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Abstract 

The research conducted in this thesis investigates the effects of phase change materials (PCMs) 

on the hydration kinetics and strength development of cement-based composites using 

extensive experimental and numerical analyses. Purposefully, the effect of microencapsulated 

PCMs (MPCMs) on the strength development of cement-based mortars and concretes was 

evaluated using powerful machine learning models trained with the largest available 

experimental data. Furthermore, a novel ternary machine learning approach was proposed to 

optimize the mixture design of mortars and concretes based on the thermo-physical properties 

of the MPCMs. The results obtained from machine learning simulations suggest the assessment 

of the effects of MPCMs on the maturity-strength relationship. Multitudinous laboratory 

experiments were therefore performed to collect data for the calculation of the apparent 

activation energy. The analysis of isothermal calorimetry and compressive strength 

measurements at various curing temperatures revealed the reduction of apparent activation 

energy after the addition of MPCMs, indicating less sensitivity of such composites to curing 

temperatures. Deep learning proved capable of predicting the hydration kinetics of MPCM-

integrated cementitious systems and thus calculating the apparent activation energy of diverse 

systems. Furthermore, eco-friendly shape-stabilized PCMs (SSPCMs) were fabricated using 

bio-based PCMs and recycled supporting agents to promote the sustainability of the built 

environment. Finally yet importantly, a low-carbon latent heat thermal energy storage 

(LHTES) system was developed based on bio-based MPCMs and limestone calcined clay 

cement (LC3) binder with lower clinker content. It was shown that utilizing such 

environmentally friendly construction materials could contribute to lowering the operational 

and embodied energy and emissions of major infrastructures. 

Keywords 

Phase change material (PCM); machine learning; deep learning; activation energy; shape-

stabilized PCM (SSPCM); limestone calcined clay cement (LC3) 
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Summary for Lay Audience 

Reducing the energy consumption of buildings is an important step toward mitigating climate 

change and attaining a sustainable and resilient built environment. Researchers have coined 

brilliant solutions to increase the energy efficiency in the heating and cooling of buildings, 

very similar to the idea of manufacturing energy-star appliances. One emerging idea is to 

integrate phase change materials (PCMs) in buildings. PCMs, perform similarly to a battery 

that can store thermal energy. Using this technology, the change in the indoor temperature of 

buildings can be narrowed down and major energy savings for heating, ventilation, and air 

conditioning (HVAC) systems are achieved. PCMs can be added to construction materials, 

such as concrete, and used for building various elements such as walls, roofs, and envelopes. 

However, they can cause negative impacts on the mechanical strength of the materials. In this 

research, advanced experimental and computational tools were employed to evaluate the 

effects of PCMs on the mechanical performance of concrete and predict its strength after the 

addition of PCMs. Recommendations are given for proper mixture proportioning of concrete 

with PCM considering different levels of strength. Furthermore, novel and environmentally 

friendly materials are developed with PCM inclusion to benefit the sustainability of buildings. 

The results obtained from this research can better help engineers and policy-makers develop 

sustainable and resilient frameworks for the construction industry and reduce the impact of the 

built environment on exacerbating climate change.    
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Chapter 1  

1 Introduction  

This chapter briefly introduces the background of the research, research motivations and 

significance, objectives, and the general layout of the thesis. 

1.1 Buildings and energy consumption 

The drastic worldwide increase in energy demand has raised stern concerns about the 

depletion of the traditional energy resources, failure of the energy supply infrastructures, 

and serious environmental problems including global warming and climate change 

(Santamouris et al., 2001). For instance, between 1984 and 2004, the global energy 

consumption and 𝐶𝑂2 emissions increased by 49% and 43%, respectively, a growing trend 

at an average annual rate of 3.2% (Pérez-Lombard et al., 2008). Global energy 

consumption had been conventionally divided into three groups: industry, transportation, 

and “other” sections. Nevertheless, more comprehensive analyses revealed that the share 

of energy consumption in buildings is between 20-40% of the total energy consumption in 

many developed countries, which is higher than that of industry and transportation sectors 

(Kingma & van Marken Lichtenbelt, 2015; Pérez-Lombard et al., 2008). For instance, 

nearly 40% of the total final energy consumption and 𝐶𝑂2 emissions in the European Union 

(EU) are related to the building sector (Asadi et al., 2012; Soares et al., 2013). Therefore, 

the energy efficiency of buildings has become a prime goal for energy policies at both 

national and international levels. 

Researchers have attempted to propose new and promising solutions to increase the energy 

efficiency of buildings. Such strategies include developing new technologies in many 

related engineering fields, such as electrical engineering, mechanical engineering, civil 

engineering, and architectural science. Incorporating advanced internet of things (IoT)-

based intelligent systems for energy management in buildings, integrating solar energy 

systems, manufacturing insulating building materials, and promoting passive architectural 

designs are among the many proposed resolutions (Chen et al., 2019; Good et al., 2015; 

Marinakis & Doukas, 2018). One compelling solution is to integrate latent heat thermal 
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energy storage (LHTES) capacity in buildings (Cabeza et al., 2011; De Gracia & Cabeza, 

2015). This could be achieved by utilizing phase change materials (PCMs) in different 

building elements. 

PCMs are a type of chemicals that can store/retrieve a significant amount of heat upon their 

physical phase transition, e.g., from solid to liquid. During the phase transition, the 

temperature of the PCM remains relatively constant while a huge amount of heat is 

stored/released owing to their latent heat capacity (Agyenim et al., 2010; Zhang et al., 

2021; Zhao & Zhang, 2011). Researchers have proposed the integration of PCMs with 

phase change temperatures near room temperature for regulating indoor temperature 

fluctuation and consequently reducing the energy consumption of HVAC systems (Cabeza 

et al., 2011; Marani & Madhkhan, 2021). 

1.2 Research on thermal energy storage construction 
materials 

One interesting approach to integrating LHTES systems in buildings is to incorporate 

PCMs into building materials. Various techniques have been recommended to add PCMs 

into construction materials, such as cement-based mortars and concretes, gypsum, etc. 

(Cabeza et al., 2007; Zhou et al., 2007). Concrete as the most-consumed human-made 

material has been the most popular host for incorporating PCMs (Berardi & Gallardo, 

2019). Extensive research has been devoted to characterizing a wide range of engineering 

properties of concrete in the presence of PCMs. Most efforts have been directed toward the 

analysis of the energy-saving aspect of concrete elements (i.e., walls, roofs, etc.) 

incorporating PCMs (Marani & Madhkhan, 2018; Thiele et al., 2015). Nevertheless, recent 

findings prompt the multi-physics analysis of the engineering properties of cement-based 

composites incorporating different types of PCMs. 

1.3 Research significance 

Despite the improvements in the thermal performance of concrete, PCMs have proven to 

negatively affect the mechanical properties of concrete. Few studies have investigated the 

mechanisms related to the decrease of the mechanical strength at the micro-scale. Yet, 

concerted research is needed to examine the strength development with PCM inclusion. 
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Furthermore, the effect of the thermo-physical properties of PCMs on the hydration 

kinetics of cement-based composites needs fundamental assessment to better apprehend 

their thermal-related properties. 

This study aims at investigating the microstructural and mechanical strength development 

of various cement-based composites incorporating different types of PCMs. The scope of 

the current study is to optimize the thermal energy storage capacity of structural concrete 

with respect to required mechanical performance. To further reduce the environmental 

foorprint of the built environment, this study intends to develop low-carbon thermal energy 

storage composites using emerging eco-friendly and recycled materials. Purposefully, 

various types of commercially available solid-liquid PCMs in North America were utilized. 

Extensive numerical simulations and laboratory experiments are carried out to better 

understand the mechanisms affecting the mechanical strength, hydration kinetics, and 

microstructure of the PCM-integrated concretes. Understanding these mechanisms allows 

the efficient design of PCM-integrated systems. 

1.4 Research objectives 

This research aims at achieving the following specific objectives: 

• Compiling an up-to-date dataset of compressive strength measurements of PCM-

integrated concrete mixtures from the pertinent studies in the open literature. 

• Developing a machine learning framework for the prediction of compressive 

strength of PCM-integrated concrete. 

• Determining the influential factors affecting the strength development of concrete 

made with PCM inclusion.  

• Optimizing the mixture of cement-based mortars and concretes incorporating 

different types of PCMs. 

• Investigating the activation energy and maturity of cement-based composites 

incorporating PCMs 
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• Proposing new form-stable PCMs for use in cement-based composites. 

• Exploring the effects of PCM addition on the hydration kinetics, microstructure, 

mechanical, and thermal, performance of green low-clinker cementitious composites. 

1.5 Original contributions 

This search provides an in-depth discussion and analysis on diverse methods to incorporate 

PCMs into cementitious composites. It is crucial to find the problems associated with each 

of the utilized methods. Accordingly, the incorporation of microencapsulated PCMs 

(MPCMs) was identified as a viable method for adding PCMs to concrete mixtures.  

Therefore, the most up-to-date dataset of the concrete mixture designs with various types 

of MPCMs was collected. Developing robust machine learning models enabled the 

prediction of the compressive strength of MPCM-integrated concretes with desirable 

accuracies, along with recognizing the influential parameters affecting their mechanical 

strength development. 

Considering the low number of mixture design examples in the open literature, a state-of-

the-art synthesized data-generating framework was adopted to create numerous plausible 

mixture designs. Coupling that framework with metaheuristic algorithms, the mixture 

design of MPCM-integrated concretes and mortars was optimized such that maximum 

latent heat capacity and lowest cement consumption are achieved. 

Machine learning results suggest that the addition of MPCMs might affect the maturity of 

concrete. In this regard, the apparent activation energy modeling of the MPCM-integrated 

mortars confirmed the reduction in the activation energy, while the effect of the melting 

temperature of MPCMs was found to be insignificant. Furthermore, a deep learning 

paradigm was also established to calculate the apparent activation energy for more diverse 

cement-based composites. 

To further promote sustainability and reduce the embodied carbon emission of building 

components, MPCMs were added for the first time to low-carbon calcined clay cement 

(LC3) mortars. A set of various tests were carried out to characterize the effect of MPCMs 

on the engineering properties of LC3 mortars. Additionally, a new green bio-based shape 
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stabilized PCM (SSPCM) with desirable thermo-physical properties was developed based 

on recycled expanded glass aggregates. 

1.6 Thesis structure 

The present thesis is formatted according to the integrated-article format predefined by the 

Faculty of Graduate Studies at Western University, London. Ontario, Canada. The thesis 

contains nine chapters based on the objectives defined earlier. The main chapters of the 

current thesis have either been published or submitted for possible publication in peer-

reviewed journals and conference proceedings. The chapters are as follows: 

Chapter 2 classifies various PCM incorporation methods and provides in-depth discussions 

on different aspects of each method. Chapter 3 presents a machine-learning model for the 

prediction of compressive strength of MPCM-integrated concretes. In  Chapter 4, a ternary 

machine-learning paradigm is developed to optimize the mixture design of MPCM 

concrete. Chapters 5 and 6 investigate the activation energy of cement-based composites 

incorporating MPCMs using experimental procedures and deep learning models. Chapter 

7 proposes the development of leak-free green bio-based SSPCMs for use in concrete 

materials. Chapter 8 investigates the properties of LC3 mortars incorporating MPCMs. 

Ultimately, Chapter 9 reviews the major conclusions derived from this research and 

recommends potential future work. 
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Chapter 2  

2 Integrating Phase Change Materials in Construction 
Materials: Critical Review1 

Diverse applications of phase change materials (PCMs) have become of great interest in 

recent years owing to their beneficial effects on the thermal and durability properties of 

construction and pavement materials. PCMs can alter the thermal mass and thermal inertia 

of building materials, thus enhancing thermal energy storage. The effects of PCMs on 

cement hydration, thermal stress, and shrinkage of concrete have stimulated further 

applications. Despite various virtues of PCMs in construction and pavement materials, their 

drawbacks still need concerted research efforts. Among the fundamental problems of 

PCMs is their risk of leakage in the molten state. Hence, several techniques have been 

proposed to mitigate this problem. The present chapter examines the potential methods of 

incorporating PCMs into building materials, including microencapsulation, macro-

encapsulation, shape-stabilization, and porous inclusion. A critical analysis of PCM 

applications and stabilization materials and methods in concrete is provided, hence 

identifying practical recommendations, research needs, and current knowledge gaps. 

2.1 Introduction 

Rapidly growing energy consumption along with the limitations of energy resources has 

motivated researchers to seek new methods for energy harvesting and conservation in 

different sectors. In particular, buildings consume the largest energy share worldwide, 

exceeding the industry and transportation sectors (Annual Energy Outlook, 2010; 

Sieminski, 2014). Furthermore, stern climate change implications of the colossal fossil fuel 

consumption have stimulated the search for novel methods to enhance energy efficiency. 

For instance, increasing the thermal inertia and thermal mass of buildings has been hailed 

as a promising method for energy conservation in buildings (Braun et al., 2001; Ruud et 

al., 1990).  

 

1
 A version of this chapter was published in “Construction and Building Materials” journal, 2019.  
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Phase change materials (PCMs) have been recently introduced to enhance the thermal 

properties of building materials including thermal mass, thermal inertia, and specific heat 

capacity (Tyagi et al., 2011; Zalba et al., 2003; Zhou et al., 2012). PCMs are substances 

capable of storing and releasing a great deal of thermal energy when they undergo phase 

transitions. They are grouped into three main categories, namely organic, inorganic, and 

eutectic mixtures (Raoux, 2009; Zalba et al., 2003). Incorporating PCMs in building 

materials such as concrete and gypsum significantly increases their thermal mass, which 

contributes to regulating the indoor temperature of buildings. Accordingly, energy 

conservation in buildings by thermal energy storage (TES) becomes more achievable 

(Khudhair & Farid, 2004; Schossig et al., 2005; Sharma et al., 2009; Zalba et al., 2003; 

Zhou et al., 2012).  

Not only can PCMs affect the energy efficiency of building elements, but they also may 

enhance some mechanical and durability features of construction materials. For instance, 

researchers have explored improving the temperature variations and heat evolution in 

concrete elements (e.g., mass concrete) during the cement hydration process, crack 

resistance, and thermal shrinkage of concrete in the presence of PCMs (Fernandes et al., 

2014; Kim et al., 2015; Šavija & Schlangen, 2016). Reducing thermal stress and damage 

due to freezing-thawing cycles or temperature gradients (i.e., curling stresses) in concrete 

pavements incorporating PCMs has also been studied (Esmaeeli et al., 2018; Pilehvar et 

al., 2019; Sakulich & Bentz, 2011; Sharifi & Mahboub, 2018).  

However, incorporating PCMs into building materials, such as concrete, is associated with 

drawbacks that need mitigation. For instance, the possible leakage of PCMs in the liquid 

state has been a concern (Cui et al., 2017; Hunger et al., 2009; Kuznik et al., 2011; Soares 

et al., 2013). Interference of PCMs with cement hydration and detrimental effects on the 

mechanical properties of concrete are epitomes of PCM leakage consequences. Hence, 

researchers have introduced various methods for safer PCM incorporation into building 

materials to forestall the leakage of PCMs in the melted state. As shown in Fig. 2-1, these 

proposed methods can generally be classified into four groups: microencapsulation, shape-

stabilized phase change materials (SSPCMs), porous aggregate inclusions, and macro-

encapsulation. Generally, the specific application of PCMs and their influence on the 
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characteristics of the dissimilar host material are key considerations for selecting the most 

suitable among these methods. Figure 2-1 also outlines the main features associated with 

each incorporation method, which are scrutinized in the current study.  

 

Figure 2-1: Categorization of different methods of PCM incorporation into construction 

materials and their associated technical considerations. 

In the present study, methods for integrating PCMs in construction materials are analyzed 

and evaluated. The supporting materials and methods are critically reviewed and compared. 

Moreover, the testing methods for investigating the efficiency of each technique are 

presented. Finally, the potential applications of each method are outlined. Recognizing the 

various methods for incorporating PCMs along with their advantages and drawbacks 

should help engineers and construction materials stakeholders make informed design 

decisions regarding the most effective approaches for incorporating PCMs in building 

materials while mitigating any associated risks and side effects, which could yield 

sustainability and resilience benefits for buildings. 
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2.2 Microencapsulation techniques 

Microencapsulation has been widely used as an effective method for incorporating PCMs 

into building materials. In addition to the protective effect of microencapsulation against 

the leakage of PCMs during their melting process, it can further improve the thermal 

conductivity of PCMs with more efficient performance in melting/freezing cycles. The 

different methods of PCM microencapsulation can be categorized into three basic groups, 

namely physical, physic-chemical, and chemical methods (Jamekhorshid et al., 2014; 

Sánchez-Silva et al., 2010). Several commercial PCM microcapsules have recently been 

produced for applications in the building industry. Table 2-1 summarizes different 

commercial PCM microcapsules used in construction materials. It can be observed that 

PCM microcapsules have been mostly used in cementitious composites, and several studies 

have been conducted to characterize PCM-integrated cementitious composites. Generally, 

PCM microcapsules are used directly in the mixing process of concrete, mostly as a partial 

replacement for sand. A recent study reported the application of PCM microcapsules in the 

production of artificial lightweight aggregates (LWAs) using palletization (Jamekhorshid 

et al., 2014; Sánchez-Silva et al., 2010). Incorporating PCM microcapsules in cementitious 

composites could induce effects on both thermal and mechanical properties, such as 

thermal conductivity, specific heat capacity, and compressive strength. Breakage of 

microcapsules could affect the performance of PCM in cementitious composites. Hence, 

proper characterization of concrete incorporating PCM microcapsules is of great 

importance as discussed below. 

2.2.1 Physical and mechanical properties 

Regardless of the incorporation method, PCMs have considerable effects on both the early- 

and later-age properties of concrete. The origin and distinctive nature of these effects 

necessitate a separate discussion of each. The following subsections elaborates the findings 

relevant to different properties of concrete incorporating PCMs.  
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Table 2-1: Various commercial PCM microcapsules used in the literature 

Material 
Ref. 

Material 
Ref. 

Basic PCM Basic PCM 

mortar 
Micronal 

DS 5008 
(Lucas et al., 

2013) 
concrete 

Micronal, 

Microtek 

(Wei, Falzone, 

Wang, et al., 
2017) 

concrete 
Micronal 

DS 5001 
(Franquet et al., 

2014) 
concrete 

Microtek 

MPCM 24 
(Ricklefs et al., 

2017) 

mortar 
Micronal 

DS 5001 
(Joulin et al., 

2014) 
concrete 

Microtek 

MPCM 24 
(Falzone et al., 

2016) 

mortar 
Micronal 

DS 5001 
(Haurie et al., 

2016) 
concrete 

Microtek 

MPCM 24 

(Wei, Falzone, 

et al., 2017a) 

concrete 
Micronal 

DS 5001 

(Figueiredo et 

al., 2016) 
concrete 

Microtek 

MPCM 28 

(Lecompte et 

al., 2015) 

concrete 
Micronal 

DS 5001 

(Eddhahak-Ouni 

et al., 2014) 
geopolymer 

Microtek 

MPCM 28 
(Shadnia et al., 

2015) 

plaster 
Micronal 

DS 5001 
(Lachheb et al., 

2017) 
concrete 

Microtek 

MPCM 28 

(Young, Wei, et 

al., 2017) 

concrete/LWA 
Micronal 

DS5040X 

(Tuncel & 

Pekmezci, 2018) 
mortar Inertek 

(Bahrar et al., 
2018) 

concrete 
Micronal 

DS5040X 
(Jayalath et al., 

2016) 
gypsum Micronal 

(Toppi & 

Mazzarella, 

2013) 

concrete 
Micronal 

DS5040X 

(Pomianowski 

et al., 2014) 

polyurethane 

sandwich panel 
Micronal 

(Castellón et 

al., 2010) 

wood and 

plastic 

Micronal, 

Microtek 

(Jamekhorshid 

et al., 2017) 
mortar 

Devan 

Mikrathermic 

(Kheradmand et 

al., 2014) 

2.2.1.1 Density, compressive strength, and elastic modulus 

Incorporating PCM microcapsules into portland cement and geopolymer concrete and 

mortar tends to decrease their density due to the relatively lower density of PCM 

microcapsules (Aguayo et al., 2016; Figueiredo et al., 2016; Haurie et al., 2016; Jayalath 

et al., 2016). For example, the bulk density of Micronal DS 5001 is 250-350 kg/m3, which 

is far smaller than that of concrete aggregates (Figueiredo et al., 2016). Moreover, PCM 

microcapsules usually increase the porosity of the matrix, leading to lower density of the 

composite (Jayalath et al., 2016).  

Most studies in the open literature argue that PCM microcapsules addition in concrete is 

detrimental to its compressive strength. Figure 2-2 displays the potential reasons for 

strength reduction of concrete incorporating PCM microcapsules. The inherent softness of 

PCM microcapsules, which does not provide significant mechanical resistance, has been 
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reported as a main reason for this behavior (Aguayo et al., 2016; Eddhahak-Ouni et al., 

2014; Figueiredo et al., 2016; Haurie et al., 2016; Jayalath et al., 2016). Falzone et al. 

(Falzone et al., 2016) investigated the effect of incorporating soft inclusions on the 

mechanical properties of cementitious materials. Microtek MPCM24D microcapsules were 

used as the soft inclusion, while graded quartz sand was used as the stiff inclusion. The 

modulus of elasticity was evaluated and a critical volume ratio of stiff to soft inclusion was 

suggested as a design guide for cement mortar mixtures. Likewise, retardation of cement 

hydration reactions due to the interference of PCM is another factor affecting the 

compressive strength of concrete (Aguayo et al., 2016; Eddhahak-Ouni et al., 2014; 

Eddhahak et al., 2014). Rupture of the microcapsules shell during mixing or loading of 

concrete results in PCM leakage, which can hinder the contact between cement particles 

and water.  Similar effect of PCMs on the geopolymerization of fly ash was also reported 

(Cao et al., 2017; Shadnia et al., 2015).  

Another potential reason for the decrease in the compressive strength of concrete is the 

increased porosity imparted by PCM addition (Aguayo et al., 2016; Dehdezi et al., 2013; 

Eddhahak et al., 2014; Haurie et al., 2016; Jayalath et al., 2016; Pilehvar et al., 2017). This 

was observed for instance by Aguayo et al. (Aguayo et al., 2016) who used mercury 

intrusion porosimetry (MIP), and Pilehvar et al. (Pilehvar et al., 2017) who used X-ray 

tomography imaging to evaluate the porosity of both portland cement and geopolymer 

concretes. Studies that are more recent assert that the type of shell material of PCM 

microcapsules can significantly affect the strength of concrete (Aguayo et al., 2016; Liu et 

al., 2017). For instance, Liu et al. (Liu et al., 2017) reported that PCM microcapsules made 

with ceno-spheres and strengthened with silica sol could considerably restore strength 

reduction induced by traditional PCM microcapsules.  

Integration of PCM microcapsules into concrete was also reported to reduce its modulus 

of elasticity (Falzone et al., 2016; Haurie et al., 2016). For instance, Haurie et al. (Haurie 

et al., 2016) investigated the dynamic modulus of elasticity of cement mortars 

incorporating PCMs via fundamental resonance frequency and propagation of ultrasonic 

wave methods. Their results substantiated the known effect of reduced elastic modulus due 

to PCM addition in cement-based materials. 
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Figure 2-2: Reasons for strength reduction in concrete incorporating PCM 

microcapsules. 

2.2.1.2 Microcapsule breakage 

A potential problem associated with incorporating PCM microcapsules in concrete is 

microcapsule breakage during mixing or loading of concrete, as evidenced by SEM images 

in various studies (Aguayo et al., 2016; Eddhahak et al., 2014; Hunger et al., 2009; 

Lecompte et al., 2015; Meshgin & Xi, 2012; Pomianowski et al., 2014). Pomianowski et 

al. (Pomianowski et al., 2014) conducted cryo-scanning electron microscopy (cryo-SEM) 

analysis to investigate the condition of microcapsules after the mixing process. Results 

indicated some damage of PCM microcapsules, but this technique did not prove effective 

for evaluating possible PCM damage during mixing. Nevertheless, some researchers 

suggested that in order to reduce the occurrence of mechanical damage of PCM 

microcapsules during the mixing process, it is advantageous to add it as a last component 

in the mixture. However, Jayalath et al. (Jayalath et al., 2016) refuted breakage of PCM 

microcapsules during mixing and rather attributed it to the loading stage of the hardened 

concrete. From a chemical point of view, Wei et al. (Wei, Falzone, Wang, et al., 2017) 

attributed the PCM microcapsules damage to chemical reactions of the shell of 

microcapsules with sulfate ions in cement paste and consequent deformation and rupture 

of PCM microcapsules. More recently, researchers aimed to introduce new methods such 
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as the emulsion polymerization technique to produce more resilient PCM microcapsules 

(D'Alessandro et al., 2018; Stritih et al., 2018). 

2.2.2 Thermal properties 

Since PCMs have special thermophysical properties, they can impart to construction 

materials such as concrete immense thermal features, including thermal conductivity, 

specific heat capacity and thermal diffusivity. Moreover, PCMs can mitigate thermal 

cracking of concrete and enhance thermal energy storage (Arora et al., 2017; Fernandes et 

al., 2014; Thiele et al., 2016; Young, Falzone, et al., 2017; Young, Wei, et al., 2017). Other 

building materials, such as gypsum and geopolymers, are also suitable for incorporation of 

PCMs, especially for TES applications (Castellón et al., 2010; Jamekhorshid et al., 2017; 

Shadnia et al., 2015; Toppi & Mazzarella, 2013). For instance, Shadnia et al. (Shadnia et 

al., 2015) evaluated the mechanical and thermal characteristics of geopolymer mortar 

including microencapsulated PCM. Microtek MPCM 28-D with a melting temperature of 

28 °C and a latent heat of 180-195 J/gr was used. Thermal performance testing was 

conducted on three 305×305×305 mm cubicles to evaluate the performance of PCM 

integrated into the geopolymer wall in regulating indoor temperature and heat flow. Results 

indicated that using geopolymer mortar in building walls greatly increased the thermal 

inertia of the building elements. Hence, energy consumption for heating and cooling of 

indoor space could be decreased (Shadnia et al., 2015). 

2.2.2.1  Thermal conductivity 

Several researchers explored the effects of PCM addition on the thermal conductivity of 

construction materials including cementitious composites and gypsum. The thermal 

conductivity of bulk materials is typically measured via several methods categorized either 

as steady-state or transient methods. Table 2-2 presents methods employed to measure the 

thermal conductivity of cementitious composites with or without PCM contents. The hot 

disk and guarded hot disk methods, which are steady-state methods, have been more widely 

used for the measurement of thermal conductivity of cementitious composites 

incorporating PCMs (Cao et al., 2017; Cui, Liao, et al., 2015; Eddhahak-Ouni et al., 2014; 

Haurie et al., 2016; Jayalath et al., 2016; Lecompte et al., 2015; Ricklefs et al., 2017). 
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Table 2-2: Different methods used for measuring thermal conductivity of cementitious 

composites in the literature 

Material PCM  Test method Ref. 

cement paste no TPS (Bentz, 2007) 

cement paste no laser flash (Xu & Chung, 1999) 

cement paste no laser flash (Xu & Chung, 2000) 

concrete no hot wire (Demirboğa, 2007) 

concrete no TPS (Brown & Javaid, 1970) 

concrete no hot wire (Kim et al., 2003) 

concrete no hot plate 
(Campbell-Allen & Thorne, 

1963) 

concrete no hot wire (Uysal et al., 2004) 

concrete paraffin TPS (Xu & Li, 2013) 

concrete n-octadecane TPS (Zhang et al., 2013) 

concrete microcapsule hot wire (Martin Hunger et al., 2009) 

cement mortar microcapsule guarded hot plate (Ricklefs et al., 2017) 

concrete and 

mortar 
microcapsule 

needle probe, C-Therm 

method 
(Jayalath et al., 2016) 

mortar microcapsule dynamic measurement (Haurie et al., 2016) 

concrete microcapsule hot disk (Eddhahak-Ouni et al., 2014) 

cement mortar microcapsule hot disk (Cui et al., 2015) 

concrete microcapsule hot disk (Lecompte et al., 2015) 

geopolymer microcapsule guarded hot plate (Cao et al., 2017) 

Jayalath et al. (Jayalath et al., 2016) used two different methods named C-Therm and 

needle probe methods for measuring the thermal conductivity of both concrete and cement 

mortar incorporating PCM microcapsules. Results of both methods were in good 

agreement. Incorporating PCM microcapsules into concrete and mortar generally 

decreased thermal conductivity. Increased PCM microcapsule dosage resulted in greater 

reduction of thermal conductivity due to the relatively lower thermal conductivity of PCM 

microcapsules (Bahrar et al., 2018; Haurie et al., 2016; Jayalath et al., 2016). Moreover, 

increase in air voids of the cementitious matrix due to PCM microcapsules incorporation 

led to lower thermal conductivity (Cui, Liao, et al., 2015; Haurie et al., 2016; Jayalath et 

al., 2016). However, for low PCM microcapsule dosage, the thermal conductivity of 

concrete may not change significantly (Eddhahak-Ouni et al., 2014). 
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2.2.2.2 Specific heat capacity 

Integrating PCMs into construction materials can dramatically change their specific heat 

capacity because of PCM’s latent heat capacity. Differential scanning calorimetry (DSC) 

was generally employed for measuring the specific heat capacity of cement pastes and 

mortars (Eddhahak-Ouni et al., 2014; Haurie et al., 2016; Jayalath et al., 2016). Eddhahak-

Ouni et al. (Eddhahak-Ouni et al., 2014) used Micronal DS 5001 X as PCM in various 

concrete mixtures and investigated their specific heat capacity using DSC. The volume 

ratio of PCMs to concrete was 1%, 3%, and 5%. Integrating PCM into concrete led to 

significant improvement in the heat storage capacity of the PCM-concrete composite. 

However, limitations of this method in calculating the specific heat capacity of concrete 

(i.e., the sample must be homogeneous and very small size) have motivated researchers to 

propose alternative methods for more accurate measurement of the specific heat capacity 

of concrete and mortar. For instance, Pomianowski et al. (Pomianowski et al., 2014) 

introduced an experimental technique for assessing the heat capacity of concrete specimens 

incorporating PCM microcapsules. Micronal type DS 5040X with the latent heat of 100 

kJ/kg and melting temperature of 23 °C was used as PCM microcapsules at dosages of 0, 

1, 4, and 6 (wt.%). Four methods for calculating specific heat capacity with regards to 

temperature, Cp(T), including theoretical method, simple method, numerical simple 

method, and inverse method were discussed. It was argued that the numerical simple 

method and inverse method were more applicable and appropriate for measuring the 

specific heat capacity of PCM microencapsulated concrete (Pomianowski et al., 2014). 

2.2.2.3  Thermal diffusivity 

The thermal diffusivity, α, of materials is affected by the incorporation of phase change 

materials. It can be defined as: 

α =
k

ρcp
              Eq. 2-1 

where k, 𝜌, and cp are the thermal conductivity, density, and specific heat capacity, 

respectively. Since incorporating PCM microcapsules in concrete and mortar reduces the 

thermal conductivity and significantly increases the specific heat capacity, it is expected 
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that the thermal diffusivity would be reduced. This was evidenced for instance by 

experimental findings of Jayalath et al. (Jayalath et al., 2016) and Haurie et al. (Haurie et 

al., 2016), which confirm that PCM microcapsules addition reduced the thermal diffusivity 

of cementitious composites. 

2.2.2.4 Heat of hydration 

Incorporating PCMs in cementitious composites has considerable influence on portland 

cement hydration reactions and geo-polymerization of fly ash (Arora et al., 2017; 

Eddhahak-Ouni et al., 2014; Eddhahak et al., 2014; Fernandes et al., 2014; Hunger et al., 

2009; Jayalath et al., 2016). Semi-adiabatic calorimetry and isothermal calorimetry can be 

utilized to measure the heat of hydration or hydration rate of cement. Jayalath et al. 

(Jayalath et al., 2016) used Micronal DS 5040X as microencapsulated PCM in mortar and 

concrete mixtures. Isothermal calorimetry and thermogravimetry tests were conducted on 

mortar specimens to evaluate the effect of PCM microcapsules on heat of hydration and 

hydration products formation, respectively. Their results indicate that increasing the PCM 

microcapsules dosage in concrete mixtures caused an increase in the peak of the rate of the 

heat of hydration associated with a time delay. Eddahhak et al. (Eddhahak et al., 2014) 

used semi-adiabatic calorimetry to measure heat of cement hydration in PCM-integrated 

mortar. Their results demonstrated that in mortars with broken microcapsules, hydration 

reactions are delayed compared to that of mortars with intact PCM microcapsules. Such 

delay in hydration kinetics was attributed to PCM leakage and its interference with the 

cementitious matrix components.   

2.2.3 Durability of PCM microcapsule-integrated materials 

A key objective of the application of PCMs in concrete, irrespective of the incorporation 

method, is enhancing its sustainability and durability (Sakulich & Bentz, 2012). The 

mitigation of early- and later-age cracks and reducing damage due to freezing-thawing 

cycles have become focus areas for recent studies. For instance, Wei et al. (Wei, et al., 

2017) evaluated the durability of cementitious mortars incorporating microencapsulated 

PCMs. Microtek MPCM6D, MPCM24 D, MPCM43D and Micronal DS 5008X were used 

as PCM microcapsules. The stability of the phase transition enthalpy of the 



19 

 

microencapsulated PCMs after addition to cement mortar was first examined and it was 

found that about 25% reduction in the phase change enthalpy occurred. This reduction was 

not attributed to mechanical damage of PCM microcapsules during the mixing process, but 

rather to chemical reactions of PCM microcapsules with the sulfate ions. However, the 

results of this study substantiated that although PCM microcapsules are vulnerable to the 

reduction of phase change enthalpy due to their chemical reactions with the sulfate-laden 

environment of cement mortars, they do not detrimentally affect the durability of mortar 

(Wei, et al., 2017). Moreover, such studies emphasized the essential role of microcapsules 

to maintain the durability of cementitious composites. In other words, to have adequate 

durability and sustainability, PCM microcapsules should not be damaged during the host 

material’s lifetime. Accordingly, both mechanical and chemical reasons may account for 

the deformation and rupture of microcapsules shells, causing leakage of the core PCM. 

Durability tests, water absorption, and drying shrinkage demonstrated that, in contrast to 

the vulnerability of PCM capsules in the sulfate environment of cement paste, no harmful 

effect on the durability of mortars incorporating PCM microcapsules was observed (Wei, 

et al., 2017).  

2.2.4 Potential applications 

Researchers have proposed a wide range of potential applications of PCM-incorporated 

construction materials. Providing TES capability for plasters and mortars was the primary 

application of PCM microcapsules in construction materials. Lachheb et al. (Lachheb et 

al., 2017) and Kusama and Ishidoya (Kusama & Ishidoya, 2017) reported that PCM plaster 

for building walls significantly contributes towards indoor thermal comfort and energy 

consumption reduction in buildings owing to its TES potential. Moreover, various studies 

on the influence of PCM inclusions on the mechanical, durability and crack behavior of 

structural concrete have been carried out as discussed earlier. Recently, the application of 

PCMs to reduce the temperature evolution in concrete at early-ages has been assessed. For 

instance, Young et al. (Young, et al., 2017) reported that PCM inclusion in concrete 

pavements could reduce the temperature rise induced by cement hydration. 
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2.3 Shape-stabilization of PCMs 

Considering the risk of PCM leakage in its molten state and its interference with the 

surrounding environment, several researchers have proposed a new form termed shape-

stabilized PCM (SSPCMs). Stabilizing PCMs in the molten state is achieved using a 

supporting material (SM). Shape stabilizing of PCMs, like microencapsulation, not only 

prevents the leakage of the PCM, but also enhances the thermal conductivity of the phase 

change composite and improves its thermal behavior in melting/freezing cycles. The 

selection of SM and fabrication technique of SSPCMs are crucial factors affecting thermal 

characteristics. Various materials have been used as SM in the fabrication of SSPCMs as 

outlined in Table 2-3. Generally, three principal methods for fabricating SSPCMs are 

utilized, including direct absorption, vacuum impregnation, and sol-gel methods. The 

addition of SM could cause an alteration in thermo-physical properties of PCMs. 

Therefore, characterizing the fabricated SSPCM composites is crucial. Moreover, it is 

necessary to experimentally evaluate the effects of SSPCMs on thermal and mechanical 

properties of the host construction material. Figure 2-3 displays a summarized 

categorization of influential factors in fabricating SSPCMs.  

 

Figure 2-3: Influential factors in the fabrication of SSPCMs. 
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Table 2-3: Supporting materials used for fabricating SSPCMs in the literature 

PCM Supporting material 
Combination 

method 
Ref. 

CA-PA xGnP direct absorption 
(Sayyar et al., 

2014) 

n-heptadecane xGnP direct absorption 
(Biswas et al., 

2014) 

n-hexadecane, n-

octadecane 
xGnP and Na-MMT 

Vacuum 

impregnation 
(Jeong et al., 

2015) 

PEG expanded graphite (EG) direct absorption (Lv et al., 2016) 

paraffin expanded graphite (EG) direct absorption 
(Wang et al., 

2016) 

n-octadecane expanded graphite (EG) direct absorption 
(Zhang et al., 

2013) 

hexadecane xGnP vacuum impregnation  (Kim et al., 2014) 

biobased PCM silica fume and xGnP vacuum impregnation (Kang et al., 2015) 

hexadecane, octadecane silica fume vacuum impregnation 
(Jeong et al., 

2013) 

PEG SiO2 sol-gel (Xu et al., 2016) 

PEG 
diatomite and expanded 

graphite 
vacuum impregnation 

(Karaman et al., 
2011) 

paraffin RT21 Nano-silica direct absorption (Li et al., 2015) 

octadecane xGnP vacuum impregnation  (Min et al., 2017) 

stearic acid silica fume vacuum impregnation 
(Wang et al., 

2011) 

paraffin RT21 diatomite direct absorption (Li et al., 2014) 

CA and PEG bentonite vacuum impregnation (Sarı, 2016) 

2.3.1 Supporting materials 

The most suitable materials for fabricating shape-stabilized phase change materials are 

those having a porous structure with desired thermal properties such as high thermal 

conductivity. A great number of different supporting materials including graphite powder, 

silica fume, bentonite, diatomite and kaolin have been proposed in recent years. However, 

graphite powder and silica fume have been more widely used due to their higher absorption 

capacity and better applicability to integrate into cementitious composites. As outlined in 

Table 2-3, graphite is one of the most prevalent materials for fabricating SSPCM 

composites, mostly in the form of expanded graphite (EG) and exfoliated graphite nano-

platelets (xGnP), which has porous structure with high thermal conductivity. The high 

absorption capacity of EG and xGnP facilitates high volume incorporation of PCMs so that 

up to 90% by mass of composite is achievable (Biswas et al., 2014; Jeong et al., 2015; Kim 

et al., 2014; Lv et al., 2016; Wang et al., 2016; Zhang et al., 2013). For instance, Zhang et 
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al. (Zhang et al., 2013) and Kim et al. (Kim et al., 2014) used n-octadecane/EG and 

hexadecane/xGnP composites in the fabrication of cementitious thermal energy storage 

mortars, respectively. According to their results, such SSPCM-incorporated mortars have 

considerable ability in reducing indoor temperature variations in buildings, as well as 

providing time lag to reach peak indoor temperature, which are key factors in reducing 

energy consumption of buildings (Kim et al., 2014; Zhang et al., 2013). SSPCMs 

fabricated by means of graphite powder were also used in gypsum mortar or wallboard. 

Similarly, great potential of such PCM composites in regulating the indoor temperature of 

buildings was observed (Biswas et al., 2014; Cai et al., 2015; Sayyar et al., 2014). 

While silica fume has traditionally been used as a microfiller and pozzolanic addition in 

cementitious composites, its porous structure has made it a proper material for 

impregnating PCMs. For instance, Jeong et al. (Jeong et al., 2013) and Kang et al. (Kang 

et al., 2015) employed silica fume as SM for the fabrication of SSPCM composites. Xu et 

al. (Xu et al., 2016) also introduced a concrete block constructed of PEG/SiO2 composite 

SSPCM. Their findings indicate that silica fume is a compatible SM for incorporation of 

PCMs in terms of maintaining heat storage capacity, thermal and chemical stability. 

Moreover, silica fume-PCM composites can be added to construction materials such as 

mortar and concrete to improve their thermal characteristics (Jeong et al., 2013; Kang et 

al., 2015; Xu et al., 2016). In a different approach, Ma et al. (Ma et al., 2013) used 

Teradecane as the PCM along with carbon and silica as the supporting material to 

synthesize SSPCMs for highway pavement applications. According to their results, the 

SSPCM composite made of silica indicated better latent heat capacity compared to that 

fabricated using carbon. 

In general, SSPCMs addition to cement mortar may drastically decrease its compressive 

strength as reported in (Min et al., 2017; Wang et al., 2016; Xu et al., 2016; Zhang et al., 

2013). This reduction is attributed to the fact that SSPCMs do not provide mechanical 

resistance, especially in the case of using graphite powder as the supporting material (Min 

et al., 2017; Xu et al., 2016). However, the effect of SSPCM addition on the thermal 

conductivity of the host material highly depends on the characteristics of the used SSPCM, 

including thermal conductivity of both PCM and SM, incorporation mass ratio of PCM to 
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SM, porosity structure of both SSPCM and mortar, and mass ratio of SSPCM to mortar 

(Kim et al., 2014; Xu et al., 2016; Zhang et al., 2013). For instance, Zhang et al. (Zhang 

et al., 2013) utilized n-octadecane/EG composite with the PCM mass percentage of 90% 

in the fabrication of different cement mortar specimens in which the mass percentage of 

SSPCM to mortar was 0, 0.5, 1.2, 1.7, and 2.5%. Their results indicate that thermal 

conductivity decreased with an increase in the mass percentage of SSPCM to mortar due 

to porosity induced in the mortar. In contrast, Kim et al. (Kim et al., 2014) reported that 

the incorporation of hexadecane/xGnP composites to the cement mortar increased the 

thermal conductivity of the cement mortar. According to their results, the percentage of 

impregnated hexadecane was 48.8%. Therefore, such different findings stipulate that more 

comprehensive investigations are required to reach conclusive findings regarding the 

influence of SSPCMs with different types of PCM and SM on the thermal and mechanical 

properties of construction materials. Nevertheless, the beneficial impact of their addition 

on providing TES capacity of building materials is well documented (Cai et al., 2015; 

Jeong et al., 2013; Kim et al., 2014; Sayyar et al., 2014; Zhang et al., 2013).  

2.3.2 Fabrication methods 

To achieve optimal PCM impregnation into the porous structure of SM, different 

techniques have been employed including direct absorption, vacuum impregnation, and 

sol-gel method. The preliminary procedure of SSPCMs fabrication is the direct absorption 

of PCM into the supporting material. For this purpose, the PCM is usually melted at 

temperature of 80 to 100 °C. Subsequently, the molten PCM is absorbed into the supporting 

material (Biswas et al., 2014; Li et al., 2015; Li et al., 2014; Lv et al., 2016; Sayyar et al., 

2014; Zhang et al., 2013). For instance, Lv et al. (Lv et al., 2016) produced PEG/EG 

composite with the PEG to EG mass fraction of 96 to 4, 94 to 6, 98 to 2 and 90 to 10. Zhang 

et al. (Zhang et al., 2013) also fabricated n-octadecane/EG composites with PCM mass 

percentage of 90. The vacuum impregnation method is based on the evacuation of air from 

the pores of materials. Since, the pore space in porous materials is usually blocked by air, 

it is required to first remove air that could hinder the PCM path through the pore space to 

have the greatest amount of molten PCM absorbed in the porous structure of the host 

material. Hence, vacuum impregnation is applied to achieve the highest ratio of PCM/SM. 
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Several researchers used this method for fabricating SSPCMs with different porous 

materials such as graphite powder, silica fume and diatomite (Jeong et al., 2015; Jeong et 

al., 2013; Kang et al., 2015; Karaman et al., 2011; Kim et al., 2014; Min et al., 2017; Sarı, 

2016; Wang et al., 2011). 

The sol-gel method is a useful technique for fabricating both organic and inorganic 

composites (Li et al., 2012; Sakka, 2005; Zhang et al., 2010). Accordingly, researchers 

proposed shape-stabilized PCMs fabricated by the sol-gel method (Ren et al., 2014; Xu et 

al., 2016; Zhang et al., 2010). For instance, Xu et al. (Xu et al., 2016) used PEG/SiO2 

shape-stabilized PCM and investigated the feasibility of incorporating it in conventional 

concrete mixtures to enhance its thermal inertia. It was observed that the density, thermal 

conductivity, and compressive strength of the concrete decreased. However, thermal 

performance testing using a passive solar chamber showed that adding SSPCM into 

concrete significantly improved thermal performance as indicated by up to 4.6 °C reduction 

in peak indoor temperature. Clearly, the characterization of SSPCMs after fabrication using 

each of the proposed methods in terms of chemical and thermal stability, leakage 

possibility, etc., plays an essential role in the efficiency of each method. 

2.3.3 Characterization of SSPCMs 

Experiments should be performed to evaluate the chemical stability and thermal 

characteristics of the SM/PCM composite, such as assessing the melting/freezing point, 

latent heat, thermal stability, etc. Scanning electron microscopy (SEM) is commonly used 

for analyzing the morphology and microstructure of SSPCMs. The absorption pattern of 

PCM into the pore structure of SM, as well as its possible leakage can also be observed 

using SEM imaging (Cai et al., 2015; Jeong et al., 2013; Kim et al., 2014; Sayyar et al., 

2014; Zhang et al., 2013). For instance, Cai et al. (Cai et al., 2015) investigated the 

absorption mechanism of SSPCM fabricated of nano-silica. It was found that due to the 

small size of nano-silica particles, the absorption mechanism is immersion as the PCM gets 

surrounded by nano-silica particles. In this regard, SSPCM would have stability in phase 

transitions since the PCM is incorporated in the nano-silica particles (Cai et al., 2015). In 

another study, Li et al. (Li et al., 2014) utilized a diffusion-oozing circle test as an 
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accommodating approach for examining the leakage of the PCM from the SSPCM 

composites.  

Thermal characteristics, phase change behavior and heat storage capacity of the composite 

SSPCMs are generally evaluated using differential scanning calorimetry (DSC). 

Melting/freezing temperature, latent heat of fusion/crystallization, and specific heat 

capacity of SSPCMs can be measured using DSC (Cai et al., 2015; Jeong et al., 2013; Kang 

et al., 2015; Kim et al., 2014; Sayyar et al., 2014; Zhang et al., 2013). Although the phase 

change temperature of the SSPCM composite is in most cases equal to that of the PCM 

(Jeong et al., 2015; Zhang et al., 2013), some studies evidenced that the type of PCM and 

SM could alter the phase change temperature of the SSPCMs. Lv et al. showed that the 

melting/freezing temperature of the EG/PEG composite reduced compared to pure PEG 

with the increase of the EG weight percentage due to the drag effect, which prevents perfect 

crystallization of PEG (Lv et al., 2016). Hence, the chemical analysis of the SSPCM 

composite has great significance to the thermal characterization. Nevertheless, owing to 

the large thermal conductivity and high porosity of the SM, the thermal conductivity of the 

SSPCM composites would strikingly improve in comparison to the pure PCM (Kim et al., 

2014; Lv et al., 2016; Zhang et al., 2012). 

For the analysis of chemical combination and stability of SSPCMs, Fourier Transform 

Infrared (FTIR) test has been performed in many studies (Cai et al., 2015; Jeong et al., 

2013; Kim et al., 2014). For instance, Cai et al. (Cai et al., 2015) and Jeong et al. (Jeong 

et al., 2013) reported that there was no chemical reaction between PCM and SM during the 

fabrication of SSPCMs. Thermogravimetric analysis (TGA) has also been used to appraise 

the thermal stability of SSPCMs. For instance, Guan et al. (Guan et al., 2015) indicated 

that no decomposition of paraffin/expanded vermiculite occurred below 169.7 ℃, noting 

that the proposed SSPCM has promising thermal stability within 169.7 ℃. Figure 2-4 

summarizes the scope of tests used for characterizing thermal and chemical properties and 

stability of SSPCMs. SEM, DSC, FTIR, TGA, and thermal conductivity tests are the most 

commonly used methods for characterizing the thermal properties and thermal stability of 

SSPCMs.  
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2.3.4 Potential applications of SSPCMs 

SSPMCs have been mostly used for TES purposes rather than structural functionality. 

Several researchers applied different SSPCM composites in non-structural building 

elements, such as walls and building envelopes in both laboratory and real scale samples 

to regulate indoor temperature variations and reduce energy consumption (Biswas et al., 

2014; Cai et al., 2015; Kim et al., 2014; Sayyar et al., 2014).  For instance, Sayyar et al. 

(Sayyar et al., 2014) used a type of SSPCM fabricated from fatty acids eutectic PCM and 

graphite nanosheets in the construction of a three-layer sandwich panel gypsum wall. Their 

thermal performance experiment revealed that the utilization of such SSPCM in the 

composite wall could narrow the indoor temperature variation range from (13-32 ℃) to 

(18.5-26.5 ℃). The potential application of SSPCMs in structural concrete has also been 

explored in recent studies. Min et al. (Min et al., 2017) investigated the thermal and 

mechanical properties of concrete incorporating SSPCMs. Their results indicated that the 

addition of SSPCMs reduced the compressive strength and elastic modulus of concrete 

while increasing its specific heat capacity. Nevertheless, they emphasized the need for 

Figure 2-4: Some of common tests for characterizing SSPCMs. 
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more research on the structural, thermal, and energy-saving performance of such 

cementitious composites. 

SSPCMs also stimulated beneficial applications in pavement materials and construction 

(Ma et al., 2016; Si et al., 2015). In an experimental study, Ren et al. (Ren et al., 2014) 

proposed a type of SSPCM with desirable latent heat and melting temperature to be used 

in asphalt mixtures. Furthermore, Ma et al. (Ma et al., 2013) introduced an SSPCM 

composite fabricated with Tetradecane as a PCM to be incorporated in highway pavements, 

which showed a phase transition temperature and enthalpy of 5.8 ℃ and 178 J/g, 

respectively. 

2.4 Porous inclusion 

Another interesting and applicable method of incorporating PCMs into concrete is 

absorbing liquid PCMs into porous lightweight aggregates (LWAs). This technique is 

similar to the shape stabilizing method, with some noted differences. For instance, 

SSPCMs should be added to the concrete mixture as a partial replacement for fine 

aggregates (Li et al., 2014; Min et al., 2017). Furthermore, SM for preparing PCM-LWA 

is generally different in comparison with SSPCMs. In SSPCM fabrication, powder 

materials such as graphite powder or silica fume are generally used as the SM, whereas 

porous aggregates with larger size and mechanical strength capability are more promising 

SMs for the PCM-LWA concrete.  Various important factors influence the performance of 

PCM-LWA concrete and should be carefully considered in the mixture proportions. These 

include the type of LWA and its absorption capacity, the impregnation method, the coating 

and supporting materials, and characterization and performance testing (Cui, Memon, et 

al., 2015; Farnam et al., 2017; Kheradmand et al., 2015; Memon, Cui, Lo, et al., 2015; 

Memon, Cui, Zhang, et al., 2015; Nepomuceno & Silva, 2014; Sakulich & Bentz, 2012; 

Sharifi & Sakulich, 2015). Researchers proposed various porous aggregates as the host of 

PCM, different impregnation methods, and various coating and supporting materials.  

2.4.1 Lightweight aggregates 

The porous structure of LWA makes it suitable as a PCM container in concrete. However, 

some characteristics of LWAs such as their porosity, pore size, aggregate size, and surface 
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area, along with the impregnation technique and conditions including the liquid PCM 

temperature could affect the LWA absorption capacity. Various LWAs have been used as 

the carrier of the molten PCM in concrete, including expanded clay, expanded shale, 

expanded perlite, expanded vermiculite, and pumice (Aguayo et al., 2017; Cui, Memon, et 

al., 2015; Memon, Cui, Lo, et al., 2015; Memon, Cui, Zhang, et al., 2015; Ramakrishnan 

et al., 2015; Suttaphakdee et al., 2016; Yao et al., 2018). Aguayo et al. (Aguayo et al., 

2017) used four different types of LWA including pumice, perlite, expanded shale/clay, 

and expanded slate. They observed that porosity is not the only metric for PCM absorption 

capacity of LWAs and the pore diameter can affect such properties of LWAs. For instance, 

pumice with 14% lower porosity than expanded shale/clay had greater PCM absorption 

due to its larger average pore diameter. Kheradmand et al. (Kheradmand et al., 2015) also 

reported that the aggregate size can impact the PCM absorption capacity of LWAs since 

the absorption of the smaller size aggregates was higher. Nonetheless, Aguya et al. 

(Aguayo et al., 2017) took the surface adsorption of small particles into account and 

suggested removing particles finer than 150 µm from LWAs to avoid surface adsorption 

of PCMs instead of its absorption into the LWAs pores. 

Other studies also suggested that LWAs generally could act as SM to incorporate PCMs 

into structural concrete, while compressive strength remains within structural limits. 

Memon et al. (Memon, Cui, Lo, et al., 2015) proposed an LWA-PCM concrete that had 

28-days compressive strength as high as 33.3 MPa to 53.1 MPa, along with 102.5 J/g latent 

heat capacity. However, providing sufficient mechanical strength may be achieved by 

adding to the LAW-PCM composites supporting and coating materials, such as epoxy 

resin, (Cui, Memon, et al., 2015; Memon, Cui, Lo, et al., 2015; Memon, Cui, Zhang, et al., 

2015) since leakage of PCM from pores of LWAs can affect cement hydration reactions 

and consequently the compressive strength of concrete (Bentz & Turpin, 2007; Sakulich & 

Bentz, 2011, 2012).  

2.4.2 Impregnation method 

To have greater PCM absorption into LWA, it is essential to deploy an appropriate 

impregnation method in addition to adequate pore size and pore structure considerations. 

Generally, two different methods have been introduced: vacuum impregnation and direct 
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impregnation. Vacuum impregnation of PCMs into LWAs is similar to that for fabricating 

SSPCMs discussed earlier. However, since the pore structure, the pore size of LWAs, and 

aggregate size are influential factors on the PCM absorption capacity of LWAs, the effect 

of the impregnation method is more pronounced in PCM-LWA composites compared to 

that in SSPCMs. It has been reported that although large LWAs have larger pores, these 

large voids act as a part of the LWA texture and thus do not contribute as the internal 

porosity of LWAs (Castro et al., 2011; Kheradmand et al., 2015). In contrast, smaller 

aggregates have greater total porosity since they have expanded more in comparison to 

larger particles (Kheradmand et al., 2015). However, due to differences in pore size and 

pore distribution between SSPMCs’ supporting materials and LWAs, the effect of this 

technique on the absorption capacity of porous materials is more tangible. Generally, in 

vacuum impregnation, air is removed from the pore space of LWA using a vacuum pump. 

This enables a better absorption capacity of porous aggregates. For instance, Memon et al. 

(Memon, Cui, Lo, et al., 2015) reported that the absorption capacity of LWA was 18% 

using direct immersion and could rise to 73.85 % using the vacuum impregnation. 

Furthermore, the temperature and viscosity of liquid PCM and the duration of mixing can 

affect the absorption capacity. Yet, this technique is generally considered impractical 

because of its complexity and time-consuming process (Aguayo et al., 2017). 

2.4.3 Supporting and coating materials 

Researchers have proposed adding supporting materials to mitigate leakage of molten PCM 

and improve thermal and mechanical characteristics of the PCM-LWA. For instance, 

Memon et al. (Memon, Cui, Lo, et al., 2015) used a combination of epoxy resin, graphite 

powder, and silica fume to enhance the mechanical and thermal characteristics of PCM-

LWA. Consequently, the thermal conductivity was enhanced significantly and the 

compressive strength of PCM-LWA concrete increased. Other coatings and resins, such as 

cement paste, silicone coating, and bituminous emulsion have been used for sealing the 

PCM-LWA (Cui, Memon, et al., 2015; Kastiukas et al., 2016; Kheradmand et al., 2015). 

Some of the utilized coating materials brought about some technical problems such as 

aggregates sticking together or developing a very thin and weak coating layer (Kastiukas 

et al., 2016). To develop structural PCM-LWA concrete with desirable mechanical, 
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thermal, and heat storage characteristics, more studies on different coating and supporting 

materials and their effects on the thermal and mechanical performance of PCM-LWA, 

along with practical methods for preparing such PCM-LWA composites are required in 

future research work.  

2.4.4 Characterization of PCM-LWA concrete 

To understand the effects of incorporating PCM in concrete via lightweight aggregates, it 

is necessary to characterize both PCM-integrated LWAs and PCM-LWA concrete. SEM, 

DSC, TGA, and FTIR have been used to investigate the morphology, thermal properties 

and chemical stability of PCM-LWAs, similar to the characterization of SSPCMs discussed 

earlier (Chung et al., 2015; Karaipekli & Sarı, 2016; Memon, Cui, Lo, et al., 2015; Memon, 

Cui, Zhang, et al., 2015; Nepomuceno & Silva, 2014; Ramakrishnan et al., 2015; Ryms et 

al., 2015; Sakulich & Bentz, 2012; Suttaphakdee et al., 2016; Xu et al., 2015). Moreover, 

the thermal, mechanical, and durability properties of concrete incorporating PCM-LWA 

including thermal performance, thermal conductivity, compressive strength, shrinkage 

strain, and effects of freezing and thawing cycles have been investigated (Aguayo et al., 

2017; Cui, et al., 2015; Farnam et al., 2017; He et al., 2014; Kastiukas et al., 2016; 

Kheradmand et al., 2015; Memon, et al., 2015; Memon, et al., 2015; Nepomuceno & Silva, 

2014; Ramakrishnan et al., 2015; Ramakrishnan, et al., 2017; Ramakrishnan, Wang, 

Sanjayan, & Wilson, 2017; Ryms et al., 2015; Sakulich & Bentz, 2012; Sharifi & Sakulich, 

2015; Suttaphakdee et al., 2016). In terms of mechanical properties, while most studies in 

the literature argue that, regardless of their incorporation method, PCMs decrease the 

compressive strength; Memon et al. (Memon, Cui, Zhang, et al., 2015) reported that the 

compressive strength of concrete made with epoxy coated PCM-LWA was higher than that 

of lightweight concrete without coated PCM-LWA. Moreover, the shrinkage strain of 

coated PCM-LWA concrete decreased compared to that of the control lightweight concrete 

(Memon, et al., 2015). Consequently, it is widely reported that the compressive strength of 

LWA-PCM concrete could comply with code requirements for structural LWA concrete 

(Memon, et al., 2015; Memon, et al., 2015; Suttaphakdee et al., 2016). 

In addition to PCMs’ effects on mechanical and thermal characteristics of construction 

materials, a fundamental goal of their use is to impart TES into building materials. Hence, 
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researchers have performed various tests, for instance, to evaluate the thermal performance 

of walls and cubic cells made of PCM-integrated concrete. Results show that the 

incorporation of PCMs into such walls and roofs significantly contributed to the reduction 

of energy consumption by alleviating temperature fluctuations and reducing/shifting the 

indoor temperature peak. For instance, Suttaphakdee et al. (Suttaphakdee et al., 2016) 

reported that the maximum indoor temperature of a test room with a PCM-LWA concrete 

top panel could be reduced by 1.9 ℃ compared to that of a control room with an ordinary 

LWA concrete panel. Similar findings reported in the literature evidence the potential of 

PCM-LWA concrete in regulating the indoor temperature and reducing the energy 

consumption of buildings (Cui, et al., 2015; Memon, et al., 2015; Memon, et al., 2015; 

Ramakrishnan et al., 2015; Yao et al., 2018). Numerical simulations on larger scale 

construction confirmed such experimental results (Cui, et al., 2015; Memon, et al., 2015; 

Ramakrishnan et al., 2015; Ramakrishnan, et al., 2017; Ramakrishnan; Yao et al., 2018). 

2.4.5 Potential applications 

Owing to its successful outcomes, integrating PCMs into porous aggregates has attracted 

many researchers to study various aspects of this inclusion technique. In addition to TES 

capacity and structural functions discussed earlier, PCM-LWA concrete has provided new 

insights into deicing pavements. Farnam et al. (Farnam et al., 2017) evaluated the 

application of PCMs incorporated into LWAs in reducing the accumulation of ice and snow 

on concrete pavements. Accordingly, the heat released during the phase transition of such 

PCM composites could melt ice and snow on the surface of pavements (Farnam et al., 

2017; Farnam et al., 2015; Liston et al., 2016). Another study (Esmaeeli et al., 2018) 

explored the effects of such PCM-LWA composites on the freezing and thawing 

performance of concrete, suggesting that PCM-LWA cementitious materials are promising 

for enhancing the behavior of concrete pavements under freezing-thawing cycles. 

2.5 Macroencapsulation 

As expressed earlier, a major goal of integrating PCMs in construction materials is 

providing TES systems via PCM latent heat capacity. Accordingly, PCMs have been 

incorporated in various building materials, such as concrete and gypsum, and different 
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building elements, such as walls and roofs. To mitigate the detrimental effects of PCM on 

mechanical properties, researchers have proposed various techniques to prevent direct 

contact between PCM and the host construction materials. Macroencapsulation is an 

effective method to incorporate PCMs into building components, especially prefabricated 

walls and roofs. In this method, PCM is not mixed with the basic material (concrete, 

gypsum, etc.). Hence, the mechanical characteristics of the basic material are not hindered. 

However, the thermal energy storage provided by PCMs could improve the thermal 

performance of such building components. It should be noted that in some references, 

macroencapsulation of PCMs might be attributed to other techniques. For instance, PCM 

impregnation in LWA is sometimes referred to as macroencapsulation (Cui, et al., 2015; 

Memon, Cui, Lo, et al., 2015; Memon, Cui, Zhang, et al., 2015). Moreover, other types of 

PCMs, such as PCM microcapsules or SSPCMs, could be employed to prepare 

macroencapsulated PCM members (Cai et al., 2015; Kim et al., 2017; Sarı, 2014; Zhou et 

al., 2007). In recent experimental work, researchers used reduced-scale experimental and 

empirical procedures to assess the thermal response of PCM-integrated building 

components (Marani & Madhkhan, 2018; Young et al., 2018). Moreover, several 

numerical investigations have been conducted to assess the effect of PCM inclusion in 

building components and on the energy consumption of buildings (Han & Taylor, 2016; 

Stritih et al., 2018). Key aspects of this work are outlined below.  

2.5.1 PCM macroencapsulation through building walls and 
envelopes 

Since building walls and envelopes are typically in direct contact with the outdoor 

boundary conditions and exposed to solar radiation, they are potential candidates for 

incorporating PCMs. Thus, several research studies have evaluated the effects of PCMs on 

the thermal performance of such building members (Bastani et al., 2014; Castell & Farid, 

2014; Evola et al., 2013; Pagliolico et al., 2015). An applicable method of macro-

encapsulating PCMs for application in building walls is through panel-shaped PCM 

containers. For a better thermal performance in charge/discharge cycles, such containers 

need to have high thermal conductivity. Hence, metal containers are suitable for the 

macroencapsulation of PCMs. For instance, Shi et al. (Shi et al., 2014) used steel containers 
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for macro encapsulating PCMs in concrete sandwich panel walls. Their results indicate that 

integrating a PCM layer into the walls of a model room could significantly reduce the 

maximum indoor temperature as well as increase the minimum indoor temperature. Thus, 

the indoor temperature variations were greatly flattened (Shi et al., 2014). Figure 2-5 

indicates the schematic of some macro-encapsulated wall and roof configurations utilized 

in previous studies in the literature.  

Generally, the performance of the embedded PCM macrocapsules greatly depends on 

several factors, such as the location of the PCM macrocapsule (i.e., inner or outer surface 

or within the central section of the wall), microclimate conditions of the region (i.e., 

ambient temperature, solar radiation, etc.), the configuration of the building element (i.e., 

concrete wall, masonry brick wall), thermal properties of the building material and the 

PCM, etc. Researchers evaluated the performance of such PCM-incorporated building 

elements under real climatic conditions or using environmental chambers (Marani & 

Madhkhan, 2018; Shi et al., 2014; Vicente & Silva, 2014). Table 2-4 presents different 

experimental configurations used in some recent studies. 

 

Figure 2-5: Schematic cross-section of PCM macro-encapsulated configurations. 
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Table 2-4: Experimental studies on the application of PCM macrocapsules in buildings 

Experiment 

Configuration 
PCM Inclusion Test Procedure 

Target and 

Results 
Ref. 

Small house 

model 
Macro-encapsulated 

Real climatic 

condition 

Validation of 

numerical 

simulations  

(Castell & 

Farid, 2014) 

Cubic test cell 
A PCM layer included in 

multi-layer walls 

Experimental test 

device under real 

environmental 

condition 

Thermal 

performance of 

PCM integrated 

into multi-layer 

walls 

(Pagliolico 

et al., 2015) 

Test huts 

PCM underfloor heating 

system and PCM 

wallboards 

Real climatic 

condition 

Evaluation of peak 

load shifting, 

energy 

performance and 

cost savings 

(Barzin et 

al., 2015) 

Concrete 

wallboard 

sample and 

test rooms 

Innovative PCM 

macrocapsules using 

hollow steel balls 

Self-designed 

environmental 

chamber 

Evaluation of 

thermal 

performance using 

indoor temperature 

fluctuations 

(Cui et al., 
2017) 

Small test 

room models 

Macroencapsulated PCM 

layer in sandwich 

concrete walls 

Real climatic 

conditions 

Assessment of 

PCM microcapsule 

position in concrete 

wall 

(Shi et al., 
2014) 

Masonry brick 

wall 
PCM macrocapsules Climatic chamber 

Reducing 

temperature 

fluctuations 

(Silva et al., 
2012) 

Concrete 

sandwich 

panel walls 

Macroencapsulated PCM 

layer 

Temperature 

simulator 

apparatus 

Thermal 

performance 

evaluations 

(Marani & 

Madhkhan, 

2018) 

Concrete core 

slab in test 

cubicles 

Macroencapsulated PCM 

tubes 

Real climatic 

condition 

Thermal 

performance 

evaluations 

(Navarro et 

al., 2015) 

2.5.2 PCM macroencapsulation in building roofs 

Concrete roofs such as hollow core slabs are particularly appropriate for incorporating 

PCMs macrocapsules. In this technique, PCMs are macro-encapsulated in the form of 

tubes, cylinder, balls and spheres. For example, Navarro et al. (Navarro et al., 2015) 

examined the thermal performance of PCM macro-capsules in an active hollow core 

concrete slab. It was concluded that the proposed PCM-concrete slab could perform the 

charge/discharge process of PCM in almost 70% of summer and winter days. However, 

the employment of a control system would optimize the charge/discharge process (Navarro 

et al., 2015).  Royon et al. (Royon et al., 2014) used a PCM-polymer composite to fill the 

cavity of hollow-core slabs to provide TES capability. Their results indicate that PCM 
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incorporation would regulate the indoor temperature and such a floor system could perform 

as a passive thermal conditioner during hot days (Royon et al., 2014). Figure 2-5 illustrates 

the schematic of a hollow-core slab filled with PCM.  

In a different approach, Farnam et al. (Farnam et al., 2017) used a type of paraffin oil 

macro-encapsulated in metal pipes to be embedded in concrete pavement slabs. Their 

results demonstrated the practical possibility of using PCMs to melt ice and snow on 

concrete pavements by the heat retrieved during the PCM phase change process (Farnam 

et al., 2017). However, the ambient temperature conditions and melting/freezing 

temperature of the PCM can be determining criteria for the efficiency of the macro-

encapsulation technique compared to using PCM-LWA composites (Farnam et al., 2017; 

Farnam et al., 2015). 

2.6 Discussion and recommendations 

Owing to the variety of PCM types, diverse applications in the construction industry have 

been explored in recent years. Moreover, the potential leakage problem of PCMs during 

melting/freezing cycles have brought about different incorporation methods as critically 

discussed earlier. Hence, selecting a proper incorporation method to achieve specific goals 

of PCM in the host construction material is essential. Moreover, the effect of PCM addition 

on the host material pivots around the incorporation technique. For instance, the 

compressive strength of concrete incorporating PCM-LWA composites could be reduced 

or increased depending on whether supporting and coating materials are used or not (Cui, 

Memon, et al., 2015; Farnam et al., 2017; Farnam et al., 2015; Memon, Cui, Lo, et al., 

2015; Memon, Cui, Zhang, et al., 2015; Sakulich & Bentz, 2011; Sharifi & Sakulich, 

2015). By the same token, the improvement of the thermal conductivity and latent heat 

storage of the SSPCM composites are dependent upon the supporting material and 

impregnation method (Cai et al., 2015; Kim et al., 2017; Li et al., 2012; Li et al., 2015; 

Ma et al., 2013; Min et al., 2017; Ramakrishnan, Wang, Sanjayan, & Wilson, 2017; Si et 

al., 2015; Wang et al., 2016; Wang et al., 2011; Zhou et al., 2007). 

Table 2-5 presents some recommendations on the incorporation methods concerning the 

aimed applications. Yet, more studies are required for each method to enhance its 



36 

 

performance, efficiency, and sustainability as well as to mitigate the associated obstacles 

and potential detrimental outcomes. It should be noted that each recommendation is 

provided based on results obtained from studies in the open literature and thus are not a 

sine qua non. Moreover, the cost analysis of the incorporation method could be an 

influential factor, which was not taken into account in such recommendations. 

Table 2-5: Recommendations for the method of PCM incorporation in construction and 

pavement materials 

Aimed application Recommended incorporation method 

TES 
PCM macrocapsules integrated into building walls, floors, 

envelopes, etc.; SSPCMs 

Thermal stress control in concrete PCM microcapsules; Porous inclusion 

Pavements (thermally related stress 

and damage control) 
PCM microcapsules; Porous inclusion; 

Pavements (ice/snow-melting) PCM microcapsules; Porous inclusion; PCM macrocapsules 

Structural concrete PCM microcapsules; Porous inclusion 

2.7 Summary, conclusions, and future work 

There has been a recent proliferation of studies that incorporate PCMs into construction 

materials, exploring the benefits of such practice and mitigating the associated drawbacks. 

In particular, the risk of PCM leakage has been a fundamental problem with deleterious 

effects on the mechanical, thermal, and durability properties of PCM integrated 

construction composites. Hence, researchers have proposed various techniques to eliminate 

such detrimental outcomes of PCM-integrated materials. In the present critical review, such 

methods have been categorized into four main groups, namely microencapsulation, shape-

stabilized phase change materials (SSPCMs), porous aggregate inclusions, and 

macroencapsulation. The advantages and disadvantages along with the supporting 

materials for the fabrication and characterization of such composite materials are reviewed 

and critically discussed. It has been realized that more concerted and dedicated studies are 

needed to mitigate the detrimental effects of PCMs on the mechanical properties of 

construction materials by utilizing new chemical or physical incorporation schemes. 

Accordingly, the following knowledge gaps are recognized and need to be addressed in 

future work: 

• The effect of microencapsulated PCMs on the maturity and strength development 

of concrete needs to be investigated. Furthermore, the correlation between 
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physiochemical properties of microencapsulated PCMs and compressive strength 

should be explored. 

• The effect of thermal properties of microencapsulated PCMs together with the 

curing temperature on the strength development and temperature rise of concrete 

need to be studied. 

• Considering the various mechanism contributing to the reduction of compressive 

strength after the addition of microencapsulated PCMs, a robust modeling approach 

should be developed to predict the compressive strength of such types of concrete 

based on the mixture design proportions. 

• SSPCMs offer a promising technique to incorporate PCMs into concrete. Concerted 

research efforts are required to develop high-performance and efficient SSPCMs 

for concrete technology applications. Furthermore, comprehensive experiments are 

needed to elucidate the effects of SSPCMs on various mechanical and thermal 

properties of concrete. 

• With the emergence of eco-friendly and low-carbon concrete technologies, it is of 

great significance to develop thermal energy storage low-carbon composites to 

further reduce the carbon emissions of the built environment. 

• There is need for the development of new PCM encapsulation techniques that are 

more compatible with concrete and thus, can further mitigate the negative effect of 

PCMs on the mechanical performance of concrete. 

It should be noted that developing new methods needs to practically enable the PCMs' 

effect on the energy storage and overall thermal management of buildings in optimal ways. 

The improved understanding of the different methods and their impact on the performance 

of the PCM-integrated construction composite material gained in this study should help 

researchers and engineers in selecting adequate techniques for incorporation of PCMs into 

desired construction materials and systems, with expected sustainability and resilience 

outcomes. 
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Chapter 3  

3 Machine Learning Prediction of Compressive Strength 
for Phase Change Materials Integrated Cementitious 
Composites1 

Incorporating phase change materials (PCMs) into cementitious composites has recently 

attracted paramount interest. While it can enhance thermal characteristics and energy 

storage, compressive strength would be decreased. Thus, accurate prediction of the effect 

of PCM addition on compressive strength is crucial. However, a predictive model for this 

purpose using physical or chemical features is not feasible at this stage. Thus, machine 

learning is used for the first time herein to predict the compressive strength of PCM-

integrated cementitious composites. A dataset of 154 cement-based mixtures incorporating 

PCM microcapsules was assembled. Various machine learning regression algorithms 

including random forest, extra trees, gradient boosting, and extreme gradient boosting were 

tuned and their prediction accuracy was assessed using several metrics. The models 

achieved superior prediction accuracy. Exploiting powerful machine learning models to 

examine the harvested experimental data could provide insights into materials science 

aspects of this problem and identify pertinent knowledge gaps and needed future research. 

3.1 Introduction 

The advent of a miscellany of exigencies and constraints including climate change, energy 

concerns, premature damage of infrastructure, sustainability, and resilience of the built 

environment have vigorously necessitated the emergence of novel smart materials and 

systems. For instance, Phase Change Materials (PCMs) can be added into conventional 

construction materials to bring about enhanced energy efficiency in buildings and 

sustainability of civil infrastructure (De Gracia & Cabeza, 2015; Ling & Poon, 2013; Rao 

et al., 2018). Cementitious materials are particularly favorable for incorporating PCMs 

(Bentz & Turpin, 2007; Hunger et al., 2009; Ling & Poon, 2013). Numerous studies have 

 

1
 A version of this chapter was published in “Construction and Building Materials” journal, 2020. 
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demonstrated the ability of PCM-integrated concrete to store a great deal of thermal energy 

(Jayalath et al., 2016; Sharifi & Sakulich, 2015; Xu & Li, 2013). Not only do PCMs 

contribute to thermal energy storage (TES) in cementitious composites, but they also can 

impart beneficial effects for mitigating thermal shrinkage and cracking (Arora et al., 2017; 

Fernandes et al., 2014; Pei et al., 2016; Šavija & Schlangen, 2016). 

However, PCMs can have deleterious effects on the mechanical properties of cement-based 

materials (Aguayo et al., 2016; Hunger et al., 2009; Jayalath et al., 2016; Pilehvar et al., 

2017; Pilehvar et al., 2019). Copious reasons have been posited to explain such 

compressive strength reduction, such as the interference of PCM with cement hydration 

(Hunger et al., 2009; Jayalath et al., 2016; Pilehvar et al., 2017). Hence, researchers have 

pursued new methods to incorporate PCMs into conventional construction materials to 

lessen such detrimental effects. Amid proposed techniques (e.g. lightweight aggregate 

inclusion, micro- and macro-encapsulation), PCM microcapsules have been extensively 

utilized in the fabrication of cementitious composites. Its effects on mechanical and thermal 

characteristics of cementitious composites have also been extensively assessed over the 

last decade (Aguayo et al., 2016; Hunger et al., 2009; Jayalath et al., 2016). Diverse 

features interfere with mechanical strength development of cementitious composites, 

including the effect of soft PCM microcapsule inclusion, breakage of microcapsules shells 

during mixing and casting of fresh concrete and loading of hardened concrete, and PCM 

microcapsule-induced porosity. Hence, designing concrete mixtures with optimum PCM 

inclusion and desired compressive strength needs accurate predictive tools. 

Parallel to the evolution of PCMs and their application in construction materials, soft 

computing techniques have emerged as powerful tools to model engineering problems and 

predict the behavior of different engineering systems (Bose & Liang, 1996; Saridakis & 

Dentsoras, 2008). For instance, the complex fresh and hardened behavior of cementitious 

composites and its dependency on mixture composition, curing regimes, and 

environmental exposures have stimulated researchers to deploy numerous modeling 

techniques to predict fundamental engineering properties, including compressive strength 

(Ni & Wang, 2000; Snell et al., 1989). The compressive strength of concrete depends upon 

various parameters and thus, is a convoluted nonlinear phenomenon to analyze and 
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formulate. Accordingly, numerous studies have attempted to predict the compressive 

strength of concrete based on its mixture portions using soft computing techniques, such 

as artificial neural networks (ANN) and fuzzy logic (FL) (Alshihri et al., 2009; Khademi 

et al., 2017; Nehdi et al., 2001; Ni & Wang, 2000; Topcu & Sarıdemir, 2008). Such 

methods have been deployed on a variety of concretes, including self-compacting concrete, 

lightweight concrete, self-healing concrete, and engineering properties such as mechanical 

strength, rheology, crack behavior, etc. (Alshihri et al., 2009; Altun et al., 2008; Bilim et 

al., 2009; Chandwani et al., 2015; Khademi et al., 2017; Nehdi et al., 2001; Ramadan 

Suleiman & Nehdi, 2017). 

Machine learning (ML) has more recently emerged as a powerful technique to predict the 

compressive strength of concrete using various algorithms (Chou et al., 2010; Chou & Tsai, 

2012; Chou et al., 2014; Deng et al., 2018; Yaseen, Deo, et al., 2018; Young et al., 2019). 

Yaseen et al. (Yaseen, Deo, et al., 2018) used extreme learning machine to estimate the 

compressive strength of foamed concrete. Cement content, foam volume, oven dry density, 

and water-to-binder ratio were considered as the model attributes. Accordingly, extreme 

learning machine exhibited most accurate predictions compared to that of other algorithms 

including multivariate adaptive regression spline, M5 tree model, and support vector 

machine (SVM). In another study, Ashrafian et al. (Ashrafian et al., 2020) used 

Multivariate Adaptive Regression Splines tuned with Water Cycle Algorithm (MARS-

WCA) to estimate the compressive strength of foamed cellular lightweight concrete. They 

evidenced that their integrative model provided a better prediction accuracy (Ashrafian et 

al., 2020). Young et al. (Young et al., 2019) utilized a large dataset of both laboratory and 

industry-scale concrete mixture designs to predict the 28-day compressive strength of 

concrete using ANNs, SVMs and decision trees. The models could predict the compressive 

strength of laboratory-fabricated concrete more accurately than for industry-scale concrete 

mixtures. It was proposed that expanding the size of the dataset and taking wider spectrum 

of input variables are necessary to discern the most weighted patterns in the dataset (Young 

et al., 2019). In addition to compressive strength, other properties of concrete materials and 

structures can be modeled using soft computing methods, which has been widely addressed 

in the literature, including shear strength prediction of concrete beams, bar development 
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length prediction, etc. (Al-Musawi et al., 2020; Keshtegar et al., 2019; Yaseen, Afan, et 

al., 2018; Yaseen et al., 2019; Yaseen, Tran, et al., 2018).  

Nevertheless, the size of dataset is a crucial factor affecting the performance of ML models. 

Materials science datasets could be both small or comprehensive, which significantly 

affects the training of ML models (Zhang & Ling, 2018). Inadequate amount of available 

data could result in a model with either low prediction accuracy or lack of generalization, 

i.e., overfitting (Cieslak & Chawla, 2008; Zhang & Ling, 2018). Therefore, effective 

strategies should be formulated to mitigate the negative impact of small datasets. One 

versatile approach to overcome the small size of datasets is using ensemble techniques in 

which multiple learners are aggregated to provide a more robust performance. Among 

ensemble techniques, tree-based ensembles, such as random forest, gradient boosting, 

eXtreme gradient boosting, etc. have been extensively proven to achieve promising 

performance in recent years (Ahmad, Mourshed, et al., 2018; Ahmad, Reynolds, et al., 

2018; Torres-Barrán et al., 2019). 

Considering the recent extensive use of PCMs in cement-based materials and its effect on 

the compressive strength of concrete, developing rational predictive tools for the 

compressive strength of PCM-incorporated concrete is inevitable. Therefore, this study 

aims to model, for the first time, the compressive strength of PCM-incorporated cement 

composites using modern ML methods. Since PCM microcapsules have been the most 

prevalent form of PCM integrated into structural concrete, a dataset containing such 

concrete mixtures, as well as cement mortar, was created. Tree-based ensembles are 

favorable tools to develop predictive models based on small datasets as mentioned earlier. 

Hence different powerful ML algorithms including random forest (RF), extra trees (ET), 

gradient boosting (GB), and eXtreme gradient boosting (XGB) are used aiming at 

providing most accurate predictions based on the largest available dataset. 

3.2 Machine leaning modeling basis 

Various machine learning methods can be employed for either regression or classification 

purposes. For instance, decision trees are appropriate for both regression and classification 

problems. A decision tree model denoted Classification and Regression Tree (CART) was 
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proposed as a statistical model by Breiman et al. (Breiman, 2017; Breiman et al., 1984). 

Decision tree is a non-parametric model and does not consider prior parameters. It has two 

types of nodes, namely decision and leaf nodes. It can pattern complicated relationships 

between the features of the data to predict the output (i.e., target). The preliminary idea of 

a decision tree is to split a complex prediction process into some simpler ones. Moreover, 

the prediction performance of decision tree models can be significantly enhanced in terms 

of prediction accuracy and over-fitting errors. For this purpose, ensemble models, which 

are a combination of several decision trees, can be created. Bagging and boosting are 

mostly used for performing ensemble models, such as the RF model and GB model. Such 

methods are proper for data having non-linear relationships between features (i.e., 

attributes). However, each model has some hyper-parameters that need to be tuned 

(Ahmad, Mourshed, et al., 2018; Pan et al., 2019; Young et al., 2019). In recent years, 

many researchers used several ensemble models to predict various targets in different civil 

engineering problems. Table 3-1 presents some of the recent studies on the application of 

different tree-based ensembles in the prediction of mechanical properties of concrete. A 

brief outline of the regression algorithms employed in this study is provided below. 

Table 3-1: Examples of ML applications in similar engineering fields 

Purpose Algorithm Ref. Purpose Algorithm Ref. 

Prediction of concrete 

compressive strength 

Random 

Forest; 

Gradient-

Boosted Tree 

(Young et 

al., 2019) 

Predicting IRI of 

asphalt pavements 

Random 

Forest 

(Gong et 

al., 
2018) 

Prediction of 

lightweight foamed 

concrete compressive 

strength 

Extreme 

Learning 

Machine; 

(Yaseen, 

Deo, et 

al., 2018) 

Study of energy 

use intensity in 

buildings 

Random 

Forest 

(Ma & 

Cheng, 

2016) 

Predicting 

compressive strength 

of lightweight self-

compacting concrete 

Random 

Forest 

(J. Zhang 

et al., 
2019) 

Prediction of 

mechanical 

properties of 

concrete 

Gradient 

Boosting 

(M. 

Zhang et 

al., 
2019) 

Prediction of 

compressive strength 

of concrete 

Random 

Forest 

(Chopra et 

al., 2018) 

Compressive 

strength of high 

performance 

concrete 

Ensemble of 

decision trees 

(Erdal, 

2013) 

3.2.1 Random forest regression (RFR) 

The random forest model is generally developed from the CART method to deliver better 

performance in predicting the output. Purposefully, it creates a large number of decision 
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trees to predict the output. The growth of each tree in this model is achieved through a 

randomized set of features and thus, it is referred to as random forest (Breiman, 1996, 2017; 

Breiman et al., 1984). The amalgamation of all formed decision trees is done using bagging 

(i.e., bootstrap aggregation) (Breiman, 1996, 2017; Li et al., 2018; Zahedi et al., 2018). 

Brieman (Breiman, 1996) introduced bagging as the ensemble model. Bagging can be 

applied to an RFR model to decrease the associated variance in predictions. In this regard, 

a subset of features or training data should be randomly sampled for each decision tree, 

which is called a bootstrap sample. The bagging method applies the decision tree algorithm 

to selected bootstrap samples to produce predictions (Breiman, 1996; Li et al., 2018; 

Rodriguez-Galiano et al., 2015). The final output value in RFR model is the average of the 

output values obtained from all decision trees. Consequently, the outputs of all trees are 

aggregated and averaged out. Accordingly, the final prediction value can be obtained as 

follows (Li et al., 2018; Rodriguez-Galiano et al., 2015): 

�̂� =
1

𝑁
∑ 𝑌�̂�
𝑁
𝑖=1                             Eq. 3-1 

Where 𝑌�̂� is the output value for tree i (𝑖 = 1,2,3, . . 𝑁). Figure 3-1 displays a simple 

schematic of RFR structure. More detailed information on RF models can be found in 

(Breiman, 1996, 2017; Breiman et al., 1984). 

3.2.2  Extra trees regression (ETR) 

Extra trees model, also known as extremely randomized trees, is another ML method, 

which is a tree-based ensemble extended from the random forest algorithm (Ahmad, 

Mourshed, et al., 2018; Ahmad, Reynolds, et al., 2018; Geurts et al., 2006; John et al., 

2015). Like the random forest, the extra trees model uses a subset of features for training 

estimators with a random selection approach. One of the main differences between such 

two algorithms is that the extra trees model selects the best feature and its associated value 

for splitting the node, whilst random forest algorithm employs the most discriminative 

split. Moreover, the extra trees model, in contrast to the random forest, does not use the 

bootstrap method for training (Ahmad, Mourshed, et al., 2018; Ahmad, Reynolds, et al., 

2018; John et al., 2015).  
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Figure 3-1: Simple schematic structure of a random forest model. 

3.2.3 Gradient boosting regression (GBR) 

Boosting was mainly developed for classification problems, and then progressed for use in 

regression models (Hastie et al., 2001; Mason et al., 1999). In this technique, the output 

values of several weak learners are amalgamated into a robust committee using additive 

models. Such models are trained in a forward stage-wise procedure as follows: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + ℎ𝑚(𝑥)                               Eq. 3-2 

Where 𝐹𝑚(𝑥) is the GBR model and ℎ𝑚(𝑥) are the weak learners (i.e., basis functions), 

which are essentially regression trees (Hastie et al., 2001; Persson et al., 2017). In other 

words, 𝐹𝑚(𝑥) is comprised of m small regression trees where boosting iterations based on 

functional gradient descent are proceeded until a robust learner is achieved (Mason et al., 
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1999; Persson et al., 2017). One helpful strategy for mitigating overfitting is to narrow the 

contribution of each regression tree by applying a scaling factor, α, as follows: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛼ℎ𝑚(𝑥)                  Eq. 3-3 

α scales the length of the step for finding the optimum solution in the gradient descent 

method and is called learning rate (Hastie et al., 2001; Mason et al., 1999; Persson et al., 

2017). This parameter plays an important role in optimizing the prediction performance of 

boosting ensembles. Details on the model parameters can be found in (Hastie et al., 2001; 

Mason et al., 1999; Persson et al., 2017; Torres-Barrán et al., 2019). 

3.2.4 eXtreme gradient boosting regression (XGBR) 

XGBR is also an ensemble algorithm in which the boosting process is followed 

(Chakraborty & Elzarka, 2019a). XGB is an optimized GB model so that the loss function 

is normalized and thus, the model variances are mitigated. Consequently, the model 

complexity is reduced and overfitting is much avoided (Chang et al., 2018; Guelman, 

2012). Another significant difference between GB and XGB is that XGB employs the 

Taylor expansion to enhance the loss function, while the GB only considers the first 

derivative (Chang et al., 2018; Guelman, 2012). In XGB model, the sum of the prediction 

of each estimator yields the ultimate prediction of the model at each step, t, expressed by 

the following equation (Fan et al., 2018): 

𝑓𝑖
(𝑡)

= ∑ 𝑓𝑘(𝑥𝑖)
𝑛
𝑘=1 = 𝑓𝑖

(𝑡−1)
+ 𝑓𝑡(𝑥𝑖)                Eq. 3-4  

where xi is the input vector, and fi
(t) and ft(xi) are the predictions and the estimator at step t, 

respectively. XGB evaluates the “goodness” of the model by implementing a regularization 

function alongside with the loss function. The regularization parameter is defined as 

follows (Fan et al., 2018):  

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2                  Eq. 3-5 
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where ω is the leaves’ score vector, λ is the regularization parameter, and γ is the minimum 

required loss to partition the leaf node. More details on XGB can be found in (Chen & 

Guestrin, 2016; Fan et al., 2018). 

3.3 Model development 

In this study, the various ML models outlined in Section 3.2 (RFR, ETR, GBR, and XGBR) 

were developed to estimate the compressive strength of cement composites incorporating 

PCM microcapsules. The rationale for developing different models is to appraise the 

performance of each algorithm in modeling this non-linear problem. Fundamental 

considerations considered to develop such models are elucidated below. 

3.3.1 Data collection, feature extraction, and preprocessing 

PCM microencapsulation has been a prevalent method for incorporating PCMs into 

cementitious composites, especially in structural concrete. Commercial PCM 

microcapsules have been integrated into concrete and its effect on the thermal and 

mechanical properties of concrete have been widely investigated. The compressive strength 

of concrete was one of the key parameters measured in such studies. It has been mostly 

reported that the addition of PCM microcapsules in concrete mixtures led to reduction in 

compressive strength due to several reasons (Marani & Nehdi, 2019).  

To explore this problem systematically, a dataset consisting of 11 attributes (10 input data 

features and 1 output) and 154 samples was assembled using studies in the open literature 

(Aguayo et al., 2016; D'Alessandro et al., 2018; Dehdezi et al., 2013; Hunger et al., 2009; 

Jayalath et al., 2016; Lecompte et al., 2015; Liu et al., 2017; Meshgin & Xi, 2012; Pilehvar 

et al., 2017; Snoeck et al., 2016). Since only limited studies have been performed in this 

specific area, mixture proportions for cement mortar and concrete were considered and 

thereby, the fine and coarse aggregate contents were also used as data features. 

Furthermore, this study aims at evaluating the influence of those input parameters 

investigated in previous experimental studies to capture its significance. Hence, thermal 

properties of PCMs as well as the age and temperature of specimens at the testing time 

were included as input parameters. Nevertheless, the following assumptions have been 

made in collecting the data due to the lack of information about the PCM microcapsules in 
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the literature: i) The chemical and physical properties of the microcapsules such as the 

shell’s material and the percentage of PCM content in microcapsules, the particle size of 

the microcapsules, etc. are not considered in the dataset; ii) Neither chemical reactions of 

the microcapsules with concrete nor its potential mechanical damage are considered in the 

dataset; and iii) It is assumed that there is no leakage of PCM during mixing, curing, and 

testing of concrete. 

Table 3-2 presents the 10 input attributes of the dataset. For model preparation, the dataset 

was randomly partitioned into two groups, namely “training” and “testing” data. About 

80% of the data was allocated to training, while the remaining 20% was used for testing. 

To have identical training and testing samples for all developed ML models, a unique 

“random_state” was assigned in each model using the scikit-learn package in Python 

(Pedregosa et al., 2011). Moreover, the importance of each feature in the prediction 

performance of the tuned model was evaluated to compare with related findings in the 

experimental observations. The feature importance explains how much each feature 

contributes to the prediction of the output (Fisher et al., 2018; Gong et al., 2018; Pedregosa 

et al., 2011). 

Table 3-2: Input features of the dataset prepared for modeling 

No. Attribute Unit Subscript No. Attribute Unit Subscript 

1 Melting temperature ℃ Tm 6 Fine aggregate kg/m3 FA 

2 Latent heat kJ/kg Lm 7 Coarse aggregate kg/m3 CA 

3 PCM dosage kg/m3 PCM 8 Superplasticizer kg/m3 SP 

4 Cement kg/m3 C 9 Age days Age 

5 Water/Cement - W/C 10 Curing temperature ℃ T 

 

3.3.2 Model development, hyperparameter tuning, and cross-
validation 

To optimize the performance of the models used in this study, 5-fold cross-validation (CV) 

along with a stepwise-randomized searching algorithm were implemented to tune the 

hyper-parameters of each model using scikit-learn class “RandomizedSearchCV” 

(Pedregosa et al., 2011). Using a k-fold CV, the data are split into k number of subsets, 

named folds. Thereupon, the model fits the data k times iteratively so as k-1 folds are used 
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for training, whereas the kth fold is considered as the test data in each iteration. Figure 3-

2 displays the schematic structure of a 5-fold CV. As mentioned earlier, each ML algorithm 

has specific parameters and thus, the utilization of tuned parameters can contribute towards 

more accurate predicted outputs.  

 

Figure 3-2: Schematic structure for the 5-fold CV. 

3.3.3 Model performance evaluation 

To assess the accuracy of the applied ML methods, various statistical metrics were utilized. 

The coefficient of determination (𝑅2-value), mean square error (MSE), root mean square 

error (RMSE), mean absolute error (MAE), as well as the normalized RMSE (nRMSE) and 

normalized MAE (nMAE) were calculated. Similar metrics were used to assess model 

predictive performance in many studies in the literature (Yaseen, Deo, et al., 2018; Young 

et al., 2019). Such metrics are expressed as follows: 

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑌 − �̂�)2𝑚
𝑖=1                    Eq. 3-6 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑌 − �̂�)2𝑚
𝑖=1                   Eq. 3-7 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑌 − �̂�|𝑚
𝑖=1                    Eq. 3-8 

𝑛𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑌𝑚𝑒𝑎𝑛
× 100                  Eq. 3-9 
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𝑛𝑀𝐴𝐸 =
𝑀𝐴𝐸

𝑌𝑚𝑒𝑎𝑛
× 100                 Eq. 3-10 

Where m is the number of observations in the dataset, Y is the observed output 

(experimental value), �̂� is the predicted output (obtained from ML models), and 𝑌𝑚𝑒𝑎𝑛 is 

the mean observed output. 

3.4 Results and discussion 

The predictive performance of the ML models employed in this study (RFR, ETR, GBR, 

and XGBR), which were outlined in Section 3.2, is delineated below. A discussion of the 

hyper-parameter tuning of each algorithm is provided. Moreover, the prediction accuracy 

of the tuned algorithms along with their feature importance values are analyzed herein. 

3.4.1 Hyper-parameter tuning of employed ML models 

The hyper-parameters of each ML model have a significant influence on its prediction 

accuracy, robustness, as well as its capability to be generalized to new datasets. 

Accordingly, all models were first tuned to acquire best performance accuracy in predicting 

the compressive strength, while avoiding overfitting. Moreover, hyper-parameter tuning 

would significantly influence the computational time of the model. However, considering 

the rather limited experimental data relevant to the models, the size of the dataset in this 

study is not considered extensive. Hence, the computational time was not a great concern.  

For tuning purposes, the 5-fold CV discussed earlier was implemented along with a 

stepwise-randomized searching technique. 𝑅2-value and RMSE were monitored as the 

criteria for achieving the tuned parameters for each ensemble model. In the case of the RFR 

and ETR models, the number of trees in the forest (n_estimators), the minimum required 

number of samples to split an internal node (min_samples_split), the minimum required 

number of samples to be at a leaf node (min_samples_leaf), the number of features to be 

randomly considered during the growth of each tree (max_features), and the maximum 

depth of the tree (max_depth) are the most essential parameters to be tuned as demonstrated 

previously in the literature (Ahmad, Mourshed, et al., 2018; Ahmad, Reynolds, et al., 2018; 

Pedregosa et al., 2011; Young et al., 2019). Different values for such parameters were 

assigned during 2000 iterations and subsequently the tuned parameters were extracted as 
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presented in Table 3-3. For the GBR model, in addition to the mentioned parameters, the 

learning rate, which indicates the contribution of each tree, noticeably affects the model 

performance. Similar observations were reported in (Pan et al., 2019; Persson et al., 2017; 

Young et al., 2019). In the case of the XGBR model, the “colsample_bylevel” and 

“colsample_bytree” perform similar to the “max_features” in the GBR model and are 

important to be tuned. To avoid overfitting, the “min_child_weight” should also be 

optimized (Chakraborty & Elzarka, 2019b; Pedregosa et al., 2011). Table 3-3 presents the 

tuned parameters for the four utilized models. 

Table 3-3: Tuned parameters for the employed ML models 

Model Tuned Parameters 

RFR n_estimators=50; min_samples_split=2; min_samples_leaf=1; max_depth=17; max_features=5 

ETR 
n_estimators=130; min_samples_split=2; min_samples_leaf=1; max_depth=10; 

max_features=7 

GBR 
n_estimators=220; learning_rate=0.33; min_samples_split=4; min_samples_leaf=2; 

max_depth=2 

XGBR 
n_estimators=180; learning_rate=0.50; min_child_weight=7; colsample_bylevel=0.60; 

colsample_bytree=0.65; max_depth=4 

3.4.2 Predictive performance of machine learning models 

The accuracy of each ML algorithm in predicting the compressive strength of cement-based 

materials incorporating phase change materials was assessed through the statistical metrics 

outlined in Section 3.3.3. Figure 3-3 illustrates the compressive strength values observed in 

the experimental test data examples versus the corresponding values predicted by the various 

machine learning models. The experimental values for compressive strength in the testing 

dataset varied within the range of 12.55 to 73 MPa, for mixtures with and without PCM present 

in the dataset. It can be observed that all the models were able to learn the non-linear 

relationship between the features of the dataset (i.e., mixture ingredients) for predicting the 

compressive strength with a similar trend of predicted versus observed output. 
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Figure 3-3: Compressive strength of cementitious composites: observed VS. predicted. 

Figure 3-4 displays the residuals of the predicted output (i.e., compressive strength) for 

training and testing datasets. The residual of each training or testing example is the 

difference between the predicted value and the original observed value of the output for 

that example. It can be observed that the residuals for the four applied models varied 

slightly around zero, which denotes excellent prediction performance. Moreover, the 𝑅2-

value of the training and testing datasets are shown in Fig. 3-4. All the models had 𝑅2-

values greater than 0.95 for the training and testing datasets, except for the RFR model, 

which had a testing 𝑅2-value of 0.94. The residuals along with the 𝑅2-values of each 
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predictive model indicate superior predictive ability for the compressive strength of 

cement-based materials incorporating PCM microcapsules.  

It should be noted that due to the relatively limited dataset utilized in developing the 

models, high 𝑅2-value for training data (up to 0.99 for ETR, GBR, and XGBR models) 

was achieved. To avoid model overfitting, the hyper-parameters of each model were tuned 

in such a way that the difference between the 𝑅2-value for training and testing datasets is 

minimized. To better characterize the predictive performance of the models, different 

statistical metrics introduced in Section 3 were calculated considering the entire dataset as 

presented in Table 3-4. The RMSE and MAE values for the different models varied 

between 2.419 and 3.988 MPa and 1.752 to 3.065 MPa, respectively. Such small values 

indicate that the developed machine learning predictive models had superior accuracy in 

predicting compressive strength (Ahmad, Mourshed, et al., 2018; Yaseen, Deo, et al., 

2018; Young et al., 2019). As evidenced in Table 3-4, the GBR model showed best 

predictive performance as it had the highest 𝑅2-value (0.977) as well as the lowest RMSE 

and MAE values (2.419 and 1.752, respectively). 
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Figure 3-4: Residuals of the predicted output for training and testing data. 

Table 3-4: Statistical error metrics obtained for employed ML models 

Model 
MSE 

(MPa) 

RMSE 

(MPa) 

nRMSE 

(%) 

MAE 

(MPa) 

nMAE 

(%) 
𝑹𝟐-

Value 

RFR 15.904 3.988 11.608 3.065 8.924 0.939 

ETR 11.377 3.373 9.818 2.595 7.556 0.957 

GBR 5.853 2.419 7.042 1.752 5.100 0.977 

XGBR 10.737 2.845 8.283 2.164 6.301 0.969 

3.4.3 Feature importance of machine learning models  

Feature importance identifies to what extent each feature affects the predictive performance 

of the model. In other words, it presents a score to indicate how valuable is each feature in 

the prediction of the output value. Generally, the feature importance in each model highly 

depends on the configuration of the dataset and the tuning of the hyper-parameters of the 

model. However, a well-tuned model can distinguish truly high importance features that 

are consistent with real-world findings. The values of feature importance along with 

standard deviation error bars for all the developed models are plotted in Fig. 3-5. Each 
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plotted feature importance value is the average of five feature importance values obtained 

by the execution of five random seeds for the data split. It can be observed that the fine 

aggregate content “FA” had great feature importance in all the developed models. Previous 

experimental studies demonstrated that the replacement of stiff fine aggregates by softer 

PCM microcapsules also alters the particle packing of the aggregates and the porosity and 

microstructure of the mortar and concrete (Aguayo et al., 2016; Jayalath et al., 2016; 

Pilehvar et al., 2017), and consequently the compressive strength. Moreover, some studies 

suggest that the replacement of sand by PCM microcapsules improves the space filling 

properties of the mortar and thus, has a desirable effect on cement hydration, which needs 

more experimental investigations (Jayalath et al., 2016). All models successfully 

distinguished the effect of fine aggregate on the compressive strength development in 

cementitious materials incorporating PCM microcapsules. Nevertheless, the RFR, ETR, 

and GBR models yielded higher feature importance values for “FA” compared to XGBR. 

Furthermore, not only did all the models capture the effect of the fine aggregate content, 

but also captured the significant effect of the PCM content on compressive strength, as 

shown in Fig. 3-5. This is in consistent with previous findings which showed that PCM 

inclusion significantly affects the compressive strength of cement mortars and concrete 

(Aguayo et al., 2016; D'Alessandro et al., 2018; Hunger et al., 2009; Jayalath et al., 2016; 

Pilehvar et al., 2017). It is noted that among all models, GBR and XGBR had the highest 

and lowest feature importance for FA, 0.373 and 0.177, respectively. Nevertheless, all 

models yielded similar feature importance values for PCM within the range of 0.115 to 

0.181. This indicates that all models captured the considerable influence of the PCM 

inclusion on the compressive strength of the cement mortar and concrete. 

It can be observed in Fig. 3-5 that the “Age” parameter, which represents the advancement 

of maturity of the specimen at the time of testing, greatly contributed to the compressive 

strength, which is expected and widely documented in practice. Furthermore, the addition 

of the PCM microcapsules to concrete caused a delay in the cement hydration process, and 

thus, delayed the development of compressive strength over time due to the latent heat 

capacity of the PCM (Jayalath et al., 2016). Hence, considering the thermal properties of 

PCM microcapsule (e.g., 𝑇𝑚, and 𝐿𝑚) and the age of specimen at the time of testing is of 

great importance in developing accurate ML models. This behavior was well captured by 
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all the developed models since the melting temperature and latent heat of the PCM 

microcapsules had a high value of feature importance (Fig. 3-5). Such high feature 

importance values suggest the need for a more comprehensive investigation into the effects 

of PCM inclusion on the maturity and cement hydration of concrete.  

Conversely, some features such as “SP” which denotes the superplasticizer dosage did not 

significantly affect the model prediction. Another parameter with low feature importance 

in the proposed models was “T”, which is the curing temperature and the temperature of 

specimens at the testing time. By contrast, in one experimental study, it was found that the 

temperature of the specimen at the testing time and thus, the solid or liquid state of the 

PCM, can slightly affect the compressive strength of portland cement concrete due to the 

microcapsules becoming softer after PCM melting  (Pilehvar et al., 2017). As explained in 

Section 3.3, the chemical and physical conditions of the microcapsules were not considered 

in the data collection in this study. Therefore, the effect of the liquid or solid state of the 

PCM on the compressive strength was not captured. Moreover, this discrepancy is likely 

due to insufficient examples in the dataset having a wide range of values of the feature “T”. 

The obtained results from this study along with the previous experimental findings suggest 

that the addition of a combined feature such as “
𝑇𝑚

𝑇
" to the dataset to account for the solid 

or liquid state of the PCM at the testing time may improve the performance of the models 

in larger datasets. Accordingly, more experimental work and data collection for this 

feature, as well as the chemical and physical properties of the microcapsules are required 

to extend the boundaries of the present study. 

It can be concluded that in all proposed models, “FA”, “PCM”, and “Age” were the top 

three input features contributing to the compressive strength prediction. Although the ETR 

model suggested that the coarse aggregate content is the next input feature having high 

importance value, the other three models, i.e., RFR, GBR, and XGBR proposed the water-

to-cement ratio as the 4th high importance feature. Accordingly, it is highly recommended 

that the correlation between the aforementioned four input features should be considered 

in future research to better explore the strength development of PCM-integrated 

cementitious materials. Furthermore, the consideration of size distribution and particle 

packing of both PCM microcapsules and aggregates could be highly beneficial in 
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developing a robust and generalized model based on a larger dataset. Eventually, the 

thermal properties of PCMs along with the curing temperature of concrete specimens could 

significantly affect the maturity and cement hydration of concrete, and thus are 

advantageous in compressive strength prediction. 
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Figure 3-5: Feature importance analysis of the proposed models. 

3.5 Conclusions and recommendations 

The present study explores the machine learning prediction of the compressive strength of 

cementitious composites incorporating phase change material microcapsules. Four 

different machine learning regression algorithms including random forest, extra trees, 

gradient boosting, and extreme gradient boosting were tuned and applied to the largest 

experimental dataset that could be currently assembled from the open literature. The dataset 

had 154 data examples with 10 input features and one output (compressive strength). The 

following conclusions can be drawn: 

• The developed machine leaning models achieved superior accuracy in predicting the 

compressive strength of cementitious composites incorporating phase change 

materials with 𝑅2-values within the range of 0.93 to 0.97.  

• The gradient boosting model demonstrated the highest accuracy having an 𝑅2-value 

of 0.977 along with RMSE and MAE values of 2.419 and 1.752, respectively.  

• The feature importance analysis revealed that the proposed models captured the 

effect of each input feature on the compressive strength of the cementitious materials 

in consistence with experimental findings in the open literature. 

• The fine aggregate and PCM microcapsules content had significant effect on the 

predicted compressive strength corroborating the significance of their difference in 

stiffness (since PCM is usually used as partial replacement for sand), along with the 

associated effect on particle packing density in the cementitious matrix. 
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• The age of specimen at the testing time as well as the thermal properties PCM 

including its melting temperature and latent heat capacity also had significant effects 

on the predicted output value. Taken together, these results suggest that the effect of 

PCM inclusion on the maturity of concrete and the development of compressive 

strength over time should be addressed in detailed experimental investigations.  

• It appears that more comprehensive experimental studies and larger datasets are 

needed to better clarify the importance of different features and to get better insight 

into the key materials science aspects (e.g. chemical and physical properties of PCM 

microcapsules) that may be shadowed by the limited dataset. 

The results indicate that exploiting powerful machine learning models to examine the 

harvested experimental data can provide insight into current knowledge gaps and the 

research required in the future to develop more comprehensive and accurate artificial 

intelligence based predictive tools. 
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Chapter 4  

4 Mixture Design of Concrete Incorporating 
Microencapsulated Phase Change Materials for Clean 
Energy: A Ternary Machine Learning Approach1 

Inclusion of microencapsulated phase change materials (MPCM) in construction materials 

is a very promising solution for increasing the energy efficiency of buildings and reducing 

their carbon emissions. Although MPCMs provide thermal energy storage capability in 

concrete, they typically decrease its compressive strength. A unified framework for mixture 

design and optimization of concrete incorporating MPCM is yet to be developed to 

facilitate practical applications. This study proposes an optimized mixture design approach 

for concrete incorporating MPCM using a ternary machine learning (ML) framework. For 

this purpose, a state-of-the-art tabular generative adversarial network (TGAN) was adopted 

to produce multitudinous synthesized mixture design data based on available experimental 

mixture examples. The generated data is then employed to construct robust ML predictive 

models. The best-developed model, which achieved a testing R2 of 0.963 and MAE of 

2.085 MPa, was coupled with a particle swarm optimization (PSO) algorithm to construct 

a powerful recommendation system for optimizing the mixture design of concrete and 

mortar incorporating different types of MPCM. Extensive parametric analyses along with 

the employed optimization procedure accomplished the mixture design of green concrete 

with maximum MPCM inclusion and minimum cement content for various compressive 

strength classes. The proposed framework enables clean energy technology in the design 

of eco-friendly building materials. 

4.1 Introduction 

Energy consumption of buildings has been recognized as a major environmental concern 

in recent years. Extensive research has been devoted to recommending solutions for 

increasing the energy efficiency of the built environment (Chwieduk, 2003). Thermal 

 

1
 A version of this chapter is to be submitted to “Engineering with Computers” journal, 2022. 
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energy storage (TES) systems have emerged as a promising solution to achieve energy-

efficient buildings with less carbon footprint. One method to provide TES is by 

incorporating phase change materials (PCMs) into building components such as walls and 

roofs (Memon, 2014). PCMs can absorb/retrieve a great deal of thermal energy upon their 

phase change transition. Accordingly, temperature fluctuations in buildings are 

significantly hampered and the energy consumption of buildings is significantly decreased 

(Marani & Madhkhan, 2021). Therefore, the integration of PCMs into building components 

promotes sustainability of the built environment and leverages clean technology in the 

construction industry (Qiu et al., 2020). 

Since concrete is the world’s most consumed construction material, there has been great 

interest in incorporating PCM in concrete members. Substantial research has explored 

various techniques to integrate PCM into cementitious materials including PCM 

microcapsules, porous lightweight aggregates, and shape stabilized PCMs (SSPCMs) 

(Marani & Nehdi, 2019). Among all proposed methods, the incorporation of 

microencapsulated PCM (MPCM) has been the most predominant technique owing to its 

convenient usage and commercial availability. MPCMs are mostly produced in powder 

form with desirable size and morphological properties. Hence, they can be readily 

integrated into cementitious mortar/concrete as a partial replacement for fine aggregates 

(Drissi et al., 2019). 

Although the inclusion of MPCM increases the thermal inertia of concrete and provides 

TES capability, it considerably decreases its mechanical properties (Balapour et al., 2021). 

Several research studies have posited explanations for the reduction of compressive 

strength of PCM-integrated cementitious materials as discussed in Chapters 2 and 3. 

Despite the extensive pertinent research, a robust framework for optimum design of 

MPCM-integrated concrete is yet to be developed. Therefore, this study aims at introducing 

a practical design framework for optimized mixture design of concrete incorporating 

MPCM using state-of-the-art computational intelligence methods, along with extensive 

data extracted from research studies and commercial MPCM manufacturers. First, a 

compendious literature review is presented below to identify the knowledge gap in the 



88 

 

design of MPCM-integrated concrete. Thereafter, the proposed methodology is explained, 

and the outcomes are rigorously scrutinized. 

4.2 Overview of state-of-the-art 

This section synthetizes concise knowledge from major findings of pertinent research in 

the open literature and highlights fundamental explanations regarding the interaction 

between MPCM and the main components of concrete. The fundamentals of the applied 

methodology, along with the research significance of the current study are also outlined. 

4.2.1  Knowledge background 

Several types of MPCM with a broad range of thermophysical properties, melting/freezing 

temperature points, melting/freezing enthalpies, and densities have been incorporated into 

cement mortar and concrete. All studies reported that the inclusion of MPCM reduced the 

compressive strength regardless of the thermophysical properties. Nonetheless, 

explanations postulated for the reduction in compressive strength are not consistent. 

According to several studies in the literature, the porosity induced due to MPCM addition, 

low stiffness of MPCM, breakage of the MPCM shell, and the interference of MPCM with 

the cement hydration process are the most proposed mechanisms for compressive strength 

reduction of concrete made with MPCM inclusion. Hunger et al. (Hunger et al., 2009) used 

Micronal DS 5008X in self-compacting concrete and evidenced a significant reduction in 

compressive strength with increased MPCM dosage. They reported that the destruction of 

the MPCM shell is the source of the reduction in compressive strength and thus, stronger 

shells need to be fabricated to withstand both the alkaline environment of concrete and the 

induced mechanical stress during the mixing of concrete ingredients. Nevertheless, 

Jayalath et al. (Jayalath et al., 2016) refuted the breakage of the MPCM shell during 

mixing. They used Micronal DS 5040X, which has a significantly lower density compared 

to that of Micronal DS 5008X.  

On the other hand, the increased porosity of cement paste upon MPCM addition has been 

repeatedly advocated as a major explanation for the decrease in compressive strength. 

Several researchers evidenced that MPCMs act like air voids and increase the pore diameter 



89 

 

of the cementitious matrix. Pilehvar et al. (Pilehvar et al., 2017) studied the inclusion of a 

type of MPCM fabricated by a spray-drying technique on the compressive strength of 

portland cement and geopolymer concretes. In addition to the lower stiffness of MPCM 

compared to sand particles, induced voids and air bubbles were identified as a major reason 

for mechanical strength reduction. SEM images and X-ray micro-tomography revealed 

gaps between PCM microcapsules and the cementitious matrix, along with a weak 

connection between MPCM and the surrounding cement paste, which are caused by the 

agglomeration of MPCM and poor compatibility of MPCM shells and the matrix. Similar 

findings were reported in studies conducted by Sanfelix et al. (Sanfelix et al., 2020) and 

Djamai et al. (Djamai et al., 2019), which emphasized the weak interface of MPCM and 

cement matrix and MPCM acting like air voids as potential reasons for strength reduction. 

Given this analogy, the Bolomey equation has been proposed in two separate studies to 

estimate the compressive strength of MPCM integrated concrete as follows (Lecompte et 

al., 2015): 

𝑓𝑐 = 𝐾𝐵 × 𝜎𝐶 [
𝐶

𝑊+𝑊𝑣+𝑊𝑀𝑃𝐶𝑀
− 0.5]                  Eq. 4-1 

Where 𝑓𝑐 is the estimated compressive strength (MPa), 𝐾𝐵 is a constant depending on the 

used aggregates, 𝜎𝐶 is the strength of the cement (MPa), W is the mass of water, 𝑊𝑣 is the 

mass of water corresponding to the volume of the entrapped air voids, and 𝑊𝑀𝑃𝐶𝑀 is the 

mass of water equivalent to the volume of the used MPCMs. The compressive strength 

predicted by the Bolomey equation is highly correlated to the experimental values in the 

studies of Sanfelix et al. (Sanfelix et al., 2020) and Lecompte et al. (Lecompte et al., 2015), 

albeit no study in the open literature has so far evaluated the accuracy of this equation using 

a large and comprehensive dataset. Overall, the findings from the literature suggest that the 

prediction of the compressive strength of MPCM-integrated composites is an intricate task, 

indicating that concerted research effort and advanced modeling tools are needed to better 

quantify the effects of MPCM inclusion on the compressive strength of concrete. 

4.2.2 Machine learning modeling 

The compressive strength, favorably benchmarked at the age of 28 days, is the most widely 

accepted characteristic of the engineering properties of concrete. Not only is compressive 
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strength an essential structural design parameter but is also widely documented to be 

proportional to the tensile and flexural strengths of concrete. In normal concrete, the water-

to-cement (W/C) ratio is the most correlated parameter to the compressive strength. Yet, 

different strengths for a given W/C can be obtained due to the effect of other parameters 

such as the dosage of the other mixture components, physical properties of ingredients, and 

curing conditions (Young et al., 2019). This is magnified in the case of novel concretes 

having unique mixture compositions. Furthermore, the stochastic nature of concrete 

mixing, manpower intervention, and quality control of concrete further affect the resulting 

compressive strength. Therefore, developing powerful predictive frameworks to model 

various properties of concrete such as compressive strength can help establish high-

throughput mixture optimization (Zhang, Huang, Aslani, et al., 2020).  

Several complexities involved in the design of concrete mixtures hinder the accuracy and 

predictive performance of physical models. Such complexities include the intricacy of 

modeling cement hydration and the associated microstructure development, time and 

temperature-dependent nonlinear behavior of cement paste, and the variability and 

insufficient data regarding the physical, mechanical, and chemical properties of the mixture 

components. Nevertheless, machine learning (ML) models have demonstrated promising 

ability to simulate different engineering characteristics of concrete. There have been 

multiple studies in the recent literature that aspire to propose ML models capable of 

rigorously modeling the mechanical and durability properties of conventional and modern 

concretes. Artificial neural networks (AANs) and ensemble models are among the most 

utilized ML algorithms, having superior predictive performance (Asteris et al., 2021). 

Additionally, deep learning (DL) models have also been implemented as a promising 

technique for modeling concrete characteristics and the condition assessment of concrete 

structures. 

Although data-driven modeling methods are accurate and computationally inexpensive, 

their limitations must be considered to achieve reliable predictive systems with generalized 

capabilities. The limited number of available data examples for training ML models is one 

of the major hurdles associated with material science problems, as evidenced in the 

literature (Zhang & Ling, 2018). Notwithstanding the multiple research studies on ML 
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modeling of concrete, a dearth of research attempted to address and rectify this obstacle. 

Young et al. (Young et al., 2019) used 10,000 industrial observations of the compressive 

strength of concrete along with mixture components to compensate for the limited 

laboratory data. However, there is an utter lack of industrial data on novel concretes. 

Therefore, the limited number of laboratory data from research studies is the only reliable 

source for developing predictive models and recommendation systems. In Chapter 3, 154 

laboratory mixture examples were extracted from the open literature to estimate the 

compressive strength of MPCM-integrated cementitious composites. Although the models 

achieved promising accuracy using ensemble models, the low number of data examples 

was recognized as a considerable limitation to be addressed in future work.  

Meanwhile, the lack of adequate reliable data has been a common problem in diverse areas 

of artificial intelligence computation. Data augmentation for enhancing the performance of 

ML models trained on imbalanced datasets or datasets with missing values has attracted 

vast attention (Antoniou et al., 2017). Furthermore, generative adversarial networks (GAN) 

has recently emerged as the state-of-the-art technique to generate synthesized image data 

that resemble real images (Goodfellow et al., 2014). Thereafter, multiple versions of GAN 

were developed to carry out different ML tasks. Conditional GAN (CGAN) (Mirza & 

Osindero, 2014), Wassertesian GAN (WGAN) (Arjovsky et al., 2017), and Tabular GAN 

(TGAN) (Xu & Veeramachaneni, 2018) are examples of such GAN variants. Among these, 

TGAN was proposed to generate synthesized data having a tabular structure both with 

continuous and discrete variables. Such types of datasets incorporate a wide range of 

applications including medical or educational records, material science problems, energy 

consumption forecasting, etc. 

4.3 Methodology 

The current study proposes a multi-step data-driven ternary methodology to investigate the 

effect of MPCM inclusion on the compressive strength of cement mortar and concrete. For 

this purpose, a comprehensive experimental dataset was first collected from laboratory 

results reported in the open literature. A smaller dataset was previously developed in 

Chapter 3 (Marani & Nehdi, 2020). That dataset was further expanded to include recently 

published data along with some physical properties of the MPCM as model input features. 
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Considering the limitations of the available experimental data, a state-of-the-art data 

augmentation technique was employed to compile a large number of synthetic data points 

for training paramount ML models. Thereafter, the functional ML systems developed 

herein were used to perform compendious parametric analysis for investigating the effects 

of MPCM addition on the compressive strength of concrete. Moreover, an empirical model 

based on a modified version of the Bolomey equation was optimized using the numerous 

synthesized data to estimate the compressive strength of MPCM-integrated concrete. 

Ultimately, a mixture optimization for cement mortar and concrete incorporating MPCMs 

was performed using the best developed ML model coupled with a metaheuristic algorithm. 

The proposed mixtures were further validated through new laboratory testing. Figure 4-1 

illustrates the scheme of the applied ternary ML model in the present study. The 

subsections below elaborate on the fundamentals of each aforementioned step. 

  

Figure 4-1: Proposed ternary framework for mixture optimization of MPCM-integrated 

concrete. TGAN is used to generate synthetic data for training ML models. The models 

are then fed into the optimization algorithm to find optimum mixtures. 
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4.3.1  Experimental data collection and analysis 

The developed dataset in this study updates and extends a previous dataset collected in 

Chapter 3. Their original dataset included 154 mixture design examples with 10 input 

features. The new dataset incorporates additional mixture examples from recently 

published studies, along with key physical properties of MPCM as new model input 

features. After preprocessing and performing baseline models on this dataset, the final 

dataset consisting of 244 observations with 12 input features was deployed for modeling 

and analysis purposes. Table 4-1 lists the sources of the data points. The compressive 

strength of each mixture is the only output included in this dataset. According to the 

findings of Chapter 3, the fine aggregate and MPCM contents exert a significant effect on 

the compressive strength predictions of ML models, which is also evidenced in several 

experimental studies. Since fine aggregates are partially replaced by MPCM in the mixture 

design, the density of MPCM particles is also of great significance. Therefore, the density 

of MPCM was appended to the dataset in the current study. Table 4-2 presents the input 

features of the dataset.  

Table 4-1: Sources of collected data points 

Data 

index 

Number of 

data 
Ref. 

Data 

indexes 

Number of 

data 
Ref. 

1-16 17 (Pilehvar et al., 2017) 131-134 4 
(M Hunger et al., 

2009) 

17-22 6 (Liu et al., 2017) 135-154 20 
(Meshgin & Xi, 

2012) 

23-62 40 (Aguayo et al., 2016) 155-178 24 
(Pilehvar et al., 

2020) 

63-86 23 (Jayalath et al., 2016) 179-202 24 
(Yang et al., 

2016) 

87-91 5 (Dehdezi et al., 2013) 203-206 4 
(Djamai et al., 

2019) 

92-95 4 
(D'Alessandro et al., 

2018) 
207-214 8 

(Cunha et al., 

2015) 

96-118 23 (Snoeck et al., 2016) 215-226 12 
(Cunha et al., 

2016) 

119-130 12 
(Lecompte et al., 

2015) 
227-244 18 

(Fenollera et al., 

2013) 
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Table 4-2: Input features of dataset prepared for this study 

No. Attribute Unit Subscript No. Attribute Unit Subscript 

1 Melting temperature ℃ Tm 7 Water kg/m3 W 

2 Latent heat J/kg Lm 8 Fine aggregate kg/m3 FA 

3 PCM dosage kg/m3 PCM 9 Coarse aggregate kg/m3 CA 

4 PCM density kg/m3 PCM_D 10 Superplasticizer kg/m3 SP 

5 Cement type - C_type 11 Age days Age 

6 Cement kg/m3 C 12 Curing temperature ℃ T 

4.3.2 Model development 

A major hurdle often facing ML modeling for material science problems is the limited 

number of available experimental data examples, which are often costly and time-

consuming to acquire. On the other hand, providing comprehensive data that encompass 

the underlying features of the problem is essential when training advanced ML models. 

Hence, for training ML models in the present study, a novel framework for generating 

credible mixture proportion data of MPCM-integrated mortar and concrete using a state-

of-the-art data generating technique is proposed. For this purpose, tabular generative 

adversarial networks (TGAN) model is implemented to generate thousands of plausible 

data examples based on the collected experimental dataset. The synthesized data are further 

used for multiple tasks such as training paramount ML models, performing parametric 

analysis, developing empirical models, and mixture optimization. In addition to TGAN, 

three regression models including gradient boosting regressor (GBR), random forest 

regressor (RFR), and deep neural network (DNN) are developed herein. 

Generating credible synthesized data can be superior to using experimental data alone. 

Firstly, training ML models with large reliable data enhances the accuracy and 

generalization capability of the models. Secondly, the models can be tested using the entire 

experimental data, as opposed to conventional ML modeling in which only 20-30% of the 

available data is randomly used for testing the model performance, while the majority of 

the data is used in the model training. Furthermore, reliable models trained with 

synthesized data can be employed to thoroughly investigate the behavior of concrete with 

MPCM inclusion considering various design scenarios. Ultimately, it becomes feasible to 

optimize the mixture design of concrete based on the developed predictive models. In the 

present study, after validating the quality of the synthesized data using various statistical 
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tests, mixture optimization of cement mortar and concrete incorporating two different types 

of commercial MPCM was carried out using the particle swarm optimization (PSO) 

technique. Figure 4-1 depicts the overall methodology applied herein. The utilized 

methods are further described below. 

4.3.2.1  Tabular generative adversarial networks (TGAN) 

Goodfellow et al. (Goodfellow et al., 2014) introduced generative adversarial networks 

(GANs) for generating “fake images” that resemble given original pictures. GANs discover 

the patterns in a training dataset and produce plausible data with similar characteristics. 

After demonstrating the promising capability of GAN, multiple studies have been carried 

out to improve its functionality by further stabilizing the training process. Generally, a 

GAN model is comprised of two competing networks called generator (G) and 

discriminator (D). The task of the generator network is to capture the distribution of the 

given data for generating synthetic data, while the discriminator is assigned to predict 

whether the generator’s output is real or fake. Both networks compete in a min-max game 

in which the generator attempts to fool the discriminator into considering that the 

synthesized data are real. The discriminator, on the other hand, tries to recognize the fake 

samples created by the generator.  The generator is fed with random input to create fake 

data, as shown in Fig. 4-2. The fake and real data are the inputs for the discriminator to 

forecast whether they are real or synthesized. 

The min-max game with the value function can be expressed as follows: 

𝑚𝑖𝑛
𝐺
 𝑚𝑎𝑥
𝐷

 𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑝data (𝑥)[log 𝐷(𝑥)] + 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]     Eq. 4-2 

where G and D are the generator and discriminator, x is the real data sampled from 𝑝data (𝑥), 

and z is the noise (random input) drawn from 𝑝𝑧(𝑧). Early GAN models experienced 

problems, such as convergence failure, mode collapse, and vanishing gradients upon 

training. Several versions of GAN have therefore been developed to either mitigate those 

problems or to fulfill specific tasks. Among the recently developed versions, TGAN was 

proposed by Xu and Veeramachaneni (Xu & Veeramachaneni, 2018) to generate 
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synthesized data with a tabular structure containing multinomial/discrete and continuous 

variables. 

Long-short-term memory (LSTM) and fully connected multi-layer perceptron (MLP) 

neural networks were utilized as the generator and the discriminator networks, respectively. 

Accordingly, the generator is trained such that it can fool the discriminator to the utmost. 

For this purpose, the loss function was optimized by Adam optimizer to which the 

Kullback-Leibler (KL) divergence was appended as follows (Xu & Veeramachaneni, 

2018): 

ℒG = −𝔼𝑍∼𝒩(0,1) log𝐷(𝐺(𝓏)) + ∑ 𝐾𝐿(𝓊𝒾
′𝓃𝒸

𝒾=1 , 𝓊𝒾) + ∑ 𝐾𝐿(𝒹𝒾
′𝓃𝐷

𝒾=1 , 𝒹𝒾)   Eq. 4-3 

where ℒG is the loss function of the generator, D is the discriminator, G is the generator, 

𝓊𝒾 and 𝒹𝒾 are real data, and 𝓊𝒾
′  and 𝒹𝒾

′  are fake data, 𝓃𝒸 is the number of continuous 

variables, and 𝓃𝐷 is the number of discrete variables. More details on the TGAN structure 

can be found in (Xu & Veeramachaneni, 2018). 

 

Figure 4-2: Architecture of TGAN model. The generator is fed with random data from 

the latent space. The discriminator gives the probability of the generated data being fake 

or real. 
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TGAN can capture the pattern of the tabular data containing numerical and categorical 

variables. Therefore, it can generate credible data for training robust models in materials 

science applications where deficient experimental data hinders developing generalized 

comprehensive models. The TGAN library in Python, which has demonstrated promising 

performance in generating synthetic tabular data based on well-known datasets in the open 

literature, was used for model development (Xu & Veeramachaneni, 2018). TGAN has 

several parameters and hyperparameters that impact the convergence of the model and the 

quality of the generated data. A random search optimization was conducted to obtain the 

tuned parameters and hyperparameters. For this purpose, a baseline GBR model, which 

was tuned and trained with the real data, was used to evaluate the quality of the generated 

data for each random search trial. 

4.3.2.2  Tree-based ensembles  

Classification and regression tree (CART) is a non-parametric ML model which has been 

widely used for regression and classification purposes. The rationale behind CART is to 

divide intricate forecasting tasks into decision-making trees with less complexity. This 

objective is achieved by deriving meaningful relationships and patterns within the input 

data (Breiman, 2017). The prediction accuracy of the CART algorithm can be further 

improved through ensemble models. Using this method, several so-called “weak learners” 

are trained and the predictions are integrated to gain accurate outputs. Purposefully, the 

bagging and boosting techniques have been implemented to develop paramount ML 

ensemble models such as random forest (Breiman, 2001), gradient boosting (Ke et al., 

2017), and extra trees (Geurts et al., 2006).  

In the present study, random forest regression (RFR) and gradient boosting regression 

(GBR) were selected to model the compressive strength of MPCM-integrated concrete. 

Random forest is an ensemble model developed using the bagging technique (Breiman, 

2001). Therefore, multiple decision tree predictors are independently trained in parallel 

using multiple datasets, which are randomly sampled with replacements from the original 

training dataset. The final decision is the equally-weighted average of the predictions made 

by all base learners. Gradient boosting is a sequential boosting ensemble in which 

observations are iteratively weighted as per the last prediction to improve accuracy. In 
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contrast to bagging techniques (e.g., random forest), gradient boosting gives the final 

output by a weighted average of the base predictors, where more weight is assigned to 

predictors with better performance on the training data (Ke et al., 2017). The mathematical 

formulations of these models are widely documented and accessible to the interested reader 

(Breiman, 2001; Ke et al., 2017). The Scikit-learn package in Python was used to construct 

the models (Pedregosa et al., 2011). More details about RFR and GBR are given in Chapter 

3. 

Hyperparameter tuning is a key step in developing robust ML models that are neither 

overfitted nor under-fitted. A 5-fold cross-validated grid search method was employed 

herein to obtain optimum hyperparameters of the RFR and GBR models. Accordingly, the 

data were divided into 5 folds. Thereupon, each model was trained 5 times iteratively so as 

4 folds were used for training and the remaining fold was used as the test data in each 

iteration. 

4.3.2.3  Deep neural networks (DNN) 

A feed-forward multilayer perceptron deep neural network (DNN) was used in this study 

to predict compressive strength. The DNN is a fully connected network in which every 

neuron of one layer is connected to all neurons of the adjacent layers. The major difference 

between conventional artificial neural networks (ANN) and a truly deep multilayer 

perceptron network is the number of hidden layers and the number of neurons in the 

network architecture. Accordingly, DNNs usually have more than one hidden layer with a 

large number of neurons in each layer (Akanbi et al., 2020). Therefore, tuning DNN to 

obtain optimized model configuration is a critical step in developing predictive models. In 

this study, various model architectures were considered by changing the number of hidden 

layers and neurons. This includes networks having 3 to 5 hidden layers with 64, 128, or 

256 neurons in each layer. The rectified linear unit (ReLU) function and Adam optimizer 

algorithm were used as the activation function and optimization algorithm for all network 

configurations, respectively. Ultimately, the DNN model was tuned for the number of 

hidden layers, the number of neurons, learning rate, and kernel initializer as discussed in 

Section 4.4.1.  
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4.3.2.4  Particle swarm optimization (PSO) 

Particle swarm optimization (PSO) is a versatile optimization tool inspired by the flocking 

behavior of birds (Eberhart & Kennedy, 1995). This technique has been vastly employed 

in many numerical optimization problems including the optimization of concrete mixture 

design (Nunez et al., 2020). PSO is constructed upon a randomly initialized population. 

Each member of the population (i.e., bird) is called a particle that flies at a specific velocity 

causing momentum. The momentum of each particle is updated by its two so-called 

memory and current perception variables. Having a sufficient number of iterations, which 

represents the flying time of birds, particles are capable to reach the optimum position.  

PSO was adopted herein to optimize the mixture design of cement mortars and concretes 

integrating MPCM based on a predictive ML model. Deciding on the dosage of MPCM in 

concrete is an intricate compromise. This implies that high MPCM content is desired to 

achieve significant improvement in the thermal performance of concrete. However, it is 

critical to maintain the required compressive strength of concrete by integrating a low 

MPCM dosage. Since the cement content is a pivotal parameter to compensate for concrete 

strength loss, the cement content should be as low as possible to achieve mixtures with the 

lowest environmental impact. Therefore, the objective of the optimization is to identify the 

maximum content of different types of MPCM along with the lowest cement content. The 

optimization was carried out for different classes of compressive strength including 25, 30, 

35, 40, and 45 MPa. Purposefully, two commercial MPCMs widely used in research 

studies, namely Micronal DS 5040 X and Microtek MPCM 28D, were considered for 

numerical experiments and referred to as PCM A and PCM B, respectively. Table 4-3 

presents the thermophysical properties of these two MPCMs collected from manufacturer 

datasheets or experimental studies in the open literature. 

Table 4-3: Thermophysical properties of PCM A and PCM B 

MPCM Designation 
Melting temperature 

(°C) 

Heat of fusion 

(kg/kJ) 

Density 

(kg/m3) 

Micronal DS 5040 

X 
PCM A 23 100 350 

Microtek MPCM 

28D 
PCM B 28 190 900 
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Various design constraints were defined for the optimization problem, the first of which 

was the target compressive strength as follows: 

|𝑓𝐶,𝑝𝑟𝑒𝑑
′ − 𝑓𝐶,𝑡𝑎𝑟𝑔𝑒𝑡

′ | ≤ 1         Eq. 4-4  

where 𝑓𝐶,𝑝𝑟𝑒𝑑
′  (MPa) is the compressive strength predicted by the ML model based on the 

input variables presented in the compiled dataset. The 𝑓𝐶,𝑡𝑎𝑟𝑔𝑒𝑡
′  (MPa) is the desired class 

of compressive strength for which the optimization is performed. The second type of 

constraint is the range constraint which specifies the search space for each variable. To 

enhance the convergence of the optimization process, upper and lower limits for each input 

variable were narrowed by the analysis of the compiled dataset as presented in Table 4-4. 

The ultimate constraint is the volume of the mixture specifying that the total volume of the 

mixture proportions should be 1±0.02 m3 (Zhang, Huang, Wang, et al., 2020). The two 

percent tolerance is considered to approximately account for the entrapped air content. In 

the current study, the volume of each mixture design was calculated by the following 

equation:  

𝐶𝑐

𝜌𝑐
+

𝐶𝑤

𝜌𝑤
+

𝐶𝑃𝐶𝑀

𝜌𝑃𝐶𝑀
+

𝐶𝐹𝐴

𝜌𝐹𝐴
+

𝐶𝐶𝐴

𝜌𝐶𝐴
+

𝐶𝑆𝑃

𝜌𝑆𝑃
= 1       Eq. 4-5 

where 𝐶𝑖 and 𝜌𝑖 are the mass and density of each mixture component. The superplasticizer 

dosage was considered proportional to the cement dosage and varied based on the water-

to-cement ratio and MPCM dosage due to the high-water absorption of MPCM particles 

(Sanfelix et al., 2020). In the case of mortar mixture design optimization, an additional 

constraint was implemented to specify a coarse aggregate dosage equal to zero. The 

optimization was carried out targeting the 28-day compressive strength of concrete and 

mortar cured at standard temperature (i.e., 23 °C). ASTM C150 Type I standard cement 

was considered in all scenarios.  

To further validate the mixture proportions obtained from the optimization, 50×50×50 mm 

mortar specimens were cast and tested for compressive strength considering three 

replicates. For this purpose, Type I cement and natural sand were used. The utilized MPCM 

was a biobased microencapsulated PCM supplied by CrodaTherm having thermophysical 

properties similar to PCM B, including a melting temperature of 28 °C, and melting 
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enthalpy of 185 kJ/kg, and a density of 900 kg/m3. Specimens were covered with a double 

plastic film upon casting and demolded after 24 hours. Finally, the specimens were moist 

cured at 23 °C until the testing age. 

Table 4-4: Upper and lower bonds for optimizing mortar and concrete incorporating 

MPCM 

Concrete incorporating PCM A 

Input Unit 
25 MPa 30 MPa 35 MPa 40 MPa 45 MPa 

lower upper lower upper lower upper lower upper lower upper 

PCM kg/m3 75 125 75 100 50 80 40 60 25 50 

C kg/m3 350 550 350 550 400 600 400 650 400 650 

W kg/m3 200 350 180 350 150 350 150 300 130 300 

FA kg/m3 400 1000 400 1000 500 1300 500 1300 500 1300 

CA kg/m3 0 400 0 400 100 600 100 800 200 800 

SP kg/m3 0 8 0 8 2 8 2 8 2 8 

Mortar incorporating PCM A 

Input Unit 
25 MPa 30 MPa 35 MPa 40 MPa 45 MPa 

lower upper lower upper lower upper lower upper lower upper 

PCM kg/m3 80 125 70 100 50 70 30 50 30 45 

C kg/m3 300 550 350 550 400 550 400 550 400 600 

W kg/m3 120 300 100 250 150 275 150 275 150 275 

FA kg/m3 500 1300 400 1200 600 1500 600 1500 900 1700 

SP kg/m3 0 15 0 15 0 15 0 15 0 15 

Concrete incorporating PCM B 

Input Unit 
25 MPa 30 MPa 35 MPa 40 MPa 45 MPa 

lower upper lower upper lower upper lower upper lower upper 

PCM kg/m3 120 140 90 125 50 70 45 60 20 50 

C kg/m3 450 650 450 650 400 600 350 650 400 750 

W kg/m3 200 350 200 400 150 350 100 300 140 280 

FA kg/m3 300 700 300 700 400 800 500 1000 500 1000 

CA kg/m3 300 700 300 700 400 800 400 900 400 1000 

SP kg/m3 0 10 0 10 0 15 0 15 0 15 

Mortar incorporating PCM B 

Input Unit 
25 MPa 30 MPa 35 MPa 40 MPa 45 MPa 

lower upper lower upper lower upper lower upper lower upper 

PCM kg/m3 130 160 90 125 65 80 40 60 30 60 

C kg/m3 400 600 400 600 450 600 450 600 450 550 

W kg/m3 150 400 150 450 140 300 130 300 130 300 

FA kg/m3 200 1200 800 1400 1000 1400 1000 1500 1000 1500 

SP kg/m3 0 15 0 15 0 15 0 15 0 15 

4.3.3 Model performance evaluation 

Performance evaluation of the developed models was carried out using a combination of 

statistical and ML approaches. The synthesized data generated by TGAN was compared 

with the real experimental data using statistical metrics, such as the mean, standard 

deviation, minimum, maximum, and quartiles of the continuous input variables and the 
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output. Moreover, to explore the correlation between the attributes in both synthesized and 

real experimental datasets, the Pearson correlation covariance was calculated.  

However, the principal evaluation of the credibility of the synthesized data was conducted 

using ML models. A primary objective of the current study is to generate large reliable data 

for training robust ML models to systematically analyze the compressive strength of 

MPCM-integrated concrete. Therefore, multiple ML models were trained using the 

synthesized data and tested with the entire real experimental data. This approach proposed 

by Esteban et al. (Esteban et al., 2017) is referred to as Train on Synthetic; Test on Real 

(TSTR). They also used Train on Real; Test on Synthetic (TRTS) to complement the 

quality evaluation of the synthesized data. The conventional Train on Real; Test on Real 

(TRTR) approach in which 30% of the data is used for testing, was also utilized in this 

study as a performance benchmark for comparison purposes (Fekri et al., 2020). The 

predictive performance of each of the models developed using the TRTR, TSTR, and TRTS 

approaches was assessed using several statistical indicators, including the mean absolute 

error (MAE), root mean squared error (RMSE), and coefficient of determination (𝑅2) as 

follows: 

𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑌𝑖 − �̂�𝑖)

2𝑚
𝑖=1          Eq. 4-6 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑌𝑖 − �̂�𝑖|
𝑚
𝑖=1 ,         Eq. 4-7 

𝑅2 = 1 −
∑ (𝑌𝑖−�̂�𝑖)

2𝑚
𝑖=1

∑ (𝑌𝑖−�̅�)
2𝑚

𝑖=1

,         Eq. 4-8 

4.3.4 Empirical model 

Multiple research studies have reported plausible reasons for the reduction of compressive 

strength of cementitious mortars made with MPCM inclusion, as discussed earlier. Few 

studies strove for adopting existing empirical models to estimate the compressive strength 

of MPCM-integrated concrete. Among these, the Bolomey equation demonstrated 

propitious performance in two different research studies (Lecompte et al., 2015; Sanfelix 

et al., 2020). The rationale behind utilizing this equation is to simulate MPCM particles as 
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air voids due to their low stiffness compared to other ingredients of concrete. Yet, no study 

has analyzed the performance of this model using a large experimental dataset. 

The present study attempts to evaluate the correlation between the compressive strength of 

MPCM-integrated cementitious composites and predictions carried out by the Bolomey 

equation using the largest available experimental data. Owing to the large amount of data 

generated by TGAN along with the most influential parameters recognized by ML models, 

this equation can be further optimized to offer higher prediction accuracy. For this purpose, 

a Bayesian optimization algorithm (BOA) is implemented to optimize modified versions 

of Eq. 4-1 by fitting the TGAN data. The BOA is based on the Bayes theorem expressed 

by Eq. 4-9 below: 

𝑝(𝑤 ∣ 𝐷) =
𝑝(𝐷∣𝑤)𝑝(𝑤)

𝑝(𝐷)
                 Eq. 4-9 

where w is the unseen value, p(w) is the preceding distribution, p(w∣D) is the posterior 

distribution, and p(D∣w) is the probability. Since the Bayes rule uses prior knowledge to 

find the posterior possibility, Bayesian optimization similarly employs previous iterations 

to determine the values for the next iteration. This is a more efficient method to find the 

optimum point compared to arbitrary selection. Bayesian optimization is a powerful 

technique to approach the extremum of an objective function that has an unknown structure 

and depends on less than 20 dimensions. Details on BOA can be found in (Pelikan et al., 

1999). In the present study, the TGAN data were fit to different modified versions of the 

Bolomey equation to estimate the compressive strength. The objective function to be 

minimized was the error between the observed compressive strength in the TGAN data and 

the estimated compressive strength by the modified equation. MAE was selected as the 

error indicator. After optimizing the modified Bolomey equation, its predictive 

performance was tested using the real experimental data. Hyperopt library in Python was 

used to implement BOA. 

4.4 Results and discussion 

This section presents the results and pertinent discussion on the performance of the 

developed ML models, including tabular generating adversarial networks (TGAN), 
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gradient boosting regression (GBR), random forest regression (RFR), and deep neural 

network (DNN). 

4.4.1 Performance of ML models 

The TGAN model was used to provide an adequate number of credible data for training 

various predictive models. Due to several parameters affecting the convergence and 

stability of TGAN, a random search optimization was implemented to determine the tuned 

parameters and hyperparameters. A baseline GBR model trained with the real experimental 

data was utilized to test the quality of the generated data using a TRTS approach. Mean 

absolute error (MAE) was monitored to select the best parameters and hyperparameters. 

Accordingly, the model corresponding to the data which resulted in the lowest MAE upon 

testing was selected as the tuned model. Table 4-5 presents the random search space and 

optimum values of the TGAN parameters tuned in this study. It is noteworthy that 

implementing TGAN was computationally expensive and needed powerful GPU resources, 

therefore Google Colab was used for executing codes. 

Table 4-5: Parameters and hyperparameters of TGAN model 

Parameters Search values Tuned value 

Number of RNN cells in generator [100,200,400] 400 

Number of fully connected units in generator [50,100,200] 100 

Number of layers in discriminator [2,4] 2 

Number of units per layer in discriminator [100,200,400] 200 

Learning rate [0.001,0.01] 0.001 

Batch size [50,100,200] 200 

Number of train epochs [5,10,20,50] 20 

Number of steps in epoch [4000,5000,6000,7000] 6000 

Ultimately, 22788 synthetic data points generated by the tuned TGAN were used upon 

preprocessing. Table 4-6 compares the statistical properties of the real data with those of 

the TGAN data. It can be observed that TGAN successfully captured the distribution of the 

real data points and sampled synthetic data examples with high resemblance to the real data 

observations since the statistical properties of the synthetic and real data are in great 

accordance.  

Figure 4-3 compares the Pearson correlation matrix of real and synthetic datasets. It is 

evidenced that the correlation between features of the data generated by the TGAN model 
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is highly similar to that of the real dataset. For instance, the MPCM content has a high 

degree of inverse correlation to the compressive strength with a correlation coefficient of -

0.52 and -0.53 in real and synthesized data, respectively. This relationship is widely 

documented in pertinent experimental studies in the literature. Furthermore, the fine 

aggregate content (FA) has a high degree of positive correlation with the compressive 

strength and a negative correlation with the MPCM dosage. This reflects the partial 

replacement of FA with MPCM particles in the concrete mixtures and the contribution of 

soft MPCM particles to the reduction of compressive strength (Falzone et al., 2016). Such 

results demonstrate that TGAN was able to generate plausible data with a similar structure 

to the real data. 

Table 4-6: Comparison on the statistical properties of the real and synthetic data 

 
Tm (°C) Lm (kJ/kg) PCM (kg/m3) C (kg/m3) 

Real Synthetic Real Synthetic Real Synthetic Real Synthetic 

Mean 25.36 25.33 121.95 122.48 48.5 36.96 489.75 495.78 

STD 2.88 2.93 42.53 44.38 61 50.77 109.362 109.31 

Min 16.1 15.15 55 54.02 0.00 0 255 250.22 

25% 23.6 23.06 97.6 97.86 6 4 434 436.38 

50% 25 25.99 102 100.67 25.75 17.80 480 483.83 

75% 28 27.99 159.25 161.31 64.3 61.25 536 539.11 

Max 29.2 29.33 200 203.07 292.9 288.43 721 722.75 

 
W (kg/m3) (kg/m3) CA (kg/m3) (MPa) 

Real Synthetic Real Synthetic Real Synthetic Real Synthetic 

Mean 232.17 228.72 958.55 958.2 426.43 455.24 33.26 34.94 

STD 39.362 38.58 311.75 313.46 425.86 429.58 15.41 14.98 

Min 152.38 144.16 220 298 0.00 0 7.53 7.52 

25% 200 197.00 765.60 765.6 0.00 0 19.43 19.71 

50% 235.6 232.44 951.30 977.15 598 648.52 31.5 33.84 

75% 260 256.61 1119 1133.4 706.7 733.75 46 48.3 

Max 377.5 366.91 1673 1600.09 1160 1160 74.05 74.68 
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Figure 4-3: Pearson correlation between attributes of data: real data (left), and synthetic 

data (right). 

In addition to the statistical tests, the quality of the generated data can better be assessed 

by developing ML models using the TRTR, TSTR, and TRTS approaches as explained 

earlier. Using these methodologies, the predictive performance of models trained with 

synthetic data is compared to that of models trained with real data and subsequently, the 

credibility of the synthetic data for training ML models can be appraised (Marani et al., 

2020). The performance of the models trained with 70% of the experimental data is thence 

benchmarked to ascertain the quality of the synthesized data. Three different ML models, 

including RFR, GBR, and DNN, were tuned with 70% of the real data using a 5-fold cross-

validated grid search as explained earlier. Table 4-7 lists the hyperparameters of RFR and 

GBR models obtained using a grid search method. To tune the DNN model, 9 various 

network configurations were considered to establish the baseline architecture of the model 

as reported in Table 4-8. Afterward, a 5-fold cross-validated grid search was performed to 

obtain the optimum parameters and hyperparameters of the model. Ultimately, a deep 

network with three hidden layers having 256 neurons in the first layer and 128 neurons in 

the second and third layers was selected. Adam optimizer with a learning rate of 0.0075 

was used to optimize the training process. He_uniform was selected as the kernel weight 
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initializer. It is noteworthy that the tuned hyperparameters were used to train the models in 

the TRTR, TSTR, and TRTS approaches. 

Table 4-7: Tuned hyperparameters of RFR and GBR models 

Model Tuned Parameters 

RFR 
n_estimators=150; min_samples_split=2; min_samples_leaf=1; max_depth=19; 

max_features=11 

GBR 
n_estimators=140; learning_rate=0.11; min_samples_split=2; min_samples_leaf=5; 

max_depth=6, max_features=8, subsample=0.48 

 

Figure 4-4: Observed versus predicted compressive strengths for training datasets. 

Figures 4-4 and 4-5 indicate the observed versus predicted compressive strengths obtained 

from GBR, RFR, and DNN models for training and testing sets, respectively. Accordingly, 
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the data generated by the TGAN technique demonstrated supreme reliability in training 

powerful predictive models. The performance indicators for training sets indicate that 

different types of ML models can be robustly trained using synthetic data, similar to being 

trained with real experimental data. Furthermore, what stands out in the testing 

performance of the models reported herein is the phenomenal improvement in the 

prediction accuracy of the models trained with the large synthetic dataset. For instance, the 

test MAE of RFR, GBR, and DNN models in the TRTR approach (i.e. trained on 70% of 

the real data) were 4.142 MPa, 3.276 MPa, and 3.725 MPa, respectively.  

 

 

 

Figure 4-5: Observed versus predicted compressive strengths for testing datasets. 
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In contrast, MAE values as low as 2.225 MPa, 2.085 MPa, and 2.621 MPa were 

respectively achieved for RFR, GBR, and DNN models when trained using the synthesized 

data per the TSTR approach. The higher predictive accuracy of models in the TSTR 

approach is also evident in other statistical indicators as indicated in Figs. 4-4 and 4-5. This 

demonstrates that the synthesized data had the desirable quality for building successful ML 

predictive systems. Another striking observation that emerged from the performance 

comparison was the development of more generalized models with less overfitting in the 

TSTR approach. Constructing ML models on a limited number of training data can result 

in overfitted models with poor prediction performance on future unseen data. Nevertheless, 

as it can be observed in Fig. 4-5, models trained with 22,778 plausible data generated by 

TGAN demonstrated less scatter in their predictions, although being evaluated using a 

larger testing dataset containing the entire experimental data points. This can be further 

accentuated by comparing the prediction accuracies of training and testing sets in each 

approach. For instance, the R2 of the GBR model in the TRTR approach decreased from 

0.992 in the training set to 0.865 in the testing set. Conversely, the 𝑅2 of the GBR model 

using the TSTR approach was 0.985 and 0.963 in training and testing, respectively, 

indicating more robust performance. Hence, the ML models strikingly performed better 

when trained using a large number of credible data generated by the TGAN approach 

compared to being trained with limited experimental data. It is noteworthy that using the 

TSTR approach, the performance of each model was tested with the entire real 

experimental data. This is a remarkably more generalized evaluation of model performance 

compared to the conventional TRTR approach. 

All three powerful ML algorithms adopted herein attained excellent performance in 

predicting the compressive strength of concrete incorporating MPCM as measured by 

several statistical indicators. Overall, these results suggest that ML models can be 

employed to estimate the compressive strength of MPCM-integrated concrete with 

favorable accuracy. Moreover, the data generated by TGAN highly resembled the real 

experimental data, and thus, can be used to mitigate the undesirable problems associated 

with the low number of available laboratory data points. Therefore, the TSTR approach is 

selected as the main modeling framework for constructing further predictive ML models. 

Figure 4-6 illustrates the prediction performance of RFR, GBR, and DNN models trained 
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with 22,778 synthetic data points and tested using the entire experimental data (i.e. TSTR 

approach). 

Figure 4-7 displays a Taylor diagram for statistical comparison of the models’ predictive 

performance. Taylor's diagram is constructed based on RMSE, correlation, and standard 

deviation of the predictions in comparison with the real observation. Accordingly, the 

model with lower RMSE and standard deviation and higher correlation has a better 

performance in forecasting the target with lower error. Albeit models demonstrated 

comparable accuracy, the GBR-TSTR model attained slightly better performance since it 

has higher correlation to the real observations along with lower prediction error and scatter. 

As can be understood from the collective results discussed herein, the GBR-TSTR model 

outperformed the other models and thus was selected for further analyses (e.g. parametric 

analysis and mixture optimization) in the current study. The importance of the input 

features of the GBR-TSTR model is depicted in Fig. 4-8. Accordingly, the fine aggregate 

(FA) and MPCM (PCM) contents had the highest importance, indicating their major 

contribution to compressive strength prediction. This reflects the fact that the inclusion of 

low stiffness MPCM as a partial replacement for sand leads to decreasing the compressive 

strength as evidenced in experimental findings (Jayalath et al., 2016). These results 

conform with the results observed in Chapter 3 emphasizing the contribution of the MPCM 

and fine aggregate in the prediction of the compressive strength by various ML models. 

Table 4-8: Performance accuracy of baseline DNN models 

Model Number of hidden layers Number of neurons 
MAE 𝑹𝟐 

Train Test Train Test 

1 3 64 1.905 4.558 0.967 0.770 

2 4 64 2.075 4.936 0.955 0.704 

3 5 64 2.729 4.204 0.923 0.849 

4 3 128 1.618 4.217 0.971 0.801 

5 4 128 1.628 4.05 0.970 0.826 

6 5 128 2.276 4.553 0.939 0.821 

7 3 256 1.665 4.105 0.970 0.786 

8 4 256 1.897 4.671 0.961 0.784 

9 5 256 2.033 4.275 0.956 0.809 
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Figure 4-6: Prediction performance of RFR, GBR, and DNN models using the TSTR 

approach. 
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Figure 4-7: Taylor diagram for comparison of models. All three models indicated similar 

performance with GBR having slightly less error (green lines) and higher correlation 

(blue lines). 

 

Figure 4-8: Feature importance for GBR-TSTR model. 



113 

 

4.4.2  Empirical model  

A Bayesian optimization algorithm (BOA) was implemented to develop an optimized 

version of the Bolomey equation (Eq. 4-1) for estimating the compressive strength of 

MPCM-integrated concrete. Lecompte et al. (Lecompte et al., 2015) and Sanfelix et al. 

(Sanfelix et al., 2020) proposed Eq. 4-1 to estimate the compressive strength of concrete 

in which MPCM particles are considered as air voids. Thus, the term 𝑊𝑃𝐶𝑀 was added to 

account for that assumption. Equation 4-1 was previously tested using very little 

experimental data. Yet, its general predictive performance was so far unexplored since no 

study evaluated its accuracy using a large and comprehensive dataset. Therefore, the 

overall performance of this equation on the compiled experimental data is explored as 

presented in Table 4-9. Only data points with MPCM inclusion and 28-day compressive 

strength were considered. Different versions of this equation were initially considered for 

optimization using BOA to capture the influential features recognized by the ML model. 

Accordingly, the fine aggregate content and thermal properties of MPCM had a 

considerable effect on the compressive strength development as discussed earlier. 

Therefore, this study attempted to incorporate the fine aggregate content and latent heat of 

MPCM in the general form of Eq. 4-1.  Synthetic data generated with TGAN was fitted to 

the general form of models M1 and M2 in Table 4-9. The unknown coefficients 𝐶𝑖 were 

determined by BOA such that the lowest prediction error (MAE) was achieved. The 

accuracy of the models was tested on 110 real experimental data. 

Table 4-9 presents the general and optimized form of the considered equations, along with 

their prediction error upon testing with the real experimental data. According to the results 

listed in Table 4-9, Eq. 4-1 , which was not tested on a large experimental dataset before, 

yielded a relatively low accuracy when tested with the entire experimental data points. 

However, Models M1 and M2, which include parameters representing the latent heat of 

MPCM and the fine aggregate content, demonstrated significant improvement in prediction 

accuracy. 
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Table 4-9: Optimization of empirical models 

Model  Equation MAE RMSE 𝑹𝟐 

Eq. 1 General 𝑓𝑐 = 𝐾𝐵 × 𝜎𝐶 [
𝐶

𝑊 +𝑊𝑣 +𝑊𝑀𝑃𝐶𝑀

− 0.5] 11.7 12.16 0.39 

M1 

General 𝑓𝑐 = (𝐹𝐴)𝐶2 × 𝐶3 × 𝜎𝐶 × [(
𝐶

𝑊 +𝑊𝑣 + (𝑊𝑀𝑃𝐶𝑀)
𝐶4
)
𝐶5

− 𝐶6]

𝐶7

 

9.27 10.8 0.52 

Optimized 

𝑓𝑐,28 = 0.4(𝐹𝐴)0.05𝜎𝐶,28 [(
𝐶

𝑊 +𝑊𝑣 +𝑊𝑀𝑃𝐶𝑀

)
0.8

− 0.25] 

M2 

General 

𝑓𝑐 = (
1

𝐿𝐻
)
𝐶1

× (𝐹𝐴)𝐶2 × 𝐶3 × 𝜎𝐶

× [(
𝐶

𝑊 +𝑊𝑣 + (𝑊𝑀𝑃𝐶𝑀)
𝐶4
)
𝐶5

− 𝐶6]

𝐶7

 

7.75 9.48 0.63 

Optimized 
𝑓𝑐,28 = 0.43 (𝐹𝐴

1

𝐿𝐻
)

1
3
𝜎𝐶,28 [(

𝐶

𝑊 +𝑊𝑣 +𝑊𝑀𝑃𝐶𝑀

)
0.5

− 0.5] 

Model M2 suggests an optimized form similar to Eq. 4-1 with the inclusion of the latent 

heat of MPCM (kJ/kg) and dosage of fine aggregate (kg/m3) leading to superior prediction 

accuracy as follows: 

𝑓𝑐,28 = 0.43 (𝐹𝐴
1

𝐿𝐻
)

1

3
𝜎𝐶,28 [(

𝐶

𝑊+𝑊𝑣+𝑊𝑀𝑃𝐶𝑀
)
0.5

− 0.5]              Eq. 4-10 

where FA is the fine aggregate content (kg/m3), 𝐿𝐻 is the latent heat of MPCM (kJ/kg), C 

is the cement content (kg/m3), W is the water content (kg/m3), 𝑊𝑣 is the mass of water 

equivalent to the volume of air entrapped in the mixture (kg/m3), and 𝑊𝑀𝑃𝐶𝑀 is the mass 

of water equivalent to the volume occupied by MPCM particles in the mixture (kg/m3). 2% 

air content was assumed to calculate 𝑊𝑣. 𝜎𝐶,28  is a constant relating to the cement class, 

which was considered as 55 in the optimization process. In Eq. 4-1, 𝐾𝐵 is a constant 

varying between 0.35 to 0.65 depending on the type of aggregate. This constant was 

determined herein as 0.43 for MPCM-integrated mortars and concretes. Figure 4-9 

compares the prediction performance of Eq. 4-1 with that of Eq. 4-10 optimized in this 

study and tested on 110 real experimental data. Although the optimized version of the 

Bolomey equation proposed herein demonstrated considerable improvement in the 

accuracy of predictions, it still has less accuracy and certainty compared to the ML models. 
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Figure 4-9: Prediction performance of basic Eq. 4-1 (left) and Eq. 4-10 (right). 

4.5 Parametric analysis 

The intelligent approach developed in this study demonstrated favorable capability in 

modeling the compressive strength development of cementitious composites integrating 

MPCM. Therefore, it is feasible to conduct extensive parametric studies to capture the 

effects of the MPCM content on the compressive strength of mortars and concrete. For this 

purpose, the two widely available commercial MPCM products considered earlier for 

mixture optimization, i.e. PCM A and PCM B, were deployed here for numerical 

experiments. Multiple mixture designs having different W/C ratios and cement content 

were investigated. For each mixture design, MPCM particles were added as a partial 

replacement for fine aggregates. Table 4-10 outlines the scenarios considered for the 

parametric analyses. In each scenario, a control mixture was designed having 1000 kg/m3 

of fine aggregate and no MPCM content. MPCM was then added to the mixture as a partial 

replacement for fine aggregates. The 28-day compressive strength was investigated 

assuming a curing temperature of 23 °C. Figure 4-10 indicates the changes in compressive 

strength upon the replacement of fine aggregate with MPCM. It can be observed that a 

rapid decline in the compressive strength of concrete occurred with the increased addition 

of MPCM, which concurs with experimental results reported in the literature. 
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Table 4-10: Parametric analysis scenario 

Parametric Study Constant Parameters 
Varying 

Parameters 

Effect of “PCM A” Inclusion 

with Various Cement Content 

Water-to-cement ratio (0.55, 0.5, 0.45, 0.4, 0.35); 

Cement content (350, 400, 450, 500, 550, 600 

kg/m3) 

PCM A dosage  

Effect of “PCM B” Inclusion 

with Various Cement Content 

Water-to-cement ratio (0.55, 0.5, 0.45, 0.4, 0.35); 

Cement content (350, 400, 450, 500, 550, 600 

kg/m3) 

PCM B dosage 

Effect of PCM A Inclusion at 

Various Ages 

W/C ratio (0.35, 0.45, 0.55); 

 PCM A (0, 25, 50, 75, 100 kg/m3) 
Age 

Effect of PCM B Inclusion at 

Various Ages 

W/C ratio (0.35, 0.45, 0.55); 

PCM B (0, 25, 50, 75, 100 kg/m3) 
Age 

This proves that the GBR-TSTR model successfully captured the underlying pattern in the 

data and thus, can accurately estimate the compressive strength of different mixtures. 

Furthermore, the extensive parametric analyses reveal new insights into the behavior of 

MPCM-integrated concrete. Accordingly, the decrease in compressive strength due to 

MPCM inclusion is less dramatic in mixtures with higher cement content compared to 

those with an equal W/C ratio and lower cement content. This is more significant when 

higher levels of MPCM are intended to be added to the concrete. Such a trend was observed 

for both cases of PCM A and PCM B. This could be related to the fact that with the addition 

of MPCMs, the nucleation sites for the precipitation and growth of the hydration products 

are reduced since MPCM particles tend to wrap around the cement grains and prevent their 

access to water. Increasing the cement content may partially compensate for the decrease 

in the nucleation sites. 

Another striking outcome of the parametric analyses is that different types of MPCM could 

exert different effects on the compressive strength of concrete due to their different 

thermophysical properties. PCM A, which has a lower density, caused a steeper rate of 

compressive strength decrease. For instance, to achieve a 28-day compressive strength of 

30 MPa at a W/C ratio of 0.4, the dosage of PCM A is almost half of that of PCM B. This 

suggests that the physical properties of MPCM should be meticulously involved in the 

design of MPCM-integrated mixtures. To better illustrate the combined effect of MPCM 

and cement content on the 28-day compressive strength of concrete, surface response plots 

are depicted in Fig. 4-11 for both PCM A and PCM B. It can be observed that the combined 

effects of cement and MPCM contents were quite similar for different W/C ratios. 
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However, higher W/C ratios resulted in generally lower compressive strength along with 

more dramatic drops in the strength upon the addition of MPCM. Using lower W/C ratios 

probably enhances the porosity of the cement matrix and yields higher compressive 

strength. 

Figure 4-12 explores the strength development of concrete incorporating PCM A and B 

over 28 days. The effect of MPCM inclusion on the strength development was well 

captured by the GBR-TSTR model since the compressive strength declined with the 

increase in MPCM dosage. All mixtures had an equal amount of 500 kg/m3 cement content. 

The reduction pattern is similar for different W/C ratios, especially at later ages. It can be 

again observed that the inclusion of PCM A caused a more dramatic decrease in 

compressive strength compared to PCM B addition at the same dosage weight. This is 

another indication of the effect of the low stiffness of MPCM particles. To incorporate a 

certain dosage of PCM A, more fine aggregates should be deducted from the mixture 

compared to the inclusion of PCM B and thus, the detrimental effect of soft particles is 

more pronounced. Surprisingly, the model could capture the delay in strength development 

at early ages since the strength development curve of mixtures with high MPCM dosage 

had a lower slope compared to that of the control specimens with no MPCM addition. This 

delay was more predominant in a lower W/C ratio. The delay in the cement hydration and 

strength development was previously reported in experimental isothermal calorimetry and 

compressive strength analysis in the literature (Djamai et al., 2019). However, more 

comprehensive studies along with additional experimental data are needed to better analyze 

the delaying effect of MPCM on strength development at early ages. 
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Figure 4-10: Effect of fine aggregate replacement with MPCMs on compressive strength. 
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Figure 4-11: Surface response plot of compressive strength (CS) 
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Figure 4-12: Effect of MPCM inclusion on strength development versus time.  

4.6 Mixture optimization 

The parametric analyses discussed above revealed that optimum mixture proportioning of 

MPCM-integrated concrete is a convoluted design process due to the involvement and 

interaction of multiple complex parameters. Therefore, a mixture optimization of cement 

mortars and concretes incorporating PCM A and B was performed using a hybrid PSO-

GBR model. Using this approach, the GBR model trained with synthetic data (i.e., GBR-

TSTR) was coupled with a PSO algorithm to design mixtures with maximum MPCM 

content along with minimum cement content considering the constraints explained earlier. 

The optimization was conducted for 5 different classes of 28-day compressive strength 

including 25, 30, 35, 40, and 45 MPa. Table 4-11 presents the optimum mixture designs 

obtained from the hybrid PSO-GBR model. The mixture designs were proposed for 

concrete made with Type I cement and cured at 23 °C. 

According to the results, PCM B can be added to concrete at higher dosages compared to 

PCM A and achieve equal compressive strength owing to its higher density as evidenced 

in the parametric analysis. In other words, for adding higher weight dosages of PCM A, a 

larger volume of aggregates should be replaced with PCM microcapsules in comparison 

with adding PCM B. Therefore, the detrimental effect of the soft microcapsules on the 

compressive strength is more pronounced in the case of PCM A, especially at high MPCM 

contents. It can be understood that it is possible to incorporate a high dosage of MPCM 

into concrete targeting a relatively low compressive strength such as 25 and 30 MPa. In 
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contrast to normal concrete, much higher cement content (350 to 550 kg/m3) is required 

for MPCM-integrated concrete having such compressive strengths. This is conforming 

with the parametric analysis presented earlier.  

Table 4-11: Proposed mixture designs for mortar and concrete incorporating MPCMs 

Concrete incorporating PCM A 

Strength Class 
PCM A Cement Water Fine Agg. Coarse Agg. Superplasticizer 

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) 

25 MPa 91.5 366 180 874 266 6 

30 MPa 82.5 484 225.5 814 174.5 6 

35 MPa 55 425 170 1015.5 374.5 7 

40 MPa 50 430 172 963.75 427.5 7 

45 MPa 31.5 460 170.5 861.5 665.5 6 

Concrete incorporating PCM B 

Strength Class 
PCM B Cement Water Fine Agg. Coarse Agg. Superplasticizer 

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) 

25 MPa 130 541 267.5 524.5 510 11 

30 MPa 102 509.5 221.5 636 661 10 

35 MPa 73.5 515.5 199.5 779 593.5 10 

40 MPa 52 423 191.5 905.5 660.5 5 

45 MPa 41 402 190 918 710.2 5 

Mortar incorporating PCM A 

Strength Class 
PCM A Cement Water Fine Agg. Coarse Agg. Superplasticizer 

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) 

25 MPa 100 345.5 170 1058 0 5.5 

30 MPa 90 423 190 995.5 0 3.5 

35 MPa 65 430 155 1400 0 7 

40 MPa 50 425 167 1417 0 6.5 

45 MPa 42 449 165.5 1480.5 0 7 

Mortar incorporating PCM B 

Strength Class 
PCM B Cement Water Fine Agg. Coarse Agg. Superplasticizer 

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) 

25 MPa 145 581 270 904 0 11 

30 MPa 104.5 523 225 1279.5 0 11 

35 MPa 76.5 508 214 1400 0 8 

40 MPa 60 485 230 1418 0 5 

45 MPa 51 460 207 1495 0 5 

Furthermore, the proposed mixture proportions can be compared to the results reported in 

the literature. For instance, Lecompte et al. (Lecompte et al., 2015) achieved a compressive 

strength of 30 MPa for a concrete incorporating 439 kg of cement and 78 kg of MPCM, 

respectively. The thermophysical properties of the MPCM used are similar to PCM B. The 

proposed mixture design for concrete made with PCM B and 30 MPa of compressive 

strength features 102 kg of MPCM and 509.5 kg of cement, respectively. In another study, 

Snoeck et al. (Snoeck et al., 2016) achieved a 28-day compressive strength of 42.5 MPa 
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for mortar made with 48.3 kg of MPCM having thermophysical properties similar to PCM 

A. They used 483 kg of cement in their mixture design. The current optimization proposed 

a mixture with 50 kg of PCM A along with 425 kg of cement to achieve a compressive 

strength of 40 MPa. Such comparisons demonstrate that the optimization successfully 

enhanced the mixture design concerning the defined objectives.To further validate the 

proposed mixture designs, 50 × 50 × 50𝑚𝑚 specimens with mixture proportions listed in 

Table 4-11 for mortars incorporating PCM B were cast in the laboratory and tested for 14- and 

28-day compressive strength. The used MPCM for casting the specimens were biobased 

MPCM having thermophysical properties like that of PCM B. Specimens were made with Type 

I cement and natural sand and cured at 23 °C until testing. The average compressive strength 

of 3 replicates for each test group is reported in Figure 4-13. It can be observed that the 

experimental 28-day compressive strength was very close to the target strength pursued in the 

optimization process owing to the high accuracy of the applied ML model. 

 

Figure 4-13: Results of laboratory experiments for mixture design of mortars 

incorporating MPCM having thermophysical properties similar to that of PCM B. 

Another striking finding is that the optimization results suggest no clear trend in the cement 

content or W/C ratio of the mixture concerning the compressive strength. Nevertheless, a 

continual decline in the MPCM-to-cement (MPCM/C) ratio with an increase in the required 

compressive strength can be observed. Figure 4-14 compares the MPCM/C ratio for 

concretes and mortars incorporating PCM A and PCM B concerning the compressive 
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strength. Accordingly, to achieve a compressive strength of 25 MPa, the MPCM/C ratio 

should be approximately 0.25. This ratio is around 0.1 for compressive strength of more 

than 40 MPa. Overall, the mixture optimization and laboratory tests validate the applied 

methodology and the developed ML models for predicting the compressive strength of 

such cementitious composites. The proposed mixture designs can be used as a benchmark 

for designing concrete mixtures incorporating MPCM with specified compressive strength 

and thermal energy storage capacity (i.e., dosage and latent heat of MPCM) requirements. 

 

Figure 4-14: Comparison of PCM/C ratio in proposed mixture designs. 

However, the optimization strategy has some limitations that need to be addressed in future 

work. For instance, the water absorption of MPCMs was not approached in the same 

manner in experimental studies in the literature. Some studies recommended high dosages 

of superplasticizer (SP) to mitigate the low workability of concrete made with high MPCM 

dosage, whereas others attempted to add extra water to account for the absorbed water by 

MPCM. Given the dearth of data on the slump of MPCM integrated concrete mixtures in 

the literature, the SP dosage (SP) was not optimized based on workability criteria. 

Therefore, a multi-objective optimization considering workability along with mechanical 

requirements can give better SP dosage recommendations. 

4.7 Conclusions, recommendations, and future Work 

The objective of the present study was to investigate the influence of microencapsulated 

phase change materials (MPCM) on the compressive strength of concrete along with 

proposing a robust mixture optimization approach via a ternary machine learning (ML) 
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model. After collecting the largest available experimental dataset, the state-of-the-art 

tabular generative adversarial network (TGAN) was implemented to create a large 

synthetic dataset. Powerful ML models, including random forest regression (RFR), 

gradient boosting regression (GBR), and deep neural network (DNN), were trained with 

the synthetic data and tested using the entire collected experimental dataset. Results 

indicate accurate predictions by the developed models along with promising generalized 

performance. The best predictive model was coupled with particle swarm optimization to 

propose an optimized mixture proportions approach for different types of MPCM and 

compressive strength classes. The findings below could be drawn from this work: 

• The results validate the methodology of developing synthetic data for training 

robust ML models in materials science problems where the available data is 

insufficient.  

• The ML models developed in this study successfully predicted the compressive 

strength of MPCM-integrated concrete with high accuracy. An R2 of 0.963 and 

MAE of 2.085 MPa were achieved using the GBR-TSTR model when tested on 

the entire experimental dataset. 

• Extensive numerical experiments highlighted the significant effect of the cement 

dosage to compensate for the loss of compressive strength due to MPCM addition. 

• Thermophysical properties of MPCM such as density greatly affect the 

compressive strength of concrete. MPCM with higher density can be added at 

higher dosages to achieve specific compressive strength values compared to 

MPCM with lower density. 

• Optimized mixture designs allow to the determination of the adequate dosage of 

MPCM for specific strength grades of mortar and concrete. For instance, to 

achieve a compressive strength of 25 MPa, 145 and 130 kg/m3 of PCM B can be 

added to mortar and concrete, respectively. On the other hand, only 60 and 52 

kg/m3 of PCM B can be incorporated into mortar and concrete to achieve a 

compressive strength of 40 MPa. 
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• Mixture optimizations identified that the PCM to cement mass (PCM/C) ratio is 

highly correlated to the compressive strength; lower PCM/C is required for higher 

targeted compressive strength. 

• An optimized version of the Bolomey equation was proposed to empirically 

estimate the compressive strength of concrete. The R2 of the proposed model 

increased from 0.39 to 0.63 after the optimization. 

The results of the present study can be improved in future research by including other 

influential parameters and performance indicators not explored in the current study. More 

experimental research is required to augment the original dataset with other influential 

features such as the water absorption of MPCM and including performance-based 

properties of concrete such as the slump of MPCM integrated concrete mixtures. The multi-

objective optimization of concrete mixtures concerning both mechanical and thermal 

performance is an interesting endeavor for future research. 
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Chapter 5  

5 Activation Energy of Cement-Based Materials 
Incorporating Microencapsulated Phase Change 
Materials1 

This study deploys the apparent activation energy concept to explore the reaction kinetics 

and temperature sensitivity of cement hydration in the presence of microencapsulated 

phase change materials (MPCMs). Extensive isothermal calorimetry and compressive 

strength measurements revealed that the addition of MPCMs significantly decreases the 

apparent activation energy, thus reducing the sensitivity of mechanical strength 

development to the curing temperature. Furthermore, it was observed that the melting 

temperature of MPCMs has insignificant effect on cement hydration kinetics and the 

apparent activation energy. Microstructural analyses suggest that the variation in the effect 

of MPCMs with different melting temperatures on the compressive strength is likely 

related to the compatibility of the MPCM shell material with the cementitious matrix, with 

weaker interfacial transition zone, and resultant more porous structure. The results should 

allow better evaluation of the heat of hydration stresses and temperature-related properties 

of MPCM-integrated concrete. 

5.1 Introduction 

The drastic global energy demand and the advent of a miscellany of environmental 

exigencies, such as climate change and the need to attain NetZero goals, have entailed 

determined efforts to carry through sustainable and resilient built environment measures. 

Resorting to renewable energy resources along with enhancing the energy efficiency of 

diverse economic sectors have been among the promising solutions to tackle energy-related 

crises (Chwieduk, 2003). Residential and commercial buildings are responsible for a 

conspicuous proportion of global energy consumption, a share higher than that of the 

industry and transportation sectors. According to multiple studies, buildings account for 

 

1
 A version of this chapter is under review in “Cement and Concrete Research” journal, 2022. 
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around 40% of total global energy consumption and over 30% of the CO2 emissions (Costa 

et al., 2013; Yang et al., 2014). Therefore, boosting the energy efficiency of buildings is 

of particularly great concern. 

Development and fulfillment of low-carbon energy (LCE) policies alongside thermal 

energy storage (TES) in buildings are recognized as reassuring solutions toward a low-

carbon eco-friendly built environment. TES systems are typically classified into three 

different categories including sensible heat storage (SHS), latent heat storage (LHS), and 

thermochemical heat storage (THS) (Lizana et al., 2018). In LHS, thermal energy is 

conserved or retrieved when the heat storage medium undergoes a phase transition, e.g., 

solid to liquid, while the temperature of the medium remains constant (Zhang et al., 2004). 

LHS mediums are commonly referred to as phase change materials (PCMs) and have been 

widely integrated into building components to provide TES capacity (Cabeza et al., 2011; 

Pomianowski et al., 2014). Extensive research studies have demonstrated the significant 

contribution of PCM-integrated building components toward decreasing the energy 

consumption of buildings (Lizana et al., 2018; Soares et al., 2013). 

Concrete is the world’s second most-consumed commodity after water and has been 

predominantly utilized for the incorporation of PCMs. PCMs can be added to concrete 

mixtures through various incorporation methods such as direct impregnation, lightweight 

aggregate impregnation, shape-stabilized PCM, macro-encapsulation, and 

microencapsulation (Marani & Nehdi, 2019). Microencapsulated PCMs (MPCMs) have 

been widely integrated into cement mortar and concrete owing to their high efficacy and 

minimum leakage risk. Multiple research studies have explored the influence of MPCM 

addition on the engineering properties of cement-based mortars and concrete (Drissi et al., 

2019). Accordingly, MPCMs favorably impact the thermal performance of concrete owing 

to their LHS capability. Nevertheless, they can impose negative effects on mechanical 

properties. In particular, the compressive strength of concrete dramatically decreases after 

the addition of MPCMs. Several mechanisms have been postulated to explain such a 

reduction in compressive strength. Low stiffness and strength of polymeric MPCM 

particles, void-like action, increased concrete porosity induced by MPCMs, breakage of 
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microcapsules, etc., are among the primary explanations for the reduction of compressive 

strength in MPCM-integrated cementitious composites. 

Sparse research studies also evidenced that the addition of MPCMs could affect the 

hydration and microstructural development of cement-based composites. Yet, the synergic 

effect of MPCMs’ thermophysical properties and curing conditions on the cement 

hydration kinetics and strength development of MPMC-integrated concrete remain largely 

unexplored. Hence the current research aims at proposing a unified experimental 

methodology to quantify the influence of MPCMs on the cement hydration kinetics and 

apparent activation energy of MPCM-integrated concrete. Purposefully, an extensive 

experimental program was carried out to analyze the variation in the apparent activation 

energy of cement pastes and mortars after MPCM addition. The subsequent section 

discusses the basis of the apparent activation energy concept and reviews the research on 

the effect of PCM inclusion on cement hydration. Thereafter, the experimental 

methodology is elaborated, followed by a profound discussion of the obtained experimental 

results. 

5.2 Background knowledge and literature review 

5.2.1 Apparent activation energy 

The chemical reaction of cement particles with water in hardening concrete is an 

exothermic process in which a great deal of heat is generated. The released heat originates 

a considerable increase in the temperature of the hydrating concrete. Characterization of 

the changes in the temperature during the placement and curing stages of concrete is of 

great importance (Poole et al., 2007). The curing temperature of concrete is known to wield 

an enormous influence on the rate of cement hydration (D'aloia & Chanvillard, 2002). 

Meanwhile, a precise and rigorous assessment of the hydration process of a cementitious 

system is required to estimate temperature gradients, the maximum temperature of 

concrete, thermal stresses and deformations, and related mechanical properties (Assi et al., 

2018). The hydration kinetics of a cement-based composite greatly depends on the 

chemical and physical properties of the cementitious materials (Bogner et al., 2020; Zajac 

et al., 2018). Additionally, the incorporation of reactive or nonreactive additives to the 
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binder along with the curing temperature can exert dominant effects on the hydration 

kinetics (Tafesse & Kim, 2019; Yan et al., 2020).  

The concept of activation energy of cementitious materials represents the minimum energy 

that cement particles need to trigger their chemical reactions with water. During the cement 

hydration process, several phases simultaneously react with water, while the reaction 

products continuously change with time. Notwithstanding that the activation energy 

concept is not technically applicable to cement hydration, the Arrhenius theory employs 

the “apparent activation energy” (𝐸𝑎) to apprehend the temperature sensitivity of portland 

cement hydration (Saadoon et al., 2019). According to the Arrhenius theory, the 

temperature-related variations in the specific rate of a given reaction can be described as 

follows: 

𝑘 = 𝐴. 𝑒−
𝐸𝑎
𝑅𝑇          Eq. 5-1 

where R is the universal gas constant (8.314 J/mol/K), T is the temperature (K) at which 

the reaction occurs, k is the rate of reaction (W), A is the proportionality constant, and 𝐸𝑎 

is the activation energy (J/mol). The proportionality constant (A) is typically not considered 

in cement hydration since the ratio of the reaction rates is used in maturity calculations and 

thus, 𝐸𝑎 is calculated independent of A. The measurements of the reaction rates at different 

isothermal temperatures can be utilized to quantify the experimental 𝐸𝑎. Therefore, 

isothermal calorimetry data can be used to investigate the rates of the hydration heat at 

various temperatures and compute the apparent activation energy based on the Arrhenius 

theory (Kada-Benameur et al., 2000; Pang et al., 2021; Thomas et al., 2017). 

The degree of hydration (DOH) of cement, α, quantifies the proportion of cement particles 

that have hydrated, and is typically employed to represent the cement hydration progress. 

The DOH of cement at any time t, α(t) can be calculated using the following equation: 

𝛼(𝑡) = 𝐻(𝑡)/𝐻𝑐𝑒𝑚          Eq. 5-2 

where H(t) is the cumulative heat released from the cement reaction at time t (J/g) and 

𝐻𝑐𝑒𝑚 is the total heat of hydration of cement (J/g). 𝐻𝑐𝑒𝑚 can be obtained using the 
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proportion of phases and chemical compositions of the cement based on the Bogue’s 

equation as per Eq. 5-3, where 𝑃𝑖 denotes the mass fraction of the ith chemical composition: 

𝐻𝑐𝑒𝑚 = 500 ⋅ 𝑃𝐶3𝑆 + 260 ⋅ 𝑃𝐶2𝑆 + 866 ⋅ 𝑃𝐶3𝐴 + 420 ⋅ 𝑃𝐶4𝐴𝐹 + 624 ⋅ 𝑃𝑆𝑂3 + 1186 ⋅

𝑃𝐹𝑟𝑒𝑒𝐶𝑎 + 850 ⋅ 𝑃𝑀𝑔𝑂                               Eq. 5-3 

After computing the DOH at every time step of the isothermal calorimetry test, the cement 

hydration progress can be mathematically expressed using several hydration models. 

Among the proposed models, a three-parameter exponential function has been widely 

utilized to quantify the hydration progress with time as follows: 

𝛼(𝑡) = 𝛼𝑢𝑒
−(

𝜏

𝑡
)𝛽

                      Eq. 5-4 

where 𝛼𝑢 is the maximum DOH, τ is the hydration time parameter, and β is the hydration 

shape parameter (Poole et al., 2007). Determining these hydration parameters can provide 

useful information about the hydration development of cementitious systems. For instance, 

a decrease or increase in the hydration time parameter (τ) denotes an accelerated or 

decelerated reaction along with lower or greater time to reach the peak of hydration rate, 

respectively. The setting behavior of the cement-based mixture is highly correlated to the 

maximum rate of the hydration and thus, the hydration time parameter could represent the 

setting time of the mixture. β characterizes the slope of the DOH curve as the higher values 

indicate greater slopes of the heat evolution and DOH curves. A decrease in the β (the slope 

of the heat evolution curve) denotes a higher DOH of the mixture at earlier stages of 

hydration. Conversely, an increase in β represents lower DOH at the initial stages of the 

hydration process (Sargam & Wang, 2021). 

Another approach to calculating the apparent activation energy of concrete is to use 

compressive strength or setting time measurements of mixtures at various temperatures. 

Researchers have calculated the activation energy of concrete incorporating supplementary 

cementitious materials (SCMs), retarding admixtures, rapid hardening agents, etc., using 

strength or setting time measurements (Han & Han, 2010; Pinto & Schindler, 2010; 

Saadoon et al., 2019). The apparent activation energy can be further used in the maturity 
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method to estimate the compressive strength of the concrete from its curing temperature 

history as specified in ASTM C1074 standard (ASTM, 2004). Various prediction models 

can be employed to obtain the strength development parameters and subsequently calculate 

the apparent activation energy as will be explained later in Section 5.3. 

5.2.2 Effect of PCMs on cement hydration 

There have been several recent research studies on the effect of MPCM inclusion on the 

hydration kinetics and strength development of cementitious systems. As mentioned 

earlier, the compressive strength of concrete significantly decreases after the addition of 

MPCMs. Although the major reason for the reduction of compressive strength is the low 

strength of MPCM particles compared to other components of concrete, the effects of 

MPCM particles on the cement hydration, microstructural development, and pore structure 

of the cementitious matrix are also significant (Drissi et al., 2021; Marani & Nehdi, 2019). 

For instance, Djamai et al. (Djamai et al., 2019) evidenced that accessible pore volume and 

critical pore diameter of MPCM-integrating specimens were much higher compared to that 

of control samples due to the unbound water attributed to the interaction of MPCMs with 

cement particles. Comparable findings were reported in studies by Pilehvar et al. (Pilehvar 

et al., 2017) and Sanfelix et al. (Sanfelix et al., 2019), demonstrating the adverse effect of 

MPCMs on the porosity of cementitious matrices. 

MPCMs can also impact the hydration kinetics of portland cement and geopolymer 

concrete. Eddhahak et al. (Eddhahak et al., 2014) found that the addition of 5% MPCMs 

to cement paste led to 10% decrease in the heat of hydration in a 5-day hydration period. 

Additionally, a delay in the hydration process due to the latent heat of MPCMs was 

identified. Pilehvar et al. (Pilehvar et al., 2020) observed that the addition of MPCMs 

decreased and delayed the hydration rate of geopolymer and Portland cement paste. 

Various mechanisms have been postulated regarding the change in the hydration kinetics, 

such as the relatively high water absorption of MPCMs, MPCMs wrapping around cement 

particles and blocking their access to water, reduction in available nucleation sites with the 

addition of MPCMs, etc. (Djamai et al., 2019; Pilehvar et al., 2017). Furthermore, the 

curing temperature can affect the hydration kinetics, microstructural and strength 

development of cementitious composites. Pilehvar et al. (Pilehvar et al., 2020) noted that 



138 

 

at higher curing temperatures, hydration reactions of cement pastes containing MPCMs 

were faster and the compressive strength was higher at the early stages. 

5.3 Materials and methods 

5.3.1 Materials 

Ordinary ASTM C150 Type I portland cement (OPC) was used for paste and mortar 

specimen preparation. Table 5-1 presents the chemical composition of OPC. Two types of 

non-formaldehyde biobased MPCMs having melting temperatures of 28 and 35°C, referred 

to as En28 and En35, respectively, supplied by Encapsys LLC were used. Natural river 

sand and a polycarboxylate-based superplasticizer were also used for making mortar 

specimens. The thermophysical properties of En28 and En35 are listed in Table 5-2. 

Figure 5-1 illustrates differential scanning calorimetry (DSC) curves of MPCMs. 

Table 5-1: Chemical composition of OPC 

Components Proportion (%) Components Proportion (%) 

Silicon oxide (SiO2) 19.6 Free Calcium 1 

Aluminum oxide (Al2O3) 4.8 Other oxides - 

Ferric oxide (Fe2O3) 3.3 Tricalcium silicate (C3S) 55 

Calcium oxide (CaO) 61.5 Dicalcium silicate (C2S) 15 

Magnesium oxide (MgO) 3 Tricalcium aluminate (C3A) 7 

Sulfur trioxide (SO3) 3.5 Tetracalcium aluminoferrite (C4AF) 10 

 

Figure 5-1: DSC curves of MPCMs 
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Table 5-2: Thermophysical properties of MPCMs 

MPCM Melting point (°C) Melting enthalpy (kJ/kg) Mean particle size (µm) 

En28 28 175 22.6 

En35 35 180 25.4 

5.3.2 Experimental program 

In this research, the cement hydration kinetics, strength development, and apparent 

activation energy of cement pastes and mortars incorporating MPCMs were calculated 

using isothermal calorimetry and compressive strength measurements. The microstructure 

and porosity of the mortars were further analyzed using scanning electron microscopy 

(SEM) and 3D X-ray micro-computed tomography (µ-CT) scans as explained below.  

5.3.2.1 Isothermal calorimetry of cement pastes 

Isothermal calorimetry was employed to study the hydration kinetics and calculate the 

activation energy of cement pastes incorporating En28 and En35. A water-to-cement (w/c) 

ratio of 0.5 was selected and MPCMs were added at dosages of 0, 5, 10, 15, 20, and 25 % 

by cement weight. Table 5-3 summarizes the mixtures prepared for the isothermal 

calorimetry test. The heat of hydration of cement pastes was measured in an eight-channel 

microcalorimeter (TAM air, TA Instruments) at five different temperatures including 15, 

23, 30, 35, and 40 ± 0.02 °C. Collectively, 55 isothermal calorimetry tests (11 mixtures at 

5 testing temperatures) were conducted to obtain the rate of hydration data. The calorimetry 

measurements were performed using an ex-situ mixing procedure of approximately 5 

grams of cement paste for 96 h. It is noteworthy that opening the cover and putting the 

ampoule into the channel can cause a drastic increase in the heat flow for the initial few 

minutes of the experiments. Thus, the measurements were considered from 0.75 h after the 

placement of the sample to minimize this error. 

Table 5-3: Mixture components of cement pastes used for isothermal calorimetry tests 

Designation 
Cement 

(g) 

Water 

(g) 

En28 

(g) 
Designation 

Cement 

(g) 

Water 

(g) 

En35 

(g) 

P0En28 3 1.5 0 P0En35 3 1.5 0 

P05En28 3 1.5 0.15 P05En35 3 1.5 0.15 

P10En28 3 1.5 0.3 P10En35 3 1.5 0.3 

P15En28 3 1.5 0.45 P15En35 3 1.5 0.45 

P20En28 3 1.5 0.6 P20En35 3 1.5 0.6 

P25En28 3 1.5 0.75 P25En35 3 1.5 0.75 
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5.3.2.2 Compressive strength of cement mortars 

Three different mortar mixtures were considered for the compressive strength 

measurements including a control mixture without MPCM, a mixture incorporating En28, 

and a mixture incorporating En35. MPCMs were added as partial replacement for sand 

particles. Table 5-4 presents the mixture design of the mortars. The apparent activation 

energy of cement mortars was calculated based on ASTM C1074 (ASTM, 2004), which 

suggests a minimum three replicates of mortar specimens per mixture that are moist cured 

at three different temperatures and tested at seven testing ages. Furthermore, it is 

recommended that the first test should be performed when the compressive strength is 

approximately 4 MPa. Subsequent compressive strength tests must be carried out at ages 

that are approximately twice the previous testing age. Accordingly, in this study, 50-mm 

mortar cubes were moist cured in temperature-controlled water baths or a moist room at 5 

different curing temperatures including 15, 23, 30, 35, and 40 ± 1 °C. The compressive 

strength was measured at least at 8 different ages using three specimen replicates. 

Table 5-4: Mixture proportions of cement mortars used for compressive strength tests 

Mixture 
Cement 

(kg/m3) 

Water 

(kg/m3) 

Sand 

(kg/m3) 

MPCM 

(kg/m3) 

Superplasticizer 

(kg/m3) 

Type of 

MPCM 

R 500 225 1598 0 10 - 

En28 500 225 1358 75 10 En28 

En35 500 225 1358 75 10 En35 

5.3.2.3 Microstructure of cement mortars 

Microstructure and porosity of hardened cement mortars were investigated using scanning 

electron microscopy (SEM) and X-ray micro-computed tomography (μ-CT scan). SEM 

imaging was performed by a Hitachi TM3030Plus electron microscope at an accelerating 

voltage of 15 kV. A Nikon XT H 225 ST (Nikon Corporation) was used for μCT scans. 

High-resolution 2D X-ray images were captured while specimens were rotating 360° to 

construct the 3D CT volume. The 3D volumetric representation of the scans and the image 

analysis were carried out via the Dragonfly software.  
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5.3.3 Calculation of apparent activation energy (𝐸𝑎) 

5.3.3.1  Calculation of 𝐸𝑎 using isothermal calorimetry 

Different methods have been proposed to determine the apparent activation energy, 𝐸𝑎 of 

cement-based systems using the isothermal calorimetry (Bentz, 2014; D'aloia & 

Chanvillard, 2002; Kada-Benameur et al., 2000). In a comparative study, Poole et al. 

(Poole et al., 2007) proposed three methods for calculating 𝐸𝑎 including single linear 

approximation, incremental, and modified ASTM C1074 methods. In this research, the 

linear approximation and modified ASTM C1074 methods were used to investigate the 

apparent activation energy of cement pastes incorporating MPCMs. 

5.3.3.1.1   Linear approximation method 

The linear approximation of the hydration rate is a simple technique to estimate the 

apparent activation energy. This method calculates 𝐸𝑎 based on the slope of the 

acceleratory segment of the cumulative released heat curve. The procedure for obtaining 

the apparent activation energy using the linear method is summarized below and 

schematically illustrated in Fig. 5-2. 

i) The released heat rate measurements along with the cumulative released heat data are 

obtained from the isothermal calorimetry test for each cement mixture (Fig. 5-2a). 

ii) The acceleratory region of the reaction rate, which contains the peak of the hydration 

curve (𝑅𝑚𝑎𝑥), is determined (Fig. 5-2b). The reaction rate (k) is calculated as the linear 

slope of the cumulative released heat in the acceleratory region using a least-squares 

linear regression (Fig. 5-2c). It is noteworthy that the hydration rate curve is used to 

determine the acceleratory region, but the cumulative released heat curve is deployed 

to obtain the reaction rate. 

iii) The natural logarithm of the reaction rate (k) is plotted versus the inverse of the absolute 

temperature (in Kelvin) for each mixture (Fig. 5-2d). 

iv) Using Eq. 5-1, the activation energy for each mixture is calculated by multiplying the 

negative of the slope of ln(𝑘) − 1
𝑇⁄  linear line with the universal gas constant R (8.314 

J.(mol.K)-1). 
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Although the linear approximation method is a straightforward scheme to acquire the 

apparent activation energy, it has some drawbacks. The determination of the peak point, 

and thus the linear portion in the hydration curve, could be subjective depending on the 

peaks related to C3S and C3A hydration. Furthermore, only limited hydration data points, 

including the acceleratory segment and peak of the hydration curve, are utilized to calculate 

the activation energy in the linear method. Another disadvantage of this method is that the 

start of the acceleratory region cannot be easily distinguished for experiments conducted 

at low temperatures. This judgment is further thwarted in the case of MPCM-integrated 

cement pastes due to the delaying effect of MPCMs on the hydration peak as will be 

discussed later. 

 

Figure 5-2: Steps of linear approximation method for calculating apparent activation 

energy. 

5.3.3.1.2 Modified ASTM C1074 

A unified methodology is described in ASTM C1074 (ASTM, 2004) to calculate the 

apparent activation energy of concrete based on the compressive strength data and 

equivalent age concept. Researchers have proposed a similar procedure to calculate 𝐸𝑎 

using the isothermal calorimetry data. A three-parameter exponential function expressed 

in Eq. 5-4 is utilized to model the cement hydration and obtain the hydration parameters 
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based on the DOH (Poole et al., 2007; Schindler, 2004; Wirquin et al., 2002). In this 

method, instead of using the equivalent time in the Arrhenius equation, the hydration time 

parameter is employed to calculate 𝐸𝑎 using the following equation: 

𝐸𝑎 =
− ln(

𝜏𝑟𝑒𝑓

𝜏𝑐
)

(
1

𝑇𝑟𝑒𝑓
−

1

𝑇𝑐
)

. 𝑅                                                                                                        Eq. 5-5 

where 𝜏𝑟𝑒𝑓 and 𝜏𝑐 are respectively the hydration time parameters at the reference and a 

given temperature, 𝑇𝑟𝑒𝑓 and 𝑇𝑐 are respectively the temperatures of the mixture at the 

reference and a given temperature, and R is the universal gas constant. The following steps 

are required to obtain 𝐸𝑎 based on the modified ASTM C1074 procedure and isothermal 

calorimetry data. 

i) The variation in the DOH of the hydrating cement paste versus time is calculated using 

Eqs. 5-2 and 5-3. The DOH at time t is determined by dividing the cumulative released 

heat at time t by the total heat of hydration of the cement paste obtained from Eq. 5-3. 

ii) The degree of hydration of the cementitious system is modeled with the three-

parameter hydration model given in Eq. 5-4. For this purpose, the DOH data is fitted 

to the exponential function to solve for 𝛼𝑢, 𝜏, and 𝛽 using a least-squares method. 

Firstly, for each mixture, 𝛼𝑢, τ, and β values are computed for every test temperature. 

Afterward, the average values of 𝛼𝑢 and 𝛽 for each mixture are calculated. Using the 

average values of 𝛼𝑢 and 𝛽, the value of 𝜏 at each isothermal temperature is 

recalculated.  

iii) The natural logarithm of the hydration time parameter (𝜏) is plotted versus the inverse 

of the absolute temperature (in Kelvin) for each mixture. 

iv) Using Eq. 5-5, the activation energy for each mixture is calculated by multiplying the 

negative of the slope of ln(𝜏) − 1
𝑇⁄  linear line with universal gas constant R (8.314 

J.(mol.K)-1). 
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5.3.3.2  Calculation of 𝐸𝑎 using compressive strength 

In addition to using the calorimetry data, 𝐸𝑎 can also be calculated using the compressive 

strength data according to ASTM C1074 (ASTM, 2004). Accordingly, the strength 

development of concrete over the curing time can be modeled using the following 

hyperbolic equation: 

𝑆(𝑡𝑒) = 𝑆𝑢
𝑘(𝑡𝑒−𝑡0)

1+𝑘(𝑡𝑒−𝑡0)
          Eq. 5-6 

where 𝑆(𝑡𝑒) is the strength at a given time (MPa), 𝑆𝑢 is the ultimate strength at the infinite 

time (MPa), 𝑘 is the reaction rate (1/days), 𝑡𝑒 is the age for the predicted strength (days), 

and 𝑡0 is the time at the start of strength development (days). The strength development 

could also be estimated using an exponential model as follows: 

𝑆(𝑡𝑒) = 𝑆𝑢. 𝑒
−(

𝜏𝑠
𝑡𝑒
)
𝛽

                                                                                                          Eq. 5-7 

where 𝜏𝑠 is the strength time constant (days) and β is the strength shape constant (Saadoon 

et al., 2019). Similar to using hydration data, a least-square program should be deployed 

to find the strength gain parameters. 𝐸𝑎 of mixtures can be calculated by multiplying the 

slope of the ln(𝑘) − 1/𝑇 curve by the universal gas constant (Zhang et al., 2008). In the 

current study, the compressive strengths of the three replicates of mixtures listed in Table 

5-4 measured at 9 different ages were used to estimate the apparent activation energy. 

5.4 Results and discussion 

This section examines the effect of MPCM addition on the hydration kinetics and apparent 

activation energy of cement pastes and mortars. Firstly, the effect of MPCMs’ dosages on 

the hydration heat evolution is analyzed. Thereafter, the results of apparent activation 

energy calculation are investigated to quantify the effect of the MPCMs on the temperature 

sensitivity of cement hydration. Furthermore, the compressive strengths of mortar 

specimens incorporating MPCMs are investigated. Microstructural analyses are performed 

to complement the observations inferred from hydration and strength experiments. 
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5.4.1  Effects of MPCM addition on cement hydration 

Figures 5-3 and 5-4 illustrate the rate of hydration heat together with the cumulative 

released heat of the plain cement pastes and cement pastes incorporating En28 and En35, 

respectively, during the first 96 hours. Cement hydration is initiated with a first peak 

mainly due to the dissolution, followed by an induction period related to the slow-down 

stage of the dissolution process (Juilland et al., 2010; Scrivener et al., 2015). The major 

peaks related to the hydration of C3S of the Portland cement was observed after the 

acceleration period. However, what stands out in the results is that the addition of MPCM 

to the cement paste exerted two notable influences on the hydration progress: (1) it 

prolonged the dormant period of the cement hydration resulting in a delay in the time to 

reach the hydration peak, known as the retarding effect; and (2) it caused a decrease in the 

peak of hydration rate, which is referred to as the depressing effect (Yan et al., 2020; Yan 

et al., 2021). Such alterations in the hydration process were substantiated in both types of 

MPCMs regardless of their melting temperature. Therefore, the inclusion of MPCMs in the 

cement pastes resulted in a reduction in the rate and degree of hydration reactions. It is 

noteworthy that low dosages of MPCM, i.e., 5-10 wt.% of the cement, imposed a slight 

effect on the hydration kinetics of the cement paste. Nevertheless, with increasing the 

MPCM content in the cement paste, longer delays and more drastic reductions in the 

maximum rate and degree of hydration were evidenced. 

The changes in the cement hydration kinetics can be linked to different physical origins. 

One probable reason for such a reduction in the intensity of hydration reactions is the 

dilution of the plain cement paste compared to pastes with MPCM inclusion, i.e., reduction 

in the cement paste volume in the test sample (Fernandes et al., 2014; Lawrence et al., 

2003). The dilution effect is further aggravated considering the significant water absorption 

of MPCM particles due to their polar polymeric shells. The water absorption of En28 and 

En35 was found to be approximately 40 and 48 wt.%. The water absorption of MPCMs 

has a complex effect on the cement hydration process. The water retained by MPCMs 

reduces the effective water content in the cement paste and thus, increases its viscosity. 

Consequently, the higher viscosity of the MPCM-integrated cement paste slows down the 

movement of the reactants and consequently the reaction rate (Pilehvar et al., 2018; 
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Pilehvar et al., 2017; Pilehvar et al., 2020; Sanfelix et al., 2019). Moreover, the lower water 

content can reduce the number of reactive agents that are dissolved before the saturation of 

the sample. Hence, the period of the low undersaturation due to the lesser amount of 

available water is extended, causing the retarding behavior. This mechanism is consistent 

with the pattern captured from increasing the MPCM dosages where the dormant period 

becomes longer at higher of MPCMs dosages, i.e., 15-25 wt.%. The MPCM particles also 

enclose the cement particles and hinder the accessibility of water to the anhydrous cement 

grains (Djamai et al., 2019). Another adverse consequence of MPCMs wrapping around 

cement particles is that the enclosed cement particles can no longer serve as surface 

nucleation sites for the growth of hydration products. Hence the duration of the dormant 

period is prolonged, and the rate of hydration is declined.  

Ultimately, the delay in the hydration of the cement is intensified by the sensible and latent 

heat capacity of the MPCM particles as evidenced in isothermal and semi-adiabatic 

calorimetry experiments in the literature (Djamai et al., 2019; Fernandes et al., 2014; 

Pilehvar et al., 2018; Pilehvar et al., 2017; Pilehvar et al., 2020). Nonetheless, the extent 

of the effect of the latent heat storage capability highly depends on the melting 

temperatures and enthalpies of the MPCMs along with the operating temperature of the 

experiments. To further investigate the effect of MPCM addition on the hydration kinetics, 

several parameters were extracted from the isothermal curves including the maximum 

hydration rate (𝑅𝑚𝑎𝑥) and the time to reach the maximum hydration rate (𝑇𝑅𝑚𝑎𝑥
) as 

presented in Table 5-5. Accordingly, the reduction of the reaction rate and the delay in the 

hydration process with MPCM inclusion can be identified. For instance, 𝑇𝑅𝑚𝑎𝑥
 of P05 and 

P15 mixtures containing En28 and tested at 15°C increased by 63.83 and 204.91%, 

respectively compared to corresponding values for the control mixture (i.e., P0), 

respectively. With increasing the test temperature, this parameter significantly decreased, 

indicating a lower delay in the hydration process at higher temperatures. Notwithstanding, 

what is striking in the results presented in Table 5-5 is the longer delays in all mixtures 

integrating En28 tested at 35°C compared to 30°C where the MPCM particles undergo a 

complete phase transition, causing an excessive delay in the hydration of cement. A similar 

trend was observed in mixtures containing En35 where 𝑇𝑅𝑚𝑎𝑥
 for specimens tested at 40°C 
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is higher or immensely close to that of pastes tested at 35°C. Hence, it can be concluded 

that the synergic effect of the melting point of MPCMs and curing temperature impact the 

hydration process, in particular, the time to reach the maximum rate of hydration. This is 

of particular significance since 𝑇𝑅𝑚𝑎𝑥
 is likely correlated to the setting time of the mixture. 

The isothermal results discussed herein suggest that MPCMs can exert fundamental effects 

on the hydration process of cement and thus, the strength gain and microstructural 

development of the cement matrix. It is, therefore, crucial to further quantify the hydration 

parameters to better understand the strength development of MPCM-integrated 

cementitious composites over time and under various curing temperatures. Purposefully, 

the apparent activation energy and hydration parameters of cement pastes with and without 

MPCM particles were calculated as discussed below. 

Table 5-5: Hydration parameters extracted from isothermal curves 

En28 

Temp. 

(°C) 

𝑹𝒎𝒂𝒙 𝑻𝑹𝒎𝒂𝒙
 

P0 P05 P10 P15 P20 P25 P0 P05 P10 P15 P20 P25 

15 2.25 2.23 2.07 1.72 1.40 1.2 12 19.66 26.64 36.59 52.54 61.69 

23 3.54 3.50 3.46 2.79 2.38 1.72 7.93 14.65 19.71 37.27 48.59 54.04 

30 5.4 5.32 4.93 4.05 2.86 2.31 5.2 7.6 10.88 17.65 28.77 40.67 

35 6.83 6.76 6.41 5.78 3.45 3.07 4.57 8.4 12.98 22.54 30.63 50.53 

40 8.83 8.67 8.17 6.1 3.65 3.26 3.73 6.57 10 16.49 24.24 28.41 

En35 

Temp. 

(°C) 

𝑹𝒎𝒂𝒙 𝑻𝑹𝒎𝒂𝒙
 

P0 P05 P10 P15 P20 P25 P0 P05 P10 P15 P20 P25 

15 2.25 2.25 1.91 .65 1.26 1.15 12 20.96 30.34 43.1 53.28 65.46 

23 3.64 3.59 3.03 2.37 2.09 1.75 7.98 12.66 23.96 47.74 59.51 70.31 

30 5.33 5.25 4.85 4.37 3.38 3.17 5.2 8.77 14.39 22.53 33.32 23.17 

35 6.83 6.47 6.46 5.44 4.55 4.05 4.57 6.55 9.34 16.52 26.09 33.37 

40 8.93 8.37 7.40 6.72 5.13 4.06 3.73 5.95 8.99 18.62 24.05 29.42 
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Figure 5-3: Isothermal curves of pastes incorporating En28 at various temperatures. 
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Figure 5-4: Isothermal curves of pastes incorporating En35 at various temperatures. 

5.4.2 Calculation of 𝐸𝑎 for cement pastes using isothermal 
calorimetry data 

5.4.2.1 Linear approximation method 

The reaction rate of each cement mixture was calculated at different isothermal 

temperatures using the linear slope of the cumulative heat curve in the acceleratory region 

as explained earlier and illustrated in Fig. 5-2. Table 5-6 presents the reaction rate of all 

mixtures at various test temperatures. The results indicate that the reaction rate decreased 

after the addition of MPCMs, whereas it raised with the increase in the test temperature. 

Interestingly, the rate of increase in the reaction rate with respect to temperature declined 

with higher levels of MPCM inclusion. For instance, in the case of En28, the reaction rate 

of the P0 mixture (i.e., plain cement paste) hydrated at T=40°C was increased by 264.6% 

compared to that at T=15°C. In contrast, it increased by 167.2% and 69.7% for mixtures 

P10 and P20, respectively, indicating a less drastic change in the reaction rate with respect 

to temperature. The variation in the reaction rate can be better quantified using the apparent 

activation energy concept. Purposefully, the natural logarithm of the reaction rate was 

plotted versus the inverse of the absolute temperature, and a linear least-squared line was 

fitted to obtain the apparent activation energy of each mixture as displayed in Figure 5-5. 
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Table 5-6: Reaction rate of cement pastes calculated from the linear approximation of 

calorimetry data 

En28 

 T=15 °C T=23 °C T=30 °C T=35 °C T=40 °C 

P0 5.12 7.46 12.32 14.13 18.67 

P05 4.17 6.09 10.24 10.63 13.57 

P10 3.51 4.31 6.57 7.1 9.38 

P15 3.11 3.65 4.79 5.24 6.86 

P20 2.76 3.21 3.33 4.12 4.41 

P25 2.55 2.65 2.96 3.28 3.6 

En35 

 T=15 °C T=23 °C T=30 °C T=35 °C T=40 °C 

P0 5.12 7.46 12.32 14.13 18.67 

P05 4.09 7.21 9.76 12.41 14.08 

P10 3.42 5.32 6.7 9.83 10.46 

P15 2.76 4 4.75 6.56 7.74 

P20 2.16 2.88 3.58 4.91 5.34 

P25 1.85 2.17 2.9 3.65 3.89 

According to Eq. 5-1, 𝐸𝑎 can be computed by multiplying the negative of the slope of the 

fitting line by the universal gas constant, R. Tables 5-7 and 5-8 report the apparent 

activation energy of cement pastes incorporating various dosages of En28 and En35 

microcapsules, respectively. It can be observed that the inclusion of the MPCMs resulted 

in considerable reduction in the apparent activation energy of the cement mixtures for both 

En28 and En35 microcapsules, especially at higher levels of MPCM inclusion.  

The activation energy is computed based on the relative variations of the reaction rate at 

different temperatures. It was observed that the inclusion of MPCMs led to reduction in 

the hydration rate of the cement along with reduction in the apparent activation energy. 

Therefore, the incorporation of MPCMs in cement paste decreased the sensitivity of the 

hydration process to temperature. This implies that higher ambient temperatures could not 

bring about as much acceleration in setting and strength gain in MPCM-integrated concrete 

as would be expected in normal concrete without MPCM inclusion. However, the adverse 

impact of the thermal stresses or shrinkage may be lower in MPCM-integrated concrete 

(Jayapalan et al., 2014; Pinto & Schindler, 2010; Poole et al., 2007; Sargam & Wang, 

2021). 
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Figure 5-5: Natural logarithm of linear reaction rate versus the inverse of the absolute 

temperature of pastes incorporating En28 and En35 microcapsules. 

It should be noted that the determination of the linear portion of the hydration curve is 

relatively subjective due to several reasons. Firstly, the addition of the MPCMs prolongs 

the dormant period and slows down the hydration rate in the acceleratory stage. Therefore, 

the determination of the start of the acceleratory phase is not consistent between all 

mixtures. Moreover, there may be more than one best linear fit to the acceleratory region 

in some mixtures, especially when the maximum rate of hydration is difficult to detect.  An 

example is when the peaks related to C3S and C3A hydration overlap. Consequently, 

utilizing the modified ASTM C1074 is beneficial for acquiring more accurate results as 
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suggested in the literature (Jayapalan et al., 2014; Poole et al., 2007; Sargam & Wang, 

2021). Yet, the results obtained from the linear approximation method provide initial 

insights into the comparison of the apparent activation energy of various mixtures. 

5.4.2.2  Modified ASTM C1074 method 

𝐸𝑎 can be calculated after estimating the hydration parameters using the three-parameter 

model expressed in Eq. 5-4. Tables 5-7 and 5-8 report the hydration parameters obtained 

from a least-squares regression fit for mixtures incorporating En28 and En35, respectively. 

It could be understood that the incorporation of MPCMs decreased the apparent activation 

energy of the mixtures, showing a similar trend to the results obtained from the linear 

analysis. Nevertheless, the results obtained from the three-parameter model tend to be more 

accurate since it accounts for all calorimetry data in contrast to the linear method which 

only considers the acceleratory region. Figure 5-6 depicts the linear fit of the natural 

logarithm of the hydration time parameter versus the inverse of the absolute temperature. 

It is noteworthy that the apparent activation energy does not represent the potential energy 

to trigger a reaction as classically defined by the Arrhenius theory. Alternatively, it 

characterizes the sensitivity of the reaction to changes in temperature. The reaction of 

portland cement with water is a coupled nucleation and growth mechanism in the initial 

stages of hydration along with diffusion-controlled reactions in the later stages of 

hydration. It is believed that at the very early stages of hydration (α<0.05), the reaction is 

directed by a mode of diffusion (Kada-Benameur et al., 2000). The addition of MPCM 

particles reduces the nucleation sites for CSH growth and precipitation primarily due to 

their morphology and particle size, and the fact that they wrap around cement particles. 

Therefore, the nucleation and growth mechanism in hydration of cement in the presence of 

MPCM particles is probably less dominant compared to that for plain cement pastes, 

leading to the lower apparent activation energy. In other words, the initiation of the 

nucleation-controlled phase of hydration is delayed upon MPCM addition. 
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Table 5-7: Hydration parameters and activation energies of cement pastes with En28  

Mix 
T 

(°C) 

Modified ASTM C1074 Linear 

𝜶𝒖 𝜷 𝝉 (h) 𝑹𝟐 
𝑬𝒂 

(kJ/mol) 
Ln(k) 

𝑬𝒂 

(kJ/mol) 
𝑹𝟐 

P0 

15 

0.784 0.892 

24.452 0.996 

43.13 

1.635 

39.143 0.99 

23 17.618 0.991 2.010 

30 10.456 0.996 2.511 

35 8.365 0.996 2.648 

40 5.884 0.960 2.927 

P05En28 

15 

0.729 1.194 

29.326 0.994 

39.759 

1.428 

35.820 0.97 

23 21.056 0.992 1.806 

30 11.932 0.993 2.326 

35 10.820 0.989 2.363 

40 7.951 0.954 2.607 

P10En28 

15 

0.665 1.763 

43.369 0.954 

38.583 

1.255 

29.666 0.97 

23 24.470 0.984 1.460 

30 15.493 0.985 1.882 

35 15.110 0.981 1.960 

40 11.648 0.944 2.238 

P15En28 

15 

0.608 2.319 

59.103 0.971 

36.865 

1.134 

23.137 0.97 

23 43.098 0.988 1.294 

30 21.792 0.989 1.566 

35 24.056 0.972 1.656 

40 17.711 0.932 1.925 

P20En28 

15 

0.583 2.480 

67.507 0.953 

31.189 

1.015 

14.048 0.94 

23 53.374 0.984 1.166 

30 32.062 0.994 1.203 

35 34.261 0.992 1.415 

40 23.240 0.924 1.483 

P25En28 

15 

0.56172 2.833 

78.690 0.958 

26.470 

0.936 

10.59 0.94 

23 59.748 0.971 0.947 

30 43.663 0.992 1.085 

35 47.870 0.937 1.187 

40 29.130 0.976 1.280 

Table 5-8: Hydration parameters and activation energies of cement pastes with En35  

Mix T (°C) 

Modified ASTM C1074 Linear 

𝜶𝒖 𝜷 𝝉 (h) 𝑹𝟐 
𝑬𝒂 

(kJ/mol) 
Ln(k) 

𝑬𝒂 

(kJ/mol) 
𝑹𝟐 

P0 

15 

0.747 0.892 

24.452 0.996 

43.124 

1.635 

39.143 0.99 

23 17.618 0.991 2.010 

30 10.456 0.996 2.511 

35 8.365 0.996 2.648 

40 5.884 0.960 2.927 

P05En28 

15 

0.740 1.120 

29.358 0.995 

40.613 

1.408 

37.148 0.98 

23 18.738 0.995 1.975 

30 12.862 0.996 2.278 

35 9.056 0.989 2.518 

40 7.929 0.977 2.644 

P10En28 
15 

0.672 1.609 
45.289 0.966 

39.552 
1.229 

34.617 0.97 
23 28.583 0.994 1.671 
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30 18.053 0.994 1.902 

35 14.464 0.970 2.285 

40 12.704 0.940 2.347 

P15En28 

15 

0.624 2.167 

59.819 0.974 

37.004 

1.015 

30.720 0.98 

23 39.052 0.973 1.386 

30 25.302 0.991 1.558 

35 18.564 0.969 1.880 

40 19.364 0.951 2.046 

P20En28 

15 

0.597 2.623 

68.826 0.937 

33.693 

0.77 

28.211 0.98 

23 62.800 0.984 1.057 

30 36.711 0.994 1.275 

35 27.759 0.968 1.591 

40 25.383 0.973 1.675 

P25En28 

15 

0.566 3.005 

76.715 0.950 

29.565 

0.615 

24.136 0.97 

23 70.406 0.955 0.774 

30 47.212 0.985 1.064 

35 37.236 0.963 1.294 

40 30.252 0.939 1.358 

 

Figure 5-6: Natural logarithm of hydration time parameter versus the inverse of absolute 

temperature of pastes incorporating En28 and En35 microcapsules. 
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Previous research has demonstrated that the activation energy of nucleation-controlled 

reactions is higher (D'aloia & Chanvillard, 2002; Kada-Benameur et al., 2000). For 

instance, the activation energy of cement hydration increased with the incorporation of 

nano-particles that act as seeds for nucleation growth and CSH precipitation (Jayapalan et 

al., 2014; Sargam & Wang, 2021). The diffusion-controlled hydration of MPCM-

integrated cement pastes is further related to the significant water absorption of the MPCMs 

along with their wrapping around anhydrous cement particles. The desorption of water 

from MPCM particles and the free water in macro-pores permeate towards the anhydrous 

cement grains to progress the reactions. Hence contrary to plain cement hydration, the 

reaction of water with the MPCM-cement system becomes less nucleation-controlled 

during the early stages of hydration. This is in remarkable conformity with the longer 

dormant period in MPCM-integrated cement pastes as discussed earlier. 

5.4.3 Effect of MPCMs on compressive strength 

Figure 5-7 illustrates the compressive strength development of mortars with and without 

MPCMs over time for various mixtures cured at different temperatures. More than 135 

distinct compressive strength measurements were collected to monitor the strength 

development pattern of the mortars. Several trends can be detected in the strength 

development curves of mortars. Generally, the MPCM inclusion significantly decreased 

the compressive strength compared to that of the control mortar both at early and later ages. 

The reduction in the compressive strength is related to several mechanisms. MPCM 

particles were incorporated as a partial replacement for fine aggregates. However, they 

have a significantly lower stiffness compared to that of sand particles and the cementitious 

matrix. Therefore, it is expected that the strength of the mortars is limited by the strength 

of polymeric MPCM particles in the matrix (Aguayo et al., 2016; Pilehvar et al., 2017). In 

addition to the void-like behavior, polymeric MPCM particles have weak interfaces with 

the surrounding matrix compared to that for sand particles, resulting in weaker bonds and 

lower compressive strength of the mortar. As evidenced in SEM images in Fig. 5-8, MPCM 

particles notably deform and wrinkle during the mixing and hardening stages of the mortar. 

These deformations lead to increased porosity and a weaker interfacial bond with the 

cementitious matrix. It can be observed in the SEM images (see Section 5.4.5), that the 
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fracture of the cement paste mostly occurred at the MPCMs’ interface where there is a 

weak bond with the surrounding matrix (Aguayo et al., 2016; Cao et al., 2018). The 

microstructure of the mortars is further discussed in Section 5.4.5.  

Another pattern recognized in the strength development data is the delay in the strength 

gain of the MPCM-integrated mortars. The lower strengths at early ages along with the 

delay in the setting behavior of mortars incorporating MPCMs can be attributed to the 

hydration process as thoroughly discussed in Sections 5.4.1 and 5.4.2. The addition of 

MPCMs at the level of 15 wt.% by cement weight, significantly decreased and delayed the 

hydration peak, as observed in Figs. 5-3 and 5-4. Hence, the rate of strength gain in MPCM-

integrated mortars is lower than for the control mortar. It was also evidenced that samples 

incorporating En35 achieved lower compressive strengths compared to those integrating 

En28. As discussed in Section 5.4.1, both types of MPCMs imposed comparable effects 

on the hydration kinetics of the cement paste. Therefore, the difference in the compressive 

strength of mortars containing different types of MPCMs is mainly related to the pore 

structure of the mortar and the bond strength of MPCMs with the cement matrix rather than 

the hydration kinetics. The curing temperature promoted the strength development of 

mortars at earlier ages. This is related to the accelerated cement hydration at higher 

temperatures as discussed earlier. However, it should be noted that higher curing 

temperatures can affect the microstructure development and the porosity of the 

cementitious matrix. Therefore, the compressive strength of specimens cured at higher 

temperatures may be lower at later ages. The apparent activation energy of mortars was 

computed based on the compressive strength to better analyze the effect of the curing 

temperature on the strength development of mortars. 
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Figure 5-7: Compressive strength development of mortars cured under different 

temperatures. 

5.4.4 Calculation of 𝐸𝑎 for cement mortars using compressive 
strength data 

To further investigate the synergic effect of the MPCM inclusion and curing temperature 

on the strength development of mortars, the apparent activation energy was further 

calculated based on the compressive strength measurements using Eqs. 5-5 and 5-6. Table 

5-9 presents the strength parameters of the mixtures after a least-square regression fit to 

the collected compressive strength data based on the parabolic and hyperbolic models. It 

could be understood that similar to the trend observed in the apparent activation energy of 
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cement pastes calculated based on the calorimetry data, 𝐸𝑎 of mortars decreased with the 

addition of MPCM particles. Therefore, it could be concluded that the temperature 

sensitivity of the strength gains decreased with MPCM inclusion. This should be noted that 

compressive strength measurements suggest slightly lower apparent activation energy 

compared to the calorimetry data at the same MPCM inclusion level, i.e., 15 wt.%. This is 

related to the age of the mixtures considered in the calculations. Accordingly, the 

calorimetry data were collected for the first 96 h of the hydration in which the nucleation 

and growth mechanism is predominant, and the apparent activation energy is typically 

higher. In contrast, the compressive strengths were measured over a 56-day period in which 

the diffusion becomes the major hydration mechanism after the first few days, and thus the 

apparent activation energy slightly decreased. The obtained strength development 

parameters suggest that the reaction rate (k) was increased with the rise in the curing 

temperature, while the addition of MPCMs decreased the reaction rate. It is also evident 

that increasing the curing temperature generally decreased the strength time constant, 

which is correlated to the setting behavior of mortars. Similar findings were evidenced in 

the calorimetry data analysis. Furthermore, curing the mortars at higher temperatures led 

to typically lower ultimate strength parameter, 𝑆𝑢. This is attributed to the synergic effect 

of the curing temperature and MPCM inclusion on the microstructure development and 

porosity of mortar specimens as will be discussed in the subsequent section. 

Table 5-9: Apparent activation energy of mortars incorporating En28 and En35 

Mix 
Eq. 5-5 Eq. 5-6 

𝑺𝒖 k 𝒕𝟎 𝑬𝒂 (kJ/mol) 𝑺𝒖 𝝉𝒔 𝜷 𝑬𝒂 (kJ/mol) 

R-T15 58.62 0.3154 0.3383 

37.19 

66.82 2.5803 0.615 

39.83 

R-T23 50.22 0.4991 0.3433 64.78 2.3607 0.5798 

R-T30 55.78 0.6228 0.1255 64.43 1.3599 0.5647 

R-T35 53.72 0.8621 0.0183 62.19 0.8521 0.5147 

R-T40 52.82 1.1282 0.1134 61.7 0.8049 0.5268 

P28-T15 35.13 0.4352 0.8516 

28.01 

35.07 2.259 1.093 

28.2 

 

P28-T23 40.03 0.5254 0.5173 40.7 1.727 0.932 

P28-T30 37.39 0.6136 0.3578 37.34 1.3123 0.8559 

P28-T35 32.75 0.9705 0.3162 35.63 0.9753 0.7147 

P28-T40 31.38 1.0519 0.2903 34.24 0.9379 0.6591 

P35-T15 26.67 0.3614 1.5234 

30.24 

27.8 3.4072 1.1213 

32.2 

P35-T23 34.71 0.5325 0.9289 33.73 2.04 1.1616 

P35-T30 30.4 0.6595 0.7637 30.74 1.766 1.0465 

P35-T35 26.17 0.9818 0.5808 27.42 1.26 0.8761 

P35-T40 25.54 0.9164 0.4406 26.21 1.1598 0.9016 
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Figure 5-8: Natural logarithm of reaction rate versus the inverse of absolute temperature 

for mortar mixtures using parabolic and exponential functions. 

5.4.5 Microstructural analyses 

This section analyzes the SEM images and micro-CT images of mortar samples cured at 

23 and 40°C. Figure 5-9 displays the SEM images of the failure surface of mortar samples 

at different locations. It can be observed that MPCMs in all samples are drastically 

deformed and wrinkled, which could result in the reduction of compressive strength. 
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Furthermore, a weak interfacial transition zone (ITZ) is evident between the cement matrix 

and MPCM particles (see red arrows in the SEM images). A gap between the MPCMs and 

the surrounding cement matrix is also distinguishable. The weak bond between MPCM 

particles and cement paste in the ITZ demonstrates the potential initiation of micro-cracks 

that provoked the reduction in compressive strength and failure of specimens. The 

development of micro-cracks near MPCM affirms the contribution of the MPCMs to the 

failure of specimens (see blue arrows in the SEM images). Interestingly, En35 tended to 

have weaker interaction with the cement matrix compared to En28. As it is depicted with 

green indicators in the SEM images, several spots were identified in which MPCMs were 

detached from the surrounding cement paste. Conversely, no such cavities were pinpointed 

in numerous SEM images of samples containing En28 investigated herein. This is 

correlated with the lower compressive strength of mortar specimens incorporating En35 

compared to those containing En28 as discussed earlier. In fact, the void-like effect of 

MPCMs in the mortar is more evident in the case of En35 particles which in turn may be 

attributed to the lower compatibility of the microcapsule shell with the surrounding 

cementitious matrix. The influence of the MPCMs addition on the porosity of the samples 

can be better examined using micro-CT images. 

Figure 5-10 depicts the two-dimensional (2D) X-ray microtomography slices of specimens 

from mortar mixtures investigated in this study. Specimens cured at 23 and 40°C were 

selected for the analysis. Due to the low level of X-ray attenuation of organic materials 

fabricating MPCMs along with the low density of the MPCM particles, the discrimination 

between air voids and MPCM particles is relatively strenuous. However, air voids tend to 

form spherical shapes, whereas MPCMs have irregular morphology. After the image 

segmentation, it was observed that MPCM inclusions increased the porosity of cement 

mortars. The image analysis suggests a total volume of air voids of 6.32, 8.16, and 10.42% 

for RT23, En28T23, and En35T23 samples, respectively. The percentage of air voids in 

samples cured at 40°C, i.e., RT40, En28T40, and En35T40, was 7.33, 9.01, and 11.66 %, 

respectively. This demonstrates that the MPCM inclusions resulted in increased porosity 

of the cementitious matrix and thus, a decrease in compressive strength. Interestingly, 

image analysis confirmed that En35 particles had aggravated the negative impact on the 

pore structure of the samples, which conforms with compressive strength data. 
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Figure 5-9: SEM images of mortar specimens: a) P28T23, b) P28T40, c) P35T23, and d) 

P35T40. Red arrows show the weak ITZ and gap between MPCMs and cement paste, blue 

arrows show micro-cracks initiated near MPCMs, and green arrows show cavities related 

to MPCMs detached from the cementitious matrix. 
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Figure 5-10: Segmentation of 𝝁 −CT scan Images for porosity analysis. 
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5.5 Concluding remarks 

This study explored the apparent activation energy of cement pastes and mortars 

incorporating MPCMs using isothermal calorimetry and compressive strength 

measurements. Two types of non-formaldehyde biobased MPCMs with melting 

temperatures of 28 and 35°C were used to prepare test samples. Isothermal calorimetry and 

compressive strength tests were conducted at 5 curing temperatures including 15, 23, 30, 

35, and 40 °C. SEM and X-ray μCT analyses were performed to complement the findings 

from the hydration kinetics analysis. The following conclusions are drawn: 

• MPCM addition to cement paste prolonged the dormant period of the cement hydration 

reactions and decreased the maximum rate of hydration. A delay in the time to reach 

the maximum rate of hydration was also evident. 

• Increasing the temperature accelerated the hydration rate. However, this increase was 

less significant in cement pastes made with higher MPCM content. 

• The latent heat of MPCMs further affected the delay in the maximum rate of hydration 

reactions for specimens tested at temperatures close to the melting temperature of the 

MPCMs. 

• The apparent activation energy of cement pastes significantly decreased with the 

addition of MPCMs, indicating less temperature sensitivity of MPCM-integrated 

cement pastes. 

• The inclusion of MPCMs in cement mortar led to significant reductions in compressive 

strength. 

• The apparent activation energy of cement mortars decreased after the addition of 

MPCMs, indicating reduced sensitivity of the strength development to the curing 

temperature. 

• SEM images and μCT scans demonstrated the weak bond between MPCMs and the 

surrounding cementitious matrix, along with increased porosity induced by MPCM 

particles. 
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Chapter 6  

6 Deep Learning-Assisted Calculation of Apparent 
Activation Energy for Cement-based Composites 
Incorporating Microencapsulated Phase Change 
Materials1 

Sustained efforts have been directed towards understanding the effects of 

microencapsulated phase change materials (MPCMs) on the microstructure and 

mechanical strength development of portland cement-based composites. Yet, the effects of 

temperature on the kinetics of hydration reactions of MPCM-integrated cementitious 

systems remain largely unexplored. This study proposes a deep learning framework to 

simulate the hydration process and calculate the apparent activation energy of such 

cementitious composites. Extensive isothermal calorimetry tests were carried out in this 

study to compile a robust time-dependent dataset for developing various pertinent machine 

learning models. It was demonstrated that the deep neural network outperformed the 

gradient boosting ensemble in predicting the hydration rate and cumulative heat. 

Furthermore, the apparent activation energy of diverse cement-based systems 

incorporating MPCMs was calculated based on the predictions of the deep learning model. 

It was found that the addition of MPCMs decreased the activation energy of the 

cementitious systems, indicating less sensitivity of the hydration reactions to temperature. 

6.1 Introduction 

The growing world population and urbanization have created a colossal demand in 

contemporary societies for energy. Considering the rapid depletion of non-renewable 

energy resources and the associated climate change threats, developing sustainable energy-

saving practices is paramount. A promising solution to mitigate imminent shortages in 

energy supply is coining novel efficient energy storage systems. Latent heat thermal energy 

storage (LHTES) has been proposed as an attractive technology to tackle the intermittent 

 

1
 A version of this chapter is under review in “Cement and Concrete Composites” journal, 2022. 
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mismatch between energy demand and supply (Xu et al., 2021). Owing to their high energy 

storage density, latent heat energy storage systems require a smaller mass and volume of 

materials compared to sensible heat energy storage media (Agyenim et al., 2010). For 

instance, phase change materials (PCMs) can absorb/release a considerable amount of heat 

energy when they undergo a phase transition, e.g., from solid to liquid. Therefore, they can 

be employed to store thermal energy at a constant temperature and retrieve it at a later time 

(Huang et al., 2019).  

PCMs have been utilized as non-polluting, sustainable, and efficient energy storage 

materials in various relevant industries, such as waste heat recovery (Li et al., 2019) textiles 

and fabrics (Li et al., 2018), and buildings (Faraj et al., 2020). Buildings are responsible 

for nearly one-third of the global energy consumption (Pan et al., 2018). A significant share 

of this energy consumption is used for heating and cooling indoor spaces (Hassan et al., 

2022). Integrating LHTES systems in buildings can narrow the indoor temperature 

fluctuations and thus, decrease the energy consumption, as widely reported in the literature 

(Lizana et al., 2017). Purposefully, several PCM-based systems have been developed for 

building applications including PCM-based heat exchangers and HVAC systems 

(Maccarini et al., 2018), PCM-based photovoltaics (Fayaz et al., 2019), and PCM-

integrated building envelopes (Akeiber et al., 2016; Boussaba et al., 2018).  

To integrate LHTES capacity in buildings, PCMs can be incorporated in cement-based 

composites used for the construction of structural elements such as walls, roofs, and 

envelopes. Among the diverse methods proposed in the pertinent research, polymeric 

microencapsulated PCMs (MPCMs) have been predominantly utilized for fabricating 

PCM-integrated cement mortars and concretes (Marani & Nehdi, 2019). Accordingly, the 

addition of MPCMs can lead to significant improvements in the thermal performance and 

energy saving of cement-based composites. Nonetheless, several adverse effects of 

MPCMs on the hydration, setting behavior, and microstructural development of 

cementitious matrices have been identified (Drissi et al., 2019; Drissi et al., 2021). Several 

experimental studies explored the potential effects of polymeric MPCMs on the hydration 

kinetics of cement pastes and postulated relevant mechanisms such as the dilution of the 

cement paste after MPCM addition (Aguayo et al., 2016) and the reduced available water 
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needed for cement hydration reactions due to high water absorption of MPCMs (Aguayo 

et al., 2016; Pilehvar et al., 2017). A potential benefit of using PCMs in cement-based 

composites is the control of hydration heat evolution in the hardening cementitious system 

and therefore, possibly mitigating early-age thermal cracking (Fernandes et al., 2014). It 

has been theoretically demonstrated that MPCM inclusion in concrete can reduce the 

internal temperature and thermal stresses in massive concrete placements (Šavija & 

Schlangen, 2016). However, rigorous studies on the hydration kinetics of MPCM-

integrated cementitious systems are needed to better understand the temperature-related 

stresses and strains. 

The promising yet deficient findings in the open literature denote the need for 

comprehensive investigations to capture the effects of MPCMs on the temperature 

sensitivity and hydration process in MPCM-integrated cementitious systems. For this 

purpose, a robust modeling approach based on a machine learning (ML) framework is 

proposed for the first time to calculate the apparent activation energy, which is 

representative of the temperature sensitivity of the hydration reactions. Multiple isothermal 

calorimetry tests were performed on diverse MPCM-integrated systems at 5 different 

temperatures to extract time-dependent cement hydration heat. The isothermal calorimetry 

data were employed to establish the ML framework for the prediction of the hydration heat 

evolution. The subsequent section elucidates the fundamental knowledge in the study of 

cement hydration and ML modeling, followed by a description of the data collection and 

model development. Ultimately, the apparent activation energy for diverse cement-based 

systems is calculated based on the predictions of the best ML model, and in-depth 

discussions are presented. 

6.2 Background knowledge and literature review 

6.2.1 Hydration kinetics and apparent activation energy 

During the exothermic chemical reactions of cement particles with water, a great amount 

of heat is released, which is referred to as hydration heat. This generated heat brings about 

a significant increase in the temperature of the hydrating cementitious system. From a 

practical point of view, it is essential to characterize the temperature gradients along with 
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the maximum temperature of the mixture during the pouring and curing stages (Bentz, 

2014; Poole et al., 2007). The evaluation of the hydration kinetics of a given cementitious 

system is pivotal to investigate other thermal-related characteristics such as thermal 

stresses, strains, and potential cracking (Assi et al., 2018; Zajac et al., 2018). The setting 

behavior, microstructural development, and mechanical properties of cement-based 

systems are also closely related to the development of the hydration process (Bogner et al., 

2020; Zou et al., 2021). 

Several environmental and material parameters are known to affect the cement hydration 

process. The chemical compositions and physical properties (e.g. particle size and specific 

surface area) of the cementitious materials, along with the curing temperature, are among 

the most influential parameters (D'aloia & Chanvillard, 2002; Zajac et al., 2018). 

Furthermore, the incorporation of reactive or nonreactive additives into the binder can exert 

a dominant influence on the hydration kinetics (Tafesse & Kim, 2019; Yan et al., 2020). 

For instance, Sargam and Wang (Sargam & Wang, 2021) reported an increase in the rate 

of cement hydration after the addition of nanoparticles, while Yan et al. (Yan et al., 2021) 

evidenced that the addition of liquid-type temperature rise inhibitor prolonged the dormant 

period and reduced the maximum hydration rate. 

There have been few studies in the open literature that explored the effects of MPCM 

addition on the hydration process of cement pastes. In a study conducted by Eddhahak et 

al. (Eddhahak et al., 2014), it was observed that the addition of MPCMs to the cement 

paste decreased the heat of hydration and delayed the accelerating phase of the hydration 

process. They mainly attributed such changes to the latent heat of MPCMs. Additionally, 

Pilehvar et al. (Pilehvar et al., 2017) postulated that various mechanisms are related to the 

change in the hydration kinetics of MPCM-integrated cement and geopolymer pastes. 

These include MPCMs covering the cement grains and preventing their contact with water, 

and partial loss of nucleation sites for the growth of hydration products. The relatively high 

water absorption of MPCMs and the change in the dilution of the cement paste are other 

potential reasons for the change in the hydration kinetics (Aguayo et al., 2016).  
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In addition to the physiochemical properties of MPCMs, the curing temperature can affect 

the hydration kinetics and microstructural development of cement-based composites. For 

instance, Pilehvar et al. (Pilehvar et al., 2020) observed that similar to plain cement pastes, 

the hydration reactions of cement pastes incorporating MPCMs are faster at higher 

temperatures. Meanwhile, the thermal properties of MPCMs, such as melting/freezing 

temperatures and enthalpies, may exert additional influence on the hydration rate and heat 

evolution of cement paste. 

The sensitivity of cement hydration to temperature change can be better captured using the 

activation energy concept. Activation energy is not directly applicable to cement hydration, 

however, the Arrhenius theory utilizes the “apparent activation energy” (𝐸𝑎) to measure 

the effect of temperature on the hydration kinetics of cementitious composites (Saadoon et 

al., 2019). Accordingly, the reaction rate of cement hydration is dependent on temperature 

and can be expressed as follows: 

𝑘 = 𝐴. 𝑒−
𝐸𝑎
𝑅𝑇                     Eq. 6-1 

where R is the universal gas constant (8.314 J/mol/K), T is the temperature (K) at which 

the reaction occurs, k is the rate of the reaction (W), A is the proportionality constant, and 

𝐸𝑎 is the apparent activation energy (J/mol). The proportionality (pre-exponential) factor, 

A, is typically excluded in the cement hydration since the ratio of the reaction rates is 

utilized in the concrete maturity calculations. Therefore, 𝐸𝑎 is calculated independent of A 

for cementitious systems (Sakai & Koga, 2022).  

Isothermal calorimetry is widely used to measure the released heat of hydration for cement-

based systems (Carette & Staquet, 2016; Chen et al., 2022). To calculate the apparent 

activation energy based on Eq. 6-1, measurement of the reaction rates at several isothermal 

temperatures is required. Various methods have been proposed by Poole et al. (Poole et 

al., 2007) to calculate 𝐸𝑎 based on the isothermal calorimetry data, including linear 

approximation, modified ASTM C1074, and incremental method. They computed 𝐸𝑎 for 

multiple cement-based systems incorporating supplementary cementitious materials 

(SCMs). Accordingly, it was found that the modified ASTM C1074 gives an accurate 
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characterization of 𝐸𝑎 to account for the effect of the curing temperature on the hydration 

rate of cementitious materials. In other pertinent studies, the effect of nanoparticles on the 

apparent activation energy and thus, the temperature sensitivity of cement-based systems 

have been studied (Jayapalan et al., 2014; Sargam & Wang, 2021). 

6.2.2 Machine learning basis 

In recent decades, data-driven techniques have emerged as promising alternative 

approaches to model various engineering properties of a broad range of smart and 

multifunctional materials and systems (He et al., 2021; Jose et al., 2021; Li et al., 2021). 

In particular, the mechanical, thermal, and durability properties of cement-based 

composites have been accurately predicted using various types of ML algorithms (Gomaa 

et al., 2021; Nunez et al., 2021; Tanyildizi, 2021). Findings in the literature suggest that 

powerful ML models coupled with analytical parametric studies can reveal profound 

insights into the design of complex multicomponent materials. This is of great significance 

in the performance analysis of modern cement-based composites, where the diversity of 

components and their makeups, large combinatorial spaces, nonlinear interactions, and 

time-dependent chemical reactions convolute the design process.  

Despite improvements in thermal characteristics, MPCM addition to cementitious 

composites has proven to affect microstructural development. Chapters 2 and 3 (Marani & 

Nehdi, 2020) proposed ML models to investigate the effect of MPCM addition on the 

strength development of cementitious mortars and concrete. They evidenced that the 

strength development slows down after the addition of MPCM, which may be related to 

the physicochemical properties of MPCM particles. However, their model only considered 

the interaction of mixture components and overlooked the influence of MPCMs on the 

kinetics of cement hydration reactions. 

It has been recently demonstrated that ML algorithms can contribute to high-fidelity 

predictions and optimization of chemical reactions (Hein, 2021; Meuwly, 2021). 

Consequently, a dearth of studies explored the ability of ML models to estimate the 

hydration kinetics of cementitious systems based on isothermal calorimetry data. Cook et 

al. (Cook et al., 2021) predicted the heat-evolution profiles of blended cementitious 
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systems using 300+ data entries. The model training set encompassed 7800 data records 

along with 8 input features. The heat flow rate and cumulative heat during 24 hours of 

hydration were collected as the output. A random forest model was trained to predict the 

time-dependent hydration progress of the plain and blended cement-based systems. They 

demonstrated that the properly trained model could accurately predict the long-time 

hydration behavior of cementitious systems (Cook et al., 2021). In a similar study 

performed by Lapeyre et al. (Lapeyre et al., 2021), a random forest model was used to 

formulate the optimal design of multicomponent systems based on the hydration kinetics 

criteria. Such findings highlight the potential ability of computational intelligence to 

simulate the hydration heat evolution and temperature sensitivity of cement-based systems 

incorporating MPCMs. 

6.3 Model development 

This section describes the experimental data collection and preprocessing steps along with 

the fundamentals of the applied models. The procedure of apparent activation energy 

calculation based on the hydration heat predicted by the best-developed ML paradigm is 

also expounded.  

6.3.1 Data collection 

The isothermal calorimetry results of the cement pastes tested in Chapter 5 were utilized 

as the experimental data for the model development. The tests were performed at 5 different 

isothermal temperatures including 15, 23, 30, 35, and 40°C. MPCMs were added to the 

cement pastes at various dosages including 0, 5, 10, 15, 20, and 25 wt.% of cement. 

The heat of hydration of cement pastes was recorded using an eight-channel 

microcalorimeter (TAM air, TA Instruments) for 96 hours. Collectively, 55 isothermal 

calorimetry data entries corresponding to 11 mixtures tested at 5 different temperatures 

were extracted. The data entry corresponding to each mixture and testing temperature is 

designated as PxTy where x denotes the inclusion percentage of MPCM, and y indicates 

the testing temperature. The rate of hydration was recorded every 5 minutes and normalized 

per gram of cement (mW/g). The final dataset was compiled by concatenating data entries 

to establish more than 60000 time-dependent observations of hydration heat flow and 
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cumulative heat. The dataset contains one continuous input feature, time (hour), along with 

three discrete features including MPCM dosage (%), MPCMs’ melting point (°C), and test 

temperature (°C). Heat flow rate (mW/g) and cumulative heat (J/g) were the outputs to be 

predicted by the trained models and are referred to as HF and H, respectively. 

6.3.2 Data preparation and partitioning 

Two different data split schemes were considered in this study as schematically illustrated 

in Figure 6-1. In the first approach, the entire dataset was randomly divided into training 

and testing subsets as per conventional approach in ML modeling. 70% of the data were 

used for training and the remaining 30% were allocated to the testing set. In another 

approach, all the data observations with 15 wt.% MPCM inclusion were considered as the 

testing set, while all other data observations (i.e., corresponding to 0, 5, 10, 20, and 25 

wt.% MPCM inclusions) were used for the training purpose. This approach was 

implemented to assess the generalization capability of the trained models to predict the 

hydration kinetics for cement-based systems with MPCM levels not included in the training 

dataset, e.g., 7.5%, 12.5%, etc. Table 6-1 summarizes the datasets used for training and 

testing purposes. Input data was normalized before fitting to the models using Eq. 6-2 

below: 

𝑥𝑖
′ =

𝑥𝑖−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
                                                                                                  Eq. 6-2 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) is the input vector and 𝑥𝑖
′ is the normalized data. 

Table 6-1: Training and testing datasets used for model development 

Dataset Number of observations Split method 

Train-1 44,433 Random (70%) 

Test-1 19,044 Random (30%) 

Train-2 52,932 MPCPM levels of 0, 5, 10, 20, and 25 wt.% 

Test-2 10,545 MPCPM level of 15 wt.% 
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Figure 6-1: Data collection and partitioning schemes adopted in this study. 

6.3.3 Model development 

Gradient boosting regressor (GBR) and deep neural network (DNN) models were 

developed to predict the isothermal hydration curves. The models were trained and tested 

with both training datasets described in Table 6-1. The details of each model are explained 

below. 

6.3.3.1  Gradient boosting regressor (GBR) 

GBR is established based on the classification and regression tree (CART) which is a non-

parametric algorithm for regression and classification problems. CART algorithm breaks 

down an intricate prediction problem into several simple decision-making trees by 

extracting meaningful patterns in the input data (Breiman, 2017). Furthermore, ensemble 

algorithms can be implemented to improve the prediction accuracy of the CART model. 

Using ensembles, multiple “weak learners” are aggregated to construct a single “strong” 

consensus estimator. Gradient boosting is a powerful ensemble algorithm developed based 

on the statistical boosting technique (Friedman, 2002; Ke et al., 2017).  
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In the GBR algorithm, the additional base estimators are appended in sequence without the 

further change in the former model’s parameters. The objective of GBR is to reach the 

function 𝐹(𝑋) which minimizes the loss of function ℒ(𝐹(𝑋), 𝑦) where X and y are the 

inputs and output of a given dataset, {(𝑋1, 𝑦1), (𝑋2, 𝑦2),… , (𝑋𝑁, 𝑦𝑁)}. The loss function 

indicates the deviation of the predictions from the actual outputs. Various error functions, 

such as the least squared error and least absolute error, can be used as the loss function 

(Yang et al., 2020). GBR predictions are initiated using a constant function that grows in 

a greedy way as described below: 

𝐹0(X) = arg𝑚𝑖𝑛
𝛾

∑  𝑁
𝑡=1 ℒ(𝑦

′, 𝑦)        Eq. 5-3 

where 𝑦′ are the predictions. GBR model approaches the optimum function by weighting 

weak learners, 𝒽(𝑥𝑡), which are the basic decision tree estimators trained with the input 

data. The model progresses with adding additional trees in a greedy manner as follows: 

𝐹𝑚(𝐱) = 𝐹𝑚−1(𝐱) + ℎ𝑚(𝐱)         Eq. 6-4 

𝑦′ = 𝐹𝑚(𝑋) = ∑ 𝒽𝑚(𝑋)
𝑀
𝑚=1                                           Eq. 6-5 

where the constant m represents the number of weak estimators usually referred to as 

“n_estimators”. To improve the generalization capability and mitigate the overfitting risk, 

a shrinkage coefficient, also known as the learning rate, is used in the training process to 

limit the contribution of each weak learner to the output prediction as expressed below: 

ℱ𝑚(𝒳) = ℱ𝑚−1(𝒳) + 𝛾𝑚𝒽𝑚(𝑥)                                         Eq. 6-6 

where 𝛾𝑚 is the learning rate. The number of weak learners and learning rate are amongst 

the most essential hyperparameters that need to be fine-tuned. A larger number of 

estimators enhances the prediction accuracy, while excessive estimators may cause 

overfitting problems. Nevertheless, using low learning rates increases the model’s 

generalization ability and mitigates the potential overfitting (Yang et al., 2020). 

Immoderate hyperparameters’ values could lead to erroneous predictions with poor 
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generalization ability. Hence, the GBR model should be vigorously tuned as will be 

discussed later. Scikit-learn library was used to implement the GBR model. 

6.3.3.2 Deep Neural Network 

Artificial neural networks (ANNs) are a machine learning paradigm that mimics the 

learning pattern of the biological brain (Meng et al., 2019). ANNs are established based on 

several connected units referred to as neurons. The simplest ANN is constructed of three 

layers, i.e., input layer, hidden layer, and output layer, with few neurons in each layer (Liu 

et al., 2021). Nonetheless, more complex problems and larger datasets can be better 

analyzed using more sophisticated neural networks with more hidden layers and neurons, 

typically known as deep neural networks (DNNs).  

The input layer consists of neurons corresponding to input feature vectors. There are three 

main components in each hidden layer including weights, biases, and activation functions 

as expressed in Eq. 6-7 below: 

𝑂(𝑋) = 𝑔(𝜃𝑘𝑋 + 𝑏𝑘)         Eq. 6-7 

where X is the input data matrix,  𝜃𝑘 and 𝑏𝑘are the weight matrix and bias vector of the 

layer k,  𝑂(𝑋) is the predictions’ vector, and g(x) is the activation function (Abuodeh et al., 

2020). The used DNN model is a feed-froward network that uses a backpropagation 

algorithm to minimize the loss function of the network. Keras library was used to 

implement the DNN model in this study. The architecture of the network along with the 

optimization process need to be fine-tuned to carry out robust and generalized predictions 

as discussed in the next section. 

6.3.3.3  Hyperparameter tuning 

Bayesian optimization algorithm (BOA) was employed to tune the GBR and DNN models. 

The BOA is established based on the Bayes theorem expressed by Eq. 6-8: 

𝑝(𝑤 ∣ 𝐷) =
𝑝(𝐷∣𝑤)𝑝(𝑤)

𝑝(𝐷)
        Eq. 6-8 
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where w is the unseen value, p(w) is the preceding distribution, 𝑝(𝐷 ∣ 𝑤) is the posterior 

distribution, and 𝑝(𝑤 ∣ 𝐷) is the probability. Bayes rule deploys the prior knowledge to 

approach the posterior possibility and therefore, BOA uses the previous iterations to find 

the values for the next iteration. This signifies the efficiency of BOA to find the optimum 

point in comparison with arbitrary selection in conventional methods such as randomized 

search optimization. Details on BOA can be found in (Bergstra et al., 2013; Frazier, 2018). 

In the present study, the Hyperopt library was used to implement BOA coupled with 3-fold 

cross-validation. Mean squared error (MSE) was monitored as the optimization score. After 

100 iterations, the tuned parameters were extracted. Considering a large number of 

observations in the training data, the search space was narrowed down based on 

recommendations in the pertinent literature. It is noteworthy that identical hyperparameters 

were used to train HF and H for both training datasets. Table 6-2 presents the search space 

and the tuned values for the GBR and DNN model. 

Table 6-2: Search space and tuned hyperparameters of GBR and DNN models 

GBR model 

Parameters Search values Tuned value 

n_estimators [100,500] 300 

learning_rate [0.05, 0.5] 0.3 

max_depth [1,15] 10 

min_samples_split [2,10] 4 

DNN model 

Parameters Search values Tuned value 

number of neurons in each layer [32, 256] 128 

number of layers [1, 4] 3 

activation functions [‘ReLu’, ‘sigmoid’, ‘tanh’] ‘ReLu’ 

optimizer [‘SGD’, ‘Adam’] ‘Adam’ 

learning rate [0.0001, 0.01] 0.005 

batch size [64,1024] 500 

epochs [20,500] 300 

6.3.3.4 Evaluation Metrics 

The predictive performance of each model developed herein was assessed using several 

statistical indicators, including the mean absolute error (MAE), root mean squared error 

(RMSE), and coefficient of determination (𝑅2) as follows: 

𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑌𝑖 − �̂�𝑖)

2𝑚
𝑖=1 ,         Eq. 6-9 
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𝑀𝐴𝐸 =
1

𝑚
∑ |𝑌𝑖 − �̂�𝑖|
𝑚
𝑖=1 ,                  Eq. 6-10 

𝑅2 = 1 −
∑ (𝑌𝑖−�̂�𝑖)

2𝑚
𝑖=1

∑ (𝑌𝑖−�̅�)
2𝑚

𝑖=1

,                  Eq. 6-11 

6.3.4 Calculation of apparent activation energy (𝐸𝑎) 

Apparent activation energy of cement-based composites can be calculated using the heat 

of hydration data obtained from isothermal calorimetry tests (D'aloia & Chanvillard, 2002; 

Kada-Benameur et al., 2000). For the first time, the modified ASTM C1074 method is 

coupled with the best developed ML model in this study to calculate the apparent activation 

energy of the cement-based systems with various levels of MPCM inclusion. For this 

purpose, the degree of hydration (DOH) of the cementitious system at any given time t is 

required. DOH of cement, α, is indicative of the cement hydration progress and represents 

the ratio of the cement grains that have reacted with water. The DOH of cement at any time 

t, 𝛼(𝑡), is calculated using Eq. 6-12: 

𝛼(𝑡) = 𝐻(𝑡)/𝐻𝑐                   Eq. 6-12 

where H(t) is the cumulative heat released from the cement reaction at time t (J/g) and is 

predicted by the ML model. 𝐻𝑐 is the total heat of hydration of cement (J/g). Using Bogue’s 

equation and the proportion of the chemical compositions and phases of the cement given 

in Table 5-1, 𝐻𝑐𝑒𝑚 can be calculated as follows: 

𝐻𝑐 = 500𝑃𝐶3𝑆 + 260𝑃𝐶2𝑆 + 866𝑃𝐶3𝐴 + 420𝑃𝐶4𝐴𝐹 + 624𝑃𝑆𝑂3 + 1186𝑃𝐹𝑟𝑒𝑒𝐶𝑎 +

850𝑃𝑀𝑔𝑂                                                     Eq. 6-13 

where 𝑃𝑖 denotes the mass fraction of the ith chemical composition or phase. The cement 

hydration evolution can be mathematically expressed with different hydration models. 

Several studies have proposed using a three-parameter exponential function to characterize 

the hydration progress of the cement paste with time as follows: 

𝛼(𝑡) = 𝛼𝑢𝑒
−(

𝜏

𝑡
)𝛽

                   Eq. 6-14 
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where 𝛼𝑢 is the maximum DOH, τ is the hydration time parameter, and β is the hydration 

shape parameter (Poole et al., 2007). The hydration parameters can be obtained by fitting 

the DOH predicted by the ML model to Eq. 6-14 (Poole et al., 2007; Schindler, 2004; 

Wirquin et al., 2002). It is noteworthy that based on the modified ASTM C1074 method, 

the hydration time parameter (τ) was employed to calculate 𝐸𝑎 instead of using the 

equivalent time in the Arrhenius equation. The following steps were implemented to obtain 

𝐸𝑎: 

• The change in the DOH with time was calculated using Eqs. 6-12 and 6-13. The DOH 

at the given time t was calculated by dividing the cumulative released heat at time t 

obtained from the best predictive ML model by the total heat of hydration of the cement 

paste obtained from Eq. 6-13. 

• The DOH of the MPCM-integrated systems was fitted to the three-parameter hydration 

model presented in Eq. 6-14 to solve for 𝛼𝑢, 𝜏, and 𝛽 using a Bayesian optimization 

algorithm. The 𝛼𝑢, 𝜏, and 𝛽 values of each system were computed after 500 

optimization iterations for every test temperature. 𝑅2 was monitored as the loss function 

of the optimization process. 

• The average value of 𝛼𝑢 and 𝛽 for each mixture was calculated. Since 𝛼𝑢 and 𝛽 of 

cementitious materials are independent of the temperature, the final value of τ at each 

isothermal temperature was recalculated using the average values of 𝛼𝑢 and 𝛽.  

• The negative of the natural logarithm of the hydration time parameter (τ) was plotted 

versus the inverse of the absolute temperature (in Kelvin) for each mixture. 

• The activation energy for each mixture was calculated by multiplying the negative of 

the slope of ln(𝜏) − 1
𝑇⁄  linear line with universal gas constant R (8.314 J.(mol.K)-1). 

6.4 Results and discussion 

This section discusses the prediction performance of the GBR and DNN models trained 

with both datasets listed in Table 6-1, “Train 1” and “Train 2”. Furthermore, the apparent 

activation energies of diverse MPCM-integrated cementitious composites based on the best 

predictive model are calculated and thoroughly analyzed.    
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6.4.1 Prediction performance of ML models 

The GBR and DNN models were vigorously tuned using the Bayesian optimization 

approach as explained earlier. The optimized values of hyperparameters listed in Table 6-

2 were extracted using a 3-fold cross validated Bayesian optimization to maximize the 

prediction accuracy and generalization ability and prevent the likelihood of overfitting to 

the training set. Thereafter, the GBR and DNN models were trained using the Train 1 and 

Train 2 datasets, respectively referred to as GBR1, GBR2, DNN1, and DNN2. Figure 6-2 

illustrates the regression fit of GBR1 model for the HF and H predictions. The model 

achieved a high testing 𝑅2 of 0.9964 and 0.9999 for the HF and H prediction, respectively. 

To better perceive the prediction accuracy, Figures 6-3 and 6-4 showcase the actual versus 

predicted hydration curves obtained from the GBR1 model for the cement-based systems 

incorporating En28 and En35 at 15°C, respectively. The entire hydration curves obtained 

from the GBR1 model can be found in Appendix 1. The solid lines represent the hydration 

curves obtained from the experiments, while the scatter points indicate the predictions of 

the model for the corresponding data points available in the Test-1 dataset. Accordingly, 

GBR1 was able to accurately predict the time-dependent hydration rate and heat evolution 

for various systems hydrated at different temperatures. 

What is striking in the performance of GBR models is that although this model achieved 

very high training and testing scores when established using the Train-1 dataset, it 

surprisingly failed at the testing step when the Train-2 dataset was used for the model 

development. In other words, when no data observation of the cement-based systems with 

15 wt.% of MPCM inclusion (i.e., P15 data entries) was available in the training set, the 

model could not correctly predict the hydration kinetics of those systems. This emphasizes 

the highly over-fitted performance of the GBR1 model despite its outstanding training 

scores. It is noteworthy that retuning of the GBR1 did not further improve its generalization 

performance and thus, it is concluded that GBR1 lacked the generalization capability and 

could not interpolate the hydration kinetics of unseen cementitious systems. In contrast to 

the GBR, DNN models demonstrated a robust performance when trained on either Train-

1 or Train-2 datasets. Figures 6-5 and 6-6 illustrate the regression fit of DNN1 and DNN2 

for HF and H prediction, respectively. The actual versus predicted hydration curves of the 
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cement-based systems incorporating En28, and En35 at 40°C obtained from the DNN1 

model are showcased in Figs. 6-7 and 6-8. It can be observed that similar to the GBR1, 

DNN1 achieved outstanding training and testing scores and meticulously predicted the 

hydration heat flow and cumulative heat of the Test-1 data points for all mixtures. The 

entire hydration curves obtained from the DNN1 model can be found in Appendix 1. 

Furthermore, the DNN2 model demonstrated promising accuracy in predicting the 

hydration kinetics of the cement-based systems incorporating 15 wt.% of MPCMs. The 

testing 𝑅2 of 0.853 and 0.982 in the prediction of HF and H, respectively, were obtained 

when the DNN2 model was developed based on the Train-2 dataset. To compare with 

similar models in the literature, it is noteworthy that Cook et al. (Cook et al., 2021) 

achieved a testing RMSE of 0.331 mW/g and 14.398 J/g for predicting respectively the HF 

and H of blended cementitious systems using a random forest model. In the current study, 

testing RMSE of 0.371 mW/g and 14.945 J/g for HF and H predictions were obtained. 

Moreover, DNN1 and DNN2 indicated less over-fitting towards the training sets in 

comparison to GBR models. This underscores the superior generalization capability of the 

deep learning models compared to that of the GBR which fails to capture the hydration 

pattern of Test-2 data entries. 
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Figure 6-2: GBR1 model for prediction of hydration heat flow and cumulative heat.  

 

Figure 6-3: Predictions of GBR1 for cement systems incorporating various levels of 

En28 at 15°C. 
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Figure 6-4: Predictions of GBR1 for cement systems incorporating various levels of 

En35 at 15°C. 
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Figure 6-5 : DNN1 model for prediction of hydration heat flow and cumulative heat.  

 

Figure 6-6: DNN2 model for prediction of hydration heat flow and cumulative heat.  
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Figure 6-7: Predictions of DNN1 for cement systems incorporating various levels of 

En28 at 40°C. 
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Figure 6-8: Predictions of DNN1 for cement systems incorporating various levels of 

En35 at 40°C. 
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Figure 6-9: HF and H Predictions of DNN2 for cement systems incorporating 15 wt.% 

En28 (left) and En35 (right) at various temperatures.  

6.4.2 Calculation of apparent activation energy 

Owing to its outstanding performance in the prediction of the cumulative heat of hydration, 

DNN2 was employed to generate heat evolution data for diverse cement pastes 

incorporating En28 and En35. Inclusion levels of 0 to 27.5 wt.% at 2.5% intervals were 

considered. The time-dependent cumulative heat of those systems was predicted at 15, 23, 

30, 35, and 40°C for 96 h. The simulated heat evolution curves are illustrated in Figure 6-

10. It can be observed that the model demonstrated promising ability in interpolating and 

extrapolating the heat evolution of mixtures that are not experimentally investigated, i.e., 

P2.5, P7.5, etc. Although the heat evolution of those mixtures is not compared to 

experimental measurements, the trend observed in this parametric study suggests that 

DNN2 successfully captured the underlying pattern in the evolution of hydration heat. 

Accordingly, the graphs display a gradual decline in the released heat with the increase in 

the MPCM dosage, a comparable trend previously confirmed in experimental findings 

(Djamai et al., 2019; Pilehvar et al., 2017; Pilehvar et al., 2020). It can also be observed 

that increasing the temperature accelerated the hydration kinetics and increased the 

cumulative released heat at earlier stages.  

The DOH of each mixture was calculated based on Eqs. 6-12 and 6-13 using the heat 

evolution predictions at any given time t. Thereafter, the apparent activation energy for 

each mixture was calculated using the procedure described in Section 6.3.4. Tables 6-3 

and 6-4 summarize the hydration parameters for the mixtures incorporating En28 and 

En35, respectively. The results indicate that with the increase in MPCM dosage, the 
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hydration time (τ) and hydration shape (β) parameters significantly increased. Accordingly, 

the increase in β indicates a reduction in the DOH of the system at earlier stages of the 

reaction followed by higher degree at later ages as it can be observed in Fig. 6-10. 

Furthermore, the increase in the τ is indicative of the decelerated hydration reactions and 

the prolonged induction period. This is probably related to the high water absorption of the 

MPCMs and the change in the dilution of the cementitious matrix after MPCM addition 

(Pilehvar et al., 2017). Another potential reason is that MPCM particles tend to wrap 

around cement grains and thus, fewer nucleation sites were available for the growth of 

hydration products (Djamai et al., 2019). Furthermore, the increase in τ was greatly 

correlated to the delay in the setting behavior and mechanical strength development of the 

cementitious matrix, which is compliant with previous findings in the literature (Fernandes 

et al., 2014; Padala et al., 2021; Sharifi & Sakulich, 2015). 

The hydration time parameter at different temperatures was used to calculate the apparent 

activation energy of the cementitious systems as listed in Table 6-5. Accordingly, the 

inclusion of MPCMs into the cementitious matrix led to considerable reduction in the 

apparent activation energy, especially at higher dosages of MPCMs. It is notable that the 

apparent activation energy was calculated based on the relative change in the cement 

hydration rate at various temperatures. Hence, this reduction in 𝐸𝑎 indicates less sensitivity 

of the hydration of MPCM-integrated cementitious systems to temperature. One probable 

reason for this behavior is the latent heat capacity and temperature regulation ability of 

MPCM particles. Moreover, the incorporation of MPCMs diminished the nucleation sites 

for precipitation and growth of hydration products. This probably lessened the nucleation 

and growth mechanism in the hydration process at early ages, and thus reduced the apparent 

activation energy (Jayapalan et al., 2014). The reduction in 𝐸𝑎 implies that the curing 

temperature had less effect on the mechanical strength gain of the concrete incorporating 

MPCM inclusions. For instance, the higher curing temperatures did not bring about faster 

setting and strength development in MPCM-integrated concrete compared to plain 

concrete. This results in less thermal stress or shrinkage of MPCM-integrated mixtures, 

which is in great agreement with hypothesis postulated in the open literature (Fernandes et 

al., 2014; Šavija & Schlangen, 2016). 
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Figure 6-11 depicts the change in the apparent activation energy with the increase in 

MPCM dosage. It can be observed that the change in 𝐸𝑎 was insignificant at very low 

dosages of MPCM. However, higher levels of MPCM inclusions caused significant 

reduction in the apparent activation energy. This is expected since the negative impacts of 

MPCMs on the cement paste, such as the change in the dilution of cement in the matrix, 

reduction in the nucleation sites, and hindering the contact of water with the cement grains, 

are aggravated with the increase in MPCM dosage. In Fig. 6-12, the 𝐸𝑎 values calculated 

based on DNN2 predictions were compared to those obtained from the analysis of the 

experimental measurements (see Chapter 5). It is evidenced that the predictions from the 

model were very close to the corresponding experimental values with an error in the range 

of 0.30% to 5.52%, indicating excellent prediction accuracy. 
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Figure 6-10: Heat evolution curves for various cement systems incorporating En28 (left) 

and En35 (right) obtained from DNN2 model. 

Table 6-3: Hydration parameters for cement-based systems incorporating En28 

Mix T (°C) 
Modified ASTM C1074 

Mix T (°C) 
Modified ASTM C1074 

𝜶𝒖 𝜷 𝝉 (h) 𝑹𝟐 𝜶𝒖 𝜷 𝝉 (h) 𝑹𝟐 

P0 

15 

0.79 0.86 

24.93 0.99 

0.99 

0.99 

0.99 

0.97 

P15En28 

15 

0.61 2.19 

54.38 0.94 

23 17.98 23 37.24 0.99 

30 10.70 30 21.98 0.99 

35 8.54 35 22.04 0.98 

40 6.09 40 17.19 0.95 

P2.5En28 

15 

0.75 1.02 

25.69 0.99 

0.99 

0.99 

0.99 

0.97 

P17.5En28 

15 

0.59 2.29 

59.87 0.94 

23 19.22 23 45.71 0.99 

30 11.31 30 26.36 0.99 

35 9.51 35 27.46 0.98 

40 6.82 40 20.19 0.94 

P5En28 

15 

0.72 1.20 

29.32 0.99 

0.99 

0.99 

0.99 

0.96 

P20En28 

15 

0.57 2.54 

65.73 0.94 

23 21.19 23 53.3 0.98 

30 12.03 30 32.19 0.99 

35 10.83 35 33.81 0.99 

40 8.03 40 23.12 0.94 

P7.5En28 

15 

0.69 1.39 

36.36 0.98 

0.99 

0.99 

0.98 

0.95 

P22.5En28 

15 

0.56 2.74 

69.82 0.94 

23 23.20 23 56.45 0.97 

30 13.17 30 38.20 0.99 

35 12.24 35 41.21 0.98 

40 9.34 40 25.14 0.93 
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P10En28 

15 

0.65 1.64 

43.60 0.96 

0.99 

0.99 

0.97 

0.94 

P25En28 

15 

0.56 2.77 

75.21 0.94 

23 25.39 23 60.06 0.96 

30 14.98 30 44.19 0.99 

35 14.46 35 50.36 0.96 

40 11.15 40 27.57 0.93 

P12.5En28 

15 

0.63 1.89 

49.11 0.96 

0.99 

0.99 

0.97 

0.95 

P27.5En28 

15 

0.56 2.85 

80.53 0.90 

23 29.80 23 65.38 0.95 

30 18.01 30 50.29 0.98 

35 17.60 35 54.20 0.95 

40 13.77 40 33.02 0.93 

 

Table 6-4: Hydration parameters for cement pastes incorporating En35 

Mix T (°C) 
Modified ASTM C1074 

Mix T (°C) 
Modified ASTM C1074 

𝜶𝒖 𝜷 𝝉 (h) 𝑹𝟐 𝜶𝒖 𝜷 𝝉 (h) 𝑹𝟐 

P0 

15 

0.79 0.86 

25.09 0.99 

0.99 

0.99 

0.99 

0.97 

P15En28 

15 

0.61 2.21 

54.69 0.96 

23 16.78 23 41.80 0.99 

30 10.13 30 25.95 0.99 

35 8.04 35 18.89 0.97 

40 6.19 40 17.53 0.95 

P2.5En28 

15 

0.75 1.01 

26.40 0.99 

0.99 

0.99 

0.99 

0.98 

P17.5En28 

15 

0.59 2.51 

61.09 0.94 

23 17.56 23 52.62 0.99 

30 11.07 30 30.61 0.99 

35 8.47 35 23.19 0.96 

40 6.64 40 21.49 0.94 

P5En28 

15 

0.73 1.12 

29.98 0.99 

0.99 

0.99 

0.99 

0.98 

P20En28 

15 

0.60 2.59 

67.37 0.92 

23 19.54 23 63.10 0.98 

30 13.39 30 36.95 0.99 

35 9.39 35 27.90 0.97 

40 7.96 40 25.57 0.96 

P7.5En28 

15 

0.7 1.33 

34.26 0.98 

0.99 

0.99 

0.98 

0.97 

P22.5En28 

15 

0.62 2.53 

73.52 0.94 

23 21.15 23 68.62 0.96 

30 15.36 30 43.70 0.99 

35 10.52 35 33.37 0.98 

40 9.26 40 28.72 0.97 

P10En28 

15 

0.67 1.60 

41.55 0.96 

0.99 

0.99 

0.97 

0.96 

P25En28 

15 

0.60 2.73 

77.60 0.93 

23 26.09 23 72.69 0.94 

30 19.99 30 42.43 0.98 

35 13.93 35 38.92 0.98 

40 11.05 40 31.09 0.97 

P12.5En28 

15 

0.64 1.89 

49.16 0.97 

0.99 

0.99 

0.97 

0.95 

P27.5En28 

15 

0.62 2.72 

83.30 0.87 

23 33.12 23 79.7 0.89 

30 23.38 30 58.35 0.97 

35 16.44 35 46.59 0.98 

40 14.63 40 37.35 0.98 
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Figure 6-11: Variation in the apparent activation energy with MPCM addition of En28. 

Table 6-5: Apparent activation energy of simulated systems 

Mixture 
Apparent activation energy (kJ/mol) 

Mixture 
Apparent activation energy (kJ/mol) 

En28 En35 En28 En35 

P0 42.809 42.809 P15 34.83 37.150 

P2.5 40.342 42.202 P17.5 32.767 35.055 

P5 39.555 40.933 P20 30.727 32.927 

P7.5 38.876 40.227 P22.5 28.135 30.882 

P10 38.211 39.434 P25 25.829 28.916 

P12.5 37.977 37.819 P27.5 23.347 25.071 

 

Figure 6-12: Comparison of apparent activation energy obtained from experimental 

measurements and DNN2 predictions. 
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6.5 Concluding remarks 

This study proposed a deep learning paradigm to calculate the apparent activation energy 

of cement-based systems incorporating MPCMs using isothermal calorimetry data. Two 

different data partitioning schemes were adopted to better evaluate the generalization 

ability of the models in simulating the heat evolution of cement-based systems thus far 

unseen by the models. It was found that alternative data splitting methods can better reveal 

the generalization ability of the developed models. Furthermore, results demonstrated that 

deep learning achieved promising performance in the prediction of the cumulative heat 

using a large experimental dataset. The predictions were further utilized to calculate the 

apparent activation energy of diverse cement-based systems with MPCM inclusions. It was 

evidenced that the inclusion of MPCMs reduced the apparent activation energy which is 

indicative of lower sensitivity of the hydration reaction to temperature. The obtained results 

can help better estimate the temperature-related stresses and strains in hydrating concretes 

with MPCM inclusion. Furthermore, the developed deep learning framework can be 

coupled with existing compressive strength prediction models to better investigate the 

strength development of MPCM-integrated cementitious composites. 
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Chapter 7  

7 Multiphysics Study on Cement-Based Composites 
Incorporating Green Biobased Shape-stabilized Phase 
Change Materials for Thermal Energy Storage1 

Two types of eco-friendly shape-stabilized phase change materials (SSPCMs) were 

developed in this study. Biobased PCMs were impregnated into the pore structure of 

recycled expanded glass granules and coated with silica fume particles using a 4-step 

vacuum impregnation method. The morphological and thermal properties of the fabricated 

SSPCMs along with their effects on the hydration, microstructural, mechanical, and 

thermal properties of cement-based composites were characterized through a set of 

multiphysics tests including isothermal calorimetry, compressive and tensile strength, 

capillary water absorption, 3D image analysis of µ-CT scans, and thermoregulating tests. 

Leak-free impregnation of PCMs into the pore structure of the EG aggregates was 

achieved, while attaining desirable latent heat capacity. Favorable melting/freezing 

behavior for application in thermal energy storage (TES) of cement-based building 

components was demonstrated. The developed SSPCMs can provide considerable TES 

capacity in cement based materials, which can moderate indoor temperature fluctuations, 

thus yielding substantial HVAC energy savings. 

7.1 Introduction 

Latent heat thermal energy storage (LHTES) has emerged in recent years as an expedient 

technology for efficient energy management and utilization. Buildings are responsible for 

nearly 40% of the global energy consumption, along with one-third of anthropogenic 

carbon emissions (Pan et al., 2018). A significant share of the energy consumption in 

buildings is related to electricity usage, which has dramatically increased over the past 

decades due to escalating climate change, economic developments, and rising living 

standards (Palacios et al., 2020). According to several reports in the literature, 40% of the 

 

1
 A version of this chapter is submitted to “Cement and Concrete Research” journal, 2022 
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total energy consumption in buildings is used for cooling, heating, and air conditioning of 

indoor spaces. Integrating LHTES systems in buildings can enhance energy efficiency, 

maintain indoor thermal comfort, thus reducing the energy demand for cooling/heating 

spaces (Hassan et al., 2022). 

Phase change materials (PCMs) can be used to develop LHTES-integrated building 

components. Solid-liquid PCMs with melting/freezing temperatures near room 

temperature have been used as latent heat storage integrant in building materials. Gypsum 

and cement-based composites are the most prevalent construction materials for 

incorporating PCMs (Baetens et al., 2010; Zhang et al., 2004). Numerous research studies 

in the open literature reported that the inclusion of PCMs in building elements, such as 

walls and envelopes, improves thermal performance and narrows indoor temperature 

fluctuations (De Gracia & Cabeza, 2015). For instance, Qu et al. (Qu et al., 2021) found 

that integrating PCMs into building envelopes can effectively reduce the indoor 

temperature fluctuations and bring about 4.8%-34.8% energy savings depending on the 

applied climatic condition and the thermophysical properties of the PCM.   

The risk of leakage of PCMs after direct incorporation in building materials is problematic 

in practical applications. Therefore, PCMs need to be properly encapsulated to prevent 

leakage in the host material during phase transitions. Various encapsulation techniques 

have been utilized to safely integrate PCMs into building components, including macro-

encapsulation, micro-encapsulation, shape-stabilization, and lightweight aggregate (LWA) 

impregnation as explained in Chapter 2. Using the micro-encapsulation technique, PCMs 

are typically encapsulated in a polymeric shell (Drissi et al., 2019). Microencapsulated 

PCMs (MPCMs) have been widely used in cement-based composites. Despite the 

improvement in the thermal performance of cement mortars and concretes (Pomianowski 

et al., 2014), MPCMs have been found to be detrimental to mechanical properties. 

According to previous studies, this adverse effect is attributed to several mechanisms 

related primarily to the chemical and mechanical incompatibility of MPCMs with the 

cementitious matrix (Djamai et al., 2019; Drissi et al., 2019; Marani & Nehdi, 2019).  



210 

 

Using an alternative technique, PCMs can be embedded into inorganic porous materials to 

form shape-stabilized PCMs (SSPCMs) (S. Zhang et al., 2021). SSPCMs have been 

developed for various applications with a broad range of melting/freezing temperatures and 

enthalpies (Farnam et al., 2017). Recent findings demonstrated that the fabrication of 

SSPCMs with desired morphology and enhanced functionality can be a promising and 

practical solution to manufacture cost-effective LHTES building elements. Yet, concerted 

research is needed to better investigate the effect of SSPCMs on the mechanical and 

microstructural properties of cementitious composites. 

Composite SSPCMs for use in building materials can be fabricated using various porous 

LWAs or powders. The vacuum impregnation technique has proven to be an efficient 

method to incorporate PCMs into the pore structure of the host agent. Memon et al. 

(Memon et al., 2015) reported that the pore structure in LWAs is mostly blocked by air 

bubbles, and thereby using vacuum impregnation can significantly increase the absorption 

capacity of the LWAs. They used a synthetic LWA produced from expanded clay with 

77% porosity and achieved the encapsulation of paraffin at 70 wt.% in LWAs after the 

vacuum impregnation (Memon et al., 2015). Several other studies reported the fabrication 

of leak-free PCM/LWA aggregates using various types of LWAs such as expanded 

vermiculite (Li, 2021), expanded clay-prepared ceramsite (Y. Zhang et al., 2021), pumice 

(Sarı et al., 2020), and expanded perlite (Wi et al., 2020). 

In addition to LWAs, porous powders with large specific areas can be used to impregnate 

PCMs. Expanded graphite (EG) has been extensively deployed to develop SSPCMs owing 

to its high thermal conductivity and good adsorption capacity (He et al., 2016; Ren et al., 

2018). More recently, the development of low-cost SSPCMs using solid waste materials 

has been proposed to further promote environmental protection. Several studies have 

reported using fly ash to encapsulate various types of organic and inorganic PCMs. Qiu et 

al. (Qiu et al., 2020) used alkali treatment modified fly ash to encapsulate lauric acid. They 

achieved a latent heat of 65.7 J/g along with good thermal and chemical stability (Qiu et 

al., 2020). In a similar study, Hekimoglu et al. (Hekimoğlu, Nas, Ouikhalfan, Sarı, 

Kurbetci, et al., 2021) produced fly ash/lauric acid-myritic acid shape-stabilized 

composites with melting and freezing enthalpy of 45.3 and 44.6 J/g, respectively. The 
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thermal regulation test indicated that using this composite can reduce the interior 

temperature of the testing cell by up to 1.90 °C compared to the control cell (Hekimoğlu, 

Nas, Ouikhalfan, Sarı, Kurbetci, et al., 2021). Comparable results were evidenced by Gu 

et al. (Gu et al., 2021) and Wang et al. (Wang et al., 2021). Slag and silica fume (SF) are 

among other materials deployed for encapsulating PCMs (Gencel, Yaras, et al., 2022; 

Hekimoğlu, Nas, Ouikhalfan, Sarı, Tyagi, et al., 2021). Hattan et al. (Hattan et al., 2021) 

embedded polyethylene glycol (PEG) into SF particles using the vacuum impregnation 

technique. With SF:PEG mass ratio of 1.6:1, they achieved a melting and freezing enthalpy 

of 71.55 and 74.14 J/g, respectively. Thermal performance tests demonstrated that 

incorporating the developed SSPCM into cement mortar significantly decreased the 

maximum indoor temperature and moderated temperature fluctuations (Hattan et al., 

2021).  

Developing green SSPCM composites from renewable and inexpensive resources is of 

particular importance. Moreover, multi-scale analyses of the mechanical, microstructural, 

and thermal properties of SSPCM-integrated cementitious composites are necessary for 

practical applications. Hence the present chapter aims at achieving two goals: i) fabrication 

of novel green and leak-free SSPCM composites with desirable morphology and thermal 

properties for developing LHTES-integrated building components; and ii) exploring the 

effects of the fabricated SSPCMs on the hydration, mechanical, microstructural, and 

thermal properties of cement-based mortars. For this purpose, two different biobased 

PCMs, with various melting temperatures, were encapsulated, using a 4-step vacuum 

impregnation technique, in recycled expanded glass (EG) granules as the carrying agent. 

Silica fume (SF) was used to coat the PCM-integrated granules to promote adsorption 

capacity and assure leakage prevention. The morphology, leakage rate, and thermal 

properties of the SSPCMs were characterized using SEM, DSC, and diffusion-oozing circle 

tests. Furthermore, the effects of the partial replacement of sand with SSPCMs on the 

hydration, mechanical, microstructural, and thermal properties of cement-based mortars 

were investigated using isothermal calorimetry, compressive and tensile strengths, 

capillary water absorption, micro-computed tomography (µ-CT), and thermoregulating 

tests. 
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7.2 Materials and methods 

7.2.1 Materials 

Two types of green biobased SSPCM composites with different melting temperatures and 

enthalpies were fabricated in this study. For this purpose, environmentally friendly EG 

particles were used as the carrying agent. EG particles were produced by blending recycled 

glass flour with a silicate binder and an expanding agent in a granulating pelletizer. EG 

granules having 1-2 mm in pore size were used as the carrying agent for SSPCM 

composites. Two types of biobased PCMs produced by PureTemp (USA) were used as the 

latent heat component, referred to as PCM 23 and PCM 28. PureTemp PCMs are non-toxic 

and sustainable chemicals derived from renewable sources such as animal fat and plant oil. 

Table 7-1 lists the thermophysical properties of the utilized PCMs. Silica fume with a 

specific gravity of 2.58 kg/m3 was used for coating EG/PCM composite particles. Ordinary 

portland cement (OPC) compliant with ASTM C150 guidelines and natural river sand were 

used for mortar preparation. To adjust the workability of mortars, a polycarboxylate-based 

high-range water-reducing admixture (HRWRA) was utilized. 

Table 7-1: Thermophysical properties of PCM 23 and PCM 28 

PCM 
Melting temperature 

(°C) 

Melting enthalpy 

(J/g) 

Density 

(kg/m3) 

Thermal conductivity 

(W/mK) 

Liquid Solid Liquid Solid 

PCM 23 23 201 830 910 0.15 0.25 

PCM 28 28 190 860 950 0.15 0.25 

7.2.2 SSPCM Fabrication 

Vacuum impregnation has been widely utilized to fabricate leak-free SSPCMs in previous 

studies (He et al., 2016; Hekimoglu & Sarı, 2021). Composite SSPCMs were fabricated 

using a 4-step vacuum impregnation technique as depicted in Fig. 7-1. Accordingly, EG 

particles were dried in a ventilated oven at 70 °C for 24 h. Afterward, a specified amount 

of EG was vacuumed in a filtering flask at 60 kPa for 2 h to evacuate the air trapped in the 

pore structure of EG particles. Subsequently, melted PCM was gradually added to 

impregnate the pores of EG particles by vacuum force. At this stage, the temperature of the 

system was kept at 50 °C using a temperature-controlled hot plate to maintain the PCM at 

the molten state. The vacuum impregnation was continued for 2 h after the addition of 
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PCM. In the last step, the vacuum process was stopped, and the air was allowed to enter to 

facilitate the impregnation of liquid PCMs into the pores of EG particles. Meanwhile, SF 

was gradually added to the EG/PCM composite and stirred for 30 minutes to uniformly 

coat all PCM-impregnated EG particles. The coated particles were ultimately cooled down, 

allowing the PCM to solidify inside the EG particles. 

 

Figure 7-1: Schematic diagram of 4-step vacuum impregnation technique for fabrication 

of SSPCMs.  

The optimum mass ratio of the EG/PCM/SF was experimentally determined for each type 

of PCM after several trials, followed by leakage tests to ensure the efficient fabrication of 

leak-free SSPCM particles as explained below. Accordingly, the final mass ratio of 

EG:PCM:SF was found as 1:0.8:0.4 in the case of PCM 23 and 1:0.9:0.4 in the case of 

PCM 28. The developed SSPCMs, encapsulating PCM 23 and PCM 28, are referred to as 

S23 and S28, respectively. Figure 7-2 shows the appearance of EG, PCM, and SSPCM 

particles during the fabrication process. 
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Figure 7-2: Physical appearance of PCMs, EG, and SSPCM particles. 

7.2.3 SSPCM characterization 

7.2.3.1 Leakage test: Diffusion-oozing circle test 

The stability against leakage of SSPCMs was assessed using the diffusion-oozing circle 

test based on the recommendations given in (Ma et al., 2013; Y. Zhang et al., 2021). 

Accordingly, 5 grams of SSPCMs were dispersed in circles of 80 mm drawn on qualitative 

filter papers. The filter paper was then placed in a ventilated oven at 35 and 70 °C for 2 

hours. The seepage of SSPCMs was examined by visual inspection of the leakage trace on 

the filter papers along with the weight loss of SSPCMs after heating. The leakage rate of 

SSPCMs was calculated using the following equation: 

𝑅𝐿 =
𝐴−𝐵

𝐴
× 100%                     Eq. 7-1 

where 𝑅𝐿 is the leakage rate (%), A is the mass of SSPCM before heating (g), and B is the 

mass of SSPCM after heating for 2 h (g) (Ding et al., 2020; Qu et al., 2019). 
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7.2.3.2 Scanning Electron Microscopy 

The morphology and microstructure of EG and SSPCM particles were observed using a 

scanning electron microscope (Hitachi TM 3030Plus). Images were captured with an 

operating current of 20 μA and a voltage of 15 kV at various magnifications.  

7.2.3.3 Differential Scanning Calorimetry (DSC) 

The melting temperatures and enthalpies of the pristine PCMs and SSPCM composites 

were measured using a differential scanning calorimetry (DSC instruments, METTLER 

TOLEDO). The DSC test was conducted at a heating/cooling rate of 5 °C/min over the 

temperature range of -10 to 60 °C.  

7.2.4 Characterization of SSPCM-integrated mortar 

7.2.4.1 Isothermal calorimetry  

The hydration kinetics of cement pastes incorporating various dosages of SSPCMs were 

analyzed using an isothermal calorimetry test. A water-to-cement (w/c) ratio of 0.5 was 

selected and SSPCMs were added at dosages of 0, 10, 20, 30, and 40 % by cement weight. 

The heat of hydration was measured in an eight-channel microcalorimeter (TAM air, TA 

Instruments) at 20 ± 0.02 °C. Table 7-2 designates the cement/SSPCM pastes used for 

isothermal calorimetry tests. 

7.2.4.2 Mechanical properties 

To investigate the effect of fabricated SSPCMs on the thermomechanical properties of 

cement mortars, S23 and S28 particles were used as a partial replacement for sand. 

Accordingly, three groups of mortars were designed including 4 mixtures with SSPCM 

inclusion, two control mixtures with pure EG particles, and one control mixture with no 

SSPCM or EG content. Table 7-3 presents the mixture design of mortar specimens cast for 

mechanical and thermal experiments. High SSPCM dosages equivalent to 20% and 40% 

of cement weight were considered to evaluate the correlation between high TES capacity 

and mechanical strength of the mortars. The mortar specimens were demolded 24 h after 

casting and kept in a moist room at 20 ± 2 °C until the testing age. The compressive strength 
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was tested using 50 mm cubes at 1, 3, 7, 14, 28, and 56 days, and splitting tensile tests were 

conducted using 5×10 mm cylinders at 7, 14, and 28 days. 

Table 7-2: Cement paste samples used for isothermal calorimetry 

Sample SSPCM dosage (%) PCM type Sample SSPCM dosage (%) PCM Type 

S23-P0 0 - S28-P0 0 - 

S23-P10 10 PCM 23 S28-P10 10 PCM 28 

S23-P20 20 PCM 23 S28-P20 20 PCM 28 

S23-P30 30 PCM 23 S28-P30 30 PCM 28 

S23-P40 40 PCM 23 S28-P40 40 PCM 28 

 

Table 7-3: Mixture design of mortars prepared for thermomechanical tests 

Mixture Cement Water Sand SSPCM/EG Superplasticizer PCM Type 

C 510 229.5 1535 0 15 - 

EG20 510 229.5 1127 102 15 - 

EG40 510 229.5 719 204 15 - 

S23-P20 510 229.5 1127 102 15 PCM 23 

S23-P40 510 229.5 719 204 15 PCM 23 

S28-P20 510 229.5 1127 102 15 PCM 28 

S28-P40 510 229.5 719 204 15 PCM 28 

7.2.4.3 Capillary water absorption 

The resistance of mortars to water penetration was investigated using the water absorption 

test based on ASTM C1585 guidelines. Disk-shaped specimens having a diameter of 100 

mm and a height of 50 mm were used for testing. Before the test, all specimens were dried 

in a ventilated oven at 60 °C until the mass change was less than 0.1%. The curved face of 

the disks was sealed with silicon to ensure that water can only transport through the circular 

faces. The specimens were placed in a container with 5-mm deep water. The mass of the 

specimens was recorded at regular time intervals specified in ASTM C1585 to measure the 

initial and secondary capillary water absorption. The absorption (I) of specimens was 

calculated using Eq. 7-2 below: 

𝐼 =
𝑚𝑡

𝑎×𝑑
           Eq. 7-2 

where 𝑚𝑡 is the mass change in the specimen at time t (g), a is the area of specimen in 

contact with water (mm2), and d is the density of water (g/mm3). The slope of the I-√𝑡 
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curve, known as sorptivity coefficient, was employed to measure the absorption capacity 

of samples. 

7.2.4.4 Micro-computed tomography (µ-CT) scan 

The dispersion of the EG and SSPCM particles in the cement mortar matrix along with 

their effect on the pore structure of the mortar samples were examined using X-ray micro-

computed tomography. A Nikon XT-H-225-ST µCT scanner was employed to scan the 56-

day cured mortar specimens listed in Table 7-3. High-resolution 2D images of the X-ray 

projections were used to reconstruct the exterior and interior structure of the scanned 

samples. The resolution of the 3D images was set to 60 µm voxels. The scanning was 

carried out with a voltage of 225 kV, a current of 120 µA, and a power of 27 Watts. The 

image segmentation and analysis were performed using Dragonfly 2021.1 software, Object 

Research Systems (ORS) Inc, Montreal, Canada (available at 

http://www.theobjects.com/dragonfly).  

7.2.4.5 Thermoregulating test 

The effect of SSPCMs on the TES of cement mortars was studied using a thermoregulating 

test performed in a walk-in environmental chamber, similar to the test procedure proposed 

in the literature (Hekimoğlu, Nas, Ouikhalfan, Sarı, Tyagi, et al., 2021; Liu, Lu, et al., 

2019; Marani & Madhkhan, 2018, 2021). For this purpose, specimens with dimensions of 

30×15×5 cm were placed on top of the extruded polystyrene (XPS) insulation boxes with 

wall thickness and thermal conductivity of 6 cm and 0.05 W/mK, respectively, as shown 

in Fig. 7-3. A real-time wireless temperature monitoring system provided by Exact 

Technologies Corporation, Canada, was utilized to record the temperature history of the 

inner-side surface of the specimens. Two cyclic test scenarios were designed to evaluate 

the temperature regulating performance of the SSPCM-incorporated specimens. In the first 

scenario, referred to as a slow thermoregulating test, a temperature profile similar to the 

hourly ambient temperature of a hot summer day was applied to the outer side surface of 

the sample for 24 h. In the second approach, a cyclic temperature profile was exerted on 

specimens. Accordingly, the specimens were kept at the isothermal temperature of 7.5 ± 

0.1°C until their inner-side temperature remained constant. Subsequently, the applied 



218 

 

temperature by the environmental chamber was rapidly increased to and then kept at 42.5 

± 0.1 °C until the temperature of the inner-side surface of all specimens become unchanged. 

Afterward, the applied temperature was cooled down to 7.5 ± 0.1 °C. This cyclic test 

scenario is referred to as the rapid thermoregulating test. The temperature history of all 

specimens was recorded and analyzed to apprehend the effect of SSPCM addition on the 

thermal performance of mortar specimens. 

 

Figure 7-3: Thermoregulating test setup for evaluation of the TES capacity of mortar 

specimens. 

7.3 Results and discussion 

7.3.1 Morphology and leakage analysis of SSPCMs 

The form stability and leakage rate of TES systems are of particularly great importance in 

practical applications. In this study, the vacuum impregnation technique was deployed to 

maximize the absorption capacity of EG particles. Figure 7-4 shows the SEM images of 

the surface of EG and the developed SSPCM particles with different magnifications. EG 

particles have rounded morphology with various macro- and micropores on the surface. 

The semi-spherical morphology and porous structure of EG aggregates enabled high PCM 

absorption. Vacuum impregnation further helped evacuate air bubbles from micropores of 
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the EG particles and enhanced the absorption capacity. Figures 7-4 (a) and (b) depict the 

morphology of S23 and S28 composites coated with SF. It can be observed that major pores 

of EG particles were impregnated with PCMs and sealed with SF. Coating PCM-

impregnated EG particles with silica fume created a sealing layer on the surface of SSPCM 

particles to absorb excessive PCM leaked from the macropores, as shown in Fig. 7-4. 

 

Figure 7-4: SEM images of the surface of a) EG; b) S23; and c) S28 particles. 

To better evaluate the leakage behavior of the fabricated SSPCMs, the diffusion-oozing 

circle test was performed on triplicate samples of SSPCM composites before and after 

coating with SF. Figure 7-5 illustrates the leakage trace of SSPCMs after being heated at 

35 and 70 °C for two hours. Uncoated SSPCM particles exhibited significant leakage, 

especially at higher temperatures. In contrast, coating SSPCM particles with SF remarkably 

prevented the leakage of MPCMs upon melting as measured in Fig. 7-5 (b). No noticeable 

leakage from coated S23 and S28 particles was detected after being heated at 35 °C. The 
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leakage rate for both S23 and S28 samples was found to be approximately 1% at 35 °C and 

2% at 70 °C. This low leakage rate signifies the excellent encapsulation of PCMs inside 

the pore structure of EG particles coated with SF. 

 

Figure 7-5: a) Diffusion-oozing circle test of SSPCM particles; b) comparison of the 

leakage rate of S23 and S28; and c) comparison of theoretical and experimental latent 

heat of S23 and S28. 

7.3.2 Thermal properties of SSPCM  

The phase change temperatures and enthalpies of pristine PCMs and SSPCMs were 

measured via the DSC test. Figure 7-6 depicts the heating/cooling curves of PCM 23, PCM 

28, S23, and S28 samples. Endothermic and exothermic peaks associated with the latent 

heat capacity of PCMs were detected in all specimens. The phase transition behavior of 

pure PCMs and composite SSPCMs are quantified in Table 7-4. It can be observed that 

the phase transition of PCM 23 started at an onset melting temperature (𝑇𝑚𝑜) of 18.99 °C 

followed by the peak melting temperature (𝑇𝑚𝑝) of 24.04 °C and finished with an endset 

melting temperature (𝑇𝑚𝑒) of 30.38 °C. In the case of S23, the melting process was 

observed in a comparatively similar temperature range with a slightly higher peak melting 

temperature, i.e., 25.57 °C. The solidification process of the PCM 23 occurred at a lower 
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temperature range, compared to the melting stage, with the onset and peak freezing 

temperatures of 16.69 and 14.23 °C, respectively. S23 indicated a relatively higher freezing 

temperature with the onset and peak freezing temperatures of 17.41 °C and 16.49 °C. On 

the other hand, PCM 28 exhibited a narrower temperature range during the melting and 

solidification stages compared to PCM 23. The melting process of PCM 28 and S28 started 

at an onset melting temperature of 28.59 and 27.28 °C, respectively, followed by a peak 

melting temperature of 31.13 and 32.68 °C. Nevertheless, S28 showed a slightly different 

freezing point compared to that of PCM 28. Accordingly, the solidification of PCM 28 

started at 22.68 °C and ended at 17.31 °C with a peak freezing temperature of 21.24, while 

the freezing process of S28 started at 22.32 °C, with peak and endset freezing temperatures 

of 19.04 and 13.08 °C, respectively. The lower freezing point of S28 could be related to 

the confinement effect of SF that affected the PCM crystallinity (Hekimoğlu, Nas, 

Ouikhalfan, Sarı, Tyagi, et al., 2021; Kang et al., 2015). 

Figure 7-5 (c) compares the experimental latent heat of SSPCM composites obtained from 

DSC analysis with the theoretical latent heat capacity calculated based on the mass fraction 

of PCMs in the SSPCM composites. The experimental values were similar to the 

theoretical values, indicating successful encapsulation of the PCMs in the pore structure of 

EG and SF particles. Ultimately, melting enthalpies of 87.64 and 96.34 J/g were achieved 

for the S23 and S28 composites, respectively. Table 7-5 compares the heat storage capacity 

of the developed SSPCMs with some similar studies in the literature. It could be realized 

that S23 and S28 have favorable heat storage properties for applications in buildings to 

provide TES capacity as will be discussed in subsequent sections. 

Table 7-4: Melting/freezing temperatures and enthalpies of PCMs and SSPCMs 

Sample 
Melting Freezing 

𝑻𝒎𝒐 𝑻𝒎𝒑 𝑻𝒎𝒆 ∆𝑯𝒎 𝑻𝒇𝒐 𝑻𝒇𝒑 𝑻𝒇𝒆 ∆𝑯𝒄 

PCM 23 18.99 24.04 30.38 235.77 16.69 14.23 7.86 246.87 

S23 19.78 25.57 30.46 87.64 17.41 16.49 9.52 84.52 

PCM 28 28.59 31.13 34.39 244.51 22.68 21.24 17.31 247.20 

S28 27.28 32.68 37.02 96.34 22.32 19.04 13.08 102.51 
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Table 7-5: Thermal properties of some SSPCM systems proposed in the literature 

Composite 
Melting 

temperature (°C) 

Freezing 

temperature (°C) 

Melting 

enthalpy (J/g) 
Ref. 

Fly ash/LA-MA 31.1 31.5 45.3 

(Hekimoğlu, 

Nas, et al., 
2021) 

Diatomite/paraffin 22.3 24.4 63.9 
(Li et al., 

2014) 

Fly ash/LA 45.39 40.82 49.71 
(Gu et al., 

2021) 

Hydrous salts/fly ash 25.3 19.7 106.9 
(Liu, Peng, 

et al., 2019) 

Fly ash/LA 40.8 32.7 65.7 
(Qiu et al., 

2020) 

SF/biobased PCM 30.87 14.13 103 
(Kang et 

al., 2015) 

Slag/CA 28 26.5 55.5 

(Gencel, 

Yaras, et 

al., 2022 

EG/biobased PCM/SF 25.57 16.49 87.64 
Current 

study 

EG/biobased PCM/SF 32.68 19.04 96.34 
Current 

study 

 

Figure 7-6: DSC curves of PCM 23 and S23 (left), and PCM 28 and S28 (right). 

7.3.3 Isothermal calorimetry  

The isothermal calorimetry curves of cement pastes incorporating S23 and S28 particles at 

20 °C are illustrated in Fig. 7-7. It can be observed that the incorporation of SSPCM 

particles slightly affected the rate of hydration and the cumulative released heat. Two high-

intensity peaks related to the hydration of C3S and C3A were observed for the plain cement 
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paste sample. With the addition of SSPCMs, the first peak of hydration slightly decreased 

and a considerable delay in the second peak was noted. This delay in the peak of the heat 

flow could be related to the latent heat capacity of the SSPCMs. Nonetheless, the effect of 

SSPCMs on the hydration rate was more significant in the decelerating segment. In this 

stage, a rapid decrease in the heat flow rate of the plain cement paste was observed, while 

the SSPCM addition slowed down the deceleration of the hydration rate. These changes 

could be attributed to the latent heat capacity of the SSPCM particles, which moderated 

the released heat during the hydration of cement particles. Comparable effects of polymeric 

microencapsulated PCMs (MPCMs) on cement hydration have been reported in the 

literature (Jayalath et al., 2016; Pilehvar et al., 2017). It is to be noted that the addition of 

MPCMs to cement paste typically prolongs the dormant period, which is related to the high 

water absorption of MPCMs along with their tendency to wrap around cement particles as 

observed in Chapter 5. This effect significantly aggravates with the increase in the MPCM 

dosage (Jayalath et al., 2016). Nevertheless, the incorporation of SSPCMs indicated no 

considerable change in the dormant period of the cement hydration, demonstrating better 

compatibility with the cementitious matrix in comparison to MPCMs. 

 

Figure 7-7: Isothermal calorimetry curves of cement pastes in presence of S23 (left) and 

S28 (right). 

7.3.4 Mechanical properties 

Although PCMs provide TES capacity in construction materials, such as cement-based 

composites, they can compromise mechanical properties.  The compressive and splitting 
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tensile strength tests were performed to study the effect of the developed SSPCM additions 

on the mechanical strength of the mortar mixtures listed in Table 7-3. Figures 7-8 (a) and 

(b) illustrate the strength development of mortar specimens with pure EG or SSPCM 

inclusion equivalent to 20 and 40 wt.% of the cement content, respectively. It could be 

observed that the compressive strength significantly decreased upon EG and SSPCM 

addition. Several mechanisms could be related to the reduction of the compressive strength. 

Firstly, nonstructural EG particles have considerably lower stiffness compared to natural 

river sand (Balapour et al., 2021). Therefore, partial replacement of sand with SSPCM 

particles led to a drastic reduction of compressive strength. With the increase in the EG or 

SSPCM particles dosage, i.e., from 20 to 40 wt.%, the reduction in compressive strength 

became more prominent, as depicted in Fig. 7-8 (c). The low strength of the lightweight 

EG or SSPCM particles dominated the strength development of the mortar, especially at 

later ages. 

Another probable reason for the strength reduction is the increased porosity of the 

cementitious matrix after the addition of the EG and SSPCM particles. As shown in optical 

microscope images in Fig. 7-9, several macropores were evident in various locations of the 

broken surface of the samples incorporating EG and SSPCM particles. The blue arrays 

indicate the large pores in the samples and the red arrows show the EG or SSPCM particles. 

It was observed that with an increase in the dosage of SSPCM or EG particles, the size and 

number of macropores increased, leading to reduced compressive strength. The increase in 

the porosity could be related to the morphology (particle shape) and size distribution of the 

EG and SSPCM particles and thereby, a change in the packing density of the mortar 

(Gonçalves et al., 2007). Furthermore, the smooth and rounded surfaces of the EG and 

SSPCM particles led to a weaker connection at the interfacial transition zone (ITZ) with 

the cement paste. The porosity of each sample can be better analyzed using the μ-CT scan 

images in Section 7.3.6. 

It is noted that mixtures with SSPCM inclusion attained higher compressive strength 

compared to that of the corresponding mixtures with EG inclusion. This is probably related 

to the higher density of SSPCMs compared to EG particles, along with the stronger bond 

of SSPCMs with the surrounding cementitious matrix. Owing to the higher density of 
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SSPCM particles, a smaller volume of fine aggregates was replaced with SSPCMs 

compared to EG aggregates, which led to slightly higher compressive strength. The tensile 

strength also indicated a similar trend to the compressive strength where the addition of 

SSPCM and EG particles resulted in lower strengths. In general, cement mortars containing 

SSPMCs indicated a relatively less drastic decrease in the compressive strength compared 

to mortars with MPCM inclusion reported in the literature (Djamai et al., 2020).  

 

Figure 7-8: Mechanical strength of mortar specimens incorporating EG and SSPCM: a) 

and b) compressive strength; c) reduction percentage in compressive strength; and d) 

tensile strength. 
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Figure 7-9: Optical and binary images of broken surfaces of specimens. Pores are shown 

with blue arrays, and EG and SSPCM particles are shown with red arrays. 

7.3.5  Capillary water absorption 

The capillary water absorption of triplicate mortar specimens after 56 days is depicted in 

Fig. 7-10. The partial replacement of sand with EG and SSPCM particles increased the 

initial and secondary capillary water absorptions. However, it can be observed that 

specimens incorporating pure EG particles demonstrated significantly higher water 

absorption and sorptivity coefficient compared to those incorporating SSPCMs. For 

instance, the initial sorptivity coefficient of the EG20 sample was 0.005, whereas it was 

0.003 and 0.0037 for S23-P20 and S28-P20 specimens, respectively. This could be an 

indication of the PCMs filling the pore structure of EG particles and thus, reducing the 

water absorption. 
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Figure 7-10: Capillary water absorption (top) and sorptivity coefficient (bottom) of 

mortars incorporating EG and SSPCM particles. 

Another interesting observation is that mixtures incorporating S23 exhibited insignificantly 

higher water absorption and sorptivity coefficient compared to those with S23 inclusion. 

This might be due to the difference in the porosity induced by the S23 and S28 particles in 

the surrounding cementitious matrix, which conforms with the results obtained from the 

compressive strength test. As depicted in Figs. 7-2 and 4, S23 and S28 particles had 

different morphology that could further affect the precipitation of hydration products, 

microstructural development, and the bond strength between particles and the surrounding 

mortar at the ITZ. More in-depth investigations on the porosity of the mixtures are provided 

in the subsequent section. 
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7.3.6 Micro-computed tomography scan (μCT scan) 

The effect of EG and SSPCM addition on the porosity of the cement mortars listed in Table 

7-3 was quantified using image analysis of 3D µCT scans. Several remarkable observations 

can emerge from the pore structure analysis. The segmentation of the scanned samples 

indicated that the partial replacement of sand with EG or SSPCM particles increased the 

porosity of the mortar specimens. Accordingly, the porosity of sample C, i.e., with no EG 

or SSPCM content, was 4.71%, whereas it increased to 11.48% and 22.40% in the EG20 

and EG40 samples, respectively. This demonstrates that the addition of pure EG particles 

led to a drastic increase in the porosity of the mortar samples. On the other hand, the 

porosity of the 23S-P20 and 23S-P40 samples was calculated as 8.07% and 15.68%, 

respectively. Therefore, it could be concluded that the addition of SSPCM particles resulted 

in an increase in the porosity of mortars to a smaller extent compared to EG aggregates. 

The porosity of S28-P20 and S28-P40 was also found to be 9% and 16.5%, respectively. 

Figure 7-11 showcases the reconstructed 3D images and segmentation of the pore structure 

of the control specimen and the specimens incorporating EG and S23 particles. It is 

noteworthy that in the case of EG20 and EG40 mixtures, the porosity of the pure EG 

particles was also included in the porosity measurements.  A noticeable finding is that the 

pore size in specimens with EG particles was relatively larger compared to those of the 

control specimen and the specimens with S23 particles, especially at 40 wt.% replacement.   

The results obtained from the porosity analysis are in conformity with the compressive 

strength and capillary water absorption measurements explained earlier. For instance, in 

the case of samples incorporating pure EG aggregates, the compressive strength was 

significantly lower compared to that of mixtures made with SSPCM inclusions. This is 

highly correlated to the pore structure of EG20 and EG40 samples that indicated higher 

porosity than that of 23S-P20, 23SP40, 28S-P20, and 28S-P40 specimens. Figure 7-12 

illustrates the correlation between the compressive strength, sorptivity, and porosity of the 

mixtures studied herein. It could be observed that a linear inverse correlation between the 

compressive strength and porosity is evident. This implies that the partial replacement of 

sand with lightweight EG and SSPCM particles increased the porosity of the mixtures, 

which is probably related to the change in the packing density of the solid particles. It is 
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noteworthy that sorptivity also highly depends on the pore structure and pore connectivity 

of the matrix rather than only the total pore volume. Therefore, further studies are required 

to better correlate the sorptivity of SSPCM-integrated concrete to the pore structure 

properties. Furthermore, porous EG and SSPCM particles provide considerably lower 

stiffness in the matrix, which further decreased the compressive strength. Ultimately, the 

increased porosity and larger pore size of mixtures made with EG and SSPCM particles 

increased the capillary water absorption. 

 

Figure 7-11: Reconstructed 3D scan and segmentation of the pore structure of mortar 

samples. 

 

Figure 7-12: Correlation between porosity, sorptivity, and compressive strength. 



230 

 

7.3.7 Thermoregulating performance 

The TES capacity and thermoregulating performance of SSPCM-incorporated mortars 

were investigated using two customized thermal tests as explained earlier. For this purpose, 

the temperature history of the inner surface of mortar specimens with dimensions of 

30×15×5 cm placed on an insulation box was monitored, as schematically shown in Fig. 

7-3. Two various temperature profiles were applied on the outer surface of the specimens 

using a walk-in environmental chamber. In the slow test, a temperature profile similar to 

the hourly ambient temperature of a summer day was simulated and applied to the outer 

surface of the samples. Figures 7-13 (a) and (b) compare the temperature history of the 

specimens incorporating S23 and S28 under the slow test scenario. Accordingly, the 

maximum temperature of the inner surface of the specimens incorporating SSPCMs was 

relatively lower compared to that of the control specimen. A similar trend was also 

evidenced in the rapid thermoregulating test as depicted in Figs. 7-14 (a) and (b). In the 

case of the samples with S23 inclusion, the reduction of the inner-side temperature started 

earlier when the ambient temperature (i.e., the applied temperature profile by the 

environmental chamber) was above 17°C. In contrast, the reduction in the inner-side 

temperature of specimens incorporating S28 occurred at a later time when the ambient 

temperature exceeded 25°C. This is in agreement with the latent heat capacity analysis 

performed by DSC tests in which the melting process of S23 and S28 particles started at 

19°C and 28°C, respectively. 

Furthermore, the maximum temperature of the specimen with SSPCM inclusion was 

considerably shifted off the peak temperature concerning the control sample, as shown in 

Fig. 7-13. For instance, the maximum inner-side temperature of the control sample was 

37.5°C, which occurred at 12 h of the test onset. On the other hand, the maximum 

temperatures of S23-P20 and S23-P40 samples were 36.9°C and 36.3°C, which occurred 

approximately at time 14 h after the test onset. In the case of the S28-P20 and S28-P40 

specimens, the maximum temperatures were 37.1°C and 36.4°C recorded at the time 13.5 

h of the test onset. 

Another noticeable change in the temperature history of the tested specimens is the delay 

in the reduction of the inner temperatures of specimens integrating SSPCMs during the 
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cooling period of the ambient temperature, as can be observed in Figs. 7-13 and 7-14 (c) 

and (d). This is related to the high thermal inertia of the SSPCM-integrated samples, which 

is indicative of their resistance to temperature change. In other words, the heat transfer rate 

through the sample is much lower in SSPCM-integrated specimens, especially when the 

PCM undergoes a phase transition from solid to liquid or vice versa. Therefore, it can be 

concluded that SSPCM inclusion resulted in remarkably less severe temperature 

fluctuations in the tested specimens. The hourly difference between inner-side 

temperatures of the control sample and SSPCM-integrated samples is illustrated in Figs. 

13 and 14 (c) and (d). It was observed that a maximum reduction of up to 4°C can be 

achieved when 40 wt.% SSPCMs were incorporated, i.e., 23S-P40 and 28SP40 specimens. 

It should be noted that the effect of the SSPCM on the thermo-regulating performance of 

the specimens highly depends on the applied ambient temperature along with the thermal 

properties of SSPCMs. According to findings in the literature and depending on the 

climatic conditions, 1°C increase/decrease in the thermostat setting temperature can 

contribute to approximately 5-15% energy savings on the cooling and heating of the spaces 

(Gencel, Ustaoglu, et al., 2022; Moon & Han, 2011; Yousefi et al., 2021). Overall, the 

incorporation of 20 and 40 wt.% of S23 reduced the indoor temperature fluctuations with 

respect to the control specimen by up to 16.9 and 25.6°C∙hour, respectively, during 24 

hours of simulation. In the case of S28, the temperature fluctuations were moderated by 

14.2 and 23.93 °C∙hour when 20 and 40 wt.% SSPCM was utilized, respectively. While 

further simulations on the energy-saving of cement-based building components 

incorporating S23 and S28 are needed to determine their energy efficiency more accurately, 

a 10 to 15% reduction in the energy consumption can be reasonably conceived. 
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Figure 7-13: Temperature history of specimens under slow thermoregulating test. 

 

Figure 7-14: Temperature history of specimens under rapid thermoregulating test. 
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7.4 Concluding remarks 

Two types of eco-friendly shape-stabilized phase change materials (SSPCMs) were 

developed in this study. Biobased PCMs were impregnated into the pore structure of 

recycled expanded glass granules and coated with silica fume particles using a 4-step 

vacuum impregnation method. The morphological and thermal properties of the fabricated 

SSPCMs along with their effect on the hydration, microstructural, mechanical, and thermal 

properties of cement-based composites were characterized through a set of multiphysics 

tests. The following conclusions can be drawn after an in-depth analysis of the results: 

• Molten PCMs were efficiently encapsulated in porous EG particles. The leakage rate 

was minimum after coating the surface of PCM-impregnated aggregates with silica 

fume. 

• S23 and S28 particles indicated a favorable melting/freezing behavior for application 

in thermal energy storage building components having a latent heat of fusion of 87.64 

and 96.34 J/g, respectively. 

• S23 and S28 particles imparted a insignificant effect on the hydration of cement 

paste, indicating better compatibility with the cementitious matrix compared to 

polymeric microencapsulated PCMs. 

• Although the compressive strength decreased upon partial replacement of sand with 

SSPCM particles, a compressive strength of over 30 and 25 MPa could be achieved in 

samples made with 20 wt.% and 40 wt.% of SSPCM inclusion, respectively. 

• µCT scan and capillary water absorption experiments revealed that the porosity of 

mixtures increased upon SSPCM addition. 

• SSPCMs provide a considerable TES capacity in cement mortars, which helps in 

moderating temperature fluctuations. Inner-side temperature fluctuations of mortar 

samples can be reduced by up to 4°C when 40 wt.% SSPCM is used. This can 

translate into substantial energy savings in buildings. 
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Chapter 8  

8 Hydration Kinetics, Mechanical, Microstructural, and 
Thermal Characterization of Low-carbon Limestone 
Calcined Clay Cement (LC3) Mortars Incorporating 
MPCMs1  

Low-carbon ternary limestone calcined clay cement (LC3) binder system can be developed 

by substituting up to 50% of ordinary portland cement with metakaolin and limestone. This 

chapter investigates the hydration kinetics, microstructural and strength development, and 

thermos-regulating performance of LC3 mortars incorporating microencapsulated phase 

change materials (MPCMs). Isothermal calorimetry measurements indicated that the 

inclusion of MPCMs prolonged the dormant period and reduced the intensity of hydration 

peaks. Furthermore, compressive strength decreased upon the addition of MPCMs. 

Nevertheless, high compressive strength could be achieved when a low water-to-binder 

(w/b) ratio was used. Image analysis of micro-computed tomography (µ-CT) scans 

revealed that the porosity of the mortar increased after the integration of MPCMs. 

Ultimately, It was evidenced that latent heat thermal energy storage (LHTES) LC3 mortars 

can regulate the indoor temperature fluctuations and thus, reduce the operational energy 

consumption of buildings. 

8.1 Introduction 

The built environment, which contains buildings and major civil infrastructures, is a 

fundamental element of the circular economy and social development due to the 

consumption of copious materials and energy (Huang et al., 2018). Pertinent research 

indicated that buildings are responsible for approximately 40% of the global energy 

consumption along with over one-third of carbon emissions (Sbci, 2009). From a life cycle 

analysis (LCA) point of view, the energy consumption of the built environment is attributed 

to two main compartments: i) embodied energy which is used for the construction, 

 

1
 A version of this chapter is in preparation to be submitted to “Cement and Concrete Research” Journal. 
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renovation and rehabilitation, maintenance, and demolition of the built environment; ii) 

operational energy which is used for operating purposes such as heating, cooling, air 

conditioning, and ventilation (HVAC), hot water, electricity, etc. (Cabeza et al., 2014). It 

has been demonstrated that nearly 80% of the total life cycle energy consumption in an 

occupied building is related to operational energy (Sartori & Hestnes, 2007). This is 

contrary to the non-occupiable parts of the built environment, including roads, bridges, and 

other infrastructures, in which 90% of the life cycle energy consumption is attributed to 

the embodied energy (Huang et al., 2015; Huang et al., 2018; Stephan & Stephan, 2016). 

These analyses emphasize the crucial role of the operational and embodied energy 

consumptions of the built environment in developing practical strategies to mitigate the 

environmental footprint of the construction sector and tackle climate change. Extensive 

research has been devoted to exploring viable solutions for reducing the energy 

consumption of buildings along with lessoning the carbon emissions of the built 

environment (Pomponi & Moncaster, 2016). Accordingly, different research perspectives 

could be explored including the enhancement of the energy efficiency in consuming 

sectors, i.e., reducing operational energy (da Cunha & de Aguiar, 2020), and the utilization 

of alternative low-carbon construction materials, i.e., reducing embodied emissions (Miller 

et al., 2018; Schneider, 2019). 

Latent heat thermal energy storage (LHTES) systems have emerged as a promising 

approach for increasing the energy efficiency of buildings (Tatsidjodoung et al., 2013; 

Zhou et al., 2012). Phase change materials (PCMs) are substances that can absorb/release 

a great deal of thermal energy upon physical phase transition, e.g., solid to liquid, while 

their temperature remains relatively constant (Tyagi & Buddhi, 2007). PCMs with melting 

points near room temperature have been widely employed as the latent heat component in 

various LHTES systems in buildings. For instance, integrating PCMs in HVAC systems 

could increase energy efficiency and enhance cost and energy savings (Promoppatum et 

al., 2017). PCMs can also be integrated into building components such as roofs, walls, 

envelopes, etc. Several research studies evidenced that PCM inclusion in such elements 

alleviates the indoor temperature fluctuations, which in turn reduces the energy 
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consumption for the heating and cooling of the indoor spaces (Marani & Madhkhan, 2018; 

Thiele, Jamet, et al., 2015; Thiele, Sant, et al., 2015). 

Different techniques can be used to incorporate PCMs into building materials, such as 

cement-based composites (Marani & Nehdi, 2019). Microencapsulated PCMs (MPCMs) 

are the most prevalent method in the open literature to incorporate PCMs into cement 

mortars and concretes (Drissi et al., 2019; Zhao & Zhang, 2011). Accordingly, MPCMs 

significantly improve the thermal performance of cement-based composites by providing 

latent heat capacity.  

In parallel to the efforts for reducing the energy consumption and carbon footprint of 

buildings by using PCM-integrated construction materials, paramount research has also 

been dedicated to developing alternative low-carbon and low-embodied energy building 

materials in recent years (Cabeza et al., 2013; Coffetti et al., 2022). Concrete is the world’s 

most widely used human-made material and ordinary portland cement (OPC) is the major 

binder of the manufactured concrete worldwide. However, the high production of the OPC 

has been identified as an aggravating environmental challenge since it contributed to nearly 

7-12% of the total 𝐶𝑂2 emissions in 2020 (Zheng et al., 2021; Zhong et al., 2021). To 

address this problem, researchers have suggested the employment of alternative low-

carbon binder systems such as alkali-activated materials (AAMs) (Provis, 2018), reactive 

MgO cement (Walling & Provis, 2016), ternary and quaternary cementitious systems 

(Nehdi, 2001), etc. Blended cements incorporate supplementary cementitious materials 

(SCMs) as partial replacement for OPC so that the carbon footprint related to clinker 

production is reduced. 

Limestone calcined clay cement (LC3) is a type of ternary cement system in which nearly 

50% of the conventional OPC is replaced with limestone and kaolinitic calcined clays 

(Zunino & Scrivener, 2022). According to pertinent research studies in the literature, LC3 

systems gain similar strength after 7 days and exhibit higher durability against chloride 

ions penetration and alkali-silica reaction compared to conventional OPC (Avet & 

Scrivener, 2018; Nguyen et al., 2020; Zunino & Scrivener, 2021). Meanwhile, using LC3 
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can reduce over 30% of the 𝐶𝑂2 emissions per ton of the cement manufactured (Scrivener 

et al., 2018). 

Diverse research in the literature examined the effects of MPCMs on the thermal, 

mechanical, and microstructural properties of OPC concrete. Yet, the effects of MPCMs 

on the hydration kinetics and microstructural development of emerging alternative binder 

systems remain widely unexplored. The current study intends to carry out a novel multi-

physics analysis to explore the effects of MPCM addition on the hydration, strength 

development, microstructure, and thermos-regulating properties of ternary LC3 systems. 

Purposefully, this chapter proposes the following novelties: i) study of the hydration 

kinetics and strength development of LC3 systems in presence of two types of MPCMs 

with different melting temperatures; ii) assessment of the microstructural development of 

LC3 mortars after MPCM addition, and iii) analysis of the thermo-regulating performance 

of LC3 systems with and without PCMs. Multiple laboratory experiments are employed to 

characterize the fabricated mortar specimens as described below. 

8.2 Materials and methods 

8.2.1 Materials 

ASTM C150 Type I OPC, metakaolin, and limestone were used to prepare the ternary LC3 

binder system. Table 8-1 presents the chemical composition of the OPC and metakaolin. 

Two types of non-formaldehyde bio-based MPCMs having melting temperatures of 28 and 

35°C, referred to as En28 and En35, respectively, supplied by Encapsys LLC were used. 

Natural river sand and a polycarboxylate-based superplasticizer (SP) were also used for 

making mortar specimens. The thermos-physical properties of En28 and En35 are given in 

Chapter 5 (see Table 5-2 and Figure 5-1).  
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Table 8-1: Chemical composition of OPC and metakaolin 

OPC 

Components Proportion (%) Components Proportion (%) 
Silicon oxide (SiO2) 19.6 Free Calcium 1 

Aluminum oxide (Al2O3) 4.8 Other oxides - 

Ferric oxide (Fe2O3) 3.3 Tricalcium silicate (C3S) 55 

Calcium oxide (CaO) 61.5 Dicalcium silicate (C2S) 15 

Magnesium oxide (MgO) 3 Tricalcium aluminate (C3A) 7 

Sulfur trioxide (SO3) 3.5 Tetracalcium aluminoferrite (C4AF) 10 

Metakaolin 

Components Proportion (%) Components Proportion (%) 
Silicon oxide (SiO2) 53.5 Free Calcium - 

Aluminum oxide (Al2O3) 42.5 Other oxides - 

Ferric oxide (Fe2O3) 1.90 Tricalcium silicate (C3S) - 

Calcium oxide (CaO) 0.2 Dicalcium silicate (C2S) - 

Magnesium oxide (MgO) - Tricalcium aluminate (C3A) - 

Sulfur trioxide (SO3) 0.05 Tetracalcium aluminoferrite (C4AF) - 

8.2.2 Experimental plan 

In this chapter, the effects of MPCM addition on the hydration kinetics of LC3 pastes was 

studied using the isothermal calorimetry (IC) test. The strength development of LC3 

mortars incorporating MPCMs was evaluated by compressive strength measurements. The 

microstructure and porosity of the mortars were further analyzed using scanning electron 

microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX) and 3D X-

ray micro-computed tomography (µ-CT) scans. Ultimately, thermos-regulating tests were 

performed to evaluate the LTHES capacity of the MPCM-integrated LC3 mortars as 

explained below. 

8.2.2.1 Isothermal calorimetry (IC) 

IC tests were employed to study the hydration kinetics of LC3 pastes incorporating En28 

and En35. Water-to-binder (w/b) ratios of 0.5 and 0.4 were selected and MPCMs were 

added at the dosages of 0, 5, 10, and 20% by cement weight. Table 8-2 summarizes the 

mixtures prepared for the IC test. The heat of hydration of cement pastes was measured in 

an eight-channel micro-calorimeter (TAM air, TA Instruments) at three different 

temperatures including 20, 30, and 40 ± 0.02 °C. Collectively, 42 isothermal calorimetry 

tests (14 mixtures at 3 testing temperatures) were conducted to obtain the rate of hydration 

data. The rate of hydration was recorded every 60 s and normalized per gram of LC3 binder 
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(mW/g). The calorimetry measurements were performed using an ex-situ mixing procedure 

of approximately 5 grams of cement paste for 96 h. It is noteworthy that opening the cover 

and putting the ampoule into the channel can cause a drastic increase in the heat flow for 

the initial few minutes of the experiments. Thus, the measurements were considered from 

0.75 h after the placement of the sample to minimize this error. 

Table 8-2: Mixture components of LC3 pastes used for IC tests 

Designation 
LC3 

(g) 

Water 

(g) 

En28 

(g) 
Designation 

LC3 

(g) 

Water 

(g) 

En35 

(g) 

WB04 3 1.2 0 WB04 3 1.2 0 

WB04P05En28 3 1.2 0.15 WB04P05En35 3 1.2 0.15 

WB04P10En28 3 1.2 0.3 WB04P10En35 3 1.2 0.3 

WB04P20En28 3 1.2 0.6 WB04P20En35 3 1.2 0.6 

WB05 3 1.5 0 WB05 3 1.5 0 

WB05P05En28 3 1.5 0.15 WB05P05En35 3 1.5 0.15 

WB05P10En28 3 1.5 0.3 WB05P10En35 3 1.5 0.3 

WB05P20En28 3 1.5 0.6 WB05P20En35 3 1.5 0.6 

8.2.2.2 Compressive strength 

Ten different mixture designs of LC3 mortars were considered for the compressive strength 

measurements, including two control mixtures without MPCM having w/b ratios of 0.4 

and 0.5, four mixtures having w/b ratios of 0.4 and 0.5 and incorporating En28 at the 

dosages of 10 and 20 wt.% of the binder, and four mixtures with w/b ratios of 0.4 and 0.5 

incorporating En35 at the dosages of 10 and 20 wt.% of the binder. MPCMs were added 

as partial replacement for sand particles. Table 8-3 summarizes the mixture design of the 

fabricated mortars. 50-mm mortar cubes were used to cast specimens for compressive 

strength tests. Specimens were demolded after 24 h and then cured in a moist room at 20 ± 

1°C. The compressive strength of triplicate samples was measured at 1, 3, 7, 14, 28, and 

56 days of curing. 
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Table 8-3: Mixture proportions of LC3 mortars used for compressive strength tests 

Mixture 
Cement 

(kg/m3) 

Metakaolin 

(kg/m3) 

Limestone 

(kg/m3) 

Water 

(kg/m3) 

Sand 

(kg/m3) 

MPCM 

(kg/m3) 

SP 

(kg/m3) 

WB04 275 150 75 200 1500 0 20 

WB05 275 150 75 250 1500 0 15 

WB04P10En28 275 150 75 200 1350 50 20 

WB04P20En28 275 150 75 200 1200 100 20 

WB05P10En28 275 150 75 250 1350 50 15 

WB05P20En28 275 150 75 250 1200 100 15 

WB04P10En35 275 150 75 200 1350 50 20 

WB04P20En35 275 150 75 200 1200 100 20 

WB05P10En35 275 150 75 250 1350 50 15 

WB05P20En35 275 150 75 250 1200 100 15 

8.2.2.3 Microstructural analysis 

The microstructure and morphology of the failure surface of the LC3 mortars cured for 28 

days were investigated using scanning electron microscopy coupled with energy dispersive 

X-ray (SEM-EDX). SEM imaging was performed by a Hitachi SU8230 Regulus Ultra 

High-Resolution Field Emission SEM and Bruker X-Flash EDX detector at an accelerating 

voltage of 15 kV. Mortar samples with 0 and 20 wt.% MPCM inclusion at w/b ratios of 0.5 

and 0.4 were selected for the microstructural analysis. 

8.2.2.4 Micro-computed tomography (µ-CT) scan 

The distribution of the MPCM particles in the LC3 mortar along with their effect on the 

pore structure of the matrix were examined using X-ray micro-computed tomography. A 

Nikon XT-H-225-ST µCT scanner was employed to scan the 56-day cured mortar 

specimens listed in Table 8-3. High-resolution 2D images of the X-ray projections were 

used to reconstruct the exterior and interior structure of the scanned samples. The 

resolution of the 3D images was set to 60 µm voxels. The scanning was carried out with a 

voltage of 225 kV, a current of 120 µA, and a power of 27 Watts. The image segmentation, 

analysis, and visualizations were performed using the Dragonfly 2021.1 software, Object 

Research Systems (ORS) Inc., Montreal Canada (more information available at: 

http://www.theobjects.com/dragonfly). 

http://www.theobjects.com/dragonfly
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8.2.2.5 Thermo-regulating performance 

The effect of En28 and En35 inclusion on the LHTES performance of LC3 mortars was 

studied using a thermos-regulating test carried out in a walk-in environmental chamber, 

similar to the test procedure proposed in the literature (Hekimoğlu et al., 2021; Liu et al., 

2019; Marani & Madhkhan, 2018, 2021). Mortars with w/b ratio of 0.4 were selected for 

the thermal performance tests. For this purpose, specimens with dimensions of 30×15×5 

cm were placed and sealed on the top of the extruded polystyrene (XPS) insulation boxes 

with wall thickness and thermal conductivity of 6 cm and 0.05 W/mK, respectively, as 

shown in Fig. 8-1. A real-time wireless temperature monitoring system provided by Exact 

Technologies Corporation, Toronto, Canada, was utilized to record the temperature history 

of the inner-side surface of the specimens. For this purpose, a temperature profile similar 

to the hourly ambient temperature of a hot summer day was applied to the outer side surface 

of the sample for 24 h. The temperature history of all specimens was recorded and analyzed 

to apprehend the effect of MPCM addition on the thermal performance of LC3 mortar 

specimens. 

 

Figure 8-1: Thermo-regulating test setup for evaluation of the TES capacity of mortar 

specimens. 
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8.3 Results and discussion 

8.3.1 Analysis of hydration kinetics using IC test 

Calorimetry curves of LC3 systems incorporating En28 and En35 are illustrated in Figs. 8-

2 and 8-3, respectively. Two distinct hydration peaks are evident at earlier hydration times 

of LC3 systems without MPCM addition. The first gentle peak is mostly related to the 

hydration of the silicate phases in the OPC. The second and sharper peak is mostly related 

to the alumina available in the metakaolin (Shah et al., 2020; Sharma et al., 2021; Vance 

et al., 2013). Furthermore, a third but low-intensity peak associated with the formation of 

carbo-aluminates can also be observed (Parashar & Bishnoi, 2021). The addition of 

MPCMs exerted significant changes in the hydration patterns of the LC3 systems. It could 

be observed that the MPCM inclusion resulted in a longer induction period, especially at 

higher dosages. For instance, the acceleration period of the pure LC3 system with the w/b 

ratio of 0.5 measured at 20°C begun approximately 3 hours after starting the test. In 

contrast, in the case of samples with 10 and 20 wt.% of En28 inclusion (i.e., 

WB05P10En28 and WB05P20En28), the start of the acceleration period occurred 6.5 hours 

and 11 hours after the start of the test, respectively. Additionally, the intensity of the 

hydration peaks decreased significantly in the presence of the MPCM particles. The 

maximum rate of hydration along with the time to reach the maximum hydration rate are 

given in Table 8-4. It could be understood that the addition of MPCMs generally caused a 

delay in the hydration peaks and diminished the maximum rate of hydration. Such effects 

were previously observed in OPC and alkali-activated systems (Jayalath et al., 2016; 

Pilehvar et al., 2017; Pilehvar et al., 2020).  

The longer dormant period of MPCM-integrated systems and lower-intensity peaks could 

be related to several mechanisms. Firstly, the addition of hydrophilic polymer MPCMs 

with high water absorption affects the dilution of the system along with the degree of the 

reaction of the OPC (Fernandes et al., 2014). This also reduces the amount of accessible 

water for the hydration process. Furthermore, MPCM particles indicate a tendency to wrap 

around cement grains and prevent their contact with water. This decreases the nucleation 

sites for the precipitation and growth of the hydration products (Djamai et al., 2019). It is 

noteworthy that the results obtained from IC tests at higher temperatures suggest the 
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accelerated hydration of silicate and aluminate phases, especially at lower dosages of 

MPCMs, as indicated in Figs. 8-2 and 8-3 and Tables 8-4 and 8-5. For instance, the 

maximum hydration rate of mixtures with a w/b ratio of 0.4 containing En35 at 0 and 20 

wt.% tested at 40°C was increased by 69% and 77% compared to the testing temperature 

of 20 °C. 

Table 8-4: Hydration parameters of LC3 pastes incorporating En28 

𝒘/𝒃 = 𝟎. 𝟒 

Temp. (°C) 
𝑹𝒎𝒂𝒙 𝑻𝑹𝒎𝒂𝒙

 

P0 P05 P10 P20 P0 P05 P10 P20 

20 4.86 4.40 3.35 1.43 13.59 15.45 19.05 33.12 

30 8.42 7.10 5.69 3.31 7.35 9.04 10.90 17.48 

40 13.11 10.22 8.65 4.73 4.49 5.27 5.85 10.66 

𝒘/𝒃 = 𝟎. 𝟓 

Temp. (°C) 
𝑹𝒎𝒂𝒙 𝑻𝑹𝒎𝒂𝒙

 

P0 P05 P10 P20 P0 P05 P10 P20 

20 5.81 4.76 4.10 1.73 14.42 16.7 20.07 31.33 

30 8.42 6.83 6.22 3.49 7.34 10.23 11.32 17.43 

40 10.23 9.83 7.68 5.17 5.65 5.85` 7.21 9.61 

 

Table 8-5: Hydration parameters of LC3 pastes incorporating En35 

𝒘/𝒃 = 𝟎. 𝟒 

Temp. (°C) 
𝑹𝒎𝒂𝒙 𝑻𝑹𝒎𝒂𝒙

 

P0 P05 P10 P20 P0 P05 P10 P20 

20 4.86 4.06 3.14 1.58 13.59 16.65 22.18 32.68 

30 8.42 5.73 5.15 2.39 7.35 10.40 11.90 20.56 

40 13.11 9.66 6.67 4.39 4.49 5.50 6.88 10.40 

𝒘/𝒃 = 𝟎. 𝟓 

Temp. (°C) 
𝑹𝒎𝒂𝒙 𝑻𝑹𝒎𝒂𝒙

 

P0 P05 P10 P20 P0 P05 P10 P20 

20 4.08 4.26 3.45 1.60 14.42 16.98 20.84 30.45 

30 8.03 6.14 5.01 2.59 9.22 10.82 11.34 20.69 

40 10.23 8.28 6.75 4.48 5.65 6.25` 7.44 10.29 
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Figure 8-2: Isothermal hydration curves of LC3 pastes incorporating En28. 
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Figure 8-3: Isothermal hydration curves of LC3 pastes incorporating En35. 

8.3.2 Effect of MPCMs on compressive strength 

Figure 8-4 indicates the strength development of mixtures listed in Table 8-3. 

Accordingly, the replacement of fine aggregates with MPCM particles led to a decrease in 

the compressive strength of LC3 mortars, especially at higher dosages of MPCMs. 

Comparable reduction in compressive strength for OPC mortars and concretes after the 
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addition of MPCMs has been widely reported in the literature (Balapour et al., 2021; Drissi 

et al., 2019; Drissi et al., 2021; Pilehvar et al., 2017; Pilehvar et al., 2020). The primary 

reason for this reduction in compressive strength is the soft effect of microcapsules 

(Balapour et al., 2021; Fernandes et al., 2014). MPCMs are fabricated of soft polymeric 

shells with a stiffness significantly lower than that of fine aggregates, which provides no 

remarkable resistance against applied loads. Another reason for the reduction in the 

compressive strength is the weak bond between MPCMs and the surrounding matrix 

(Djamai et al., 2019). It can be observed in SEM images (see Section 8.3.3.) that weak 

connections and in some cases, large gaps, are evident at the interfacial transition zone 

(ITZ) between the MPCM particles and LC3 matrix. Additionally, MPCMs’ shells deform 

during the mixing and casting stages of the mortar and probably during melting/freezing 

cycles. Such deformations further compromise their bond connection to the mortar and 

induce porosity in the matrix, leading to significant strength loss.  

It is noteworthy that the incorporation of MPCMs exerted considerable delay in the strength 

gain of mortars, especially at higher levels of MPCMs. For instance, the compressive 

strength of specimens incorporating MPCMs at 20 wt.% of the binder was below 2 MPa 

after 24 hours. This is in agreement with observations drawn from IC measurements where 

MPCM inclusion prolonged the dormant period and postponed the maximum rate of 

hydration. The peak of hydration of cementitious materials is highly correlated to their 

setting behavior and strength development. The change in the rate of strength development 

can be clearly observed in the curves shown in Fig. 8-4. 

Another interesting observation that emerged from the compressive strength results is that 

when w/b ratio of 0.5 was used, specimens with En28 inclusion attained a higher 

compressive strength compared to those with En35 at both 10 and 20 wt.% dosages. 

Nevertheless, this trend was not observed when w/b ratio of 0.4 was used, and specimens 

made with En28 and En35 microcapsules achieved comparable compressive strength. This 

could be related to the better filling of pores with hydration products at lower w/b ratios 

owing to the contribution of the filler effect of metakaolin. The microstructural analysis 

and porosity of the specimens are further discussed in Sections 8.3.3 and 8.3.4. 
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Figure 8-4: Strength development of MPCM-integrated LC3 mortars at w/b ratios of 0.5 

(top) and 0.4 (bottom). 
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8.3.3 Microstructural analysis using SEM-EDX 

Figures 8-5 and 8-6 depict SEM images of failure surfaces of mortar specimens made with 

En28 and En35 inclusions, respectively. Mixtures with 0 and 20 wt.% MPCM inclusions 

are selected for the analysis. It can be observed that MPCMs exhibited irregular shapes 

with manifest deformations. The wrinkled microcapsules with the dented surface could 

affect the packing density of the mixture and increase the porosity of the surrounding 

matrix. Additionally, the smooth surface of the polymeric microcapsules’ shells hinders a 

strong bond connection with the mortar. As indicated with blue arrows in Figs. 8-5 and 8-

6, various spots are identified where a gap is evident at the ITZ between the MPCMs and 

the mortar. This could further initiate microcracking and the loss of compressive strength. 

The decrease of nucleation sites available for the precipitation and growth of hydration 

products around the MPCM particles is also a potential reason for the gap and weak bond 

between the LC3 mortar and MPCM granules. 

Comparing the SEM images of specimens containing En28 with those incorporating En35 

suggests that En28 particles are better dispersed within the LC3 matrix. This might indicate 

that when En28 was used, more nucleation sites for the precipitation of hydration products 

were available. Therefore, the induced porosity is relatively lower in the surrounding 

mortar when En28 was utilized, especially at the w/b ratio of 0.5. Moreover, comparing 

the SEM images of specimens with w/b ratios of 0.5 and 0.4 suggests the potential increase 

of the hydration products around the microcapsules. Although such an explanation 

conforms to strength development analysis, SEM images alone cannot confirm the effect 

of w/b ration on the porosity induced by MPCM inclusions. Therefore, EDX analysis along 

with pore structure analysis using µCT scan can better clarify the aforementioned 

observations. 

Table 8-6 summarizes the elemental analysis of the hydration products obtained from 

SEM-EDX analysis. The carbon content was higher in samples with MPCM inclusion, 

which is probably due to the polymeric shells of the microcapsules. The elemental analysis 

revealed that in the WC04En35P20 sample, the Ca content increased by approximately 

22% compared to that for the WC04En35P20 sample. This could be related to the higher 
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precipitation of CSH when a lower w/b ratio was used, which is in conformity with 

compressive strength results. 

 

Figure 8-5: SEM images of mortars made with w/b ratio of 0.5: a) No MPCM inclusion; 

b) 20% En28 inclusion; and c) 20% En35 inclusion. 

a 

b 

c 
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Figure 8-6: SEM images of mortars made with w/b ratio of 0.5: a) No MPCM inclusion; 

b) 20% En28 inclusion; and c) 20% En35 inclusion. 

a 

b 

c 
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Table 8-6: EDX analysis of hydration products 

Sample C Al Si Ca Al/Ca Si/Ca 

WB04 15.23±1.04 5.47±0.28 9.28±1.16 18.68±1.65 0.29±0.02 0.50±0.11 

WB04P20En28 24.53±1.06 4.44±0.87 9.53±1.82 18.32±1.53 0.24±0.06 0.52±0.10 

WB04P20En35 25.10±0.82 4.34±0.39 7.72±1.28 19.18±1.49 0.22±0.01 0.41±0.09 

WB05 14.54±1.10 5.04±1.02 9.85±0.71 19.37±1.10 0.26±0.06 0.51±0.06 

WB05P20En28 24.8±1.85 4.4±0.127 8.8±1.22 15.2±1.23 0.28±0.01 0.58±0.10 

WB05P20En35 26.8±1.04 4.7±0.17 8.3±1.25 15.7±1.59 0.30±0.04 0.54±0.14 

8.3.4 Porosity analysis with µ-CT scan 

The porosity of the LC3 mortars listed in Table 8-3 was examined using the reconstructed 

3D images obtained from µ-CT scan analysis. Figure 8-7 showcases typical 2D slices 

along with the segmentation of samples with the w/b ratio of 0.4 containing 0, 10, and 20 

wt.% of En28, i.e., WB04, WB04P10En28, WB04P20En28. Due to the low level of X-ray 

attenuation of the organic MPCMs’ shells, the discrimination between air voids and MPCM 

particles is relatively based on their morphology. Air voids tend to form spherical shapes, 

whereas MPCMs have irregular morphology because of the potential agglomeration. After 

image segmentation and porosity analysis, it was observed that the addition of MPCMs 

resulted in increased porosity of the surrounding matrix. Accordingly, the total volume of 

pores in WB04, WB04P10En28, WB04P20En28 samples were 3.49, 5.07, and 6.76%, 

respectively. This demonstrates an increase of porosity with the increase in MPCM dosage. 

WB04P10En35 and WB04P20En35 also indicated comparable porosity percentages of 

5.10 and 6.52%, respectively. This is in excellent agreement with the compressive strength 

measurements discussed earlier.  

Furthermore, samples with a higher w/b ratio had higher porosity contents. The volume of 

pores in the WB04, WB04P10En28, WB04P20En28 specimens was, 5.13, 8.6, and 9.22%, 

respectively, which is higher compared to specimens with w/b of 0.4. Another interesting 

finding is that in contrast to samples with w/b ratio of 0.4, the porosity of mixtures with 

En35 inclusion was higher compared to those with En28 inclusion when the w/b ratio was 

0.5. Samples WB04P10En35 and WB04P20En35 had a total pore volume of 10.14 and 

11.87%, respectively. The porosity analysis confirmed that MPCM addition induced 

porosity in the LC3 mortars, which led to a loss of compressive strength. This porosity 

highly depends on the type of microcapsules, their compatibility with the surrounding 
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mortar, and the w/b ratio of the paste. Figure 8-8 displays the 3D pore structure of WB04, 

WB04P10En28, and WB04P20En28 samples. Significantly larger pore structures are 

evident in samples with MPCM inclusion.  

 

Figure 8-7: Image segmentation for porosity analysis of mortar samples. 

 

Figure 8-8: 3D pore structure of samples obtained from µ-CT scan analysis. 
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8.3.5 Thermo-regulating performance 

Figure 8-9 illustrates the temperature history of the inner-side surface of specimens under 

the applied ambient temperature. It can be observed that the addition of MPCMs reduced 

the maximum inside temperature owing to its latent heat capacity. The analysis of the 

results indicates that a maximum reduction of the inside temperature up to 2.2 and 3.5°C 

was achieved in specimens containing 10 and 20 wt.% of En28, respectively. The hourly 

temperature difference of the inner-side surface of these specimens with respect to the 

control specimen (i.e., WB04) is shown in Fig. 8-9 (b). For instance, after 9.5 hours from 

the start of the test, the inner temperature of the control specimen was 33.5°C, whereas it 

was 30°C for the specimen made with 20 wt.% En28 inclusion (P20En28), indicating a 

3.5°C reduction.  Furthermore, the addition of En28 shifted the on-peak maximum indoor 

temperature for 2h to the off-peak period. A less drastic reduction of the inside temperature 

was also evidenced during the cooling phase of the applied temperature profile, as can be 

observed in Fig. 8-9.  

Comparable temperature regulation performance was evidenced in specimens 

incorporating En35. However, the temperature reduction started at higher temperatures due 

to the higher melting temperature of the En35 compared to En28 as shown in Figs. 8-9 (b) 

and (d). Overall, the addition of 10 and 20 wt.% of En28 mitigated the indoor temperature 

fluctuations with respect to the control specimen by up to 16.67 and 25.85°C∙hour, 

respectively, during 24 hours of simulation. In the case of En35, the temperature 

fluctuations were moderated by 13.1 and 18.2 °C∙hour when 10 and 20 wt.% MPCM was 

utilized, respectively. It should be noted that the effect of the MPCMs on the thermos-

regulating performance of the specimens highly depends on the applied ambient 

temperature along with the melting temperature of MPCMs. Hence, although En28 and 

En35 particles have similar latent heat capacities, using En28 resulted in better thermos-

regulating performance under the applied temperature profile. 
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Figure 8-9: Thermo-regulating performance of specimens incorporating En28 (top) and 

En35 (bottom) inclusion. 

8.4 Concluding remarks 

This chapter investigates the addition of bio-based non-formaldehyde MPCMs with 

different thermos-physical properties on the hydration kinetics, strength and 

microstructural development, and thermos-regulating performance of ternary LC3 mortars. 

The isothermal calorimetry measurements revealed that the incorporation of MPCMs 

prolonged the dormant period and reduced the maximum hydration rate, which was 

reflected in significant delays in the strength development of the mortar. Moreover, the 

compressive strength decreased after the addition of MPCMs due to their soft effect along 

with the porosity they induce in the matrix. The microstructural analysis indicates that 

using lower w/b ratios refines porosity of the matrix and compensates for the strength loss 

caused by the MPCM addition. Ultimately, the thermo-regulating tests infer that samples 

with 20 wt% of MPCM inclusion can moderate the temperature fluctuations by 3.5°C, thus 

reducing the energy consumption of HVAC systems. Therefore, developing LHTES- LC3 
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systems can significantly reduce the operational and embodied carbon emissions of 

buildings and promote the resilience and sustainability of the built environment.  

8.5 References 

Avet, F., & Scrivener, K. (2018). Investigation of the calcined kaolinite content on the 

hydration of Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, 

107, 124-135.  

Balapour, M., Mutua, A. W., & Farnam, Y. (2021). Evaluating the thermal efficiency of 

microencapsulated phase change materials for thermal energy storage in cementitious 

composites. Cement and Concrete Composites, 116, 103891.  

Cabeza, L. F., Barreneche, C., Miró, L., Morera, J. M., Bartolí, E., & Fernández, A. I. 

(2013). Low carbon and low embodied energy materials in buildings: A review. Renewable 

and sustainable energy reviews, 23, 536-542.  

Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle 

assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building 

sector: A review. Renewable and sustainable energy reviews, 29, 394-416.  

Coffetti, D., Crotti, E., Gazzaniga, G., Carrara, M., Pastore, T., & Coppola, L. (2022). 

Pathways towards sustainable concrete. Cement and Concrete Research, 154, 106718.  

da Cunha, S. R. L., & de Aguiar, J. L. B. (2020). Phase change materials and energy 

efficiency of buildings: A review of knowledge. Journal of Energy Storage, 27, 101083.  

Djamai, Z. I., Salvatore, F., Larbi, A. S., Cai, G., & El Mankibi, M. (2019). Multiphysics 

analysis of effects of encapsulated phase change materials (PCMs) in cement mortars. 

Cement and Concrete Research, 119, 51-63.  

Drissi, S., Ling, T.-C., Mo, K. H., & Eddhahak, A. (2019). A review of microencapsulated 

and composite phase change materials: Alteration of strength and thermal properties of 

cement-based materials. Renewable and sustainable energy reviews, 110, 467-484.  



262 

 

Drissi, S., Mo, K. H., Falchetto, A. C., & Ling, T.-C. (2021). Understanding the 

compressive strength degradation mechanism of cement-paste incorporating phase change 

material. Cement and Concrete Composites, 124, 104249.  

Fernandes, F., Manari, S., Aguayo, M., Santos, K., Oey, T., Wei, Z., Falzone, G., 

Neithalath, N., & Sant, G. (2014). On the feasibility of using phase change materials 

(PCMs) to mitigate thermal cracking in cementitious materials. Cement and Concrete 

Composites, 51, 14-26.  

Hekimoğlu, G., Nas, M., Ouikhalfan, M., Sarı, A., Tyagi, V., Sharma, R., Kurbetci, Ş., & 

Saleh, T. A. (2021). Silica fume/capric acid-stearic acid PCM included-cementitious 

composite for thermal controlling of buildings: Thermal energy storage and mechanical 

properties. Energy, 219, 119588.  

Huang, L., Bohne, R. A., Bruland, A., Jakobsen, P. D., & Lohne, J. (2015). Life cycle 

assessment of Norwegian road tunnel. The International Journal of Life Cycle Assessment, 

20(2), 174-184.  

Huang, L., Krigsvoll, G., Johansen, F., Liu, Y., & Zhang, X. (2018). Carbon emission of 

global construction sector. Renewable and sustainable energy reviews, 81, 1906-1916.  

Jayalath, A., San Nicolas, R., Sofi, M., Shanks, R., Ngo, T., Aye, L., & Mendis, P. (2016). 

Properties of cementitious mortar and concrete containing micro-encapsulated phase 

change materials. Construction and Building Materials, 120, 408-417.  

Liu, L., Lu, G., Qiu, G., Yue, C., Guo, M., Ji, R., & Zhang, M. (2019). Characterization of 

novel shape‐stabilized phase change material mortar: Portland cement containing Na2SO4· 

10H2O and fly ash for energy‐efficient building. International Journal of Energy Research, 

43(11), 5812-5823.  

Marani, A., & Madhkhan, M. (2018). An innovative apparatus for simulating daily 

temperature for investigating thermal performance of wallboards incorporating PCMs. 

Energy and Buildings, 167, 1-7.  



263 

 

Marani, A., & Madhkhan, M. (2021). Thermal performance of concrete sandwich panels 

incorporating phase change materials: An experimental study. Journal of Materials 

Research and Technology, 12, 760-775.  

Marani, A., & Nehdi, M. L. (2019). Integrating phase change materials in construction 

materials: Critical review. Construction and Building Materials, 217, 36-49.  

Miller, S. A., John, V. M., Pacca, S. A., & Horvath, A. (2018). Carbon dioxide reduction 

potential in the global cement industry by 2050. Cement and Concrete Research, 114, 115-

124.  

Nehdi, M. (2001). Ternary and quaternary cements for sustainable development. Concrete 

International, 23(4), 36-44.  

Nguyen, Q. D., Kim, T., & Castel, A. (2020). Mitigation of alkali-silica reaction by 

limestone calcined clay cement (LC3). Cement and Concrete Research, 137, 106176.  

Parashar, A., & Bishnoi, S. (2021). Hydration behaviour of limestone-calcined clay and 

limestone-slag blends in ternary cement. RILEM Technical Letters, 6, 17-24.  

Pilehvar, S., Cao, V. D., Szczotok, A. M., Valentini, L., Salvioni, D., Magistri, M., Pamies, 

R., & Kjøniksen, A.-L. (2017). Mechanical properties and microscale changes of 

geopolymer concrete and Portland cement concrete containing micro-encapsulated phase 

change materials. Cement and Concrete Research, 100, 341-349.  

Pilehvar, S., Sanfelix, S. G., Szczotok, A. M., Rodríguez, J. F., Valentini, L., Lanzón, M., 

Pamies, R., & Kjøniksen, A.-L. (2020). Effect of temperature on geopolymer and Portland 

cement composites modified with Micro-encapsulated Phase Change materials. 

Construction and Building Materials, 252, 119055.  

Pomponi, F., & Moncaster, A. (2016). Embodied carbon mitigation and reduction in the 

built environment–What does the evidence say? Journal of environmental management, 

181, 687-700.  



264 

 

Promoppatum, P., Yao, S.-C., Hultz, T., & Agee, D. (2017). Experimental and numerical 

investigation of the cross-flow PCM heat exchanger for the energy saving of building 

HVAC. Energy and Buildings, 138, 468-478.  

Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40-

48.  

Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-

energy buildings: A review article. Energy and Buildings, 39(3), 249-257.  

Sbci, U. (2009). Buildings and climate change: Summary for decision-makers. United 

Nations Environmental Programme, Sustainable Buildings and Climate Initiative, Paris, 1-

62.  

Schneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and 

Concrete Research, 124, 105792.  

Scrivener, K., Avet, F., Maraghechi, H., Zunino, F., Ston, J., Hanpongpun, W., & Favier, 

A. (2018). Impacting factors and properties of limestone calcined clay cements (LC3). 

Green Materials, 7(1), 3-14.  

Shah, V., Parashar, A., Mishra, G., Medepalli, S., Krishnan, S., & Bishnoi, S. (2020). 

Influence of cement replacement by limestone calcined clay pozzolan on the engineering 

properties of mortar and concrete. Advances in Cement Research, 32(3), 101-111.  

Sharma, M., Bishnoi, S., Martirena, F., & Scrivener, K. (2021). Limestone calcined clay 

cement and concrete: A state-of-the-art review. Cement and Concrete Research, 149, 

106564.  

Stephan, A., & Stephan, L. (2016). Life cycle energy and cost analysis of embodied, 

operational and user-transport energy reduction measures for residential buildings. Applied 

Energy, 161, 445-464.  



265 

 

Tatsidjodoung, P., Le Pierrès, N., & Luo, L. (2013). A review of potential materials for 

thermal energy storage in building applications. Renewable and sustainable energy 

reviews, 18, 327-349.  

Thiele, A. M., Jamet, A., Sant, G., & Pilon, L. (2015). Annual energy analysis of concrete 

containing phase change materials for building envelopes. Energy conversion and 

management, 103, 374-386.  

Thiele, A. M., Sant, G., & Pilon, L. (2015). Diurnal thermal analysis of microencapsulated 

PCM-concrete composite walls. Energy conversion and management, 93, 215-227.  

Tyagi, V. V., & Buddhi, D. (2007). PCM thermal storage in buildings: A state of art. 

Renewable and sustainable energy reviews, 11(6), 1146-1166.  

Vance, K., Aguayo, M., Oey, T., Sant, G., & Neithalath, N. (2013). Hydration and strength 

development in ternary portland cement blends containing limestone and fly ash or 

metakaolin. Cement and Concrete Composites, 39, 93-103.  

Walling, S. A., & Provis, J. L. (2016). Magnesia-based cements: a journey of 150 years, 

and cements for the future? Chemical Reviews, 116(7), 4170-4204.  

Zhao, C.-Y., & Zhang, G. H. (2011). Review on microencapsulated phase change materials 

(MEPCMs): fabrication, characterization and applications. Renewable and sustainable 

energy reviews, 15(8), 3813-3832.  

Zheng, C., Zhang, H., Cai, X., Chen, L., Liu, M., Lin, H., & Wang, X. (2021). 

Characteristics of CO2 and atmospheric pollutant emissions from China’s cement industry: 

A life-cycle perspective. Journal of Cleaner Production, 282, 124533.  

Zhong, X., Hu, M., Deetman, S., Steubing, B., Lin, H. X., Hernandez, G. A., Harpprecht, 

C., Zhang, C., Tukker, A., & Behrens, P. (2021). Global greenhouse gas emissions from 

residential and commercial building materials and mitigation strategies to 2060. Nature 

Communications, 12(1), 1-10.  



266 

 

Zhou, D., Zhao, C.-Y., & Tian, Y. (2012). Review on thermal energy storage with phase 

change materials (PCMs) in building applications. Applied Energy, 92, 593-605.  

Zunino, F., & Scrivener, K. (2021). The reaction between metakaolin and limestone and 

its effect in porosity refinement and mechanical properties. Cement and Concrete Research, 

140, 106307.  

Zunino, F., & Scrivener, K. (2022). Microstructural developments of limestone calcined 

clay cement (LC3) pastes after long-term (3 years) hydration. Cement and Concrete 

Research, 153, 106693. 



267 

 

Chapter 9  

9 Summary, Conclusions, and Recommendations for 
Future Work 

This chapter summarizes the major findings of the current study. Concluding remarks are 

distinctly outlined and recommendations for future work are provided to overcome the 

limitations of the present research. 

9.1 Summary and conclusions 

Enhancing the thermal energy storage (TES) capacity of buildings is of particularly great 

concern due to escalating worldwide energy demand. Integrating phase change materials 

(PCMs) into concrete provides latent heat capacity and therefore, moderates the indoor 

temperature fluctuation in buildings, thus prompting enhanced thermal comfort and 

considerable energy savings. Nevertheless, the addition of PCMs into concrete could 

influence its engineering properties, which requires concerted research investigations. 

Chapter 2 identifies four primary methods for incorporating PCMs into building materials 

including microencapsulated PCMs (MPCMs), shape-stabilized PCMs (SSPCMs), 

lightweight aggregate (LWA) impregnation, and macro-encapsulation. The major findings, 

drawbacks, limitations for each method were vigorously discussed and future research 

needs were recognized. 

In Chapter 3, a preliminary dataset was compiled and powerful machine learning models 

were developed to predict the compressive strength of MPCM-integrated cement-based 

composites with reasonable accuracy. Furthermore, the crucial variables affecting the 

compressive strength were identified. Accordingly, the MPCM and fine aggregate 

contents, curing age, and cement content indicated high importance, while the curing 

temperature was found to be less influential. The thermos-physical properties of MPCMs 

also seemed to affect the strength gain mechanism. 

In Chapter 4, a novel deep learning data synthesizing technique based on an updated 

version of the experimental dataset was employed to enrich the data points for training 
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robust ML models. Moreover, a mixture optimization paradigm validated with laboratory 

tests was developed to propose a mixture design approach for cement-based mortars and 

concretes for the first time. 

Chapter 5 investigates, for the first time, the effects of MPCMs on the apparent activation 

energy of cement-based composites using isothermal calorimetry and compressive strength 

measurements. Results demonstrated that the addition of MPCMs decreases the apparent 

activation energy, indicating less sensitivity of the strength development to temperature. 

The apparent activation energy of MPCM-integrated mortars and concretes can help better 

evaluate the temperature gradients and thermal stresses in hardening concrete. 

Chapter 6 deploys deep learning modeling techniques to simulate the hydration kinetics of 

MPCM-integrated cement-based composites. It was observed that the deep learning model 

outperformed the gradient boosting ensemble in accurately extrapolating the hydration 

kinetics. The apparent activation energy of diverse cement-based systems was calculated 

based on deep learning predictions, which were in great conformity with experimental 

results. 

An eco-friendly SSPCM for integrating TES in building materials was fabricated in 

Chapter 7. Bio-based PCMs were vacuum impregnated in recycled expanded glass 

granules and sealed with silica fume powder. Results indicated leak-free performance 

along with favorable melting temperatures and latent heat capacities of the developed 

SSPCMs for energy saving in buildings. Thermo-regulating analyses suggested maximum 

reduction of the indoor temperature up to 4°C in specimens with SSPCMs inclusions. 

Nevertheless, the strength measurements and microstructural analysis of mortars indicated 

lower compressive strength due to the increased porosity after the addition of SSCPMs. 

Ultimately, in Chapter 8, MPCMs were added to limestone calcined clay (LC3) mortars to 

develop a low-carbon latent heat TES (LHTES) system. MPCMs affected the hydration 

kinetics by reducing the peak of hydration and delaying the acceleration period. Although 

MPCMs increased the porosity and reduced the compressive strength, lowering the water-

to-binder ratio significantly refined the pore structure and prompted higher compressive 

strength. The thermos-regulating test also suggested reducing the indoor temperature 
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fluctuation by 3.5°C after MPCM addition, thus improving the energy saving in buildings 

along with reducing embodied carbon emissions. 

9.2 Contributions to the state-of-the-art 

Extensive numerical and laboratory experiments performed in this study provide the 

following significant contributions to the existing knowledge in the field: 

• An up-to-date experimental dataset on the mixture design of cement mortars and 

concretes incorporating various types MPCMs was collected. 

• Machine learning models were developed, for the first time, to predict the 

compressive strength of MPCM-inegrated cementitious composites and identify 

the most influential design variables. 

• Tabular generative adversarial networks (TGAN) were employed to generate 

numerous synthetic and credible data to compensate the low number of available 

experimental data. 

• A novel ternary machine learning framework was proposed, for the first time, to 

optimize the mixture design of cement mortars and concretes incorporating various 

commercially available MPCMs. 

• The apparent activation energy of cement-based composites incorporating 

MPCMs was calculated using isothermal calorimetry and compressive strength 

measurements to better understand the temperature sensitivity of such composites. 

• The correlation between the melting temperature of MPCMs and curing 

temperature of concrete was explored. 

• Eco-frienly SSPCMs suitable for thermal energy storage applications in buildings 

were developed using commercially available recycled aggregates and biobased 

PCMs in Canada. 
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• Novel low-carbon limestone calcined clay cement composites incorporating 

MPCMs were developed, for the first time, to simultaneously reduce the embodied 

and operational environmental footprint and carbon emissions of buildings. 

9.3 Research limitations 

Despite the promising contributions achieved in the current study, several limitations were 

recognized that need to be addressed in future work as follows: 

• There is clear lack of available experimental data on the diverse engineering 

properties of MPCM-integrated concretese such as slump. The mixture design of 

concretes should be optimized considering workability, environmental, and enery 

saving aspects, in addition to the mechanical performance requirements taken into 

account in this study. 

• The effects of MPCMs with similar melting temperatures, but different latent heat 

enthalpies, on the strength development of cement-based composites should be 

investigated. 

• The correlation between the energy saving capacity and mechanical strength of 

concretes incorporating various types of MPCMs should be benchmarked. 

• The economic benefits of MPCM-integrated concretes considering the cost of 

MPCMs compared to conventional ingredients of concrete should be calculated. 

• Life cycle analyses need to be carried out to better understand the environmental 

and cost saving effects of the developed low-carbon thermal energy storage 

composites. 

9.4 Recommendations for future research 

The major findings of this research along with the existing limitations point to the 

following research ideas for potential future research: 
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• The mixture optimization in the current research was carried out considering the 

objective of maximum latent heat capacity content with specific compressive 

strength requirements. As experimental data becomes more available in the future, 

the optimization can further be improved by including the fresh properties of 

MPCM-integrated mortars and concretes, such as slump. 

• Machine and deep learning methods demonstrated outstanding capability in 

modeling some of the engineering characteristics of the MPCM-integrated cement 

based-systems. Nevertheless, more comprehensive data are required to further 

correlate their mechanical strength with the energy storage capacity. 

• The calculation of the apparent activation energy in this research provides an 

opportunity for numerical simulation of the semi-adiabatic temperature rise in mass 

concrete elements. The effects of MPCMs on the thermal stress and strain 

development in mass concrete can now be better estimated using the activation 

energy values obtained herein. 

•  More extensive experimental efforts are needed to evaluate various engineering 

properties of low-carbon LHTES systems such as LC3-LHTES concrete developed 

in this study. Integrating low-carbon alternative binders with LHTES materials can 

further promote sustainability and reduce the operational and embodied emissions 

of major infrastructures. 

• Life cycle analysis (LCA) and life cycle cost analysis (LCCA) are needed to better 

illustrate the long-term energy and cost-saving of LHTES-integrated cementitious 

materials. 

• For the broader application of PCMs in the construction industry, it is crucial to 

develop new encapsulation techniques that are more compatible with cementitious 

matrices, and thus can improve mechanical performance. 



272 

 

Appendix A 

The actual hydration heat curves versus predicted values obtained from the GBR1 and 

DNN1 models developed in Chapter 6 for all cement-based systems are illustrated in Figs. 

A-1 to A-20. The simulated systems include En28 and En35 microencapsulated PCMs. 

The isothermal calorimetry tests were conducted at 15, 23, 30, 35, and 40°C. The systems 

are designated as PxTy where x denotes the inclusion percentage of MPCMs and y 

indicates the testing temperature. 

 

Figure A-1: Predictions of GBR1 for cement systems incorporating various levels of 

En28 at 15°C. 
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Figure A-2: Predictions of GBR1 for cement systems incorporating various levels of 

En28 at 23°C. 
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Figure A-3: Predictions of GBR1 for cement systems incorporating various levels of 

En28 at 30°C. 
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Figure A-4: Predictions of GBR1 for cement systems incorporating various levels of 

En28 at 35°C. 
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Figure A-5: Predictions of GBR1 for cement systems incorporating various levels of 

En28 at 40°C. 
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Figure A-6: Predictions of GBR1 for cement systems incorporating various levels of 

En35 at 15°C.  
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Figure A-7: Predictions of GBR1 for cement systems incorporating various levels of 

En35 at 23°C. 



279 

 

 

Figure A-8: Predictions of GBR1 for cement systems incorporating various levels of 

En35 at 30°C. 
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Figure A-9: Predictions of GBR1 for cement systems incorporating various levels of 

En35 at 35°C. 
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Figure A-10: Predictions of GBR1 for cement systems incorporating various levels of 

En35 at 40°C.  



282 

 

 

Figure A-11: Predictions of DNN1 for cement systems incorporating various levels of 

En28 at 15°C. 
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Figure A-12: Predictions of DNN1 for cement systems incorporating various levels of 

En28 at 23°C. 
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Figure A-13: Predictions of DNN1 for cement systems incorporating various levels of 

En28 at 30°C. 
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Figure A-14: Predictions of DNN1 for cement systems incorporating various levels of 

En28 at 35°C. 
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Figure A-15: Predictions of DNN1 for cement systems incorporating various levels of 

En28 at 40°C.  
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Figure A-16: Predictions of DNN1 for cement systems incorporating various levels of 

En35 at 15°C. 
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Figure A-17: Predictions of DNN1 for cement systems incorporating various levels of 

En35 at 23°C. 
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Figure A-18: Predictions of DNN1 for cement systems incorporating various levels of 

En35 at 30°C. 
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Figure A-19: Predictions of DNN1 for cement systems incorporating various levels of 

En35 at 35°C. 

  



291 

 

 

Figure A-20: Predictions of DNN1 for cement systems incorporating various levels of 

En35 at 40°C. 
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Appendix B 

Table B-1: Collected data for developing machine learning models 

No. Tm Lm PCM PCM_D C_type C W FA CA SP Age T fc 

2 28 98 18 900 2 434 192 1004 705 5.6 7 20 46 

3 28 98 36 900 2 434 192 951 705 5.6 7 20 35 

4 28 98 72 900 2 434 192 846 705 5.6 7 20 26 

5 28 98 0 900 2 434 192 1057 705 5.6 7 40 53 

6 28 98 18 900 2 434 192 1004 705 5.6 7 40 48 

7 28 98 36 900 2 434 192 951 705 5.6 7 40 44 

8 28 98 72 900 2 434 192 846 705 5.6 7 40 30 

9 28 98 0 900 2 434 192 1057 705 5.6 28 20 61 

10 28 98 18 900 2 434 192 1004 705 5.6 28 20 57 

11 28 98 36 900 2 434 192 951 705 5.6 28 20 50 

12 28 98 72 900 2 434 192 846 705 5.6 28 20 35 

13 28 98 0 900 2 434 192 1057 705 5.6 28 40 73 

14 28 98 18 900 2 434 192 1004 705 5.6 28 40 63 

15 28 98 36 900 2 434 192 951 705 5.6 28 40 56 

16 28 98 72 900 2 434 192 846 705 5.6 28 40 39 

17 24 120 0 750 1 480 264 1575 0 0 3 23 32 

18 24 120 106 750 1 480 264 1440 0 0 3 23 27 

19 24 120 0 750 1 480 264 1575 0 0 7 23 38 

20 24 120 106 750 1 480 264 1440 0 0 7 23 33 

21 24 120 0 750 1 480 264 1575 0 0 28 23 51 

22 24 120 106 750 1 480 264 1440 0 0 28 23 43 

23 25 159 0 900 1 650 260 1119 0 0 1 23 23 

24 25 159 6 900 1 667 266.8 1091 0 0 1 23 24 

25 25 159 12 900 1 684 273.6 1060 0 0 1 23 28 

26 25 159 19 900 1 702 280.8 1027 0 0 1 23 26 

27 25 159 26 900 1 721 288.4 993 0 0 1 23 25 

28 25 159 0 900 1 650 260 1119 0 0 3 23 34 

29 25 159 6 900 1 667 266.8 1091 0 0 3 23 34 

30 25 159 12 900 1 684 273.6 1060 0 0 3 23 38 

31 25 159 19 900 1 702 280.8 1027 0 0 3 23 36 

32 25 159 26 900 1 721 288.4 993 0 0 3 23 35 

33 25 159 0 900 1 650 260 1119 0 0 7 23 38 

34 25 159 6 900 1 667 266.8 1091 0 0 7 23 44 

35 25 159 12 900 1 684 273.6 1060 0 0 7 23 44 

36 25 159 19 900 1 702 280.8 1027 0 0 7 23 43 

37 25 159 26 900 1 721 288.4 993 0 0 7 23 41 

38 25 159 0 900 1 650 260 1119 0 0 28 23 48 

39 25 159 6 900 1 667 266.8 1091 0 0 28 23 57 
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40 25 159 12 900 1 684 273.6 1060 0 0 28 23 60 

41 25 159 19 900 1 702 280.8 1027 0 0 28 23 57 

42 25 159 26 900 1 721 288.4 993 0 0 28 23 51 

43 26 100 0 900 1 650 260 1119 0 0 1 23 23 

44 26 100 6 900 1 667 266.8 1091 0 0 1 23 18 

45 26 100 12 900 1 684 273.6 1060 0 0 1 23 18 

46 26 100 19 900 1 702 280.8 1027 0 0 1 23 17 

47 26 100 26 900 1 721 288.4 993 0 0 1 23 18 

48 26 100 0 900 1 650 260 1119 0 0 3 23 35 

49 26 100 6 900 1 667 266.8 1091 0 0 3 23 29 

50 26 100 12 900 1 684 273.6 1060 0 0 3 23 28 

51 26 100 19 900 1 702 280.8 1027 0 0 3 23 27 

52 26 100 26 900 1 721 288.4 993 0 0 3 23 27 

53 26 100 0 900 1 650 260 1119 0 0 7 23 40 

54 26 100 6 900 1 667 266.8 1091 0 0 7 23 32 

55 26 100 12 900 1 684 273.6 1060 0 0 7 23 33 

56 26 100 19 900 1 702 280.8 1027 0 0 7 23 29 

57 26 100 26 900 1 721 288.4 993 0 0 7 23 29 

58 26 100 0 900 1 650 260 1119 0 0 28 23 48 

59 26 100 6 900 1 667 266.8 1091 0 0 28 23 42 

60 26 100 12 900 1 684 273.6 1060 0 0 28 23 39 

61 26 100 19 900 1 702 280.8 1027 0 0 28 23 33 

62 26 100 26 900 1 721 288.4 993 0 0 28 23 32 

63 25 85 0 350 1 450 249.8 1238 0 0 7 23 35 

64 25 85 5.1 350 1 450 249 1201 0 0 7 23 26 

65 25 85 8.4 350 1 450 248.5 1176 0 1 7 23 24 

66 25 85 16.9 350 1 450 247.3 1114 0 2 7 23 30 

67 25 85 25.3 350 1 450 246 1052 0 2.8 7 23 27 

68 25 85 33.8 350 1 450 244.8 990 0 2.5 7 23 29 

69 25 85 59.1 350 1 450 241.1 805 0 2.5 7 23 20 

70 25 85 96.2 350 1 450 235.6 532 0 2.5 7 23 19 

71 25 85 0 350 1 450 249.8 1238 0 0 28 23 44 

72 25 85 5.1 350 1 450 249 1201 0 0 28 23 32 

73 25 85 8.4 350 1 450 248.5 1176 0 1 28 23 26 

74 25 85 16.9 350 1 450 247.3 1114 0 2 28 23 37 

75 25 85 25.3 350 1 450 246 1052 0 2.8 28 23 30 

76 25 85 33.8 350 1 450 244.8 990 0 2.5 28 23 34 

77 25 85 59.1 350 1 450 241.1 805 0 2.5 28 23 25 

78 25 85 96.2 350 1 450 235.6 532 0 2.5 28 23 23 

79 25 85 0 350 1 294.3 154.67 837 1008.8 4.0875 7 23 43 

80 25 85 22.56 350 1 294.3 154.18 814 1008.8 4.905 7 23 28 

81 25 85 67.7 350 1 294.3 153.36 769 1008.8 6.54 7 23 16 

82 25 85 112.815 350 1 294.3 152.38 724 1008.8 11.445 7 23 13 
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83 25 85 0 350 1 294.3 154.67 837 1008.8 4.0875 28 23 57 

84 25 85 22.56 350 1 294.3 154.18 814 1008.8 4.905 28 23 47 

85 25 85 67.7 350 1 294.3 153.36 769 1008.8 6.54 28 23 22 

86 25 85 112.815 350 1 294.3 152.38 724 1008.8 11.445 28 23 20 

87 26 160 0 900 1 370 210 802 985 0 28 20 52 

88 26 160 11.8 900 1 370 210 767 985 0 28 20 39 

89 26 160 23 900 1 370 210 734 985 0 28 20 29 

90 26 160 65.3 900 1 370 210 610 985 0 28 20 16 

91 26 160 103.3 900 1 370 210 499 985 0 28 20 10 

92 18 100 0 900 1 524 234 951 638 2.6 28 23 44 

93 18 100 24 900 1 511 228 927 622 2.6 28 23 44 

94 18 100 71 900 1 486 218 882 592 2.4 28 23 29 

95 18 100 102 900 1 447 223 817 548 6.8 28 23 25 

96 21 85 0 350 1 510 255 1530 0 0 28 20 61 

97 21 85 5.1 350 1 507 254 1521 0 0 28 20 56 

98 21 85 10.1 350 1 504 252 1513 0 0 28 20 53 

99 21 85 15 350 1 501 251 1504 0 0 28 20 48 

100 21 85 24.8 350 1 496 248 1488 0 0 28 20 48 

101 21 85 48.3 350 1 483 241 1448 0 0 28 20 43 

102 21 85 5.1 350 1 510 255 1515 0 0 28 20 54 

103 21 85 10.2 350 1 510 255 1500 0 0 28 20 52 

104 21 85 15.3 350 1 510 255 1485 0 0 28 20 50 

105 21 85 25.5 350 1 510 255 1455 0 0 28 20 46 

106 21 85 51 350 1 510 255 1380 0 0 28 20 42 

107 16 184 5.1 800 1 507 254 1521 0 0 28 20 61 

108 16 184 15 800 1 501 251 1504 0 0 28 20 52 

109 16 184 24.8 800 1 496 248 1488 0 0 28 20 53 

110 16 184 48.3 800 1 483 241 1448 0 0 28 20 47 

111 20 113 5.1 800 1 507 254 1521 0 0 28 20 61 

112 20 113 15 800 1 501 251 1504 0 0 28 20 54 

113 20 113 24.8 800 1 496 248 1488 0 0 28 20 52 

114 20 113 48.3 800 1 483 241 1448 0 0 28 20 47 

115 25 185 5.1 800 1 507 254 1521 0 0 28 20 61 

116 25 185 15 800 1 501 251 1504 0 0 28 20 52 

117 25 185 24.8 800 1 496 248 1488 0 0 28 20 51 

118 25 185 48.3 800 1 483 241 1448 0 0 28 20 47 

119 28 175 0 900 1 390 285 1517 0 0 28 20 20 

120 28 175 213 900 1 341 307 883 0 0 28 20 13 

121 28 175 0 900 1 348 209 903 864 0 28 20 52 

122 28 175 190 900 1 366 225 593 567 0 28 20 10 

123 28 175 0 900 1 450 183 1673 0 13.5 28 20 61 

124 28 175 263 900 1 450 213 900 0 13.5 28 20 16 

125 28 175 199 900 1 450 194 1099 0 13.5 28 20 23 
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126 28 175 133 900 1 450 189 1300 0 13.5 28 20 30 

127 28 175 0 900 1 439 188 1088 604 34.2 28 20 54 

128 28 175 234 900 1 439 214 386 604 13.2 28 20 8 

129 28 175 117 900 1 439 201 737 604 23.7 28 20 21 

130 28 175 78 900 1 439 196 854 604 27.2 28 20 31 

131 25 100 0 915 1 450 203.2 965 706.7 3.1 28 23 74 

132 25 100 23.3 915 1 450 207.4 893 706.7 3.1 28 23 52 

133 25 100 70 915 1 450 211.5 795 706.7 2.4 28 23 35 

134 25 100 113.7 915 1 450 248.4 795 706.7 2.9 28 23 21 

135 29 185 0 900 1 350 200 630 1160 0 7 25 18 

136 29 185 10.66 900 1 350 200 599 1160 0 7 25 15 

137 29 185 21.32 900 1 350 200 567 1160 0 7 25 15 

138 29 185 31.97 900 1 350 200 536 1160 0 7 25 17 

139 29 185 42.63 900 1 350 200 504 1160 0 7 25 15 

140 29 185 0 900 1 350 200 630 1160 0 28 25 21 

141 29 185 10.66 900 1 350 200 599 1160 0 28 25 19 

142 29 185 21.32 900 1 350 200 567 1160 0 28 25 18 

143 29 185 31.97 900 1 350 200 536 1160 0 28 25 18 

144 29 185 42.63 900 1 350 200 504 1160 0 28 25 16 

145 29 185 0 900 1 350 200 630 1160 0 7 25 18 

146 29 185 10.66 900 1 350 200 630 1160 0 7 25 13 

147 29 185 21.32 900 1 350 200 630 1160 0 7 25 11 

148 29 185 31.97 900 1 350 200 630 1160 0 7 25 12 

149 29 185 42.63 900 1 350 200 630 1160 0 7 25 10 

150 29 185 0 900 1 350 200 630 1160 0 28 25 21 

151 29 185 10.66 900 1 350 200 630 1160 0 28 25 16 

152 29 185 21.32 900 1 350 200 630 1160 0 28 25 13 

153 29 185 31.97 900 1 350 200 630 1160 0 28 25 13 

154 29 185 42.63 900 1 350 200 630 1160 0 28 25 13 

155 28 98 0 900 2 471.1 235.6 957 705 4.8 1 20 32 

156 28 98 0 900 2 471.1 235.6 957 705 4.8 7 20 46 

157 28 98 0 900 2 471.1 235.6 957 705 4.8 14 20 49 

158 28 98 0 900 2 471.1 235.6 957 705 4.8 28 20 54 

159 28 98 64.3 900 2 471.1 235.6 766 705 4.8 1 20 17 

160 28 98 64.3 900 2 471.1 235.6 766 705 4.8 7 20 24 

161 28 98 64.3 900 2 471.1 235.6 766 705 4.8 14 20 27 

162 28 98 64.3 900 2 471.1 235.6 766 705 4.8 28 20 30 

163 24 96 64.3 900 2 471.1 235.6 766 705 4.8 1 20 15 

164 24 96 64.3 900 2 471.1 235.6 766 705 4.8 7 20 24 

165 24 96 64.3 900 2 471.1 235.6 766 705 4.8 14 20 27 

166 24 96 64.3 900 2 471.1 235.6 766 705 4.8 28 20 30 

167 28 98 0 900 2 471.1 235.6 957 705 4.8 1 40 37 

168 28 98 0 900 2 471.1 235.6 957 705 4.8 7 40 53 
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169 28 98 0 900 2 471.1 235.6 957 705 4.8 14 40 66 

170 28 98 0 900 2 471.1 235.6 957 705 4.8 28 40 72 

171 28 98 64.3 900 2 471.1 235.6 766 705 4.8 1 40 17 

172 28 98 64.3 900 2 471.1 235.6 766 705 4.8 7 40 26 

173 28 98 64.3 900 2 471.1 235.6 766 705 4.8 14 40 32 

174 28 98 64.3 900 2 471.1 235.6 766 705 4.8 28 40 35 

175 24 96 64.3 900 2 471.1 235.6 766 705 4.8 1 40 21 

176 24 96 64.3 900 2 471.1 235.6 766 705 4.8 7 40 31 

177 24 96 64.3 900 2 471.1 235.6 766 705 4.8 14 40 36 

178 24 96 64.3 900 2 471.1 235.6 766 705 4.8 28 40 43 

179 28 102 0 694 1 536 214 750 857 1.6 7 23 42 

180 28 102 69 694 1 467 214 653 747 5.4 7 23 26 

181 28 102 139 694 1 398 214 557 636 9.4 7 23 17 

182 28 102 208 694 1 329 214 460 526 18.8 7 23 10 

183 28 102 69 694 1 536 214 485 857 8 7 23 33 

184 28 102 139 694 1 536 214 220 857 13.4 7 23 18 

185 28 102 0 694 1 536 214 750 857 1.6 7 40 41 

186 28 102 69 694 1 467 214 653 747 5.4 7 40 20 

187 28 102 139 694 1 398 214 557 636 9.4 7 40 13 

188 28 102 208 694 1 329 214 460 526 18.8 7 40 8 

189 28 102 69 694 1 536 214 485 857 8 7 40 32 

190 28 102 139 694 1 536 214 220 857 13.4 7 40 18 

191 28 102 0 694 1 536 214 750 857 1.6 28 23 45 

192 28 102 69 694 1 467 214 653 747 5.4 28 23 29 

193 28 102 139 694 1 398 214 557 636 9.4 28 23 19 

194 28 102 208 694 1 329 214 460 526 18.8 28 23 12 

195 28 102 69 694 1 536 214 485 857 8 28 23 35 

196 28 102 139 694 1 536 214 220 857 13.4 28 23 18 

197 28 102 0 694 1 536 214 750 857 1.6 28 40 45 

198 28 102 69 694 1 467 214 653 747 5.4 28 40 20 

199 28 102 139 694 1 398 214 557 636 9.4 28 40 13 

200 28 102 208 694 1 329 214 460 526 18.8 28 40 8 

201 28 102 69 694 1 536 214 485 857 8 28 40 33 

202 28 102 139 694 1 536 214 220 857 13.4 28 40 21 

203 25 160 0 900 1 582 282.3 1535 0 0 28 20 70 

204 25 160 99 900 1 545 317 1438 0 0 28 20 46 

205 25 160 186.5 900 1 513 348 1352 0 0 28 20 29 

206 25 160 263 900 1 483 377.5 1273 0 0 28 20 21 

207 23 148 0 800 2 500 275 1419 0 15 28 23 29 

208 23 148 184.9 800 2 500 255 925 0 15 28 23 18 

209 23 148 257.7 800 2 500 280 644 0 15 28 23 12 

210 23 148 292.9 800 2 500 300 488 0 15 28 23 11 

211 23 148 0 800 1 500 255 1471 0 15 28 23 44 
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212 23 148 184.9 800 1 500 255 925 0 15 28 23 19 

213 23 148 252.9 800 1 500 290 632 0 15 28 23 16 

214 23 148 290.2 800 1 500 305 484 0 15 28 23 14 

215 22 200 0 700 2 500 325 1279 0 15 28 10 20 

216 22 200 32.2 700 2 500 275 1290 0 15 28 10 18 

217 22 200 62.2 700 2 500 250 1244 0 15 28 10 18 

218 22 200 90.3 700 2 500 225 1204 0 15 28 10 19 

219 22 200 0 700 2 500 325 1279 0 15 28 25 19 

220 22 200 32.2 700 2 500 275 1290 0 15 28 25 17 

221 22 200 62.2 700 2 500 250 1244 0 15 28 25 18 

222 22 200 90.3 700 2 500 225 1204 0 15 28 25 19 

223 22 200 0 700 2 500 325 1279 0 15 28 40 21 

224 22 200 32.2 700 2 500 275 1290 0 15 28 40 19 

225 22 200 62.2 700 2 500 250 1244 0 15 28 40 19 

226 22 200 90.3 700 2 500 225 1204 0 15 28 40 19 

227 23 55 0 980 1 575 172.5 912 711 5 7 23 50 

228 23 55 13.5 980 1 572 171.5 907 707 5 7 23 48 

229 23 55 26.15 980 1 558 172.5 885 690 5.8 7 23 44 

230 23 55 38.2 980 1 543 179.5 860 670 6.95 7 23 36 

231 23 55 50.5 980 1 484 191 888 690 5.8 7 23 32 

232 23 55 62.5 980 1 255 160.5 876 752 6 7 23 12 

233 23 55 0 980 1 575 172.5 912 711 5 28 23 55 

234 23 55 13.5 980 1 572 171.5 907 707 5 28 23 51 

235 23 55 26.15 980 1 558 172.5 885 690 5.8 28 23 49 

236 23 55 38.2 980 1 543 179.5 860 670 6.95 28 23 43 

237 23 55 50.5 980 1 484 191 888 690 5.8 28 23 39 

238 23 55 62.5 980 1 255 160.5 876 752 6 28 23 20 

239 23 55 0 980 1 575 172.5 912 711 5 60 23 60 

240 23 55 13.5 980 1 572 171.5 907 707 5 60 23 55 

241 23 55 26.15 980 1 558 172.5 885 690 5.8 60 23 51 

242 23 55 38.2 980 1 543 179.5 860 670 6.95 60 23 49 

243 23 55 50.5 980 1 484 191 888 690 5.8 60 23 42 

244 23 55 62.5 980 1 255 160.5 876 752 6 60 23 20 
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