherical harmonic shims 

are by nature designed over predetermined volumes traditionally using spherical volumes. 

A matrix coil technique, however, is not optimized for particular imaging region shapes 

and may provide useful in compensating and shimming non-spherical volumes such as 

ovals which may better encapsulate certain anatomical regions. 
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Figure 6-5: Dynamic Eddy Current Compensation Power and Energy Plots 
Simulated Power vs Time and Energy vs Time plots over the duration of eddy current compensation using 

the multi-coil arrays. Each line represents a single current loop (channel) out of 8, 16, and 24 total current 

loops for the 8-, 16-, and 24-channel current arrays, respectively. 

This study is not without limitations. When designing the configuration of the current loops 

I did not perform optimization on the position and size of the channels. A small study, not 

shown, was performed on the 8-channel coil to determine the coil size and orientation 
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however this was not extensive. The metric used for selection of the configuration 

orientation and channel sizes was evaluation of the compensation of the static eddy current 

magnetic field induced in a nearby conducting surface. The chosen configuration was the 

one that best reduced the spherical harmonic coefficients after compensation. Another 

consideration is in accounting for Joule heating during use, which will lead to heating of 

the wire and potentially require cooling considerations. Cooling can be accomplished by 

using larger diameter wire decreasing the electrical resistance, by utilizing hollow wire and 

implementing direct water cooling or by increasing the winding density of the current loop. 

Increasing the winding density will decrease the current required and increase the electrical 

resistance of the current loop however, since Joule heating increases as I2R, this will lead 

to an overall decrease in wire heating. Looking at the time series data and the maximum 

compensation current for a single loop with resistances given in Table 6-2 it can be seen 

that during dynamic compensating the maximum instantaneous power through a single 

loop is: 0.2 W, 1.0, W, and 2.2 W, for the 8-. 16-, and 24-channel cases, respectively. With 

the maximum total energy for a single loop being 0.7, 1.8, and 8.2 J and the total energy 

over all loops as 3.2, 13, and 27.5 J for the 8-, 16- and 24-channel cases, respectively. This 

demonstrates the effect of the larger required current as the loops decrease in radius and 

motivates the use of multiple windings to decrease this. It should also be noted that 

construction of the C-matrix used in calculating the current weighting which best estimates 

the time dependent eddy current field data uses the complete set of measurement positions. 

This may lead to a small bias in performance as it provides no way to evaluate performance 

outside of the measurement positions. Due to this, it may be worth exploring compensation 

using a subset of measurement points for the calculations and the complete set of 

measurement points for evaluation. Importantly, this is also true for the calculation of the 

shim weightings used in the multi-coil/shim comparison. 

In this proof-of-concept study I have demonstrated the use of a matrix array coil to be 

placed within a gradient coil housing as a method of compensating eddy currents in head-

only MRI platforms. I explored the effect on performance of increasing the number of 

independently driven channels from 8 to 24 and observed an increase in performance as 

measured by creation of example magnetic fields, reducing spherical harmonic coefficients 

in a static eddy current simulation and reducing the magnitude of eddy currents using 
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experimental eddy current data. I believe that as the drive for higher performance and 

unique geometry gradient coils increases that implementation of a multi-coil matrix array 

designed for active eddy current compensation may enable improved imaging 

performance. Finally, while this work demonstrated the feasibility of spherical imaging 

regions a technique such as the one presented here is not limited to predetermined 

geometries and can be extended to non-spherical imaging regions without modification.  
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Chapter 7 

7 Thesis Conclusions and Future Directions 

The research outlined in this thesis presents the beginning in the development of a novel 

MR scanner configuration which aims to enable head and neck imaging in a compact head-

optimized scanner geometry. This would enable implementation of high-performance 

imaging of the neck in emergency room environments and the development of a 

comprehensive stroke imaging platform for cervical spine and brain imaging. However, 

there is further work that must be performed before this is possible. This chapter will 

summarize and outline the work performed in this thesis as well as discuss some of the 

future work which must be performed to take this research to the next stage. 

7.1 Overview and Research Questions 

Looking back to Chapter 1 the question which motivated this research was “can we design 

an MRI gradient coil for compact head-optimized geometries which allows imaging of the 

cervical spine” and this question has remained throughout each of the chapters. 

Chapter 2 expanded this by asking the question “what trade-offs in electromagnetic 

performance do we observe by adding cut-outs to a cylindrical gradient coil and moving 

the imaging region from the center further down the patient end?” 

Chapter 3 took the experiences from Chapter 2 and asked, “how do we balance the 

performance in the transverse axes due to the asymmetrical loss in conducting surface?” 

With the designs of the gradient coils explored, it was time to determine the location within 

the gradient housing at which the shim coils would be placed. This could take form in one 

of two places, near the primary windings requiring a shoulder cut-out or near the shield 

windings allowing the use of a full cylindrical surface. I asked the question in Chapter 4 

“what electromagnetic trade-offs do we make by placing the spherical harmonic active 

shims at these two distinct locations?” 

With the gradient and shim designs completed the next MR system to be explored was in 

designing an RF coil. Development of unique geometry RF coils using traditional 
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techniques is extremely difficult, if possible. However, this work was primarily focused on 

comparatively low field MRI at 0.5T which may allow design of unique geometry RF coils 

like a shoulder cut-out RF transmit coil. Next, in Chapter 5 I asked the question “can we 

use the design methods we use for gradients and shims and apply it towards low-frequency 

RF coils?” 

Finally, motivated by the complexity of induced eddy currents in asymmetric and shoulder 

cut-out MRI gradient coil systems I wanted to explore hardware methods of overcoming 

this problem. In Chapter 6 I asked the question “can we use a multi-coil matrix array to 

dynamically compensate for complex induced eddy currents?” 

7.2 Summary and Conclusions 

In Chapter 2 I demonstrated that adding cut-outs to a cylindrical coil while compensating 

for the cut-outs with extra length leads to small changes in performance when compared to 

a simple cylindrical surface. I also demonstrated that moving the imaging region towards 

the patient end, regardless of cut-out lengths decreases performance when holding 

efficiency constant. This performance decrease is most noticeable when looking at 

shielding and inductance. I also observed the difficulty in balancing the transverse axes 

performance due to the asymmetrical loss of conducting surface. I concluded from this 

work that designing an asymmetric shoulder cut-out gradient coil with a compact inner 

radius is possible while maintaining performance suitable for high quality imaging. 

In Chapter 3 I demonstrated the feasibility of designing a gradient configuration I have 

denoted the X-Mode Gradient Coil, in which the transverse axes are rotated by 45º with 

respect to the cartesian axes. This allows the transverse axes to have similar performance 

as each other with no noticeable difference in performance. I also modified the design 

geometries compared to Chapter 2 to accommodate a wider range of patient sizes and 

included real-field based force and torque balancing into the design study to enable use 

within the xMR Labs 0.5T MR scanner. I concluded in this work the feasibility of designing 

a unique configuration X-Mode Gradient Coil for use in our head-optimized compact 0.5T 

scanner. With available in-house gradient amplifiers this configuration would be capable 
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of maximum gradient strengths of over 80 mT/m at slew rates above 400 T/m/s enabling 

high-performance imaging. 

In Chapter 4 I explored the design of spherical harmonic active shims by designing two 

sets at different radii. The first set implemented a shoulder cut-out and a smaller radius, 

whereas the second consisted of full cylinders and a larger radius. I determined that the 

smaller radius shims can be driven harder and faster but suffer in homogeneity compared 

to the full cylinder shims. To overcome this, I explored the design of a complementary set 

of electromagnets using the residual field as field targets demonstrating the feasibility of 

purpose-built compensation coils. Here, I concluded that the trade-off in field homogeneity 

in this small study was not worth the benefit in switching speed and efficiency and for 

shimming and eddy current compensation the choice should be full shims further away. 

However, it may be worth experimentally exploring the extra compensation coil 

implementation. 

To explore the possibility of unique geometry RF transmit coils in Chapter 5 I explored the 

design and construction of a pair of transmit RF coils designed using the BEM. In this work 

I found that the constructed RF coil had field artefacts not agreeing with simulation. After 

exploring full-wave RF simulations, I hypothesized that this was due to the large current 

path in the constructed coil and that by manufacturing a coil with a shorter current path this 

method may be viable. Future work should include splitting the constructed coil and 

comparing the measurement magnetic field with simulations. Lastly, when performing a 

design study to construct a shorter coil it may be important to consider the coupling 

between the gradients and RF coil during operation. 

Finally, in Chapter 6 I explored the design of a multi-coil matrix array to compensate for 

induced eddy currents throughout an imaging sequence. I showed that across a range of 

independently driven channels ranging from 8 to 24 that each can successfully reduce the 

spherical harmonic coefficients in an induced field and using experimental data 

demonstrated the real-world feasibility of this approach. I demonstrated their performance 

by comparing the matrix array compensation to a traditional spherical harmonic set. 
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7.3 Limitations 

Study specific limitations were discussed within their respective body chapters within this 

thesis. However, discussion of some of the major limitation throughout are important to 

mention here. 

Unfortunately, when designing gradient coils the shielding metric which is considered 

acceptable is not known. Therefore, it is not uncommon when choosing a selected design 

to choose the design with performance one desires that has the minimum power deposited 

into the bore. While this method works, it runs the risk of leaving performance on the table 

if worse shielding is tolerable but unknown.  

The dynamic eddy current compensation work demonstrates a promising result in silico 

when it comes to reducing the parasitic magnetic fields. However, for this to find use and 

contribution within the MR community experimental verification must be performed.  

Lastly, it is important to note and discuss the fact that the wire patterns for Chapter 2 and 

Chapter 4 cannot be directly implemented without minor modifications. In Chapter 2 the 

study was primarily concerned with observing the bulk trends associated with adding cut-

outs and shifting the imaging region and did not use realistic field data for torque balancing. 

Similarly, in Chapter 4 the wire patterns were not designed with any previous gradient wire 

patterns in mind to pair them with in terms of minimizing inductive coupling between them. 

This is important and would be required before implementation. However, like Chapter 2 

the bulk trends were the overall design goal. These two chapters provide more of a “general 

understanding” of the designs than specific designs to be machined and implemented. 

7.4 Future Directions 

This thesis represents the first steps towards implementing a head and neck shoulder cut-

out gradient coil for implementation on the xMR Labs 0.5T compact MR scanner. 

However, much of the work has been focused on electromagnetic design studies answering 

the trade-offs and benefits of implementing a setup such as this. There are still unanswered 

questions and unfinished work spanning both computational methods and the construction 

and verification of the gradients, shims and multi-coils presented in this thesis.  
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7.4.1 Computational 

As previously mentioned, while the shielding metric used in the BEM design is a good tool 

for comparing the relative performance between designs it fails to give the entire 

electromagnetic picture. Fundamentally, it is unknown what bore power gives “acceptable 

shielding” and the static eddy current results are not necessarily indicative of the complex 

time dynamics within a full MR system. During the design stage these BEM derived 

metrics are useful for narrowing down the pool of potential candidates and gleaning the 

trade-off in shielding as geometry changes. However, separate software such as CST 

Studio Suite capable of low frequency magnetoquasistic time domain simulations can give 

a broader understanding of the time dynamics of eddy current generation, heating and the 

resultant field. Unfortunately, these simulations are incredibly time consuming, and it is 

impractical to perform them on the potentially thousands or tens of thousands of gradient 

candidates that can be designed during a design study. As such, this may be implemented 

on a significantly smaller subset of candidates perhaps when deciding between less than 

10 coils for each axis. It may be worth exploring the relationship between BEM derived 

metrics and full simulation results across a range of design gradients with varying bore 

power, eddy current fields and efficiencies to determine a stronger understanding of these 

metrics as they relate to the dynamic power information. However, it should be noted that 

in the authors experience the BEM derived and full simulation results are highly correlated 

however, it is still worth potentially exploring. 

In Appendix A, I outline the utility of using surface eigenmodes to design gradient coils 

and this work is currently in an early, incomplete state with many avenues of future work 

possible. While the proposed methods of removing eigenmodes from the design study has 

been focused on symmetry and spatial variation there still has yet to have been a complete 

design study implementing either of these techniques and has only been shown as a proof-

of-concept.  

7.4.2 Construction and Verification 

Unfortunately, the designs presented here in this work have yet to have been constructed 

and their utility in enabling neck imaging and eddy current compensation has not been 
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demonstrated experimentally. This is important before drastic conclusions can be drawn 

about these designs and is the logical next step in extending this work. Designing the 

gradient coil with a complimentary shim set would require modifications to the current 

gradient design techniques within our lab which is further exacerbated if all hollow wire is 

to be implemented for improved cooling. While the electromagnetic design techniques 

used in this thesis have been well validated through the design and construction of a 

significant number of research gradient coils across a range of field strengths the designs 

presented here may require extra care in mapping electric fields to avoid unnecessary 

cardiac stimulation with the cardiac region being located closer to the imaging region.  

7.5 Significance and Impact 

This thesis ultimately builds on the foundation of shoulder cut-out gradient coils which 

have been the interest of literature or commercial/research implementations. To date, 

implementations of gradient coils with shoulder cut-outs have not been developed for 

improving neck imaging but instead increasing patient comfort or ensuring the brain is 

contained within the linear region of the gradient coil without a significant imaging region 

shifted towards the patient end. In this work, I was focused on using this type of geometry 

to allow a significant portion of the linear region to extend into the cut-out region to allow 

imaging of the lower cervical vertebra while still maintaining superior brain imaging. This 

thesis expands the current MRI systems development literature in different ways: 

The first three body chapters present a complete design study in the design of a neck and 

head imaging gradient coil and complimentary shim set. This work presents the first design 

study on the relative performance trade-offs across a range of imaging region offsets and 

cut-out lengths gaining insight into the feasibility of a dual neck and head gradient coil for 

compact scanners. Next, I presented the unique gradient coil configuration to mitigate some 

of the performance issues gleaned in the shoulder cut-out gradient coil which may benefit 

other implementations such as head-optimized shoulder cut-out gradients to balance their 

transverse axis performance regardless of the anatomical target. I presented the first 

exploration of shim coil locations in a compact shoulder cut-out gradient coil. Although 

previous work has shown the design of shoulder cut-out shim coils, I have expanded on 

this by determining the relative trade-offs in radial positioning which is an important 
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consideration when optimizing the performance of the spherical harmonic shims. In this 

work, I have also demonstrated the feasibility of using purposely designed electromagnets 

to compliment the traditional spherical harmonic shims. 

The next focus of this thesis was on the experimental design and construction of a low-

frequency RF coil to demonstrate the use of gradient coil design techniques towards RF 

coils. While this chapter did not reach the design goals of a functional and artefact free RF 

coil, when compared to simulations, this provided a first step towards applying these 

techniques for head-optimized sized coils and motivates further study exploring shorter 

coils which may be less homogeneous but still provide acceptable performance. 

Finally, motivated by the complexity of the induced eddy currents in asymmetric and 

unique geometry gradients I demonstrated, for the first time, the potential use of a matrix 

array coil in compensating for eddy current fields. Although these hardware configurations 

have been shown to be useful in static and dynamic shimming and creation of arbitrary 

fields this was the first in silico demonstration of the potential utility of implementing a 

matrix array in compensating eddy currents dynamically. I also demonstrated they can be 

placed within the gradient housing in the interest of space within a compact gradient coil. 
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Appendices 

Appendix A: Stream Function Performance Functional 

A.1 Creation of a Performance Functional 

The introduction of a performance functional accomplishes two things. First, it allows fine 

tuning the relative importance of various electromagnetic features of the electromagnet 

such as field homogeneity, heating, and shielding. This is important because one desires 

electromagnets to be designed that achieve certain standards. Second, it reduces the 

problem to a single solution satisfying the design problem and functional specifics. I begin 

by defining a performance functional U and incorporating the terms of importance into it 

to be used in the design process. This isn’t an exhaustive list but instead a description of 

the relevant characteristics to this work. In practice, anything that can be written in terms 

of current density can be added to the performance functional. 

A.2 Calculating Magnetic Field 

The first thing to be added to our performance functional is the ideal magnetic field profile 

that is desired. The goal is to produce a magnetic field that best matches this target magnetic 

field. This is specified during the design process and can take any form. It is defined by a 

set of k target points, rk, each with a corresponding magnetic field value Bz
tar(rk) 

Since anything that can be written in terms of the current density can now be written in 

terms of the stream function we can write the z-component of the magnetic field as follows: 

Starting from the magnetic vector potential A(r). The magnetic field B(r) can be computed 

directly: 

 
𝑨(𝒓) =

𝜇0

4𝜋
∫

𝑱(𝒓′)

|𝑟 − 𝑟′|
𝑑3𝑟′ (A.1) 

 𝑩(𝒓) = ∇ × 𝑨(𝒓) (A.2) 

Using these relationships, Equation 1.23 and expanding further we can write the z-

component as: 
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𝐵𝑧(𝒓) =
𝜇0

4𝜋
∑ 𝐼𝑛 ∫ [

𝑱𝑛𝑥(𝒓
′)(𝑦 − 𝑦′) − 𝑱𝑛𝑦(𝒓′)(𝑥 − 𝑥′)

|𝒓 − 𝒓′|
]

𝑆′

𝑁

𝑛=1

𝑑𝑆′ (A.7) 

It is convenient to write the integral as: 

 
𝑐𝑛𝑧(𝑟) =

𝜇0

4𝜋
∫ [

𝑱𝑛𝑥(𝒓
′)(𝑦 − 𝑦′) − 𝑱𝑛𝑦(𝒓′)(𝑥 − 𝑥′)

|𝒓 − 𝒓′|
]

𝑆′

𝑑𝑆′ (A.8) 

Which allows the convenient representation of the Bz component of the magnetic field to 

be expressed as the sum of all node contributions: 

 

𝐵𝑧(𝒓) = ∑ 𝐼𝑛𝑐𝑛𝑧(𝒓)

𝑁

𝑛=1

 (A.9) 

In practice, the c matrix is pre-computed allowing direct calculation of the magnetic field 

based on a stream-function residing on the surface to be easily calculated for any stream 

function. With the z-field contribution at point k from all nodes given as: 

 

𝐵𝑧(𝑟𝑘) = ∑(𝐼𝑛𝐶𝑛(rk))

𝑁

𝑛=1

 (A.10) 

It is now possible to incorporate the deviation from our ideal magnetic field profile into 

our functional as follows: 

 

U =  
1

2
∑[∑(𝐼𝑛𝐶𝑛(rk))

𝑁

𝑛=1

− Bz
tar(rk)]

2

𝐾

k =1

 (A.11) 

 

U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2

𝐾

k=1

 (A.12) 

Here, the functional now includes the least squares difference between the user defined 

target points and the produced magnetic field profile. It is possible to include individual 

target point weighting coefficients if the design process requires it, or if there is trouble 
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achieving homogeneity across certain planes. However, in this most basic form the weights 

of the individual target points are unity.  

A.3 Calculating Power 

The next consideration is the dissipative power within our electromagnet. It is simple to 

calculate as power is directly related to the surface current density as follows: 

 
𝑃 =

𝜌

𝑡
∫ |𝑱(𝒓′)|2𝑑𝑆′
𝑆′

 (A.3) 

Here, P is the dissipative power within the electromagnet, ρ is the resistivity of the surface, 

τ is the coil surface thickness and J(r) is the current density on the surface. Using the 

formulation of Poole and Bowtell (1) in terms of the parameterizing the of power 

dissipation in terms stream function representation of the current density this can be 

approximated as: 

 

𝑃 = ∑ ∑ 𝐼𝑛𝐼𝑚𝑅𝑛𝑚

𝑀

𝑚=1

𝑁

𝑛=1

 (A.4) 

With Rnm being the self-resistance matrix of the discretized mesh surface: 

 
𝑅𝑛𝑚 =

𝜌

𝑡
∑∑{

(𝑣𝑛𝑖 ∙ 𝑣𝑛𝑗)𝐴𝑗 , ∆𝑛𝑖= ∆𝑛𝑗

0, ∆𝑛𝑖≠ ∆𝑛𝑗
𝑗𝑖

 (A.5) 

Here, Aj is the area of the ith mesh element belonging to the nth node and vni (for i = 1 to N) 

describes a unit current flow on each of the N triangular elements, ∆𝑛𝑖, associated with the 

nth node. 

With this the power term can be added to the performance functional as follows: 

 

U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2

𝐾

k=1

+
𝛽

2
∑ ∑ 𝐼𝑛𝐼𝑚𝑅𝑛𝑚

𝑀

𝑚=1

𝑁

𝑛=1

 (A.6) 
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U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2

𝐾

k=1

+
𝛽

2
𝑃 (A.13) 

The performance functional now contains the least squares difference in produced 

magnetic field and the power dissipated within the electromagnet. The term β can be 

modified during the design process to weight the relative importance between field 

homogeneity and power dissipation. 

A.4 Incorporating Shielding 

As discussed previously shielding of an electromagnet is important to reduce the stray 

magnetic field and minimize the interactions of the switching gradient coil with the 

surrounding environment. Incorporation of shielding in the BEM can be accomplished in 

a variety of ways. To incorporate a shield a second surface is added outside of the primary 

radius and a shielding method is chosen. This can be done by defining a second set of target 

field points with zero magnetic field or by additional minimization terms. In this thesis, I 

use the addition of a third surface representing the MRI bore, or cryostat, in which I want 

to minimize the induced power. To accomplish this the mutual inductance between the 

gradient coil and bore surfaces are computed as follows (2): 

 

𝑀𝑐𝑜𝑖𝑙/𝑐𝑟𝑦𝑜 =
𝜇0

4𝜋
∫ ∫

𝐽𝑐𝑟𝑦𝑜(𝑟) ∙ 𝐽𝑐𝑜𝑖𝑙(𝑟′)

|𝑟𝑐𝑟𝑦𝑜 − 𝑟𝑐𝑜𝑖𝑙|
𝑑𝑆′𝑑𝑆

𝑆′𝑆

 (A.14) 

Which can be written in terms of the discretized current basis function: 

 

𝑀𝑐𝑜𝑖𝑙/𝑐𝑟𝑦𝑜 =
𝜇0

4𝜋
∑ ∑ 𝐼𝑛𝐼𝑚

𝑀

𝑚=1

𝑁

𝑛=1

∫ ∫[
𝐽𝑛,𝑐𝑟𝑦𝑜(𝑟) ∙ 𝐽𝑚,𝑐𝑜𝑖𝑙(𝑟′)

|𝑟𝑐𝑟𝑦𝑜 − 𝑟𝑐𝑜𝑖𝑙|
𝑑𝑆′𝑑𝑆]

𝑆′𝑆

 (A.15) 

From this, the induced eddy current stream function in the bore surface can be computed 

directly as: 

 𝐼𝑛
𝑐𝑟𝑦𝑜

= −[𝐿𝑛𝑚
𝑐𝑟𝑦𝑜

]𝑀𝑚𝑞
𝑐𝑜𝑖𝑙/𝑐𝑟𝑦𝑜

𝐼𝑞
𝑐𝑜𝑖𝑙 (A.16) 
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Here, 𝐿𝑛𝑚
𝑐𝑟𝑦𝑜

is the self-inductance matrix of the cryostat surface, 𝑀𝑚𝑞
𝑐𝑜𝑖𝑙/𝑐𝑟𝑦𝑜

is the mutual 

inductance between the coil surfaces and the bore surface relating node m on the bore 

surface to node q on the coil surface, and 𝐼𝑞
𝑐𝑜𝑖𝑙 is the stream function at node q of the coil. 

The calculation of both self-inductance matrices is the same as previously described 

minimum inductance methods (2) which is similar in computation to the mutual 

inductance. 

It is convenient to write this in terms of a coupling term as follows: 

 𝐼𝑛
𝑐𝑟𝑦𝑜

= 𝐷𝑛𝑞𝐼𝑞
𝑐𝑜𝑖𝑙 (A.17) 

Where Dnq can be considered the coupling matrix between the gradient coil and cryostat 

surfaces. It relates the induced stream function, or eddy current, at the cryostat nodes with 

the stream function values at the coil nodes. With the eddy current stream function known 

it is as simple as calculating the dissipative power as previously done and the power 

deposited into the bore can be written as:  

 

𝑃𝑐𝑟𝑦𝑜 = ∑ ∑ 𝐼𝑛
𝑐𝑟𝑦𝑜

𝐼𝑚
𝑐𝑟𝑦𝑜

𝑅𝑛𝑚
𝑐𝑟𝑦𝑜

𝑀

𝑚=1

𝑁

𝑛=1

 (A.18) 

Or, written in terms of the coil stream function: 

 

𝑃𝑐𝑟𝑦𝑜 = ∑ ∑[𝐷𝑛𝑞𝐼𝑞
𝑐𝑜𝑖𝑙𝐷𝑚𝑘𝐼𝑘

𝑐𝑜𝑖𝑙]𝑅𝑛𝑚
𝑐𝑟𝑦𝑜

𝑀

𝑚=1

𝑁

𝑛=1

 (A.19) 

Incorporation of this power term in the functional allows a minimum bore power shielding 

method to be used which is the following: 

 

U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2

𝐾

k=1

+
𝛽

2
𝑃

+
𝛾

2
∑ ∑[𝐷𝑛𝑞𝐼𝑛𝐷𝑚𝑘𝐼𝑚]𝑅𝑛𝑚

𝑐𝑟𝑦𝑜

𝑀

𝑚=1

𝑁

𝑛=1

 

(A.20) 
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U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2

𝐾

k=1

+
𝛽

2
𝑃 +

𝛾

2
𝑃𝑐𝑟𝑦𝑜 (A.21) 

The performance functional now includes a shielding term with γ being the weighting of 

the importance of shielding. During the design process this term is also varied adding 

another dimension to the design space. 

A.5 Incorporating Torque 

Earlier it was mentioned that it is important that the gradient coils do not experience 

significant net torque during operation, and this is accomplished by including the torque 

on the gradient coil as part of the design functional. This requires the B0 field that the 

gradient coil will be installed within and can be accomplished using a field map made 

experimentally or assuming an idealized B0 field which is single valued throughout the 

entirety of the calculation points. A current density will experience a force when in the 

presence of an external magnetic field: 

 
𝐹 = ∫[𝑱(𝒓) × 𝑩(𝒓)]𝑑𝑉 (A.22) 

It follows that the torque is then: 

 
𝑴 = ∫𝒓 × [𝑱(𝒓) × 𝑩(𝒓)]𝑑𝑉 (A.23) 

With the discretized current density and considering a constant valued (B0) external 

magnetic field only in the z-direction the torque, in the z-direction can be written as: 

 

𝑀𝑧 = ∑ 𝐼𝑛[𝐵0 ∫(−𝐽𝑛𝑥(𝒓)𝑥 − 𝐽𝑛𝑦(𝒓)𝑦)𝑑𝑆]

𝑆

𝑁

𝑛=1

 (A.24) 

 

𝑀𝑧 = ∑ 𝐼𝑛𝑀𝑛𝑧

𝑁

𝑛=1

 (A.25) 
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The other two directions Mx, and My are computed in similar ways and can all be 

incorporated into the performance functional as Lagrange multipliers constraining the net 

torque to zero as: 

 

U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2

𝐾

k=1

+
𝛽

2
𝑃 +

𝛾

2
𝑃𝑐𝑟𝑦𝑜

− 𝜆𝑥 ∑ 𝐼𝑛𝑀𝑛𝑥 − 𝜆𝑦 ∑ 𝐼𝑛𝑀𝑛𝑦

𝑁

𝑛=1

− 𝜆𝑦 ∑ 𝐼𝑛𝑀𝑛𝑦

𝑁

𝑛=1

𝑁

𝑛=1

 

(1.51) 

 

U =  
1

2
∑[Bz(rk) − Bz

tar(rk)]
2

𝐾

k=1

+
𝛽

2
𝑃 +

𝛾

2
𝑃𝑐𝑟𝑦𝑜 − 𝜆𝑥𝑀𝑥

− 𝜆𝑦𝑀𝑦 − 𝜆𝑧𝑀𝑧 

(1.52) 

The performance functional now includes Lagrange multipliers whose purpose is to 

constrain the net torque on the gradient coil to zero during operation.  

A.6 From Functional to Wire Pattern 

At this point the functional contains all the important parameters to the design. 

Differentiating and minimizing the functional with respect to the stream function values at 

each node and the relevant Lagrange multipliers yields: 

 ∂U

∂𝐼𝑛
 =  

1

2
𝐼𝑚𝑐𝑛𝑘𝑐𝑚𝑘 −

1

2
𝐵𝑘

𝑡𝑎𝑟 +
𝛽

2
𝐼𝑚𝑅𝑛𝑚 +

𝛾

2
[𝐷𝑛𝑞𝐷𝑚𝑘𝐼𝑚]𝑅𝑛𝑚

𝑐𝑟𝑦𝑜

− 𝜆𝑥𝑀𝑛𝑥 − 𝜆𝑦𝑀𝑛𝑦 − 𝜆𝑧𝑀𝑛𝑧 = 0 

(1.53) 

 𝐼𝑚[𝑐𝑛𝑘𝑐𝑚𝑘 − 𝛽𝑅𝑛𝑚 − 𝛾𝐷𝑛𝑞𝐷𝑚𝑘𝑅𝑛𝑚
𝑐𝑟𝑦𝑜

]

= 𝑐𝑚𝑘𝐵𝑘
𝑡𝑎𝑟 + 𝜆𝑥𝑀𝑛𝑥 + 𝜆𝑦𝑀𝑛𝑦 + 𝜆𝑧𝑀𝑛𝑧 

(1.54) 

 ∂U

∂𝜆𝑥
= −𝐼𝑛𝑀𝑛𝑥 = 0 (1.55) 

 ∂U

∂𝜆𝑦
= −𝐼𝑛𝑀𝑛𝑦 = 0 (1.56) 



134 

 

 ∂U

∂𝜆𝑧
= −𝐼𝑛𝑀𝑛𝑧 = 0 (A.26) 

This can be conveniently written into matrix form: 

 

𝒁 =

[
 
 
 
 
𝑐𝑛𝑘𝑐𝑚𝑘 − 𝛽𝑅𝑛𝑚 − 𝛾𝐷𝑛𝑞𝐷𝑚𝑘𝑅𝑛𝑚

𝑐𝑟𝑦𝑜
𝑀𝑛𝑥 𝑀𝑛𝑦 𝑀𝑛𝑧

𝑀𝑛𝑥
𝑇 0 0 0

𝑀𝑛𝑥
𝑇 0 0 0

𝑀𝑛𝑥
𝑇 0 0 0 ]

 
 
 
 

 (A.27) 

 

𝑰 = [

𝐼𝑛
𝜆𝑥

𝜆𝑦

𝜆𝑧

] (A.28) 

 

𝒃 = [

𝑐𝑚𝑘𝐵𝑘
𝑡𝑎𝑟

0
0
0

] (A.29) 

And finally written as: 

 𝒁𝑰 = 𝒃 (A.30) 

From this, the matrix is inverted and the stream function values at each node which 

produces the magnetic field profile of interest while minimizing the performance functional 

is calculated. To ensure the shape of the stream function is closed and constrained to the 

surface the stream function values on edges are constrained such that they are the same 

value. To accomplish this the relevant matrices are condensed by summing along these 

edges and uncondensed when solved for. This process is outlined in (3) and ensures the 

stream function will flow along the edge and not through it. To create wire patterns that 

can be machined for use in an MR scanner the stream function is contoured over the 

surface. An example transverse gradient mesh, stream function and wire pattern for a 

cylindrical gradient surface is shown in Figure A-1. 
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Figure A-1: Cylindrical Mesh, Stream Function, and Transverse Gradient Wire 

Pattern 

Example mesh, computed surface stream function and final wire pattern. The red nodes in indicate edges in 

which the stream function would be constrained through matrix condensing. The colour of the stream 

function plot shows node values linearly interpreted over the elements on the surface and the colour of the 

wire pattern shows the current direction with respect to the azimuthal direction. 
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Appendix B: Designing MRI Gradient Coils using Surface 
Eigenmodes 

Modifications to the BEM approaches used in this thesis may also provide benefits in terms 

of computational speed up or gradient performance. One method is using surface 

eigenmodes of the stream-function on the computational surfaces. Briefly, the allowed 

current modes in which the current density may take over the computational surface is 

governed by the resistance and self-inductance properties of the meshed surface and can 

be computed from the general eigenvalue problem: 

 𝑹𝑼 = 𝑳𝑼Λ (B-1) 

Where, R is the resistance matrix of the surface, L is the self-inductance matrix, U is an 

eigenmode basis set of allowable current paths (with 𝜑𝑚 being the mth eigenmode 

consisting of a stream function vector Im) and Λ is the corresponding diagonal eigenvalue 

matrix. Using the allowed basis set to modify the performance functional and therefore the 

problem at hand the stream-function can then be solved for as a weighted linear 

combination of eigenbasis vectors. From this, it follows that the stream function for a single 

mode m can be calculated as: 

 

𝜑𝑚 = ∑ 𝐼𝑚𝑛

𝑁

𝑛=1

𝜓𝑛 (B-2) 

Where 𝜑𝑚 is the mth eigenmode consisting of a stream function vector Im with N node 

values and the total stream function of interest is then the weighted sum of each of these 

stream function vectors as follows: 

 

𝐼 =  ∑ 𝑊𝑚

𝑁𝑚𝑜𝑑𝑒𝑠

𝑚=1

𝜑𝑚 (B-3) 

Here Wm is the weight for eigenbasis m comprising of a number of nodes given by Nmodes, 

𝜑𝑚 is the mth eigenbasiss vector and I is the total stream function on the computational 

surface which we are solving for.  
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For a simple minimum power design, we begin by writing the problem in terms of the 

weighting of the eigenmodes by defining an eigenmode field matrix: 

 

𝐶𝜑𝑖
(𝑟𝑘) = ∑(

𝑁

𝑛=1

𝜑𝑖𝑛(𝑐𝑛(𝑟𝑘))) (B-4) 

This gives the field from eigenmode i at the field targets calculated using the original field 

matrix c which describes the field contribution from each node. We also define an 

eigenmode resistance matrix as follows: 

 

𝑅𝜑𝑖
= ∑ ∑ 𝜑𝑖𝑛𝜑𝑖𝑚𝑅𝑛𝑚

𝑀

𝑚=1

𝑁

𝑛=1

 (B-5) 

Which describes the resistance contribution for mode i. With this the minimum power 

functional can be written as: 

 

𝑈 =
1

2
∑[ ∑ (𝑊𝑖𝐶𝜑𝑖𝑖

(𝑟𝑘)) − 𝐵𝑧(𝑟𝑘)]

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1

𝐾

𝑘=1

+
𝛽

2
[ ∑ 𝑊𝑖𝑅𝜑𝑖

]

𝑁𝑚𝑜𝑑𝑒𝑠

𝑖=1

 

(B-6) 

With Wi being the weighting of eigenmode i. The functional is differentiated with respect 

to the weightings and a series of matrix equations are setup to solve for the W vector which 

gives the weighting for each eigenmode. Using the complete eigenbasis set provides no 

benefit and arrives at the same solution as using the traditional methods. However, by 

examining the eigenbasis set with a critical lens it is possible to observe particular basis 

vectors which negatively, or neutrally affect the problem which can be then removed for 

speed up or potential manufacturability. Figure B-1 shows the first three eigenbasis stream 

functions and their resultant wire pattern contours.  
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Figure B-1: Example Cylindrical Eigenmodes 

Example eigenmode plots. Plot shows stream function node values linearly interpreted over the surface for 

example stream function eigenmodes with contoured wire pattern overlaid. Wire pattern colour indicates 

current direction with respect to the azimuthal direction. 

Using the symmetry of the stream function and its produced magnetic field values it is 

possible to remove modes in which the desired symmetry to the problem is not found. An 

example of this is shown below for a Y-gradient coil using the entire eigenbasis set and a 
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condensed eigenbasis set where non-symmetric modes have been removed. Figure B-2 

shows the computational surfaces, stream function and resultant wire contours and Table 

B-1 gives the simulated design parameters. Note the approximate reduction of ¾ of the 

modes corresponding to an equal decrease in computational time with minimal effect on 

derived metrics.  

 

Figure B-2: Full vs Partial Eigenmode Solution Example 

Example partial mode solution. Plot shows stream function node values linearly interpreted over the surface 

for example stream function eigenmodes with contoured wire pattern overlaid. Wire pattern colour indicates 

current direction with respect to the azimuthal direction. 
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Table B-1: Full vs Partial Eigenmode Solution Performance Parameters 

Parameter Full Mode Solution Partial Mode Solution 

Included Eigenmodes [n] 3433 907 

Efficiency [mT/m/A] 0.08 0.08 

Slew Rate [T/m/s] 3071 3138 

DSV20 [m] 0.1 0.1 

Bore Power [W] 1.0E-3 1.3E-5 

Resistance [mΩ] 49 49 

Minimum Wire Spacing [mm] 9 9 

Elapsed Time [s] 25 6 

DSV20 = diameter of spherical volume where the gradient field deviates <20%. 

It may be possible to extend this further by looking at the spatial variation in the 

eigenmodes and removing modes which have variations which are impractical to include 

in the design and then manufacture. Looking at a high order eigenmode Figure B-3 with 

the wire pattern superimposed on top this can be easily seen.  
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Figure B-3: Higher Order Eigenmode Spatial Variation 

Example eigenmode plots. Plot shows stream function node values linearly interpreted over triangular 

elements on the surface with wire pattern contour overtop. Wire pattern colour indicates current direction 

with respect to the azimuthal direction. 

The higher order terms contain the high frequency components, and the lower order terms 

the low frequency components. From this it may be possible to provide the majority of the 

performance and field profile using the lower orders and fill in the higher orders as needed 

to ensure the optimal coil performance. This may provide a significant benefit in speed up 

and manufacturing capabilities with current work ongoing to demonstrate the utility of this 

technique by converting the cylindrical eigenmode to a 2D plane and performing Fourier 

Analysis to observe the spatial frequencies that the mode contains of. This is visualized in 

Figure B-4. 
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Figure B-4: Example Eigenmode Frequency Analysis 

Flat plane representations of example stream function modes and the respective 2D Fourier transform 

demonstrating the spatial frequency variations contained in various eigenmodes. 

From Figure B-4 we can see that the high spatial variation is observed in the frequency 

analysis of the 2D representation of the stream function. It may be possible to determine 

an absolute cut-off frequency that provides variations in the gradient wire pattern which 

are too difficult or impossible to manufacture for use. It may be also possible to use this 

technique to increase the performance of the designed gradient coils by exploring modes 

which have high interactions with the surrounding environment and investigating the 

designs with those removed. 
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