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Abstract

This thesis considers and articulates principles of interdisciplinary knowledge exchange

in two contexts: the development of novel techniques for the study of wildland fire

lifetimes; and, to understand improvements in the student training environment focusing

on graduate teaching assistants, developing a training program on active learning for

graduate teaching assistants in the mathematical and statistical sciences.

Wildland fire science is an area of research that requires interdisciplinary expertise

to advance its body of knowledge. Wildland fires that are suppressed have a “lifetime”

that consists of several sequential phases, including what are called detection and action

phases. The interconnectedness of these phases is often overlooked when studying fire

responses, and we develop methods to fill that gap in this thesis. In particular, we

consider such a framework for the analysis of fire data from the Sioux Lookout District

in northwestern Ontario. Multi-state modelling and joint frailty modelling techniques

are employed. Comparisons of different frailty distributions and random effect forms are

considered, and a simulation study is performed to highlight the advantages of a flexible

model form for the joint frailty models. Using the joint frailty models, we find that fires

with longer detection phases are associated with longer action phases, and that the action

phase lengths may be increasing over time. Collaboration with fire scientists throughout

the development of this work was critical and is especially important for ensuring the

impact of it at fire management agencies.

The importance of collaboration in statistics is emphasized in how education in this

field is conducted. A workshop on active learning techniques, which aid in the exchange

of knowledge between students and instructors, was developed for graduate teaching

assistants at the University of Western Ontario. A survey study of graduate teaching

assistant perceptions about active learning before and after participating in a workshop

on active learning in mathematical and statistical sciences was performed. Learnings

from this study are discussed.
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Summary for Lay Audience

This thesis applies the principles of knowledge exchange — a “push and pull” of informa-

tion — in the development of novel techniques for the study of wildland fire lifetimes and

the development of a training program to enhance the statistical education of graduate

teaching assistants.

Our first study focuses on the lifetimes of suppressed wildland fires that have several

sequential phases. We are interested in characterizing what drives these phases as well

as understanding how the time in earlier phases may impact the latter portion of a fire’s

lifetime. We consider the detection phase, consisting of the time from the ignition to

the report of a fire, and the action phase, consisting of the time from report to being

declared “under control”. Fires with a longer detection phase can have a longer than

anticipated action phase, when compared to fires that were reported quicker. This makes

sense because if it takes longer to find and report a fire after it is ignited then it may grow

larger and could possibly take longer to bring under control. By explicitly linking the two

phases, we can identify how they are connected or interact with one another. Knowledge

exchange was used throughout the entire process of studying wildland fire lifetimes by

attending interdisciplinary conferences, engaging with interdisciplinary researchers, and

collaborating with fire scientists, to name a few approaches.

Our second study moves away from wildland fire and into statistical education since

the importance of collaboration in statistics is emphasized in how education in this field is

conducted. The training program developed for graduate teaching assistants consists of a

workshop on active learning, which are techniques that aid in the exchange of knowledge

between students and instructors (or graduate teaching assistants). We performed a

survey study at the University of Western Ontario to examine graduate teaching assistant

perceptions about active learning before and after participating in a workshop on active

learning in mathematical and statistical sciences. Learnings from this study are discussed.
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Chapter 1

Introduction

The field of statistics is both intriguing and fundamental to scientific inquiry, reaching

across many other disciplines. A critical aspect of the interdisciplinary nature of statistics

is how information is exchanged between those within the field and those outside of it.

The exchanging of knowledge is often complex, dependent on the people involved and the

environment created. A simple and naive question we, as statisticians, may ask is whether

we should push statistical information onto others or if the exchange of information should

follow more of a push-and-pull relationship? For example, a statistician may be viewed

solely as technical support for a project with a lower expectation of knowledge exchange

or may be asked to be an active collaborator on a project with a higher expectation of

knowledge exchange. A supportive working environment requires members to actively

listen, constructively communicate, openly share information, and collaboratively solve

problems. Members that are flexible, reliable and dedicated to the team are also essential

to fostering genuine knowledge exchange. This thesis considers the knowledge exchange of

two main topics developed within an interdisciplinary learning environment (Wachowicz

and Chrisman, 2012): statistics within the fields of wildland fire science and statistical

education.

1
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1.1 Fire Science

In a world of changing climate, we see its effects on wildland fire activity first hand.

Media and news reporters cover stories of wildland fires burning for weeks in Canada,

USA, Australia, and other places around the globe that destroy residences and high-value

infrastructure, and threaten lives.

Fire management agencies spend close to one billion dollars a year on average to

fight and suppress wildland fires in Canada (Natural Resources Canada, 2021a; Stocks

and Martell, 2016). Taylor et al. (2013) argued that the field of statistical science can

help by improving wildland fire predictions that could be used in decision-support tools

by fire management agencies. Research on wildland fire behaviour, cost, and resource

allocation is a necessity because it can help reinforce fire management best practices or

call attention to any areas in need of improvement.

Our research in the wildland fire science domain focuses on several key phases of a

fire that make up the total lifetime of a wildland fire. For instance, the detection phase

encompasses the start of the fire to the time when it’s reported, whereas the action phase

involves the time from when it’s reported to when it is brought under control. Past

research by Morin et al. (2015) modelled a single phase of a fire’s lifetime, namely the

time until a fire is classified by a fire management agency as being under control from

ignition, called the control time. Sun (2013), Morin et al. (2019), and Xi et al. (2020) also

performed research on fire lifetimes where only one phase of wildland fire lifetimes was

considered. By only considering a single phase, we have a crucial gap in understanding

such lifetimes, namely understanding the fire’s evolution over several phases and the

interconnectedness of the phase lengths, if any.

In this dissertation, we consider how the distributions of time in the various phases of a

fire, as it progresses from ignition to being under control, are connected and how different

factors affect the time spent in these phases differently. We investigate the lifetime

distributions of the various phases of wildland fires from a study area consisting of a fire
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management district located in Ontario’s Northwestern Fire Region using multi-state

modelling and joint frailty modelling techniques. These techniques provide a mechanism

for modelling how the preceding phase(s) may affect the subsequent phase(s).

Multi-state models are used to characterize the evolution of individuals through a

series of states (or phases) until they reach an endpoint (Cook and Lawless, 2018). In

the fire context, multi-state models are used to represent the progression of a fire through

its various phases. The phases can also be jointly modelled, where each phase represents

a different outcome in the model. Joint frailty models are employed to explicitly link

the fire lifetime phases to see how they interact with one another, rather than modelling

each phase separately. Joint models have been applied to other topics in the fire context.

For example, they have been used to model the duration and size of fires (Xi et al., 2019,

2021) since it is often the case that these responses are correlated.

We utilize the principles of knowledge exchange throughout the entire process of

studying the phases of wildland fire lifetimes. Considerations for stakeholders and end-

users of this research were fostered by several experiential learning opportunities, in-

cluding attending interdisciplinary conferences, communicating with researchers in fire

science and ecology and with fire management practitioners, and collaborating with a Fire

Science Specialist from Ontario’s Aviation, Forest Fire and Emergency Services branch

of the Ontario Ministry of Nothern Development, Mines, Natural Resources and Forestry

(MNDMNRF). The culmination of the latter resulted in a communiqué (i.e., a brief, con-

cise, results-focused summary) of our research on wildland fire lifetime phases written for

MNDMNRF members in an accessible and non-statistical way.

1.2 Statistical Education

A second key element of study in this thesis relates to statistical education. Many gradu-

ate teaching assistants (GTAs) begin their roles with little or no prior teaching experience.
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Yet they play an essential role in undergraduate student learning and assessment, and

are often a first point of contact for undergraduate students. As students often see GTAs

as less intimidating figures than their professors, GTAs have great potential to engage

and inspire the future scholars from their disciplines (Dimitrov et al., 2013).

Both the responsibilities that science graduate teaching assistants undertake and the

volume of science undergraduate courses being taught at research universities by contract

lecturers who primarily only have GTA experience are increasing (see Gardner and Jones

(2011) and references therein). Teaching-related training of GTAs in the statistical and

mathematical sciences is often limited, informal, or under-developed, and typically arises

from the reflection of the experience of being students themselves or “on the job” trial-

and-error experiences (Gelman, 2005; Gardner and Jones, 2011). This issue amplifies

when contract lecturers or professors who only have GTA teaching experience instruct

introductory science, technology, engineering and mathematics (STEM) courses since

they may lack the pedagogical skills to teach these courses effectively (Crowe, 2019).

There are various reasons why STEM GTAs need instructor training. Gelman (2005)

notes that it may be hard for them to relate to the various types of learners in a course

since graduate students are often top performers in similar environments. They are also

inclined to use traditional lecture-style techniques because such approaches are familiar

to them, and they may have developed rigid, deeply-held beliefs about teaching (Justice

et al., 2017). Statistics GTAs often resist employing active learning techniques or partici-

patory activities in their tutorials or lectures due to anxieties that they will not have time

to cover what has been identified as important material (Gelman, 2005). Nevertheless,

such techniques as active learning are vital to learning in statistics as it embodies princi-

ples of collaboration in teaching that are fundamental to statistics as an interdisciplinary

science.

Gardner and Jones (2011) highlight the many challenges that GTAs may face regard-

ing their “pedagogical preparedness”. For instance, GTAs often feel overwhelmed with
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all the demands placed on them and their time, leading to a feeling of self-preservation

reflected in their often narrow and restricted list of priorities. These pressures, com-

bined with teaching development viewed as a low priority by most graduate students,

cause them to develop their researcher identity at the expense of their instructor iden-

tity. Gardner and Jones (2011) also note that although knowing the content knowledge

is important for effective teaching, it is problematic that neither the GTAs, nor many

institutions and disciplines, prioritize pedagogical training as a requirement. Instead, the

most consistent support that GTAs typically receive and utilize regarding their teaching

comes from their peers and fellow GTAs.

The Scholarship of Teaching and Learning (SoTL) is a movement of scholarly thought

and action that draws on the connected relationship between teaching and learning at the

post-secondary level. It differs from traditional research since it is defined as “the system-

atic study of teaching and learning, using established or validated criteria of scholarship,

to understand how teaching (beliefs, behaviours, attitudes, and values) can maximize

learning, and/or develop a more accurate understanding of learning, resulting in prod-

ucts that are publicly shared for critique and use by an appropriate community” (Potter

and Kustra, 2011, p. 2). Essentially, it is research dedicated to teaching and learning

that can span across a multitude of disciplines.

Our SoTL research seeks to answer the following research question: How does par-

ticipation in a discipline-specific teaching development program on active

learning for Graduate Teaching Assistants (GTA) in mathematics and statis-

tics, offered by their School of Mathematical and Statistical Sciences, impact

their perceptions of teaching? We developed a 1.75-hour long workshop on active

learning techniques for GTAs in the School of Mathematical and Statistical Sciences at

the University of Western Ontario. Active learning is the embodiment of knowledge ex-

change since it requires that both students and instructors (or GTAs) actively engage

with the material, more so on the students who are undertaking the active learning ac-
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tivity than the instructor who plans and facilitates it. These activities must take place

within a supportive learning environment that helps to foster this exchange of knowl-

edge. We employ a survey study design where participants were asked to attend the

workshop and respond to pre-post survey questionnaires related to active learning and

the workshop.

1.3 Intended Audience and Dissertation Outline

This dissertation is intended for multiple audiences. The fire lifetime modelling work may

be of interest to statisticians who study time-to-event or lifetime data, and fire scien-

tists or fire management practitioners interested in understanding wildland fire lifetimes.

Whereas the SoTL work on GTA training and development is intended for educators (i.e.,

lecturers, supervisors, departments, etc.) within the fields of statistics and mathematics

who are concerned with and care about the training and development that GTAs receive

during their academic careers.

We utilize the statistical software R (R Core Team, 2021) to clean and wrangle data,

create data visualizations, and perform analyses. Throughout the thesis we provide

information on the R packages employed in our research.

The chapter structure of the dissertation is:

Chapter 2: A literature review of relevant theory.

Chapter 3: The characterization of two phases of wildland fire lifetimes using

multi-state modelling techniques.

Chapter 4: The linking of those two phases with joint frailty models and evalu-

ating the efficacy of the preferred models with both diagnostics and a simulation

study.
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Chapter 5: Personal reflections on the process of exchanging the fire science

knowledge gained from the previous chapters.

Chapter 6: The SoTL study investigating the training and development of GTAs.

Chapter 7: A discussion on future work to close the dissertation.



Chapter 2

Background Theory

This chapter presents an overview of the key topics used in our work, including survival

analysis, Cox proportional hazards models, multi-state models, mixed effects models,

frailty models, and Bayesian methods and evaluation, along with the theories of knowl-

edge exchange and active learning.

2.1 Survival Analysis

A lifetime is defined to be the time from a specific starting point until some well-defined

event occurs, not necessarily the end of a life. Lifetime data is typically incomplete since

we cannot always wait for the event to occur during a study, or we may start observing

after the starting point that measures the lifetime, or observations may not be made

continuously. A lifetime is censored if it is only known that it lies within some interval.

A lifetime is truncated if its value is beyond the observation boundary. Censoring and

truncation therefore commonly occur when dealing with lifetime (or time-to-event) data.

For a strictly positive continuous lifetime random variable T , the following functions

are used to characterize its distribution. The survival function, S(t) = P (T > t), is

a nonincreasing function bounded in [0, 1] that gives the probability that the lifetime

8
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exceeds t, where t > 0. The hazard function

h(t) =
− d
dt
S(t)

S(t) ,

represents the instantaneous rate of occurrence of the event for which the lifetime is

measured at each point in time given that the event has not yet occurred. It is also

known as the force of mortality or the failure rate.

The Kaplan-Meier estimator is a non-parametric statistic used to estimate the survival

function from lifetime data. It is defined as

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
,

where i indexes the unique times, ti, when at least one event occurred before time t, di

is the number of events (e.g., deaths) that happened at time ti, and ni is the number of

individuals known to have survived (i.e., have not yet had an event or been censored) up

to time ti.

2.2 Cox Proportional Hazards Models

Cox proportional hazards (PH) models are commonly used for modelling the relationship

between the predictors and the survival outcome (Cox, 1972). Let xij(t) be the jth

predictor of the ith person or observation at time t, where i = 1, . . . , n and j = 1, . . . , p.

Then we use the p × 1 column vector xi = (xi1, . . . , xip)
′ for time-fixed predictors and

xi(t) = (xi1(t), . . . , xip(t))
′ for time-varying predictors, where some or all may be time-

varying. If none are time-varying then xi(t) = xi. For observation i, the hazard function

for the Cox PH model is defined as

hi(t) = h0(t) exp(x′i(t)β), (2.1)
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where h0 is the unspecified baseline hazard function (which is the hazard corresponding

to xi(t) being the zero vector) and β is a p×1 column vector of regression coefficients. For

two observations i and k, the ratio of their hazard functions with time-fixed predictors

has the form
hi(t)
hk(t)

= h0(t) exp(x′iβ)
h0(t) exp(x′kβ) = exp(x′iβ)

exp(x′kβ) ,

which is constant over time. Thus, the model is known as the proportional hazards model.

In general, the hazard ratio (HR), exp(β) = (exp(β1), exp(β2), . . . , exp(βp))
′ , mea-

sures the effect of the predictor(s) on the hazard compared to the baseline hazard. If the

jth element of the HR is greater than one then as the value of xij increases there is an

increase in the hazard, resulting in a decreased chance of survival. Conversely, if the jth

element of the HR is less than one then as the value of xij increases there is a decrease in

the hazard, resulting in an increased chance of survival. If the jth element of the HR is

equal to one then there is no effect. The survival package (Therneau, 2020) has several

functions that fit these models (e.g., the coxph function).

Estimation of β is based on the partial likelihood function introduced by Cox (1972).

Let ti be the survival time associated with the ith individual, ci be the fixed censoring

time, yi = min(ti, ci), and let the event indicator be

νi =


1, if ti ≤ ci

0, if ti > ci

.

For continuous lifetime data with no ties the partial likelihood function has the form

PL(β) =
n∏
i=1

(
exp(x′iβ)∑

r∈Ri
exp(x′rβ)

)νi

,

where Ri is the set of individuals who are “at risk” for the event at a time just prior to

y(i), called the risk set, and y(i) is the ith ordered survival time. However, real data sets
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often contain tied events as lifetime data. Therneau and Grambsch (2000) discuss four

common methods for handing ties: Breslow approximation, Efron approximation, exact

partial likelihood, and averaged likelihood. If the data contains no ties then all these

methods are equivalent.

2.2.1 Baseline Hazard Functions

For a parametric Cox PH model we assume a parametric function for the baseline hazard,

h0(t). Two popular choices are:

1. h0(t) = λρtρ−1, with λ > 0, ρ > 0, or

2. h0(t) = λ exp(γt), with λ > 0, γ ∈ R.

The first choice results in event times or lifetimes that have a Weibull distribution

whereas the second choice results in a Gompertz distribution. Table 1.13 in Duchateau

and Janssen (2007) outlines the hazard function, density function, and survival function

for several distributions, including these two choices.

One popular semiparametric Cox PH model assumes a piecewise exponential baseline

hazard function. This specification provides a very flexible framework for modelling

the baseline hazard rate whose shape might not be as simple as those represented by

a Weibull or Gompertz distribution. The time axis is partitioned into K prespecified

intervals where

I(ak−1,ak](t) =


1, t ∈ (ak−1, ak]

0, otherwise
, (2.2)

for k = 1, . . . , K, where 0 = a0 < a1 < · · · < aK < ∞, aK is the last survival/censored

time, and we assume that the baseline hazard is constant within the intervals (Ibrahim

et al., 2001).

For more details on lifetime data, survival analysis and Cox PH models see Lawless

(2011), Kleinbaum and Klein (2010), and Therneau and Grambsch (2000).
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2.3 Multi-State Models

The following section on multi-state models, along with Chapter 2.4, use notation and

writing adopted from Cook and Lawless (2018).

Life history data (or lifetime/time-to-event data) is implicitly longitudinal because it

contains information about events or other outcomes observed over time. Let N(t) be the

number of events occurring up to time t. Then {N(t), t ≥ 0} is called a counting process.

When there are R ≥ 2 types of events, we let Nr(t) denote the number of events of type r

over the time interval (0, t], where r = 1, 2, ..., R. Note that processes {Nr(t), t ≥ 0} are

called counting processes of type r events. There are two features of interest for counting

processes that we will focus on: the number of events that occurred over specific time

periods and the lengths of time between specific events.

Now let Z(t) denote the state of the process at time t, where there are 1, 2, ..., K

mutually exclusive states. The researcher is free to define states in the way that best

addresses their research question. In this case, the two features of interest are the prob-

ability of moving from one state to another and the duration of time spent in specific

states.

Models for events and their counting processes in continuous time are specified through

intensity functions. Let the σ-algebra H(t) = {N(s), 0 ≤ s ≤ t} denote the history for

all events of [0, t]1. Then the intensity function for events of type r is

λr(t|H(t−)) = lim
∆t↘0

P (∆Nr(t) = 1 | H(t−))
∆t , t ≥ 0, (2.3)

where ∆Nr(t) = Nr(t + ∆t) − Nr(t) is the difference between the counting processes of

type r events over a short time period ∆t, H(t−) represents the history of states that

are occupied over [0, t), and H(0−) = ∅. For a continuous-time process we assume two

or more events cannot occur at the same time resulting in the intensity functions for
1A σ-algebra on a set X is a collection, ΣH, of subsets of X that includes X , is closed under comple-

ment, and is closed under countable unions.
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r = 1, ..., R fully specifying the multivariate event process.

Multi-state models in continuous time with state space {1, 2, ..., K} are formulated by

specifying intensity functions, similar to (2.3), for allowable transitions between states.

The transition intensity functions are

λkl(t|H(t−)) = lim
∆t↘0

P [Z(t+ ∆t) = l | Z(t) = k,H(t−))]
∆t , k 6= l (2.4)

representing the instantaneous rate of progression to state l conditionally on occupying

state k. Here, we let H(t) = {Z(s), 0 ≤ s ≤ t}. A multi-state model is a Markov process

if λkl(t|H(t−)) = λkl(t) since the transition intensity function depends on the history

of the process only through the current state. Multi-state models can be represented

as counting processes by expressing the types of transitions as different types of events,

assuming only one event or ‘transition’ can occur at a given instant.

Intensities can also be specified as functions of predictors. For fixed predictors,H(t) =

{Z(s), 0 ≤ s ≤ t; X} where X is a fixed predictor matrix with rows x′i, i = 1, . . . , n. For

individual i, the Markov model where predictors act multiplicatively on the intensity has

the general form

λi,kl(t|H(t−)) = λi,kl(t|xi) = λkl0(t)g(xi;βkl),

where xi are the predictors, βkl the regression coefficients and g(xi;βkl) ≥ 0.

A common choice for the function g(·) is g(xi;βkl) = exp(x′iβkl) which follows a

similar framework to the Cox PH model (2.1). In this case λkl0(t) are called baseline

intensities which apply when xi = 0.

For individual i, the Markov model where predictors act additively on the intensity

has the form

λi,kl(t|H(t−)) = λkl0(t) + g(xi;βkl),

where one must constrain the model components so the intensity is non-negative. Choos-

ing g(xi, t;βkl) = x
′
iβkl(t) allows for time-dependent regression coefficients (Meira-Machado
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et al., 2009) which are discussed further in Chapter 3.

2.3.1 Features of Interest

The two main features of interest are transition intensities and transition probabil-

ities. Transition intensities (denoted by λkl) “describe the instantaneous risk of a change

in the process by specifying how the probability of a transition occurring over a short

time interval depends on the process history up to that time” (Cook and Lawless, 2018,

p. 9).

Transition probabilities are denoted by

Pkl(s, t|H(s−)) = P [Z(t) = l | Z(s) = k,H(s−)],

for k, l ∈ {1, ..., K} and s ≤ t. When individuals must be in state 1 at s = 0, P1l(0, t|H(0))

for t > 0 and l ∈ {1, ..., K} are called prevalence or occupancy probability functions.

These functions give the probability of moving from the initial state (in this case, state

1) to any other state, including state 1. Durations of sojourns in certain states or the

time until a specific state is first entered can also be of interest.

2.3.2 Counting Process Definitions

It’s often helpful to express data and models in terms of counting processes. Note the

following definitions:

• Nkl(t) = right-continuous function that counts the number of instantaneous tran-

sitions from k to l over [0, t]

• ∆Nkl(t) = Nkl(t+ ∆t)−Nkl(t) = number of k to l transitions over [t, t+ ∆t]
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• dNkl(t) = lim∆t→0 ∆Nkl(t) indicates if k to l transitions occurred at t

∴ dNkl(t) =


1 , if a k to l transition occurred at time t

0 , otherwise

• Vector dNk(t) = (dNkl(t), l 6= k, l = 1, . . . , K) contains all the elements dNkl(t)

for l 6= k and hence all the information on whether a transition out of state k at

time t occurred and the nature of the transition. Note that if ∑ dNkl(t) = 1 then

a transition occurred and the non-zero element in dNk(t) tells the entered state.

• Nk(t) = (Nkl(t), l 6= k, l = 1, . . . , K)′ where Nkl(t) =
∫ t
0 dNkl(s), gives the cumula-

tive number and types of transitions out of state k of each type over [0, t]

• Full vector N(t) = (N ′1(t), . . . , N ′K(t))′ records the nature and number of all tran-

sitions over [0,t]

Thus, {N(t), t ≥ 0} is another way of representing {Z(t), t ≥ 0}, i.e. the counting

process represents the multi-state framework.

The following conventions are utilized in the next section and are important to re-

member. Y (t) = I(t ≤ C) is a process that is under observation at time t where C is the

right censoring time and thus Yk(t) = I(Z(t) = k) is an indicator function denoting that

state k is occupied at time t. We use Ȳk(t) = Y (t)Yk(t−)2 to indicate that a transition

out of state k may be observed at time t.

2Note that this Ȳ notation represents an observation rather than an average.
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2.4 Analysis of Continuous Multi-State Models

2.4.1 Parametric Maximum Likelihood Estimation

Let θ be a vector of parameters whose elements correspond to the transition intensity

functions λkl(t|H(t−)) for a multi-state process with K states. The vectors θkl (l 6= k)

parameterize λkl and, generally, θkl 6= θk′ l′ , k, l, k
′
, l
′ = 1, . . . , K, (k, l) 6= (k′ , l′). Also

assume that the observation of individual i begins at Ai0 (Ai0 ≥ 0) and stops at Ci (Ci >

Ai0), i = 1, . . . , n.

The full likelihood for θ = (θkl, k = 1, . . . , K, l = 1, . . . , K) is

L(θ) =
∏
k 6=l

Lkl(θkl), (2.5)

where

Lkl(θkl) =
n∏
i=1

 ∏
tir∈Dikl

λkl(tir|H(t−ir); θkl)× exp
(
−
∫ ∞

0
Ȳik(u)λkl(u|Hi(u−); θkl)du

) ,
(2.6)

with i = 1, . . . , n sampled independent individuals, Ȳik(u) = I(Ai0 ≤ u ≤ Ci)I(Zi(u−) =

k), and Dikl is the set of distinct times tir at which individual i makes an observed k → l

transition.

The full likelihood is an extension of the likelihood contribution for a single individual.

Chapter 2.2 in Cook and Lawless (2018) provides details of how the single likelihood is

developed using product integration and sample path probabilities. The time interval

of an observed individual is partitioned so the likelihood contributions within the sub-

intervals are considered, the products of these likelihood contributions are taken over the

partition, and then the limit as the number of sub-intervals goes to infinity is taken.
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The partial log-likelihood lkl(θkl) = logLkl(θkl) is then

lkl(θkl) =
n∑
i=1

∫ ∞
0

Ȳik(u)
{

log λkl(u|Hi(u−); θkl)dNikl(u)− λkl(u|Hi(u−); θkl)du
}
, (2.7)

where {Nikl(u), u > 0} is a counting process for k → l transitions for individual i.

For Markov models, recall that λkl(t|Hi(t−); θkl) = λkl(t; θkl). Now suppose you have

a time-homogeneous model where λkl(t; θkl) = θkl, then

lkl(θkl) =
n∑
i=1

∫ ∞
0

Ȳik(u) {log θkldNikl(u)− θkldu}

= log θkl
(

n∑
i=1

∫ ∞
0

Ȳik(u)dNikl(u)
)
− θkl

(
n∑
i=1

∫ ∞
0

Ȳik(u)du
)

= log θklnkl − θklSk ,

where nkl is the total number of k → l transitions observed across individuals in the

sample and Sk = ∑n
i=1

∫∞
0 Ȳik(u)du is the total person-time at risk of transition out of

state k. This partial log-likelihood has the same form as one for a time-homogeneous

Poisson process where nkl denotes the count and Sk denotes the exposure time.

The maximum likelihood estimate (MLE) for the k → l transition rate is θ̂kl =

nkl/Sk. For time-homogeneous models, the estimated observed Fisher information matrix

is Îkl(θ̂kl) = n−1nkl/θ̂
2
kl, so the estimated normal approximation for the distribution of

θ̂kl is
√
n(θ̂kl − θkl) ∼ N(0, nθ̂2

kl/nkl). Also note that the likelihood ratio statistic is

LRSkl(θkl) = 2{logLkl(θ̂kl)− logLkl(θkl)}

= 2{nkl log(θ̂kl/θkl)− Sk(θ̂kl − θkl)},

where LRSkl(θkl) ∼ χ2
(1).

As the assumption of constant transition intensities is strong, we need more flexible

functional forms for modelling intensities. A simple extension is a model with a piecewise
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constant intensity function. Let 0 = b0 < b1 < · · · < bR = ∞ be a partition of the

positive real line, with Br = [br−1, br) and ∪∞r=1Br = [0,∞). Then with a piecewise

constant framework the intensities are λkl(t; θkl) = θklr, t ∈ Br, r = 1, . . . , R. The

partial log-likelihood for parameters θkl = (θkl1, . . . , θklR)′ is

logLkl =
n∑
i=1

R∑
r=1

∫ ∞
0

Ȳikr(u) {log θklrdNikl(u)− θklrdu}

=
R∑
r=1
{nklr log θklr − Skrθklr} ,

where Ȳikr(u) = Ȳik(u)I(u ∈ Br), nklr = ∑n
i=1

∫∞
0 Ȳikr(u)dNikl(u) is the total number of

observed k → l transitions over Br, and Skr = ∑n
i=1

∫∞
0 Ȳikr(u)du is the total person-

time at risk for k → l transitions. The MLE is θ̂klr and we have
√
n(θ̂klr − θklr) ∼

N(0, nθ̂2
klr/nklr).

Transition probabilities are functions of θkl and several approaches have been proposed

to obtain variance estimates or confidence intervals for these. Suppose you are interested

in Pkl(s, t; θ) where θ = (θkl, k = 1, . . . , K, l = 1, . . . , K) contains all elements of all the

θkl parameters. By letting θ = (θ1, . . . , θm)′ we are indexing all the θkl in some order

where m = K2 (i.e., the number of θkl parameters). An estimate for the asymptotic

variance of the MLE is

V̂ ar(Pkl(s, t; θ̂)) =
m∑
r=1

m∑
u=1

{
∂Pkl(s, t; θ)

∂θr

∂Pkl(s, t; θ)
∂θu

}∣∣∣∣
θ̂
Ĉov(θ̂r, θ̂u),

where Ĉov(θ̂) = m−1I−1(θ̂) is the estimated covariance matrix for θ̂ with elements

Ĉov(θ̂r, θ̂u) and the m×m matrix I(θ̂) is obtained from components of the estimated and

normalized observed information matrix and the fact that separate θ̂kl are asymptotically

independent.

For some Markov models there are simple expressions for Pkl where the derivatives

can be determined analytically, however numerical approximations are generally required.
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One effective approach is to use numerical differentiation where

∂Pkl(s, t; θ)
∂θr

.= Pkl(s, t; θ + ∆r)− Pkl(s, t; θ −∆r)
2δr

,

where ∆r = m × 1 zero vector except for the small value δr > 0 for the element cor-

responding to θr. Note that one can also use the nonparametric bootstrap method for

variance estimation (Cook and Lawless, 2018).

2.4.2 Nonparametric Estimation

For Markov models without predictors, the nonparametric estimation of cumulative tran-

sition intensities and other features of interest are possible.

Transition intensity functions take the form λkl(t) for k 6= l, where λkk(t) ..= −∑l 6=k λkl(t)

for k = 1, . . . , K. The nonparametric Nelson-Aalen (NA) estimator of the cumula-

tive intensities Λkl(t) =
∫ t

0 dΛkl(u) =
∫ t

0 λkl(u)du is

Λ̂kl(t) =
n∑
i=1

∑
tir∈Dikl(t)

I(tir ≤ t)
Ȳ·k(tir)

=
∫ t

0
dΛ̂kl(u) =

∫ t

0

dN̄·kl(u)
Ȳ·k(u)

, k 6= l,

where Ȳ·k(t) = ∑n
i=1 Yik(t). Thus dΛkl(u) is estimated by the number of k → l transitions

observed at time u divided by the number of individuals at risk for a transition out of

state k (i.e., those under observation and in state k at time u−). These estimators are

analogous to the NA estimators of the cumulative hazard function in survival analysis

and can be thought of as discrete MLEs where Λkl(t) increases only at times where k → l

transitions are observed.

We define Jk(u) ..= I(Ȳ·k(u) > 0), where Jk(u)/Ȳ·k(u) is defined to be 0 when Ȳ·k(u) =

0. For a continuous-time process with no ties (i.e., only one transition can simultaneously
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occur at a given time), the variance estimate is

V̂ ar(Λ̂kl(t)) =
∫ t

0

Jk(u)dΛ̂kl(u)
Ȳ·k(u)

=
∑
t(r)≤t

Jk(t(r))
Ȳ·k(t(r))2

dN̄·kl(t(r)),

where t(1) < · · · < t(m) are distinct times at which m observed transitions occur. However,

in practice occasional ties can occur because the transition times are recorded on a

discrete time scale. An alternative estimate based on a discrete time framework for

handling ties is

V̂ ar(Λ̂kl(t)) =
∑
t(r)≤t

Jk(t(r))dN̄·kl(t(r))
(
Ȳ·k(t(r))− dN̄·kl(t(r))

)
Ȳ·k(t(r))3

=
∑
t(r)≤t

Jk(t(r))dΛ̂kl(t(r))
(
1− dΛ̂kl(t(r))

)
Ȳ·k(t(r))

.

These two variance estimates are close in value when large numbers Ȳ·k(t(r)) are at risk

and there are few ties. We also assume that as n→∞, Jk(u) > 0 with probability one.

The nonparametric estimates of the matrix of transition probabilities are

P̂ (s, t) =
∏
(s,t]
{I + Q̂(u)du}, ( = Aalen-Johansen estimator)

where Q̂(u)du is a K×K matrix with off-diagonal entries dΛ̂kl(u) given by the integrand

from the NA estimator and diagonal entries −∑l 6=k dΛ̂kl(u), k = 1, . . . , K. Note that

the R package etm (Allignol et al., 2011) provides these estimates and their variance

estimates.
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2.5 Mixed Effects Models

A mixed effects model contains both fixed effects and random effects. The linear mixed-

effects models have the form

y = Xβ + Zb+ ε, b ∼ N(0, ψθ), ε ∼ N(0, σ2Λ), (2.8)

where y = (y1, . . . , yn)′ is an n×1 column vector of observations on the vector of random

variables Y = (Y1, . . . , Yn)′ , X is the model matrix for the fixed effects, β is the vector

containing the coefficients associated with the fixed effects, Z is the model matrix for

the random effects, b is the random vector containing random effects with mean zero

and positive definite covariance matrix ψθ (unknown parameters θ), ε = (ε1, . . . , εn)′ is

the n × 1 column vector containing the error terms that are mutually independent zero

mean random variables with the same variance σ2, and Λ is a positive definite matrix,

of simple structure, which is typically used to model residual autocorrelation. Often, Λ

is the identity matrix which corresponds to the assumption that the random effects are

uncorrelated.

Linear mixed-effects models allow for a more complex stochastic structure compared

to fixed-effects models, and imply that the elements of the response are no longer inde-

pendent. The model form from (2.8) can be rewritten as

y = Xβ + e, e = Zb+ ε ∼ N(0, σ2Σθ), (2.9)

where Σθ = ZψθZ
′

σ2 + I since the covariance of e is equal to ZψθZ
′ + σ2I and I is the

identity matrix. The likelihood for this linear mixed-effects model is

L(β,θ, σ2) = 1√
(2πσ2)n | Σθ |

exp
[
−(y −Xβ)′Σ−1

θ (y −Xβ)/(2σ2)
]
, (2.10)
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where maximizing L with respect to β,θ, σ2 will provide β̂, θ̂, σ̂2. However, this maxi-

mization can be simplified by profiling the likelihood (not shown here).

The restricted maximum likelihood (REML) approach is an estimation technique that

takes the average of the joint likelihood L(β,θ, σ2) over all possible values of β, called

the REML criterion, and is maximized to find the variance parameters θ̂, σ̂2. The REML

criterion is

LR(θ, σ2) =
∫
L(β,θ, σ2)dβ

= 1√
(2π)n | Σ |

∫
exp

[
−(y −Xβ)′Σ−1(y −Xβ)/2

]
dβ, Σ = Σθσ

2

= . . .

=
exp

[
−(y −Xβ̂)′Σ−1(y −Xβ̂)/2

]
√

(2π)n | Σ |

√√√√ (2π)p
| X ′Σ−1X |

,

where p is the dimension of β and n is the dimension of y. For more details see Wood

(2006).

2.6 Frailty Models

Frailty models are random effects hazard models where the random effect (i.e., frailty)

has a multiplicative effect on the hazard. The hazard can depend on predictors which

can be modeled in a parametric or semi-parametric way (Duchateau and Janssen, 2007).

Frailty models extend the Cox PH model to account for unobservable heterogeneity

among individuals.

For subject j, j = 1, . . . , ni from cluster3 i, i = 1, . . . , s, let the observation yij be the

minimum of the censoring time and the event time. The shared frailty model has the

3A cluster is a group of objects that are more similar to each other than to those in other groups,
or clusters.
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form

hij(t) = h0(t) exp(x′ijβ + bi)

= h0(t)ui exp(x′ijβ),

where hij(t) is the conditional hazard function (conditional on bi), h0(t) is the baseline

hazard function, x′ij is the 1× p row vector of predictors for subject j from cluster i, β is

the p× 1 column vector containing the coefficients associated with the fixed effects (also

called the fixed effects vector), and bi is the random effect for the ith cluster (Duchateau

et al. (2002), Rondeau (2010)). The frailty term, ui = exp(bi), has a multiplicative effect

on the baseline hazard function.

2.6.1 Frailty Distributions

Duchateau et al. (2002) provide two common choices for the density of frailties u = exp(b):

1. The zero-mean Normal density for b (i.e., the Lognormal density for u), where

fU(u) = 1
u
√

2πσ2
exp

(
−(log(u))2

2σ2

)
, µ = 0, σ > 0.

2. The one-parameter Gamma density for u, where

fU(u) = u(1/θ)−1 exp(−u/θ)
θ1/θΓ(1/θ) , θ > 0.

For the one-parameter Gamma density function the scale parameter is θ and the shape

parameter is 1/θ resulting in E(u) = 1 and V ar(u) = θ. The Gamma distribution is the

most commonly used finite mean distribution to model the frailty term in such models

(Ibrahim et al., 2001, p. 101). The parameter θ gives information on the variability

(i.e., the heterogeneity) in the population of clusters — larger values of θ imply greater
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heterogeneity among clusters.

For frailty models, the baseline hazard can be specified using the functions discussed

in Chapter 2.2.1. See Ibrahim et al. (2001) and Austin (2017) for further details.

2.7 Bayesian Methods

Bayesian data analysis methods assume that the parameters for parametric models are

random variables as opposed to the fixed (but unknown) constants that are used in

frequentist modelling frameworks. These methods use probability for quantifying uncer-

tainty in inferences and hypotheses and the probabilities are updated using Bayes’ rule

as more information becomes available. In general, the method follows these three steps:

1. Setting up a joint probability distribution for all quantities where any previous

knowledge of the problem can be utilized,

2. Calculating the conditional probability distribution of those unobserved quantities

of interest given the data that is observed, and

3. Evaluating the fit of the model to determine if the conclusions are reasonable and

consistent with the data.

One strength of these methods is the interpretability of the results since Bayesian (or

probability) intervals4 for unknown quantities are interpreted as having a high probability

of containing said unknown quantities whereas frequentist (or confidence) intervals for

unknown quantities are interpreted as a range of values that contains said unknown

quantities, some percentage (e.g., 95%) of the time.

We provide a brief overview of Bayesian methods. For more information about

Bayesian data analysis see Gelman et al. (2014a) and Kruschke (2015).

4Also known as credible intervals.



§2.7 Bayesian Methods 25

Suppose we have some observable data D and we want to make inferences about some

parameter θ. We use the notation p(·) to denote a marginal probability density and p(·|·)

to denote a conditional probability density, where the arguments in both densities are

determined by the problem.

The joint probability density function can be written in the form

p(θ,D) = p(θ)p(D|θ) = p(θ|D)p(D), (2.11)

where p(θ) is the prior distribution (explained in the next section) and p(D|θ) is the

likelihood of the data conditional on the parameter. Using Bayes’ rule, we obtain the

posterior density

p(θ|D) = p(θ,D)
p(D) = p(θ)p(D|θ)

p(D) , (2.12)

where p(D) = ∑
θ p(θ)p(D|θ), which is a sum over all possible values of θ, for discrete

θ or p(D) =
∫
p(θ)p(D|θ)dθ for continuous θ. Since p(D) in the denominator of (2.12)

does not depend on θ and can be viewed as a constant for fixed D, we can simplify the

right-hand side of (2.12) to

p(θ|D) ∝ p(θ)p(D|θ)

= prior distribution× likelihood function.

We see that the posterior density is proportional to the prior distribution times the

likelihood function; we use our prior knowledge or beliefs and the likelihood of the ob-

served data to determine our posterior distribution (or density or probability).

2.7.1 Priors and Hyperpriors

A prior probability distribution, or simply a prior, denoted above by p(θ) allows us to

use some knowledge or belief that we already have about the unknown quantity θ before
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any evidence is taken into account. For example, if we wanted to find the probability

of selling lemonade on a hot and sunny day, we can use our prior knowledge about the

likelihood of selling lemonade on any type of day (e.g., rainy, windy, snowy, etc.).

There are many types of priors to consider and we will only mention a few of them here.

A non-informative prior5 is one that represents complete ignorance about the value of the

parameter with as few restrictions on the parameter space as possible. The rationale for

using these types of priors is to allow the data to speak for itself. A weakly informative

prior is one which contains some information about a parameter but still allows the

likelihood to dominate the posterior. An informative prior expresses specific and/or

substantive information about a parameter. Such priors incorporate expert information,

reduce the variance of the posterior, and improve simulation-based estimation (discussed

below), but misspecified informative priors or priors with too small of a variance can have

negative effects on the results. See Chapter 2 in Gelman et al. (2014a) for more details

about prior distributions, along with other types (e.g., conjugate and improper priors).

Prior distibutions can have parameters in them, and these parameters are called

hyperparameters. For instance, suppose we want to toss a coin one time. The probability

of the coin turning up heads is denoted by p. Before we toss the coin, you believe

that the coin is fair (i.e., p = 0.5) rather than biased and I believe that all values

of p ∈ [0, 1] are equally plausible. Our prior beliefs about p can be modeled using a

Beta distribution where p ∼ B(α, β). Thus, the α and β parameters (or the shape and

scale parameters, respectively) of the prior Beta distribution are called hyperparameters.

These hyperparameters may also have distributions that express prior beliefs about their

values. The prior distributions of hyperparameters are known as hyperpriors.

5Non-informative priors may make assumptions about the structure of the parameter space, such as
assuming independence between parameters or limiting parameters to a finite value. A prior may be
non-informative on one scale but informative after transformation. For example, a uniform distribution
on a variance represents ignorance and might appear non-informative. However, it is informative for the
inverse variance, also known as the precision.
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2.7.2 Gibbs Sampling

Gibbs sampling, also called the alternating conditional sampling, is a Markov chain Monte

Carlo (MCMC) algorithm that is used when the joint distribution (2.11) either has no

closed form or is too difficult to calculate directly. This also occurs for the marginal

likelihood shown in the denominator in (2.12) since it is rarely available in closed form.

Instead, MCMC methods like the Gibbs sampler are employed to sample from the known

conditional posterior distribution, p(θ|D), for each parameter and these distributions are

often much easier to sample from. Thus, the Gibbs sampler allows one to obtain a

sequence of observations which are estimated from conditional probability distributions

without requiring the difficult derivation of and estimation from the joint probability

distribution.

Gibbs sampling is a special case of the Metropolis-Hastings (MH) family of samplers.

The Metropolis-Hastings algorithm is an adaptation of a random walk with an accep-

tance/rejection rule to draw samples from the posterior. We provide a brief overview of

one version of this algorithm. Suppose we have data y = (y1, . . . , yn)′ , a vector of random

variables θ = (θ1, . . . , θk)
′ , and a distribution function of the data pY (y|θ). We want to

obtain a sample from the joint posterior distribution, pΘ(θ|y). From (2.12) we have

pΘ(θ|y) = pΘ(θ)pY (y|θ)∫
Θ pΘ(θ)pY (y|θ)dθ ∝ pΘ(θ)pY (y|θ).

An intuitive approach to the steps of the algorithm are:

1. Initialize: Start with a vector of initial values where θ(0) = (θ(0)
1 , . . . , θ

(0)
k )′ .

2. Propose: For each initial value θ(0)
i propose a new value θ∗i based on a small de-

viation from the current value. In the first iteration, the proposed values will be

based on the initial values. The vector of proposals is denoted by θ∗.
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3. Calculate: Using the proposed and current values, calculate the acceptance ratio

r = pΘ(θ∗|y)/pΘ(θ(0)|y) = pΘ(θ∗)pY (y|θ∗)
pΘ(θ(0))pY (y|θ(0)) .

4. Decide: If r > 1 then θ∗ makes the data more likely than θ(0). We accept the

proposal and set θ(1) = θ∗. If r < 1 then we set θ(1) to either θ∗ or θ(0) with

probability r or 1− r, respectively.

This process is repeated using steps 2-4 where the steps are updated to the following:

2. Propose: For each value θ
(repetition)
i , where repetition = 1, 2, . . . , propose a new

value θ∗i based on the current value. The vector of proposals is denoted by θ∗.

3. Calculate: Using the proposed and current values, calculate the acceptance ratio

r = pΘ(θ∗|y)/pΘ(θ(repetition)|y) = pΘ(θ∗)pY (y|θ∗)
pΘ(θ(repetition))pY (y|θ(repetition)) .

4. Decide: If r > 1 then θ∗ makes the data more likely than θ(repetition). We accept

the proposal and set θ(repetition+1) = θ∗. If r < 1 then we set θ(repetition+1) to either

θ∗ or θ(repetition) with probability r or 1− r, respectively.

The repetition continues until a desired number of samples is reached. Note that

the algorithm tends to stay in and return large numbers of samples from high-density

regions of the posterior distribution while only occasionally visiting low-density regions.

An MCMC routine is said to have converged when it is sampling from the highest density

regions, rather than exploring the parameter space for these regions. One important

disadvantage of this algorithm to highlight is that it may take a long time for the Markov

chain to converge if the initial values are in a region of low density.

Recall that Gibbs sampling is used when the conditional posterior distribution is

known and easier to sample from than the joint posterior distribution. Thus, the
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Metropolis-Hastings algorithm samples from the joint posterior distribution whereas the

Gibbs algorithm samples from the conditional posterior distribution. For Gibbs sam-

pling, we set initial values for θ−1 = (θ2, . . . , θk)
′ , i.e., for all but the first parameter.

Then there are k steps in each iteration where the sampler cycles through the subvectors

of θ and draws each subset conditional on the value of all the others. The procedure of

one iteration follows:

1. Sample θ∗1 from pθ1(θ1|θ(0)
2 , θ

(0)
3 , . . . , θ

(0)
j−1, θ

(0)
j , θ

(0)
j+1, . . . , θ

(0)
k ,y). Accept the proposal

using the Metropolis-Hastings rules and set the value of θ(1)
1 .

2. Sample θ∗2 from pθ2(θ2|θ(1)
1 , θ

(0)
3 , . . . , θ

(0)
j−1, θ

(0)
j , θ

(0)
j+1, . . . , θ

(0)
k ,y). Again, accept the

proposal using the rules and set θ(1)
2 .

3. Continue sampling θ∗j , j = 3, . . . , k, from pθj
(θj|θ(1)

1 , θ
(1)
2 , θ

(1)
3 , . . . , θ

(1)
j−1, θ

(0)
j+1, . . . , θ

(0)
k ,y).

until a sample of θ(1) = (θ(1)
1 , θ

(1)
2 , . . . , θ

(1)
k )′ is found.

Repeat this process by moving to the next iteration, starting with the value of θ(2)
1 .

Stop at the desired number of samples. If the model converges then the samples from

the Gibbs sampler approximate the joint distribution of all the parameters. Thus, the

sample properties, such as the mean, median, mode, variance, and covariance between

parameters, from the Gibbs sampler are the same as the sample properties of samples

from the joint distribution. For more details on these samplers or MCMC simulation in

general, see Chapter 11 in Gelman et al. (2014a) and Chapter 7 in Kruschke (2015).

JAGS (Just Another Gibbs Sampler) is a program for Bayesian modelling that builds

MCMC samplers for complex hierarchical models (Plummer, 2003). It succeeded the

BUGS (Bayesian inference Using Gibbs Sampling) system and has retained many of the

features of BUGS but utilizes different samplers and has better useability across various

operating systems like Linux, Windows and MacOS. JAGS inputs a description of a

model for the data and outputs an MCMC sample of the posterior distribution. Several
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packages exist to connect the statistical software R (R Core Team, 2021) with JAGS like

the runjags package (Denwood, 2016).

2.8 Evaluation of Bayesian Models

After a Bayesian model is fit using the methods mentioned above, we often want to mea-

sure its predictive accuracy especially when performing model comparisons. Suppose the

data y = (y1, . . . , yn)′ are independent given parameters θ. Then the likelihood function

is p(y|θ) = ∑n
i=1 p(yi|θ), the posterior distribution is p(θ|y), the prior distribution is

p(θ), and the posterior predictive density (or distribution) is p(ỹ|y) =
∫
p(ỹi|θ)p(θ|y)dθ

since it is a prediction for an observable ỹ. The expected log pointwise predictive density

(ELPD) for a new dataset provides a measure of predictive accuracy for the n data points

taken one at a time, defined by

ELPD =
n∑
i=1

∫
pt(ỹi) log p(ỹi|y)dỹi, (2.13)

where pt(ỹi) is the unknown distribution of the true data-generating process for ỹi. The

methods described below approximate this equation.

Note that the definitions stated in this chapter are those used in the loo package

(Vehtari et al., 2020) and discussed in the paper by Vehtari et al. (2017).

2.8.1 Widely Applicable Information Criterion

The Widely Applicable Information Criterion (WAIC), also referred to as the Watanabe-

Akaike Information Criterion (Watanabe and Opper, 2010), is one of the methods used to

compare Bayesian models. It it different than the commonly used Deviance Information

Criterion (DIC) since it is fully Bayesian. The DIC (Gelman et al., 2014b) is based on a

point estimate whereas the WAIC uses the entire posterior distribution, making it a fully

Bayesian criterion and one that is asymptotically equivalent to Bayesian cross-validation.
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It is an alternative approach to estimating the expected log pointwise predictive density

shown in (2.13).

WAIC is composed of two parts: the log pointwise predictive density and the effective

number of parameters. The log pointwise predictive density (LPD), an overestimate6 of

(2.13), is defined as

LPD =
n∑
i=1

log p(yi|y) =
n∑
i=1

log
∫
p(yi|θ)p(θ|y)dθ

L̂PD =
n∑
i=1

log
(

1
S

S∑
s=1

p(yi|θs)
)

where θs is the sth draw out of S total draws from the posterior distribution based on an

MCMC algorithm. The effective number of parameters (pWAIC) is a penalty for having

too many unconstrained parameters and is defined as

pWAIC =
n∑
i=1

varpost (log p(yi|θ))

p̂WAIC =
n∑
i=1

V S
s=1 (log p(yi|θs))

where V S
s=1(as) =

∑S

s=1(as−ā)2

S−1 is the sample variance function. Note that the definition of

the effective number of parameters corresponds to pWAIC2 in Gelman et al. (2014b). The

theoretical and computing formulas for the WAIC are

WAIC = −2× ELPD = −2(LPD− pWAIC) (2.14)

ŴAIC = −2× ÊLPD = −2(L̂PD− p̂WAIC).

We can see that the WAIC is more stable than the DIC from its definition since it

computes the sample variance of the draws separately for each data point and then sums

6An estimate is an overestimate if it exceeds the actual result. In contrast, an estimate is an
underestimate if it is less than the actual result.
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over them.

2.8.2 Pareto Smoothed Importance Sampling

The Bayesian leave-one-out (LOO) estimate of the out-of-sample predictive fit (i.e., the

leave out one data point estimate for 2.13) is

ELPDLOO =
n∑
i=1

log p(yi|y−i),

where p(yi|y−i) =
∫
p(yi|θ)p(θ|y−i)dθ is the leave-one-out predictive density given the

data without the ith data point. This estimate can be greatly improved upon using

Pareto smoothed importance sampling (PSIS) which we discuss below.

Raw importance sampling evaluates p(yi|y−i) using importance ratios, rsi , which are

defined as

rsi = 1
p(yi|θs)

∝ p(θs|y−i)
p(θs|y) ,

where θs is the sth draw out of S total draws from the posterior distribution (i.e., s

indexes the simulation draws). Then the importance sampling leave-one-out (IS-LOO)

predictive distribution is

p(ỹi|y−i) ≈
∑S
s=1 r

s
i p(ỹi|θs)∑S
s=1 r

s
i

,

and evaluating it at yi, the held out data point, leads to

p(yi|y−i) ≈
1

1
S

∑S
s=1(p(yi|θs))−1 .

However, it is unstable because the importance ratios can have high or infinite vari-

ance. To deal with this issue we turn to truncated importance sampling which mod-

ifies the importance ratios. The rs ratios are replaced by truncated weights ws =

min(rs, S−1/2∑S
s=1 r

s), which leads to having finite variance but also introduces bias.

Thus, we turn to Pareto smoothed importance sampling. A brief overview of the
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procedure follows but for more information see Section 2.1 in Vehtari et al. (2017) and

Vehtari et al. (2021). The steps are:

1. Fit a generalized Pareto distribution to the 20% largest importance ratios, rsi , s =

1, . . . , S, from the raw importance sampling. Do this separately for each held-out

data point i.

2. Create new weights, w̃si , s = 1, . . . , S, by retaining the M − 1 smallest ratios and

replacing the M largest ratios with the expected values of the order statistics of

the fitted generalized Pareto distribution, using the inverse-CDF: F−1
(
z−1/2
M

)
, z =

1, . . . ,M , where M is the number of simulation draws used to fit the Pareto (i.e.,

M = 0.2S).

3. Truncate each vector of weights at S3/4wi, where wi is the average of the S smoothed

weights corresponding to the distribution without data point i. Label the weights

as wsi .

These steps are done for each data point i and result in a vector of weights, ws, s =

1, . . . , S, with elements wsi , i = 1, . . . , n, that should behave better than the original

importance ratios. Therefore the Pareto smoothed importance sampling estimate of the

leave-one-out expected log pointwise predictive density is

ÊLPDPSIS-LOO =
n∑
i=1

log
(∑S

s=1w
s
i p(yi|θs)∑S

s=1w
s
i

)
. (2.15)

The estimated shape parameter k̂ of the generalized Pareto distribution is used to

assess the reliability of the estimate in (2.15). If



k < 1/2 =⇒ estimate converges quickly

1/2 ≤ k ≤ 1 =⇒ estimate converges slower

k > 1 =⇒ more issues

.
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Ultimately, if any k̂ > 0.7 then one should: (1) sample directly from p(θs|y−i) so long as

the number of problematic data points is not too high; (2) use k-fold cross-validation; or

(3) use a more robust model.

2.9 Knowledge Exchange

Terms like knowledge transfer and knowledge translation are often used when discussing

the sharing or dissemination of knowledge, and are gaining prominence in Canada (Gra-

ham et al., 2006). Knowledge transfer or translation of research is the process in which

knowledge is passed from researchers to stakeholders (e.g., consumers, end users, deci-

sion makers, etc.) or from stakeholders to researchers. Some people using these terms

consider the passing of knowledge or information to be a two-way process but this is not

always clear or explicit. Also, the idea of transferring knowledge can be limiting because

it fails to encompass the goal of putting such knowledge into action.

The University of Western Ontario’s Research Services assists researchers by provid-

ing financial support, ensuring oversight and compliance, and promoting the importance

of research, to name a few. They maintain a webpage on “Knowledge Exchange and

Impact” https://www.uwo.ca/research/services/kex/index.html which states that

they support knowledge mobilization, translation and dissemination activities across the

university. The webpage provides a brief overview about knowledge exchange and its

benefits, without any clear definition. It states that heightened engagement between all

partners and greater connections and collaborations are some of the benefits but does

not emphasize the importance of engaging with all partners from the initial problem

identification stage or throughout any subsequent stages of research. The webpage di-

rects readers to additional resources on knowledge translation and knowledge impact

(Grimshaw et al., 2012; Kothari and Wathen, 2017) but not on knowledge exchange.

Ward et al. (2012) developed a conceptual framework of knowledge exchange by em-

https://www.uwo.ca/research/services/kex/index.html
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bedding a knowledge broker7 within a mental health organization in the UK where three

teams were tackling various organizational tasks. Observational fieldnotes and interview

data were collected and analyzed to refine their five components of knowledge exchange:

problem identification and communication, analysis of context, knowledge develop-

ment and selection, knowledge exchange activities or interventions, and knowledge use.

These components do not necessarily have to occur in any particular order and multiple

components may be occurring at the same time.

Alternatively, McFayden et al. (2022) [submitted] defined knowledge exchange as: (1)

the collective overarching process where knowledge is collaboratively created, shared, and

transformed as it is shared; and (2) the context in which people learn about knowledge.

They conceptualize the process of knowledge exchange with a clear illustration of all

the components (e.g., researchers, practitioners, and knowledge brokers), outlining the

complex and intertwining relationships that exist. This process is further contextual-

ized by their explanation of knowledge exchange within the field of fire management.

They highlight certain aspects of this process such as research and development which

relates directly to our work. It is clear that the research and development process within

fire management both requires and benefits from knowledge exchange. This two-way,

collaborative communication is present from the initial brainstorming stage until the

application, or potential implementation, of findings stage.

2.10 Active Learning

Garfield (1995) proposed ten general principles of how students learn statistics. Such prin-

ciples involve students learning by constructing their own knowledge instead of passively

absorbing it (i.e., knowledge exchange instead of knowledge transfer), active involvement

in learning activities, practicing concepts multiple times in different contexts, and becom-
7A knowledge broker is an individual or organization that provides a link between researchers and

end users by creating a mutual understanding of goals. They help to facilitate the research process, from
identifying a problem to translating the findings into policy and practice (Ward et al., 2012).
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ing aware of and confronting their misconceptions, to name a few. These principles were

regrouped into eight evidence-based recommendations for how students learn statistics in

Garfield and Ben-Zvi (2007). Activity-based courses and active learning activities help

students to learn statistics, but what does active learning truly mean?

Bonwell and Eison (1991) defined active learning strategies as “instructional activities

involving students in doing things and thinking about what they are doing” (p. 7). These

strategies allow students to engage with course material on a deeper level by becoming

active, hands-on learners rather than passive ones. Figure 2.1 illustrates this definition

for active learning along with stating some of the benefits. It is crucial to remember

that active learning strategies are not a replacement of traditional lectures but should

be used in conjunction with them — incorporated into lecture time or occasionally used

in place of a lecture (e.g., a flipped classroom8) as required (Zakrajsek, 2018; French and

Kennedy, 2017).

Figure 2.1: Definition of Active Learning. Taken from https://www.queensu.ca/
teachingandlearning/modules/active/04_what_is_active_learning.html

8A flipped classroom is one where students review materials (e.g., videos, readings, online modules,
etc.) before class time. Usually active learning activities are used during class time to allow students the
opportunity to apply their new knowledge and refine their understanding of the material. The flipped
classroom can be implemented during a single class or throughout an entire course.

https://www.queensu.ca/teachingandlearning/modules/active/04_what_is_active_learning.html
https://www.queensu.ca/teachingandlearning/modules/active/04_what_is_active_learning.html
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Years of research and investigation into teaching and learning in higher education

supports that active learning enhances student learning in many ways. The American

Statistical Association’s Guidelines for Assessment and Instruction in Statistics Educa-

tion (GAISE) College Report (Carver et al., 2016) endorsed the use of active learning

within the statistical community by recommending that statistics courses should fos-

ter active learning. Active learning strategies help students retain knowledge better

(i.e., they perceive themselves as gaining more knowledge and understanding from their

courses), prioritizes their growth and development within the classroom, and highlights

the commitment that their university or college has to their welfare (Braxton et al.,

2008). Students who engaged in active learning activities reported personal development

like tolerance for obstacles and having an increased motivation to learn (Lopatto, 2007),

and academic development with enhanced test scores and consistently higher test scores

when compared with traditional learners (Mello and Less, 2013).

Active learning is often used as an umbrella term that encompasses other types of

learning like collaborative learning (students working in groups to reach a common goal

where the emphasis is placed on their interactions), cooperative learning (students work-

ing in groups but being assessed individually), and problem-based learning (occurs when

a problem is introduced to provide motivation for the learning that follows). Evidence

for the effectiveness of these types of learning styles are supported by Prince (2004) who

notes that the improved learning is due to the nature of active engagement rather than

the extra time spent on a specific topic. Importantly, in an inherently interdisciplinary

discipline such as statistics, active learning, with its emphasis on collaboration, lays the

foundation of the importance of collaboration in learning with spill-over effects that are

important to collaboration in research.

Active learning fits perfectly into Dale’s Cone of Experience (Dale, 1969) where people

remember:

• 10% of what they read
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• 20% of what they hear

• 30% of what they see

• 50% of what they hear and see

• 70% of what they say and write

• 90% of what they do

Therefore, the learning outcomes that educators and instructors set for their courses

need to coincide with what students experience — if we want our students to remember

what they are being taught then we must allow them to actively do things (e.g., active

learning activities) and provide multiple opportunities for this type of learning.

Felder and Brent (1996) outlined that student-centred instruction is a teaching ap-

proach that incorporates active learning into lectures, holds students responsible for their

learning, and utilizes self-paced and/or cooperative (i.e., team or group based) learning.

Although the promised benefits of student-centred instruction are real it is crucial to rec-

ognize that they are neither immediate or automatic. It takes time for these approaches

to “sink in” and may require repetitions. For example, having students write down a

Minute Paper at the end of the class where they identify the most significant things they

have learned from a specific lecture, discussion, or argument may not be helpful to them

if it is done only once in the term. Rather, it may be necessary to have students write

down a Minute Paper at the end of each section or at the end of each week so that they

continually check-in with themselves using this type of low-stakes formative assessment.

Active learning activities are important and necessary even though they may seem

daunting or difficult for different learning environments (e.g., large enrollment courses,

small classes or online courses). Active learning creates an intellectually stimulating

and, at times, challenging learning environment regardless of the type of environment.

“The more that students became active partners in the learning process, the more they
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took ownership of the course and of their learning” (Ebert-May et al., 1997, p. 606).

For instance, small-group activities in large classes allow students to interact with their

peers, hear other perspectives, decrease one’s anonymity in a large group setting, and

encourages engagement with course material (Yazedjian and Kolkhorst, 2007). Using

active learning strategies in various learning environments is beneficial but it must be

accompanied by:

1. An explanation of the purpose of the activity, either beforehand or during the

debrief once the activity has ended;

2. Explicit directions of the tasks or steps that the students are required to perform;

and

3. A schedule outlining the time they have for each task or step.

A discussion of the results or conclusions of the activity may also occur between the

entire class depending on the type of activity, class environment, or time.

Past research on active learning activities in the fields of mathematics and statistics

must also be considered. Implementing cooperative learning using small groups in intro-

ductory statistics courses increases student’s success rate of passing the course, increases

their course marks and generally increases their satisfaction in the course (Keeler and

Steinhorst, 1995; Garfield, 1993). Rosenthal (1995) discussed both formal and informal

written assignment activities (e.g., Minute Paper) in the mathematics classroom to en-

courage students to think more deeply about course content. Kerrigan (2018) provided

three quick fixes for making undergraduate mathematics courses more active and engag-

ing, such as running class polling at the beginning of a class to elicit prior knowledge as

part of a pre-assessment review of concepts. Integrating active learning activities into

theoretical undergraduate statistics courses is also possible (Prins, 2009), whereby these

activities help to create a supportive community and reinforce learning of course con-

cepts. Carlson and Winquist (2011) evaluated the effectiveness of a semester-long active
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learning statistics curriculum involving workbooks, resulting in positive changes in stu-

dents’ attitudes towards statistics which are positively associated with performance on

the comprehensive final exam.

Michael (2006) outlined that there is evidence that student-centred active learning

strategies really work, stating that:

“We should all begin to reform our teaching, employing those particular ap-

proaches to fostering active learning that match the needs of our students,

our particular courses, and our own teaching styles and personalities. There

are plenty of options from which we can choose, so there is no reason not to

start. This will mean that we too become learners in the classroom.” (p. 165)

Therefore educators must become life-long learners themselves who, hopefully, take

risks in the classroom by experimenting with active learning strategies to determine which

ones work well in their courses and for their students. “At this point it is unethical to

teach any other way” (Waldrop, 2015, p. 273).



Chapter 3

Characterizing Two Phases of

Wildland Fire Lifetimes with

Multi-State Models

As noted earlier, past research on wildland fire lifetimes generally only considered one

subcomponent or phase of a fire’s evolution. The objectives of our research on fire lifetime

phases is to determine which factors influence the length of time spent in each phase and

how the phases are interrelated. We begin by diving deeper into the context of our

wildland fire dataset since it is an important part of advancing our understanding of the

methods developed, utilized, and interpreted in this chapter and Chapter 4.

3.1 Study Area

We utilize a wildland fire dataset from the Sioux Lookout District in Ontario, consisting

of 2,239 fully suppressed fires that occurred between 1989 and 2019. These data were

provided by the Ontario Ministry of Northern Development, Mines, Natural Resources

and Forestry (hereafter referred to as the Ministry). Figure 3.1 plots these fires which

are located in the Ministry’s Northwest Fire Region.

41
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Figure 3.1: Map of Sioux Lookout District in Ontario (see inset) showing the fire locations
(orange circles). Roads (dark grey lines) and important fire management locations such
as the Headquarters (yellow square), Attack Base (yellow diamond), and Forward Attack
Bases (yellow triangles) are also shown.
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Fire management agencies like the Ministry must decide how they manage wildland

fires across their jurisdictions. In the past the Wildland Fire Management Strategy

(OMNR, 2004) used by the Ministry for responding to such fires included: full suppres-

sion, partial suppression, and monitoring of a fire. Full suppression required that either

direct or indirect action be taken on the entire perimeter to acquire control, whereas

partial suppression required action to be taken on key areas of the fire perimeter. Mon-

itored fires were observed and continually assessed to determine if further response was

required (i.e., to minimize social disruptions and/or economic impacts).

In 2015, Ontario implemented its new Wildland Fire Management Strategy (OMNRF,

2014b) which changed to a system of appropriate response, whereby “each fire is assessed

and receives an appropriate response based on the circumstances and condition of the

fire”. Fire management practitioners in Ontario must assess the potential impact of every

fire that is reported and decide whether it should be monitored or managed with some

form of modified suppression action. This modified approach to fire response recognizes

that fire is a natural process that provides ecological benefits to forest ecosystems while

maintaining safety by minimizing damage and distruptions caused by fire.

Importantly, this fire response alteration occurred during the time period of our data

and so we must be mindful of it when drawing conclusions. We have restricted our

dataset to fully suppressed fires, even for the fires from 2015-2019, as our interest is

in fires that progress through the various phases, as discussed later in this chapter.

Approximately 60% of these fires were started by lightning. The remaining 40% were

ignited by humans. There are a variety of different ways people can ignite fires, such

as through recreational activity, by residential activity (e.g., clearing land), railways and

industrial forestry activities, as key examples. Figure 3.2 shows the number of fires in

each year stratified by their cause of ignition (human vs. lightning). The number of

human- and lightning-caused fires in Sioux Lookout appears to fluctuate every few years

with the latter exhibiting greater changes over the years. Model fitting and analyses in
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this chapter and Chapter 4 are separated based on the type of fire cause — human and

lightning — as was done in other analyses using survival analysis methods for fires in

Ontario (Morin et al., 2015, 2019).
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Figure 3.2: Bar plot of the fires, showing the number of fires in each year by cause.

3.2 Data

The lifetime of a fire, shown visually in Figure 3.3, is split up into several key events that

are of interest. Our Sioux Lookout data contains date (yyyy-mm-dd) and time (hr-min)

stamps for the following events (OMNRF, 2014a):

• The ignition or start of the fire which is either known or estimated (cf. Figure 3.4),

• The discovery of the fire,

• When it is reported (first and second instances),

• The getaway time: when resources are dispatched to a fire,

• The time that the initial attack on the fire began: by suppression efforts (e.g., air

tankers and ground forces, discussed later),
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• The time when it was declared to be in a condition of being held: with currently

committed resources, sufficient suppression action has been taken so the fire is

unlikely to spread beyond existing control boundaries under forecasted conditions,

• The time when it was declared to be in a condition of under control: the fire has

received enough suppression action to ensure no further spread of the fire, and

• The out time: the time that the fire was declared to be extinguished.

Two phases of interest are highlighted in Figure 3.3. The detection phase, encom-

passing the start of a fire to when it’s reported, and the action phase, a combination

of how long a fire is in the system, the travel time to that fire, and the time it takes to

bring a fire under control.

Figure 3.3: Visual representation of fire lifetime events, along with the detection phase
(orange) and the action phase (blue).

3.3 Methods

Multi-state models are frequently used in epidemiology and biostatistics to model the

life history of an individual. One common example is the illness-death model, shown

in Figure 3.5, where individuals in a study are in a healthy state at the start and may

transition to the two other states ‘sick’ and ‘dead’. If a person gets sick with a specific

disease of interest then they move to the ‘sick’ state. People can either die when they are

healthy or when they are sick with the disease. Individuals in this type of study may be

censored if they do not get sick or die during the study period since it is often infeasible

to follow an individual for their entire lifetime.

Now suppose that individuals only die if they become ill from a disease and once they

do they do not return to the healthy state but progress to the death state. Then the
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Figure 3.4: Stacked bar plot of the fires by cause for each year, showing the number of
start dates that were known (≈ 10%), estimated (≈ 90%), and missing (< 0.2%) across
all fires.

Healthy Sick

Dead

Figure 3.5: Diagram of the simple illness-death model.
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illness-death model is called a 3-progressive process since it progresses solely through the

three states as illustrated in Figure 3.6. Here, there may still be censoring if an individual

is never observed to get sick or die by the end of the study period.

Healthy Sick Dead

Figure 3.6: Diagram of a 3-progressive illness-death model.

Recall that Morin et al. (2015) modelled the control time of fires in Ontario using a

single fire lifetime phase. They defined the control time of a fire to be the time interval

from the start of initial attack action to the time that the fire is declared as being under

control. This survival model can be considered as a 2-phase progressive model from

initial attack to under control. In this thesis, the lifetime process that we utilize for

fully suppressed human- and lightning-caused fires is a 3-progressive process with two

lifetime phases of interest (detection and action). Figure 3.7 illustrates this process. One

important difference between our process and the illness-death one is that no censoring

takes place for our observations since the entire lifetime of our fires are observed.

Ignition
Time

Report
Time

Under Control
Time

Detection Phase Action Phase

Figure 3.7: Diagram of our 3-progressive multi-state model for fire lifetimes.

3.3.1 Exploratory Analysis

Ninety fully suppressed fires (51% human-caused; 49% lightning-caused) were removed

from the dataset since the detection and action phases: (1) could not be calculated due

to missing values; (2) had negative phase lengths due to the preceding event likely being

incorrectly recorded after the subsequent event; or (3) had zero-length phases due to the

events being recorded at the same time. We investigated the fires with zero-length phases

and found no clear pattern or trend as to why they occurred. A zero-length detection
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phase fire could occur because a fire is seen and reported simultaneously during a loaded

patrol, or firefighters working on a rail fire see a train spark another fire along the track,

or firefighters working on a fire in the community encounter people starting another

fire while they are there. Similarly, a zero-length action phase fire could occur because

municipal or industry personnel reported a fire that they themselves had actioned making

the time instances the same. After also removing fires with missing variables, where the

details about such variables are provided in Section 3.3.2, we utilize 786 human-caused

fires and 1,270 lightning-caused fires from the Sioux Lookout District, approximately 92%

of the original data, for our work.

Figure 3.8 shows the distributions of the phase lengths for the two fire causes while

Table 3.1 provides the minimum and maximum phase lengths. For Figure 3.8, the scale

of the x-axis is the fire phase lengths in days (cut-off at 4 days) and the scale of the y-axis

is the density of those fires; the inset provides a histogram of the fire lifetimes where the

scale of the x-axis is the logarithmic transformation (base 10) of the fire phase lengths

and the scale of the y-axis is the counts of those fires. Lightning-caused fires have longer

detection and action phases than human-caused ones, unsurprisingly, since lightning-

caused fires can often go undetected for days or can be smouldering underground, and

because they can occur in remote areas that may be more difficult for suppression crews

and equipment to access. Approximately 90% of human-caused fires in Sioux Lookout

are detected and undergo action within 24 hours of ignition.

3.3.2 Variables of Interest

The data available for each fire observation and considered for model fitting, categorized

by homogeneous sub-groups, are described in Table 3.2. The fuel moisture variables

from the Canadian Fire Weather Index (FWI) System are functionally related in a hier-

archical structure as shown in Figure 3.9. These variables account for the effects of fuel

moisture and weather conditions on fire behaviour. The calculation of these variables is
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Figure 3.8: Distributions of the fire lifetime phase lengths for human- and lightning-
caused fires. The inset histograms are of the transformed fire phase lengths in log10
scale.

Table 3.1: Maximum and minimum fire lifetime phase lengths.

Fire Cause & Minimum Maximum
Fire Phase

Human
Detection 1 minute 13.9 days
Action 1 minute 16.0 days

Lightning
Detection 1 minute 32.7 days
Action 6 minutes 65.1 days
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based on daily observations of temperature, relative humidity, wind speed, and 24-hour

precipitation. The Sioux Lookout District data consists of single numeric ratings of each

of these variables for every fire; these ratings are the observed values on the day a fire

was ignited. We take great care when using these variables in our models because of

potential multicollinearity. The Ministry uses the variable ratings as a guideline of the

relative potential for wildland fire. See Van Wagner (1987) and Wotton (2009) for more

details about the FWI system and its components.

The simple fuel type variables accounts for the type of fuel (i.e., vegetation) feeding

the fire at ignition. Several temporal, distance, and other variables are considered as well.

Seasonality is measured by the meteorological seasons, in this case Spring includes March,

April, and May, Summer includes June, July, and August, and Fall includes September,

October, and November. The early ignition and early report indicator variables were

created to determine if the time of day — early (i.e., before noon) or late (i.e., after

noon) — that a fire is ignited or reported affects the detection or action phase lengths,

respectively. Morin et al. (2015) used a similar variable to account for the time of day

when the initial attack of a fire started.

We define the successful initial attack of a fire as being declared “being held” by end

of day the day after a fire was reported, and less than or equal to 100 hectares (ha),

or less than or equal to 4 ha with no limit on the time to being held. Therefore this

definition encompasses very small fires that are easy to suppress and larger fires where

the suppression has been within a short period of time (2 days). This definition was

developed in collaboration with a Forest Fire Science Specialist from the Ministry.

Most of the continuous variables have been standardized by subtracting the mean

and dividing by the standard deviation across all fires within each category of human-

and lightning-caused fires to allow for easier interpretations. The standardized variables

include: all fuel moisture variables, all distance variables, fire load, and initial attack

size. Number of air tankers, number of ground forces, and detection phase lengths were



§3.3 Methods 51

not standardized.
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Table 3.2: Overview of the data and variables considered when modelling. A superscript of 1 or 2 implies that these variables
are considered when modelling the detection or action phases, respectively.

Variable Description
Fuel Moisture1,2

Fine Fuel Moisture Code (FFMC) A numeric rating of the moisture content of litter and other cured fine fuels
Duff Moisture Code (DMC) A numeric rating of the average moisture content of loosely compacted organic

(duff) layers of moderate depth
Drought Code (DC) A numeric rating of the average moisture content of deep, compact organic layers
Initial Spread Index (ISI) A numeric rating of the expected rate of fire spread, which combines the effects

of wind speed and FFMC
Build-Up Index (BUI) A numeric rating of the total amount of fuel available for combustion, based on

the DMC and DC
Fire Weather Index (FWI) A numeric rating of fire intensity based on the ISI and BUI, providing a general

index of fire danger in forested areas of Canada

Fuel Type1,2

Grass Fuel An indicator of whether grass fuel types (1) were burning and contributing most
to the forward spread of the fire at the time of initial response

Coniferous Fuel An indicator of whether coniferous fuel types (1) were burning and contributing
most to the forward spread of the fire at the time of initial response

Mixedwood Fuel An indicator of whether mixedwood fuel types (1) were burning and contributing
most to the forward spread of the fire at the time of initial response

Other Fuel An indicator of whether other fuel types (1) were burning and contributing
most to the forward spread of the fire at the time of initial response, used as the
baseline

Temporal
Spring1,2 An indicator of whether the fire was ignited in Spring (1)
Summer1,2 An indicator of whether the fire was ignited in Summer (1), used as the baseline
Fall1,2 An indicator of whether the fire was ignited in Fall (1)
Early Ignition1 An indicator of the time of day when a fire is ignited, either early (1) or late (0)
Weekday Ignition1 An indicator of whether the fire was ignited on a weekday (1) or weekend (0)
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Variable Description
Temporal
Early Report2 An indicator of the time of day when a fire is reported, either early (1) or late

(0)
Weekday Report2 An indicator of whether the fire was reported on a weekday (1) or weekend (0)
Same Day Detection2 An indicator of whether the ignition and report of a fire occur on the same day

(1)
Same Day Dispatch2 An indicator of whether the report of and getaway to a fire occur on the same

day (1)

Distance1,2

Distance to FMH The distance (in km) from a fire to the closest Fire Management Headquarters
(FMH) in Sioux Lookout

Distance to AB The distance (in km) from a fire to the closest Attack Bases (AB) in Sioux
Lookout

Distance to FAB The distance (in km) from a fire to the closest Forward Attack Bases (FAB) in
Sioux Lookout

Distance to Road The distance (in km) from a fire to the nearest road in Sioux Lookout

Other2

Fire Load The number of fires burning on the landscape in Sioux Lookout at the same
time as a given fire

Initial Attack (IA) Size The size of a fire (in hectares) at the time of initial attack
Ground Forces The size of the ground forces (e.g., fire fighters) at initial attack
Air Tankers The initial number of air tankers used on the fire
Successful Initial Attack (IA) An indicator of whether the initial attack of a fire was deemed successful (1) or

unsuccessful (0)
Detection The duration (in days) of the detection phase
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Figure 3.9: Structure of the FWI System. Copied from the Natural Resources Canada
website, https://cwfis.cfs.nrcan.gc.ca/background/summary/fwi.

3.3.3 Modelling Framework

The multi-state models for human- and lightning-caused fires that follow the process

shown in Figure 3.7 have state space {1, 2, 3} where states 1, 2, and 3 represent the igni-

tion, report, and under control states, respectively. We model the lifetime process where

predictors act multiplicatively on the intensities of transitions between states resulting in

a framework that is similar to the Cox PH models. For fire i, i = 1, . . . , n, the transition

intensity functions take the following form

λi,kl(t|H(t−)) = λi,kl(t|xi,H(t−))

= λkl0(t|H(t−)) exp(x′iβkl),
(3.1)

where k, l ∈ {1, 2, 3} index the transition from state k to state l, l > k, xi is a col-

umn vector of the predictors for fire i, βkl is a column vector of the corresponding fixed
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effects coefficients, and λkl0(t|H(t−)) is the unspecified baseline transition intensity func-

tion. The value t refers to either the detection or action phase length depending on the

transition that is taking place.

There are two ways to treat time in multi-state modelling: the clock-forward and

clock-reset approaches. For clock-forward models, time is measured from the initial phase,

whereas for clock-reset models the clock is set back to zero every time a new phase is

entered, therefore time is only measured from the start of the new phase (Jackson, 2016;

Williams et al., 2017). Clock-forward models are Markov models since the movement from

the current phase does not depend on history, but for clock-reset models the timescale

does depend on history so these models are semi-Markov instead of Markov. When t

is set as the clock-reset time then the history, H(t−), is present in the model for (3.1)

whereas it is not when t is set as the clock-forward time.

The coefficients βkl = (βkl1, βkl2, . . . , βklm)′ measure the impact or the effect size of

the m predictors for the k to l transition. If the pth predictor is a dichotomous variable

that has only two levels or categories, such as the early ignition predictor, then the

ratio of the transition intensity functions for those two levels is given by the hazard

ratio (HR) exp(βklp), assuming that everything else is constant. If the pth predictor is

continuous then the ratio of the transition intensity functions is given by the HR exp(βklp)

for a unit difference of that predictor (e.g., a unit increase in the predictor), assuming

that everything else is constant. For instance, suppose βklp is positive then the HR is

greater than one. This implies that as the value of the pth predictor increases, the hazard

function also increases resulting in a faster decrease of the survival function. The opposite

relationship holds when βklp is negative and the HR is less than one. This implies that

as the value of the pth predictor increases, the hazard function decreases resulting in a

slower decrease of the survival function. There is no effect when βklp equals zero. In the

fire lifetime context, if the survival function decreases faster (slower) then the length of

survival for fires in a specific phase will decrease faster (slower) and the phase will not
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last as long (will last longer).

3.3.4 Considerations Prior to Modelling

Before fitting any multi-state models we fit two separate Cox proportional hazards (PH)

models to the detection and action phases using the survival package (Therneau, 2020).

This exploratory modelling was conducted to help identify which predictors may be im-

portant for each phase. All of the predictors listed in Table 3.2 were included in the

models. We used stepwise model selection by AIC from the MASS package (Venables and

Ripley, 2002) which compares the AIC improvements when using both forward and back-

ward selection. These standard statistical modelling procedures were used in conjunction

with our domain knowledge of fire science and management and exploratory data anal-

yses to determine which predictors to include in the subsequent multi-state models. A

summary of these predictors are shown in Table 3.3.

Fitting multi-state models to completely-observed data where one knows the complete

history of the process may be achieved through the use of the survival and mstate (de

Wreede et al., 2011) packages in R and converting the data into so-called long format

where there is one line for each transition. The Sioux Lookout data provided by the

Ministry was in wide format with one subject (i.e., fire) per line. Converting the data

from wide format to long format is outlined in Appendix A. See Putter et al. (2007) for

more details.

We begin with defining the possible transitions of the 3-progressive process by speci-

fying a transition matrix where direct transitions are possible (those with NA, meaning

not applicable, are impossible) and assigning numbers to these transitions for future
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Table 3.3: Summary of predictors (fixed effects) included in each model, represented
by a checkmark, in the suite of human- and lightning-caused models for Ontario’s SLK
District.

Human-Caused Lightning-Caused
Predictor Detection Action Detection Action
FFMC X X
DMC X
FWI X
Mixedwood Fuel X X X X
Grass Fuel X X X X
Other Fuel X X X X
Spring X X
Fall X X
Early Ignition X X
Weekday Ignition X
Early Report X
Same Day Dispatch X X
FMH Distance X X
AB Distance X X
FAB Distance X
Road Distance X X
Fire Load X
IA Size X
Ground Forces X X
Air Tankers X X
Successful IA X X
Detection X X
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reference. The transition matrix for the 3-progressive process is



IGN REP UCO

IGN NA 1 NA

REP NA NA 2

UCO NA NA NA



where IGN, REP, and UCO are abbreviations of the three states ignition, report, and

under control, respectively. We see that transition 1 from ignition to report represents

the detection phase of the fire lifetime and transition 2 the action phase.

For the human-caused fires, there are 116 detection times that are tied meaning that

two or more human-caused fires have the same detection time whereas there are 127

uniquely tied action times. For instance the detection time of 5 minutes occurs for 28

human-caused fires. Overall, approximately 73% of the detection times and 64% of the

action times are tied for human-caused fires. These percentages are lower for lightning-

caused fires (35% detection and 50% action). The methods for handling ties mentioned

in Section 2.2 are nearly equivalent if the data contains very few ties which is not the

case for our Sioux Lookout data. We utilize Efron’s approximation to deal with the tied

fire lifetime phase times as suggested by Hertz-Picciotto and Rockhill (1997).

3.4 Analysis and Results

Both the clock-reset (CR) and clock-forward (CF) time multi-state models were fit to

the human- and lightning-caused fire data. Figures 3.10 and 3.11 provide plots of the

Kaplan-Meier estimates of the survival functions for multi-state null models fit without

any predictors to examine the survival curves of the two phases. It is important to note

that the proportional hazards assumption may be violated since the survival probabilities

for the two phases cross one another for the CF human-caused multi-state null model
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and the CR lightning-caused multi-state null model.

The survival curves of the two phases have a similar pattern of quickly decreasing to

zero over time. We can see that the Ministry is generally quick at detecting and actioning

human-caused fires since their survival curves are relatively close together. However, the

detection and action survival curves appear to be farther apart from one another for the

lightning-caused fires, with the detection curve having a higher probability of survival

than the action curve within the first ten days of a fire, suggesting that the Ministry is

slower at detecting lightning-caused fires. This noticeable smooth exponential decay of

the detection curve for lightning-caused fires was previously mentioned in Wotton and

Martell (2005).

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
Time (days)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Fire Lifetime Phase Detection Action

Clock−Reset Time

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10
Time (days)

S
ur

vi
va

l P
ro

ba
bi

lit
y

Fire Lifetime Phase Detection Action

Clock−Forward Time

Figure 3.10: Plots of the survival functions for the human-caused clock-reset and clock-
forward multi-state null models.

Tables 3.4 and 3.5 provide the HR estimates and standard errors of the fixed effect
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Figure 3.11: Plots of the survival functions for the lightning-caused clock-reset and clock-
forward multi-state null models.
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coefficients associated with the predictor variables for the four models. To better un-

derstand the interpretations of the HR estimates, consider the baseline case where we

have a single predictor. A HR greater than one implies that the length of survival is

decreasing (i.e., a shorter phase length) whereas a HR less than one implies that the

length of survival is increasing (i.e., a longer phase length). In the multiple predictor

situation, these interpretations hold for a given predictor when all other predictors are

held constant.

Evidence for a HR estimate is assessed using the Wald statistic, corresponding to

the ratio of the fixed effect coefficient to its standard error, which evaluates whether the

coefficient of a given variable is statistically significantly different from zero. HR estimates

with one, two, or three stars indicate weak (i.e., p-value < 0.1), moderate (i.e., p-value <

0.05), or strong (i.e., p-value < 0.01) evidence, respectively. Many of the HR estimates

have a minimum of two stars indicating that there is moderate to strong evidence that the

corresponding predictors have an effect on their respective phases. The interpretations of

the predictors with moderate and strong evidence from the human-caused multi-state

models in Table 3.4 follow:

• FWI: Fires burning under more intense conditions are associated with a shorter

detection phase. This may be due to the Ministry and communities being on a

higher alert for such fire danger. Also, a fire burning under more intense conditions

may be emitting more smoke and therefore would be easier to detect.

• Fuel: Fires burning from mixedwood fuel have longer detection phases than those

burning from coniferous fuel, while fires burning from grass fuel have shorter de-

tection and action phases than those burning from coniferous fuel. Grass fires are

often easier to detect because they occur near people and there are no tree canopies

blocking them. As well, grass fires may be easier to contain because they are easier

to access and it is often easier to work in this fuel type.
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• Season: Fires ignited in spring have shorter detection phases than those in sum-

mer. “Green-up” effects occur in spring where the new cycle of plant growth begins,

most likely allowing for an easier detection of fires. Fires ignited in fall have longer

detection and action phases than those in summer. During the fall many detec-

tion aircraft go off contract and there is less sunlight during the day, potentially

contributing to a longer detection. Also, fewer fire crews work in the fall season

and fires may be deemed as less urgent due to mild fire conditions which could

contribute to longer action phases.

• Time of Ignition: Fires ignited earlier in the day have a longer detection phase

than those ignited after noon while fires ignited during a weekday have a shorter

detection phase than those ignited on the weekend. Detection patrols start flying by

the late morning or early afternoon; therefore fires ignited prior to noon occur when

detection patrols are not running and thus take longer to be detected. Human-

caused fires include fires started by industrial forestry activities which typically

operate during weekdays; therefore fires ignited during a weekday may be detected

faster because they are ignited and reported by industry.

• Same Day Dispatch: Fires that have same day dispatch tend to have a much

shorter action phase than those that do not. This may be due to the fact that the

fire does not have much time to spread and become unmanageable from the time

it is reported. Or if the reported fire is already large, then it does not have time to

become worse.

• Distance: Human-caused fires located farther away from the AB or roads are

associated with a longer detection phase. Note that the public finds and reports

many fires. If these fires are not near areas of higher population density then they

may take longer to be detected. However, human-caused fires located farther away

from the FAB are associated with a shorter detection phase. This may be due to
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the locations of the FAB in Sioux Lookout and that they are only staffed when

necessary. Similarly, human-caused fires located farther away the FMH or AB

are associated with a longer action phase. In Sioux Lookout, the FMH, AB, and

FAB are all clustered mainly in the south, allowing for vast remote regions without

nearby fire management resources.

• Suppression Efforts: Fires that require more suppression efforts are associated

with a longer action phase. This makes sense because a fire that requires more initial

resources to get it under control would likely take longer to suppress, resulting in

a longer action phase.

• Successful IA: Fires that have a successful initial attack have a much shorter

action phase than those that do not.

• Detection: Notably the detection phase length shows no evidence that it has an

effect on the action phase length for the CR model for human-caused fires.

The interpretations of the predictors with moderate and strong evidence from the

lightning-caused multi-state models in Table 3.5 follow:

• FFMC & DMC: Fires burning under drier conditions of the smallest forest fuels

and medium-sized fuels are associated with a shorter detection phase. Whereas

fires burning under drier conditions of only the smallest forest fuels are associated

with a longer action phase. This makes sense because as conditions become more

dry, more fuels can burn and the faster a fire can spread, resulting in more smoke

which aids in detection and may result in a fire that is more challenging to suppress.

• Fuel: Fires burning from mixedwood fuel have longer detection phases than those

burning from coniferous fuel, whereas fires burning from other fuel types have

shorter action phases than those burning from coniferous fuel. In discussions with

our fire science collaborators, we have no clear reasons for this occurrence, although
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we suspect it may be related to seasonality and locations of these fuels. Further

investigation is required.

• Time of Ignition & Report: Fires ignited earlier in the day have a longer

detection phase than those ignited after noon. Fires reported earlier in the day

have a longer action phase than those reported after noon. If a lightning-caused

fire is reported earlier in the day then it may be more intense in terms of size and

severity, aiding in its detection and resulting in a longer action phase.

• Same Day Dispatch: Fires that have same day dispatch tend to have a much

shorter action phase than those that do not.

• Distance: Lightning-caused fires located farther away from the FMH or roads are

associated with a longer action phase. Fires that are located in remote areas can

take longer for crews to travel to, allowing the fire to grow more prior to starting

initial attack. As well, fires burning in remote areas can be harder to access and

therefore harder to fight.

• Fire Load & IA Size: Fires burning when there are more fires already burning

on the landscape are associated with a longer action phase. Also, fires with a

larger initial attack size are associated with a longer action phase. Both of these

scenarios make sense because if there are more fires burning on the landscape

then suppression efforts may be stretched thin, resulting in a longer action phase.

Similarly, the larger a fire is at initial attack then the longer it will take to bring it

under control because it will require more suppression efforts.

• Suppression Efforts: Fires that require more suppression efforts are associated

with a longer action phase.

• Successful IA: Fires that have a successful initial attack have a much shorter

action phase than those that do not.
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• Detection: Fires with longer detection phases are associated with longer action

phases for the CR model.
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Table 3.4: Summary of hazard ratio estimates (standard errors of fixed effects coefficients) for the human-caused multi-state
models.

Detection Phase Action Phase
Predictor Clock-Reset Model Clock-Forward Model Clock-Reset Model Clock-Forward Model
FWI 1.09∗∗ (0.04) 1.09∗∗ (0.04)
Mixedwood Fuel 0.78∗∗ (0.11) 0.78∗∗ (0.11) 0.94 (0.11) 0.93 (0.11)
Grass Fuel 1.48∗∗∗ (0.10) 1.48∗∗∗ (0.10) 1.78∗∗∗ (0.10) 1.65∗∗∗ (0.11)
Other Fuel 1.08 (0.11) 1.08 (0.11) 1.13 (0.11) 1.10 (0.11)
Spring 1.43∗∗∗ (0.09) 1.43∗∗∗ (0.09) 0.96 (0.09) 0.91 (0.09)
Fall 0.49∗∗∗ (0.14) 0.49∗∗∗ (0.14) 0.55∗∗∗ (0.14) 0.50∗∗∗ (0.15)
Early Ignition 0.66∗∗∗ (0.09) 0.66∗∗∗ (0.09)
Weekday Ignition 1.19∗∗ (0.08) 1.19∗∗ (0.08)
Same Day Dispatch 2.63∗∗∗ (0.16) 2.90∗∗∗ (0.17)
FMH Distance 0.87∗∗∗ (0.04) 0.84∗∗∗ (0.04)
AB Distance 0.87∗∗∗ (0.04) 0.87∗∗∗ (0.04) 0.91∗∗ (0.04) 0.92∗∗ (0.04)
FAB Distance 1.14∗∗∗ (0.04) 1.14∗∗∗ (0.04)
Road Distance 0.71∗∗∗ (0.08) 0.71∗∗∗ (0.08)
Ground Forces 0.98∗ (0.01) 0.98∗∗ (0.01)
Air Tankers 0.55∗∗∗ (0.06) 0.54∗∗∗ (0.06)
Successful IA 6.26∗∗∗ (0.29) 5.04∗∗∗ (0.27)
Detection 0.93 (0.05)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.5: Summary of hazard ratio estimates (standard errors of fixed effects coefficients) for the lightning-caused multi-state
models.

Detection Phase Action Phase
Predictor Clock-Reset Model Clock-Forward Model Clock-Reset Model Clock-Forward Model
FFMC 1.13∗∗∗ (0.03) 1.13∗∗∗ (0.03) 0.94∗∗ (0.03) 0.95∗ (0.03)
DMC 1.08∗∗ (0.03) 1.08∗∗ (0.03)
Mixedwood Fuel 0.82∗∗ (0.08) 0.82∗∗ (0.08) 0.86∗ (0.09) 0.88 (0.9)
Grass Fuel 1.01 (0.36) 1.01 (0.36) 1.17 (0.36) 1.21 (0.36)
Other Fuel 1.03 (0.09) 1.03 (0.09) 1.52∗∗∗ (0.10) 1.51∗∗∗ (0.10)
Early Ignition 0.79∗∗∗ (0.06) 0.79∗∗∗ (0.06)
Early Report 0.82∗∗ (0.09) 0.90 (0.09)
Same Day Dispatch 2.30∗∗∗ (0.09) 2.18∗∗∗ (0.09)
FMH Distance 0.80∗∗∗ (0.04) 0.82∗∗∗ (0.03)
Road Distance 0.94∗∗ (0.03) 0.93∗∗∗ (0.03)
Fire Load 0.94∗∗ (0.03) 0.95∗ (0.03)
IA Size 0.94∗∗ (0.03) 0.95∗ (0.03)
Ground Forces 0.94∗∗∗ (0.01) 0.95∗∗∗ (0.01)
Air Tankers 0.67∗∗∗ (0.04) 0.69∗∗∗ (0.04)
Successful IA 4.04∗∗∗ (0.14) 3.36∗∗∗ (0.13)
Detection 0.96∗∗∗ (0.01)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.6 provides measures of the model fit for all of the multi-state models. The

Wald and likelihood ratio significance tests compare the fitted model to a null model (i.e.,

intercept-only model) which predicts the mean survival time for all fires. The logrank

test compares the survival distributions of the fitted model to the null model. All of the

tests show that the four fitted models are preferred over the intercept-only model.

Table 3.6: Measures of model fit for multi-state models. The human-caused models have
23 and 22 degrees of freedom for the clock-reset and clock-forward models, respectively.
The lightning-caused models have 20 and 19 degrees of freedom for the clock-reset and
clock-forward models, respectively.

Wald Likelihood Ratio Score (Logrank)
Test Test Test

Human-Caused
Clock-Reset Model 538.10∗∗∗ 670.12∗∗∗ 577.75∗∗∗
Clock-Forward Model 566.36∗∗∗ 742.17∗∗∗ 626.77∗∗∗

Lightning-Caused
Clock-Reset Model 673.70∗∗∗ 899.88∗∗∗ 693.81∗∗∗
Clock-Forward Model 710.27∗∗∗ 1,033.83∗∗∗ 864.43∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figures 3.12 and 3.13 show the survival functions for the fitted CR and CF multi-state

models for human- and lightning-caused fires, respectively. For the human-caused fire

models the survival probability for the detection phase quickly decreases to zero over four

days while the action phase steadily decreases over ten days. Therefore, the probability

that a human-caused fire is still not completely under control approximately zero to ten

days after it was detected is higher than the probability that the fire is still undetected

zero to ten days after it ignited. A similar relationship appears for the lightning-caused

models, though the difference in probabilities is smaller. These survival functions make

complete sense in the wildland fire context; human-caused fires happen near humans and

are often detected very quickly, whereas lightning-caused fires take longer to detect since

they often occur in more remote locations that are not surveilled 24/7 or they can be

smouldering underground undetected until fire conditions worsen (Wotton and Martell,
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2005).
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Figure 3.12: Plots of the survival functions for the human-caused clock-reset and clock-
forward multi-state models.
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Figure 3.13: Plots of the survival functions for the lightning-caused clock-reset and clock-
forward multi-state models.
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3.4.1 Model Diagnostics

When fitting a multi-state model where the predictors act multiplicatively on the intensity

we make the assumption that we have proportional intensities (i.e., proportional hazards).

This assumption is checked using statistical tests and graphical diagnostics based on

the scaled Schoenfeld residuals. Grambsch and Therneau (1994) explain the theory

behind tests for proportional hazards utilized by the cox.zph function from the survival

package. The proportional hazards tests are essentially tests for nonzero slopes in a

generalized linear regression of the rescaled residuals (i.e., the scaled Schoenfeld residuals)

on time since the residuals should be independent of time. Therefore finding strong

evidence against the null hypothesis of zero slopes, using a 1% significance level, refutes

the proportional hazards assumption.

This test was performed for the four fitted models described above. Table 3.7 shows

the predictors that violate the proportional hazards assumption for the models. We see

that early ignition, same day dispatch, and air tankers consistently violate the propor-

tional hazards assumption in the respective detection and action phase. However, it is

not unusual to see violations in the proportional hazards assumption when modelling

survival data. Our multi-state models still provide some sense of the predictor effects

even if some of the predictors violate the proportional hazards assumption.
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Table 3.7: A summary of the predictors that violate the proportional hazards assumption, denoted by an ’X’ mark, across all
the fitted multi-state models.

Human-Caused Lightning-Caused
Clock-Reset Clock-Forward Clock-Reset Clock-Forward

Predictor Detection Action Detection Action Detection Action Detection Action
FFMC 7 7 7 7

DMC 7 7

FWI
Mixedwood Fuel 7 7 7

Grass Fuel
Other Fuel
Spring
Fall
Early Ignition 7 7 7 7

Weekday Ignition
Early Report 7 7

Same Day Dispatch 7 7 7 7

FMH Distance 7

AB Distance
FAB Distance
Road Distance 7 7 7

Fire Load
IA Size
Ground Forces 7 7 7

Air Tankers 7 7 7 7

Successful IA 7 7

Detection
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Plotting the residuals against time is another option for checking if the proportional

hazards assumption is valid; a non-random pattern is evidence that the assumption is

violated. Figures 3.14-3.16 show the scaled residuals against some of the predictors

mentioned in Table 3.7 for the human-caused clock-reset multi-state model. The solid

red line provides a visual tool for determining if the proportional hazards assumption

is violated whereby a zero slope indicates no violation and a nonzero slope indicates

violation. Although variations from a nonzero slope over time are to be expected, large

systematic departures from it are not. For all three plots we see that there is a non-

random pattern of the residuals so there is a clear violation of the proportional hazards

assumption for these predictors. The rest of the diagnostic plots can be found in Appendix

A.
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Figure 3.14: Plot of the scaled Schoenfeld residuals for the early ignition predictor from
the human-caused CR multi-state model against time in days, along with a smooth curve
of the residuals with 95% confidence bands.
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Figure 3.15: Plot of the scaled Schoenfeld residuals for the same day detection predictor
from the human-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure 3.16: Plot of the scaled Schoenfeld residuals for the air tankers predictor from the
human-caused CR multi-state model against time in days, along with a smooth curve of
the residuals with 95% confidence bands.
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3.4.2 Estimated Transition Probabilities

It is often important to obtain prediction probabilities (i.e., estimated transition proba-

bilities on new observations) for multi-state models since we care about knowing how the

probability of each possible transition changes over time. We begin by setting up a new

dataframe for prediction where each predictor is set to zero and use the msfit function

from the mstate package to calculate the cumulative hazards for our fitted multi-state

models on the new data. The resulting incremental outputs over time will be used to

calculate the Aalen-Johansen estimator of the transition probabilities, P̂kl(0, t) (i.e., the

probability of being in state l at time t given that you were in state k at time 0).

Figures 3.17 and 3.18 show the estimated transition probabilities for the human-

caused clock-reset multi-state model. We see that from the ignition state the probability

of staying in ignition decreases to zero and the probability of moving to the report state

is quite high for the first day or so but then decreases to zero. This is due to the structure

of the 3-progressive process. We also see that from the report state the probability of

moving to the ignition state is not possible, the probability of staying in the report state

decreases over the first ten days while the probability of moving to the under control

state increases over the first ten days. However, we are far less confident in the transition

probabilities for transitions into a different state, illustrated by the wide 95% confidence

bands in Figure 3.18. Similar conclusions can be drawn from the figures for the other

models which can be found in Appendix A.
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Figure 3.17: Plots of the Aalen-Johansen transition probability estimates for the human-
caused clock-reset multi-state model. The left plot shows the P̂1l(0, t) curves out of the
ignition state and the right plot shows the P̂2l(0, t) curves out of the report state.
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Figure 3.18: Plots of specific Aalen-Johansen transition probabilities taken from Figure
3.17 with the 95% confidence bands.
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3.5 Discussion

We found that the clock-reset and clock-forward multi-state models differ from one an-

other with regards to the length of the detection phase being included as a predictor for

the action phase. However, there is general consistency in the results from the clock-reset

and clock-forward multi-state models, namely corresponding interpretations of model pre-

dictors and similar patterns of estimated transition probabilities. Yet the understanding

of the fire lifetime phase lengths are vastly different based on the clock times. For clock-

reset models time refers to the time since entering a given state, whereas for clock-forward

models time is measured since ignition time (Putter et al., 2007). Models that utilize

the clock-reset time are preferred because they: (1) provide more information about the

two phases due to the two distinct partitions of the fire lifetime, and (2) allow us to fit

broader classes of models.

It may be possible to resolve the noted predictor violations of the proportional hazards

assumption by adding an interaction between the predictor and time, by stratification,

or by also fitting broader classes of models. However, there are cautions that should be

considered before adopting stratification. Stratification is useful for nuisance variables

with few distinct values when the effect of such a variable is not of direct interest (Fox

and Weisberg, 2002). Therefore, careful consideration is required when deciding which

variables to stratify by.

One limitation of our work is restricting our fire lifetime dataset to fully suppressed

fires with positive phase lengths. Although this restriction allows the fires to perfectly

transition through the process, as outlined in Figure 3.7, we may be missing interesting

fire lifetimes. For example, some fires were observed to have one or both of their phase

lengths be zero. More investigations into the historical fire records to discover why such

fires are recorded in this manner is warranted for future work. Another limitation is

that we cannot easily specify what the baseline hazard functions are when utilizing this

modelling framework, foregoing an added source of flexibility in our model structure.



§3.5 Discussion 79

Moreover, there may be differences between the length of the detection and/or the

length of the action phase for fires under near-similar scenarios. This variation may be

due to intrinsic differences between different fires. Incorporating a fire-specific random

effect would allow for more flexibility when modelling fire lifetimes and it is possible to

do so for Cox PH models but becomes more difficult when trying to make predictions

(i.e., determine the estimated transition probabilities) using a multi-state model.

Lastly, one must never forget about the end-user’s role when developing our models.

Although multi-state models overall are pretty straight-forward to understand, they use

potentially confusing clock times and there are other methods that can be used to jointly

model two outcomes. Therefore we turn to the different modelling technique of joint

frailty models that utilize the accessible clock-reset time and a Bayesian framework to

add more flexibility to our analysis, interpretations, and ideas.



Chapter 4

Linking Two Phases of Wildland Fire

Lifetimes with Joint Frailty Models

One approach to modelling the dependence between two or more outcomes, like the

detection and action phases of a wildland fire’s lifetime, is by fitting a joint outcome

model. This approach offers an enhancement over the 3-progressive multi-state model

from Chapter 3 to allow for correlation between the detection and action phases. Our joint

frailty modelling framework uses individual fire-specific random effects, which are similar

to the common cluster-specific random effects used in frailty models, to incorporate a

fire’s variation that is common to the outcomes (i.e., phases).

Here, we develop joint frailty models using a Bayesian framework for the Sioux Look-

out District wildland fires (786 human-caused fires; 1,270 lightning-caused fires) from

Chapter 3. Recall that past research only considered a single phase of the fire’s lifetime

rather than understanding the fire’s evolution over several phases. Through this mod-

elling approach we aim to identify the connection between the distributions of time in

the detection and action phases of a fire and determine what factors affect the time spent

in these phases.

80



§4.1 Methods 81

4.1 Methods

4.1.1 Modelling Framework

For fire i, i = 1, . . . , n, let tij be the fire lifetime phase duration, specifically the detection

phase when j = 1 and the action phase when j = 2. Our joint model, or joint frailty

model, extends the Cox PH model with the hazard function, hij, taking the following

form

hij(tij|H(t−ij)) = h0j(tij|H(t−ij))uij exp(x′ijβj), (4.1)

where h0j(·) is the unspecified baseline hazard function common to all fires, xij is the

column vector of predictors corresponding to fixed effects for outcome j, βj is the column

vector of fixed effects coefficients for outcome j, H(t−ij) is the history for all events over

[0, tij), ti = (ti1, ti2)′ is the clock-reset times for the two outcomes (or phases) indicating

that the joint frailty model is a semi-Markov model, and uij is the fire-specific frailty

term for the two outcomes which links the two phases and will be discussed in detail

later. The frailty term is the critical addition to the model that permits correlation in

the outcomes and, depending on how it is specified, correlation can be accommodated in

a variety of ways. We define t = (t1, . . . , tn)′ , xi = (xi1,xi2)′ , and β = (β1,β2)′ .

The hazard function from (4.1) for the joint model of the detection and action phases

of fully suppressed fires contains an unspecified baseline hazard function. We consider

two forms for the baseline hazard function based on the framework developed in Nathoo

and Dean (2008): a parametric Weibull (W) baseline and a semiparametric piecewise

exponential (PE) baseline. A parametric Weibull baseline hazard function has the form

h0j(tij|H(t−ij)) = λjρjt
ρj−1
ij , where λj > 0 is the scale parameter and ρj > 0 is the shape

parameter. Then (4.1) becomes

hij(tij|H(t−ij)) = λjρjt
ρj−1
ij uij exp(x′ijβj), (4.2)
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where Tij ∼ Weibull
(
λjuij exp(x′ijβj), ρj

)
, as shown in Appendix B. Thus, the lifetime

phase duration of all the fires for the same outcome (detection or action duration) are

assumed to follow a Weibull distribution with the same shape parameter ρj (ρ1 and ρ2,

for the detection and action phases, respectively); however, they differ with respect to

the scale parameter λjuij exp(x′ijβj) (Duchateau and Janssen, 2007) which is modulated

by both predictors and random effects.

We let βj0 = log(λj), j = 1, 2, β0 = (β10, β20)′ , ρ = (ρ1, ρ2)′ , θ = (β,β0,ρ)′ , ui =

(ui1, ui2)′ , and u = (u1, . . . ,un)′ . Then the joint posterior distribution corresponding to

(4.2) is

p(θ,u|t) ∝ p(t|u,θ)p(u)p(β)p(β0)p(ρ).

The likelihood function becomes

p(t|u,θ) ∝
n∏
i=1

f(ti|xi,θ,ui),

where f(ti|xi,θ,ui) is the conditional joint Weibull density function of the outcomes

given ui. We assume that the outcomes (i.e., the detection and action durations) are

independent given their frailties which results in

f(ti|xi,θ,ui) =
2∏
j=1

fj(tij|xij,βj, β0j, ρj, uij),

where fj(tij|xij,βj, β0j, ρj, uij) is the conditional Weibull density function of outcome j

given uij.

A semiparametric piecewise exponential baseline hazard function has the form

h0j(tij|H(t−ij)) =
Kj∑
kj=1

λjkj
I(akj−1, akj

](tij), j = 1, 2,

where Kj denotes the number of intervals for outcome j, akj
are the join points for

outcome j indexed by kj, and the indicator function I(akj−1, akj
](·) is defined as in (2.2).



§4.1 Methods 83

In this case, (4.1) becomes

hij(tij|H(t−ij)) =
Kj∑
kj=1

λjkj
I(akj−1, akj

](tij)uij exp(x′ijβj), (4.3)

where λj = (λj1, . . . , λjKj
)′ > 0 for all j. For both of the fire lifetime phases we split

the time axis into four intervals (i.e., K1 = K2 = 4) with three join points by placing

them near the first, second, and third quartiles. We added 10−3 to each of the quartile

locations for the join point placements to ensure that they do not perfectly coincide with

a fire data point. Alternative partitions may be employed, as appropriate to the con-

text and modelling needs. Kalbfleisch and Prentice (1973) suggested choosing intervals

independently of the data but noted that intervals defined by the observed event times

resulted in similar hazard curves. In this case, we let λ = (λ1,λ2)′ and θ = (β,λ). Then

the joint posterior distribution for (4.3) is

p(θ,u|t) ∝ p(t|u,θ)p(u)p(β)p(λ).

4.1.2 Fire-Specific Frailty Term

We compare several specifications of the frailty term in the models, as outlined in Table

4.1. Note that bi ∼ N(0, σ2
b ), di ∼ N(0, σ2

d), ui ∼ G(ψu, ψu), and vi ∼ G(ψv, ψv), where

N(·, ·) and G(·, ·) are defined in Chapter 2.6.1. Both the Lognormal distribution and the

Gamma distribution are common choices in frailty modelling as discussed in Chapter

2.6.1. The one-parameter Gamma distribution with mean equal to one is often used

for identifiability purposes (Duchateau and Janssen, 2007; Alvares et al., 2021) when

the model includes a general mean term — β0 for the Weibull and λj for the piecewise

exponential. The variances of ui and vi are 1/ψu and 1/ψv, respectively. Therefore, we

define φu = 1/ψu and φv = 1/ψv as the parameters; φu and φv provide information on

the variability (i.e., the heterogeneity) in the population of fires for each respective phase
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Table 4.1: Parameterization of the frailty term in the joint model.

Frailty Form Frailty Distribution Frailty Term; ui =
(
ui1
ui2

)

Separate (S) N/A
(

1
1

)

Factor Loading (FL)
Lognormal

(
exp(bi)

exp(γbi)

)

Gamma
(
ui
γui

)

Factor Loading & Independent (FLI)
Lognormal

(
exp(bi)

exp(γbi + di)

)

Gamma
(

ui
γui + vi

)

Independent (I)
Lognormal

(
exp(bi)
exp(di)

)

Gamma
(
ui
vi

)

and will be important parameters to consider in any analysis.

The separate form (S) of the joint frailty distribution assumes that there is no fire-

specific random effect in the two fire lifetime phases and results in separate Cox PH

models for each phase. The factor loading form (FL) of the joint frailty distribution uses

a factor loading framework on the fire-specific frailty (i.e., exp(bi) or ui, depending on

the frailty distribution) between the two phases where the γ parameter accommodates

different scales for the effect of the frailty term on the two outcomes. The factor loading

and independent form (FLI) of the joint frailty distribution is an extension of the FL form

whereby an independent frailty is included for each outcome (i.e., di or vi) in addition

to the shared factor loading frailty. The addition of this independent frailty term in

the model specification of the action phase allows for a fire-specific random effect of
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that lifetime phase that is not linked with the previous detection phase. Finally, the

independent form (I) assumes that both the detection and action phases have different

fire-specific random effects that are not linked together.

The following interpretations hold for the Lognormal frailties. If log(ui1) = bi is

greater (less) than zero then the hazard ratio (HR) ui1 = exp(bi) is greater (less) than

one, which results in fire i having a shorter (longer) detection phase after accounting for

all other model effects. Similarly if log(ui2) is greater (less) than zero then the HR ui2

is greater (less) than one, which results in fire i having a shorter (longer) action phase

after accounting for all other model effects. To assist with interpretation, we re-arrange

the Gamma frailties from (4.1) in the following way

hij(tij|H(t−ij)) = h0j(tij|H(t−ij))uij exp(x′ijβj)

= h0j(tij|H(t−ij)) exp(x′ijβj + log(uij)),

where uij > 0. In this case, if ui1 = ui is less (greater) than one then log(ui) is less

(greater) than zero and the HR, exp(log(ui)), is less (greater) than one, which results

in fire i having a longer (shorter) detection phase after accounting for all other model

effects. If ui2 is less (greater) than one then log(ui2) is less (greater) than zero and the HR,

exp(log(ui2)), is less (greater) than one, which results in fire i having a longer (shorter)

action phase after accounting for all other model effects. The two important aspects of

the factor loading parameter, γ, are its sign and whether it has a strong contribution to

the model (i.e., if an FL or FLI model form is chosen rather than an S or I form).

4.1.3 Prior and Hyperprior Distributions

For the models with a Weibull baseline hazard function, informative prior distributions

were chosen by utilizing prior predictive checks which generate data according to the

prior to assess whether the prior is appropriate (Gabry et al., 2019). We simulated
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parameters according to several different prior distributions, and then simulated fire

lifetime phases using the simulated parameters and mean predictor values. Visualizations

of the simulated fire phases were created to assess the priors. The following informative

prior distributions are used for these models: β10, β20 ∼ N(0, 0.12), β1 ∼ N(0, 0.12),

β2 ∼


N(0, 0.12), for FL Lognormal frailties when fires are lightning-caused,

N(0, 0.52), otherwise,

ρ1, ρ2 ∼


half-N(0, 32), for FL Lognormal frailties when fires are lightning-caused,

half-N(0, 22), otherwise.

When the factor loading variable γ is present in the model, we use the following prior

distribution

γ ∼


N(0, 0.12), for Lognormal frailties,

half-N(0, 0.012), for Gamma frailties.

Also, the following hyperprior distributions are used: ψu, ψv ∼ G(0.5, 0.5), ωb = 1/σ2
b ∼

G(4, 2), and ωd = 1/σ2
d ∼ G(4, 2). The inverse-Gamma hyperprior distributions for the

variance parameters of the Lognormal fire-specific random effects were chosen based on

the recommendations in Gelman (2006) and Korsgaard et al. (1998).

For the models with a piecewise exponential baseline hazard function, certain prior

and hyperprior distributions stay the same (i.e., β1, ui, vi, bi, di, γ) while the other distri-

butions are: β2 ∼ N(0, 0.52), λ1,λ2, ψu, ψv ∼ G(0.01, 0.01), and

ωb, ωd ∼


G(4, 4), for lightning-caused fires,

G(4, 2), for human-caused fires.
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4.1.4 Bayesian Modelling

We model human- and lightning-caused fires separately. For each case, we fit joint models

using the Weibull and piecewise exponential baselines. The combinations of baseline

hazard functions, frailty forms, and frailty distributions previously discussed result in

14 different models. We consider and contrast all of these, and use the same predictors

for these models as those from the multi-state models, shown in Table 3.3. Bayesian

techniques are used to fit the models to both the human- and lightning-caused wildland

fire data, using JAGS. See Chapter 2.7 for more details. Model fitting is carried out by

adaptive MCMC using the R package runjags (Denwood, 2016) with three chains. Each

chain has 30,000 adaptive steps, 30,000 burn-in steps, and 12,000 steps where samples

are thinned at every fourth step to reduce autocorrelation. Chains are run on parallel

hardware to improve computational efficiency.

The parameter estimates presented in Section 4.2 are the posterior means; addition-

ally, the posterior medians (50% quantiles) are also provided. Convergence is assessed

by visually examining the chain trajectories and density plots of the sampled parameter

values along with calculating the Gelman-Rubin statistic, or the potential scale reduc-

tion statistic, R̂ (Gelman and Rubin, 1992). The credible intervals are obtained as the

lower/upper 5% quantiles of the posterior density. The number of effective samples

provide a measure of how much independent information there is in the autocorrelated

chains (Kruschke, 2015). As the likelihood function for any model using the piecewise

exponential baseline hazard function shown in (4.3) is not implemented in JAGS, we use

the “Poisson-zeros” method outlined in Ntzoufras (2009) to specify it directly. Model

comparisons are performed for the human- and lightning-caused models using both the

WAIC and Pareto smoothed importance sampling leave-one-out (PSIS-LOO) methods

discussed in Chapter 2.8.
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4.1.5 Visualizations

Scatterplot visualizations in Section 4.2 utilize smooth local regression lines, calculated

using the locally estimated scatterplot smoothing (LOESS) method. The nonparametric

local regression uses the data from a neighbourhood around the specific data point to

generate a weighted least-squares estimate. In our case, the neighbourhood is defined

by a span of 0.75, indicating that the closest three-quarters of the total data points are

used as the neighbourhood. For more details on local regression see Montgomery et al.

(2012).

4.2 Analysis and Results

4.2.1 Human-Caused Fires

Comparisons of the expected log pointwise predictive densities (ELPD) using WAIC

and PSIS-LOO for human-caused fires are shown in Figure 4.1. The preferred model

with the largest ELPD (Vehtari et al., 2020) is highlighted in red. Model ranking using

the two methods does not perfectly correspond, but the preferred model under both

criteria is shown to be of FLI form with Gamma frailties (see Table 4.1) using a Weibull

baseline for human-caused fires. Figures showing these ranked ELPD estimates can be

found in Appendix B. Although not shown here, the estimates of the effective number of

parameters corresponding to the two methods, WAIC and LOOIC1, have a range of (26,

33) for models without frailty terms and a higher range of (218, 529) for models with

frailty terms since we are estimating individual fire-specific random effects.

A summary of the posterior estimates for this model is shown in Table 4.2. Recall that

HR estimates, here calculated using the mean posterior estimates, that are greater (less)

than one imply a shorter (longer) phase length with all other predictors being held equal.

1LOOIC stands for the leave-one-out information criterion that is calculated using the PSIS-
LOO method (i.e., L̂OOIC = −2× ÊLPDPSIS-LOO).
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Figure 4.1: Comparisons of ELPD point estimates and standard errors, using the WAIC
and PSIS-LOO methods, for human-caused wildland fires. The preferred model is high-
lighted in red.

Although not shown here, the HR estimates for the predictor coefficients are generally

consistent across the 14 models in terms of being greater or less than one, except for the

predictors with no evidence of having an effect on their respective fire lifetime phases;

however, their credible intervals differ across models. All parameter estimates reached

convergence with R̂ ≤ 1.01. Refer to Table 3.2 for descriptions of these variables. The

interpretations of the predictors whose credible intervals do not overlap zero from this

human-caused joint frailty model follow:

• FWI: Fires burning under more intense conditions are associated with a shorter

detection phase.

• Fuel: Fires burning from grass fuel have shorter detection and action phases than

those burning from coniferous fuel.

• Season: Fires ignited in spring have shorter detection phases than those in summer,
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whereas fires ignited in fall have longer detection and action phases than those in

summer.

• Time of Ignition: Fires ignited earlier in the day have a longer detection phase

than those ignited after noon while fires ignited during a weekday have a shorter

detection phase than those ignited on the weekend.

• Same Day Dispatch: Fires that have same day dispatch tend to have a much

shorter action phase than those that do not.

• Distance: Human-caused fires located farther away from the AB or roads are

associated with a longer detection phase. However, human-caused fires located

farther away from the FAB are associated with a shorter detection phase. Similarly,

human-caused fires located farther away from the FMH or AB are associated with

a longer action phase.

• Suppression Efforts: Fires that require more suppression efforts are associated

with a longer action phase.

• Successful IA: Fires that have a successful initial attack have a much shorter

action phase than those that do not.

• Detection: Fires with longer detection phases are associated with longer action

phases.

We notice that while we have similar interpretations of the predictor effects as from

the previous chapter, using this joint modelling framework we are able to identify that a

longer detection phase is associated with a longer action phase.
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Table 4.2: Summary of posterior estimates for the human-caused W, FLI, Gamma model.

Parameters Mean HR 5% 50% 95% Number of
Estimate Quantile Quantile Quantile Effective Samples

Coefficients for Detection Predictors
FWI 0.10 (0.04) 1.11 0.04 0.11 0.17 31, 893
Mixedwood Fuel −0.05 (0.08) 0.96 −0.17 −0.04 0.08 31, 938
Grass Fuel 0.34 (0.07) 1.41 0.22 0.34 0.47 31, 716
Other Fuel 0.09 (0.08) 1.10 −0.03 0.09 0.22 33, 133
Spring 0.45 (0.07) 1.56 0.33 0.45 0.56 19, 026
Fall −0.24 (0.08) 0.78 −0.38 −0.24 −0.11 31, 087
Early Ignition −0.19 (0.07) 0.83 −0.30 −0.19 −0.07 31, 527
Weekday Ignition 0.30 (0.07) 1.36 0.19 0.30 0.42 12, 228
AB Distance −0.17 (0.04) 0.85 −0.23 −0.17 −0.10 30, 014
FAB Distance 0.22 (0.04) 1.24 0.15 0.22 0.28 18, 304
Road Distance −0.32 (0.07) 0.73 −0.43 −0.32 −0.21 26, 079

Coefficients for Action Predictors
Mixedwood Fuel −0.24 (0.19) 0.78 −0.56 −0.24 0.06 8, 929
Grass Fuel 0.72 (0.17) 2.06 0.45 0.72 1.00 8, 017
Other Fuel 0.09 (0.17) 1.09 −0.20 0.09 0.37 9, 666
Spring 0.13 (0.14) 1.13 −0.11 0.12 0.37 6, 320
Fall −0.52 (0.21) 0.60 −0.87 −0.52 −0.17 9, 363
Same Day Dispatch 2.52 (0.26) 12.37 2.09 2.51 2.96 1, 031
FMH Distance −0.23 (0.06) 0.79 −0.34 −0.23 −0.13 10, 119
AB Distance −0.19 (0.06) 0.82 −0.29 −0.19 −0.10 10, 123
Ground Forces −0.06 (0.02) 0.94 −0.09 −0.06 −0.04 5, 903
Air Tankers −1.34 (0.12) 0.26 −1.54 −1.34 −1.15 2, 770
Successful IA 1.57 (0.24) 4.81 1.19 1.57 1.97 1, 336
Detection −0.13 (0.07) 0.88 −0.24 −0.13 −0.02 10, 679
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Parameters Mean HR 5% 50% 95% Number of
Estimate Quantile Quantile Quantile Effective Samples

Other Model Parameters
ρ1 0.62 (0.02) 0.58 0.62 0.65 2, 499
ρ2 1.61 (0.08) 1.47 1.60 1.75 938
β10 0.66 (0.07) 0.54 0.66 0.78 5, 834
β20 0.01 (0.10) −0.15 0.01 0.17 7, 234
ψu 6.61 (2.07) 4.12 6.19 10.53 950
ψv 0.86 (0.11) 0.69 0.85 1.06 1, 074
γ 0.01 (0.004) 0.002 0.01 0.01 9, 939
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The variance estimates for the detection and action frailties for this preferred model

are 0.16 (0.09, 0.24) and 1.19 (0.94, 1.46), respectively, identifying that there is more

variability in the action phase frailties. Figure 4.2 visualizes this result with a spatial

plot of the posterior estimates of the frailties for each fire by phase in the Sioux Lookout

District. Figure 4.3 provides a temporal plot of the posterior estimates of the frailties for

each phase by year. For Figures 4.2 and 4.3, deeper light greens imply a shorter phase

length whereas deeper pinks imply a longer phase length. An interesting “corridor” of

human-caused fires that took longer to action exists between the Pickle Lake Attack Base

and the Savant Lake Forward Attack Base. Figure 4.3 shows that there is no obvious

temporal trend for the detection phase but that the action phase length may be getting

longer over time. To further investigate these trends we plot the median values from the

detection and action densities in Figure 4.3 against year in Figure 4.4. We see that the

action phase for human-caused fires in Sioux Lookout appears to be getting longer over

time whereas the detection phase is generally consistent.
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Figure 4.2: Spatial plot of the human-caused posterior estimates for the detection and
action frailties. The locations of the fire management headquarters, attack bases and
forward attack bases are highlighted in yellow.
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Figure 4.3: Temporal plot of the human-caused posterior estimates for the detection and
action frailties over the years. Black solid vertical lines are the medians of the respective
densities. Brown dashed lines are the thresholds where the frailty interpretation changes.



§4.2 Analysis and Results 95

0.4

0.8

1.2

1.6

1990 1995 2000 2005 2010 2015
Year

M
ed

ia
n

Fire Lifetime Phase Detection Action

Figure 4.4: Scatterplot of the median values from the densities of the posterior estimates
for the human-caused frailties shown in Figure 4.3. Brown dashed line is the threshold
where the frailty interpretation changes.

4.2.2 Lightning-Caused Fires

For lightning-caused fires, Figure 4.5 provides the comparisons of the fit of the models.

The preferred model with the largest ELPD is highlighted in red; for lightning-caused

fires it is of FLI form with Lognormal frailties using a piecewise exponential baseline.

Figures of the ranked ELPD estimates can be found in Appendix B. Again, models with

frailty terms have a higher range of estimates of the effective number of parameters than

models that do not.

Table 4.3 gives a summary of the posterior estimates for this model. Again, we note for

completeness that the HR estimates for the predictor coefficients are generally consistent

across the 14 models in terms of being greater or less than one, except for the predictors

with no evidence of having an effect on their respective fire lifetime phases; however, their

credible intervals still differ across models. All parameter estimates reached convergence

with R̂ ≤ 1. The interpretations of the predictors whose credible intervals do not overlap

zero from this lightning-caused joint frailty model follow:
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Figure 4.5: Comparisons of ELPD point estimates and standard errors, using the WAIC
and PSIS-LOO methods, for lightning-caused wildland fires. The preferred model is
highlighted in red.

• FFMC & DMC: Fires burning under drier conditions of the smallest forest fuels

and medium-sized fuels are associated with a shorter detection phase. Whereas

fires burning under drier conditions of only the smallest forest fuels are associated

with a longer action phase.

• Fuel: Fires burning from mixedwood fuel have a longer detection phase than those

burning from coniferous fuel, whereas fires burning from other fuel types have a

shorter action phase than those burning from coniferous fuel.

• Time of Ignition & Report: Fires ignited earlier in the day have a longer

detection phase than those ignited after noon.

• Same Day Dispatch: Fires that have same day dispatch tend to have a much

shorter action phase than those that do not.

• Distance: Lightning-caused fires located farther away from the FMH or roads are
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associated with a longer action phase.

• Fire Load & IA Size: Fires burning when there are more fires already burning

on the landscape are associated with a longer action phase. Also, fires with a larger

initial attack size are associated with a longer action phase.

• Suppression Efforts: Fires that require more suppression efforts are associated

with a longer action phase.

• Successful IA: Fires that have a successful initial attack have a much shorter

action phase than those that do not.

• Detection: Fires with longer detection phases are associated with longer action

phases.
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Table 4.3: Summary of posterior estimates for the lightning-caused PE, FLI, Lognormal model.

Parameters Mean HR 5% 50% 95% Number of
Estimate Quantile Quantile Quantile Effective Samples

Coefficients for Detection Predictors
FFMC 0.19 (0.04) 1.21 0.13 0.19 0.26 11, 263
DMC 0.14 (0.04) 1.15 0.07 0.14 0.21 14, 909
Mixedwood Fuel −0.13 (0.08) 0.88 −0.25 −0.13 −0.003 26, 276
Grass Fuel 0.001 (0.10) 1.00 −0.16 0.002 0.16 34, 555
Other Fuel −0.0005 (0.08) 1.00 −0.14 −0.0002 0.14 28, 343
Early Ignition −0.28 (0.07) 0.75 −0.39 −0.28 −0.17 18, 160

Coefficients for Action Predictors
FFMC −0.08 (0.03) 0.92 −0.14 −0.08 −0.03 23, 293
Mixedwood Fuel 0.05 (0.10) 1.06 −0.12 0.05 0.22 21, 867
Grass Fuel 0.04 (0.33) 1.04 −0.52 0.04 0.58 32, 666
Other Fuel 0.46 (0.12) 1.59 0.27 0.46 0.66 26, 162
Early Report 0.02 (0.11) 1.02 −0.16 0.02 0.20 24, 173
Same Day Dispatch 1.13 (0.11) 3.08 0.94 1.13 1.31 3, 615
FMH Distance −0.28 (0.04) 0.75 −0.35 −0.28 −0.21 19, 247
Road Distance −0.11 (0.03) 0.90 −0.16 −0.11 −0.06 23, 182
Fire Load −0.08 (0.03) 0.92 −0.14 −0.08 −0.03 25, 225
IA Size −0.05 (0.03) 0.95 −0.10 −0.05 −0.003 24, 089
Ground Forces −0.07 (0.01) 0.93 −0.09 −0.07 −0.05 5, 400
Air Tankers −0.55 (0.05) 0.58 −0.63 −0.54 −0.46 8, 590
Successful IA 1.43 (0.15) 4.17 1.18 1.43 1.68 1, 704
Detection −0.05 (0.02) 0.95 −0.08 −0.05 −0.02 7, 694
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Parameters Mean HR 5% 50% 95% Number of
Estimate Quantile Quantile Quantile Effective Samples

Other Model Parameters
λ11 1.04 (0.09) 0.89 1.04 1.20 2, 984
λ12 0.69 (0.05) 0.61 0.69 0.78 17, 320
λ13 1.26 (0.14) 1.05 1.25 1.50 1, 869
λ14 1.30 (0.24) 0.95 1.27 1.71 1, 176
λ21 0.27 (0.06) 0.19 0.27 0.37 1, 476
λ22 0.20 (0.04) 0.14 0.20 0.27 1, 471
λ23 0.63 (0.12) 0.45 0.62 0.84 1, 496
λ24 0.68 (0.13) 0.49 0.66 0.91 1, 747
σb 1.04 (0.12) 0.85 1.04 1.23 973
ωb 0.97 (0.23) 0.66 0.93 1.40 908
σd 0.62 (0.05) 0.54 0.62 0.71 1, 884
ωd 2.64 (0.46) 1.96 2.59 3.46 1, 850
γ 0.08 (0.07) −0.03 0.08 0.19 7, 170
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There is more variability in the detection phase frailties for this preferred model than

in the action phase frailties, as illustrated in Figure 4.6 which plots the posterior estimates

of the frailties for each fire by phase in the Sioux Lookout District. Figure 4.7 provides

a temporal plot of the posterior estimates of the frailties for each phase by year. For

Figures 4.6 and 4.7, deeper dark greens imply shorter phase lengths and deeper purples

imply longer phase lengths. Figure 4.7 shows potential trends for both phases over time.

Figure 4.8 plots the median values from the densities of the posterior estimates of the

frailties over time. The action phase for lightning-caused fires appears to be getting

longer over time and the detection phase exhibits no clear trend.
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Figure 4.6: Spatial plot of the lightning-caused posterior estimates for the detection and
action frailties. The locations of the fire management headquarters, attack bases and
forward attack bases are highlighted in yellow.
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Figure 4.7: Temporal plot of the lightning-caused posterior estimates for the detection
and action frailties over the years. Black solid vertical lines are the medians of the re-
spective densities. Brown dashed lines are the thresholds where the frailty interpretation
changes.
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Figure 4.8: Scatterplot of the median values from the densities of the posterior estimates
for the lightning-caused frailties shown in Figure 4.7. Brown dashed line is the threshold
where the frailty interpretation changes.
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4.2.3 Model Diagnostics

The Pareto smoothed importance sampling (PSIS) method for estimating the leave-one-

out (LOO) expected log pointwise predictive density, a measure of predictive accuracy,

was utilized to compare the models for each cause. Figures 4.9 and 4.10 show the PSIS

diagnostic plots for the preferred models discussed in Section 4.2. The Pareto k values,

discussed in Chapter 2.8.2, are displayed on the y-axis and the data points (or fires) are

shown on the x-axis. Any k̂ > 0.7 are considered problematic (Vehtari et al., 2017). To

rectify problematic Pareto k values they suggest one should: (1) sample directly from

p(θs|y−i), the posterior evaluated using the θs draws from the full posterior given the

data without the ith data point, so long as the number of problematic data points is low;

(2) use K-fold cross-validation; or (3) use a more robust model.

The number of problematic fires (i.e., fires with k̂ > 0.7) shown for the preferred mod-

els is quite large making the first option unfeasible. Before attempting the K-fold cross

validation we wanted to investigate which fires result in these problematic k̂ values across

all human- and lightning-caused fire models utilized in the previous section, although we

know some models are preferred using previous selection methods. The following anal-

ysis of problematic k̂ values is conducted for the 14 human-caused joint frailty models

discussed earlier. See Appendix B for related diagnostics for the lightning-caused fire

models.

We found that 399 (or 51%) of the human-caused fires have k̂ values less than 0.7

across all 14 models. These fires had an average detection length of 0.08 days, an average

action length of 0.19 days, and an average total duration length of 0.28 days. In contrast,

only 1 of the human-caused fires has k̂ values greater than or equal to 0.7 across all 14

models. This fire had a detection length of 2.09 days, an action length of 6.81 days, and

a total duration length of 8.91 days — a fire that lasted much longer than the 399 fires

mentioned. Table 4.4 provides the summary of the number of fires with k̂ ≥ 0.7 for m

models, m = 0, 1, . . . , 14, along with some summary statistics. The 399 “unproblematic”
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Figure 4.9: Pareto smoothed importance sampling diagnostic plot for preferred human-
caused model.
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fires are not having a strong influence in our models, but several fires do have an influence.

For example, 19 (or 2%) of the human-caused fires have k̂ values greater than or equal to

0.7 for 12 out of the 14 models, specifically all of the models that include the fire-specific

random effects.

Table 4.4: Summary of human-caused fires with k̂ ≥ 0.7. The average total duration
length is the sum of the average detection and action lengths, where the lengths are in
days.

m
# of Fires Proportion of Fires Average Average Average

with k̂ ≥ 0.7 with k̂ ≥ 0.7 Detection Action Total Duration
for m Models for m Models Length Length Length

0 399 0.51 0.08 0.19 0.28
1 68 0.09 0.31 0.21 0.52
2 64 0.08 0.51 0.40 0.91
3 32 0.04 0.54 0.65 1.19
4 45 0.06 0.32 0.93 1.25
5 27 0.03 0.27 1.22 1.49
6 31 0.04 0.57 1.36 1.93
7 14 0.02 0.56 1.18 1.73
8 19 0.02 0.90 0.70 1.60
9 29 0.04 0.35 1.27 1.62
10 20 0.03 1.24 0.90 2.13
11 18 0.02 0.99 1.22 2.21
12 19 0.02 3.16 1.88 5.04
14 1 0 2.09 6.81 8.91

Figures 4.11 and 4.12 illustrate that as m increases, the durations of the fire phases

also increase. This increase occurs gradually for the detection phase lengths but is steeper

for the action phase lengths. Therefore, we know that fires with longer phase lengths have

a stronger influence in the models and result in problematic Pareto k values when the

model fit is assessed. This issue was explored temporally across fire years and spatially

across fire locations in the Sioux Lookout District - no strong relationships appeared

for either. Models with Gamma frailties had fewer k̂ ≥ 0.7 than the Lognormal frailty

models. For models with the FL (FLI or I) form, those that had a Weibull (PE) baseline

had fewer k̂ ≥ 0.7 when compared with the PE (Weibull) baseline.
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Figure 4.11: Boxplot showing the spread of the log 10 transformed and stratified phase
lengths (days) of the associated fires against m from Table 4.4.
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Figure 4.12: Smooth local regression lines of the stratified average phase lengths (days)
of the associated fires against m from Table 4.4. A histogram inset is provided to show
the fire counts.
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To address the concern that fires with longer phase lengths have greater influence in

the models, we removed all fires that had k̂ ≥ 0.7 for at least one of the models (i.e., 51%

of the original fires were retained). All 14 models were fit to the 399 fires in JAGS using

the same combinations of baselines, frailty types, model forms, and prior distributions

discussed previously. Table 4.5 and Figures 4.13 and 4.14 show that the same issue of

influential fires occurs even when reducing the data, but that it occurs on a smaller scale

(i.e., fewer models have k̂ ≥ 0.7). We posit that this issue will continually occur due to

the structure of the lifetime data — taking out fires with longer lifetime phases will be

replaced by fires now considered to have relatively “longer” lifetime phases. Based on

the recommendations of Vehtari et al. (2017), either performing a K-fold (e.g., 10-fold)

cross validation to calculate the WAIC and PSIS-LOO estimates or fitting a more robust

model that allows for added flexibility in the tails when fitting the fire lifetime phase

lengths are the only feasible options since the number of problematic data points is large

for our human-caused (≈ 49%) and lightning-caused (≈ 63%) fires.

Table 4.5: Summary of human-caused fires with k̂ ≥ 0.7. These models were fit using
the unproblematic fires from of the original data. The average total duration length is
the sum of the average detection and action lengths, where the lengths are in days.

n
# of Fires Proportion of Fires Average Average Average

with k̂ ≥ 0.7 with k̂ ≥ 0.7 Detection Action Total Duration
for n Models for n Models Length Length Length

0 358 0.90 0.04 0.18 0.22
1 17 0.04 0.20 0.37 0.57
2 7 0.02 0.39 0.20 0.59
3 15 0.04 0.85 0.18 1.02
4 1 0 0.26 0.02 0.28
5 1 0 1.30 0.93 2.23
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Figure 4.13: Boxplot showing the spread of the log 10 transformed and stratified phase
lengths (days) of the associated fires against n from Table 4.5.
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Figure 4.14: Smooth local regression lines of the stratified average phase lengths (days)
of the associated fires against n from Table 4.5. A histogram inset is provided to show
the fire counts.
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4.3 A Simulation Study to Compare Frailty Forms

In Figures 4.1 and 4.5 we see that the FLI and I forms dominate the higher ranked

models using both the WAIC and PSIS-LOO goodness-of-fit methods for human- and

lightning-caused wildland fires. In fact, the FLI form ranks first across all the cases that

we examined. But how often would concluding that the independent random effects are

needed in the joint model, regardless of whether the factor loading random effects are

in the joint model, happen by chance? We chose to investigate this question using a

simulation study.

We simulated fire data using the Weibull baseline hazard function since this closed,

parametric form is quite flexible. Therefore, Tij ∼ Weibull
(
λjuij exp(x′ijβj), ρj

)
where

the hazard function has the same form as (4.2). For simplicity we assumed that there are

no predictors in the models (i.e., x′ij = 0′ =⇒ exp(0) = 1) which yielded the lifetime

distributions as Tij ∼ Weibull (λjuij, ρj) where λj > 0 and ρj > 0. We chose to only

look at the cases where the frailty terms have the one-parameter Gamma distributions

as outlined in Table 4.1. The fire lifetime data was simulated using: (1) the FL form and

(2) the FLI form. The results from (2) are provided here and a summary of the results

from (1) are provided in Appendix B.

The one-parameter Gamma distributed simulated random effects are shown in Figure

4.15 where φu = φv = 1/2. The factor loading parameter γ was assigned to four different

levels:

• γ = 0.001; extremely weak linkage,

• γ = 0.1; weak linkage,

• γ = 1; moderate linkage, and

• γ = 10; strong linkage.
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Figure 4.16 illustrates the relationships between the simulated frailties of the detection

phase and the action phase for the different cases. We see that the detection phase frailty

dominates over the action phase frailty when there is a strong linkage coming from the

factor loading parameter.
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Figure 4.15: Scatterplot of the simulated random effects for the detection phase versus
the action phase.
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Figure 4.16: Scatterplots of the simulated frailties for the detection phase versus the
action phase stratified by linkage.

We simulated a sample size of 100 detection and action lifetimes, using the different
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linkage cases, for one thousand runs or draws of the study (i.e., n=100 and draws=1,000).

Within each draw and for each linkage case, we fit three joint models to the simulated

data where the models either had an FL, FLI, or I form. For each draw, we calculate the

ELPD estimates, the effective number of parameters, the information criterion estimates,

and the ranking of the estimates, using the WAIC and PSIS-LOO methods. A model

is ranked as 1 (i.e., the best) if it has the highest ELPDWAIC estimate or lowest WAIC

estimate and ranked as 3 (i.e., the worst) if it has the lowest ELPDWAIC estimate or

highest WAIC estimate. The same ranking order is used for the ELPDPSIS-LOO or LOOIC

estimates.

A comparison of the ranked model forms, stratified by the ranking methods and the

different linkages, is provided in Table 4.6. Our ‘A, B, C’ ranking order notation, where

A is the best model form, B is the second best model form, and C is the worst model

form, will continue throughout the rest of this chapter. For instance, the ‘FLI, I, FL’

ranking order means that FLI is the best model form, I is the second best model form,

and FL is the worst model form.

The ‘FLI, I, FL’ ranking order of the model forms occurs the majority of the time

across all linkage cases and for both ranking methods. The two ranking orders, ‘FLI, I,

FL’ and ‘I, FLI, FL’, are the only ones that occur during the simulation, suggesting that

the FL form is the least preferred model form which is most likely due to the fact that it is

less flexible since it does not allow for the action phase to have its own random effect. The

‘FLI, I, FL’ ranking order of the model forms occurs more often for the WAIC ranking

than for the PSIS-LOO ranking when looking at a specific linkage case. For instance,

suppose we focus on the extremely weak linkage case. Here, we see that the ‘FLI, I, FL’

ranking order occurs 70% of the time when we rank by the WAIC estimates whereas it

only occurs 54% of the time when we rank by the LOOIC estimates. However, the ‘FLI,

I, FL’ ranking order of the model forms dominate as we move from the extremely weak

linkage case to strong linkage case where it occurs 100% of the time.
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Table 4.6: A comparison of the ranked model forms, stratified by the ranking methods
and the different linkages.

Ranked Model Forms Draws
Best 2nd Best Worst Counts Percentages

WAIC Rank
Extremely Weak Linkage FLI I FL 704 70%

I FLI FL 296 30%
Weak Linkage FLI I FL 694 69%

I FLI FL 306 31%
Moderate Linkage FLI I FL 887 89%

I FLI FL 113 11%
Strong Linkage FLI I FL 1,000 100%

PSIS-LOO Rank
Extremely Weak Linkage FLI I FL 538 54%

I FLI FL 462 46%
Weak Linkage FLI I FL 549 55%

I FLI FL 451 45%
Moderate Linkage FLI I FL 817 82%

I FLI FL 183 18%
Strong Linkage FLI I FL 1,000 100%
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Some of the ELPD estimates are quite close to one another making the ranking of

the “best” model somewhat contentious. Rather than only examining the WAIC and

PSIS-LOO ranking orders, we also look into the differences between the estimates. We

calculate the differences between the first ranked model and the second ranked model,

along with the differences between the first ranked model and the third ranked model, for

both the WAIC and LOOIC estimates. Figures 4.17 and 4.18 illustrate these differences

across the different linkage cases. Additional density plots of the differences between

ranked model forms are provided in Appendix B.

In general, we see that the differences between the FLI and I models are very small

regardless of the ranking order or ranking method. More specifically, if the FLI model is

ranked first using either ranking method, then the I model is closely behind it in second

place. This also occurs if the I form is ranked first. But the differences between the

first ranked model (i.e., FLI or I) and the third ranked FL model are often quite large.

Interestingly, these differences increase as the factor loading parameter increases (i.e., as

we move from extremely weak linkage to strong linkage).
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Figure 4.17: Density plots of the WAIC estimate differences between the FLI and I forms
using the ’FLI, I, FL’ ranked models. The red dashed line represents the respective means
of the differences.
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Figure 4.18: Density plots of the WAIC estimate differences between the FLI and FL
forms using the ’FLI, I, FL’ ranked models. The red dashed line represents the respective
means of the differences.
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4.4 Discussion

From our results we see that the preferred model for the human-caused fires has a Weibull

baseline, FLI form, and Gamma frailties whereas the preferred model for the lightning-

caused fires has a piecewise exponential baseline, FLI form, and Lognormal frailties.

The analysis of data from the two fire causes agree on the form of the frailty term

and their factor loading parameters, γ, are positive which implies that the detection

phases are positively correlated with the action phases. In addition, note that the factor

loading parameter is defined to be positive when using Gamma frailties as specified by the

modelling framework when using that frailty distribution. The 90% credible interval for

γ from the model for lightning-caused fires does overlap zero, implying that we cannot be

certain of that relationship. The ‘poorest’ fitting model for both human- and lightning-

caused fires is shown to be of S form using a Weibull baseline which suggests that a

fire-specific random effect is necessary when jointly modelling two fire lifetime phases.

The rest of our discussion will focus on the output from the two preferred models.

There are several factors that drive the fire lifetime phases from these models, partic-

ularly whether the report of and getaway to a fire occurred on the same day and whether

the initial attack of a fire was successful. Most interestingly we see that the detection

phase length is a driver of the action phase. Fires with longer detection phases are as-

sociated with longer action phases for both types of fires — thus it is crucial for the

Ministry to prioritize the early detection of fires in Sioux Lookout to hopefully mitigate

the length of time or amount of resources spent on actioning wildland fires.

Some interesting spatial and temporal trends appear when we investigate the posterior

estimates for the detection and action frailties of both types of fires. Certain fires or areas,

such as those along the highlighted corridor running along the highway between the Pickle

Lake Attack Base and the Savant Lake Forward Attack Base for the human-caused fires

in Figure 4.2, may require further investigation from the Ministry to determine why

the action phases of those fires took longer after accounting for all other model effects.
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Overall, it appears that the action phase lengths for both human- and lightning-caused

fires may be getting longer over time. However, we must highlight that while these

relationships are present in the data, there could be other important variables that drive

these lifetime phases and could possibly change or influence the spatial and temporal

trends shown.

Recall that both models use the FLI form which corresponds to having a shared frailty

between the two phases and independent frailties for each phase. In fact, the FLI form

and the I form tend to dominate the model ranking shown in Figures 4.1 and 4.5. Our

simulation study investigates the ranking of the model forms further by comparing the

WAIC and PSIS-LOO ranking methods for models fit using the FL, FLI, and I forms.

Overall, we see that the two ranking methods are good at identifying when the FLI form

is the true model form since it is most often: (1) ranked as the best model, or (2) ranked

as the second best model. However, the two ranking methods are quite poor at identifying

when the FL form is the true model form. We know that the fire lifetime phase durations

are very heavily skewed to the right, especially for the lightning-caused fires, requiring

more flexibility in the models of the lifetimes. Therefore, we argue that a flexible model

which utilizes the FLI form — where the two phases of a fire lifetime are linked but still

different from one another — is necessary when fitting models to fire lifetimes, and that

this flexibility may be an important consideration when jointly modelling outcomes in

other contexts.

There are some limitations to our analysis that we must note. First, the fire archive

which stores the Sioux Lookout wildland fire data only provides the highest level of

suppression used on a fire. This means that if a fire is monitored for a long time and

then they choose to suppress it, it will be classified as a full suppression fire in the

archive. Thus, there may be fires in our dataset that were originally monitored for a

time until suppression action was taken which would increase the length of the action

phase. Additional data would have to be collected to investigate the potential impact of
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this missing information.

Another limitation is the wildland fire data that was used for our modelling. We

restricted our dataset to fully suppressed fires to ensure that the fires progressed through

the various lifetime phases. However, monitored fires often have interesting lifetimes as

well since they are allowed to burn under observation. Modelling both fully suppressed

and monitored fire lifetimes is a future goal.

A third limitation of our modelling is the choice of baseline hazard functions. For

the piecewise exponential baseline it would be helpful to perform a sensitivity analysis

to determine the number of join points required, along with their locations, to ensure a

reasonable number of fire lifetime phase durations within each interval. Also, employing

a cubic B-spline basis expansion for the baseline hazard functions is another option that

would provide flexibility in the models.

A major limitation of our modelling framework is the use of informative priors and

hyperpriors for certain parameters. This may influence the results as presented in this

chapter. These prior and hyperprior distributions were chosen at the time to achieve

convergence across the 28 models fit in our analysis for the purspose of this thesis.

Future work will explore the use of weakly informative prior and hyperprior distributions.

Preliminary investigations into this have revealed that highly influential predictors, such

as successful initial attack and same day dispatch, play a role in issues with convergence.

Whether such variables should be used as predictors requires careful consideration in

future modelling efforts using a joint-modelling framework for phases within a wildland

fire’s lifetime.

An important consideration of our modelling is that we used the detection phase as

a predictor for the action phase and also linked the two phases together with the shared

frailties (i.e., the factor loading form). Suppose that the detection and action phases

are strongly linked to one another and behave in the same way (i.e., longer detection

implying longer action). By fitting joint models where the detection phase is a predictor
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in the action phase, we are accounting for this linkage in a linear fashion and allowing the

frailties to capture any non-linear effects between the two phases. However, if we remove

the detection phase predictor then the factor loading parameter and frailties must pick up

that linkage. In this case the interpretations of the effect that the detection phase has on

the action phase becomes more difficult to explain to a layperson (e.g., fire management

personnel) since a thorough understanding of frailties and non-linear effects are required.

Although we plan to explore these ideas further with another simulation study using

models with FL and FLI forms fitted with and without the detection predictor, we are

cognizant of the change in interpretations and their potential complications.

Yet again, we must consider the stakeholders and end-users when developing our

models and interpreting the results. The joint frailty models discussed in this chapter

offer some interesting insights into the lifetime phases of fully suppressed wildland fires

in Sioux Lookout, but it is crucial that this information is accessible for fire management

personnel to understand. We took advantage of the principles of knowledge exchange to

guide us in our process of collaboratively developing this research and the sharing of its

results. For instance, Figures 4.19 and 4.20 plot the detection and action frailty densities

by fire management strategy — strategies used by the Ministry that are vital to how

wildland fires are managed in Ontario — which were created as part of this collaborative

process. Without it we might not have realized that, under the appropriate response

fire management strategy, we may be seeing longer action phases for both human- and

lightning-caused fires. This may be a signal of “appropriate response” which may be of

interest to the Ministry. Chapter 5 outlines how we integrated interdisciplinary knowledge

exchange throughout our research project.
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Figure 4.19: Plot of the human-caused posterior estimates for the detection and action
frailties by fire management strategy.
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Figure 4.20: Plot of the lightning-caused posterior estimates for the detection and action
frailties by fire management strategy.



Chapter 5

Reflections on Knowledge Exchange

5.1 Personal Reflections

In statistics, graduate students rarely get opportunities to practice true knowledge ex-

change as they work on their research. I have been fortunate that both my co-supervisors

have encouraged, integrated, and prioritized components of knowledge exchange during

my doctoral pursuits. My fire science research discussed in Chapters 3 and 4 benefited

greatly from many interdisciplinary experiences that contributed to the knowledge ex-

change of this research and I describe below five key experiences (in bold) that played

major roles in my development.

Over the past five years I have had several tele/video-conferencing calls with

fire management personnel to assist with the creation and development of my re-

search. This was especially helpful during the problem identification stage because it

allowed us to zero in on a topic that was of interest to all parties. I attended a work-

shop in February 2018 on “Wildland Fire Appropriate Response: Generating

and Using Science” where the objective was to bring together a group of

multidisciplinary researchers and fire management practitioners to:

1. Discuss the barriers and opportunities to generate new data-driven science and

121
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bring this into practical use for wildland fire management decision support;

2. Strengthen multidisciplinary teams collaborating on such problems; and

3. Provide opportunities for subject matter experts to design and work on solutions

directly with fire management practitioners.

Participating in this workshop gave me greater insights into the concerns and needs

of fire management personnel. Often, statistical training focuses on understanding the

underlying theory of models and how to apply it when developing models that fit our

data, but this workshop helped me to realize that a model is only as good as an end user’s

ability to understand it and its output. This experience was the first time that I ever

considered how my work might be understood, used, or expanded upon by others and

the necessity to incorporate these individuals into the research and development process.

For three weeks in July and August of 2019, I had the opportunity to visit Dr.

Meg Krawchuk’s Landscape Fire and Conservation Science Research Group

at Oregon State University due to Western University’s Science International Engage-

ment Fund. My experience learning from and interacting with Dr. Krawchuk and her

graduate students/colleagues was eye opening and thought provoking. I observed and

performed ecological fieldwork on various burnt landscapes, clear cuts (i.e. areas with

harvested trees), and arid grasslands in southwest and central Oregon which provided

a better understanding of key ecological drivers and effects of wildland fires in the Pa-

cific Northwest. This experience enabled me to expand my knowledge of wildland fire

research, interact with international researchers from other fields, gain hands-on experi-

ence of ecological fieldwork, and increase my breadth of fire regimes outside of Canada.

I attended the Wildland Fire Canada 2019 conference held in Ottawa in Novem-

ber 2019 and presented a poster on the initial findings of our wildland fire lifetime research

(see Appendix C). It was very helpful to participate in this conference because of the

discussions I had with fire science researchers and fire management personnel about these
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early findings and ways that I might strengthen my research methodologies.

I was also fortunate to discuss my research findings and methodologies with my peers

across various disciplines through the completion of a Collaborative Specialization

in Environment and Sustainability from September 2018 to April 2021, offered by

the University of Western Ontario’s Centre for Environment and Sustainability. The col-

laborative specialization served as an interdisciplinary enrichment program for graduate

students whose research coincided with the environment and sustainability. During our

weekly seminars we had the opportunity to: (1) share our research findings and offer

suggestions through an interdisciplinary lens; (2) create solutions to community projects

that addressed specific environmental problems; and (3) develop an annual collaborative

conference on environment and sustainability called EnviroCon.

As our research progressed to the stage where we were interpreting results and glean-

ing insights from our findings, we reached out to Colin McFayden from the Ministry

to continue our knowledge exchange journey. As a collaborative team, we are in the

process of developing a communiqué for Ministry members, specifically those from the

Sioux Lookout District. The process of developing this brief report of our wildland fire

research, for an audience with backgrounds in fire science and management rather than

statistics, has been extremely helpful in understanding our own work. For example, we

were required to explain the concepts of “frailties”, “joint models”, and “longer/shorter

phase lengths after accounting for all other model effects” in a few short pages without

using technical terms. This deliverable is analogous to the popular 3 Minute Thesis1

whereby having to explain something to someone else, especially in a shortened format,

helps you understand it better yourself - which was certainly the case for us. We also

had several interesting discussions about the colour schemes used in our visualizations;

green, yellow, orange, and red already have specific associations due to the Canadian

1The 3 Minute Thesis (3MT) is a university-wide academic competition for Masters and Doctoral
students in which participants present their research and its wider impact in 3 minutes or less to a panel
of non-specialist judges.
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Forest Fire Danger Rating System (Natural Resources Canada, 2021b).

Overall, the incorporation of these experiences focused on the knowledge exchange

of my research played a crucial role throughout my doctoral journey. They helped me

to become a well-rounded, collaborative researcher who prioritizes the needs, sugges-

tions, and ideas of stakeholders, end-users, and any other members involved in a project.

The breadth of my professional training and development as a statistician was greatly

expanded from these opportunities and I am truly grateful for them.

Knowledge exchange is crucial for any practicing statistical scientist, yet statistical

training often does not focus on this. As a graduate student, I prioritized seeking out

training programs and experiences to develop and expand my teaching-related skills. For

instance, I was given the opportunity to teach at the university-level early on in my doc-

toral pursuits which only furthered my interest in becoming an educator. My passion for

teaching also led me to consider the idea of knowledge exchange outside of the wildland

fire science context, specifically into the realm of education for the mathematical and sta-

tistical sciences. Throughout my graduate studies I engaged in professional development

related to education by participating in various workshops, seminars, and programs of-

fered through Western’s Centre for Teaching and Learning. Eventually, this led to formal

Scholarship on Teaching and Learning, namely developing a teaching-related training and

development program — focused on active learning (i.e., an embodiment of knowledge

exchange) — for graduate teaching assistants in Western’s School of Mathematical and

Statistical Sciences. Chapter 6 provides details about this program and the associated

study that we performed.



Chapter 6

Investigating Graduate Teaching

Assistant Training and Development

in Western University’s School of

Mathematical and Statistical

Sciences

Education is one of the main pillars in the discipline of statistics, as evidenced by the at-

tention paid to statistical education by both the American Statistical Association (ASA)

and the Statistical Society of Canada (SSC). Here, we focus on the teaching-related

training and development of graduate students within the statistical and mathematical

sciences, specifically spotlighting the training of graduate teaching assistants on active

learning techniques. Such techniques allow for knowledge exchange — an interactive and

collaborative flow of information — between students and instructors (or graduate teach-

ing assistants) and between students and students, within different learning environments

(e.g., the classroom).

125
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6.1 Literature Review

Should we ask or should we tell in the Science, Technology, Engineering, and Mathematics

(STEM) classroom? Freeman et al. (2014) sought to answer this question by performing

a quantitative data analysis to determine how constructivist (or learner-centred) methods

like active learning versus exposition-centred (or instructor-centred) methods like lectur-

ing impacts student performance in undergraduate STEM courses. They meta-analyzed

225 studies in both published and unpublished literature consisting of 158 independent

comparisons with data on student examination performance and 67 independent compar-

isons with data on failure rates. Their results showed that incorporating active learning

in such courses increases student examination performance and that not doing so (i.e.,

exclusively lecturing) increases student failure rates by 55%. These results suggest that

the student-centred approach to teaching (O’Neill and McMahon, 2005) may lead to in-

creases in student performance which strengthens the call to include more active learning

in undergraduate STEM courses.

It is important to note that an instructor-centred (or teacher-centred) mindset consists

of: knowledge being transmitted only from instructive, passive student participation, the

lecturer being the leader and authority in the classroom, assigning few assessments meant

solely for grading, and one-dimensional assessment methods where the emphasis is placed

on learning correct answers. In contrast, a learner-centred (or student-centred) mindset

consists of: knowledge being constructed by students, active student participation, the

lecturer being the facilitator or partner in the classroom, assigning many assessments

meant for ongoing feedback, and multi-dimensional assessment methods where the em-

phasis is placed on developing a deeper understanding. The academic culture using the

instructor-centred approach is often competitive and individualistic, whereas it is collab-

orative and supportive for the learner-centred approach. For more details on these topics

see O’Neill and McMahon (2005) and Wright (2011).

There is a need to expand the pedagogical training of graduate teaching assistants
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(GTAs) using teaching development programs. Reeves et al. (2016) noted that GTA

teaching professional development programs directly impact GTA cognition which then

impacts GTA teaching practices and, by association, undergraduate student outcomes.

Such programs, along with their designs and benefits, are explored below.

First, Gilmore et al. (2014) examined four variables that impact GTAs’ teaching

orientations: mentorship, training for teaching, teaching experience or teacher develop-

ment, and research experience. They hypothesized that each factor is positively asso-

ciated with GTAs’ teaching development programs that become more student-centred

over time. Most interestingly, they found that neither the duration of prior teaching

experience nor the duration of research experience was significantly related to a change

in teaching orientation over time and suggested that the quality of those experiences was

more important than the length.

Campus-wide graduate teaching development programs at the University of Western

Ontario and the University of Windsor were assessed by Dimitrov et al. (2013) who

compared the impact of such programs of varying duration and examined how GTAs

apply what they learn in short (i.e., one day) and long (i.e., 20-40 hours) programs

when they teach in their disciplines. They employed a mixed-method study design1 that

involved self-reported measures of participants’ attitudes to teaching and teaching self-

efficacy before and after the programs, along with focus group interviews occurring four

months after program completion. The qualitative data from the interviews provided a

more detailed description of how GTAs use what they learn from teaching development

programs.

Possible changes in participants’ instructor-centred and student-centred attitudes to

teaching in the study by Dimitrov et al. (2013) was measured using the revised Ap-

proaches to Teaching Inventory 22-item standardized measure (Trigwell et al., 2005).

This measure is comprised of two scales: the Information Transfer/Teacher-Focused scale

1A mixed-method study design utilizes both qualitative and quantitative data collection and analyses.
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(e.g., “In this subject, students should focus their study on what I provide them.”) and

the Conceptual Change/Student-Focused scale (e.g., “I set aside some teaching time so

that the students can discuss, among themselves, key concepts and ideas in this subject.”).

A high mean score on that scale reflects the respondent’s focus on changing students’

ways of thinking about a subject and recognizes the active role that students play in

constructing their own knowledge. Teaching self-efficacy (i.e., the confidence GTAs feel

in executing various teaching behaviours or duties) was also measured using the Teach-

ing Assistant Self-Efficacy scale (Boman, 2008). Participants rated their confidence in

performing various GTA duties on a five-point Likert scale (from 1 = not confident to 5

= completely confident).

The participants in the study by Dimitrov et al. (2013) highlighted that the most

useful sessions in the programs were ones where they gathered concrete teaching strate-

gies to use later and ones where they heard about personal experiences of other GTAs

and faculty. The results of their samples at the University of Western Ontario showed

that participants’ student-focused approach to teaching increased throughout both short-

and long-term programs. However, the participants of the shorter programs were more

student-focused than the participants of the longer programs. Dimitrov et al. (2013)

suggested that these participants of the shorter program are more aware of student needs

since they are typically younger, have recently completed their undergraduate degree,

and have less teaching experience.

Rivera (2018) sought to answer the research question: “What does a Summer Institute

(SI) on STEM GTA pedagogy and the experience of first year GTAs reveal about STEM

GTA perceptions concerning their roles as a GTA?” Their 5-week intensive summer train-

ing session for STEM GTAs was created by an interdisciplinary group of faculty consisting

of classes like: STEM Methods, STEM Literacy, Teaching Labs, and Professional Com-

munications. Rivera argued that, although training GTAs in pedagogy increases the

likelihood they will try various pedagogical methods to improve their teaching, there is a
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gap regarding what GTAs already know and believe about teaching. Filling in that gap

will help discern how to better prepare GTAs for their roles and, by extension, improve

STEM undergraduate education. Rivera concluded that the SI improved the teaching

confidence of all GTAs (especially international students) and that it helped shift the

instructor-centred mindset to a learner-centred one.

A special section of The American Statistician (2005, Vol. 59, Issue 1) highlighted

strategies for preparing GTAs for teaching across different statistics departments in the

United States. Moore (2005) expressed that “the issue before us [the statistics commu-

nity] is how to help graduate students learn the craft of teaching” (p. 1). These strategies

included courses in teaching statistics (Gelman, 2005; Harkness and Rosenberger, 2005),

weekly meetings (Harkness and Rosenberger, 2005), mentoring (Froelich et al., 2005), and

progressive training providing immersion in a departmental culture (Birch and Morgan,

2005), all of which encourage student-centred teaching.

Several courses in teaching statistics have been developed at various institutions.

For example, Gelman (2005) developed “The Teaching of Statistics at the University

Level” course at Columbia University, which was required for all first-year Ph.D. Statistics

students and was offered in the fall (i.e., first) term of their degree. Its objective was

to boost their graduate students’ confidence and effectiveness in teaching statistics with

active participation and to ensure that they would be prepared to handle the practical

difficulties that arise in teaching. Garfield and Everson (2009) created a graduate-level

course called “Becoming a Teacher in Statistics” at the University of Minnesota, originally

using a face-to-face setting then converting it to an online course. The course was designed

to help students understand and align their teaching with the ASA-endorsed GAISE

recommendations.

Green (2010) performed a study using focus groups, e-mails, and an interview to

collect qualitative data on ten statistics teaching assistants to determine the experiences

they had at the University of Nebraska-Lincoln while teaching the STAT 218: An Intro-
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duction to Statistics course. Their results determined that novice statistics GTAs need

specific direction to help them develop their pedagogical content knowledge for teach-

ing statistics and that statistics departments need to prioritize GTA preparation and

training.

Justice et al. (2017) developed an online survey, called the Graduate Student Statistics

Teaching Inventory (GSSTI), to better understand the preparation, teaching beliefs, and

teaching practices of statistics GTAs in the United States. Responses from 213 GTAs

enrolled at 38 Ph.D.-granting institutions for all major regions across the United States

were collected. The results showed that many GTAs had not yet learned about student-

centred teaching principles like active learning activities since only 40-55% of respondents

had indicated that they had learned about these topics. It also highlighted that the GTAs

had little consensus about their pedagogical beliefs since none of the survey question items

related to the delivery of course content (e.g., lecture, activities, and small group work)

reached 60% agreement and over 10% responded as ‘undecided’ to each of the questions.

Justice (2020) summarized six empirical studies conducted in the United States for

preparing or training GTAs in teaching statistics. They found that “there appears to be

consensus that many GTAs in statistics departments need more knowledge, preparation,

and support as they fulfill their teaching roles” (Justice, 2020, p. 336). Justice (2020)

also reviewed training of GTAs in other disciplines and discovered that the following

components of GTA training programs are helpful in training GTAs: teaching observa-

tions, mentoring, and participation in a community of practice. A culmination of ten

recommendations for GTA professional development programs for teaching statistics is

offered by Justice (2020). These recommendations include providing GTAs with oppor-

tunities to develop pedagogical knowledge for teaching statistics and establishing formal

interactions between experts and novices (e.g., faculty and GTAs, or senior and novice

GTAs).

Many issues arise when GTAs are not properly trained for their roles; Gardner and
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Jones (2011) discussed some of these. They commented on previous studies which showed

that GTAs felt student success had less to do with the course and more to do with a stu-

dents’ ability or motivation; a clear misconception about how undergraduates learn and

therefore how they should be taught. This mindset perpetuates the idea that teaching is

centred on transmitting knowledge from the instructor to the student and is, therefore,

less concerned with developing learner autonomy and independence. Their research also

addressed issues with motivating GTAs to attend teaching development training sessions.

Most science departments, and even some institutions, place little emphasis on pedagog-

ical training and offer GTAs few rewards for improved teaching which undervalues the

need to attend teaching development training and makes it acceptable to be neglected

altogether. Gardner and Jones (2011) argued that “teaching beliefs and values are re-

flected in the behaviours of the institution, department, and the faculty and these ideals

are [then] reproduced in graduate students” (p. 38).

Crowe (2019) focused on determining what factors affect STEM GTAs’ perceptions

of pedagogical training and whether these factors influence their buy-in to such train-

ing. They noted that previous factors identified in the literature included: departmental

demands, the perception of research as more valuable than teaching, previous teaching

experiences, self-efficacy, attitudes about teaching in general, and career goals. Crowe

discovered two additional factors that may influence GTA buy-in to pedagogical training:

the effect of pedagogical training on overall GTA learning and a social commitment to

students. These additional factors may prove useful for encouraging buy-in from STEM

GTAs. For example, if post-secondary institutions, faculties and departments present

teaching as a way of enacting social responsibility then it might inspire GTAs to partic-

ipate in training opportunities.
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6.1.1 The Need for Research on GTA Training

GTAs play critical roles in educating the next generation of professionals. They influence

both the undergraduate students they teach and the teaching effectiveness of future

faculty. Gardner and Jones (2011) argued that the best point to implementing reform

in the quality of undergraduate education is with GTAs since: (1) their increasing roles

and responsibilities provide an opportunity to further reach teaching objectives set by

universities, and (2) their hands-on training can be scaffolded with pedagogical training

prior to faculty appointments to break the cycle of mentors with little or no formal

training of this kind. GTAs must adopt effective pedagogical practices early in their

careers since early teaching experiences tend to establish enduring teaching skills and

approaches (Gilmore et al., 2014).

Training helps GTAs reflect on the expectations they place on their undergraduate

students and the expectations that students place on them, reinforcing an environment

of care, respect, and empathy for one another. It can also help to reduce the teaching

anxiety felt by already over-burdened and stressed GTAs (Williams, 1991). The dedica-

tion of departmental or faculty resources to teaching training programs provides tangible

proof that the department or faculty values this crucial aspect of graduate programs

(Pentecost et al., 2012). However, until teaching, and the training of effective teaching,

are prioritized as beneficial skills and valuable commitments of time, GTAs are likely to

find it challenging to maintain this development on their own.

Such literature outlines an important gap that we aim to fill: increasing the teaching

roles and responsibilities of GTAs requires increasing the research into the training they

receive (if any). This gap was noted by Gardner and Jones (2011) who stated:

“Although there are programs that exist to prepare science GTAs to be more

effective instructors, there is a dearth of primary research on the subject.

What do programs geared toward developing the teaching skills of science

GTAs look like? More importantly, how effective are these programs at chang-
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ing misconceptions and beliefs about science teaching and learning of science

GTAs?” (p. 34)

Our main goal is to contribute to these conversations by performing a study that seeks

to answer the following research question: How does participation in a discipline-

specific teaching development program on active learning for Graduate Teach-

ing Assistants (GTA) in mathematics and statistics, offered by their School of

Mathematical and Statistical Sciences, impact their perceptions of teaching?

6.2 Methods

6.2.1 Workshop Development

A 1.75-hour long workshop on active learning, entitled “Active Learning in Math & Stats:

Benefits, Limitations, and Practical Strategies for Implementing Active Learning Activ-

ities in Undergraduate University Mathematics and Statistics Courses”, was developed

for the purposes of our study. The initial version of this workshop was created in 2018

as part of a capstone project for the Advanced Teaching Program offered by the Cen-

tre for Teaching and Learning at the University of Western Ontario. A final version of

the workshop was created in March 2021 in collaboration with Lisa Aikman (Education

Developer of GTA Programs at Western’s Centre for Teaching and Learning).

The goal of the workshop was for participants — namely, GTAs in mathematics

and statistics — to gain a better understanding of active learning teaching methods (see

Chapter 2.10 for more details). The learning outcomes for the workshop appear in Figure

6.1. By developing tangible examples of active learning activities applied to participants’

home disciplines — in collaboration with their peers — and discussing their benefits and

limitations, we envisioned that these activities would help GTAs to start thinking about

different ways to implement these ideas in their labs, tutorials, office hours, and courses.
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Figure 6.1: Learning outcomes for the workshop.

6.2.2 Study Design Outline

Study participants were asked to complete three tasks: a pre-workshop questionnaire, a

workshop on active learning, and a post-workshop questionnaire. We use this pre-post

self-report survey framework to investigate our research question.

The pre-workshop questionnaire was administered as an online survey through Qualtrics

(https://mysurveys.uwo.ca/) — a web-based survey tool to conduct survey research

— taking approximately 15 minutes to complete. The survey asked participants for

demographic information, along with written responses and multiple-choice questions re-

lated to their GTA experiences and experiences with active learning. See Appendix D

for the pre-workshop questionnaire.

The workshop was offered to all GTAs in research-focused graduate programs (M.Sc.,

Ph.D.) in the departments of Mathematics and Statistical and Actuarial Sciences on

September 16, September 23, and October 7, 2021. The workshops were held in an

https://mysurveys.uwo.ca/
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active learning space2 similar to the Western Active Learning Spaces (https://www.

uwo.ca/wals/). We offered three sessions of the same workshop on the different dates

for logistical reasons such as scheduling conflicts and room capacity constraints.

The post-workshop questionnaire was also administered as an online survey through

Qualtrics taking approximately 10 minutes to complete and was sent to workshop par-

ticipants one day after attending their workshop session. Appendix D contains the post-

workshop questionnaire, which includes the same written responses and multiple-choice

questions as the pre-workshop questionnaire, with two additional questions focusing on

how the participant felt after completing the workshop.

It is important to note that pre- and post-workshop questionnaires were not standard-

ized. The questions were chosen by examining the surveys from previous GTA studies

and “approaches to teaching” studies, as found in the literature. Several multiple-choice

questions are Likert scale questions (Johns, 2010) that utilize five-point ratings. Signifi-

cant time was spent crafting the wording of the questionnaires, asking several colleagues

with graduate training in the statistical sciences to review them and provide feedback

on clarity to ensure that the questions were not biased, leading, or unclear, and revising

them.

The target population of study participants were current and future graduate students

in full-time research-focused programs (M.Sc., Ph.D.) within the School of Mathemati-

cal and Statistical Sciences at the University of Western Ontario. Participants did not

need to have any previous experience working as a GTA. We offered an incentive where

participants chose to be entered into a draw to win one of two $250 gift cards to Best

Buy; participants were entitled to one ballot for each survey they participated in, for a

total of two ballot entries in the draw.

Our study received approval from the University of Western Ontario’s Non-Medical

2An active learning space (or classroom) is designed to support teaching and learning in an atmosphere
conducive to engaging students actively in their own learning. They are equipped with tools that promote
active and collaborative learning.

https://www.uwo.ca/wals/
https://www.uwo.ca/wals/
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Research Ethics Board (NMREB) on July 20, 2021. Email recruitment began two weeks

prior to the start of the first workshop session and ended one week before the last work-

shop session, using the mailing lists for each department’s graduate students. A Program

Coordinator assisted with emailing all the potential participants. We also reached out to

the Graduate Chairs and faculty members in the respective departments to ask them to

encourage their graduate students to attend the workshop.

6.3 Analysis and Results

6.3.1 Review of Workshop Sessions

An outline of the workshop including the associated summary, annotated bibliography,

schedule, presentation strategies, and more information are provided in Appendix D.

A total of five active learning activities were utilized throughout the workshop (e.g.,

Dotmocracy, Think-Pair-Share, etc.) as examples of potential activities that GTAs could

use. Please review the workshop outline in Appendix D for descriptions of the activities.

The workshop sessions ran rather smoothly with most participants picking up new ideas

that they were eager to implement during their office hours, tutorials, and labs. In total

there were 12 workshop participants: 4 attended the first session, 5 attended the second

session, and 3 attended the third session.

The motivating activity used in the workshop was a Dotmocracy where participants

were asked to vote by placing dot stickers under the statements they agreed with. Some

participants did not know what active learning was at the time, so they could not agree

with any of the statements that we used in the workshop. For example, one participant

remarked in the first session that they did not know what active learning was, but were

not skeptical about it either. Our suggestion for the next iteration of this workshop

would be to use a more diverse range of statements for this activity so that everyone can

vote in some way. A simple fix may include statements like “I do not know what active
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learning is” or “I have never tried active learning before”. Most of the statements did

receive dot sticker responses throughout the three sessions. Interestingly, the statement

“I’ve taken an undergraduate math/stats course that included active learning” was not

acknowledged as true by any of the participants until the last workshop session. This

might be because participants did not know what active learning was at the time, even

though they may have already encountered it in their math/stats courses, or because

they genuinely had not encountered it in these courses.

A Quescussion3 activity was used in the workshop as an example of an active learning

activity that GTAs can use. In the first session, the participants struggled with creating

questions and needed assistance from the workshop facilitator. During the second session,

no participants asked any questions but instead sat in silence for a few minutes. Rather

than moving on to the next activity, the facilitator turned the situation into a discussion

of what to do when an activity does not work (i.e., what to do when students do not

participate in an activity), which resulted in a helpful “meta-moment”. During the third

session this activity went extremely well since all participants asked very insightful and

interesting questions and they actually reached the goal of the activity. The success of this

activity in the last session may be due to how the facilitator explained the instructions

(i.e., they became better at explaining the activity instructions with each session) or it

may have been due to the knowledge and experience of those participants in the room.

6.3.2 Review of Questionnaires

Identifiable information collected from study respondents included citizenship and resi-

dency status (e.g., Canadian/Permanent Resident or International student), degree, pro-

gram, year of study, whether English is their first language, age range, gender, and a

unique personal identifier used to link the pre- and post-workshop questionnaires. We

3A Quescussion is a discussion conducted entirely by asking questions. One person (often the instruc-
tor or GTA) will ask a challenging question and a discussion of that question occurs where students can
only respond by asking further questions.
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collected 11 total responses with corresponding pre-post data, resulting in a high response

rate (≈ 92%) but a low workshop participation rate (≈ 12%). Due to the low number

of respondents, the rest of this section focuses on an exploratory data analysis of the

collected responses.

Figures 6.2-6.5 show the demographics of our 11 study respondents. We see that 82%

(9/11) of the respondents are enrolled in a Ph.D. program with years of study ranging

from year one to year 5+. Respondents self-identified their gender with 36% (4/11)

identifying as female and 64% (7/11) identifying as male, with ages ranging from 20 to

34 years old. Most of our respondents (82%; 9/11) are international students whose first

languages are not English, whereas all the domestic/permanent resident students have

English as their first language.
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Figure 6.2: Bar chart of study respondents stratified by program, degree, and year of
study.

Interestingly, in Figure 6.4 we see that three respondents have no previous GTA expe-

rience, whereas the rest of the respondents have at least 3 academic terms of experience

(an academic term is considered four months). The three individuals who have no pre-

vious GTA experience includes the two Master’s students and one Ph.D. student who

is in their second year of study. It illustrates that Master’s students and, potentially,

early-career (i.e., in their first two years of study) Ph.D. students may not have previous
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Figure 6.3: Bar chart of study respondents stratified by gender, degree, and residency sta-
tus (DOM/PR represents domestic/permanent resident; INT represents international).

GTA experience when they are assigned to take on the role of a GTA.
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Figure 6.4: Bar chart of study respondents stratified by their program, year of study,
and previous GTA experience.

Figure 6.5 shows whether the respondents have had any experience with different

types of professional development activities related to teaching. We see that the majority

(73%; 8/11) of respondents have not attended a conference, roughly half (6/11) have

attended a short workshop of 1-5 hours (e.g., Future Prof Series), 64% (7/11) have
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attended a medium workshop of 1-2 days (e.g., Teaching Assistant Day), and only 36%

(4/11) have attended a longer workshop of 3-10 days (e.g., Teaching Assistant Training

Program or Advanced Teaching Program). Only two respondents attended a summer

or semester-long course (e.g., SGPS 9500 course) and none of the respondents had any

other teaching-related professional development.
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Figure 6.5: Stacked bar chart of the proportions of student respondents’ previous profes-
sional development activities that are related to teaching.

The following figures (Figures 6.6-6.14) correspond to the workshop-related questions

from the questionnaires, highlighting any possible changes in a respondents’ response

from the pre-workshop questionnaire to the post-workshop questionnaire. In Figure 6.6

we see that two respondents were slightly encouraged to consider using active learning

strategies, one was slightly discouraged, and eight remained unchanged in their views.

For example, Respondent 6 went from never considering these strategies to sometimes

considering them.

Figure 6.7 corresponds to respondents’ familiarity with active learning strategies used

in their discipline (that is mathematics, statistics, actuarial sciences, or financial mod-

elling). We see that four respondents were slightly more familiar with active learning

strategies, one was slightly less familiar, and two remained unchanged in their familiar-
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Figure 6.6: Connected scatterplot of responses to the question “Fill in the blank: As a
GTA, I have (blank) considered using active learning strategies in labs, tutorials, and/or
office hours.”

ity. Interestingly, Respondent 1 went from being moderately familiar with active learning

strategies before the workshop to slightly familiar with them after attending the work-

shop. We posit that this individual may have felt more confident about their familiarity

or knowledge of these strategies beforehand, but then after attending the workshop they

may have realized that they are not as familiar with them as they originally thought.

However, it might also be due to simple day-to-day variation in their responses.

Respondents who indicated at least some familiarity with active learning were asked if

they could explain what they know about active learning strategies and what might limit

them from using active learning strategies in their role as a GTA. The responses to these

questions are illustrated as word clouds in Figures 6.8 and 6.9. Figure 6.8 highlights that

the word “students” is associated with active learning strategies which is not surprising

since these strategies are utilized in a student-centred teaching approach. Figure 6.9

illustrates that time is one of the major barriers GTAs face when thinking about using

active learning strategies in their roles.



142 Chapter 6: GTA Training and Development

NA

Not at all familiar

Slightly familiar

Moderately familiar

Very familiar

Extremely familiar

Pre−Workshop Post−Workshop
Questionnaire

Respondent
1
2
3
4
5
6
7
8
9
10
11

Figure 6.7: Connected scatterplot of responses to the question “Fill in the blank: I am
(blank) with active learning strategies used in my discipline.” NA refers to no response.

Figure 6.8: Word cloud of responses to the question “What do you know about active
learning strategies?”
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Figure 6.9: Word cloud of responses to the question “What would limit you from using
active learning strategies in your role as a GTA?”

Selected responses for the “What do you know about active learning strategies?”

question follow:

Pre-workshop:

Post-workshop: The definition and some examples.

—Ph.D. student, Mathematics

Pre-workshop: Interactive

Post-workshop: Active learning is the learning environment where the learner

participates actively in the generation of knowledge.

—Ph.D. student, Actuarial Science

Pre-workshop: Let students ask questions actively and teach them course

material by answering their questions, rather than teach them with all the

course content.
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Post-workshop: It is a student-centered learning strategy, giving students

opportunities to show what they learn, which is helpful to let them know what

they don’t know.

—Ph.D. student, Statistics

Selected responses for the “What would limit you from using active learning strategies

in your role as a GTA?” question follow:

Pre-workshop: Time and other duties.

Post-workshop: Activities other than GTA duties.

—Ph.D. student, Applied Mathematics

Pre-workshop: There are too many students in a course.

Post-workshop: It take a lot of time, and it requires the cooperation of

students.

—Ph.D. student, Statistics

Pre-workshop: The burden of content coverage.

Post-workshop: The only limit for active learning strategies is our commu-

nity’s collective lack of knowledge outside of standard active learning strategies

for math & statistics. The problem is probably being a pioneer and having to

justify your teaching.

—Master’s student, Statistics

Pre-workshop: We are told by professors/lecturers ... what to do, if we are

given tutorial hours. It also may require more prep hours, for which we are

not paid.
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Post-workshop: We are generally not given much opportunity for teaching,

even in tutorials, and when it does occur the professor usually has a set of

problems they want us to cover. Since we are not in charge of the class we

cannot make tutorials mandatory or adjust the marking scheme, so we may

see loss of student interest in tutorials.

—Ph.D. student, Statistics

Figure 6.10 shows how respondents feel about their GTA roles and duties in general.

We see that most of the responses stayed the same except for Respondents 5 and 10, who

changed from feeling indifferent to very excited and moderately excited, respectively,

after attending the workshop. Both of these respondents were seasoned GTAs (i.e., with

over five academic terms of GTA experience) who previously attended various teaching-

related professional development programs.

Very nervous
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7
8
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11

Figure 6.10: Connected scatterplot of responses to the question “Fill in the blank: I feel
(blank) about my GTA roles and duties.”

Figure 6.11 shows how comfortable the respondents were with incorporating active

learning strategies in labs, tutorials, and office hours. We see that one respondent had a
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positive change (i.e., from not comfortable to comfortable), one respondent had a negative

change, and four respondents remained unchanged. Interestingly, of the five respondents

who did not provide a response to this question in the pre-workshop questionnaire, four

of them responded that they felt comfortable incorporating active learning strategies in

labs, tutorials, and/or office hours after attending the workshop. This could be a result

of the workshop or from day-to-day variation in the responses. Overall, Respondents 2,

10, and 11 felt that they were still not comfortable incorporating such strategies even

after attending the workshop due to their lack of experience, the time-consuming nature

of active learning, and that they still did not have enough training to be able to develop

active learning strategies for material in mathematics.
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Figure 6.11: Connected scatterplot of responses to the question “As a GTA, I feel com-
fortable incorporating active learning strategies in labs, tutorials, and/or office hours.”
NA refers to no response.

If an individual responded “yes” to the previous question about their comfort level

with incorporating active learning strategies, we asked them to provide an example of a

strategy that they would use. If they responded “no”, then we asked them to explain

why they were not comfortable incorporating these activities. Selected responses to these
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questions are:

Pre-workshop (“NA”):

Post-workshop (“yes”): For office hours I could divide students into teams

based on which questions they have troubles with, and let students take initia-

tive.

—Ph.D. student, Financial Modelling

Pre-workshop (“no”): I would want to be properly trained (and compensated

for that training time, as part of my GTA hours) so that I could execute the

strategies effectively. I would also want the professor’s approval, as I wouldn’t

want to go against their methods or cause a division between my section and

those of the other GTAs.

Post-workshop (“yes”): I would use a more student-guided approach to

questions I am asked in office hours, if we have an appropriate amount of

time.

—Ph.D. student, Statistics

Pre-workshop (“yes”): A trivially-implementable active-learning strategy

for GTA-led labs, seminars, or tutorials would be Problem-Based Learning.

You hone in on a particularly robust problem and solve it as a class. It allows

for independent work, group work, teachable moments, discussion, and richer

understanding of the course material.

Post-workshop (“yes”): I would use an entry ticket of a poll near the be-

ginning of class to learn how well students are learning the content.

—Master’s student, Statistics
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The respondents developed interesting active learning strategies that they could im-

plement in tutorials, labs, and office hours during the workshop, as mentioned in the

quotes provided (e.g., student teamwork during office hours; polling questions to start a

lab or tutorial). Many of the reasons why respondents did not feel comfortable incorpo-

rating active learning strategies were very similar to what would limit them from using

such strategies (e.g., lack of pay, time constraints, etc.).

Figure 6.12 assesses respondents’ interest in learning more about active learning

strategies that they can use as GTAs in their respective disciplines. We see that eight

respondents were, at best, as interested in learning more about active learning after the

workshop and that three respondents were less interested in learning more.

Very uninterested

Somewhat uninterested

Neither interested nor
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Somewhat interested

Very interested

Pre−Workshop Post−Workshop
Questionnaire
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1
2
3
4
5
6
7
8
9
10
11

Figure 6.12: Connected scatterplot of responses to the question “Fill in the blank: I am
(blank) in learning more about active learning strategies that I can use as a GTA in my
discipline.”

Figure 6.13 illustrates whether respondents think it is important or unimportant to

use active learning strategies in undergraduate courses in their respective disciplines.

Roughly half the respondents had the same response before and after the workshop while

three respondents decreased and two respondents increased in their responses. Seven
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respondents felt that it was at least somewhat important to use active learning strate-

gies in undergraduate courses after attending the workshop. Interestingly, we see more

variability in the responses to this question because, although the literature explains the

importance of active learning strategies in all disciplines, the disciplines of mathematics

and/or statistics as a whole may be lagging in their incorporation or prioritization of

active learning activities in undergraduate courses. The responses may also reflect the

impression that students have about the importance of active learning influenced by their

faculty, department, and/or supervisors.
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Figure 6.13: Connected scatterplot of responses to the question “Fill in the blank: In my
discipline, it is (blank) to use active learning strategies in undergraduate courses.”

At the end of the workshop, we gave each participant a handout that summarized

important ideas from the workshop and provided a list of references related to active

learning (see Appendix D). We asked respondents in both questionnaires if they knew

where to find active learning strategies that could be used in their discipline and the

results are shown in Figure 6.14. Six respondents had an increase, three had a decrease,

and two stayed the same in their responses. Most individuals who had an increase in

their responses went from not knowing where to find resources on active learning or being
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neutral, to agreeing that they know where to find such resources. It is interesting to see

that the first respondent went from agreeing to disagreeing — the workshop may have

helped them realized that they, in fact, do not know where to look for resources even

though they thought they had or that the workshop was lacking in terms of providing

these resources.

Strongly disagree

Disagree

Neither agree nor
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Figure 6.14: Connected scatterplot of responses to the question “I know where to find
resources on active learning strategies that can be used in my discipline.”

On the post-workshop questionnaire, we asked respondents two questions related to

the workshop: how they felt about completing their GTA assignment after completing

the workshop and what type of impact this workshop had on their perception of teaching

as a GTA in their discipline. Table 6.1 shows the responses to those questions. The

respondents either felt the same or more excited about their GTA assignment after at-

tending the workshop and 91% of them felt that the workshop had a positive or very

positive impact on their perception of teaching.
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Table 6.1: Counts and percentages of responses to the last two questions on the post-
workshop questionnaire.

Q: After completing this workshop, Q: This workshop has had a (blank)

I feel (blank) about completing impact on my perception of teaching

my GTA assignment. as a GTA in my discipline.

Response Categories Count (%) Response Categories Count (%)

More excited 4 (36%)
Very Positive 2 (18%)

Positive 8 (73%)

About the same 7 (64%) Neither positive nor negative 1 (9%)

Less excited 0 (0%)
Negative 0 (0%)

Very negative 0 (0%)

At the end of both questionnaires, we asked respondents to leave any comments

related to the workshop, active learning strategies, or their experience as a GTA. The

following comments were provided:

Thanks for running this workshop!

—Master’s student, Statistics

It would be nice if more GTAs participate in these activities to share more

experiences and perspectives.

—Ph.D. student, Statistics

I don’t feel we got enough training for coming up with active learning strategies

for material in math. This workshop mainly focused on teaching us active

learning strategies through these strategies, which is cool and interesting, but
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not enough. In math, we have [a] lack of ideas of how to apply this to the

material we have in the courses. Another workshop with practical examples for

delivering Calculus, Linear Algebra, ODEs [Ordinary Differential Equations],

etc. would make this training more complete and make us feel for comfortable

with active learning strategies in our discipline.

—Ph.D. student, Applied Mathematics

I think for any meaningful implementation of active learning in tutorials/labs

it has to come from the top down (i.e., from professors). GTAships do not typ-

ically include enough allotted time for preparation of tutorials, and generally

attendance is quite poor for introductory courses. It should not be expected

of GTA’s to go over their hours, especially when there is generally little to

no recognition of good or bad GTA work in the department, and no possi-

ble reward (such as raises, promotions) simply due to how the courses are

structured. The incentive is very low.

—Ph.D. student, Statistics

6.4 Discussion

It is clear from the literature that both short and long teaching development programs

have several benefits for GTAs. Fostering the growth of the teaching ability of GTAs

can also enhance their abilities to communicate their research and help them become

better researchers in general since many of the communication and other skills they

develop are transferable. Therefore, training programs on effective teaching and pedagogy

add to the overall professional development of graduate students and should boost their

credibility as a researcher. Teaching-related workshops can also serve as a gateway to

further teaching development since they often help participants understand the benefits
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that can be gained from them. However, GTA teaching-related training and development

programs within statistics and mathematics often lack pedagogical insights that can

strengthen the teaching styles used by GTAs and even instructors.

We developed this pre-post study to investigate how participating in a discipline-

specific teaching development program on active learning for GTAs in mathematics and

statistics impacts their perceptions of teaching. A pre-post self-report survey design

(Salkind, 2010) is the most widely used design where participants are asked questions

before an intervention (pretest), participate in the intervention, and are again asked

questions after the intervention (posttest). This design measures changes in participant

knowledge or attitudes regarding the intervention content. It is viewed as a rigorous

method that provides credible results and measures the same person at two time intervals,

reducing many sources of bias. It is important to note that pre-post surveys only assess

the respondents’ perceptions of their learning. Thus, interpretations of the differences

between pre and post ratings are limited to what respondents think they learned or how

much they think they changed.

In general, it appears that the workshop helped participants to be able to define active

learning and provided them with active learning examples. Most respondents noted

that time constraints, other duties (GTA and non-GTA), class sizes, space, increased

preparation time, lack of pay for preparation time, and a lack of autonomy when running

tutorials/labs/office hours would limit them from using active learning strategies in their

GTA roles. These concerns are valid and have been well documented as obstacles that

instructors may face, or believe that that may face, when implementing active learning

activities in courses (Faust and Paulson, 1998; Braun et al., 2017). If instructors and

professors have these concerns, then it is understandable that GTAs — who often have

less teaching experience, fewer opportunities for teaching professional development, and

may receive little-to-no training on teaching or active learning — have them as well.

The results from the responses were mixed. Furthermore, given the small number
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of participants, the discussion of results that follows is a qualitiative description rather

than a quantitative analysis. For respondents who did change their responses after at-

tending the workshop, we found that the workshop may have: slightly encouraged a few

respondents to consider using active learning strategies, helped some respondents become

slightly more familiar with active learning strategies, and increased over half of the re-

spondents’ knowledge of where to find resources on active learning strategies that could

be used in their discipline. Additionally, for respondents who did change their responses

after attending the workshop, we found that the workshop may have: slightly discouraged

a few respondents’ interest in learning more about active learning strategies, and both

increased and decreased some respondents’ perception towards the importance of active

learning strategies used in undergraduate courses in their disciplines. However, Table 6.1

illustrates that the workshop did not appear to negatively impact respondents’ excite-

ment for completing their GTA assignments nor did it negatively impact their perception

of teaching as a GTA — both of which are good.

There are some limitations to the study design that we must consider. The pre-

post design is known to have flaws like the response shift bias (Howard, 1980) where

participants’ framework of understanding a question would shift between the pre and

post periods, resulting in inaccurate assessments of their pre-program knowledge due to

their lack of understanding at that time which can underestimate the program effect

(Skeff et al., 1992). An alternative design was proposed in the late 1970’s — called

the post-then-pre design (Colosi and Dunifon, 2006; Kanevsky, 2016) — to reduce or

eliminate the response shift bias. Additionally, it is a more convenient design since both

measures are taken at the same time, making it less burdensome and time-consuming

for participants. The limitations of the post-then-pre design include bias when recalling

memories for the “pre” section, even with short time periods between pre and post, and

participants reporting improvement (even subconsciously) to justify the time and energy

they invested in program attendance.
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Self-reporting surveys, such as ours, are always vulnerable to bias since participants

may only answer what they think the evaluator wants. Thus the inaccuracy of greatly

differing self-assessments may not provide a reliable measure. Additionally, self-selection

bias is an issue in our study design since participants self-selected to participate in the

study and attend the workshop. The main issue is that our workshop participants were

most likely GTAs who were already interested in learning more about teaching and

teaching methods that could assist them. This may be assessed in future studies by

including questions asking why the participant attended the workshop. Consequently,

it is reasonable to infer that our sampled population did not encapsulate our target

population of all GTAs within the University of Western Ontario’s School of Mathematics

and Statistics, including those who are interested in teaching professional development

and those who are not.

A major limitation of our study is the low participation rate of 12 individuals of

which 11 provided responses to the pre-post questionnaires. This hampered quantitative

data analysis collected from the questionnaires to investigate whether the intervention

(i.e., workshop) had an impact on participants’ perception of teaching via large sample

asymptotics. However, nonparametric tests like the exact Binomial test or Fisher’s exact

test, where responses would need to be regrouped into dichotomous levels (e.g., strongly

agree and agree into agree), would be an option for analyzing small sample sizes. These

analyses were not performed as we considered these responses as part of a pilot study,

with the intention to extend the study period to offer a second iteration of the workshop

sessions where we will be able to conduct an analysis with reasonable power to detect

changes. We note that another option for analyzing the quantitative data in future

includes fitting ordinal logistic regression models (Harrell, 2015) that use the demographic

data as predictors, incorporating fixed and possibly interaction terms to account for

effects of the different workshop sessions that respondents attend. Regardless of the

methods employed, each question requires appropriate thought and consideration in terms
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of how to analyze the data since different questions utilize positive versus negative framing

and unipolar versus bipolar items.

Possible solutions for increasing the participation rate of the workshop may include

greater advertisement, offering different mediums such as an online version to enhance

flexibility, or offering the workshop earlier in the fall term before GTAs get busy with their

own courses, research, and GTAships. Recall that the workshops were offered starting

in mid-September which might have already been “too late” in the term. Also, we must

be cognizant of the general timing since September 2021 was the first in-person month

at Western University after 18 months of online living due to the COVID-19 pandemic.

Concerns about COVID-19, returning to in-person activities, and quarantines for certain

graduate students4 may have potentially kept participation in our in-person workshop

low.

The next iteration of our workshop and study will most likely benefit from the fol-

lowing adjustments:

1. Having the Department, School, or Faculty promote the workshop to its GTAs;

2. Offering fewer sessions (only one or two) earlier in term during the first or second

week of classes before GTAs become too busy with their own workloads;

3. Switching to a post-then-pre survey design instead of a pre-post design; and

4. Administering paper questionnaires with time for completion built into the work-

shop so that participants can respond before they leave the room.

It may only be necessary to implement some and not all of the noted adjustments. We

believe that collaborating with the respective Department, School, or Faculty to offer

this workshop would have the most significant impact on our participation and response

rates, particularly in regard to the workshop promotion. Promoting the workshop would
4As per Western University’s COVID policy, students returning to campus from countries outside of

Canada were required to quarantine for a 14-day period.
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emphasize the value that faculty members place on active learning techniques. It would

also demonstrate that the Department, School, or Faculty prioritizes the teaching pro-

fessional development of their graduate students and the many benefits that this type of

training offers early career individuals — a crucial element of graduate students’ academic

journey that is frequently overlooked.

Pentecost et al. (2012) developed and analyzed a specialized GTA training program

for graduate students that ran for four years and permanent department faculty and

staff assumed the leadership roles in planning and leading the sessions alongside the

project staff for the last two years. The shift of faculty and staff becoming increasingly

involved in taking over the training program ensured its continued endurance and growth

as a departmental asset. Our long-term goals for this research consist of (1) repeating

this study to provide concrete evidence that discipline-specific training programs for

GTAs in mathematics and statistics are important and necessary for their overall career

development, and (2) refining the workshop to create a sustainable, high-quality GTA

teaching-related training and development program that could be integrated into all

mathematics and statistics departments across Canadian universities.
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Conclusions and Future Work

The first part of this dissertation used the principles of interdisciplinary knowledge ex-

change to develop novel techniques for the study of wildland fire lifetimes. The detec-

tion and action phases of fully suppressed wildland fires in the Sioux Lookout District

of northwestern Ontario were investigated by fitting multi-state models to determine

which factors influence the time spent in each phase and how the phases are interrelated.

Williams et al. (2017) noted that if a previous phase, used as a predictor, is found to

have evidence of an effect on the current phase, then there is evidence to suggest that

the Markov property does not hold, indicating that a semi-Markov model is more appro-

priate. Our work shows that longer detection phases are associated with longer action

phases, implying that the semi-Markov models such as the clock-reset multi-state model

or the joint frailty models are more appropriate when modelling wildland fire lifetimes.

Although we were able to determine the influential factors, the results from the multi-

state models lacked insightful information about the relationship between the two phases.

Joint frailty models were employed to allow for correlation between the detection and

action phases by incorporating fire-specific random effects (or frailties) in the models.

We found that the action phase lengths may be increasing over time.

Comparisons of models with different frailty distributions, frailty forms, and baseline

158
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hazard functions determined the preferred models for both the human- and lightning-

caused fires. Although different frailty distributions and baseline hazard functions were

identified by the model selection techniques, both models agreed on the factor loading

and independent (FLI) form of the frailty term allowing for both the connection between

the two phases and the flexibility for each phase to differ. Results from a simulation study

highlighted the FLI form as a dominant model form when ranking using two Bayesian-

based ranking methods (WAIC and PSIS-LOO). A communiqué is being developed in

collaboration with a member of the Ontario Ministry’s Aviation, Forest Fire and Emer-

gency Services. This deliverable is a tangible component of the collaborative knowledge

exchange that was employed for this work. It will provide the Ministry and its fire man-

agement practitioners with a broad overview of the results and insights gleaned from

investigating these wildland fire lifetime phases and to offer areas of potential further

investigation.

The next step in this research involves utilizing more flexible baseline hazard functions

like the piecewise exponential with optimal allocation for join point placements or cubic

B-splines as mentioned in Nathoo and Dean (2008) to add extra flexibility in the joint

frailty modelling framework. Another step would be to examine additional forms of the

frailty term, such as the multivariate form from Xi et al. (2020). Using a multivariate

form for the fire-specific random effects where the frailties follow a multivariate normal

distribution with a nonzero covariance allows the lifetime phases to be interrelated in a

different way than using the shared factor loading parameter. Additionally, the modelling

framework can be extended by splitting the fire lifetime into further phases. For instance,

the action phase is comprised of the dispatch (report to getaway), travel (getaway to

initial attack), and suppression (attack to under control) phases. By investigating the

fire lifetime at smaller intervals we will be able to better understand the relationships

that these phases have with one another and how previous phases affect subsequent ones.

The fire weather variables previously discussed in Section 3.3.2 that were considered
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as predictors in the modelling are the observed values on the day a fire was ignited. This

is a limitation of our analysis, especially for fires that lasted several days or more. We

can improve on the use of a single value for a variable that is determined by the changing

weather when modelling wildland fires over time. Incorporating time-varying predictors

into future models where the predictors are “reset” at the start of each phase addresses

this issue. However, rather than simply using the historical weather data, forecasts of

fire weather variables could also be used as predictors. A comparison of the prediction

results obtained from using actual and forecasted time-varying fire weather variables in

the models should be performed to investigate any changes of the variability in the model

estimates. For instance, future researchers should fit joint frailty models to training data

using the actual (observed) time-varying weather data and make predictions on testing

data. Then they should make predictions for the same models on the testing data using

the forecasted time-varying weather data instead of the actual data. The differences

in the predictions would be compared, since they are attributable to any error in the

weather predictions, while also accounting for any uncertainty in the predictions. A case

study of fewer, but meaningful, wildland fires for each model may be necessary since

both the daily and forecasted (1 day, 2 day, 4 day) weather data would be required for

every fire the dataset. Meaningful fires would be carefully chosen in collaboration with

the Forest Fire Science Specialist from the Ontario Ministry and future researchers must

ensure that the study has enough fires to make appropriate inferences.

This research may also be extended to consider the spatial context more explicitly.

Past research by Morin et al. (2019) fit frailty models for the control time of wildland

fires in the former Intensive Fire Management Zone in Ontario. Their objective was

to investigate spatial differences in their study area by utilizing Cox PH shared frailty

models with a Gaussian random effect to modify the hazard for fires within each spatial

partition. Ontario’s Sioux Lookout District can be spatially partitioned based on which

fire management zone (FMZ) fires are located in. Prior to 2004, the fire region was
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partitioned into three FMZs, receiving different levels of protection. Fires in the former

Intensive Fire Management Zone were suppressed as soon as resources were available

whereas fires in the former Extensive Fire Management Zone were monitored and most

were left to burn out so long as they did not threaten communities or other important

values. After 2004, the province of Ontario was divided into six FMZs (OMNR, 2004)

based on common management objectives, land use, fireload, and forest ecology. Each

zone had its own management objectives and fire response direction. The zones changed

again in 2014 when the Ministry moved to their framework of “appropriate response”

(OMNRF, 2014b). As a first step, our joint frailty models can be extended by also

incorporating a FMZ Gaussian spatial random effect with the understanding that the

spatial effect will be constrained to the FMZ partitions. Ultimately, fitting the joint frailty

models with a Gaussian random field using the Integrated Nested Laplace Approximation

(INLA) approach (Rue et al., 2009), computed with the R-INLA package (Lindgren and

Rue, 2015), would add more spatial flexibility. These spatial extensions require careful

consideration since the fire management strategy changed twice over the study period,

affecting the zones that partitioned the Sioux Lookout District.

The second component of this dissertation consisted of the development and effec-

tiveness of a training program for graduate teaching assistants in the mathematical and

statistical sciences. The workshop focussed on active learning techniques — techniques

that aid in the exchange of knowledge between students and instructors (or GTAs) —

along with their benefits, limitations, and examples that GTAs could draw on in a variety

of learning environments (e.g., tutorials, labs, office hours, etc.). We performed a survey

study where participants were asked to attend the workshop and participate in pre-post

survey questionnaires to assess the workshop and answer the research question: How

does participation in a discipline-specific teaching development program on

active learning for graduate teaching assistants in mathematics and statistics,

offered by their School of Mathematical and Statistical Sciences, impact their
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perceptions of teaching?

We found that the workshop helped participants define active learning, provided them

with knowledge of where to find resources on active learning strategies, and did not have

a negative impact on their perceptions of teaching as a graduate teaching assistant. In

future, we plan to refine the structure of the workshop, collaborate with a Department,

School, or Faculty to offer and promote the workshop, and perform the study again with

the aim of a higher participation rate. The long-term goal of this work is to create a

sustainable, high-quality GTA teaching-related workshop that can be integrated into the

GTA training and development programs offered at other mathematics and statistics

departments across Canadian universities.
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A.1 Converting Data from Wide Format to Long

Format

The data for both the human- and lightning-caused fires are converted from wide format

to long format. The first six rows of the long format dataset for the human-caused fires

are shown in Table A.1.

Table A.1: First six rows of long format dataset for human-caused Sioux Lookout fires.

id from to trans Tstart Tstop time status
1 1 2 1 0 0.574 0.574 1
1 2 3 2 0.574 0.625 0.051 1
2 1 2 1 0 0.049 0.049 1
2 2 3 2 0.049 0.132 0.083 1
3 1 2 1 0 0.042 0.042 1
3 2 3 2 0.042 0.056 0.014 1

The ‘id’ variable identifies the fire so the first two rows of data correspond to the

same fire. The ‘trans’ variable identifies which transition has occurred and the ‘from’

and ‘to’ variables identify the starting and ending states of that transition. ‘Tstart’ and

‘Tstop’ correspond to the starting and stopping time (in days) of the fire for each phase
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(i.e., clock-forward time) whereas ‘time’ indicates the overall time spent in each phase

(i.e., clock-reset time). The ‘status’ indicator variable represents whether an event was

observed (status = 1) or censored (status = 0). The predictors associated with each

phase were left out from the dataset. We see that all three of the fires were declared

under control in less than 24 hours but that it took a much longer time to detect the

first fire.

There are a total of 1,572 and 2,540 observations for the respective human- and

lightning-caused fires after converting the data to long format (i.e., the number of ob-

served fires multiplied by the two lifetime phases).
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A.2 Diagnostic Plots
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Figure A.1: Plot of the scaled Schoenfeld residuals for the road distance predictor from
the human-caused CR multi-state model against time in days, along with a smooth curve
of the residuals with 95% confidence bands.
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Figure A.2: Plot of the scaled Schoenfeld residuals for the mixedwood fuel predictor from
the human-caused CR multi-state model against time in days, along with a smooth curve
of the residuals with 95% confidence bands.
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Figure A.3: Plot of the scaled Schoenfeld residuals for the ground forces predictor from
the human-caused CR multi-state model against time in days, along with a smooth curve
of the residuals with 95% confidence bands.
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PH Test for CF Model
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Figure A.4: Plot of the scaled Schoenfeld residuals for the early ignition predictor from
the human-caused CF multi-state model against time in days, along with a smooth curve
of the residuals with 95% confidence bands.
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Figure A.5: Plot of the scaled Schoenfeld residuals for the road distance predictor from
the human-caused CF multi-state model against time in days, along with a smooth curve
of the residuals with 95% confidence bands.

PH Test for CF Model

Time (days)

S
am

e 
D

ay
 D

is
pa

tc
h 

R
es

id
ua

ls

0.0085 0.019 0.031 0.048 0.084 0.15 0.38 1.1

−
20

−
10

0
10

Figure A.6: Plot of the scaled Schoenfeld residuals for the same day dispatch predictor
from the human-caused CF multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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PH Test for CF Model
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Figure A.7: Plot of the scaled Schoenfeld residuals for the air tankers predictor from the
human-caused CF multi-state model against time in days, along with a smooth curve of
the residuals with 95% confidence bands.
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Figure A.8: Plot of the scaled Schoenfeld residuals for the FFMC (detection) predictor
from the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.9: Plot of the scaled Schoenfeld residuals for the DMC predictor from the
lightning-caused CR multi-state model against time in days, along with a smooth curve
of the residuals with 95% confidence bands.
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PH Test for CR Model
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Figure A.10: Plot of the scaled Schoenfeld residuals for the early ignition predictor from
the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.11: Plot of the scaled Schoenfeld residuals for the FFMC (action) predictor from
the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.12: Plot of the scaled Schoenfeld residuals for the mixedwood fuel predictor from
the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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PH Test for CR Model
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Figure A.13: Plot of the scaled Schoenfeld residuals for the early report predictor from
the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.14: Plot of the scaled Schoenfeld residuals for the same day detection predictor
from the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.15: Plot of the scaled Schoenfeld residuals for the FMH distance predictor from
the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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PH Test for CR Model
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Figure A.16: Plot of the scaled Schoenfeld residuals for the road distance predictor from
the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.17: Plot of the scaled Schoenfeld residuals for the ground forces predictor from
the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.18: Plot of the scaled Schoenfeld residuals for the air tankers predictor from
the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.19: Plot of the scaled Schoenfeld residuals for the successful IA predictor from
the lightning-caused CR multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.20: Plot of the scaled Schoenfeld residuals for the FFMC (detection) predictor
from the lightning-caused CF multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.21: Plot of the scaled Schoenfeld residuals for the DMC predictor from the
lightning-caused CF multi-state model against time in days, along with a smooth curve
of the residuals with 95% confidence bands.
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Figure A.22: Plot of the scaled Schoenfeld residuals for the early ignition predictor from
the lightning-caused CF multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.23: Plot of the scaled Schoenfeld residuals for the FFMC (action) predictor from
the lightning-caused CF multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.24: Plot of the scaled Schoenfeld residuals for the mixedwood fuel predictor
from the lightning-caused CF multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.25: Plot of the scaled Schoenfeld residuals for the early report predictor from
the lightning-caused CF multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.26: Plot of the scaled Schoenfeld residuals for the same day dispatch predictor
from the lightning-caused CF multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.27: Plot of the scaled Schoenfeld residuals for the ground forces predictor from
the lightning-caused CF multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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Figure A.28: Plot of the scaled Schoenfeld residuals for the air tankers predictor from the
lightning-caused CF multi-state model against time in days, along with a smooth curve
of the residuals with 95% confidence bands.
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Figure A.29: Plot of the scaled Schoenfeld residuals for the successful IA predictor from
the lightning-caused CF multi-state model against time in days, along with a smooth
curve of the residuals with 95% confidence bands.
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A.3 Estimated Transition Probability Plots
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Figure A.30: Plots of the Aalen-Johansen transition probability estimates for the human-
caused clock-forward multi-state model. The left plot shows the P̂1l(0, t) curves out of
the ignition state and the right plot shows the P̂2l(0, t) curves out of the report state.
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Figure A.31: Plots of specific Aalen-Johansen transition probabilities taken from Figure
A.30 with the 95% confidence bands.
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Figure A.32: Plots of the Aalen-Johansen transition probability estimates for the
lightning-caused clock-reset multi-state model. The left plot shows the P̂1l(0, t) curves
out of the ignition state and the right plot shows the P̂2l(0, t) curves out of the report
state.

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Tr
an

si
tio

n 
P

ro
ba

bi
lit

y

P(staying ignited without being detected)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Tr
an

si
tio

n 
P

ro
ba

bi
lit

y

P(detecting a fire and not actioning it)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Time (days)

Tr
an

si
tio

n 
P

ro
ba

bi
lit

y

P(action fire|detected fire)

Figure A.33: Plots of specific Aalen-Johansen transition probabilities taken from Figure
A.32 with the 95% confidence bands.
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Figure A.34: Plots of the Aalen-Johansen transition probability estimates for the
lightning-caused clock-forward multi-state model. The left plot shows the P̂1l(0, t) curves
out of the ignition state and the right plot shows the P̂2l(0, t) curves out of the report
state.
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Figure A.35: Plots of specific Aalen-Johansen transition probabilities taken from Figure
A.34 with the 95% confidence bands.
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B.1 Important Functions using the Weibull Baseline

Hazard

A parametric Weibull baseline hazard function has the form h0j(tij|H(t−ij)) = λjρjt
ρj−1
ij ,

where λj > 0 is the scale parameter and ρj > 0 is the shape parameter. The hazard

function is

hij(tij|H(t−ij)) = h0j(tij|H(t−ij))uij exp(x′ijβj)

= λjρjt
ρj−1
ij uij exp(x′ijβj).

The survival function is

Sij(tij|H(t−ij)) = exp
[
−
∫ tij

0
λjρjs

ρj−1
ij uij exp(x′ijβj)dsij

]
= exp

[
−λjρjuij exp(x′ijβj)

∫ tij

0
s
ρj−1
ij dsij

]
= exp

[
−λj��ρjuij exp(x′ijβj)×

t
ρj

ij

��
ρj

]

= exp
[
−λjt

ρj

ij uij exp(x′ijβj)
]
.
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Then the density function is

fij(tij|H(t−ij)) = hij(tij|H(t−ij))× Sij(tij|H(t−ij))

= λjρjt
ρj−1
ij uij exp(x′ijβj) exp

[
−λjt

ρj

ij uij exp(x′ijβj)
]
,

which results in Tij ∼Weibull
(
λjuij exp(x′ijβj), ρj

)
.
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B.2 Ranked Figures of ELPD Estimates
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Figure B.1: Ranked comparisons of ELPD point estimates and standard errors, using
the WAIC method, for human-caused wildland fires. The preferred model is highlighted
in red.

W, S

W, FL, Lognormal

W, FL, Gamma

PE, S

PE, FL, Lognormal

PE, FL, Gamma

PE, I, Lognormal

PE, FLI, Lognormal

W, FLI, Lognormal

W, I, Lognormal

PE, I, Gamma

PE, FLI, Gamma

W, I, Gamma

W, FLI, Gamma

800 900 1000 1100
Estimates

M
od

el
s

ELPD using PSIS−LOO Method

Figure B.2: Ranked comparisons of ELPD point estimates and standard errors, using the
PSIS-LOO method, for human-caused wildland fires. The preferred model is highlighted
in red.
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Figure B.3: Ranked comparisons of ELPD point estimates and standard errors, using the
WAIC method, for lightning-caused wildland fires. The preferred model is highlighted in
red.
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Figure B.4: Ranked comparisons of ELPD point estimates and standard errors, using
the PSIS-LOO method, for lightning-caused wildland fires. The preferred model is high-
lighted in red.
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B.3 Model Diagnostics for Lightning-Caused Fire Models

Table B.1: Summary of lightning-caused fires with k̂ ≥ 0.7. The average total duration length is the sum of the average
detection and action lengths, where the lengths are in days.

x
# of Fires Proportion of Fires Average Average Average

with k̂ ≥ 0.7 with k̂ ≥ 0.7 Detection Action Total Duration
for x Models for x Models Length Length Length

0 470 0.37 0.53 0.76 1.28
1 122 0.10 1.05 0.96 2.01
2 236 0.19 1.16 1.06 2.22
3 134 0.11 2.17 1.23 3.40
4 81 0.06 2.60 1.08 3.68
5 77 0.06 2.75 1.62 4.36
6 37 0.03 2.32 2.43 4.75
7 30 0.02 3.98 2.16 6.14
8 20 0.02 5.23 2.12 7.34
9 18 0.01 6.38 1.42 7.80
10 15 0.01 8.45 4.10 12.55
11 19 0.01 5.86 7.15 13.01
12 9 0.01 17.41 3.58 20.99
13 1 0 0.71 22.04 22.75
14 1 0 0.38 15.32 15.71
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Table B.2: Summary of lightning-caused fires with k̂ ≥ 0.7. These models were fit using 37% of the original data. The average
total duration length is the sum of the average detection and action lengths, where the lengths are in days.

y
# of Fires Proportion of Fires Average Average Average

with k̂ ≥ 0.7 with k̂ ≥ 0.7 Detection Action Total Duration
for y Models for y Models Length Length Length

0 366 0.78 0.37 0.49 0.86
1 46 0.10 0.94 0.81 1.75
2 28 0.06 1.15 3.09 4.24
3 24 0.05 1.34 1.09 2.43
4 3 0.01 1.08 0.52 1.60
5 1 0 0.25 1.02 1.27
6 2 0 0.65 11.42 12.06
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Figure B.5: Boxplot showing the spread of the log 10 transformed and stratified phase
lengths (days) of the associated fires against x from Table B.1.
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Figure B.6: Smooth lines using the locally estimated scatterplot smoothing (LOESS)
method to visualize the stratified average phase lengths (days) of the associated fires
against x from Table B.1. A histogram inset is provided to show the fire counts.
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Figure B.7: Boxplot showing the spread of the log 10 transformed and stratified phase
lengths (days) of the associated fires against y from Table B.2.
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Figure B.8: Smooth lines using the locally estimated scatterplot smoothing (LOESS)
method to visualize the stratified average phase lengths (days) of the associated fires
against y from Table B.2. A histogram inset is provided to show the fire counts.
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B.4 Simulation Study for Frailty Forms

B.4.1 FLI Form: Visualizations
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Figure B.9: Density plots of the WAIC estimate differences between the I and FLI forms
using the ’I, FLI, FL’ ranked models. The red dashed line represents the respective means
of the differences.



§B.4 Simulation Study for Frailty Forms 187

296 Draws

306 Draws

113 Draws

E
xtrem

ely W
eak Linkage

W
eak Linkage

M
oderate Linkage

−200 −150

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

0.00

0.01

0.02

0.03

WAIC Estimate Differences Between I and FL Forms

D
en

si
ty

'I, FLI, FL' Ranked Models

Figure B.10: Density plots of the WAIC estimate differences between the I and FL forms
using the ’I, FLI, FL’ ranked models. The red dashed line represents the respective means
of the differences.
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Figure B.11: Density plots of the LOOIC estimate differences between the FLI and I
forms using the ’FLI, I, FL’ ranked models. The red dashed line represents the respective
means of the differences.
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Figure B.12: Density plots of the LOOIC estimate differences between the FLI and FL
forms using the ’FLI, I, FL’ ranked models. The red dashed line represents the respective
means of the differences.
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Figure B.13: Density plots of the LOOIC estimate differences between the I and FLI
forms using the ’I, FLI, FL’ ranked models. The red dashed line represents the respective
means of the differences.
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Figure B.14: Density plots of the LOOIC estimate differences between the I and FL forms
using the ’I, FLI, FL’ ranked models. The red dashed line represents the respective means
of the differences.
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B.4.2 FL Form: Results

Table B.3: A comparison of the ranked model forms, stratified by the ranking methods and the different linkages.

Ranked Model Forms Draws
Best 2nd Best Worst Counts Percentages

WAIC Rank
Extremely Weak Linkage FLI I FL 1,000 100%
Moderate Linkage FLI I FL 848 85%

I FLI FL 152 15%
Strong Linkage I FLI FL 747 75%

FLI I FL 248 25%
FLI FL I 5 0%

PSIS-LOO Rank
Extremely Weak Linkage FLI I FL 1,000 100%
Moderate Linkage FLI I FL 764 76%

I FLI FL 236 24%
Strong Linkage I FLI FL 545 54%

FLI I FL 430 43%
FLI FL I 25 3%
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C.1 Poster

The following page contains the poster on our early wildland fire lifetime research pre-

sented at the Wildland Fire Canada 2019 conference in Ottawa in November 2019.
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Objective
Employ survival analysis methodology to determine 
whether the time from ignition to report has a 
statistically significant impact on the remaining life 
of a fire (up to under control)

Discussion
Models
• Both models confirm a relationship between the 

two stages
• Longer time spent in the ignition-report stage 

is associated with longer time spent in the 
report-under control stage

• Interesting: more ground forces and air tankers 
are associated with a longer fire lifetime in the 
suppression model

• Interesting: fires reported later in the season are 
associated with a shorter fire lifetime in the 
unsuccessful initial attack model

Example
• The shorter ignition-report stage curves (dashed 

black line) lie mostly to the bottom left of the 
longer stage curves (solid red line) in all cases
• Confirms the relationship stated above

• Person-caused fires come ‘under control’ sooner 
than lightning-caused ones

Introduction
• The lifetime of a wildland fire is made up of 

several key stages

• Morin et. al. (2015) modelled the control time of 
fires in Ontario using a single fire lifetime stage

• We focus on two important lifetime stages:
1. Ignition to first report
2. First report to under control

Characterizing the Lifetime Stages of Wildland Fires
Chelsea Uggenti1, Douglas G. Woolford1 and Charmaine B. Dean2

1University of Western Ontario; 2University of Waterloo

Results

Acknowledgments
Data & Study Area
• Sioux Lookout District
• Suppressed fires only
• 1989 to 2017

The authors gratefully acknowledge the Ontario Ministry of 
Natural Resources and Forestry for their data, the Natural 
Sciences and Engineering Research Council of Canada and 
Western University’s Centre for Environment and Sustainability 
for their support, and Colin McFayden for his helpful advice.

References
• Study area. Snazzy Maps. (2017). Ontario, Canada. Retrieved from 

https://snazzymaps.com/style/118022/water-institute
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(Vol. 362). John Wiley & Sons.
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(2015). The use of survival analysis methods to model the control 
time of forest fires in Ontario, Canada. International Journal of 
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Suppression Model
For all suppressed fires, the following 
variables are associated with a longer 
report to under control stage:
• Longer ignition-report duration
• Higher latitude
• Higher FFMC
• Larger size at initial attack
• More fires on the landscape
• More ground forces
• More air tankers

Future Work
Extend this exploratory data analysis to study the 
various stages of a wildland fire and how they are 
related in detail using more advanced modelling 
frameworks

Unsuccessful Initial Attack Model
For all suppressed fires that had 
unsuccessful initial attack, the 
following variables are associated with 
a longer report to under control stage:
• Longer ignition-report duration
• Larger size at initial attack
• More fires on the landscape

*Fires that were reported later in the 
season lead to a shorter fire lifetime.

Note: This model was stratified by three variables: 
cause (lightning/person), initial attack 
(successful/unsuccessful), and by the month of the 
first report date. This implies that the significant 
variables and effects from above were consistent 
across all models.

Note: This model was not stratified by cause 
(lightning/person) since there wasn’t a strong 
difference for these types of fires.

• The duration of these stages are dependent on 
many variables (e.g. cause; initial attack)

• Successful initial attack fires are
• being held within 2 days & ≤ 100ha, or
• ≤ 4ha with no limit on time to being held

Example: Two fire lifetime stages & their relationship
• The figure above shows the predicted probability curves of a fire’s survival.
• Our example uses predictor settings that are based on a scenario from a fire 

that occurred in 1991: 
• 50.1652° latitude (see map)
• 80 FFMC
• 2.1ha size at initial attack
• One other fire burning within the same district at the same time
• 12 ground forces
• 3 air tankers

Note: This fire was caused by lightning, had a successful initial attack, and occurred in May, 1991.
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Chapter 6 Supplementary Material

D.1 Workshop Outline

The following pages contain the outline for the workshop developed in February-April

2021 and used for the study.
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Active Learning in Math & Stats: Benefits, Limitations, and Practical 

Strategies for Implementing Active Learning Activities in 

Undergraduate University Mathematics and Statistics Courses 

Graduate Teaching Assistant (GTA) Training and Development Program 

 

Developed by: 

Chelsea Uggenti, Ph.D. Candidate in Statistics, The University of Western Ontario 

 

Summary 

Many graduate teaching assistants (GTAs) begin their roles with little or no prior teaching 

experience. Yet they play an important role in undergraduate student learning, including the 

assessment processes (from marking to facilitating small discussions and so on), and are often a 

first point of contact for undergraduate students. As students often see GTAs as less intimidating 

figures than their professors, GTAs have great potential to both engage and inspire the future 

scholars from their disciplines (Dimitrov et al., 2013). 

As noted by Gardner and Jones (2011) and references therein, both the responsibilities that 

science graduate teaching assistants undertake and the volume of science undergraduate courses 

being taught by them at research universities are increasing. Teaching training for statistics and 

mathematics GTAs is often limited, informal, or under-developed, and typically arises from 

reflection of the experience of being students themselves or “on the job” trial-and-error 

experiences (Gardner & Jones, 2011; Gelman, 2005). These issues are amplified when GTAs are 

asked to instruct introductory science, technology, engineering, and mathematics (STEM) 

courses since they may lack the pedagogical skills to effectively teach these courses (Crowe, 

2019). 

There are a variety of reasons why STEM GTAs are in need of such instructor training. Gelman 

(2005) notes that it may be hard for them to relate to the various types of learners in a course 

since graduate students are often top performers in similar environments. They are also inclined 

to use traditional lecture-style techniques because such approaches are familiar to them and they 

may have developed rigid, deeply held beliefs about teaching (Justice et al., 2017). Mathematics 

and statistics GTAs often resist employing active learning techniques or participatory activities 

in their tutorials or lectures due to anxieties that they won’t have time to cover what has been 

identified to them as the important material (Gelman, 2005). 

GTAs often feel overwhelmed with all the demands placed on them and their time leading to a 

feeling of self-preservation that is reflected in their list of priorities (Gardner & Jones, 2011). 

Teaching development is not placed as a top priority for most graduate students which causes 

them to develop their researcher identity at the expense of their instructor identity. Although 

knowing the content knowledge is important for effective teaching, it is problematic that neither 

the GTAs, nor many institutions and disciplines, prioritize pedagogical training as a requirement 

to take on GTA duties, including forms of instruction. Perhaps the most consistent support that 
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GTAs typically receive and utilize regarding their teaching comes from their peers and fellow 

GTA’s. 

The goal of this workshop is for GTAs in mathematics and statistics to gain a better 

understanding of active learning teaching methods. In active learning the teaching strives to 

involve students in the learning process more directly, rather than only utilizing the traditional 

lecture-style of teaching where students simply listen and take notes. 

These methods are strongly needed in university mathematics and statistics courses as they 

promote a higher-level understanding of course concepts and often motivate students’ interest 

(Garfield, 1993; Rosenthal, 1995). Active learning techniques have been proven to increase 

students’ course scores and overall satisfaction (Freeman et al., 2014). Although it is necessary 

to continue lecture-style teaching, especially for heavily theoretical material, some form of active 

learning techniques can greatly benefit students’ engagement of the material. Integrating active 

learning techniques in different environments can also be a useful way to gauge students’ 

learning outside of a formal assessment – its an ungraded way of identifying which concepts 

students are struggling with and the areas that require further review. 

Participants will gain necessary and vital knowledge of these methods from this workshop. By 

discussing tangible examples of these techniques applied to participants’ home disciplines in 

collaboration with their peers in such disciplines, along with the benefits and limitations, it will 

help GTAs to start thinking about different ways to implement these ideas in their own labs, 

tutorials, and/or courses. 

Keywords: active learning, graduate teaching assistants, mathematics, statistics  

Learning Outcomes 

By the end of this workshop, successful participants will be able to: 

• Describe the concept of active learning, including how it differs from traditional teaching 

approaches. 

• Explain the benefits and limitations of active learning activities used in undergraduate 

university mathematics and statistics courses. 

• Develop strategies for implementing active learning activities in different types of 

environments, such as small labs/classes, large labs/classes, and online. 

• Evaluate the effectiveness of active learning activities using classroom assessment 

techniques. 
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Annotated Bibliography (Chronological Order) 

Garfield, J. (1993). Teaching statistics using small-group cooperative learning. Journal of 

Statistics Education, 1(1), 1-9.  

 

This paper provides several definitions of cooperative learning and reasons why this type of 

active learning is important to implement in statistics courses. Cooperative learning helps to 

motivate students, reinforces their understanding of the material and results in a higher level of 

learning the material. Garfield discusses how to implement groups, provides examples of 

cooperative group activities in statistics courses and mentions how to evaluate student learning. 

Concerns about using small groups are addressed near the end. 

Angelo, T. A. (1995). Classroom assessment for critical thinking. Teaching of psychology, 22(1), 

6-7. 

Angelo outlines that higher-ordering thinking skills like analysis, problem solving, and 

evaluation are difficult, but not impossible, to teach. Students can develop these skills so long as 

they have continuous opportunities to practice them throughout the term. Classroom assessment 

techniques (CATs) can be used by instructors as formative assessments to evaluate what their 

students know, how much they know, and how well they are learning the material. Most CATs 

involve student reflection or explanation of their learning. Angelo highlights the Minute Paper, 

performed at the end of the class, as one of the simplest CATs. Students write short, anonymous 

answers to the following questions: “What is the most important thing you learned in today’s 

class? What is one question you have from today’s class?” 

Keeler, C. M., & Steinhorst, R. K. (1995). Using small groups to promote active learning in the 

introductory statistics course: A report from the field. Journal of Statistics Education, 3(2), 

1-9.  

 

This paper offers several reasons for implementing cooperative learning techniques in 

undergraduate statistics courses. They describe the entire set-up of their study and provide 

changes that were made during the second classroom trial. Their results suggest that cooperative 

learning increases student’s success rate of passing the course, increases their course marks and 

generally increases their satisfaction in the course. Most students were more engaged in the 

material but still wanted some traditional lectures to assist with their understanding of the 

conceptual material. 

Rosenthal, J. S. (1995). Active learning strategies in advanced mathematics classes. Studies in 

Higher Education, 20(2), 223-228. 

Rosenthal suggests several alternative teaching strategies that can be used to augment the typical 

lecture format of teaching within university mathematics courses. He begins by noting that small 

group exercises where students are assigned problem-solving exercises allow students to learn 

from each other and learn by teaching each other. Written assignments are also offered to 

encourage students to think more deeply about the content and to see the material in a larger 

context. Having these written assignments reviewed by at least two peers within the course also 
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strengthens their understanding of the content along with written communication skills. 

However, less formal writing assignments can also be utilized in mathematics courses by 

implementing approaches like the Minute Paper at the end of a lecture. 

Prins, S. C. B. (2009). Student-centred instruction in a theoretical statistics course. Journal of 

Statistics Education, 17(3), 1-12. 

Prins provides a practical example of how student-centred instruction can be utilized in a 

theoretical undergraduate statistics course. Students were randomly assigned one problem at the 

end of their teacher-centred lesson on Tuesday that they would have to present in class during the 

following Thursday’s class time. The questions assigned were standard rather than unusual 

applications of a concept – the unusual application questions were saved for take-home work. 

The instructor wrote down the solutions that students presented, annotated any possible errors, 

and uploaded the correct and complete solutions on the course website. Students found that this 

approach helped to create a supportive community and that it reinforced their learning of course 

concepts. 

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & 

Wenderoth, M. P. (2014). Active learning increases student performance is science, 

engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 

8410-8415. 

In the STEM classroom, should we ask or should we tell? Freeman et al. (2014) sought to answer 

this question by performing a quantitative data analysis to determine how constructivist (i.e., 

learner-centred) versus exposition-centred (i.e., instructor-centred) methods impact student 

performance in undergraduate STEM courses. They meta-analyzed 225 studies in the published 

and unpublished literature, that reported data on examination scores or failure rates when 

comparing student performance in these courses, under traditional lecturing versus active 

learning. The results showed that incorporating active learning in such courses increases student 

examination performance and that exclusively lecturing increases student failure rates by 55%. 

This suggests that the student-centred approach to teaching may lead to increases in student 

performance which strengthens the call to include more active learning in undergraduate STEM 

courses. 

Lang, J. M. (2016). Small teaching: Everyday lessons from the science of learning. John Wiley 

& Sons. San Francisco, USA. 

This book outlines small, yet powerful, changes that can be implemented in a single class for 

improving student learning. Each chapter presents a concept in cognitive theory, explains when 

and how it should be employed, and provides examples of how the intervention can be utilized in 

the classroom. It also offers short tips and tricks associated with each concept. For example, 

Lang notes that retrieving material from memory works well when using brief classroom 

interventions like setting weekly, low-stakes quizzes that help students cement their foundational 

course content or by ending the class with a short quiz on the material learnt from that day. 
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Braun, B., Bremser, P., Duval, A. M., Lockwood, E., & White, D. (2017). What does active 

learning mean for mathematicians? Notices of the American Mathematical Society, 62(2), 

124-129. 

This notice defines active learning and provides examples of active learning techniques and 

environments. They discuss classic examples like Think-Pair-Share, classroom response systems 

(or iClickers), and flipped classes, along with discipline-specific examples like inquiry-based 

learning (IBL). IBL is a common active learning technique in mathematics since class time is 

spent with students working individually or in groups on problems and providing solutions or 

proofs to the class. They outline several things to expect when incorporating active learning 

techniques and addresses many concerns that mathematics instructors may have when thinking 

about utilizing active learning in their courses. 

Kerrigan, J. (2018). Active learning strategies for the mathematics classroom. College 

Teaching, 66(1), 35-36. 

This paper provides three “quick fixes” for making undergraduate mathematics courses more 

active and engaging. It notes that one way of creating a welcoming learning environment is to 

develop the course syllabus in conjunction with the students; that way, students have an 

opportunity to discuss their goals, concerns, and any supports they will need and instructor’s 

have the chance to share their expectations for the students, assessment methods, and so on. 

Kerrigan suggests using gallery walks or class polling to elicit prior knowledge as part of a pre-

assessment review of concepts. It is also suggested that online games (like Kahoot! or Quizizz) is 

an efficient method for formative assessment and reviewing material prior to a midterm or exam. 
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Content and Organizational Table 

Note: All active learning activities used within this workshop are in italics.  

Duration 

(mins) 

Subject Activity Purpose 

5 Motivating 

Activity 

(Dotmocracy) 

Part A: Write statements about various thoughts on 

active learning (see Appendix A) on chart paper and 

place them around the room. Provide participants with a 

set number of dot stickers and ask them to walk around 

the room, thinking about each of the statements and 

putting one or more dots on the statements they most 

strongly agree with (more notes = more significance). 

 

Part B: Discuss the results of the activity with the entire 

group by visually assessing the number of dot stickers 

under each statement. 

Motivate participants’ interest in the 

workshop and provide a “bridge-in” for the 

rest of the workshop content. 

 

Gauge participants’ initial beliefs on active 

learning in mathematics and statistics 

courses. 

 

Acts as an “icebreaker” activity by 

strengthening bonds between participants 

(some may be new graduate students) and 

reducing any tension. 

35 Introduction & 

Learning 

Outcomes 

(Quescussion; 

Think-Pair-

Share) 

Provide a brief overview of the need for active learning 

activities in undergraduate university mathematics and 

statistics courses. 

 

Present the learning outcomes for the workshop along 

with the definition, benefits, and limitations of active 

learning activities in a PowerPoint presentation. Also, 

present methods for evaluating active learning activities 

using Classroom Assessment Techniques (CATs). 

 

The presentation will provide concrete examples of 

active learning activities that GTAs can incorporate into 

tutorials, labs, office hours, or help desk hours for math 

and stats courses (Quescussion for extrapolation of 

runners’ times example; Think-Pair-Share for incorrect 

proof examples). 

Share the learning outcomes to clarify what 

participants will get out of the workshop. 

 

Explain the foundations of active learning 

activities (with cited examples). 

 

Stimulate interest in these techniques by 

focusing on the benefits of active learning 

activities for the students and the 

instructors/GTAs. 

 

Examine the limitations that arise when 

implementing active learning activities in 

math and stats courses and discuss scenarios 

where these limitations may be mitigated or 

must be accepted. 
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Encourage participants to put themselves in 

students’ shoes and explore how active 

learning activities can be used effectively to 

explain difficult concepts in math and stats 

by having them participate in two activities. 

52 Participatory 

Learning (Café 

Conversation) 

Participants will be placed into three, six, or nine groups 

depending on numbers. Each group will represent a 

different learning environment that GTA’s may 

encounter (e.g., lab/tutorial, office hour/help desk, and 

an online class) for a fictional undergraduate math or 

stats course. 

 

Part A: Give participants a few minutes to reflect on any 

active learning techniques they have previously seen or 

experienced in courses or even in this workshop. (Time: 

1-2 mins) 

 

Part B: Each group writes down any examples of active 

learning activities, and brief explanations of them, that 

they think would be helpful to incorporate in their 

specific learning environment (i.e., lab/tutorial, office 

hour/help desk, or an online class). (Time: 10 mins) 

 

*Groups are asked to move tables clockwise. (Time: 30 

secs) 

 

Part C: Each group writes down any benefits and 

limitations for the active learning examples stated within 

that learning environment. (Time: 10 mins) 

 

*Groups are asked to move tables clockwise. (Time: 30 

secs) 

Use small groups to foster collaboration and 

community in the workshop. 

 

Assess participants’ prior knowledge and 

experience of active learning activities 

within undergraduate math and stats 

courses. 

 

Entice participants to (partially) set aside the 

traditional practice of lecturing and to 

develop concrete active learning activities 

that could be utilized in a variety of learning 

environments. 

 

Critique the active learning activities that 

their peers suggested in a constructive 

manner to develop approaches for 

overcoming any limitations. 

 

Distinguish between activities that are 

believed to be helpful when learning 

math/stats and those that are not. Analyze 

any differences or patterns between these 

activities and discuss their shortcomings in 

the learning process. 

 

Assess participants’ learning and provide 

constructive feedback on their suggestions. 
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Part D: Each group writes down ideas of how they could 

possibly overcome those limitations and how they will 

evaluate the active learning activities within their 

learning environment. (Time: 10 mins) 

 

*Groups are asked to move tables clockwise. (Time: 30 

secs) 

 

Part E: Have each group return to their initial learning 

environment to read and discuss all the comments and 

ideas that their peers provided. (Time: 5 mins) 

 

Part F: Debrief the activity with the entire group. Have 

each group nominate one person to give a summary of 

the examples, benefits, limitations, strategies for 

overcoming limitations, and assessment methods for 

implementing active learning activities in their specific 

learning environment. (Time: 15 mins) 

Debrief the activity as an entire group to 

highlight the range of possible active 

learning activities that can be applied to 

various environments. 

5 Post-

Assessment 

(1-Minute 

Paper) 

Provide participants with two questions for brief 

reflection: 

1. What was the most useful or meaningful thing 

you learned from this workshop? 

2. How do you think you will use what we learned 

today moving forward? 

Emphasize that responses should be concise. Have each 

participant record and anonymously submit their 

answers. 

Assess participants’ learning and 

understanding of the workshop contents. 

Determine if there are any gaps in their 

understanding that needs to be addressed. 

5 Summary Distribute final handout (see Appendix E). Summarize 

the main points of the workshop and any “take away” 

ideas. 

Meta-moment: Draw attention to the various active 

learning activities used throughout this workshop. 

Direct participants towards available 

resources. Encourage them to incorporate 

the ideas presented in this workshop into 

their current or future TA-ships and 

teaching. 

Total Time: 1 hour, 42 minutes 
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Presentation Strategies 

Teaching development workshops have several benefits for GTAs and for the undergraduate 

students that they interact with. Fostering the growth of the teaching ability of GTAs can also 

enhance their abilities to communicate their research and help them become better researchers in 

general since many of the communication and other skills they develop are transferrable. 

Therefore, training programs on effective teaching and pedagogy add to the overall professional 

development of graduate students and should boost their credibility as a researcher. 

Teaching workshops can also serve as a gateway to further teaching development since they 

often help participants understand the benefits that can be gained from them. For instance, 

workshops geared towards new GTAs frequently introduce skills that may be strengthened if 

they continue in teaching development throughout their careers. It provides them with an 

opportunity for career development and can be included in their CV as a professional activity. 

Throughout the course of the workshop, it is important to draw attention to the many “meta-

moments” of active learning techniques. The facilitator should pause after each activity and 

remark on what the facilitator and participants are doing and why. For example, the facilitator 

can mention that the dotmocracy activity requires some preparation (e.g., questions to ask, 

supplies required, etc.) and little time versus the Think-Pair-Share activity that requires almost 

no preparation and minimal time. During the meta-moments, the facilitator also needs to discuss 

how one might adapt certain activities to work online. For example, a Think-Pair-Share activity 

in an online environment could be done by sending students into breakout rooms for the “Pair” 

component. 

This workshop is designed to take place in a classroom equipped with a data projector. Ideally, 

participants should be seated at tables around the room to facilitate group work for the Café 

Conversation activity. We suggest holding this workshop in an interactive classroom like the 

Western Active Learning Spaces (WALS); see https://www.uwo.ca/wals/ for more details. 

Materials needed for this workshop include chart paper, coloured markers, coloured pens, dot 

stickers, cue cards, and paper handouts. 

Activity 1: Motivating interest (Dotmocracy) 

This activity acts as a bridge in for the rest of the workshop. It allows the instructor to build 

motivation for the workshop content, gain the attention of the participants, and helps to establish 

the relevance of the workshop. As discussed above, there are many common concerns about 

active learning activities including the historical dominance of the lecture format, being unable to 

cover the same amount of material, and whether it is even necessary (many mathematicians and 

statisticians have not personally experienced undergraduate teaching environments that include 

active learning components). 

Make sure to hand out dot stickers to participants (4/person) in advance of the activity. The 

statements with the most dots “win” and have more significance for this group of individuals. 

During the debrief of the activity, be sure to respond to the outcome of each statement and 

respond with “if, then” comments. For example, suppose that the statement “I’ve never tried 
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active learning before and I’m very skeptical” has the most dots under it. The workshop 

facilitator may respond to this result by saying: “If you have never tried active learning before 

and skeptical about the whole thing, then you are certainly not alone! Clearly, many people feel 

the same way as you do. The purpose of this workshop is to introduce you to different active 

learning activities that you can easily add to your courses or labs/tutorials and they are all backed 

up by research!”. 

Be warned that the Dotmocracy activity may be broken. This type of voting is not reliable 

because of the bandwagon effect and how easy it is to mess up or cheat. Although it is quick and 

fun, don’t fully trust the results you encounter. 

Activities 2 & 3: Introduction & Learning Outcomes (Think-Pair-Share; Quescussion) 

In this section of the workshop we present the three learning outcomes and introduce the 

definition, benefits, and limitations of active learning activities. We will also present methods for 

evaluating active learning, mainly using Classroom Assessment Techniques (CATs). Examples 

of simple, common CATs will be provided. As these ideas may be new to participants, it is 

important to give clear definitions and examples. 

The presentation will end with two concrete examples of active learning activities that can used 

by GTAs in undergraduate mathematics or statistics courses. 

Quescussion Example 

A figure of the world record times in the mile run for men from 1900 to 1950 will be shown (see 

Appendix B1, Figure 1). Explain that you will discuss how well a straight line fits the data 

through questions only (i.e., participants may only respond or add to the discussion in the form 

of more questions). Share the three rules of the activity:  

1. Only questions are allowed. 

2. If someone makes a statement everyone yells “statement!” 

3. Two other people must speak before a participant can speak again.  

The facilitator starts the Quescussion by asking the questions: “Does fitting the data with a 

straight line give a reasonable prediction for the year 2100? What about the year 2000?”. 

Afterward, reveal the right half of the curve (see Figures 2 and 3 in Appendix B1). Discuss how 

the linear extrapolation works relatively well all the way to the year 2000, but that you wouldn’t 

expect this to work out to the year 2050 and beyond. 

Debrief the activity by noting that further discussion can focus on one or two of the key 

questions raised in greater depth. Also relay to participants that this activity works well with 

dense or difficult material since one has to ask genuine questions about what is going on. It also 

provides a less intimidating, low-stakes environment where people can make mistakes since you 

are asking them to generate a variety of thoughts about the topic without having them directly 

state their views or solve the problem. 
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Think-Pair-Share Example  

Hand out papers containing incorrect proofs/examples (see Appendix B2) to participants; each 

participant should receive one paper. Ask participants to independently annotate on the paper 

where there are errors in the proof or example using a different coloured pen. Then have each 

participant pair up with someone around them to discuss their ideas or answers for each of their 

handouts. Bring everyone together to discuss the answers.  

Debrief the activity by noting that annotating students’ work in this way (during office hours or 

help desk hours, for example) can show them, in real time, how a correct or incorrect solution 

would still lose marks due to a lack of completeness. 

Activity 4: Participatory Learning (Café Conversation) 

During this section of the workshops, participants have an opportunity to be actively involved in 

achieving all three of the learning outcomes. It will help them improve their understanding of 

active learning and deepen their knowledge of which activities are applicable for various 

learning environments. 

The Café Conversation is a cooperative group activity in which participants are interdependent to 

achieve a common goal. In each phase of the activity, participants are provided with a prompt 

and asked to assess it for a different learning environment. By the end, each person will have had 

an opportunity to think about active learning in a different environment. The success of every 

group depends on each individual and therefore emphasizes engagement from individual 

participants. 

It is important that the facilitator explains the concept of the café activity at the start and how 

participants will move around the room (see Appendix C). Also give participants 1-2 minutes 

before the activity to reflect on any active learning techniques they have seen or experienced in 

their previous undergraduate or graduate courses. You may pose the following questions:  

• What techniques did you like as a student? 

• How did those techniques effect your learning or understanding of the course material? 

• Were there any techniques that you did not like? Why? 

During the activity the facilitator will be required to keep track of time and give participants 

warnings of when that round is ending (e.g., one-minute left warning). The facilitator is also 

expected to walk around the room observing and listening to the different groups – they may 

pose leading questions or insightful statements to help any groups that are finding the task 

difficult. An example of a completed chart for a tutorial or lab is provided in Appendix D. 

Activity 7: Post-Assessment (1-Minute Paper) 

This activity gives the facilitator an opportunity to find out what the participants have learned 

and if there are any gaps in their understanding of the workshop material. Ending the workshop 

with this short writing activity is a powerful way to assess the degree to which the participants 

understood the presented material and provides them with an opportunity to reflect on how they 

will incorporate the material in their future courses or labs/tutorials. 
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Appendix A 

Dotmocracy Activity 

The following statements on active learning will be used for the activity:  

• “I’ve never tried active learning before and I’m very skeptical.” 

• “I don’t think active learning is needed in math/stats courses.” 

• “Active learning activities make it easier for me to learn math/stats content.” 

•  “I’ve taken an undergraduate math/stats course that included active learning.” 

 

The four pieces of chart paper with each statement will be placed on the walls around the room. 

An example of how the chart papers will be filled out by the end of the activity is shown below. 
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Appendix B1 

Quescussion Activity  

 

 

Figure 1: First plot to show to participants. Get them to discuss whether a straight “line-of-best-

fit” works for year 2100 (or year 2000). 

 

 

Figure 2: Second plot to show to participants of the entire dataset from 1900-2000. 
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Figure 3: Final plot to show to participants. How does this “line-of-best-fit” compare to what was 

discussed during the activity? 
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Appendix B2 

Think-Pair-Share Activity 

Pages 17-20 show the four examples that will be used in this activity. The proofs used in the 

examples were taken from the following courses: 

1. Calculus I 

2. Calculus II 

3. Introduction to Probability 

4. Regression 
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Example 1:
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Example 2: 
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Example 3: 
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Example 4: 
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Appendix C 

Café Conversation Activity - Instructions 

Participants will move around the room in a clockwise manner (shown below). Each table will 

represent a different learning environment. Therefore, as the activity progresses, each group will 

have the opportunity to interact with all three environments. The number of groups required for 

the activity (i.e., three, six, or nine) and the number of participants within each group will depend 

on the number of participants in attendance. 

 

The schedule for the activity is:  

☐ Reflect: Active learning activities that participants have seen/experienced (1-2 mins) 

☐ Write: Examples of active learning activities with brief explanations (10 mins) 

☐ Move tables 

☐ Write: Benefits and limitations of active learning activities (10 mins) 

☐ Move tables 

☐ Write: How you will overcome any limitations and evaluate active learning activities (10 

mins) 

☐ Move tables 

☐ Read and discuss all comments at your table (5 mins) 

☐ Debrief activity (15 mins) 
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Appendix D 

Café Conversation Activity - Example 

The following image shows an example of a completed chart for the Café Conversation activity. Two active learning activities are 

provided along with an analysis of how they could be used in a tutorial or lab for math/stats courses. 
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Appendix E 

Workshop Takeaway Handout 

Active Learning in Math & Stats 

C. Uggenti, Department of Statistical and Actuarial Sciences, Western University, 2021 

 

What is Active Learning? 

 

Benefits: 

 

Limitations: 
 

 

 

 

Helpful Websites: 

• https://www.queensu.ca/teachingandlearning/modules/active/index.html 

• https://teaching.uwo.ca/teaching/learning/active-learning.html 

• https://cft.vanderbilt.edu/guides-sub-pages/cats/ 

• https://www.mghihp.edu/faculty-staff-faculty-compass-teaching-teaching-

strategies/examples-classroom-assessment-techniques 
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D.2 Pre-Workshop Survey Questionnaire

The following pages contain the questionnaire that study participants completed before

the workshop. It consists of demographic questions and workshop-related questions in

mixed format (i.e., multiple-choice questions and short answer questions).



GTA Study in SMSS – Pre-Workshop Survey Questionnaire 

Section 1: Demographic Questions 

Please answer the following questions about yourself. 

1. What is your degree program? 

a. Actuarial Science 

b. Applied Mathematics 

c. Financial Modelling  

d. Mathematics 

e. Statistics 

2. What is your program? 

a. Master’s 

b. Ph.D. 

3. Based on the previous question, what year of study are you in? 

a. Year 1 

b. Year 2 

c. Year 3 

d. Year 4 

e. Year 5+ 

4. What is your current residency status? 

a. Domestic/Permanent Resident (i.e., Canadian or a permanent resident of Canada) 

b. International 

5. To which gender identity do you most identify with? 

a. Male 

b. Female 

c. I self-identify as: (with text box) 

d. Prefer not to say 

6. What is your age? 

a. 19 years old or younger  

b. 20-24 years old 

c. 25-29 years old 

d. 30-34 years old 

e. 35 years or older 

f. Prefer not to say 
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7. Is English your first language? 

a. Yes 

b. No 

8. How much experience do you have working as a Graduate Teaching Assistant (GTA)? Here, 

an academic term is considered four (4) months. 

a. 0 academic terms (no experience) 

b. 1-2 academic terms 

c. 3-4 academic terms 

d. 5+ academic terms 

9. Please indicate whether you have had any of the following experiences with different types of 

professional development activities related to teaching. 

 Yes No 

Conference   

Short workshops (1-5 hours) 

e.g., Future Prof Series 

  

Medium workshops (1-2 days) 

e.g., TA Day 

  

Long workshops (3-10 days) 

e.g., TA Training Program,  

Advanced Teaching Program 

  

Summer or semester-long course 

e.g., SGPS 9500 course 

  

Other (please specify below)   

 

10. Other (from Question 9 above, if applicable) 

 

Section 2: Workshop-Related Questions 

11. Fill in the blank: As a GTA, I have ________ considered using active learning strategies in 

labs, tutorials, and/or office hours. 

a. Always 

b. Often 

c. Sometimes 

d. Rarely 

e. Never 

f. Not Applicable 
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12. Fill in the blank: I am ________ with active learning strategies used in my discipline. 

a. Extremely familiar 

b. Very familiar 

c. Moderately familiar 

d. Slightly familiar 

e. Not at all familiar 

13. If you did not answer “Not familiar at all” for the previous question, please answer the 

following: 

i. What do you know about active learning strategies? 

 

 

ii. What would limit you from using active learning strategies in your role as a GTA? 

14. Fill in the blank: I feel ________ about my GTA roles and duties. 

a. Very excited 

b. Moderately excited 

c. Indifferent 

d. Moderately nervous 

e. Very nervous 

15. As a GTA, I feel comfortable incorporating active learning strategies in labs, tutorials, and/or 

office hours. 

a. Yes 

b. No 

c. Not Applicable 

16. If you responded “Yes” to the previous question, what is an example of an active learning 

strategy you would use? If you responded “No”, please explain why you are not comfortable 

incorporating these strategies. 

17. Fill in the blank: I am ________ in learning more about active learning strategies that I can 

use as a GTA in my discipline. 

a. Very interested 

b. Somewhat interested 

c. Neither interested nor uninterested 

d. Somewhat uninterested 

e. Very uninterested 
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18. Fill in the blank: In my discipline, it is ________ to use active learning strategies in 

undergraduate courses. 

a. Very important 

b. Somewhat important 

c. Neither important nor unimportant 

d. Of low importance 

e. Not important at all 

19. I know where to find resources on active learning strategies that can be used in my discipline. 

a. Strongly agree 

b. Agree 

c. Neither agree nor disagree 

d. Disagree 

e. Strongly disagree 

 

Section 3: Final Comments 

20. Please add any other comments you have below. 
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D.3 Post-Workshop Survey Questionnaire

The following pages contain the questionnaire that study participants completed after the

workshop. It consists of workshop-related questions in mixed format (i.e., multiple-choice

questions and short answer questions).



GTA Study in SMSS – Post-Workshop Survey Questionnaire 

Section 1: Workshop-Related Questions 

1. Fill in the blank: As a Graduate Teaching Assistant (GTA), I have ________ considered using 

active learning strategies in labs, tutorials, and/or office hours. 

a. Always 

b. Often 

c. Sometimes 

d. Rarely 

e. Never 

f. Not Applicable 

2. Fill in the blank: I am ________ with active learning strategies used in my discipline. 

a. Extremely familiar 

b. Very familiar 

c. Moderately familiar 

d. Slightly familiar 

e. Not at all familiar 

3. If you did not answer “Not familiar at all” for the previous question, please answer the 

following: 

i. What do you know about active learning strategies? 

 

 

ii. What would limit you from using active learning strategies in your role as a GTA? 

4. Fill in the blank: I feel ________ about my GTA roles and duties. 

a. Very excited 

b. Moderately excited 

c. Indifferent 

d. Moderately nervous 

e. Very nervous 

5. As a GTA, I feel comfortable incorporating active learning strategies in labs, tutorials, and/or 

office hours. 

a. Yes 

b. No 

c. Not Applicable 

6. If you responded “Yes” to the previous question, what is an example of an active learning 

strategy you would use? If you responded “No”, please explain why you are not comfortable 

incorporating these strategies. 
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7. Fill in the blank: I am ________ in learning more about active learning strategies that I can 

use as a GTA in my discipline. 

a. Very interested 

b. Somewhat interested 

c. Neither interested nor uninterested 

d. Somewhat uninterested 

e. Very uninterested 

8. Fill in the blank: In my discipline, it is ________ to use active learning strategies in 

undergraduate courses. 

a. Very important 

b. Somewhat important 

c. Neither important nor unimportant 

d. Of low importance 

e. Not important at all 

9. I know where to find resources on active learning strategies that can be used in my discipline. 

a. Strongly agree 

b. Agree 

c. Neither agree nor disagree 

d. Disagree 

e. Strongly disagree 

10. Fill in the blank: After completing this workshop, I feel __________ about completing my 

GTA assignment. 

a. More excited 

b. About the same 

c. Less excited 

11. Fill in the blank: This workshop has had a __________ impact on my perception of teaching 

as a GTA in my discipline. 

a. Very positive 

b. Positive 

c. Neither positive nor negative 

d. Negative 

e. Very negative 

 

Section 2: Final Comments 

12. Please add any other comments you have about the workshop, active learning strategies, or 

your experience as a GTA in the space below. 
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