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ABSTRACT

The recent fabrication of arrays of magnetic nanowires, nanotubes and nanor-

ings, along with studies by Brillouin light scattering and magnetic resonance, have

motivated us to present the theory of spinwaves in ferromagnetic and antiferro-

magnetic cylindrical multilayer systems. The calculations are applied to situations

where the external magnetic field is parallel to the cylindrical axis and the structures

have a large length-to-diameter aspect ratio. A macroscopic continuum theory is

developed for the bulk and surface SW properties for various regimes of wavevectors.

First, a theory is given for magnetostatic modes, where the dipole-dipole inter-

actions dominate over the exchange interactions in the SW dynamics. This situation

can be realized at sufficiently small wavevectors by inelastic light scattering or mag-

netic resonance techniques. The magnetostatic form of Maxwell’s equations and

electromagnetic boundary conditions are used to derive the SW dispersion rela-

tions in nanotubes. A transfer matrix formalism is subsequently used to generalize

these calculations to cylindrical multilayers consisting of a core surrounded by any

arbitrary number of concentric tubular layers. Each layer may be ferromagnetic,

antiferromagnetic or a nonmagnetic spacer. Attention is given to the localized in-

terface modes, which are shown to be strongly modified due to the curved interfaces,

compared to the behavior found in planar geometries. Specific investigations of in-

terface effects on the dipolar modes are carried out for bilayer cylindrical systems

where ferromagnetic and antiferromagnetic materials are formed in direct contact.

Next, the theory in magnetic cylindrical tubes is extended to the magnetic

polaritons that arise at smaller wavevectors from the coupling between electromag-

netic waves and the dipolar SW excitations. This involves solving for the dynamical

response using the full form of Maxwell’s equations with retardation effects now

included. Results for the limiting (single-interface) special cases of wires and anti-
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wires are also deduced. Another extension of the theory is to the dipole-exchange

SW in magnetic nanotubes. This is applicable at larger wavevectors, where the long

range dipole-dipole interactions and the short range exchange interactions are both

important in the magnetization dynamics. These calculations describe the radial

and angular quantization of the different modes in cylindrical geometries and can

be compared to Brillouin light scattering experiments.

A formalism is also developed for the magnetic linear response functions (or

Green’s functions) in magnetic nanotubes, taking the wavevector regime of the mag-

netostatic modes as an example. This enables us to calculate the spectral intensities

of the surface and bulk magnetostatic SW modes, and it is also useful for interpret-

ing Brillouin light scattering data. Numerical applications are presented throughout

for ferromagnets, such as Ni, Permalloy, and EuS, and for antiferromagnets, such as

GdAlO3 and MnF2.

Keywords: Spin waves, magnetostatic modes, polaritons, dipole-exchange modes,

ferromagnets, antiferromagnets, nanotubes, nanowires, cylindrical geometries, mul-

tilayer systems, linear response functions, Green’s functions.
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CHAPTER 1

Introduction

1.1 Overview of magnetism

During the last two or three decades nanomagnetism has emerged as a

field of outstanding scientific advances due to novel physical properties distinct those

of bulk magnetic materials. Understanding the static and dynamic properties of

nanomagnetic structures, together with the interpretation of experimental data and

the desire to fabricate magnetic nanostructures in a controlled manner, have created

the need for reliable and predictive theoretical models [1].

Following the early discovery of magnetite (Fe3O4) in the ancient age, the most

striking advances in magnetism were made in the 18th and 19th centuries, namely

establishing the connection between electricity and magnetism. In 1873 Maxwell

formulated the mathematical relationships between electricity and magnetism on the

basis of earlier ideas by Gauss, Ampère and Faraday. These relationships (Maxwell’s

equations) formed the backbone of electromagnetism [2] and were consistent with

the dipolar character of magnetostatic forces and interactions. By the mid 19th

century, the connection between macroscopic and microscopic magnetism was being

developed, culminating eventually in the milestone advances due to quantum physics

[3]. Later, there have been extensive technological applications of magnetic thin films

made in sensor and storage industries [4].

In the last few years magnetic multilayered nanostructures have been receiv-

ing considerable attention due to their interface and surface effects. This opened

the way for the discovery of new phenomena such as the giant magnetoresistance

(GMR) of magnetic multilayers in 1988, for which Fert and Grünberg were awarded

the 2007 Nobel Prize in Physics. The GMR effect is used in various devices, which
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include the read heads of the hard disc drives (HDD) of our computers (increasing

the storage density by a factor of > 100), spin filtering, sensing, spin logic devices

[1, 5]. Modern spintronics demands high density storage media with smaller, faster,

cheaper and lower power consumption than the existing ones. It is known that ther-

mal effects limit further reduction of magnetic devices in ultra-high-density magnetic

recording [6]. However, the discovery by Meiklejohn and Bean [7] about 50 years

ago of ‘exchange anisotropy’ in coupled ferromagnetic / antiferromagnetic bilayer

films has now been utilized to extend the applicability of magnetic nanostructures

further in HDD [8]. There are also various other potential applications, e.g., the

microwave-signal-processing devices described in [9] and the recent fabrication of

one-dimensional magnonic crystals in [10, 11].

Magnetic materials are usually classified as diamagnetic, paramagnetic, ferro-

magnetic (F), antiferromagnetic (AF), or ferrimagnetic. In diamagnetic materials,

the constituent atoms or molecules have no permanent magnetic moment, but in an

external magnetic field there is a weak negative magnetic susceptibility [12]. The

other materials where the atoms have permanent magnetic moments are represented

schematically in Fig. 1.1. In paramagnetic materials the magnetic moments have

negligible coupling to each other, and so in the absence of an applied field there

is a random arrangement of magnetic moments. An applied field leads to a weak

positive magnetic susceptibility. When interactions between different magnetic mo-

ments are significant, a much stronger effect is observed. In the case of a F material

the atomic magnetic moments interact with each other to favour a parallel align-

ment. In AF materials the interaction between neighbouring atoms produces an

anti-parallel alignment of the atomic magnetic moments. In ferrimagnetic materi-

als the atomic magnetic moments are also coupled with anti-parallel alignment but

they are unequal in magnitude. The magnetic ordering breaks down at a critical

temperature, above which the materials show a paramagnetic behaviour [12, 13].
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Figure 1.1: Schematic diagram of the alignment of magnetic moments in (a) para-
magnetic materials, (b) F materials, (c) AF materials, and (d) ferrimag-
netic materials.

1.2 Magnetic interactions

In strong magnetic materials the interactions between the atomic mag-

netic moments depend on their separation and relative orientation. One of the most

basic interactions is the magnetic dipole-dipole interaction, which comes from the

fact that each magnetic dipole will produce a magnetic field around it. A second

dipole will acquire a potential energy if it is placed within the magnetic field of

the first dipole [2, 14]. In an array the total dipolar interaction energy is obtained

by summing over all pairs of magnetic sites, and hence the magnetic Hamiltonian

resulting from the dipole-dipole interaction is (in SI units) [15]

Hdip =
μ0

4π

∑
<i,j>

(�mi · �mj)r
2
ij − 3(�mi · �rij)(�mj · �rij)

r5ij
, (1.1)

where �rij is the vector joining sites i and j, μ0 is the permeability of free space,

and the summation is over all distinct pairs of sites. The dipole-dipole interactions
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are long range in nature, varying with distance like (rij)
−3. In a continuum model

the dipolar fields can also be calculated directly from the magnetostatic form of

Maxwell’s equations. Although the dipole-dipole interaction can play an important

role in the dynamical properties of magnetic materials, they are relatively weak.

The magnetic order must be produced by another, much stronger interaction

(typically of the order of few eV). This is the quantum-mechanical exchange [16],

proposed by Heisenberg. It can be explained in terms of the electrons obeying

Fermi-Dirac statistics and thus having a total wave function (with its spatial and

spin parts) that must be antisymmetric under interchange of any two electrons. An

interaction arises provided there is overlap of the individual electronic wavefunctions.

The effective Hamiltonian between a pair of electrons 1 and 2 is expressible as

− 1

(gμB)2
J(r)�m1 · �m2, (1.2)

where �m1 and �m2 are the magnetic moments for the two electrons, g is the Landé

g-factor, μB is the Bohr magneton, and J(r) is called the exchange energy. Parallel

alignment of magnetic moments will be favoured if J is positive and antiparal-

lel alignment if J is negative. Generalizing the above expression, the Heisenberg

Hamiltonian for ordered magnetic materials is

Hex = − 1

(gμB)2

∑
<i,j>

Jij �mi · �mj . (1.3)

The exchange energy falls off rapidly with increasing distance rij between the sites. It

is a short range interaction, often involving only the nearest neighbour interactions.

However, it can explain many static properties (such as the magnetization and the

critical temperature) of magnetic materials [16, 17].

In a macroscopic continuum model the exchange energy corresponding to the
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Hamiltonian Hex of Eq. (1.3) becomes

Eex = − 1

2(gμB)2

∫
d3r

∫
d3r

′
J(�r − �r

′
) �M(�r). �M(�r

′
), (1.4)

where J(�r − �r
′
) > 0 for a F material and | �M(�r)| =M0 gives the saturation magne-

tization. As the exchange is short range, we may use a Taylor series expansion of

�M(�r) at the point �r
′
as

�M(�r) = �M(�r
′
) + [(�r − �r

′
).�∇] �M(�r

′
) +

1

2
+ [(�r − �r

′
).�∇]2 �M(�r

′
) + . . . . (1.5)

On substituting �M(�r) into Eq.(1.4), the first energy term gives a constant for the

material, the next energy term vanishes as the integral contains an odd power of

(�r − �r
′
), and the third term leads to an energy contribution of

E(2)
ex = −1

4

∫
d3r

′ �M(�r
′
)

M0

.D∇2 �M(�r
′
), (1.6)

where D is a property of the material called the spin-wave stiffness. It is given by

[M0/(gμB)
2]

∫
d3rJ(�r − �r

′
)(�r − �r

′
)2 for a cubic crystal.

There can be effects due to magnetic anisotropy, in addition to the so-called

“shape anisotropy” which is just part of the magnetic dipole-dipole interaction [18].

There is anisotropy related to the crystal symmetry (e.g., there may be certain

directions, relative to the crystal unit cell axes, for which it is easier to magnetize

the crystal), which is called magnetocrystalline anisotropy and is a consequence

of the spin-orbit interaction. Magnetic anisotropy can also arise due to mechanical

stress, in which case it is known as magnetostrictive anisotropy. Often the anisotropy

(magnetocrystalline or magnetostrictive) has uniaxial symmetry and is represented
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by an effective Hamiltonian:

Hanisotropy = −HA(T )
∑
i

mi
z, (1.7)

where HA denotes an effective anisotropy field. There is another type of anisotropy,

usually called ‘exchange anisotropy’, when F and AF materials are in contact (e.g.,

in a bilayer or multilayer). Exchange anisotropy is reviewed in [19], and we discuss

it further in Chapter 3 with its application in cylindrical geometries.

Finally, an applied static magnetic field, taken to be in the z direction (i.e.,

�H = H0ẑ), gives an extra term in the Hamiltonian, called the Zeeman energy [16]:

HZeeman = −
∑
i

�H · �mi = −H0

∑
i

mi
z. (1.8)

1.3 Spin-wave excitations in magnetic materials

Spin waves are the low-lying collective excitations in ordered magnetic

material (see, e.g., [16]). In 1930 Bloch proposed spin waves (henceforth SW) as

wave-like deviations of each spin from the ground-state alignment. At zero tem-

perature the spins are strongly aligned, but if the temperature is increased (or a

perturbation is applied) a single spin will deviate from alignment. Due to the cou-

pling between spins (or their magnetic moments), the deviation becomes associated

with all the magnetic ions and forms a collective excitation propagating through

the solid in a wave-like fashion. The SW are quantized and, by analogy with the

phonon, the basic quantum is the magnon. A schematic diagram of a bulk SW in a

ferromagnet is illustrated in Fig. 1.2.

The nature of the SW in magnetic materials depends on the dominant mag-

netic interaction for the spin dynamics. This in turn depends on the magnitude

of the wave vector �q of the SW. For small enough |�q|, the influence of long range

dipole-dipole interactions becomes significant and can dominate over the short range
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Figure 1.2: The spin wave in a F in one dimension: (a) the ground state; (b)
perspective view of the spin wave excitation in the bulk material and (c)
from above.
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Figure 1.4: Precession of the magnetic moment around the effective magnetic field
(a) without and (b) with damping.

exchange interactions. This region of magnetic excitations is called the magneto-

static region (if retardation can be ignored). For even smaller |�q| the region with

retardation effects included is called the electromagnetic (or polariton) region. SW

in both of the above regions have wavelengths that are large compared to the inter-

atomic spacing. On the other hand, the short range exchange interaction dominates

over the long range dipole-dipole interactions for the SW with much larger |�q|. This
is the exchange region and it includes most of the Brillouin zone. The intermediate

regime of magnetic excitations, in which dipolar and exchange interactions both

play a role, is known as the dipole-exchange region. The different regions are shown

in Fig. 1.3, taking typical values for a F.

A SW analysis can be carried out in different ways, e.g., see [15, 20]. Here

we use a macroscopic (or continuum) approach, which is appropriate for long wave-

lengths (or small |�q|). In a semi-classical approach the precessional motion of the

magnetization �M is derived from a torque exerted on it by an effective magnetic

field, as shown schematically in Fig. 1.4. The torque equation with a damping term
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included is known as the Landau-Lifshitz-Gilbert (LLG) equation:

d �M

dt
= γμ0

(
�M × �Heff

)
− α0

M

(
�M × d �M

dt

)
. (1.9)

The first term on the right hand side is the contribution of the torque produced

by the total effective field (γ = gμB is the gyromagnetic ratio). The second term

is the Gilbert damping term, proportional to a dimensionless damping factor α0.

Sometimes the damping is ignored or written in a different form. The field �Heff in

Eq. (1.9) is the sum of the dipolar, exchange, anisotropy and applied fields, i.e.,

�Heff = �Hdip + �Hex + �Hanisotropy + �Happlied . (1.10)

The contribution �Hdip contains the static and fluctuating terms generated due to

the dipole-dipole interactions. It can either be expressed via Maxwell’s equation

for the continuum model or alternatively deduced from Eq. (1.1) for a discrete

(microscopic) model. The term �Hex represents the field contribution due to the

exchange interaction. It can be deduced from Eqs. (1.4) - (1.6) and is often written

in terms of static and fluctuating parts for the macroscopic model [16] as

�Hex = λ �M +
D

M0

∇2 �M, (1.11)

where λ is an exchange constant and D is the exchange stiffness mentioned earlier.

The anisotropy term in Eq. (1.10) can often be neglected in cubic crystals [16, 21].

The last term in Eq. (1.10) is the static external applied field.

In this thesis the long-wavelength SW in F and AF materials will be studied

analytically using a continuum model. It will be assumed in some cases that the long

range dipole-dipole interactions are dominant over the exchange, but generalizations

are made in later chapters. The static magnetization in the continuum approach is
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usually taken to be spatially uniform inside the material and the fluctuating parts of

the magnetization and the effective fields are assumed to vary slowly on the atomic

scale. In the macroscopic continuum approach the dipolar field in Eq. (1.10) will be

analyzed in terms of Maxwell’s equations. When q � ω/c, where ω is the angular

frequency of the SW and c is the light velocity, the retardation effects are negligible,

corresponding to the magnetostatic region in Fig. 1.3.

Magnetostatic SW modes were first studied by Walker for F materials [22],

where the neighbouring magnetic moments are almost parallel and the static ex-

change field is simply proportional to the magnetization, i.e., it is λ �M from Eq.

(1.11). As a result, the exchange field does not create a torque on the magnetiza-

tion since �M × λ �M = 0. In contrast, in an AF the static exchange field on one

sublattice may affect the other sublattice. Also the influence of anisotropy is dif-

ferent in an AF because of the two sublattices. These additional effects in an AF

cause the long-wavelength SW to be in the infrared frequency regime, whereas the

long-wavelength SW of a F typically propagate in the microwave region [23].

1.4 Response functions for the magnetic susceptibility

To investigate SW at long wavelengths one first needs to find a frequency-

dependent susceptibility tensor
↔
χ , which is a response function containing informa-

tion about the fluctuating magnetization in the presence of a fluctuating field. For

a F the effective field in Eq. (1.10) can be approximated as the sum of the static

field H0 in the z direction and a fluctuating field with angular frequency ω, i.e.,

�Heff (�r, t) = H0ẑ + �h(�r)e
−iωt. (1.12)

At this stage, we will ignore exchange and look just at the dipolar response. The

fluctuating field �h(�r) comes from the dipolar field and generally |�h(�r)| � H0 . The
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corresponding response for the magnetization �M(�r, t) is

�M(�r, t) =M0ẑ + �m(�r)e−iωt. (1.13)

HereM0 is the static magnetization and |�m(�r)| �M0 typically. By substituting Eq.

(1.12) and Eq. (1.13) into the torque equation of motion with damping neglected,

and then linearizing (i.e. neglecting the second order small quantities), one finds

−iω�m(�r) = γμ0ẑ × [M0
�h(�r)−H0 �m(�r)]. (1.14)

From Eq. (1.14) the linear relationship between the x and y components of �m(�r)

and �h(�r) in terms of a response function takes the form (see, e.g., [16])

⎛
⎝ mx

my

⎞
⎠ =

⎛
⎝ χa iχb

−iχb χa

⎞
⎠

⎛
⎝ hx

hy

⎞
⎠ , (1.15)

where

χa =
ωmω0

(ω0
2 − ω2)

, χb =
ωmω

(ω0
2 − ω2)

. (1.16)

Both χa and χb have poles at the ferromagnetic resonance (FMR) frequency ω0, and

ωm = γμ0M0. The mz component is zero in the linear approximation.

Similarly, the frequency dependent susceptibility tensor in the AF case can also

be derived from the torque equation of motion without damping. The analysis is

slightly more complicated, because an AF has two sublattices of magnetic moments

aligned in opposite directions. A torque equation of motion can be written down

for each sublattice, including the terms that couple the sublattices. Eventually an

expression similar to Eq. (1.15) is found for an AF, but χa and χb are now different
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and are given by [20, 24]

χa =
1

2

(
χ+ + χ−)

, χb =
1

2

(
χ+ − χ−)

, (1.17)

where

χ± =
2ωAωm

ωA(2ωE + ωA)− (ω ∓ ω0)2
. (1.18)

The additional frequencies are ωE = γμ0Hex and ωA = γμ0Hanisotropy. In the absence

of an applied field, ω0 = 0, the susceptibilities in Eq. (1.18) have a pole at ω = ωAF =

[ωA(2ωE + ωA)]
1
2 , which is the antiferromagnetic resonance (or AFMR) frequency,

and χ+ = χ− so χb = 0. When H0 �= 0,
↔
χ is non-diagonal and the resonances in

χ+ and χ− are split by the Zeeman term, becoming ωAF ± ω0 provided ω0 < ωAF .

1.5 Spin waves in a thin magnetic film

The study of SW properties in nanoscale magnetic structures has been a

challenging and ongoing issue due its fundamental physics and potential for high-

frequency device applications. Kittel [25] first predicted that the SW in finite F ma-

terials could be excited by a uniform r.f. field, and this was confirmed experimentally

in a Permalloy thin film by Seavey and Tannenwald [26]. Surface magnetostatic SW

were first investigated by Damon and Eshbach [27] for a F slab magnetized in-plane

with an external magnetic field parallel to the surface. DeWames and Wolfram [28]

extended the study of SW to the dipole-exchange regime, showing how exchange

modifies the surface and bulk magnetostatic modes in a F film. Hartstein et al [29]

extended the study of SW to the electromagnetic regime for a description of sur-

face magnetic polaritons. The surface magnetostatic modes in AFs were studied for

semi-infinite materials [30] and films [16, 23, 31]. The theoretical and experimen-

tal studies on the SW dynamics covering present and past years can be found in a
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Figure 1.5: A planar F film of thickness d in the x direction and infinite in the other
two directions, taking M0 and H0 parallel to the surfaces. The in-plane wave
vector �q|| for the modes is shown.

number of excellent reviews [15, 16, 32, 33, 34, 35].

In the following subsections we briefly review the theory of SW excitations in

a planar F slab (or film) in three different wavevector regimes. We consider a F film

of thickness d, which is considered infinite in the y and z directions (see Fig. 1.5).

The static magnetization M0 and applied field H0 are along the z axis. This planar

case will later be compared with our results for cylindrical geometries.

1.5.1 Magnetostatic SW

The dipolar modes can be analyzed using the magnetostatic form of

Maxwell’s equations:

�∇× �h(�r) = 0 and �∇ ·
[
�m(�r) + �h(�r)

]
= 0 . (1.19)
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The magnetic scalar potential ψ can be introduced from the first of Eq. (1.19) by

defining �h(�r) = �∇ψ(�r). Substituting �h in the second of Eq. (1.19) then implies

(1 + χa)

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂2ψ

∂z2
= 0 , (1.20)

which is often referred to as the Walker equation [22] inside the F film. Outside the

F film it simplifies to the Laplace equation

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= 0 . (1.21)

The film in Fig. 1.5 has translational symmetry parallel to the surface, and so the

solutions of Eqs. (1.20) and (1.21) can be written in a Bloch form [36] as

ψ(�r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 exp(−q||x) exp(i�q|| · �r||) if x > 0

{a2 exp(iqxx) + a3 exp(−iqxx)} exp(i�q|| · �r||) if 0 > x > −d
a4 exp(q||x) exp(i�q|| · �r||) if x < −d .

(1.22)

There the wave vector �q|| = (qy, qz) is parallel to the surface and �r|| = (y, z). For the

so-called Voigt configuration in which qz = 0 and q|| = |qy|, we have angle θ = π/2.

The quantity qx can be either real or imaginary and is determined from Eqs. (1.20)

and (1.22). This gives

(1 + χa)(qx
2 + q||2) = 0. (1.23)

There are two possible solutions: either (a) χa = −1, giving the solution for a bulk

mode, or (b) qx = ±iq||, giving the solution for a surface mode. The amplitude

coefficients aj (j = 1, 2, 3, 4) in Eq. (1.22) can be obtained using the standard

electromagnetic boundary conditions at x = 0 and at x = −d. These boundary

conditions are that ψ must be continuous and that (hx+mx) just inside the magnetic
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material must be equal to hx just outside the material. These conditions lead to the

vanishing of the determinant for the coefficients aj, giving [16]:

q||2 + 2q||qx(1 + χa) cot(qxd)− qx
2(1 + χa)

2 − qy
2χb

2 = 0. (1.24)

In the case of a F material, the solutions for the bulk magnetostatic modes

are found from χa = −1 and give ω = ±ωB(qx, �q||) = ± [ω0
2 + ω0ωm]

1
2 . Similarly,

the substitution of qx = ±iq|| leads to the dispersion relation for a localized surface

magnetostatic mode (or Damon-Eshbach mode) [27] as ω = ωS(�q||), where

ωS(�q||) =
{
(ω0 +

1

2
ωm)

2 − 1

4
ωm

2 exp(−2q||d)
} 1

2

, (1.25)

which satisfies the inequality ωB < ωS < ω0 + ωm/2 for the Voigt geometry. Typ-

ically, the surface mode frequencies in F films correspond to the microwave region

and have applications to signal processing [37]. They have an interesting property of

“non-reciprocal propagation” such that when �q|| is reversed the mode switches from

the upper to lower surface, or vice versa. It can also be noted that “non-reciprocal

propagation” occurs for uniaxial AFs, but only when H0 �= 0 [16].

1.5.2 Dipole-exchange SW

The theory of dipole-exchange SW (or DESW), where the dipole-dipole

and exchange effects may be comparable, is developed next. The exchange field �Hex

in Eq. (1.11) must now be added to Eq. (1.12) and consequently the linearized

torque equation of motion (with damping ignored) becomes

−iω−→m(−→r ) = −ωm{ẑ ×−→
h d(

−→r ) + (ω0 −D∇2){ẑ ×−→m(−→r )}. (1.26)

The dispersion relation for bulk DESW in an effectively infinite medium, where

the mode propagation will take the plane-wave form exp(i�q.�r), can be derived di-
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rectly from Eqs. (1.26) and (1.19). The final expression is [38]:

ω(−→q ) =
{
(ω0 +Dq2)(ω0 +Dq2 + ωmsin

2θ)

} 1
2

. (1.27)

This shows that the exchange and dipolar effects are comparable when q ∼ (ωm/D)1/2.

By comparison with Eq. (1.20) for the magnetostatic case, Eq. (1.26) in the case of

a film geometry yields a sixth-order differential equation for the scalar potential ψ

inside the magnetic film, i.e.,

(Θ̂2 + ωmΘ̂− ω2)

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+ (Θ̂2 − ω2)

∂2ψ

∂z2
= 0, (1.28)

where Θ̂ = (ω0 −D∇2) is a differential operator. The magnetic scalar potential ψ

outside the F film satisfies Eq. (1.21) giving solutions for ψ in regions x > 0 and

x < −d, as before. On the other hand, the solution of Eq. (1.28) for ψ in the region

0 > x > −d takes a superposition form as

ψ(�r) =
3∑

j=1

{
aj2 exp(iq

j
xx) + aj3 exp(−iqjxx)

}
exp(i�q|| · �r||). (1.29)

By substituting Eq. (1.29) into Eq. (1.28), the roots qjx (in case of qz = 0) are

q(1)x = ±iq||, (1.30)

q(2)x = ±
[
1

D

{(
ω2 +

ω2
m

4

)1/2

− ωm

2
− ω0 −Dq2||

}]1/2

, (1.31)

q(3)x = ±i
[
1

D

{(
ω2 +

ω2
m

4

)1/2

+
ωm

2
+ ω0 +Dq2||

}]1/2

. (1.32)

Here q
(1)
x is the same as the surface magnetostatic wave number for the F slab. The

other roots q
(2)
x and q

(3)
x correspond to bulk and highly attenuated surface modes,

respectively, having no analog in the earlier magnetostatic case. The DESW are

mixed eigenstates of these three types of waves. The degree of mode mixing can
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be found by applying the appropriate boundary conditions at x = 0 and −d, as
discussed in [16, 20, 39]. These calculations yield SW dispersion relations in the

form of a modified magnetostatic surface mode and a series of quantized bulk modes.

1.5.3 Retarded SW modes or magnetic polaritons

In the previous two subsections we neglected retardation by using the

magnetostatic form of Maxwell’s equations because wave number q|| � ω/c, where

c is the speed of light. Now we consider the SW excitations in a region where

q ∼ ω/c. This is the so-called polariton regime where the SW couples to the photon

of light to form a mixed mode. Bulk magnetic polaritons for a F material were first

investigated by Auld [40]. Later the magnetic polaritons were investigated for AF

[41, 24, 42] and for ferrimagnets [43]. An excellent review article for polaritons in

planar geometries can be found in [15].

To discuss the effects of retardation on the SW we need the full form of

Maxwell’s equations (in the absence of free charges and macroscopic currents) [14]:

�∇ · �D = 0, �∇× �E = −∂
�B

∂t
,

�∇ · �B = 0, �∇× �H =
∂ �D

∂t
, (1.33)

in SI units. The magnetic induction �B and the electric displacement �D are

�B = μ0
←→μ (ω) �H, �D = ε0

←→ε �E. (1.34)

It follows from Eq. (1.15) that the dynamic response (at frequency ω) of a F or AF
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material is characterized by a gyromagnetic permeability tensor [16]

←→μ (ω) =

⎛
⎜⎜⎜⎝

μ1(ω) iμ2(ω) 0

−iμ2(ω) μ1(ω) 0

0 0 1

⎞
⎟⎟⎟⎠ , (1.35)

where μ1 = 1 + (χ+ + χ−)/2 and μ2 = (χ+ − χ−)/2. The dielectric response is

usually taken to be a diagonal tensor of the form

←→ε =

⎛
⎜⎜⎜⎝

ε 0 0

0 ε 0

0 0 1

⎞
⎟⎟⎟⎠ , (1.36)

where ε is a frequency independent constant.

To discuss polaritons we can no longer use the magnetostatic scalar potential,

but instead we must solve for the electric and magnetic field components. These

have a plane-wave form exp(i�q.�r) in an infinite medium, so the dispersion relations

for bulk magnetic polaritons can be deduced from Eqs. (1.33) and (1.34) as [16]

(
1− ξ1χ

+

)(
1− ξ1χ

−
)

= ξ22χ
+χ−, (1.37)

where ξ1 = [(2εω2/c2) − q2x]/2[q
2 − (εω2/c2)] and ξ2 = q2x/2[q

2 − (εω2/c2)]. On tak-

ing the limit of q2 � (εω2/c2), we recover the results for the bulk magnetostatic

modes. For a finite material (with interfaces) the situation becomes complicated in

general, due to coupling between electric and magnetic fields. However, for a planar

geometry, it is well established (see e.g., [16, 29]) that the modes can be decoupled

into transverse electric (TE) and transverse magnetic (TM) components. We shall

see later that this separation does not necessarily hold for curved interfaces.
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1.6 Experimental methods

There are several different experimental techniques for studying the bulk

and surface SW in the different wavevector regions. The most commonly used tech-

niques are magnetic resonance, particularly ferromagnetic resonance (FMR) and

antiferromagnetic resonance (AFMR), inelastic light scattering (Brillouin and Ra-

man scattering), attenuated total reflection (ATR) and inelastic neutron scattering

(INS). The magnetic resonance and light scattering techniques are very effective

for studying the SW excitations at relatively small wavevectors near the center

of Brillouin zone. Depending on the magnetic material and/or the experimental

setup, the wavevectors might correspond to either the magnetostatic or dipole-

exchange regimes. By contrast, INS allows the study of SW properties for wavevec-

tors throughout the Brillouin zone. However, the instrumental resolution may be

less than in other techniques, and it is not surface-sensitive. ATR is an optical

method that allows the study of the coupling of electromagnetic radiation (through

an attenuated surface wave) to the surface SWs, and it is important for surface

magnetic polaritons. Here we give a very brief description of these techniques.

Magnetic resonance (either FMR or AFMR) is a spectroscopic technique for

probing the SW excitations, in which the precessional motion of the magnetic mo-

ments is utilized. This precession, which we discussed in Sec. 1.4, depends not

only on the magnetic field strength (e.g., of the order of a Tesla), but also on the

crystalline anisotropy, the demagnetization, and the exchange, as well as possible

damping effects. In a FMR experiment the magnetic sample (e.g., a thin film) is

placed between the poles of an electromagnet in a microwave resonant cavity and

in an external transverse oscillating r.f. field. If the frequency of the oscillating

magnetic field matches the SW frequency (typically in the microwave regime) at

zero or very small wavevector, a resonant absorption of energy in the F material is

observed. By varying the frequency of the oscillating r.f. field (or more conveniently
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Figure 1.6: Schematic diagram of the light scattering processes, showing examples of
energy-level schemes and spectral intensities.

by varying the static applied magnetic field) a series of resonance peaks correspond-

ing to surface or standing bulk SW can be measured. The first FMR observation of

bulk SW in Permalloy thin films was reported by Seavey et al [26], while Yu et al

[44] investigated the surface SW in YIG using FMR. Reviews of magnetic resonance

experiments can be found in [15, 45]. A disadvantage of the FMR technique is that

it does not usually provide the wavevector dependence of the SW.

Light scattering has been used extensively to study bulk and surface excita-

tions (including SW) where a photon interacts with an excitation. This interaction

may involve elastic and inelastic scattering processes, and a schematic diagram is

shown in Fig. 1.6. The Rayleigh peak represents elastic scattering of photons. In the

more interesting process of inelastic scattering, a SW can be either created (Stokes

process) or destroyed (anti-Stokes process), which leads to a change of energy and

momentum between the incident and scattered photons. For a bulk material this

can be described by the following conservation laws for energy and momentum

��qi − ��qf = ±��q, �ωi − �ωf = ±�ω(�q). (1.38)
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Here �qi (�qf ) and ωi (ωf ) correspond to the wavevector and frequency of the incident

(scattered) light, respectively. The plus and minus signs refer to the Stokes and anti-

Stokes processes, respectively, in which a SW of wavevector �q and frequency ω(�q)

is either created or destroyed. The intensity of a Stokes process is usually higher

than that of the corresponding anti-Stokes process. For a bulk magnetic material

the intensity ratios of the anti-Stokes to Stokes processes is typically weighted by

the thermal factor of exp(−�ω/kBT ) [34, 36]. In a finite magnetic system the

broken translational symmetry due to a surface leads to a spread of the wavevector

components, which results in a frequency broadening of the intensity peaks in the

scattering spectrum [16, 32].

The two main inelastic light scattering techniques are Brillouin light scattering

(BLS) and Raman light scattering (RLS). The original BLS experiment for acoustic

phonons (sound waves) was due to Brillouin in 1922, but it was much later before

BLS was applied to bulk SW in YIG [46] and surface SW in EuO [47]. The RLS

technique was developed by Raman and (independently) by Landsberg in 1928.

The first RLS to probe SW excitations was for FeF2 [48]. In BLS or RLS from a

magnetic sample, only a very small fraction of the incident photons are scattered

by a SW. Also, because of the conservation laws in Eq. (1.38), it is easy to show

that the SW wavevector |�q| is small compared to the Brillouin zone boundary. The

two experimental techniques differ in the method for detecting the scattered light

and they apply to different ranges of SW frequency. In BLS the frequency shifts

of the scattered light range up to about 5 cm−1 and are detected by a multipass

Fabry-Pérot interferometer, whereas in RLS a frequency shift typically in the range

5 - 4000 cm−1 is recorded by a grating spectrometer. The conversion between the

wavenumber units and frequency is 1 cm−1 ≡ 30 GHz. Typically BLS is appropriate

for F materials, whereas RLS is used for the higher-frequency SW in AF materials.

Excellent reviews of light scattering for the study of bulk and surface magnetic
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excitations are found in [34, 46, 49, 50, 51, 52, 53, 54].

The ATR technique can be used to probe surface polaritons in finite magnetic

systems [55, 56, 57], following earlier work by Otto [58] in 1968 for surface phonon

polaritons. ATR utilizes the property of total internal reflection in an optically-

dense external medium to form an evanescent wave in the magnetic sample. An

evanescent wave is a penetrating electromagnetic field whose intensity decays with

distance and may extend below the sample surface by (e.g.) about 1 μm. This field

couples with a surface SW in the magnetic sample, resulting in a transfer of energy

and a dip in the reflection coefficient of the light. A review is given in [16].

INS is another useful technique to probe the SW excitations and to characterize

their dispersion properties in the Brillouin zone. Since neutrons interact very weakly

with materials and have a large penetration depth, this method is useful for studying

bulk SW but it is not for surface sensitive. Also the presence of Bragg peaks at low

energies and small wavevectors reduces the resolution. Hence the optical techniques

discussed above are more applicable for magnetic nanomaterials [34].

1.7 Outline of the thesis

We present a macroscopic continuum theory for SW excitations in cylin-

drical nanostructures. This work is motivated by the fabrication of submicron-sized

high-density arrays of magnetic wires, tubes and rings (see, e.g., [59]) and their

experimental studies mainly by BLS and FMR (see, e.g., [60]). Recent theoreti-

cal and experimental works show the importance of understanding the fundamental

SW dynamics in these systems to develop the magnetic-based technologies (see e.g.,

[61, 62, 63, 64, 65, 66]). The aim in this thesis is to investigate the surface and bulk

SW in cylindrical multilayer nanostructures in different wavevector regimes.

In Chapter 2 a detailed study of the magnetostatic modes in long F and AF

nanotubes is presented. Results for wires and antiwires are deduced as special
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cases. The surface and bulk SW are studied here for the situation where the dipole-

dipole interactions are dominant in the spin dynamics. The dispersion relations are

found for the magnetostatic SW modes, and numerical calculations are presented

for materials such as Permalloy and MnF2. Next, we generalize this theory for tubes

to cylindrical multilayer systems consisting of a core surrounded by any arbitrary

number of concentric tubular layers. Each layer may be magnetic (F or AF) or

nonmagnetic. A transfer matrix approach is employed to calculate the dispersion

relations for the mode frequencies and numerical examples are given.

Chapter 3 is devoted to study the surface and bulk magnetostatic modes in F

/ AF bilayers with a cylindrical geometry. The formalism for tubes in Chapter 2 is

generalized by considering a F nanotube with its core now filled by an AF material,

or vice-versa. The dispersion relations and the localization properties of the modes

are shown to quite different from previous results for planar bilayers [67]. As an

extension we also consider a cylindrical F / AF bilayers as two concentric tubes

around a nonmagnetic core. Numerical examples for both of the bilayer geometries

are obtained taking Permalloy or Ni (as the F) and GdAlO3 (as the AF).

In Chapter 4 we concentrate on developing a theory for the localized surface

and bulk magnetic polaritons in cylindrical tubes. This involves solving for the dy-

namical response using a non-diagonal susceptibility tensor for a F or AF and the

full form of Maxwell’s equations. In developing our theory for the propagation of

the magnetic polaritons, the solutions are considered in terms of transverse electro-

magnetic (TEM) modes, since the separation into TE and TM modes is not usually

possible for the cylindrical geometry. This allows us to recover our previous results

for magnetostatic modes by taking the non-retarded limit of q � ω/c. Numerical

calculations are made for YIG and MnF2 materials.

Chapter 5 deals with a theory for the dipole-exchange SW in cylindrical nan-

otubes, where the long range dipole-dipole interactions and the short range exchange
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interactions may be comparable in the magnetization dynamics. Our calculations

describe the radial and angular quantization of different modes in the nanotubes,

and the dispersion relations for the dipole-exchange SW can be related to BLS exper-

iments, as in Ni nanotubes [60]. For limiting special cases our calculations simplify

to the one interface-geometries of dipole-exchange SW in wires [68] or antiwires.

Numerical calculations are carried out for nanostructures of Ni and EuS including

a phenomenological damping, and our results are compared with experimental data

in [69].

In Chapter 6 we present a linear response theory of the magnetic Green’s

functions in a cylindrical tube, taking the magnetostatic regime for simplicity. This

enables us to investigate the spectral intensities of the surface and bulk magneto-

static SW in the different cylindrical geometries. Numerical results are given to

illustrate the behavior for both F (e.g., Ni) and AF (e.g., GdAlO3) materials.

Each of Chapters 2 - 6 contains its own conclusions, but some overall conclu-

sions are also given in Chapter 7, where we also indicate possible extensions.
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CHAPTER 2

Magnetostatic Modes in Cylindrical Geometries: Tubes and

Generalized Multilayered Systems

(Some of the results in this chapter have been published in [70] and [71])

2.1 Introduction

As mentioned briefly in Chapter 1, the static and dynamical properties of spin

waves (SW) have attracted considerable attention in magnetic nanostructures with

cylindrical geometries, both theoretically and experimentally and for device ap-

plications (see [32, 72]). These nanostructures have included metallic wires (e.g.,

[68, 69, 73]), disks (e.g., [32, 74]) and rings (e.g., [75, 76, 77]), both individually and

in periodic arrays. The fabrication of Ni nanowires arrays and their characteriza-

tion were reported by Nielsch et al. [78], using electrodeposition into highly ordered

nanometer-sized cylindrical alumina templates with large length to diameter aspect

ratios. Also, more recently, the fabrication of high-density arrays of magnetic nan-

otubes, which are essentially hollow cylinders composed of materials such as Ni or

Permalloy, has been reported [59] and their SW have been probed by BLS and FMR

techniques [60] as in Sec. 1.6. For the Ni nanotubes arrays used in [60], typical sizes

correspond to 25 to 35 nm for the inner radius, 10 to 15 nm for the wall thick-

ness, and length up to 200 nm. Potential applications include high-density storage

devices, magnetic sensors, fast switching devices, etc.

The above investigations have motivated us to develop analytic theories for

the long-wavelength surface and bulk magnetostatic SW in cylindrical geometries,

starting with nanotubes. Numerical applications are made for specific ferromagnetic

(F) and antiferromagnetic (AF) materials. As discussed in Chapter 1, by consider-
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ing the magnetostatic modes we are focusing on situations where the dipole-dipole

interactions dominate in the spin dynamics. For this, the wave number along the

symmetry axis of the nanotube must be sufficiently small (typically 107 m−1 or less),

as can be achieved in BLS experiments if a 900 scattering geometry is employed.

By contrast, the BLS experiment in [60] involved a 1800 backscattering geometry

giving a larger wave number that corresponded to the dipole-exchange region.

Over the last few years magnetic multilayers have received much attention due

to their fundamental physics and technological applications. Theoretical investiga-

tions of dipolar SW in F and AF multilayers, grown with nonmagnetic spacer layers,

have been of interest following seminal work by Mika and Grünberg [79] among oth-

ers. The basic techniques involve either employing a transfer matrix approach or

directly applying Bloch’s theorem over a periodic length (see, e.g., [61, 80] for re-

views). Experimentally, the nanostructures have been grown by electrodeposition

and their SW excitations studied by FMR and BLS techniques. (see, e.g., [16, 81]).

So far most theoretical and experimental attention has been given to planar systems

with an arrangement of the layers that may be either periodic, quasiperiodic (e.g.,

in a Fibonacci sequence), or arbitrary [80].

In order to investigate the effects of curved surfaces and interfaces in magnetic

multilayers, a comprehensive theory for the dipolar spin waves in long cylindrical

geometries is presented here. The theories of the spin dynamics in magnetic wires

[82] and tubes, for which there are just one or two interfaces respectively, are gen-

eralized later in this chapter to structures consisting of a core surrounded by any

arbitrary number of concentric layers (or tubes). Each layer may be magnetic (either

F or AF) or a nonmagnetic spacer. The long-range dipolar fields provide coupling

between magnetic layers across the spacer regions, resulting in a coupling between

the dipolar modes of the system. Several branches of coupled SW, having frequen-

cies and localization that may be controlled by the structural properties, are found.
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The focus is on the localized interface modes, which are shown to be strongly mod-

ified (for example, in their frequency and wave number cutoff) by the multilayer

structure, compared to the behaviour in single magnetic wires and tubes.

We first present the theoretical model for cylindrical nanotubes in Sec. 2.2,

where a large length-to-radius aspect ratio is assumed (allowing end effects to be

ignored). The external magnetic field and static magnetization (or sublattice mag-

netization) are taken parallel to the symmetry axis of the tube. The characteristic

equations (or dispersion relations) for the surface and bulk SW modes, derived by

applying the standard electromagnetic boundary conditions at the two interfaces

of a nanotube, are described. Some special limiting cases are also discussed. For

the numerical solutions given in Sec. 2.3, both F (using Ni80Fe20) and AF (using

MnF2) materials are employed to illustrate the dispersion relations and the radial

amplitudes for the different modes. Sec. 2.4 describes a generalization of the theory

to the cylindrical multilayer structures. Here we employ our previous analysis as in

Sec. 2.2, together with a transfer matrix approach, to derive the theoretical disper-

sion relations. Numerical examples are given in Sec. 2.5, choosing Ni and GdAlO3

as the magnetic materials. Finally, a summary of this chapter is given in Sec. 2.6.

2.2 General theory of magnetostatic modes in tubes

A model of a nanotube is shown in Fig. 2.1 as a long hollow cylinder with

inner and outer radii R1 and R2, respectively. The magnetic material fills the region

R1 < r < R2, whereas a nonmagnetic material occupies r < R1 and r > R2. The

theory is developed for general values of R1 and R2, contrasting with [86] where

a magnetostatic theory of nanotubes with negligible wall thickness (R1 ≈ R2) was

developed. Our calculations incorporate two limiting cases, one for a nanowire (when

R1 → 0, R2 �= 0) and the other for an anti-nanowire (when R1 �= 0, R2 → ∞).

In Fig. 2.1 the symmetry axis of the tube, the direction of external magnetic
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Figure 2.1: (a) A magnetic nanotube with static magnetization M0, external magnetic
field H0 and propagation wave number q along the z axis, and (b) its cross
section. The magnetic material fills region II whereas a nonmagnetic material
is in I and III.

field H0 and static magnetizationM0 for a F (or sublattice magnetization for an AF)

coincide with the z axis. When a magnetic mode of an appropriate wave number

is excited in the nanotube, the precession of the magnetization creates an internal

dipolar magnetic field in the magnetostatic approximation. The linear response

between the components of the fluctuating magnetization and the corresponding

fluctuating field is given by the well-known frequency dependent susceptibility tensor
↔
χ (see [39, 82, 83]), which we introduced in Sec. 1.4. The diagonal and non-diagonal

frequency dependent tensor components are respectively of the form

χxx = χyy =
1

2
(χ+ + χ−) ≡ χa , χxy = −χyx =

i

2
(χ+ − χ−) ≡ iχb. (2.1)

For a F the explicit results (ignoring damping) are given in Eq. (1.16), where we

defined ω as the angular frequency of the spin wave, while ω0 = γμ0H0 and ωm =
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γμ0M0 are related to the external field and static magnetization, respectively (γ is

the gyromagnetic ratio). The corresponding result for a uniaxial AF is slightly more

complicated because of the two-sublattice structure, and is quoted in Eq. (1.18).

In this case we defined the additional frequencies ωA = γμ0HA and ωE = γμ0HE

(HA and HE are the effective fields related to the anisotropy and static exchange,

respectively) and ωAF = [ωA(2ωE + ωA)]
1/2. The poles for ω in the F and AF

cases occur at ±ω0 and ±(ωAF ± ω0), where ω0 and ωAF are the FMR and AFMR

frequencies, respectively.

Our calculations for the nanotube proceed by following an approach analogous

to that used for a solid wire (e.g., [82]), where the appropriate Maxwell’s equations

for the fluctuating fields are re-expressed in terms of the magnetostatic scalar po-

tential Ψ(r, θ, z). This satisfies the Walker equation (see also Sec. 1.5)

∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
+

1

r2
∂2Ψ

∂θ2
+ ν(ω)

∂2Ψ

∂z2
= 0 (2.2)

inside the magnetic medium, where we denote ν(ω) = 1/[1+χa(ω)], and the Laplace

equation outside (replacing ν(ω) by unity). From the cylindrical symmetry, the

solutions of both equations have the form

Ψ(r, θ, z) = ψ(r) exp[i(nθ + qz)], (2.3)

where q is the wave number of the magnetostatic mode along the z axis (consistent

with Bloch’s theorem [16]) and n is an integer (n = 0, ±1, ±2, . . .) for Ψ to be

a single-valued function of θ. The equation satisfied by ψ(r) inside the magnetic

material (R1 < r < R2) becomes

d2ψ(r)

dr2
+

1

r

dψ(r)

dr
−

{
n2

r2
+ ν(ω)q2

}
ψ(r) = 0. (2.4)
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If ν(ω) > 0, this has solutions that are formed from a superposition of two kinds of

modified Bessel functions [84] and we write

ψ(r) = a2In{
√
ν(ω)qr}+ b2Kn{

√
ν(ω)qr}, (2.5)

where a2 and b2 are constants. However, if ν(ω) < 0, the solutions of Eq. (2.4)

are expressible in terms of Bessel functions Jn and Yn (see [84]). Denoting ν0(ω) =

−ν(ω) > 0 in this case, we have

ψ(r) = c2Jn{
√
ν0(ω)qr}+ d2Yn{

√
ν0(ω)qr}, (2.6)

where c2 and d2 are constants. By contrast, the radial part of the potential ψ(r) in

the region r < R1 always involves a modified Bessel function, i.e.,

ψ(r) = a1In(qr), (2.7)

which increases with r. Similarly, ψ(r) in the region r > R2 has the form of another

modified Bessel function, i.e.,

ψ(r) = a3Kn(qr). (2.8)

The choices of modified Bessel functions in Eqs. (2.7) and (2.8) are consistent with

the required asymptotic behaviour as r → 0 and as r → ∞, respectively.

Clearly the physical form of the solutions depend on the sign of ν(ω) and

hence on the value of ω. If ν(ω) < 0 the Bessel functions Jn and Yn inside the

magnetic material are oscillatory, and we associate this case with bulk-like modes.

If ν(ω) > 0 the modified Bessel functions In and Kn inside the magnetic material

have decay-like characteristics associated with localized surface modes. Fig. 2.2

shows the variation of ν(ω) with ω in case of a F material. From the sign of ν(ω)
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Figure 2.2: Schematic plot of ν(ω) vs. ω for a F material showing the frequency regions
where ν(ω) > 0 and ν(ω) < 0.

we deduce that the localized surface modes can exist only in the regions 0 < ω < ω0

or ω > ωB, and the bulk magnetostatic modes can occur for ω0 < ω < ωB, where

ωB =
[
ω0

2 + ω0ωm

] 1
2 . (2.9)

Similarly, we show ν(ω) versus ω for AF materials in Fig. 2.3 taking the general

case of H0 �= 0. Here there are two regions where ν(ω) < 0, corresponding to the

split bulk bands of an AF, while there are three regions with ν(ω) > 0 where (in

principle) surface modes may be found. Specifically, the surface modes are restricted

to the regions 0 < ω < ωAF − ω0, ωB1 < ω < ωAF + ω0 or ω > ωB2, where

ωB1, ωB2 =
[
(ωAF

2 + ω0
2 + ωAωm)∓ {(ωAωm)

2 + 4ω0
2(ωAF

2 + ωAωm)} 1
2

] 1
2
.(2.10)

Likewise, it is concluded that the bulk modes can occur in the frequency regions
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Figure 2.3: Same as Fig. 2.2 but for an AF material when H0 �= 0.

ωAF − ω0 < ω < ωB1 and ωAF + ω0 < ω < ωB2. In the special case of H0 = 0, Fig.

2.3 simplifies with the two bulk bands collapsing into one, giving a behaviour that

is qualitatively similar to Fig. 2.2.

First we consider the surface modes for either F or AF materials. The four

unknown coefficients a2, b2, a1 and a3 introduced in Eqs. (2.5), (2.7) and (2.8)

can be eliminated by applying the standard electromagnetic boundary conditions

at r = R1 and R2 [16]. One condition ensures that ψ must be continuous at each

interface of the nanotube. The other condition at each interface implies that {(1 +
χa)∂Ψ/∂r + iχb∂Ψ/∂θ} just inside the magnetic medium must equal ∂Ψ/∂r just

outside the medium. These conditions result in four simultaneous linear equations,

and the determinant of the four unknown coefficients must vanish, leading to the
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“characteristic equation” for the surface mode in the form

∣∣∣∣∣∣∣∣∣∣∣∣∣

In(qR1) −u1 −v1 0

In
′(qR1) −u1ΦK1 −v1ΦI1 0

0 u2 v2 Kn(qR2)

0 u2ΦK2 v2ΦI2 Kn
′(qR2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 . (2.11)

Here I ′n and K ′
n denote the derivatives of the modified Bessel functions with respect

to their argument, and

ui = Kn{
√
ν(ω)qRi}, vi = In{

√
ν(ω)qRi},

ΦKi = Kn
′{

√
ν(ω)qRi}/

√
ν(ω)Kn{

√
ν(ω)qRi} − nχb/qRi,

ΦIi = In
′{

√
ν(ω)qRi}/

√
ν(ω)In{

√
ν(ω)qRi} − nχb/qRi, (2.12)

for i = 1, 2. Apart from finding the dispersion relations, one can also deduce, from

Eqs. (2.5), (2.7) and (2.8), the variation of the amplitude ψ(r) of the surface modes

in the radial direction r of the nanotube. Examples will be given later.

Similarly, in the case of the bulk modes (for either the F or AF materials), the

four unknown coefficients c2, d2, a1 and a3 introduced in Eqs. (2.6), (2.7) and (2.8)

can be eliminated by applying the electromagnetic boundary conditions (as stated

earlier) at the R1 and R2 interfaces. The analogous result to Eq. (2.11) is

∣∣∣∣∣∣∣∣∣∣∣∣∣

In(qR1) −r1 −s1 0

In
′(qR1) −r1ΦY 1 −s1ΦJ1 0

0 r2 s2 Kn(qR2)

0 r2ΦY 2 s2ΦJ2 Kn
′(qR2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 , (2.13)
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where (for i = 1, 2)

ri = Yn{
√
ν0(ω)qRi}, si = Jn{

√
ν0(ω)qRi},

ΦY 1 = Yn
′{

√
ν0(ω)qRi}/

√
ν0(ω)Yn{

√
ν0(ω)qRi} − nχb/qRi,

ΦJ1 = Jn
′{

√
ν0(ω)qRi}/

√
ν0(ω)Jn{

√
ν0(ω)qRi} − nχb/qRi. (2.14)

Again, the amplitude ψ(r) of the bulk modes in F or AF nanotubes can be found

as a function of r.

Before solving the dispersion relation Eqs. (2.11) and (2.13) numerically in

Sec. 2.3, it is helpful to consider some special cases, either in terms of the geometry

or the wave number q. First, the 4 × 4 determinantal condition in Eq. (2.11)

simplifies and reduces to a 2× 2 determinant when R1 → 0 (with R2 �= 0). It leads

to the “characteristic equation” for the surface magnetostatic modes in a nanowire:

{
√
ν(ω)}−1qR2

I ′n{
√
ν(ω)qR2}

In{
√
ν(ω)qR2}

− qR2
K ′

n(qR2)

Kn(qR2)
+ nχb = 0. (2.15)

An equation of this form was previously derived specifically for FM cylinders [68, 82].

Similarly, for the bulk modes in this case we find that Eq. (2.13) reduces to

{
√
ν0(ω)}−1qR2

J ′
n{

√
ν0(ω)qR2}

Jn{
√
ν0(ω)qR2}

− qR2
K ′

n(qR2)

Kn(qR2)
+ nχb = 0 (2.16)

for a nanowire. On the other hand, taking the limit of R2 → ∞ in Eq. (2.11), we

obtain a dispersion relation for the surface modes in an anti-wire of radius R1 (i.e.,

a nonmagnetic cylinder embedded in a F or AF medium):

{
√
ν(ω)}−1qR1

K ′
n{

√
ν(ω)qR1}

Kn{
√
ν(ω)qR1}

− qR1
I ′n(qR1)

In(qR1)
+ nχb = 0. (2.17)

An analogous expression for the dispersion relation of the bulk magnetostatic modes

in an anti-nanowire can be deduced using Eq. (2.13).
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For both the wire and the anti-wire structures, it is easily proved by taking

the limit of q → 0 in Eqs. (2.15) and (2.17) that the surface modes (consisting of

one branch for each value of |n| except n = 0) have a common frequency equal to

ω0 + ωm/2 in the F case and (ω2
AF + ωAωm)

1/2 − ω0 in the AF case at q = 0. When

n = 0 there is no surface mode for any value of q, because the localization condition

cannot be satisfied. Also, in the AF case, the surface mode exists only when H0 �= 0.

When q is nonzero the surface mode frequency decreases monotonically (initially

proportional to q2) as q is increased until it reaches a cut-off at ωB, representing the

top of the bulk band in the F case, or ωB1, representing the top of the lower bulk

band in the AF case (see Eq. (2.10)). The cut-off value qmax increases with |n| and
is always larger for an anti-wire of radius R than for a wire of the same radius. For

example, in the case of a F material with applied field such that ω0 � ωm, we find

by expanding the modified Bessel functions that

qmaxR �
{
2|n|(|n| ∓ 1)

(ωB

ω0

− 1
)}1/2

, (|n| > 1), (2.18)

where the upper (lower) sign refers to the wire (anti-wire) structure.

In the case of the bulk modes of either a wire or an anti-wire, there are multiple

branches (i.e., many solutions of the dispersion relation) for each |n|, including here

n = 0, for each q value. We illustrate this property numerically later.

Next, we return to Eq. (2.11) for the surface modes of a general nanotube

structure and consider how it simplifies for small q. This involves expanding the

modified Bessel functions for small values of their arguments, assuming qR1 � 1

and qR2 � 1. We conclude that for small q �= 0 there are now two surface modes

with different frequencies for each nonzero value of |n| and no localized surface

modes when n = 0. When R1 and R2 are fairly well separated (i.e., in the case

of large wall thickness), these two branches may be interpreted approximately as

corresponding to one mode localized near the r = R1 interface and the other near
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the r = R2 interface. However, this concept no longer applies when the walls are

thin because of strong overlap effects. For the limit where q → 0, the two surface

mode frequencies in the nanotubes become degenerate and can be expressed as

ω =
√
(ω0 + ωm/2)2 − {(ωm/2)(R1/R2)|n|}2 (2.19)

in the F case. We note that this is different from the frequency of the surface modes

at q = 0 in the special cases of a F wire or antiwire. In Eq. (2.19) the frequency

depends on the quantum number n as well as on the radii R1 and R2. In a similar

manner, the frequency of the surface modes in AF nanotubes (in nonzero applied

field) when q → 0 can be found. This behaviour for the dispersion relations will be

illustrated later in the numerical calculations.

2.3 Numerical applications

Numerical applications are now presented for Permalloy (Ni80Fe20) in the F case

and MnF2 in the AF case to show the dispersion relations and the radial dependence

of the amplitude for surface and bulk modes. The material parameters are μ0M0 =

0.0645 T (or ωm/2π = 1.90 GHz) for Permalloy [85], while for MnF2 we have μ0M0

= 0.754 T (or ωm/2π = 21.0 GHz), μ0HE = 55.0 T (or ωE/2π = 1530 GHz) and

μ0HA = 0.787 T (or ωA/2π = 21.9 GHz) [23].

2.3.1 Dispersion relations for the surface modes

In Fig. 2.4 the dispersion relations for surface magnetostatic modes in Ni80Fe20

nanowires and anti-nanowires of the same radius are compared, taking μ0H0 = 0.6

T. The mode frequencies are plotted against the dimensionless qR for the first two

modes, i.e., |n| = 1 and 2. Consistent with our earlier discussion, the upper and

lower bounds of the dispersion curves are (ω0 + ωm/2) and ωB, respectively, and

these are plotted as the horizontal dashed lines. It is seen that the cut-off values
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Figure 2.4: Frequencies of the surface modes in Ni80Fe20 wire and anti-wire geometries
(radius R) versus dimensionless qR. The modes for the lowest two |n| (= 1,
2) are labelled as W1 and W2, respectively, for the wire case and as A1 and
A2 for the anti-wire case.

of qR are smaller for a wire than for an anti-wire, as mentioned earlier, and these

values increase with |n|. In this example we have ω0/ωm � 9.30, whereupon Eq.

(2.18) yields approximate cut-off values for qR when |n| = 2 as 0.46 and 0.79 for

the wire and anti-wire, respectively. These values are seen to be fairly close to

the more accurate values found numerically in Fig. 2.4. No solutions for Eqs.

(2.15) and (2.17) are found when n = 0. The group velocity vg = ∂ω/∂q of the

surface magnetostatic modes in a wire or an anti-wire can also be deduced from the

numerical dispersion relations. It depends on q and R as well as other parameters,

and we estimate (for example, using Fig. 2.4 and |n| = 1) that the maximum values

of |vg| is about 11 m/s in the wire case and 4 m/s in the anti-wire case when R = 50

nm. Qualitatively similar results are obtained for the frequencies of surface modes

in wires and anti-wires of MnF2.

We next focus on the numerical results for the surface magnetostatic modes in

nanotubes, where effects due to the two interfaces play a role. In Fig. 2.5 we present
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Figure 2.5: Frequencies of surface modes in a Ni80Fe20 nanotube versus qR2. The first
three |n| = 1, 2 and 3 modes are labeled as solid, dashed and chain lines for
(a) R1/R2 = 0.4 and (b) R1/R2 = 0.9.
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Figure 2.6: Dispersion relation for the surface modes in a MnF2 nanotube. The first
two |n| modes are plotted as dashed lines for R1/R2 = 0.4 and solid lines for
R1/R2 = 0.9.

the dispersion relations for a Ni80Fe20 nanotube, taking μ0H0 = 0.4 T. The surface

mode frequencies are plotted here against the dimensionless qR2 for |n| = 1, 2 and

3 (as labeled). They are again restricted to (ω0 + ωm/2) < ω < ωB, and in Fig. 2.5

(and henceforth) these bounds are shown as horizontal lines. No numerical solution

of Eq. (2.11) for the surface mode is found for n = 0. When |n| �= 0 the maximum

frequency always occurs at q = 0 and takes the values consistent with Eq. (2.19),

i.e., it is reduced compared to the wire and anti-wire cases (where R1/R2 ≈ 0).

This reduction effect increases with |n| and is less pronounced in Fig. 2.5(a) when

R1/R2 = 0.4 compared to Fig. 2.5(b) when R1/R2 = 0.9. Also, as remarked earlier,

for each |n| there are now two branches in the dispersion curves when q is nonzero.

Again, each branch exists only for q less than a cut-off value. The occurence of two

branches is a direct consequence of the two interfaces.

Analogous calculations for the surface modes can be obtained for AF nan-
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Figure 2.7: Frequencies of surface modes in a Ni80Fe20 nanotube versus R1/R2 when q
= 0, taking |n| = 1, 2 and 3.

otubes. As mentioned in Sec. 2.2 the frequencies lie in the range (ω2
AF +ωmωA)

1/2−
ω0 > ω > ωB1, with the upper bound being achieved only when R1/R2 ≈ 0. For

localization to be satisfied, we required H0 �= 0 and |n| �= 0. In Fig. 2.6 we illustrate

the dispersion curves of the surface modes for a MnF2 nanotube, where the frequen-

cies for the lowest two values |n| = 1 and 2 are plotted versus qR2 for two values

of the ratio R1/R2. In most respects, the surface mode properties are qualitatively

similar to those for F tubes.

The dependence of the surface mode frequencies on the wall thickness is of in-

terest for both F and AF nanotubes. Numerical calculations for Ni80Fe20 nanotubes

are presented in Fig. 2.7 where the frequencies for the |n| = 1, 2 and 3 surface modes

at q ≈ 0 are plotted against the ratio R1/R2 (which varies the wall thickness if R2 is

fixed). In this figure the two horizontal dotted lines represent the previously defined

frequency bounds for the surface modes. When R1/R2 → 0 and q ≈ 0, all modes

are degenerate at (ω0 + ωm/2), as for a F wire or anti-wire. As R1 → R2, all these
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Figure 2.8: The amplitude |ψ(r)| of the surface modes at ω/2π = 12.69 GHz plotted
against r/R2 for a Ni80Fe20 nanotube. The two interfaces correspond to the
vertical dotted lines.

modes become closer in frequency and collapse towards ωB, which is consistent with

the behaviour predicted in [86] for F nanotubes with negligible wall thickness.

The variations of ψ(r) for the surface modes with the radial distance r have

also been studied. For brevity our numerical calculations are presented only for

Ni80Fe20, but we find similar results for MnF2. Using the expressions for ψ(r) in

Sec. 2.2, together with the numerical values for the mode frequencies, we deduce

the results shown in Fig. 2.8 for the surface modes. Here we have chosen the inner

and outer radii of the nanotube as 20 nm and 50 nm, respectively. To obtain the

amplitudes of any surface mode, the corresponding mode frequency and the qR2

value are found from the dispersion curves (again with μ0H0 = 0.4 T). For a surface

mode with ω/2π = 12.69 GHz and using Fig. 2.5(a), the qR2 values are 0.12 and

0.59 for |n| = 1, and 0.36 and 1.15 for |n| = 2. In Fig. 2.8 the dependence of |ψ(r)|
for the surface modes on r/R2 is shown. Here the mode amplitudes are localized

near the two interfaces and decay with distance from the interfaces. The modes
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Figure 2.9: The dispersion relations for the lowest six branches of |n| = 0, 1 and 2 bulk
magnetostatic modes in the Ni80Fe20 nanotube.

with larger |n| are more strongly localized near the inner and outer interfaces than

those with small |n|.

2.3.2 Dispersion relations for the bulk modes

The dispersion relations for the bulk magnetostatic modes are similarly obtained

by solving Eq. (2.13) numerically. It is convenient to proceed directly to the bulk

modes in nanotubes, since the general properties for wires, anti-wires and tubes are

qualitatively rather similar. Previously we deduced that for F materials the bulk

modes correspond to ω0 < ω < ωB. For Ni80Fe20 with μ0H0 = 0.4 T this gives

a frequency range from 11.76 GHz to 12.67 GHz. In Fig. 2.9 these upper and

lower bounds are represented by the horizontal dashed lines, while the frequencies

of the lowest six bulk-mode branches are plotted against qR2 within this frequency

range. As indicated, three of these branches correspond to |n| = 0, two to |n| = 1,

and one to |n| = 2. There are, in fact, multiple bulk-mode branches corresponding
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Figure 2.10: Same as Fig. 2.8 but for the bulk modes in a Ni80Fe20 nanotube at ω/2π
= 12.1 GHz.

to each value of |n|, depending on how many nodes of the Bessel function occur

between r = R1 and r = R2. The general behaviour is that the frequency increases

with |n| and with the number of nodes. Each bulk mode decreases in frequency

with increasing qR2 and eventually approaches the lower bound of the bulk mode.

However, there is no frequency cut-off in the dispersion curves even for large qR2,

since there is no localization condition. The group velocities of the bulk modes can

be deduced from the slope of the dispersion curves. For example, for the R2 = 50

nm Ni80Fe20 nanotube in Fig. 2.9 the maximum |vg| occurs for the lowest frequency
branch of the |n| = 0 mode, and it is of order 500 ms−1.

The dispersion relations of the bulk magnetostatic modes in AF nanotubes

can also be investigated numerically. The behaviour is quantitatively similar to the

above F case, except that they occur within two frequency regions (i.e., ωAF −ω0 <

ω < ωB1 and ωAF + ω0 < ω < ωB2) when an applied field is present.

Numerical results for ψ(r) versus r have been obtained for the bulk modes, and
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Figure 2.11: A cylindrical multilayer geometry, where the magnetic layers (shown
shaded) alternate here with nonmagnetic spacer layers. The applied field
H0 and wave number q are along the z-axis. The numbering of layers from
1 to N is indicated.

in Fig. 2.10 we illustrate this for the Ni80Fe20 nanotube used in Fig. 2.9. Selecting

a bulk mode with ω/2π = 12.1 GHz, the qR2 values for the lowest branch of each

|n| are found from the dispersion curves as 3.12 for |n| = 0, 5.15 for |n| = 1, and

11.17 for |n| = 2. By contrast with the surface mode amplitudes in Fig. 2.8, it can

be seen from Fig. 2.10 that the bulk modes are not localized at the interfaces but

vary with r between the interfaces in an oscillatory fashion. In effect, a standing

wave is formed within the wall thickness of the tube.

2.4 Outline of theory for multilayers

The system consists of a long cylindrical core of radius R1 surrounded by an

arbitrary number of cylindrical tubes, so that the interfaces occur at radial values

{R1, R2, R3, · · · , RN−1} where the outermost layer N extends from RN−1 to infin-

ity. Each layer, including the core, may be either magnetic (a F or AF layer) or

nonmagnetic (a spacer layer). The layers are labeled with integers from 1 (the core)
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to N , and a typical example is depicted in Fig. 2.11 where there is a magnetic core

surrounded by alternating spacer and magnetic layers. To consider the dipolar (or

magnetostatic) modes we again assume the long-range dipole-dipole interactions to

be dominant in the spin dynamics. As in Sec. 2.2 for a single magnetic tube, we

employ a non-diagonal magnetic susceptibility tensor for each magnetic layer. The

z axis coincides with the direction of the applied field H0 and the saturation mag-

netization M0. Therefore the diagonal and off-diagonal frequency-dependent tensor

components χa and χb are the same as before.

To describe the coupled magnetic modes, we extend the transfer matrix for-

malism, as previously employed for planar geometries (see, e.g., [80, 87, 88]), to

apply to the cylindrical multilayers. Following our calculations for a magnetic tube,

the appropriate Maxwell’s equations are first re-expressed in terms of the magneto-

static scalar potential Ψ , which satisfies the Walker equation inside any magnetic

layer and Laplace’s equation in a nonmagnetic layer. The solution in the layer with

label m has the form ψm(r) exp[i(nθ + qz)] similar to Eq. (2.3) with

ψm(r) =
{
amIn(αmqr) + bmKn(αmqr)

}
(2.20)

in cylindrical polar coordinates, where n is an integer. These solutions involve the

Bessel functions In(αmqr) and Kn(αmqr). Here αm = {νm(ω)}1/2 is a ω-dependent

parameter related to the diagonal susceptibility component for the mth layer. It is

real or imaginary corresponding to surface modes (localized near an interface) or

propagating bulk modes, respectively. In any nonmagnetic layer, αm = 1.

The usual magnetostatic boundary conditions may next be applied in terms

of the scalar potential (see Sec. 2.2). Thus, at the interface r = Rm between layers

m and m+1, we eventually obtain, using the susceptibilities for the F or AF case, a
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matrix relationship between the respective a and b coefficients:

⎛
⎝ am

bm

⎞
⎠ = Tm

⎛
⎝ am+1

bm+1

⎞
⎠ , (2.21)

where Tm is the 2 × 2 transfer matrix for that interface. It can be obtained from

Tm = [Sm(Rm)]
−1[Sm+1(Rm)], where for layer m and any interface p we have

Sm(Rp) =

⎛
⎝ In(αmqRp) Kn(αmqRp)

ΦIm(Rp) ΦKm(Rp)

⎞
⎠ , (2.22)

with

ΦIm(Rp) =
qRp

αm

I
′
n(αmqRp)− nχbmIn(αmqRp). (2.23)

An analogous definition is made for the quantity ΦKm(Rp) in terms of the Bessel

function K. The above results apply for both F and AF materials. The repeated

application of Eq. (2.21) leads to

⎛
⎝ a1

b1

⎞
⎠ = T

⎛
⎝ aN

bN

⎞
⎠ , (2.24)

where the overall transfer matrix for the multilayer is given by T = T1T2. . .TN−1.

Finally, on using b1 = 0 and aN = 0 for the coefficients in the first and last layers

(which are conditions for the solutions to be well behaved as r → 0 and r → ∞,

respectively), it follows from Eq. (2.24) that T22(q, ω) = 0.

The vanishing of this matrix element of T constitutes an implicit dispersion

relation for the frequencies ω of the dipolar modes at wave number q. For the cases

of cylindrical systems with one or two interfaces, it can be explicitly verified that

the above condition reduces to the previous results for wires (see Eq. (2.15)) and
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Figure 2.12: Calculated dispersion relations for the coupled dipolar modes, showing fre-
quency versus qRout in a multilayer with N = 10 and the structure indicated.
The radii are chosen as R1 = 40, R2 = 60, R3 = 80, R4 = 100, R5 = 120, R6

= 140, R7 = 160, R8 = 180, R9 = Rout = 200 (all in nm), while μ0H0 = 0.6
T and |n| = 1. The horizontal lines indicate the upper and lower boundaries
for localized modes. See the text for other values.

tubes (see Eq. (2.11)). More generally, it can be solved numerically for systems

with any finite number of interfaces. In the following section we present examples

where the magnetic layers (which may be of different thickness and composed of the

same or different materials) are separated by spacers.

2.5 Numerical results and applications

Calculations are now presented for multilayers in which the magnetic layers

alternate with spacer layers (S). This is as shown in Fig. 2.11, except that in general

the core region may be either magnetic or a spacer. The magnetic layers may be

all F, where we use Ni as an example, all AF, with GdAlO3 as an example, or a

combination that includes some F and AF layers. Starting with the F case, results
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for the SW frequencies versus the dimensionless qRout (where Rout = RN−1 denotes

the outermost interface) are shown in Fig. 2.12. Here N = 10 and the F layers,

chosen as Ni, correspond to saturation magnetization MS = 0.048 T (or ωm/2π =

18.7 GHz) and γ = 30.9 GHz/T (see, e.g., [60]), as well as μ0H0 = 0.6 T. Specifically

we assume here a structure with a Ni wire as core and four Ni tubes surrounding

it (with intervening spacers). For simplicity, dispersion curves are shown only for

the localized surface (or interface) SW for which there are nine branches in the

present case, but there are also bulk SW manifolds that can occur outside the

region indicated by the horizontal dashed lines. The modes shown in Fig. 2.12 have

an angular dependence corresponding to |n| = 1. We note that all dispersion curves

have a negative slope and a cut-off at large q, which are general characteristics

shared by the interface modes for individual tubes [70]. The negative slope implies

that the group velocity is negative (i.e., propagation is in the opposite direction to

q). This is also found in certain other magnetostatic cases (see [15] for an example

in a planar film geometry). The highest-frequency branch in the present case is the

one localized near the R1 interface of the Ni core. The other coupled modes are

all associated mainly with the surrounding Ni tubes and occur in pairs (for the two

interfaces) that become degenerate in the small q limit.

For comparison, we show another F example in Fig. 2.13, where the core

region is now a spacer. Taking N = 7, we also include the dispersion curves for

|n| = 2, as well as |n| = 1. In general, a larger value of |n| means a more rapid

variation of the fluctuating magnetization with the azimuthal angle θ, which in turn

leads to a higher frequency (for a given q). This is seen to be the case in Fig. 2.13.

Also, because the core is nonmagnetic (by contrast with the case in Fig. 2.12), the

highest-frequency modes occur as a pair (becoming degenerate as q → 0) and are

mainly associated with the two interfaces of the innermost Ni tube. Fig. 2.14 shows

some similar calculations made for AF multilayers using GdAlO3. This material has
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Figure 2.13: As in Fig. 2.12, but for a F multilayer with N = 7 and the structure
indicated. The radii are chosen as R1 = 20, R2 = 40, R3 = 50, R4 = 70, R5

= 80, R6 = Rout = 100 (all in nm), and μ0H0 = 0.6 T. Here we show results
for |n| = 1 (filled circles) and |n| = 2 (open circles), as labeled. See the text
for other values.

a weak uniaxial anisotropy, so the mode frequencies are in the microwave region and

are comparable with those for typical ferromagnets. The relevant parameters are

ωm/2π = 22.0 GHz, ωA/2π = 10.2 GHz, and ωEx/2π = 52.6 GHz (see, e.g., [23]),

which imply a relatively low AFMR value of ωAF/2π = 34.4 GHz. The interface

modes in AF wires and tubes occur only when H0 �= 0, as a necessary condition

for localization, and they lie within a narrow frequency interval (defined by the

horizontal lines in Fig. 2.14) that starts above ωAF − ω0. Here we take μ0H0 = 0.7

T for a multilayer with N = 6 corresponding to an AF core with two surrounding

AF tubes separated by spacers.

It can be seen that qualitatively the behaviour is rather similar to that in

Fig. 2.12 for the F structure, except that there are fewer interfaces (and therefore

fewer localized modes) in the present case. We have also made calculations for other
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Figure 2.14: As in Fig. 2.12, but for an AF multilayer with N = 6 and the structure
indicated. The radii are chosen as R1 = 25, R2 = 35, R3 = 60, R4 = 75, R5

= Rout = 100 (all in nm), while μ0H0 = 0.7 T and |n| = 1. See the text for
other values.

choices of the AF material. For example, in MnF2 the AFMR frequency is much

larger, so as a consequence the SW occur at a much higher frequency range (∼
250 GHz) and in a very narrow band of width ∼ 0.04 GHz. Finally, in Fig. 2.15

we present calculations of the dispersion relations for a multilayer in which there

are both F and AF layers, again using Ni and GdAlO3 to illustrate the behaviour.

Specifically, the structure has an AF tube separated by spacers from an inner F

core and an outer F tube, which together are expected to provide a magnetically

polarizing effect on the AF. There are now found to be two regions of frequency in

which the localized modes may occur. In Fig. 2.15, which is obtained using μ0H0

= 0.1 T, the upper and lower regions are broadly characteristic of the AF and F

materials, respectively. The SW of the coupled system (see the filled circles) occur

as two branches in the upper region and three in the lower region. This might

be expected when the two frequency regions are non-overlapping and fairly well
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Figure 2.15: As in Fig. 2.12, but for a multilayer with both F and AF layers, taking N
= 6 and the structure indicated. The radii are chosen as R1 = 25, R2 = 35,
R3 = 60, R4 = 75, R5 = Rout = 100 (all in nm) , while μ0H0 = 0.1 T and |n|
= 1. As indicated, there are now two regions for the localized modes (note
the scale change in the vertical axis). The curves with the filled circles are
for the coupled modes of the multilayer, while the other curves (with dashed
lines) are the dispersion curves in the absence of any interlayer coupling.

separated, since there are two AF interfaces and three F interfaces. Nevertheless,

the mode coupling effect is significant, as can be seen by comparison with the curves

shown with dashed lines. The latter are the dispersion curves calculated for the

individual magnetic elements (i.e., for a F wire, an AF tube, and a F tube with the

appropriate sizes in the absence of the other magnetic elements). It can be seen

that in the upper region the coupling in the multilayer has produced an upward

shift in the two branches and has also removed the degeneracy that would occur as

q → 0 in an isolated AF tube. In the lower region the coupling in the multilayer

has produced a shift in all the branches and has drastically altered one of the mode

cut-off values for q at the lower limit. This change in cut-off q can be associated

broadly with modified localization properties of the interface mode in the F core.
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We have also studied the effects of varying the applied field H0 for the same

mixed F/AF multilayer as in Fig. 2.15. There is an interesting field dependence

because the two frequency regions where localized modes may occur have quite

different properties as H0 is varied. For example, if H0 is increased above the value

in Fig. 2.15, the AF region shifts downwards in frequency (and becomes very narrow)

whereas the F region shifts upwards. For a small range of field values around μ0H0 ∼
0.47 T the two regions may be overlapping, and then for μ0H0 greater than about

0.50 T the regions are reversed in order compared to the situation in Fig. 2.15. We

then find that the localized mode properties are drastically modified. For example,

when μ0H0 = 0.52 T we find only three localized modes (instead of five as in Fig.

2.15) because the localization condition at some of the interfaces can no longer be

satisfied due to the inhibiting effect of the larger H0.

2.6 Conclusions

In this chapter the theory of surface and bulk magnetostatic SW in F and

AF nanotubes has been developed, taking the external magnetic field parallel to

the symmetry axis of the tube. We used the magnetostatic form of Maxwell’s

equations to describe the propagation of the modes. The appropriate forms of

the dynamic (frequency-dependent) susceptibility of the magnetic material and the

standard electromagnetic boundary conditions at the two interfaces of the tube

were employed for the general form of theoretical dispersion relations of the surface

and bulk magnetostatic modes. We applied these analytical results to Permalloy

(Ni80Fe20) in the F case and MnF2 in the AF case for numerical studies of surface

and bulk modes in terms of their dispersion relations and radial amplitudes. Other

applications to Ni and GdAlO3 gave qualitatively similar results in the F and AF

cases, respectively, and are not presented here. Two limiting cases of the geometry

provide the surface and bulk magnetostatic modes for magnetic wires and anti-wires.
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In the wire case the previous dispersion relations of the surface magnetostatic modes

for F nanowires [68, 82] have been generalized.

The transfer matrix formalism developed here for multilayers with cylindrical

symmetry was used to study the coupled interface modes for various materials.

For simplicity we focused on the localized modes, since these occur in particular

frequency ranges characteristic of the magnetic material(s), as discussed in [70],

and typically give rise to sharp peaks in BLS spectra. The same formalism applies

equally well for the coupled bulk modes, which occur in frequency regions where

the relevant quantities αn are complex. Typically the bulk mode spectra consist of

many branches and lead to broadened peaks in BLS.

As a direct extension of this work, it would be of interest, through a Green’s

function approach and by analogy with earlier studies on magnetic thin films [89, 90],

to evaluate the spectral intensities of the surface and bulk magnetostatic spin waves

in the nanotubes. This will be considered in Chapter 6. Another useful extension

would be to generalize the magnetostatic mode calculations to obtain a description

of magnetic polaritons in nanotubes. This involves using Maxwell’s equations with

retardation effects included and will be presented in Chapter 4. Similarly, going

to larger wave numbers, it is of interest to consider the dipole-exchange SW in

nanotubes, and this is the topic of Chapter 5. The multilayer applications discussed

here all involved having the magnetic layers separated by a nonmagnetic spacer.

A generalization would be to consider different magnetic materials grown in direct

contact. This would require us to replace the applied field H0 in the susceptibility

components χa and χb by terms that include effective interface anisotropy fields,

and the relevant theory will be presented in Chapter 3.
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CHAPTER 3

Magnetostatic Modes in Bilayer Cylindrical Systems with

Ferromagnetic / Antiferromagnetic Interfaces

(Some of the results in this chapter have been published in [91] and [92])

3.1 Introduction

The phenomenon of exchange anisotropy in coupled magnetic bilayer

systems of ferromagnetic (F) and antiferromagnetic (AF) materials grown in direct

contact has been studied since its discovery in 1956 by Meiklejohn and Bean (see

[7, 93, 94], for reviews). This effective anisotropy leads to a unidirectional shift in

the hysteresis loop, accompanied by an exchange bias field and an increase in the

coercivity. Based on these physical properties of F-AF coupled systems, there has

recently been an interest in exchange-biased lithographed nanostructures and their

potential device applications in spin valves, magnetic storage and sensor industries

(see [1, 95, 96]). Eisenmenger et al. [8] reported that exchange-bias based devices

could make magnetic recording media even cheaper than paper. However, there are

many unresolved experimental issues in exchange-biased systems, where the effects

of size, aspect ratio or shape of the nanostructures on the exchange anisotropy are

poorly understood in both the F and AF layers. Inadequate interfacial characteriza-

tion makes it difficult to optimize the performance of these bilayer (and multilayer)

devices.

As a consequence, the considerable interest in bilayer films grown with a direct

contact between F and AF materials has been extended to their dynamical proper-

ties, e.g., to the coupled magnetostatic modes and their dependence on the interface

magnetic anisotropies ([67, 97]). Except for the fabrication of F-AF antidots [19],
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Figure 3.1: Schematic plot of hysteresis loops for an F-AF coupled systems in pres-
ence of a (a) strong AF anisotropy and (b) weak AF anisotropy.

there have not so far been any reports of F-AF cylindrical nanostructures. Neverthe-

less, understanding the effects of exchange bias in confined cylindrical nanostructures

and exploring the influence of exchange anisotropies at different surfaces are likely to

become important. A motivation for this chapter is to extend the above-mentioned

bilayer studies for planar geometries to the case of curved interfaces in various F-AF

coupled multilayer cylindrical structures.

The exchange anisotropy (see [1, 19, 93, 98, 99] for reviews) originates as a re-

sult of an interfacial exchange coupling between F and AF magnetic moments when

these two materials are in direct contact. In the presence of a strongly anisotropic

AF material, the magnetic moments in the F layer experience an additional torque

and the effective anisotropic field HI due to this interfacial coupling produces a

unidirectional hysteresis loop shift [see Fig. 3.1(a)]. On the other hand, if the AF

anisotropy is very weak, no hysteresis loop shift is observed, although the coercive

field may become enhanced [see Fig. 3.1(b)]. This effective field HI can be incorpo-
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rated into the Landau-Lifshitz torque equations in Sec. 1.4, modifying the response

to study the functions and the magnetostatic SW in the F/AF bilayered cylindri-

cal systems. Thus we expect, by comparison with both the planar case ([67, 97])

studied previously and the cylindrical multilayer results obtained in Chapter 2, that

the magnetic modes near the curved interface will have modified frequencies and

localization properties.

In generalizing the previous chapter, the simplest case of interest is the two-

interface structure in which we take, for example, a F nanotube but fill the core

with an AF material, or vice-versa. The theory for this case is presented in Sec.

3.2. Afterwards, in Sec. 3.3, the specific numerical applications of this formalism

are given taking Ni and GdAlO3 as the F and AF constituents of the cylindrical

bilayer nanotube and its inverse structure. Then we extend our theory in Sec. 3.4

to a magnetic bilayer cylindrical geometry where a nonmagnetic core is surrounded

by two concentric F / AF nanotubes of finite thickness (i.e., a three-interface struc-

ture). The dispersion relations for the surface magnetostatic modes are presented for

Permalloy and GdAlO3 in Sec. 3.5, and finally in Sec. 3.6 we give the conclusions.

3.2 Magnetostatic theory for a bilayer cylindrical nanotube

Here we model the bilayer magnetic system as a long cylindrical tube

of one magnetic material (see Fig. 3.2) interfaced with an inner core of another

magnetic material. In most cases one of the material is chosen to be an AF and

the other is a F, which leads to two distinct cases depending on which is chosen for

the core. An external magnetic field is taken parallel to the cylindrical axis (the z

axis) and a large length-to-diameter aspect ratio is assumed. The radii R1 and R2

are allowed to take general values, but are typically in the sub-micron range. As in

Chapter 2, the magnetostatic modes are characterized in terms of a wave number q

along the cylinder axis of symmetry, and again we assume q ∼ 106 or 107 m−1.
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Figure 3.2: A cylindrical nanotube with inner and outer radii R1 and R2 of one
magnetic material (e.g., a F) with the core filled by a different magnetic
material (e.g., an AF), or vice versa, is surrounded by a nonmagnetic
material. The external magnetic field H0 and propagation wave number
q are along the z axis, parallel to the magnetization (of the F) and the
sublattice magnetization (of the AF).

Following our calculations in the previous chapter for a single magnetic ma-

terial in a cylindrical geometry, we now solve for the dynamic response within each

magnetic material using Maxwell’s equations (without retardation) and the non-

diagonal magnetic susceptibility tensors. The latter quantities again have a gyro-

magnetic form with the nonzero frequency-dependent components χxx = χyy = χa

and χxy = −χyx = iχb. This form is applicable when the z axis (the cylindrical axis)

coincides with the direction of the applied field H0, the magnetization of the F, and

the sublattice magnetization of the AF, as in Fig. 3.2. However, in presence of the

effective exchange anisotropy, the previous expressions for χa and χb in Eqs. (1.16)

- (1.18) will be modified here. Due to the direct exchange coupling of magnetic

moments at the F / AF interface, the effective fields used in the Landau-Lifshitz

equation will contain an additional term for each F and uniaxial AF material [39, 82].

Taking this into account and following Refs. [67, 97], the static part of the effective

magnetic fields in the F material and the AF material will be modified as

HF = H0 + (MAF/〈M〉)HI , HAF = H0 + (MF/〈M〉)HI , (3.1)



58

where HI is the interface anisotropy field and 〈M〉 is a volume-weighted average of

MF and MAF for the bilayer. The susceptibility tensor components χa and χb in

Chapter 1 for F and AF material are then re-expressed through the replacement of

the applied field H0 by the above effective fields for each F and AF material. Ac-

cordingly, the terms in ω0 will be modified for each material, but the other quantities

ωm, ωAF , ωA and ωE remain the same as before.

Briefly, the magnetostatic calculations proceed by generalizing our previous

work in Chapter 2 (see also [100]). The appropriate Maxwell’s equations are re-

expressed in terms of the magnetostatic scalar potential Ψ, which satisfies the Walker

equation inside each of the magnetic materials and Laplace’s equation in the non-

magnetic material outside. The solutions have the general form ψn,q(r)exp(inθ +

iqz) in cylindrical polar coordinates, where n is an integer and q is the wave num-

ber. The solutions for the radial function ψ involve the standard Bessel functions

In(α1qr) for r < R1, a combination of In(α2qr) and Kn(α2qr) for R1 < r < R2,

and Kn(qr) for r > R2. The α parameters are ω-dependent quantities and can

be expressed as in Chapter 2 for each magnetic material. They are either real or

imaginary for surface-like modes (localized near the interfaces) or bulk-like modes

(with a wave-like behavior in the radial direction), respectively. Taking into account

the effective anisotropy at r = R1 (the F / AF interface) and applying the magne-

tostatic boundary conditions at r = R1 and R2, we find the dispersion relation for

the surface and bulk modes given by

∣∣∣∣∣∣∣∣∣∣∣∣∣

In(α1qR1) −c1 −d1 0

In(α1qR1)ΦI11 −c1ΦK21 −d1ΦI21 0

0 c2 d2 −Kn(qR2)

0 c2ΦK22 d2ΦI22 −Kn
′
(qR2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.2)

where ci = Kn(α2qRi), di = In(α2qRi), with i and j denoting 1 or 2, and
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Figure 3.3: Frequencies of the surface modes in a Ni nanotube with a GdAlO3 core
plotted versus the dimensionless qR2. The parameters are μ0H0 = 0.3
T, μ0HI = 0.05 T, R1 / R2 = 0.4, and the labels 1 and 2 refer to the |n|
values.

ΦKji =
Kn

′
(αjqRi)

αjKn(αjqRi)
− nχb

j

qRi

. (3.3)

There is a similar definition for ΦIji in terms of the Bessel function In(αjqRi).

3.3 Numerical results for bilayer nanotubes

We now apply the above theory to bilayer structures in which the F material

is Ni (for which ωm/2π = 18.7 GHz) and the AF is GdAlO3 (for which ωm/2π =

22.0 GHz, ωA/2π = 10.2 GHz, and ωE/2π = 52.6 GHz), implying a relatively low

AFR frequency corresponding to ωAF/2π = 34.4 GHz). These parameter values are

the same as in Refs. [70, 100]. There are two possible bilayer structures to consider,

depending on which material forms the core, and we show below that they give rise
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Figure 3.4: For comparison, the same as in Fig. 3.3 but separately for a Ni nanotube
(with nonmagnetic core) and for a GdAlO3 nanowire (with nonmagnetic
outer layer).

to contrasting properties for the magnetostatic modes.

In Fig. 3.3 we show calculations for a structure where the AF forms the core

and it is surrounded by the F. The frequencies of the coupled surface magnetostatic

modes for |n| = 1 and 2 are plotted versus wave number in terms of the dimensionless

qR2 for the above parameters and using R1 / R2 as a structure factor. Qualitatively

the modes have some features that are similar to those for cylindrical structures with

one magnetic material (see Chapter 2 and [70, 82, 100]). For example, the frequency

of each branch decreases monotonically as q increases until there is a cut-off value

above which no localized modes occur. Also the modes exist only within specific

ranges of frequency, as indicated by the horizontal lines. However, quantitatively

there are important differences including the existence of two bands of frequencies

for each |n|. Broadly, these have the character of an upper perturbed AF band and a

lower perturbed F band. Results for the frequencies, q dependence, and localization
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Figure 3.5: As in Fig. 3.3 but for the inverse structure consisting of a GdAlO3

nanotube with a Ni core, using the same field values and the same radii.
By contrast with Fig. 3.3, there is only one region of surface modes in
this case.

are strongly affected by the R1 / R2 ratio and the interface coupling. For comparison

we show in Fig. 3.4 the corresponding dispersion relations for the AF core on its own

and the F tube on its own, each surrounded by a nonmagnetic (vacuum) region. We

note that one of the branches to the dispersion relation for the F tube is suppressed

in the coupled structure (Fig. 3.3) because the localization condition can no longer

be satisfied. Furthermore there is a shift for each band.

Next we show in Fig. 3.5 some calculations for the inverse bilayer structure

to that of Fig. 3.3. Hence in this case the F forms the core and it is surrounded by

an AF tube. The modification due to the coupling in this geometry is found to be

more drastic than previously, essentially because the lower-frequency material now

fills the core. In fact, for the example shown the lower range of frequencies is absent

since the localization conditions are not satisfied. Again, for comparison, Fig. 3.6
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Figure 3.6: As in Fig. 3.4 but separately for a GdAlO3 nanotube (with nonmagnetic
core) and for a Ni nanowire (with nonmagnetic outer layer).

Figure 3.7: A bilayer cylindrical nanotube where the light shaded region represents
one magnetic material (e.g., AF) extending from radius R1 to R2, while
the darker shaded region is the other magnetic material (e.g., F) from
R2 to R3. The magnetic field H0 and wave number q are along the z
axis, parallel to the F magnetization and AF sublattice magnetization.
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shows the dispersion relations that would apply for the core and the tube separately.

3.4 Theory for F-AF cylindrical multilayers

Here we extend our previous magnetic bilayer calculations in Sec. 3.2 to the

more general geometry shown in Fig. 3.7, where there is a nonmagnetic core and the

double-walled magnetic nanotube has inner and outer radii R1 and R3 respectively

and an internal interface at R2. Using the multilayer notation of the previous

chapter, this is a three-interface structure (N = 4) corresponding to S-AF-F-S or

its inverse S-F-AF-S. As before, H0 is taken parallel to the cylindrical axis (the z

axis) and a large length-to-diameter aspect ratio is assumed. The magnetostatic

modes are characterized by the wave number q along the cylinder axis. The regions

internal and external to the nanotube are filled by a nonmagnetic medium (assumed

here to be vacuum).

By extension of the calculations in Chapter 2 for a nanotube composed of just

one material, we now solve for the dynamic response within each material using

Maxwells equations (without retardation) and applying electromagnetic boundary

conditions at all interfaces. The magnetic susceptibility tensors in terms of χa and

χb for the materials forming the bilayer have the same modified form as discussed

in Sec. 3.2. In particular, Eq. (3.1) is again applicable.

Following our previous methodology in Sec. 3.2 (see also [71]) the appropriate

Maxwells equations are re-expressed in terms of the magnetostatic scalar potential,

which satisfies the Walker equation inside each of the magnetic tubes and Laplace’s

equation in the vacuum regions outside. In cylindrical polar coordinates the solu-

tions have the form of a radial function multiplied by exp(inθ + iqz), where n is an

integer. The radial function has solutions involving the Bessel functions In(qr) for

r < R1, combinations of In(αmqr) and Kn(αmqr) inside the tubes, and Kn(qr) for

r > R3. The frequency-dependent αm can be defined as before (see Sec. 3.2) for
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a magnetic material, and we denote the values as α1 for R1 < r < R2 and α2 for

R2 < r < R3. The surface-like (localized) modes and bulk-like modes correspond to

real and imaginary αm, respectively. As for the previous F / AF bilayer nanotubes,

the role of the anisotropy due to the two materials in contact (i.e., at the r = R2

interface in our case) is expected to be important.

The final step is to apply the magnetostatic boundary conditions, as already

discussed [70], at the three interfaces, giving rise to six coupled equations involving

the six undetermined coefficients in the scalar potential. A dispersion relation for

the surface and bulk magnetostatic modes is then obtained in the form

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

In(qR1) −c11 −d11 0 0 0

In
′
(qR1) −c11ΦK11 −d11ΦI11 0 0 0

0 c21 d21 −c22 −d22 0

0 c21ΦK12 d21ΦI12 −c22ΦK22 −d22ΦI22 0

0 0 0 c32 d32 −Kn(qR3)

0 0 0 c32ΦK23 d32ΦI23 −Kn
′
(qR3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (3.4)

where cij = Kn(αjqRi), dij = In(αjqRi), with i denoting 1 or 2 or 3, j denoting 1

or 2, and

ΦKji =
Kn

′
(αjqRi)

αjKn(αjqRi)
− nχb

j

qRi

. (3.5)

There is a similar definition for ΦIji in terms of the Bessel function In(αjqRi).

3.5 Numerical results for multilayers

Numerical applications to the magnetic bilayer structures considered in Sec.

3.4 are now made, taking the F as Permalloy (or Ni0.8Fe0.2), for which ωm/2π =

23.9 GHz (see [70]). The AF is chosen as uniaxial GdAlO3, using the same material
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Figure 3.8: Frequencies of surface modes in a Permalloy / GdAlO3 nanotube plotted
versus wave number q, where the F forms the inner layer. Solid and
broken lines refer to |n| = 1 and 2.

parameters as in Sec. 3.3. The applied magnetic field and the interface anisotropy

field are chosen as μ0H0 = 0.2 T and μ0HI = 0.05 T.

There are two possible bilayer structures to consider, depending on which

material forms the inner layer, and we now show that they give rise to contrasting

behaviour for the coupled magnetostatic modes. In Fig. 3.8 we show an example

where the F forms the inner layer of the tube. The frequencies of the coupled

surface magnetostatic modes for |n| = 1 and 2 are plotted versus q for the above

parameters and assuming values for R1, R2 and R3 as indicated. Qualitatively the

modes have some features that are similar to those for cylindrical nanotubes with

one magnetic material [70], except that there are two bands of frequencies, labeled

as the AF Region and the F Region, which are characteristic of the component

materials. However, due to the coupling, the surface modes within each region
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Figure 3.9: As in Fig. 3.8 but for the inverse bilayer nanotube structure where the
AF now forms the inner layer, using the same values of the radii.

are perturbed in frequency and their localization properties are modified. As in

Chapter 2 and previously in Chapter 3 (see also [70]), the frequency of each branch

decreases monotonically as q increases until there is a cut-off value above which no

localized modes occur. Also the modes exist only within specific ranges of frequency,

as indicated by the horizontal lines. Quantitatively there are important differences

that include the existence of the two bands of frequencies, as well as two branches

for each |n| in both bands. Other new features, which are a consequence of coupling

across the cylindrical interface leading to restrictive conditions for localization, are

the cut-off values when q is decreased seen for the uppermost surface branch in the

AF region.

In Fig. 3.9 we present results for the inverse structure to that just described,

i.e., the same values of the radii are employed for the bilayer but the AF is now the

inner layer. It can be seen that the results are quite different in terms of the mode
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Figure 3.10: Frequencies of surface modes with |n| = 1 in a Permalloy / GdAlO3

nanotube plotted versus q, where the AF forms the inner layer. Solid
and broken lines refer to structures with different radii.

frequencies, cut-off values for q, hybridization (mode mixing), etc.

A final numerical example is given in Fig. 3.10, where we again take the case of

a bilayer with the AF as the inner layer (as in Fig. 3.9), but we illustrate the effects

of varying the radii. The mode dispersion curves are shown for |n| = 1 only, but we

consider two different sets of values for the radii (see the solid and broken lines) in

addition to those quoted in Fig. 3.9 for an analogous bilayer. In each case the four

surface modes can be approximately associated with localization near the inner and

outer radii of the AF and near the inner and outer radii of the F, although there is

also some degree of mode mixing. The modes in Fig. 3.10 that are the least affected

by the size variations are those represented by the almost degenerate curves starting

at ∼ 30.3 GHz in the AF Region, and we can identify these as having their maximum

amplitude near the vacuum / AF interface (at r = R1) and mainly localized within
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the AF layer. The other mode (localized near R2) in the AF Region is shifted in

frequency due to the role of the interface anisotropy, which gives different HF and

HAF values for the two structures in accordance with Eq. (3.1) due to a modified

〈M〉. Likewise the mode localized near R2, but mainly in the F layer, is represented

by the branches starting at ∼ 16.2 and 16.5 GHz for the two structures in Fig. 3.10.

3.6 Conclusions

We have presented calculations for AF / F magnetic bilayer structures

with a cylindrical geometry, generalizing previous studies for planar systems. Taking

Ni, Permalloy and GdAlO3 as examples we showed how the dispersion relations for

surface magnetostatic modes are changed with respect to our previous calculations

in Chapter 2 and how the inverse structures have different properties. In the two-

interface case of tubes where GdAlO3 is the core we showed how the frequency and

localization properties were different from those in the inverse structure with Ni as

the core. By extending our calculations to three interface cylindrical structures as

long concentric tubes around a nonmagnetic core and its inverse structure, we also

illustrated the different mode localization, hybridization and degeneracy of magnetic

modes for various radii. Analogous conclusions follow regarding the coupled bulk

modes of these magnetic bilayers. Numerical calculations (not shown) using AF

materials with higher anisotropy (such as MnF2) have also been carried out, leading

to qualitatively similar results. However, the applications using GdAlO3 are likely to

be of greater interest since this AF has a much weaker uniaxial anisotropy (implying

a smaller AF resonance frequency that may be comparable in magnitude with the

F resonance frequency) than is typically the case.

Inelastic light scattering (which can be either BLS or RLS, depending on the

frequency range of the modes) provides a convenient experimental technique to study

the coupled magnetostatic modes described in this chapter. Further investigations of
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the surface and interface dynamical effects as well as the role of interface anisotropy,

could be carried out using the generalized multilayer formalism discussed in Sec. 2.4.
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CHAPTER 4

Magnetic Polaritons in Cylindrical Tubes

(Some of the results in this chapter have been published in [101])

4.1 Introduction

As already mentioned, there has been recent interest in the SW excita-

tions of long magnetic nanowires and nanotubes, in particular for the magnetostatic

regime (discussed in Chapters 2 and 3) and the dipole-exchange regime (see the

next chapter), from both the experimental [59, 60] and theoretical [68, 70, 82, 102]

perspectives. On the other hand, the corresponding retarded electromagnetic modes

or magnetic polaritons have been studied in a wide variety of finite systems, mostly

in thin-film and other planar geometries (see, e.g., [35] for a review). The theory

of surface polaritons on planar AF films [103], and their experimental investigation

using attenuated total reflection (ATR) [56] are already well established. However,

this is not so far the case for F and AF tubes, where the mode coupling is more

complex, except in some special cases. Unlike the planar or even the spherical ge-

ometries, the cylindrical curved interfaces do not generally allow for the analysis of

the transverse electric (TE) and the transverse magnetic (TM) modes independently

[14]. As a result, the propagation of magnetic polaritons in cylindrical geometries

is expected to be studied in terms of solutions for the transverse electromagnetic

(TEM) modes. This has motivated the work of the present chapter.

In Chapters 2 and 3 we studied the SW dynamics in the magnetostatic regime

of wavevectors (see Fig. 1.3) for multi-interface cylindrical geometries where the

relevant wavevector values are easily accessible through BLS experiments. These

analyses were carried out in terms of the magnetostatic form of Maxwell’s equations
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and the corresponding boundary conditions. In the present chapter we expand

our earlier work by including the retardation effects to develop a theory of SW

polaritons in the electromagnetic regime (see Fig. 1.3) where the coupling between

the electromagnetic wave and the SW excitations must be taken into account in the

dynamics. A brief introduction to magnetic polaritons in infinite media and planar

films was given in Sec. 1.5.3. The aim of this chapter is to extend the earlier studies

of polaritons in magnetic cylindrical wire structures (see [104, 105, 106]), where

calculations were done for AF materials in a zero applied field, and to develop

a theory for the localized surface and bulk magnetic polaritons in hollow magnetic

cylinders or tubes (of AF or F materials) when a longitudinal applied field is present.

For the experimental observation of these modes, the ATR, RLS and BLS techniques

(see Sec. 1.6 and [16, 35] for reviews) would be the most promising to observe these

modes.

Extending the approach in Chapter 2, we begin in Sec. 4.2 by describing our

theory which consists of solving for the dynamical response using the non-diagonal

susceptibility tensor for a F or AF and Maxwell’s equations. The electric and mag-

netic field components within the magnetic and nonmagnetic regions are written

in cylindrical coordinates and the explicit solutions are derived in complete forms

where both fields are coupled in general. Afterwards, we apply the electromagnetic

boundary conditions at the inner and outer tube interfaces to obtain the theoret-

ical dispersion relations. In the absence of applied field for an AF, we describe a

simplified theory, as a special case, where the longitudinal field components can

be decoupled (allowing separation into TE and TM parts). The results for wires

and antiwires are deduced as limiting cases of this geometry. In Sec. 4.3, we make

numerical applications to YIG and MnF2 materials in antiwire, wire and tube ge-

ometries using the full version of our theory. Finally, in Sec. 4.4 we summarize our

analysis of magnetic polaritons.
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4.2 Theoretical formalism for polariton modes in tubes

To investigate the properties of surface and bulk polaritons in F or AF

cylindrical tubes we use the same geometrical model as in Fig. 2.1, where there are

two nonmagnetic-magnetic interfaces at r = R1 and at r = R2 in terms of cylindrical

polar coordinates (r, θ, z). By analogy with Chapter 2, the wire (R1 → 0, R2 �= 0)

and antiwire (R1 �= 0, R2 → ∞) geometries are obtained as special limiting cases.

Our previous calculations in Chapters 2 and 3 focussed on cases where the wave

number q along the z axis corresponded to the magnetostatic [70] regime. Here we

are concerned with the polariton or electromagnetic regime where exchange effects

are again negligible but we include the retardation effects which become important

at much smaller q.

In the presence of a longitudinal magnetic field and a static magnetization

(or sublattice magnetization) along the symmetry axis (the z axis) of the tube, the

dynamic response (at frequency ω) of a F or AF material in the region R1 < r < R2

can be characterized by a gyromagnetic permeability tensor [16]

←→μ (ω) =

⎛
⎜⎜⎜⎝

μ1(ω) iμ2(ω) 0

−iμ2(ω) μ1(ω) 0

0 0 1

⎞
⎟⎟⎟⎠ , (4.1)

and a diagonal dielectric tensor chosen as

←→ε =

⎛
⎜⎜⎜⎝

ε 0 0

0 ε 0

0 0 1

⎞
⎟⎟⎟⎠ , (4.2)

where μ1 = 1 + (χ+ + χ−)/2, μ2 = (χ+ − χ−/2 and ε is a frequency independent

constant. The quantities χ+ and χ− are expressed as in Eqs. (1.16) - (1.18) for F

and AF materials. Although χ± is more complicated for an AF than for a F, we have
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χ+ = χ− and so μ2 = 0 when H0 = 0. Therefore there is a diagonal permeability

tensor in this special case, which is not found for a F material. When H0 = 0,

we note that the response function term ν (= 1/μ1) in Fig. 2.3 will simplify to

have poles at the resonance frequency ωAF , and we later conclude that an enormous

simplification then arises in determining the polariton modes for an AF cylindrical

tube with H0 = 0. The nonmagnetic layers in the regions r < R1 and r > R2 of

tubes are occupied with vacuum or air and, are described by diagonal dielectric and

magnetic permeability tensors with ε replaced by ε1, μ1 = 1 and μ2 = 0.

In order to derive the dispersion relations for polariton spectra, we use the

complete form of Maxwell’s equations (see [14]) without sources of free charges or

macroscopic currents, which can be written as stated in Eqs. (1.33) - (1.34). Also

we note that the speed of light in the vacuum corresponds to c = 1/
√
μ0ε0.

The calculation of the polariton modes proceeds by solving Maxwell’s equa-

tions in cylindrical polar coordinates for a tube geometry. By contrast with our

magnetostatic calculations (see Chapters 2 and 3), we cannot employ a scalar po-

tential, but instead we seek solutions in terms of the electromagnetic fields, which

have the general form

�E(r, θ, z, t) = �E(r) exp[i(nθ + qz − ωt)],

�H(r, θ, z, t) = �H(r) exp[i(nθ + qz − ωt)] (4.3)

where n is an integer and q is the longitudinal wave number, as before. Using Eqs.

(1.33) and (4.3) we can write the components of the electric field �E(r) = (Er, Eθ, Ez)

and magnetic field �H(r) = (Hr, Hθ, Hz) within the F or AF material as

d

dr
(εrEr) + inεEθ + iqrEz = 0,

d

dr
{r(μ1H

r + iμ2H
θ)}+ in(μ1H

θ − iμ2H
r) + iqrHz = 0,
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1

r
(nEz − qrEθ)− ωμ0(μ1H

r + iμ2H
θ) = 0,

dEz

dr
− iqEr + iωμ0(μ1H

θ − iμ2H
r) = 0,

d

dr
(rEθ)− inEr − iωμ0rH

z = 0,

ωr(
ε

μ0c2
)Er − qrHθ + nHz = 0,

dHz

dr
− iqHr − iω(

ε

μ0c2
)Eθ = 0,

d

dr
(rHθ)− inHr + iωr(

ε

μ0c2
)Ez = 0. (4.4)

After some lengthy calculations, all the transverse field components (namely,

Er, Eθ, Hr and Hθ) in Eq. (4.4) can be re-expressed in terms of the longitudinal

field components Ez and Hz as

Er =
1

(κ4 − ξ4)

{
iq

(
κ2
dEz

dr
+
nξ2

r
Ez

)
+

μ0ω

(
μ2q

2dH
z

dr
+
n(μ1κ

2 − μ2ξ
2)

r
Hz

)}
,

Eθ =
1

(κ4 − ξ4)

{
− q

(
ξ2
dEz

dr
+
nκ2

r
Ez

)
+

iμ0ω

(
(μ1κ

2 − μ2ξ
2)
dHz

dr
+
nμ2q

2

r
Hz

)}
,

Hr =
1

(κ4 − ξ4)

{
− ωε0ε(ξ

2dE
z

dr
+
nκ2

r
Ez) + iq(κ2

dHz

dr
+
nξ2

r
Hz)

}
,

Hθ =
1

(κ4 − ξ4)

{
− iωε0ε

(
κ2
dEz

dr
+
nκ2

r
Ez

)
− q

(
ξ2
dHz

dr
+
nκ2

r
Hz

)}
,

(4.5)

with κ2 = (ω2εμ1/c
2)− q2 and ξ2 = ω2εμ2/c

2. Likewise, we find from Eq. (4.4) that
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the longitudinal field components Ez and Hz are coupled in general and satisfy

∇2Ez(r) +

(
κ2 − ξ2

μ2

μ1

+ q2
)
Ez(r) + βHz(r) = 0,

∇2Hz(r) +

(
κ2

μ1

+ q2
)
Hz(r) + δEz(r) = 0, (4.6)

where β = −iμ0ωqμ2/μ1 and δ = iε0εωqμ2/μ1 are coupling terms.

In the absence of a static applied magnetic field, the off-diagonal permeability

tensor component μ2 vanishes for an AF material, which causes β = δ = 0. This

implies a decoupling of Ez and Hz in Eq. (4.6), which reduces to two independent

equations of the form

∇2Ez(r) +

(
κ2 + q2

)
Ez(r) = 0,

∇2Hz(r) +

(
κ2

μ1

+ q2
)
Hz(r) = 0. (4.7)

In this special case, the above two equations can be solved independently for Ez

and Hz in order to calculate the retarded TE (Ez = 0) and TM (Hz = 0) modes.

Camley and Mills [42] also discussed a similar situation for the propagation of TE

and TM surface polaritons in uniaxial AF films considering the external field to

be zero. Another special case of Eq. (4.6) occurs in the limit of neglecting the

retardation effects (since βδ ∼ q2ω2/c2 → 0 as c → ∞). The differential equation

for Hz then reduces to the form of the Walker equation (see Eq. (2.2)) and can be

used to reproduce our previous magnetostatic calculations.

More generally, either for a F tube or for a AF tube with H0 �= 0 and with

retardation included, we cannot separate the TE and TM modes in the cylindrical

geometry. Instead we proceed by forming explicit solutions for the radial dependence

of Ez(r) and Hz(r) inside the magnetic tube, as well as in the nonmagnetic core

and outer regions. Following an established procedure (e.g., as in [107, 108] for
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other cylindrical geometries) the solutions for Ez(r) and Hz(r) from Eq. (4.6) each

involve linear combinations of Bessel functions of the form In(kr) and Kn(kr) where

k behaves as an effective wave number in the radial direction. It may be either real or

imaginary, corresponding to localized surface-like or bulk-like behavior, respectively.

By using Eq. (4.6) it is easily seen that there are actually two values for k, which

we denote as k1 and k2. These can be obtained as the roots (for k) of the quadratic

equation (see [107])

k4 − ω2ε

c2

[
μ1{1− (μ2/μ1)

2}+ 1−Q2{1 + (1/μ1)}
]
k2 +

ω4ε2

c4

[
μ1{1− (μ2/μ1)

2}+Q2{(Q2/μ1)− 2}
]
= 0, (4.8)

where Q = cq/ωε1/2. We note that the non-retarded case corresponds to Q �1.

The two roots k1 and k2 in this limit can be simplified to q and q/μ
1/2
1 . These values

correspond to the decoupled TM and TE modes familiar from magnetostatic theory

(see, e.g., [35]), as we will discuss in terms of examples later. However, in the general

case solutions for the longitudinal field components in terms of ki (i = 1, 2) now

involve the linear combinations

Ez(r) = a1In(k1r) + a2In(k2r) + b1Kn(k1r) + b2Kn(k2r),

Hz(r) = −X1

β
a1In(k1r)− X2

β
a2In(k2r)− X1

β
b1Kn(k1r)− X2

β
b2Kn(k2r),

(4.9)

where a1, a2, b1, and b2 are constants to be determined later by applying boundary

conditions. Also we have defined

Xi = (ω2ε/c2)[μ1{1− (μ2/μ1)
2} − q2/(ω2ε/c2)− ki

2/(ω2ε/c2)]. (4.10)

We next use Eqs. (4.9) and (4.5) to obtain the solutions of the transverse field
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components in the forms

Er = (iqr)

[
a1In(k1r)

{
1

k1r

In
′
(k1r)

In(k1r)
− nμ1X1

μ2(k1qr)2

}
+

a2In(k2r)

{
1

k2r

In
′
(k2r)

In(k2r)
− nμ1X2

μ2(k2qr)2

}
+

b1Kn(k1r)

{
1

k1r

Kn
′
(k1r)

Kn(k1r)
− nμ1X1

μ2(k1qr)2

}
+

b2Kn(k2r)

{
1

k2r

Kn
′
(k2r)

Kn(k2r)
− nμ1X2

μ2(k2qr)2

}]
,

Eθ = a1
In(k1r)

k1
2

{
μ1k1X1

qμ2

In
′
(k1r)

In(k1r)
− nq

r

}
+

a2
In(k2r)

k2
2

{
μ1k2X2

qμ2

In
′
(k2r)

In(k2r)
− nq

r

}
+

b1
Kn(k1r)

k1
2

{
μ1k1X1

qμ2

Kn
′
(k1r)

Kn(k1r)
− nq

r

}
+

b2
Kn(k2r)

k2
2

{
μ1k2X2

qμ2

Kn
′
(k2r)

Kn(k2r)
− nq

r

}
,

Hr =
μ1

μ0μ2ω

[
a1In(k1r)

{
− S1(ω

2ε/c2)

k1

In
′
(k1r)

In(k1r)
+

nμ2ω
2ε

c2μ1rk1
2

}
+

a2In(k2r)

{
− S2(ω

2ε/c2)

k2

In
′
(k2r)

In(k2r)
+

nμ2ω
2ε

c2μ1rk2
2

}
+

b1Kn(k1r)

{
− S1(ω

2ε/c2)

k1

Kn
′
(k1r)

Kn(k1r)
+

nμ2ω
2ε

c2μ1rk1
2

}
+

b2Kn(k2r)

{
− S2(ω

2ε/c2)

k2

Kn
′
(k2r)

Kn(k2r)
+

nμ2ω
2ε

c2μ1rk2
2

}]
,
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Hθ = ωεε0r

[
a1In(k1r)

{
1

k1r

In
′
(k1r)

In(k1r)
− nS1μ1

μ2(k1r)2

}
+

a2In(k2r)

{
1

k2r

In
′
(k2r)

In(k2r)
− nS2μ1

μ2(k2r)2

}
+

b1Kn(k1r)

{
1

k1r

Kn
′
(k1r)

Kn(k1r)
− nS1μ1

μ2(k1r)2

}
+

b2Kn(k2r)

{
1

k2r

Kn
′
(k2r)

Kn(k2r)
− nS2μ1

μ2(k2r)2

}]
. (4.11)

We have also introduced the notation that (for i = 1, 2)

Si = {c2/(ω2ε)}{(1/μ1)(q
2 + ki

2)− ω2ε/c2}. (4.12)

In the nonmagnetic (vacuum) regions the wave numbers are obtained by

putting ε→ ε1, μ1 = 1 and μ2 = 0 in Eq. (4.5). It is found (as expected) that there

is just a single wave number, denoted by qout, where

qout =
√
q2 − (ω2ε1/c2). (4.13)

We then use the relevant Bessel functions that are well behaved as r → 0 for the

core (when r < R1) and as r → ∞ for the outer region (when r > R2). The field

components in these two regions reduce to

Ez = c1In{( 1√
ε1
qout)r},

Hz = d1In(qoutr),

Er = − iq√
ε1qout

c1In
′{( 1√

ε1
qout)r}+ μ0nω

rqout2
d1In(qoutr),

Eθ =
nq

rqout2
c1In{( 1√

ε1
qout)r}+ iμ0ω

qout
d1In

′
(qoutr),

Hr = −ε0ε1nω
rqout2

c1In{( 1√
ε1
qout)r} − iq

qout
d1In

′
(qoutr),

Hθ = − iε0ε1
1/2ω

qout
c1In

′{( 1√
ε1
qout)r}+ nq

rqout2
d1In(qoutr), (4.14)
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for r < R1, while for r > R2 the results are

Ez = c3Kn{( 1√
ε1
qout)r},

Hz = d3Kn(qoutr),

Er = − iq√
ε1qout

c3Kn
′{( 1√

ε1
qout)r}+ μ0nω

rqout2
d3Kn(qoutr),

Eθ =
nq

rqout2
c3Kn{( 1√

ε1
qout)r}+ iμ0ω

qout
d3Kn

′
(qoutr),

Hr = −ε0ε1nω
rqout2

c3Kn{( 1√
ε1
qout)r} − iq

qout
d3Kn

′
(qoutr),

Hθ = − iε0ε1
1/2ω

qout
c3Kn

′{( 1√
ε1
qout)r}+ nq

rqout2
d3Kn(qoutr). (4.15)

Here c1, d1, c3, and d3 are constants.

Before proceeding, we emphasize that the general formalism is made compli-

cated by the fact that the TM and TE modes are coupled in the cylindrical geometry,

except when the magnetic susceptibility is diagonal (as for an AF with H0 = 0) or

when the magnetostatic limit is taken, and this is why both wave numbers k1 and k2

are needed here. By analogy with previous polariton work (see [35, 105, 107, 109]),

we expect that the regime where retardation effects are significant is defined by

qd ∼ 1 and cq ∼ ωresε
1/2, where d is the lateral dimension of the magnetic structure

and ωres is the resonance frequency (ω0 for a F or ωAF for an AF). Our numerical

applications later confirm these conclusions.

The final stage in these calculations is to apply the standard set of electro-

magnetic boundary conditions (see [14]) at both r = R1 and r = R2 interfaces of

the tube. Using the condition for the continuity of the tangential E and H field

components involved in Eqs. (4.9), (4.11) and (4.14) allows us to avoid making

an unphysical decoupling of the TM and TE parts, since this latter approximation

may lead to inconsistencies. For example, some previous calculations in [83] for the

polaritons in an AF wire with H0 �= 0 did not yield the correct limiting behavior for
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small retardation (i.e., the magnetostatic results). For the tube geometry the bound-

ary conditions (four at each interface) yield eight homogeneous linear equations for

the eight coefficients c1, d1, a1, a2, b1, b2, c3 and d3 that appear in the expressions for

the field components. An implicit dispersion relation for the polariton modes can

then be obtained in the form of the vanishing of a 8× 8 determinant in the general

tube case. This is described below after considering two special limiting geometries.

The general dispersion relation for a tube reduces to the vanishing of a 4× 4

determinant in each the single-interface cases of an antiwire or a wire since only

four coefficients are involved. We consider these simple cases to show the dispersion

relations as

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 1

0 (ω2ε/c2) −X1 −X2

−(nμ2/μ1)(q/qoutR)
2 (1/u)In

′(u)/In(u) ΦK1 ΦK2

(
√
ε1/εu)In

′(u/
√
ε1)/In(u/

√
ε1) −n/{(μ2/μ1)(qoutR)

2} ΥK1 ΥK2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(4.16)

for an antiwire (where the coefficients involved are c1, d1, b1 and b2), and

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0

−X1 −X2 0 (ω2ε/c2)

ΦI1 ΦI2 −(nμ2/μ1)(q/qoutR)
2 (1/u)Kn

′(u)/Kn(u)

ΥI1 ΥI2 (
√
ε1/εu)Kn

′(u/
√
ε1)/Kn(u/

√
ε1) −n/{(μ2/μ1)(qoutR)

2}

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(4.17)

for a wire (where the coefficients involved are a1, a1, c3 and d3). The latter expression

has the form of the wire dispersion relations derived by a slightly different method

in [107], except that we have corrected for some typographical errors in that paper.
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In both cases, we have defined u = qoutR/
√

(ω2ε/c2) and

ΦKi = −{(Xic)/(ω
√
εkiR)}Kn

′
[
kiR/({

√
(ω2ε/c2)}

]
/Kn

[
kiR/({

√
(ω2ε/c2)}

]
+

(nμ2/μ1)(q/kiR)
2,

ΥKi = {
√
(ω2ε/c2)/(kiR)}Kn

′
[
kiR/({

√
(ω2ε/c2)}

]
/Kn

[
kiR/({

√
(ω2ε/c2)}

]
−

(nμ1Siω
2ε)/(μ2(ckiR)

2). (4.18)

Similarly, ΦIi and ΥIi can be expressed by replacing the Bessel function K every-

where in Eq. (4.18) by the Bessel function I.

The 8 × 8 determinant condition representing the dispersion relation of SW

polaritons in a F or AF tube can now be expressed conveniently in block form as

∣∣∣∣∣∣
M1 M2

M3 M4

∣∣∣∣∣∣ = 0, (4.19)

where the Mj (j = 1, 2, 3, 4) are 4× 4 arrays. Specifically, the blocks M1 and M4 in

Eq. (4.19) are formally the same as those in Eqs. (4.16) and (4.17) for the antiwire

and wire cases, respectively, except that we replace R everywhere in those equations

by R1 and R2 respectively. The blocks M2 and M3, which describe the additional

effects of the second interface (e.g., the mode coupling across the tube thickness),

are defined similarly. Specifically,M2 is defined as in Eq. (4.17) but with R replaced

by R1 and the elements of columns 3 and 4 set to zero, whileM3 is defined as in Eq.

(4.16) but with R replaced by R2 and the elements of columns 1 and 2 set to zero.

As well as describing the surface polaritons, the above characteristic equation

can also be used to study the bulk-like polaritons in F and AF antiwires, wires, or

tubes. It is simply a matter of replacing the Bessel functions with their appropriate

form for complex arguments. It is important to note that in all the geometries for F

and AF materials we correctly describe the magnetostatic limit results of Chapter
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2 (which is also evident from the numerical examples presented in the following

section).

We can also employ the above formalism to examine the variation with respect

to r of the surface mode amplitudes corresponding to longitudinal and transverse E

and H field components. The same electromagnetic boundary conditions and the

same expressions for the E and H field components as in Eqs. (4.9) - (4.14) are

used to obtain the relative values of the constants involved in these equations. By

numerical examples, we will later illustrate the variations of localized retarded mode

amplitudes for different cylindrical structures. The variation of mode amplitudes for

the bulk polaritons can similarly be found by choosing Bessel functions appropriate

to their arguments (by analogy with Chapter 2).

4.3 Numerical applications

To illustrate the above theory, we present numerical examples for the

surface polariton frequencies in YIG and MnF2, chosen to represent the F and AF

cases respectively. The applied field H0 is typically taken to be nonzero. The

relevant parameters for YIG are [110]: μ0M0 = 0.175 T, γ/2π = 28.01 GHz/T, and

ε = 5.5 (for wavelength 632.8 nm). For MnF2 we use [23]: μ0M0 = 0.754 T, μ0HA =

0.787 T, μ0HE = 55.0 T, γ/2π = 27.77 GHz/T, and ε = 4.75.

First, for a YIG antiwire of radius R (putting R1 = R and R2 → ∞) and for

the applied field μ0H0 = 0.3 T, we show in Fig. 4.1 the surface polariton frequencies

versus wave number (in terms of the dimensionless qR) for the two lowest frequencies,

which correspond to |n| = 1 and |n| = 2. We note that, as in the magnetostatic

limit, there are no surface modes found for n = 0 because localization cannot be

satisfied. For the smallest R (curves A) retardation effects are negligible and the

results are essentially the same as given by the magnetostatic theory for the antiwire

geometry (see Chapter 2 and [70, 82]). The frequencies decrease with increasing q
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Figure 4.1: Frequencies of the surface polaritons with |n| = 1 and 2 in YIG antiwires
versus qR for three values of the radius: (A) R = 57 μm; (B) R = 1.1 mm;
(C) R = 3.4 mm. See the text for other notation.

until reaching a cut-off for localization. The maximum and minimum frequencies

for the surface modes are indicated by the horizontal lines. As R is increased,

the retardation effects become progressively more important in accordance with

the criteria quoted earlier. This is the situation in cases B and C, and there are

several important differences (compared with A) in the dispersion curves. First,

the surface polaritons occur only to the right of the corresponding light line, which

is defined by ω = cq and shown in Fig. 4.1 as a straight line with large gradient.

Also the shapes of the dispersion curves are modified near the light line and the

frequencies are reduced compared with the magnetostatic limit. This behavior is

mainly a consequence of the localization of the surface modes being reduced due

to retardation. The cut-off values, however, are only slightly modified since the
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Figure 4.2: For comparison, the same as in Fig. 4.1 but for in YIG wires with the same
radii.

retardation effects are less at larger q. The dispersion curves in the retarded cases

are indicated using two different types of broken lines, depending on whether k1 and

k2 are both imaginary (at larger qR) or just one of these quantities is imaginary (at

smaller qR near the light line). Both situations correspond to localized modes, but

in the latter case the fields oscillate as well as having a decaying amplitude with

respect to distance from an interface.

The results for surface polaritons in YIG wires (taking R1 → 0 and R2 = R)

with μ0H0 = 0.3 T and the same radii are qualitatively rather similar, with the

frequencies occurring within the same range. However, compared to antiwires, the

cut-off qR values in wires are different due to the different localization properties (as

might be expected from the magnetostatic limit [70]). Consequently the quantitative

effects of retardation (e.g., the frequency shifts) when R is increased are different,
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Figure 4.3: A plot of amplitude Hr(r) for the lowest surface polariton mode (|n| = 1)
versus r/R at applied field μ0H0 = 0.3 T and frequency ω/2π = 13.5 GHz
for (a) an antiwire and (b) a wire of YIG.



86

as can be seen by comparing Figs. 4.1 and 4.2. For example, the cut-off values for

qR at about 0.8 and 1.5 for n = 1 and n = 2 for the antiwires in Fig. 4.1 occur near

0.3 and 1.0, respectively, for the corresponding wires in Fig. 4.2. We also see in the

dispersion curves that the retardation effects decrease with the radius R of wires or

antiwires, and for the size of R = 57 μm, we effectively reproduce the results for the

surface magnetostatic modes.

Next we investigate the variations of the mode amplitudes with dimensionless

r/R for YIG antiwires and wires, taking (for example) the mode frequency at ω/2π

= 13.5 GHz, and the corresponding qR values deduced from the dispersion curves

A, B and C in Figs. 4.1 and 4.2. We analyzed the radial function of different

field components involved in Eqs. (4.9) (4.11) and (4.14) for the lowest frequency

(|n| = 1) modes. The Hr(r) mode amplitudes plotted in Fig. 4.3 show interesting

features. They are strongly localized near the interface in the YIG antiwires or

wires and decay with distance from the interface, by analogy with the discussion in

Chapter 2 for the magnetostatic modes in nanotubes. When the radius R of the YIG

antiwires or wires is reduced from 3.4 mm to 57 μm or less, the amplitude of modes

increases and eventually become identical to the magnetostatic mode amplitudes.

Also, our results highlight the substantial differences for the mode amplitudes in the

antiwire and wire geometries.

In Fig. 4.4 we show some results for YIG tubes with R1 = 0.3R2 taking μ0H0 =

0.2 T. The frequencies of the surface polaritons for |n| = 1 and 2 are plotted versus

qR2 for two tube sizes as indicated, showing different degrees of retardation. In this

geometry, by contrast with the wire and antiwire cases, there are two surface modes

for each |n|. A physical explanation is that these correspond to modes localized

mainly at the inner or outer surface, by analogy with the magnetostatic limit (see

Chapter 2 and [70]). Also, as in Figs. 4.1 and 4.2, the modes appear only to the

right of their light line, have frequencies that decrease with increasing retardation
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Figure 4.4: Frequencies of the surface polaritons in YIG tubes versus dimensionless qR2

for two sizes: (A) R1 = 0.7 mm and R2 = 2.3 mm; (B) R1 = 2.1 mm and R2

= 6.9 mm.

for any given qR2, and exist below the cut-off values of qR2.

We have also considered F and AF tubes with both thin and thick walls in order

to investigate the effect on the dynamics of surface polaritons. Here we illustrate our

numerical calculations in Fig. 4.5 for YIG tubes, where surface mode frequencies for

|n| = 1 and 2 are plotted as a function of R1/R2. The outer radius R2 is kept fixed

and the inner radius R1 is varied (changing the wall thickness). By analogy with the

magnetostatic example in Fig. 2.7, the mode frequencies lie between (ω0 + ωm/2)

and ωB, which are marked as the two horizontal dotted lines in the figure. Starting

with the limit of R1/R2 → 0 (i.e., the wire), the |n| = 2 (and higher) modes are

degenerate at the upper frequency bound, but split and reduce in frequency as

R1/R2 increases. By contrast, the lowest (|n| = 1) mode has branches that show

large frequency shifts due to retardation. When R1 → R2, the retardation effect
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Figure 4.5: The surface polariton frequencies plotted versus R1/R2 for a YIG tube with
μ0H0 = 0.2 T. The |n| = 1 and 2 modes are shown as black (solid) and red
(dashed) lines respectively, when qR2 = 0.2.

becomes minimal for these modes and, as a result, all these branches collapse towards

the lower frequency bound, which was also the case found in Fig. 2.7.

For completeness, we next present some results for the frequency dispersion of

bulk magnetic polaritons in a YIG tube. An applied field of 0.2 T and the appropri-

ate YIG material parameters are used to solve the 8×8 determinant condition in Eq.

(4.19). In order to display the effects of retardation on the bulk mode frequencies in

the region ω0 < ω < ωB (see Fig. 2.2), we choose larger sizes of YIG tube taking R1

= 10 mm and R2 = 34 mm. In Fig. 4.6 we plot the dispersion curves only for the

lowest seven branches (which come from |n| = 0, 1 and 2 modes). The frequencies

of these branches are strongly reduced by retardation near the light line and no

branches are found on the left side of the light line. Also, the group velocity of the

retarded SW polaritons changes sign in some regions compared with the results for
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Figure 4.6: Frequencies of the lowest seven bulk polariton modes (which correspond to
|n| = 0 (black), 1 (red) and 2 (green)) versus dimensionless qR2 in a YIG
nanotube. The inner and outer radii are 10 mm and 34 mm respectively and
the applied field μ0H0 = 0.2 T.

bulk magnetostatic modes (see, e.g., Fig. 2.9).

Finally, some dispersion relations for AF wires of MnF2 are shown in Fig. 4.7

using the parameters quoted previously. As in the earlier examples for YIG, the

effects of retardation become more pronounced as R is increased. The existence of

localized surface modes requires that H0 �= 0, so that the off-diagonal susceptibilty

components in Eq. (4.1) are nonzero, and these modes occur in a narrow frequency

regime intermediate between the two main regions for bulk polaritons. We also

made calculations for FeF2, which has a larger uniaxial anisotropy (μ0HA = 19.7 T)

than MnF2, but comparable exchange. As a consequence, the surface polaritons for

FeF2 occur at much higher frequencies (∼ 1560 GHz) and in a very narrow band of

width ∼ 0.007 GHz. Otherwise the qualitative behavior for FeF2 is similar to that

in Fig. 4.7. Both of these AF materials have been used for experimental studies on
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Figure 4.7: Frequencies of the surface polaritons in MnF2 wires vs dimensionless qR for
the applied field μ0H0 = 0.3 T and for three values of the radius: (A) R =
1.7 μm; (B) R = 83 mm; (C) R = 132 mm.

polaritons in thin films (see references in [35]), and are therefore suitable for similar

experiments in cylindrical geometries.

4.4 Conclusions

We have developed a macroscopic continuum theory for the magnetic

polariton spectra in tubes (with two interfaces) of F and AF materials, from which

the limiting geometries of wires and antiwires (both single interface geometries)

can be considered as special cases. The characteristic equations are derived by

solving the full form of Maxwell’s equations together with a non-diagonal frequency-

dependent magnetic susceptibility tensor and a longitudinal applied field. In the

AF case, it is the applied field that gives rise to off-diagonal components of the

susceptibility tensor and causes a coupling between TE and TM modes in these
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cylindrical geometries. By contrast with some previous calculations for AF wires in

nonzero field [83] where an approximation was used to solve for TE or TM mode

independently, our formalism has treated this coupling carefully. We solved the

cylindrical form of Maxwell’s equations for the magnetic and nonmagnetic layers of

a tube and applied the electromagnetic boundary conditions at its inner and outer

interfaces for both the electric and magnetic field components. This allowed us

to derive theoretical dispersion relations for the surface and bulk polaritons which

reduce correctly to the known magnetostatic limit (see Chapter 2) if the retardation

effects become small (e.g., if the diameter is reduced).

In the dispersion curves of surface polaritons we have shown the degree of

retardation and its effects on the SW dynamics by decreasing the radius of YIG

antiwires or wires from the range of mm (large retardation) to μm (small retarda-

tion). Our results for a YIG wire are consistent with those in [107] derived for the

special case of a F wire. We have found that the frequency of the surface polariton

modes near the light line are reduced (compared to the magnetostatic limit), but

this reduction depends on the specific geometry. Also, the variations of the mode

amplitudes with radial distance were studied. The dispersion relations for surface

polariton modes and their dependence on wall thickness were investigated for a YIG

tube. We also made analogous calculations for MnF2 and FeF2 (AF) tubes. The

limiting cases of wire and antiwires (as well as the behaviour in the magnetostatic

limit) for zero and nonzero applied field were also analyzed in the AF case.

By analogy with the calculations for bulk and surface plasmon-polaritons prop-

agating in arbitrary directions in planar semi-infinite semiconductor superlattices

[111], our present theory of SW polaritons in tubes could be extended to cylindrical

multilayers by following our transfer matrix analysis as in Sec. 2.4.
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CHAPTER 5

Theory of Dipole-Exchange Spin Waves in Ferromagnetic

Cylindrical Nanotubes.

(Some of the results in this chapter have been published in [112])

5.1 Introduction

Ferromagnetic nanowires and nanotubes, as well as arrays of these struc-

tures, have attracted much attention for their spin dynamics, e.g., in the devel-

opment of magnonic analogs to photonic crystals [113] and in device applications

[32, 72], as well as being of fundamental interest. In particular, BLS has proved

to be a useful technique for probing the SW in these low-dimensional structures

[32, 69, 113, 114], typically in the dipole-exchange regime. Most dipole-exchange

studies have been applied to nanowires having a rectangular cross section (i.e., a F

stripe geometry), as in [32, 114], and there has been relatively less attention given

to long wires (and tubes) with a cylindrical geometry. Some exceptions are the BLS

studies of quantized SW in wires [69] and tubes [60]. On the theoretical side, for

cylindrical geometries, SW calculations in nanowires for the magnetostatic limit (at

small wave numbers where the dynamical effects of exchange are negligible com-

pared to dipole-dipole interactions) were made by Sharon and Maradudin [82] and

later generalized by us to tubes and multi-interface structures (see Chapters 2 and

3, and [70, 71]).

Macroscopic dipole-exchange SW calculations for cylindrical wires have been

reported [68] and then used in [69, 78] to study the SW dynamics in F nanowires,

fabricated by electrodeposition in porous alumina templates and analyzed by BLS.

The motivation for this chapter is to extend the macroscopic (or continuum) method
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used in the earlier chapters to study the dipole-exchange SW (or DESW) in tubes,

where additional quantization effects arise due to the two interfaces.

According to our general discussion in Chapter 1, the study of DESW excita-

tions must include the interplay between the long range dipole-dipole interactions

and the short range exchange interactions in the magnetization dynamics, as char-

acterized by wavevectors such that typically 107 < q < 108 m−1. Following a similar

procedure to that in [68] for a single interface F nanowire, we focus on applying

the theory of DESW modes to F nanotubes (cylindrical geometries with two in-

terfaces), including also the effects of a phenomenological damping. The magnetic

modes within thin and thick walled nanotubes are described using both unpinned

and effective pinned cases, together with the electromagnetic boundary conditions

at the inner and outer interfaces. Our calculations describe the radial and angular

quantization of the different modes in nanotubes and can be related to recent BLS

experiments, e.g., in Ni nanotubes. The characteristic equations for the DESWs are

deduced by a generalization of our results in Chapter 2 on multi-interface cylindrical

magnetic geometries in situation where the dipole-dipole interactions were dominant

(the magnetostatic regime). For limiting cases, our present calculations also simplify

to describe the one interface geometries of DESWs in antiwires and wires.

We begin in Sec. 5.2 by describing our theoretical formalism where a fre-

quency dependent response function is evaluated using the Landau-Lifshitz-Gilbert

(LLG) equation and applied to the case of a F material in the presence of damping.

Next, we use Maxwell’s equations together with the response function to deduce

and solve a sixth order differential equation for the magnetization dynamics. With

the use of appropriate Bessel functions and the boundary conditions at the inner

and outer interfaces of the nanotube, the solutions (using superposition) for the

variable magnetization components and the DESW dispersion relations, as well as

some limiting cases, are obtained. Following this, in Sec. 5.3 numerical calculations



94

are made for nanostructures of EuS and Ni including different pinning conditions

and a phenomenological damping. Finally, in Sec. 5.4 we provide brief conclusions

of the work in this chapter.

5.2 Analytic theory of dipole-exchange SW in a tube

As in Chapters 2 and 4, as well as Ref. [70], the model of nanotube in our

present consideration is also an infinitely long, hollow magnetic cylinder (ignoring

the end-effects) with inner radii r = R1 and outer radii r = R2. The regions r < R1

and r > R2 of the tube are filled with a nonmagnetic and the region R1 < r < R2

is filled with a F material. The case of an AF material could be treated in a similar

fashion, but is slightly more complicated due to two-sublattice structure of a AF

(as discussed in [115] for a film geometry). The limiting cases of wires (R1 → 0,

R2 �= 0) and antiwires (R1 �= 0, R2 → ∞) are also of interest. In the previous

chapters we emphasized the behaviour of SW excitations in the electromagnetic

and the magnetostatic regimes where only the magnetic dipolar interaction played a

major role in the SW dynamics. Here, the aim is to extend our previous theoretical

investigations to the dipole-exchange regime, which includes both long range dipole-

dipole and short range exchange interactions in the SW dynamics (see Chapter 1).

With a longitudinal applied magnetic field we study the DESW modes propagating

along the symmetry axis (z axis) and characterized by the wavevector q of magnitude

107 m−1 or larger.

In a theory of the DESW in a F nanotube, the dynamical response function

for a F in Eqs. (1.15) and (1.16) must be re-derived with both dipolar and ex-

change effects present. We start from the Landau-Lifshitz torque equation with a

phenomenological Gilbert damping term included [33], as quoted in Eq. (1.9). In

our present case the total magnetization is
−→
M =M0ẑ+

−→m(−→r )e−iωt with ω denoting

the angular frequency of the SW and |−→m| << M0 in the linear SW regime. The
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gyromagnetic ratio is γ and the total effective magnetic field is

−→
H eff = H0ẑ + {−→h d(

−→r ) +−→
h ex(

−→r )}e−iωt. (5.1)

By analogy with Chapter 2 and Ref. [16], the dipolar field
−→
h d is deduced from

Maxwell’s equations (without retardation) while the exchange field
−→
h ex can be

expressed in the form
−→
h ex = −λ−→M − (D/M0)∇2−→M as in Eq. (1.11), where λ

is a static exchange factor and D is the exchange stiffness constant. Finally, we

remark that the inclusion here of a damping term, proportional to the dimensionless

constant α0 in Eq. (1.9), is important in the tube geometry (with its two interfaces)

in order to get a more realistic description of the coupled SW modes and also to

describe the wire and antiwire limiting cases.

Following dipole-exchange SW theories [68] for other geometric samples (see

also Sec. 1.5.2), the calculation proceeds by substituting the
−→
M and

−→
H eff terms

into the LLG equation and linearizing the result in terms of −→m(−→r ), i.e.,

−iω−→m(−→r ) = −ωm{ẑ ×−→
h d(

−→r ) + (ω0 −D∇2 − iα0ω){ẑ ×−→m(−→r )}, (5.2)

which generalizes Eq. (1.26). Next, we use Eq.(5.2) and the magnetostatic form of

Maxwell’s equations, as in Chapter 2 to find the homogeneous differential equation

for the magnetic scalar potential Ψ(r, θ, z) within the F layer of the tube, i.e.,

[(D∇2 − ω0 + iα0ω){D∇2 − (ωm + ω0 − iα0ω)}]∇2Ψ

−ω2∇2Ψ+ ωm(D∇2 − ω0 + iα0ω)
∂2Ψ

∂z2
= 0, (5.3)

which is a generalization of the previous second order differential equation in Eq.

(2.2), to what is now a sixth order differential equation. By analogy with [68] for

other cylindrical geometries and the procedure established in our preceding chapters,
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the magnetic scalar potential inside the F tube has a solution of the form fn(r)

exp(inθ) exp(iqz), (e.g., as in Eq. (2.3)) where the integer n is the azimuthal

quantum number and q is the wave number along the z axis of symmetry. The

radial function f has the form of a linear combination of Bessel functions In(κr)

and Kn(κr). However, instead of there being a single solution
√
ν(ω)q for κ as

previously in Eq. (2.5), we now find the following sixth order indicial equation after

substituting the Bessel functions into Eq. (5.3):

(κ2)3 −X1(κ
2)2 +X2κ

2 +X3 = 0, (5.4)

with

X1 =

(
1

D

){
(3Dq2 + 2ω0 + ωm)− i2α0ω

}
,

X2 =

(
1

D2

)[
{3D2q4 +Dq2(4ω0 + ωm) + ω0(ω0 + ωm)−

(1 + α2
0)ω

2} − iα0ω(4Dq
2 + 2ω0 + ωm)

]
,

X3 =

(
1

D2

)[
−D2q6 −Dq4(2ω0 + ωm)−

q2{ω0
2 − (1 + α2

0)ω
2 − ωmDq

2}+ i2α0ωq
2(Dq2 + ω0)

]
. (5.5)

Since Eq. (5.4) can be considered as a cubic equation in κ2, there are three indepen-

dent roots for κ in general and these can be denoted as κj (with j = 1, 2, 3). They

depend on ω, q, H0, M0 and α0, and they play the role of effective wave numbers in

the radial direction. In general they are complex and contain information about the

spatial localization and the degree of hybridization (mixing) of the modes. When

the damping is small some of the κj are approximately real (with κj
2 > 0 ) for the

localized surface modes and approximately pure imaginary (with κj
2 < 0) for the

radial bulk modes, but they become complex in the regions of hybridization.
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Figure 5.1: Variation of κj
2 with frequency for a F nanotube in the limit of zero damping

(α0 → 0). We have chosen q = 0.3 nm−1, ω0 = 6.19 GHz, ωm = 18.66 GHz,
D = 3.13 T nm2, as appropriate to Ni.

In Fig. 5.1 we show a plot of the real κj
2 versus frequency when α0 → 0

in order to explain the physical nature for each wave number. The wave with κ1
2

has decay-like characteristics in the frequency region where κ1
2 is positive and an

oscillatory bulk-like behaviour in the region where κ1
2 is negative. The root κ2

2

is always positive for the frequency range of interest, and its wave corresponds a

localized surface mode. The wave related to κ3
2 is a strongly localized surface mode

as κ3
2 is larger and positive. In the limiting case of D → 0, the region of κ1

2 < 0

dominates over the region of κ1
2 > 0, which corresponds mostly to the oscillatory

bulk modes, whereas the mode related to κ2
2 shows the analogous magnetostatic

surface modes (see [70]) and the other strongly localized surface wave does not have

any analog to magnetostatic modes. These findings are analogous to those in [39]

for the dipole-exchange SWs in the F thin-film geometry.
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Generalizing our previous analysis in Chapter 2, the radial function fn(r)

inside the magnetic material (R1 < r < R2) can be expressed as the form of a linear

combinations of modified Bessel functions In and Kn, i.e.,

fn(r) =
3∑

j=1

{
ajIn(κjr) + bjKn(κjr)

}
, (5.6)

where a1, a2, a3, b1, b2 and b3 are unknown coefficients.

After some lengthy but straightforward algebra, the transverse components

for �m(r, θ, z) inside the magnetic material take the form

mr(r, θ, z) = −ωm

2
exp[i(nθ + qz)]

3∑
j=1

κj

{
ajIn+1(κjr) + bjKn+1(κjr)

ω0 +D(q2 − κj2) + (1− iα0)ω
+

ajIn−1(κjr) + bjKn−1(κjr)

ω0 +D(q2 − κj2)− (1 + iα0)ω

}
, (5.7)

and

mθ(r, θ, z) = i
ωm

2
exp[i(nθ + qz)]

3∑
j=1

κj

{
ajIn+1(κjr)− bjKn+1(κjr)

ω0 +D(q2 − κj2) + (1− iα0)ω
− ajIn−1(κjr)− bjKn−1(κjr)

ω0 +D(q2 − κj2)− (1 + iα0)ω

}
. (5.8)

Using the above results together with Eq. (5.2), we can also derive the general-

ized form of Eqs. (1.16) and (1.17) for the scalar representation of the susceptibility

tensor components χa and χb as

χ± =
ωm{(ω0 +D(q2 − κj

2)∓ ω) + iα0ω}
{ω0 +D(q2 − κj2)∓ ω}2 + (α0ω)2

, (5.9)

for the mode labelled j. Here, the exchange (through D) and the damping (through

α0) modify the pole in the denominator of χ±, as can be seen by comparing with

Eqs. (1.16) and (1.17). This causes a frequency shift in the response function for
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Figure 5.2: Schematic diagram of susceptibility function vs. frequency for a F ma-
terial with Gilbert damping.

a F material, making it interesting to probe the SW experimentally using FMR or

BLS. To estimate this shift, the admixture of κj terms with weighting factors must

be determined using the boundary conditions at the inner and outer interfaces of

the tube, as will be discussed later in this section and illustrated numerically in Sec.

5.3. At this stage, for the limit of D → 0 but with damping included, the variation

of the complex susceptibility function χa with frequency is plotted in Fig. 5.2. The

mathematical divergence of this function near the resonance frequency (see Chapter

2) for a F material is removed when the Gilbert damping term is included, so the

real (or dispersive) part of this response function is finite while the imaginary (or

absorptive) part has a Lorentzian line shape, as shown in Fig. 5.2. This can be used

to calculate the FMR line width at half-maximum. From the imaginary part of

Eq. (5.9), the full resonance line width at half-maximum is �H = 2ωα0/γμ0 where
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we follow the FMR convention of expressing the result in magnetic field terms (see

[33]).

Taking account of the dipolar fields in the nonmagnetic core (r < R1) and

external (r > R2) regions, the magnetostatic scalar potential Ψ can be expressed by

analogy with Eqs. (2.7) and (2.8), as

Ψn(r, θ, z) =

⎧⎨
⎩ c1In(qr) exp[i(nθ + qz)] (r < R1)

d3Kn(qr) exp[i(nθ + qz)] (r > R2) ,
(5.10)

where c1 and d3 are unknown coefficients.

Next, we apply the boundary conditions at the R1 and R2 interfaces of the

nanotube to determine the degree of mixing for the DESW. There are eight unknown

coefficients c1, a1, a2, a3, b1, b2, a3 and d3 involve in Eqs (5.6), (5.7), (5.8) and (5.10).

By contrast with our earlier calculation of magnetostatic modes in nanotubes, the

two magnetostatic boundary conditions (see Chapter 2) will not be sufficient to

determine all the eight unknowns. Two additional boundary conditions must now be

considered based on the spatial inhomogeneity in the r.f. magnetization components

near the interfaces. Based on the influence of exchange coupling and the effective

pinning by the inhomogeneities in the dynamic magnetization fields at the interfaces,

there are two extreme situations to take into account. One corresponds to ‘zero

pinning’ where the DESW has an amplitude maximum at each interface (i.e., an

antinode), while the other corresponds to ‘strong pinning’ with zero amplitude at

each interface (i.e., a node). These two cases are shown schematically as in Fig. 5.3

for a F film with spatial quantization of the bulk SW (see [16]).

These considerations, which have been extensively discussed in the literature,

lead us to consider two additional effective boundary conditions for the transverse

magnetization components, one for mθ and one for mr, at each interface Rl (l = 1,
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Figure 5.3: Schematic plots of some bulk SW amplitudes in a F film for (a) zero surface
pinning and (b) strong surface pinning.

2):

[
∂mθ(r, θ, z)

∂r

]
r=Rl

= 0, (5.11)[
∂mr(r, θ, z)

∂r
+ ηlmr(r, θ, z)

]
r=Rl

= 0, (5.12)

which are analogous to the form deduced in [68, 116]. Here, the ηl coefficients (for l =

1, 2) in Eq. (5.11) can be used as fitting parameters, or effective pinning constants,

for the two interfaces of the F tube. Two limiting cases are often used: one is the

Rado and Weertmann type unpinned boundary condition [117] taking ηl → 0 and

the other is the Kittel type strongly pinned boundary condition [25] taking ηl → ∞.

We now employ these four boundary conditions at each interface of the nan-

otube, giving us eight homogeneous linear equations for the eight unknown coef-

ficients that appear in the expressions for the magnetostatic scalar potential and
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the transverse magnetization components. The elimination of these amplitude co-

efficients will give rise to the vanishing of an 8 × 8 determinant, which yields the

implicit dispersion relation of the DESW modes as

∣∣∣∣∣∣
Λn

1(ω, q, R1) Πn
1(ω, q, R1)

Λn
2(ω, q, R2) Πn

2(ω, q, R2)

∣∣∣∣∣∣ = 0 . (5.13)

Here Λ and Π are blocks representing the 4× 4 matrices defined by

Λn
ι =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δ1,ιIn(kRι) p1ι p2ι p3ι

δ1,ιkR1In
′(kRι) p1ιΦK1ι p2ιΦK2ι p3ιΦK3ι

0 2ωΨK1ι −ΥK1ι 2ωΨK2ι −ΥK2ι 2ωΨK3ι −ΥK3ι

0 2Ω1ΨK1ι −ΥK1ι 2Ω2ΨK2ι −ΥK2ι 2Ω3ΨK3ι −ΥK3ι

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.14)

where label ι can be 1 or 0. Other quantities introduced here are

pjι = Kn(κjRι), ΦKjι
= (1 + χa)κjRι

Kn
′(κjRι)

Kn(κjRι)
± nχb,

ΨKjι
=

1

Tj

[
κj

2

{
−Kn+2(κjRι) +

(
n+ 1

κjRι

)
Kn+1(κjRι)

}
+ �ικjKn+1(κjRι)

]
,

ΥKjι
=
Kn(κjRι)

Qj

[
2n

Rι
2

{
κjRι

Kn
′(κjRι)

Kn(κjRι)
− 1

}
+

2n�ι
Rι

]
,

Ωj =

{
ω0 +D(k2 − κj

2)− iαω

}
, Tj = Ω2

j − ω2, Qj = Ωj − ω. (5.15)
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Similarly, the other block appearing in Eq. (5.13) is

Πn
ι =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1ι q2ι q3ι δ2,ιKn(kRι)

q1ιΦI1ι q2ιΦI2ι q3ιΦI3ι δ2,ιkR1Kn
′(kRι)

−2ωΨI1ι −ΥI1ι −2ωΨI2ι −ΥI2ι −2ωΨI3ι −ΥI3ι 0

−2Ω1ΨI1ι −ΥI1ι −2Ω2ΨI2ι −ΥI2ι −2Ω3ΨI3ι −ΥI3ι 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.16)

with

qjι = In(κjRι), ΦIjι = (1 + χa)κjRι
In

′(κjRι)

In(κjRι)
± nχb,

ΨIjι =
1

Tj

[
κj

2

{
In+2(κjRι) +

(
n+ 1

κjRι

)
In+1(κjRι)

}
+ �ικjIn+1(κjRι)

]
,

ΥIjι =
In(κjRι)

Qj

[
2n

Rι
2

{
κjRι

In
′(κjRι)

In(κjRι)
− 1

}
+

2n�ι
Rι

]
. (5.17)

We employ the characteristic equation expressed in Eq. (5.13) to make numerical

applications in the next section.

It is noteworthy that our formalism deals correctly with the special limiting

cases of exchange-dominated modes (taking M0 → 0) and magnetostatic modes

(taking D → 0) in the tube geometry. Results for the exchange limit are found by

deducing the effective radial wave vector, which simplifies to have just one solution:

κ = {(1/D)(Dq2 + ω(1− iη) + ω0)}1/2. (5.18)

The appropriate form of solutions for the transverse magnetization components using

Eqs. (5.7) and (5.8) and the effective exchange boundary condition at the inner and

outer interfaces are applied to derive the characteristic equation for the exchange
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SW modes in a nanotube as

∣∣∣∣∣∣
ΦI1In(κR1)/R1 ΦK1Kn(κR1)/R1

ΦI2In(κR2)/R2 ΦK2Kn(κR2)/R2

∣∣∣∣∣∣ = 0 , (5.19)

where ΦIj = {κRjIn+1(κRj)}/In(κRj) + n + ηj, for j = 1, 2. Similarly, the term

ΦKj can be obtained by replacing Bessel function In by Bessel function Kn in ΦIj.

Likewise, we can recover the characteristic equation for the magnetostatic limit by

deducing the effective radial wave number. As we have shown, one of effective radial

wave numbers κ2 shows the exact behaviour of the radial wave number
√
ν(ω)q

discussed in Chapter 2 for a F material when D → 0 and α0 → 0. The 8 ×
8 determinant condition in Eq. (5.13) then reduces to the exact form of 4 × 4

determinant expressed in Eq. (2.11) for the magnetostatic modes in a nanotube.

By analogy with our earlier calculations, we also find a reduction of the 8× 8

determinant in Eq. (5.13) to 4 × 4 determinant conditions in both of the limiting

cases of the antiwire and wire geometries. In the limit of an antiwire, the expression

involves the 4 × 4 matrix Λ (see Eq. (5.14)) as derived by taking R2 → ∞ and R1

non-zero. Similarly, in the limit of a wire (taking R1 → 0 and finite R2), our results

is in terms of the 4×4 matrix Π (see Eq.(5.16)), which generalizes the previous wire

DESW calculations [68] to include damping.

5.3 Numerical results

Numerical calculations are now carried out by solving the implicit disper-

sion relation Eq. (5.13) for the hybridized DESW modes in a nanotube, considering

also some limiting cases. Specific numerical examples (mainly for the dispersion

relations, the variation of SW frequency with sample radius, and the frequency-

dependent response functions) are given, with comparisons made between weak and

strong pinning. Applications are made for two F materials, namely EuS and Ni.
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The relevant parameters are well known: we take μ0M0 = 1.53 T, D = 0.20 T-nm2,

and γ = 28.0 GHz/T for EuS, with μ0M0 = 0.603 T, D = 3.13 T-nm2, and γ =

30.9 GHz/T for Ni. Ni nanotubes are included since this magnetic material was

employed in BLS experiments [60, 69]. EuS (where the exchange effects are less

pronounced) has also been previously studied using BLS, but in a film geometry

[118]. In most of our examples a small damping constant (α0 = 0.001) is included,

since it is helpful for numerical stability, but we also explore the role of damping

by considering larger α0. For simplicity, we begin with the single interface cases of

antiwires and wires, making comparisons between the two geometries.

In Fig. 5.4 we show numerical results to compare the lowest |n| = 1 SW

frequencies versus longitudinal wave number q for a EuS anti-nanowire and its cor-

responding nanowire. In both cases, results are presented for a radius R = 20 nm

and for two cases, realizing weak and stronger pinning, namely η = 0 and η = 4.

We observe that the DESW modes are strongly influenced by the pinning condition,

especially in the antiwire case. A comparison with the surface magnetostatic mode

(which lies between upper and lower bounds [70] indicated by the horizontal lines)

is included, and it can be seen that the exchange-dominated bulk DESW branches

(which are relatively flat in this wave number region) are strongly perturbed and

hybridized in the vicinity of the magnetostatic branch. This effect is particularly

pronounced in the antiwire case.

Next we investigate the frequency dependence of the lowest DESW mode (|n|
= 1) on the radius R for Ni antiwires and wires, taking material parameters as given

earlier. Also we use μ0H0 = 0.3 T, α0 = 0.001 and zero pinning. By choosing three

values for the longitudinal wave number, namely q = 0.007 nm−1, 0.041 nm−1 and 0.3

nm−1, which are typical of the magnetostatic, dipole-exchange and exchange regions

respectively of SW excitations (see Chapter 1), we find the results presented in Fig.

5.5. The behaviour in antiwires and wires is now rather similar, with both showing
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Figure 5.4: Frequencies of the DESW with |n| = 1 versus longitudinal wave number
q with the unpinned (red circle) and pinned (green circle) cases for a
EuS (a) antiwire and (b) wire. For comparison, dispersion curves for the
surface magnetostatic modes are shown by the solid line. Also μ0H0 =
0.3 T, α0 = 0.001 and radius R = 20 nm.
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Figure 5.5: DESW frequency with |n| = 1 versus radius R taking fixed q values of
0.007 nm−1 (black circle), 0.041 nm−1 (red circle) and 0.3 nm−1 (green
circle) for the unpinned case of a Ni (a) antiwire and (b) wire. Other
parameters are given in the text.
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Figure 5.6: Dependence of DESW frequencies on the radius of Ni wires for |n| = 1
(black circle), 2 (red circle) and 3 (green circle). Other parameters used
are q = 0.041 nm−1 and μ0H0 = 0 T. The squares represent experimental
data [69].

a frequency reduction as R is increased. However, the frequencies are different in

the two structures due to the different localization of the modes. For example, the

frequency of SW corresponding to q = 0.041 nm−1 at R = 25 nm is 22.0 GHz for a

Ni antiwire, whereas it is 18.1 GHz for the same size of Ni wire.

To compare our theory with the experimental BLS data for Ni wires in [69], we

present results for the DESW frequencies versus wire radius. Results for the lowest

|n| = 1, 2 and 3 modes are shown in Fig. 5.6, where the radius R varies in the range

from 10 to 30 nm and a comparison is made with the experimental data [69] for

q = 0.041 nm−1 and H0 = 0. Good agreement between experiment and theory is

found when the pinning is such that η = 1.96. This confirms that a DESW theory
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is required to calculate the SW properties in nm-sized cylindrical geometries and it

gives the first prediction a value for the pinning parameter.

Next we present numerical results for the DESW frequencies in nanotubes,

starting with EuS and taking R2/R1 = 2. The dispersion relations of the lowest |n|
= 1 mode are shown in Fig. 5.7 where the mode frequencies are plotted versus q for

zero and strong pinning (assumed to be the same at both interfaces). Corresponding

to the limit of D → 0, the two surface magnetostatic branches are shown as the full

curves (consistent with Chapter 2), with one mode being mainly associated with

the inner interface and the other mainly with the outer interface. The exchange

effects are relatively weak for EuS, which is especially evident in Fig. 5.7 (a) for the

zero pinning case where there are several “exchange-dominated” radially-quantized

modes that become hybridized in the vicinity of modified surface magnetic modes

[112]. In the strong pinning case of Fig. 5.7(b), it is clear that the mode hybridiza-

tion near the outer interface of the tube can considerably modify the surface branch

localized there (which is analogous to the wire), but there is a lesser effect for the

inner interface (which is analogous to the antiwire). By analogy with our previous

discussion for the single interface geometries, we have also confirmed that effective

pinning causes significant changes in the mode mixing and localization near the

inner interface of a EuS tube.

Next in Fig. 5.8 we consider a EuS nanotube with the same R1 and R2 values

and zero pinning (as in Fig. 5.7(a)), but with a larger damping constant α0 = 0.02.

We see that the variation of the |n| = 1 mode frequencies with the wave vector q

is qualitatively similar to Fig. 5.7(a). However, the lowest “exchange-dominated”

radially-quantized modes are reduced in frequency and the effects of hybridization

are more apparent.

For further comparison with Fig. 5.7(a), the dispersion relations are presented

in Fig. 5.9 for a Ni nanotube with R1 = 15 nm and R2 = 30 nm, taking |n| = 1
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Figure 5.7: The hybridized SW frequencies versus wave number q for a tube with
R1 = 15 nm and R2 = 30 nm in the case of (a) unpinned and (b) pinned
surface surface spins. The DESW frequencies correspond to the circles
and, for comparison, the surface magnetostatic modes are represented
by the solid lines. Also, μ0H0 = 0.3 T, α0 = 0.001, and |n| = 1.
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Figure 5.8: The same as in Fig. 5.7(a), but taking the damping constant α0 = 0.02.
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Figure 5.9: The same as in Fig. 5.8, but for a Ni nanotube with zero pinning, taking
the damping constant α0 = 0.001.
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Figure 5.10: The real (solid line) and imaginary (dash line) parts of response func-
tion χa versus frequency for a Ni nanotube, varying D = 0.003 T nm2

(black), 3.13 T nm2 (red) and 20.13 T nm2 (green). The other param-
eters are the same as in Fig. 5.9, but taking q = 0.041 nm−1 and α0 =
0.01.

and α0 = 0.001. The effects of exchange are stronger in Ni and so, by contrast with

the magnetostatic modes in tubes (see Chapter 2), the analogous DESW are shifted

upwards and eventually have a positive slope due to the exchange. This effect is

found to be more evident for modes associated with the outer interface compared

to the inner interface of the tube as a result of the higher mode localization in

the former case. In addition, there are exchange-type bulk modes (with positive

slope) in other frequency regions. Due to the larger exchange stiffness constant, the

radially quantized exchange modes become more separated in frequency, compared

to the results presented in Fig. 5.7(a).

Finally, as another illustration of the exchange-dependence of DESW, we plot
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χa, deduced from Eq. (5.9), as a function of frequency in Fig. 5.10. Here we take

μ0H0 = 0.3 T, α0 = 0.01, q = 0.041 nm−1, and with other parameters chosen as for

Ni except that we vary D. Recall that in Sec. 5.2 we gave a simple expression in

the absence of exchange for the full resonance line width at half-maximum. In the

case of DESW excitations, the expression for the line width becomes much more

complicated, and we now use Fig. 5.10 to show its variation (and shift) with D.

These calculations are carried out for three values of D, i.e., 0.003 T nm2, 3.13 T

nm2 and 20.13 T nm2, where the second value is typical of Ni. As is seen, the FMR

frequency gets shifted and also the amplitude of the response function varies.

5.4 Conclusions

In this chapter, we have developed a general theory for the DESW in

nanotubes, as well as in the limiting cases of wires and antiwires, and we have

shown some numerical examples of dispersion relations for Ni and EuS at wave

numbers typical of BLS experiments. It is shown that the magnetostatic results are

considerably modified (especially in Ni) by the exchange. Numerical examples for

the cases of weak, intermediate and strong pinning were shown. The effects on the

mode hybridization were discussed. Numerical calculations have also been carried

for larger damping by taking α0 = 0.02. This typically produces smaller changes

than those due to varying the pinning conditions, but the frequency shifts may still

be appreciable. The previous BLS measurements emphasized the size dependence

(in the case of Ni wires [69]) and the field dependence (in the case of Ni tubes

[60]). The macroscopic theory is broadly consistent with these findings, as already

noted in both of the cited papers (and see also our Fig. 5.6), but a more complete

comparison with our theory would be possible if future BLS experiments studied the

effect of varying the longitudinal wave number q by varying the scattering geometry.

We note that the effects of core removal as identified here in long tubes is
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quite distinct from the effect in flat disks [119], where there is vortex formation as

a consequence of the different (mainly in-plane) magnetization orientation. Follow-

ing an earlier work on an elliptical cylinder [28], magnetostatic mode calculations

in tubes with an elliptical (rather than circular) cross section have recently been

reported [120], and it would be of interest to generalize these to include explicitly

the exchange effects, and the consequent mode mixing, by following the approach

used here.
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CHAPTER 6

Green’s Function Theory of Magnetostatic Modes in

Magnetic Nanotubes

6.1 Introduction

Green’s functions provide the basis of a powerful and popular method in

theoretical physics for obtaining full information about the excitations of many-body

systems, e.g., they contain information about the intensity (or spectral weight) of the

excitations, as well as their frequencies. Green’s functions can also be related to scat-

tering cross-sections, as measured (e.g.) in light scattering, so there is a convenient

connection to experimental techniques. Green’s functions can be defined in various

ways, but basically they are a measure of the dynamic correlation functions between

two quantities, such as two magnetization variables. The methods for calculating

Green’s functions include equation-of-motion methods, diagrammatic perturbation

theory, and linear response theory. Some general references for Green’s functions

methods are [121, 122, 123, 124, 125].

Green’s functions have been used extensively for finite magnetic materials

(both F and AF), mainly in planar geometries. For example, in a finite thickness F

slab, the linear response Green’s functions in the magnetostatic regime were calcu-

lated and applied to BLS in [90]. Green’s function formalisms were also applied to

Heisenberg F films where the exchange effects dominate in the SW excitations [126],

to semi-infinite F systems with both dipole and exchange interactions [89], and to

semi-infinite AF systems for magnetic polaritons [103]. These examples of earlier

research motivate us to develop a Green’s function theory for the magnetostatic

modes in cylindrical nanotubes in order to extend the results for the magnetostatic

SW dispersion relations presented in Chapter 2.
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We will use the linear response formalism (see, e.g., [121]) for Green’s func-

tions. This will enable us to investigate the spectral intensities of the surface and

bulk magnetostatic SW in the different cylindrical geometries (tubes, wires, and an-

tiwires), assumed to have a large length-to-diameter aspect ratio as previously. Our

calculations, which are carried out for F and AF materials, apply when both the

applied magnetic field and the saturation magnetization are parallel to the cylinder

axis. Specifically, the response functions are derived for situations where the dipole-

dipole interactions are dominant over the exchange in the spin dynamics, but the

results could be extended to other regimes of magnetic behaviour.

The outline of this chapter is as follows. In Sec. 6.2 we develop the Green’s

function theory for SW in F and AF nanotubes. Basically, we supplement the for-

malism in Chapter 2 by adding an external driving field to the Landau-Lifshitz

equation in the absence of damping, and we calculate the linear response in the

r.f. magnetization components. We again use the magnetostatic form of Maxwell’s

equations together with the usual boundary conditions, but now we obtain a second

order inhomogeneous differential equation from which the magnetic Green’s func-

tions are deduced. Using a result known as the fluctuation-dissipation theorem, we

derive an expression for the spectral intensities of the SW. Afterwards, some specific

numerical applications are given in Sec. 6.3 for F (e.g., Ni) and AF (e.g., GdAlO3)

materials, supplementing the magnetostatic mode results of Chapter 2. Then in

Sec. 6.4 we conclude our work with an outline of possible extensions.

6.2 Response functions for magnetostatic modes in nan-

otubes

Following the model for magnetic nanotubes used in Chapter 2, we now

extend our theory of the magnetostatic modes by calculating the magnetic Green’s

functions (or response functions) in F and AF cylindrical tubes. With a longitudinal
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applied field H0 and the saturation magnetization M0 along the symmetry axis of

the tube, we derive the response functions for situations where the long range dipole-

dipole effects dominate in the SW dynamics over the exchange effects. By analogy

with earlier chapters, the magnetic response function for nanotubes will provide

results for the single interface cases of antiwires and wires as limiting cases.

In the long wavelength SW dynamics (ignoring exchange and damping), the

semi-classical torque equation of motion for the magnetization �M can be expressed,

putting α0 = D = 0 in Eq. (1.9), as

d
−→
M

dt
= −γμ0(

−→
M ×−→

H eff ), (6.1)

where the total magnetization is
−→
M = M0ẑ +

−→m(−→r )e−iωt with |−→m| << M0 in the

linear SW regime, as before. However, in the presence of a time dependent external

driving field
−→
H ext(�r, t) =

−→
H ext(�r)e

−iωt, Eq. (5.1) becomes (see, e.g., [90])

−→
H eff = H0ẑ + {−→h d(

−→r ) +−→
H ext(

−→r )}e−iωt. (6.2)

Here ω is the angular frequency of the driving field (and of the SW excitations). Our

goal is to investigate the linear response between the r.f. magnetization components

and the external driving field in the magnetic tubes in order to evaluate the response

functions. In contrast with [90], where the response functions for a F slab were

deduced by choosing the driving field in a plane wave representation, the radial

dependence in a cylindrical geometry is more complicated. It is now more convenient

to choose the driving field in our calculations in the form

−→
H ext(

−→r ) =
−→
H extδ(r − r

′
)ei(nθ+qz), (6.3)

where n is an integer and q is the wave number of magnetostatic modes along
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the symmetry axis, as in Chapter 2. By analogy with other calculations where a

delta-function representation of the driving term was chosen (e.g., for the DESW

in a semi-infinite F material [89] and for surface phonons [16]), we will eventually

deduce the magnetic linear response at position �r due to a driving field at �r
′
.

Next, we linearize Eq. (6.1) after substituting for
−→
M and

−→
H eff , which gives

−iω−→m(−→r ) = −ωm{ẑ × (
−→
h d(

−→r ) +−→
H ext(

−→r )}+ ω0{ẑ ×−→m(−→r )}. (6.4)

By analogy with Chapter 2, we use the magnetostatic form of Maxwell’s equations to

re-express the dipolar part
−→
h d of the fluctuating field in terms of the magnetostatic

scalar potential Ψ with the form given in Eq. (2.3). After some algebra, we obtain an

inhomogeneous differential equation for the radial part ψ(r) of the scalar potential

inside the magnetic layer of cylindrical tubes and the result is

d2ψ(r)

dr2
+

1

r

dψ(r)

dr
−

(
n2

r2
+ k2

)
ψ(r) =

ν(ω)

[
A

{
δ(r − r

′
)

r
+
dδ(r − r

′
)

dr

}
+
nBδ(r − r

′
)

r

]
, (6.5)

where k =
√
ν(ω)q, A = χaHext

r+ iχbHext
θ and B = χbHext

r+ iχaHext
θ. The forms

of χa and χb can be expressed as in Chapter 2 for a F or AF material.

To solve Eq. (6.5) we need to examine the behaviour in the region of r = r
′
.

Integrating Eq. (6.5) from r = r
′ − ε to r = r

′
+ ε and taking the limit of ε→ 0, it

is found that the first derivative of ψ is discontinuous at r = r
′
, but ψ is continuous.

This gives two boundary conditions at r = r
′
, which are

dψ(r)

dr

∣∣∣∣
r=r′+ε

− dψ(r)

dr

∣∣∣∣
r=r′−ε

= −ν(ω)(A− nB)

r′
, (6.6)

ψ(r)

∣∣∣∣
r=r

′
+ε

− ψ(r)

∣∣∣∣
r=r

′−ε

= 0. (6.7)
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It is now straightforward to find the solutions of Eq. (6.5). The homogeneous part of

this equation turns into the form of the Walker equation in Eq. (2.4), and therefore

the solution inside the magnetic layer has the form

ψ(r) =

⎧⎨
⎩ p1In(kr) + p2Kn(kr) ; r < r

′

p3In(kr) + p4Kn(kr) ; r > r
′
,

(6.8)

with unknown coefficients p1, p2, p3 and p4. As in Chapter 2, ψ(r) for the nonmag-

netic regions r < R1 and r > R2 has the same form as in Eqs. (2.7) and (2.8), where

two more coefficients a1 and a3 are involved with Bessel functions In and Kn.

To find these six unknown coefficients a1, p1, p2, p3, p4 and a3, the magneto-

static form of the boundary conditions (see Chapter 2) are applied at the r = R1

and r = R2 interfaces of the tube. These four conditions, plus the two additional

conditions in Eq. (6.6), give a set of equations which can be used to solve for the six

coefficients. After some extensive algebra, the magnetic scalar potential for r < r
′

inside the magnetic layer of the tube can be expressed as

ψ(r) =
Λ(A− nB)

T1T3

[{
T2T3

Kn(kR2)

In(kR2)
In(kr)In(kr

′
) +

T1T4
In(kR1)

Kn(kR1)
Kn(kr)Kn(kr

′
)

}
− T1T3In(kr)Kn(kr

′
)

]
, (6.9)

and the form of scalar potential inside the tube for r > r
′
is

ψ(r) =
Λ(A− nB)

T1T3

[{
T2T3

Kn(kR2)

In(kR2)
In(kr)In(kr

′
) +

T1T4
In(kR1)

Kn(kR1)
Kn(kr)Kn(kr

′
)

}
− T1T3Kn(kr)In(kr

′
)

]
. (6.10)



120

Here we have introduced the following definitions:

Λ =
ν(ω)

kr′In(kr
′)Kn(kr

′)

{
Kn

′
(kr

′
)

Kn(kr
′)

− In
′
(kr

′
)

In(kr
′)

}−1

,

T1 = {ν(ω)}−1kR2
In

′
(kR2)

In(kR2)
− qR2

Kn
′
(qR2)

Kn(qR2)
− nχb,

T2 = {ν(ω)}−1kR2
Kn

′
(kR2)

Kn(kR2)
− qR2

Kn
′
(qR2)

Kn(qR2)
− nχb,

T3 = {ν(ω)}−1kR1
Kn

′
(kR1)

Kn(kR1)
− qR1

In
′
(qR1)

In(qR1)
− nχb,

T4 = {ν(ω)}−1kR1
In

′
(kR1)

In(kR1)
− qR1

In
′
(qR1)

In(qR1)
− nχb . (6.11)

Next, we substitute for the dipolar field terms in Eq. (6.4) by using the

solutions for ψ in Eqs. (6.9) and (6.10). These calculations establish a linear rela-

tionship between components of −→m and
−→
H ext. For example, the mr component of

magnetization can be derived for r < r
′
as

mr(r < r
′
) = {(χa − nχb)Θ1}Hext

r + i{(χb − nχa)Θ1}Hext
θ, (6.12)

with

Θ1 =
Λ

rT1T3

[
T3In(kr)

{
χakr

In
′
(kr)

In(kr)
− nχb

}{
T2
Kn(kR2)

In(kR2)
In(kr

′
)− T1Kn(kr

′
)

}

+T1T4Kn(kr
′
)Kn(kr)

In(kR1)

Kn(kR1)

{
χakr

Kn
′
(kr)

Kn(kr)
− nχb

}]
, (6.13)

whereas for r > r
′
it is

mr(r > r
′
) = {(χa − nχb)Θ2}Hext

r + i{(χb − nχa)Θ2}Hext
θ, (6.14)
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with

Θ2 =
Λ

rT1T3

[
T1Kn(kr)

{
χakr

Kn
′
(kr)

Kn(kr)
− nχb

}{
T4
In(kR1)

Kn(kR1)
Kn(kr

′
)− T3In(kr

′
)

}

+T2T3In(kr
′
)In(kr)

Kn(kR2)

In(kR2)

{
χakr

In
′
(kr)

In(kr)
− nχb

}]
. (6.15)

Eqs. (6.12) and (6.14) give the linear response between the magnetization

component mr(r) and the driving-field components Hext
r and Hext

θ, which couple to

mr(r
′
) andmθ(r

′
) respectively. The position-dependent magnetic response functions

can then be written down (see [121]). In the standard Green’s function notation we

obtain for r < r
′

〈〈mr(r);mr(r
′
)〉〉 = (χa − nχb)Θ1,

〈〈mr(r);mθ(r
′
)〉〉 = i(χb − nχa)Θ1. (6.16)

while for r > r
′

〈〈mr(r);mr(r
′
)〉〉 = (χa − nχb)Θ2,

〈〈mr(r);mθ(r
′
)〉〉 = i(χb − nχa)Θ2. (6.17)

In a similar fashion, we could solve for linear response of mθ(r) in order to derive

other magnetic Green’s functions like 〈〈mθ(r);mr(r
′
)〉〉 and 〈〈mθ(r);mθ(r

′
)〉〉. From

Eqs. (6.16) and (6.17) and the form of Θ1 and Θ2, it is apparent that the Green’s

functions have denominators that contain the previous analytical dispersion relations

of surface magnetostatic modes in magnetic nanotubes (see Chapter 2). This is

expected from the general property that the poles of Green’s functions yield the

excitation frequencies.

Briefly, we discuss the two special cases of an antiwire (taking R1 = R, R2 →
∞) and a wire (taking R1 → 0, R2 = R) for the magnetic Green’s functions. As
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before, we form an appropriate solution for ψ(r) in terms of Bessel functions and

follow a similar procedure as for tubes. The magnetic Green’s functions can still be

expressed in the form of Eqs. (6.16) and (6.17), but the expressions for Θ1 and Θ2

are modified to become

Θ1 =
Λ

rT3
Kn(kr

′
)

[
T4Kn(kr)

In(kR)

Kn(kR)
{χakr

Kn
′
(kr)

Kn(kr)
− nχb}

−T3In(kr)
{
χakr

In
′
(kr)

In(kr)
− nχb

}]
, (6.18)

Θ2 =
Λ

rT3
Kn(kr)

{
χakr

Kn
′
(kr)

Kn(kr)
− nχb

}{
T4
In(kR)

Kn(kR)
Kn(kr

′
)− T3In(kr

′
)

}
,

(6.19)

for the antiwire geometry, and

Θ1 =
Λ

rT1
In(kr)

{
χakr

In
′
(kr)

In(kr)
− nχb

}{
T2In(kr

′
)
Kn(kR)

In(kR)
− T1Kn(kr

′
)

}
,

Θ2 =
Λ

rT1
In(kr

′
)

[
T2
Kn(kR)

In(kR)
In(kr)

{
χakr

In
′
(kr)

In(kr)
− nχb

}
−

T1Kn(kr)

{
χakr

Kn
′
(kr)

Kn(kr)
− nχb

}]
, (6.20)

for the wire geometry.

Finally, as a further application of the Green’s functions, we may employ the

fluctuation-dissipation theorem (see [34, 121, 124]) to calculate the spectral intensi-

ties. This powerful result allows us to express the correlation function 〈mα(r)mβ(r
′
)〉

in terms of its corresponding Green’s function:

〈mα(r)mβ(r
′
)〉ω = −2[1 + n(ω)]Im〈〈mα(r);mβ(r

′
)〉〉ω+iε, (6.21)
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where ε denotes a positive infinitesimal. The superscripts α and β correspond here

to r and θ components, and n(ω) = [exp(�ω/kBT ) − 1]−1 is the Bose-Einstein

distribution function. If we put r
′ → r in Eq. (6.21) and choose (for example)

α = β = r, we obtain an expression for the quantity 〈|mr(r)|2〉ω which is a measure

of the mode intensity at radius r and frequency ω.

Based on our analytical expressions for the magnetic response functions, nu-

merical examples for the spectral intensities of surface and bulk magnetostatic modes

in F nanotubes, with the single interface limits, will be presented in the next section.

Numerical applications will also be made for AF nanotubes.

6.3 Numerical applications

We now present some numerical results for the spectral intensities taking

Ni and GdAlO3 for the magnetic materials, as used in Chapters 2 and 3 for studies of

the surface and bulk magnetostatic dispersion relations. In each case, we will present

the frequency dispersion relations in order to illustrate the surface and bulk SW

modes, and then describe the dependence of the integrated intensities on frequency,

wave number q, and size. Some results will be included as well for the spatial

distribution of the mode intensities. In all examples, a small value of the half-width

of the spectral intensity peaks, i.e., ε = 0.02 GHz, is arbitrarily chosen.

We first show the results for a single interface case of a Ni antiwire with radius

R = 500 nm in an applied field μ0H0 = 0.3 T. The imaginary part of 〈〈mr(r);mr(r
′
)〉〉

from Eqs. (6.16) and (6.17) can be used to calculate the spectral intensity 〈|mr(r)|2〉ω
for the surface modes as explained earlier. The dispersion relations are presented in

Fig. 6.1(a) for the lowest four |n| surface modes and then in Fig. 6.1(b) we plot the

corresponding integrated intensities in arbitrary units as a function of frequency,

taking q = 1.0 × 106 m−1. It is seen that the intensities for this q tend to increase

with increasing |n| for the antiwires.
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Figure 6.1: (a) Frequencies of surface magnetostatic modes in a Ni antiwire versus
qR, taking μ0H0 = 0.3 T. The lower and the upper limits of the surface-
mode regions are shown as horizontal lines. The four lowest modes for
|n| = 1 (black), 2 (red), 3 (green) and 4 (blue) are plotted. (b) Spectral
intensities of these four modes versus frequency for the same antiwire
taking qR = 0.5, as marked by a vertical dashed line in (a).



125

��� ��� ��� ��� ���

����

����

�	��

�	��

�
��

�
��

�

�

�
��
�
�
�
�
�
	
�

�
�


�

���

���

���� ���� ���� ����

�

�

��
��

�
�
��
�
�	


��


�
�
�
��
�
�

��������	�
��
�


��

Figure 6.2: Same as in Fig. 6.1, but for a Ni nanowire of the same radius.
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For comparison, in Fig. 6.2 we present analogous calculations for the frequen-

cies and spectral intensities, taking a Ni nanowire of the same radius R = 500 nm.

In contrast to the results in Fig. 6.1(b) for an antiwire, it turns out that the rela-

tive heights of the Lorentzian-like peaks for individual mode intensities in a Ni wire

decreases when |n| increases (see Fig. 6.2(b)).

Next, we compute the spectral intensities of the surface magnetostatic modes

for a Ni nanotube of inner radius R1 = 150 nm and outer radius R2 = 500 nm.

Following our previous examples, the frequencies of surface SWs versus wave number

for the three lowest |n| modes are plotted in Fig. 6.3(a). With the choice of q = 1.2

× 106 m−1, which is less than the mode cut-off value, our results for the spectral

intensity of the individual modes as a function of frequency are presented in Fig.

6.3(b). For each value of |n| there are in general two modes, and each of these gives

a peak in the spectral intensity that depends on the mode localization. Broadly,

the lower-frequency and upper-frequency branches are localized near the outer and

inner radii of the tube respectively. At any intermediate radial distance r, chosen

as 300 nm in Fig. 6.3(b), there are contributions from both branches, but the ratio

of intensities will vary as r ranges between R1 and R2. For more information on the

localization of individual surface SW modes, we illustrate in Fig. 6.4 the variation of

the spectral intensities with r throughout the wall thickness. The ratio r/R2 for the

Ni nanotube varies from 0.3 to 1, keeping other parameters are same as in 6.3(a).

It is evident that the lower- and upper- frequency branches are typically localized

near the R2 and R1 interfaces, respectively.

The preceeding analysis of spectral intensities for surface magnetostatic SWs

can straightforwardly be extended to study the spectral intensities of the bulk modes.

As an example, we show in Fig. 6.5 the spectral intensity versus r/R2, taking other

parameters as in Fig. 6.4 for a Ni nanotube, but using q = 1.5 × 107 m−1. It is

found that the standing SWs propagate within the wall thickness of the tube with
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Figure 6.3: (a) Frequencies of surface modes in a Ni nanotube versus q, taking μ0H0

= 0.3 T, R1 = 150 nm and R2 = 500 nm. The lower and the upper limits
of the surface-mode regions are shown as horizontal lines. (b) Spectral
intensity plotted versus frequency in the same nanotube for q = 1.2 × 106

m−1. The solid and dash lines refer to the lower- and upper-frequency
branches respectively for |n| = 1 (black), 2 (red) and 3 (green).
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Figure 6.4: Intensities of the lowest surface modes in a Ni nanotube plotted against
r/R2. The solid and dashed lines refer to the lower and upper frequency
branches respectively for |n| = 1, 2 and 3. The interfaces at R1 = 150
nm and R2 = 500 nm correspond to the vertical lines.

zero, one and two nodes, depending on |n|. In contrast to the surface modes where

spectral intensities are localized near surface (see Fig. 6.4), the intensities of bulk

modes show an oscillatory behaviour between two interfaces of tubes.

A similar analysis of spectral intensities can be made for surface and bulk

magnetostatic modes in AF nanotubes. For example, we have made calculations for

a GdAlO3 nanotube with R1 = 200 nm and R2 = 500 nm. Taking q = 8.0 × 105

m−1, μ0H0 = 0.7 T and other material parameters as in Sec. 3.3, we present some

results in Table 6.1 for a study of the spectral intensities with the frequencies of

surface modes for the intermediate radial distances r = 250 nm and 310 nm.
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Figure 6.5: The same as in Fig. 6.4, but for each of the lowest bulk modes of |n| =
0 (black), 1 (red) and 2 (green), taking q = 1.5 × 107 m−1.

Table 6.1: Integrated intensities and frequencies of three different surface
modes in an AF nanotube of GdAlO3. Parameter values are q = 8.0 ×
105 m−1, μ0H0 = 0.7 T, R1 = 200 nm, and R2 = 500 nm.
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6.4 Conclusions

Using linear response methods we have developed a theory of Green’s func-

tions for studying the properties of the magnetostatic modes in cylindrical tubes,

together with the limiting geometries of wires and antiwires. This involved adding

an external driving field to the LL torque equation for the magnetization, together

with the magnetostatic form of Maxwell’s equations and the usual boundary con-

ditions at the interfaces. After solving an inhomogeneous differential equation, the

position-dependent magnetic Green’s functions were obtained in terms of the linear

response between the position dependent magnetization components and the posi-

tion dependent external driving field components. It can be noted that each of the

expressions for the magnetic Green’s functions contained the analytical dispersion

relations (as derived in Chapter 2) in the denominator. In addition, the Green’s

functions also provide results for the spectral intensity of the magnetostatic SW.

Based on our analytical calculations for the response functions, numerical applica-

tions were made to F (using Ni) and AF (using GdAlO3) magnetic structures. Our

calculations in these cylindrical geometries have clearly illustrated the structural

effects on the strength of intensity peaks. Consistent with our previous results in

Chapter 2, we also noticed that the spectral intensities of surface modes are local-

ized near inner and outer interface of tubes, whereas the intensities of bulk modes

behave in an oscillatory fashion within the tube.

There are several possible extensions to this chapter. By analogy with earlier

work on planar geometries such as superlattices [34], it would be of great interest

to generalize our present Green’s function formalism for the magnetostatic modes

in tubes to the case of cylindrical magnetic multilayers. This could be achieved by

using linear response theory together with our transfer matrix analysis discussed in

Chapter 2. The formalism could also be extended to the SW polariton modes in

tubes (generalizing results in Chapter 4). Similarly, Green’s function calculations
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could be carried out for the dipole-exchange regime (generalizing results in Chapter

5). In all of these magnetic regimes, it would be possible to use the Green’s func-

tions to deduce expressions for the scattering cross-section for BLS in a cylindrical

geometry, as was done for planar geometries (see, e.g., [34]).
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CHAPTER 7

Conclusions

We have presented in this thesis new theoretical calculations of magnetic ex-

citations in F and AF cylindrical geometries. A macroscopic continuum approach

has been used to study the dynamical properties of the SW excitations in different

wavevector regimes taking account of the long range dipole-dipole and short range

exchange interactions together with or without retardation effects according to the

region of interest. By contrast with other theoretical methods (e.g., [102, 127]) that

used approximations based on the Holstein-Primakoff transformation to boson op-

erators, our calculations are developed with the linearized form of the semi-classical

torque equation, Maxwell’s equations and appropriate electromagnetic boundary

conditions to describe the propagation of the SW modes. Our approach is conve-

nient and has the flexibility to allow us to cover the different wavevector regimes in

the chosen geometries.

In Chapter 2 we illustrated results for the nonretarded dipolar SW modes in

cylindrical nanotubes. As we have seen, the dynamical properties of magnetostatic

modes, e.g., the mode localizations, the radial distribution of mode amplitudes, etc.

in tubes show different behaviour from the results in wires or antiwires. Previ-

ously only results for wires were available. The transfer matrix method outlined in

that chapter enabled us to generalize these results to cylindrical multilayer systems.

We have illustrated in the dispersion curves that the localized interface modes are

strongly modified (e.g., in their frequency and wave number cut-off) by the multi-

layer structure, compared to the behaviour found in earlier cases. Results for the

coupled dipolar modes in F-AF cylindrical bilayer systems have presented in Chapter

3, where we have illustrated the influence of exchange anisotropy on magnetostatic
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modes. These calculations provide useful information for experimental studies by

BLS, e.g., with 900 scattering geometry to achieve the small q (typically less than

107 m−1) for the magnetostatic regime.

In Chapter 4 we developed a theory for the localized surface and bulk mag-

netic polaritons in cylindrical tubes. The dispersion relation was solved numerically,

which allowed us to account for the magnetic polariton spectra in F and AF tubes,

including the limiting wires and antiwires. By contrast with some previous calcula-

tions for AF wires in nonzero fields [83] where a decoupling approximation was used,

our formalism correctly reduces to the known magnetostatic limit if the retardation

effects become small (i.e., as the diameter shrinks). Also, in the presence of retar-

dation, our formalism is consistent with that in [107] derived for the special case of

a F wire. The magnetic polariton modes in these cylindrical geometries could be

investigated experimentally by the ATR technique.

In Chapter 5 we presented a general theory for the dipole-exchange SW in

nanotubes together with its limiting geometries. The dispersion relations were de-

rived by including both dipole-dipole and exchange effects. Overall, our results are

broadly consistent with the BLS data in [60, 69] and provide information about the

pinning. However, a more complete comparison would be possible if further BLS

experiments with the variation of longitudinal wave number is used for probing SW

in these cylindrical nanostructures.

In Chapter 6 the magnetic response functions (Green’s functions) were evalu-

ated in the magnetostatic regime for different F and AF cylindrical geometries and

employed to investigate the spectral intensities of the modes. In accordance with

the mode localization, the spectral intensity peaks for each |n| > 0 were deduced,

showing the existence of two surface modes for each |n| in the dispersion relations

provided q does not exceed a cut-off value. The spatial distribution of surface modes

for each |n| were investigated, showing that the lower- and upper-frequency branches
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are typically localized near the tubes inner and outer radii, respectively. These in-

tensity calculations are useful for applications to BLS and can be extended to other

wavevector regimes.

New developments in magnetic metamaterials, or man-made artificial mate-

rials, have been attracting much attention due to their wide range of potential

applications starting from radio frequencies to near optical frequencies [128]. The

recent fabrications of magnetic metamaterials and the unprecedented growth in re-

lated technology [129, 130, 131] provide motivation to extend our magnetic polariton

calculations for exploring fundamental properties and functionality that would be

unattainable in naturally occurring materials, particularly as regards optics and

nanotechnology. Such a calculation could proceed by assuming an isotropic medium

of dielectric permittivity ←→ε (ω) and magnetic permeability ←→μ (ω) having the form

expressed in [132] and in Chapter 4, respectively, governing the electromagnetic

properties of these materials where a negative refractive index is claimed to be

feasible. This would change the usual light properties, i.e., the light would be re-

fracted on the same side of the normal incidence, reversing the Doppler shift, etc.

By allowing the coupling of the �E- and �B-field components of light in cylindrical

geometries, interesting features of the negative refraction anomalies on magnetic

polaritons could be investigated in magnetic metamaterial multilayered cylindrical

systems.

It would also be of interest to extend our linear SW calculations to the non-

linear regimes. In 1952 Bloembergen et al [133] first observed the nonlinearity

effect in a high-power FMR experiment. The properties of nonlinear SW dynamics

in microwave-driven planar multilayer systems were investigated in [134]. The LL

equation was used to show that a high-power microwave driving field parallel to

the applied d.c. field can cause nonlinear effects. The study of nonlinear proper-

ties in terms of magnetostatic dispersion relations and their relation to bistable and
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multistable microwave transmission in F thin film was described in [135]. Recently,

the nonlinear effects in terms of second harmonic generation of AF multilayers in

the Voigt geometry were investigated [136]. Reviews for a magnetic thin film are

given in [16]. To proceed with the macroscopic continuum theory, the power series

expansion for magnetic susceptibility could be written as

mα = χαβhβ + χαβγhβhγ + χαβγδhβhγhδ, (7.1)

where χαβ is the linear susceptibility tensor components, which was discussed in

Chapter 1, while the new terms χαβγ and χαβγδ are the second- and third-order non-

linear susceptibilities, respectively. Following an established procedure [137] for a

uniaxial AF material, it would be possible to derive these higher order susceptibility

components from the LLG equation for a magnetic material, then to proceed using

Maxwell’s equations and the electromagnetic boundary conditions. These calcula-

tions can be done independently for second- and third-order interactions to illustrate

the properties of nonlinear SW dynamics in cylindrical multilayered structures for

different wavevector regimes.
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