3-1-2016

Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes

Eric A Hoffman
David A Lynch
R Graham Barr
Edwin J R van Beek
Grace Parraga

Follow this and additional works at: https://ir.lib.uwo.ca/biophysicspub

Part of the Medical Biophysics Commons

Citation of this paper:
Hoffman, Eric A; Lynch, David A; Barr, R Graham; van Beek, Edwin J R; and Parraga, Grace, "Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes" (2016). Medical Biophysics Publications. 120.
https://ir.lib.uwo.ca/biophysicspub/120
Pulmonary CT and MRI Phenotypes That Help Explain Chronic Pulmonary Obstruction Disease Pathophysiology and Outcomes

Eric A. Hoffman, PhD,1,2,3 David A. Lynch, MD,4 R. Graham Barr, MD,5,6 Edwin J.R. van Beek, MD,7 Grace Parraga, PhD,8,9* for the IWPFI Investigators

Pulmonary x-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research and development has been motivated, in part, by the quest to subphenotype common chronic lung diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the main COPD research tools, disease biomarkers are being validated that go beyond anatomy and structure to include pulmonary functional measurements such as regional ventilation, perfusion, and inflammation. In addition, there has also been a drive to improve spatial and contrast resolution while at the same time reducing or eliminating radiation exposure. Therefore, this review focuses on our evolving understanding of patient-relevant and clinically important COPD endpoints and how current and emerging MRI and CT tools and measurements may be exploited for their identification, quantification, and utilization. Since reviews of the imaging physics of pulmonary CT and MRI and reviews of other COPD imaging methods were previously published and well-summarized, we focus on the current clinical challenges in COPD and the potential of newly emerging MR and CT imaging measurements to address them. Here we summarize MRI and CT imaging methods and their clinical translation for generating reproducible and sensitive measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma morphology. The key clinical problems in COPD provide an important framework in which pulmonary imaging needs to rapidly move in order to address the staggering burden, costs, as well as the mortality and morbidity associated with COPD.

Copd Measurements and Endpoints are Urgently Needed

Despite decades of research, therapies that modify chronic obstructive pulmonary disease (COPD) progression or mortality are lacking.1 Despite considerable efforts to discover and develop new COPD interventions, progress has been slow. This is in part due to limited and suboptimal patient phenotyping that relies on spirometry measurements made at the mouth that cannot account for the regional and intersubject variability of COPD. Moreover, while COPD is still diagnosed and classified on the basis of symptoms related to the presence of persistent airflow limitation,1 these measurements correlate weakly with important clinical outcomes.2 A wide variety of imaging methods may be used to study the pulmonary system, including those that rely on tissue absorption of x-ray radiation (chest x-ray and computed tomography [CT]), radiofrequency stimulation (magnetic resonance imaging [MRI]), or signals generated from injected or inhaled radioactive particles (simple gamma emission projection imaging, single photon emission tomography [SPECT] and positron emission tomography [PET]) and inhaled or...
injected contrast agents. New insights into the basis for disease initiation and progress using these methods have the potential to break through the current conundrum, which is the fact that image acquisition and analysis tools are slow to be adopted because of a lack of meaningful interventions and yet the interventions are slow in coming because of a lack of understanding disease mechanisms and etiology. Therefore, as shown in Fig. 1, we frame this review of CT and MRI measurements and phenotypes as potential solutions to the following major COPD problems: 1) COPD treatments are required that improve outcomes, not just symptoms; 2) a better understanding of COPD disease onset and mechanisms is urgently required in order to better design drugs targeted at underlying pathophysiology; 3) more sensitive measurements are required to better understand the links between ventilation, perfusion, and inflammation; and 4) better predictive measurements of COPD exacerbations and progression are critically needed. Here we summarize and compare MRI and CT tools and measurements of COPD because of their near-universal availability that makes their use in COPD multicenter clinical trials and COPD patient care both practical and timely. Taken together, MRI and CT methods provide a way to identify the underlying pathologies associated with COPD and previous work has been summarized and previously reviewed.

Pulmonary CT Measurements of Copd

CT Structural Measurements and Phenotypes

Computer-based methods for the objective quantitation of CT images are increasingly used in multicenter studies that aim to interrogate phenotype-genotype linkages and identify intermediary endpoints for the assessment of potential interventions. A cornerstone of this approach is the CT lung tissue attenuation or density mask that provides a way to estimate regional COPD-related emphysema. By empirically defining regional emphysematous lung using selected threshold tissue attenuation measurements (Hounsfield Unit [HU]) at full inspiration (total lung capacity [TLC]), one can count the number of voxels in the whole lung and express this measure. In this way, the percent of voxels reflecting emphysema can be expressed relative to the total volume of the lung or lung region. The CT density mask is particularly useful in classifying mild/moderate and severe emphysema and has been used in the National Emphysema Treatment Trial (NETT) to identify subgroups of patients who show benefit from lung volume reduction surgery. In the left panel of Fig. 2 (using Apollo software provided by VIDA Diagnostics, Coralville, IA), the spatially heterogeneous distribution of emphysema, shown in spheres and regional clustering (sphere size), is shown by lung lobe. Similarly, a density mask may be used on the expiratory dataset (residual volume [RV] or functional residual capacity [FRC]) to identify regions of air trapping as shown in the middle panel of Fig. 2. In both the inspiratory and expiratory images, airways may also be segmented and labeled using commercially available software such that relationships can be determined between the airway path, airway remodeling features, and parenchymal destruction or peripheral airway closure. CT-based density metrics have been used in numerous large-scale studies, producing a wealth of literature over the past several years. These measures have identified correspondence of quantitative CT measures of emphysema and air trapping to, for example: genotypes,
It is also important to note that in addition to tissue attenuation or density masks, texture analyses may be employed to evaluate clusters of emphysema such as estimated using low attenuating clusters. Image analysis methods based on such local feature patterns provide a way to objectively differentiate between these subtypes and some of these methods have better classification rates than expert radiologists. So-called low attenuation clusters are visually obvious, correlating with histopathology measurements and more closely reflecting scoring performed by a radiologist.

However, CT quantification of the lung parenchyma is also challenging. Scanner miscalibration, inconsistent use of reconstruction kernels, differences in reconstruction algorithms between manufacturers, and poor coaching of the patient to the targeted lung volume can result in measurement variability. Accurate, quantitative CT requires image acquisition consistency, and even then, subject age, sex, race/ethnicity, and height influence the normal range of these measures (similar to lung function) as does weight. Current smoking status has a large and paradoxical effect on these measures, making precise measurements of smoking status (e.g., cotinine or other objective measure) important in longitudinal studies. Reference equations for both percent emphysema and total lung volume on CT are now available to account for most of these differences. The limitations due to concerns of radiation dose are being addressed with recent advances in CT technologies, including improvements in the x-ray tube, detector technology, adaptive exposure, and iterative image reconstruction, leading to clinically adequate image quality with sub-mSv doses. Finally, despite considerable successes using quantitative CT to assess the presence and distribution of emphysema and airway wall remodeling, critical underlying differences among disease subpopulations continue to emerge. For example, in an apparently discordant result, spatially matched airway segmentation demonstrated that airway walls may become thinner rather than thicker in COPD, leaving open the possibility that airway wall remodeling may itself have multiple phenotypes.

Functional CT Measurements and Phenotypes

PULMONARY CT VASCULAR OR PERFUSION. It has long been thought that a better understanding of the pathologic response to inflammation in COPD and asthma will be important for the design of new therapies. What is well understood is that in response to noxious particles and gases in cigarette smoke, the lung reacts by recruiting inflammatory cells. Pulmonary vascular changes, including thickening of the vessel walls, have been characterized early in the history of COPD. More recently it was observed that in the presence of inflammation there is an enhanced delivery of progenitor cells to the lung. Remy-Jardin et al recently observed an increased propensity for the lung to develop emphysema in regions of suspected inflammatory processes as...
defined by ill-defined ground-glass opacities and micronodules. In more than half of smokers, the inflammatory process was able to resolve itself with repair and maintenance of normal parenchymal anatomy and function. For the remainder (30–45% of smokers) there was parenchymal destruction. There is evidence in the literature suggesting that in humans and animals, hypoxic pulmonary vasoconstriction (HPV) is normally blocked in the presence of inflammation.25,67–69 For example, Alford et al70 demonstrated that smokers with normal pulmonary function, but small visibly obvious signs of localized, apical centrilobular emphysema, have an increase in coefficient of variation (CV) of CT-based regional pulmonary blood flow (PBF) and mean transit time (MTT), supporting a hypothesis that one etiology of smoking-associated emphysema may be failure to maintain PBF to inflamed lung regions. Recent work published together with an associated editorial31,71 also demonstrated and discussed the strong relationship between impaired LV filling and percent emphysema in a group of nonsmokers, exsmokers, and current smokers. The correlation between impaired LV filling with emphysema was greatest in current smokers compared with previous smokers, consistent with the notion that the inflammatory effects of smoking may determine this effect rather than emphysema alone.

With the observation that pulmonary perfusion heterogeneity may serve as a biomarker in smokers susceptible to centrilobular emphysema,70 it has been hypothesized that the lung normally inhibits HPV in the presence of inflammation. Conversely, in patients unable to block HPV in inflamed lung regions, perfusion is reduced, thus prolonging inflammation and limiting repair mechanisms. With the use of single-breath methods in conjunction with dual energy CT, efforts have been directed towards maintaining sensitivity to increased perfusion heterogeneity while simplifying imaging methodologies.

Dual-energy CT (DECT) provides a way to double the temporal resolution of CT, making it possible to image the entire lung field with a 0.62-mm slice thickness in 0.6 seconds. By having two x-ray guns together with two sets of detector rows, both capable of acquiring 128 slices of image data, there is now the possibility of DECT which allows for sensitive discrimination between tissue types and contrast agents such as iodine for perfusion and xenon (Xe) for ventilation. At two different peak kilo-voltages (kVp), the reconstructed CT densities for iodine or Xe are shifted significantly between the two resultant image datasets, but the body tissues are not. Thus, because the two image sets were acquired simultaneously, assuring alignment, with a modified form of image subtraction (material decomposition), it is possible to assess perfused blood volume or regional ventilation, respectively. For regional assessment of perfused blood volume, when blood is equilibrated with a concentration of iodine (or gadolinium) through the slow infusion of contrast agent, an image of iodine (or gadolinium) can be directly related to regional blood volume.

Other studies have demonstrated the equivalency of perfused blood volume (PBV), as assessed by DECT, and true perfusion. PBV and PBF likely reflect one another because peripheral vascular beds dilate and capillary beds are recruited with increased PBF. PBV may be evaluated using DECT during a slow infusion of x-ray contrast. As shown in Fig. 3, modified72 from a report on interventions performed in pigs, regional perfusion (color-coded from red to blue as percent of total perfused blood volume or total perfusion) was perturbed either by incrementally pulling back a balloon catheter placed in a pulmonary artery or by imaging the lung at various static inflation pressures which effectively reduces perfusion in the nondependent lung regions.72 Under all conditions, PBF maps and PBV maps are strikingly similar and a strong relationship for PBF and PBV heterogeneity was also demonstrated.

PULMONARY CT VENTILATION. Xe gas regional wash-in and washout kinetic studies were also explored using CT imaging73–75 and these methods have been translated clinical studies.76–82 Importantly, with the more recent development of DECT, it is possible to simplify the assessment of regional ventilation via use of single-breath methods. As shown in Fig. 4, by adjusting Xe inhalation of a Xe/O2 gas mixture, gas flow to the central airways may be monitored and compared with gas flow to the parenchyma. As shown in Fig. 4, left panel, the central airway tree is identified by having the subject inhale to TLC, exhale the central dead space volume, and reinhale the same volume of a Xe gas mixture. This leaves just the central airways filled with Xe gas. In the right panel, results are shown from a single inhalation of a Xe gas mixture. It was also demonstrated that with a slow inhalation of Xe gas mixtures, geometry, and gas density influence or dominate gas distribution causing increased ventilation heterogeneity, while with a rapid inspiration, ventilation is more homogeneous.83 Furthermore, the gravity-driven distribution of Xe gas can be eliminated by mixing Xe with helium (He), likely due to the change in the gas density mixture. Another contrast gas agent, krypton (Kr), while less radiodense than Xe,84,85 has no anesthetic effects. As multispectral CT technologies, including photon counting CT,86–88 evolve, it is expected that sensitivity to Kr gas contrast will improve, making it a potential translational/clinical method.

As an alternative to inhaled contrast agents, recent studies89,90 have shown that regional measures of lung ventilation can be assessed using CT images acquired at different volumes without the need for inhaled contrast agents. A two-lung volume (TLC or full inspiration and RV or full expiration) protocol has been standardized as part of “SPIROMICS”,13 a CT protocol that obtains isotropic submillimeter images of the
entire lungs at TLC and RV. Using this protocol together with advanced image registration methods,90–95 regional maps of lung ventilation can be obtained at spatial resolutions close to the size of a pulmonary acinus. Image matching of an inspiratory/expiratory lung image pair has also been employed7 to help differentiate air trapping from emphysema. Functional measurements may be directly generated from expiratory CT96,97 or a combination of inspiratory and expiratory CT, including those generated using parametric response maps.7 All of these important approaches have the potential to test

FIGURE 3: Gray-scale (top row), PBV (middle row), and PBF (lower row) MDCT scans (Columns 1–3). Color map comparison of CT-derived PBF and PBV from pig imaged at three different lung volumes, used to achieve a range of pulmonary perfusion values (Column 4). Color map comparison of CT-derived PBF (dynamic axial scanning) and PBV (dual energy spiral scanning) from pig studied with a balloon partially inflated in a left lower lobe pulmonary artery. Color coding is the same for each condition: percent of total PBV or PBV with low values in blue and high values in red. Modified from Ref. 72.

FIGURE 4: DECT scans of the airway tree (left) and lung parenchyma (right) of an anesthetized pig. For the scan in the left panel, the lung was inflated to 25 cmH2O airway pressure using room air. An amount of air approximately equal in volume to the central airway tree was removed and replaced with xenon gas. This provided a way to identify the central airway tree without the use of more conventional airway segmentation methods. In the right panel, the lungs were inflated from functional residual capacity to total lung capacity via a gas mixture of 80% xenon and 20% oxygen. Material decomposition image processing was used to generate an image representing the regional distribution of the inhaled xenon gas.
the hypotheses generated using micro-CT98 about the pathological mechanisms that accompany the earliest airway and parenchyma changes in COPD.

There is well-developed software commercially available for evaluating the relationship of airway microstructural abnormalities with ventilation and emerging software tools are now being developed to probe the geometry of the pulmonary arterial and venous trees and vascular-structure function relationships.99–101 The extracted pulmonary vascular tree from a noncontrast inspiratory MDCT volume of the lung is shown in the right panel of Fig. 2, and the volume of this combined arterial and venous tree, the total pulmonary vascular volume (TPVV), has been developed using methods that segment the arterial tree101. The cross-sectional area of the pulmonary trunk relative to the aorta has been shown102 to correlate with acute exacerbations in COPD patients and TPVV (normalized to total lung volume) is currently being used as an upstream marker of downstream endothelial dysfunction.103

Pulmonary MRI Measurements of COPD

Conventional \(^1\)H MRI Structural and Functional Phenotypes

As pulmonary CT continues to advance with new capabilities and lower radiation doses, pulmonary MRI has also advanced to provide complementary tools for the quantitative evaluation of lung structure and function. However, pulmonary MRI using conventional hardware platforms (\(^1\)H methods) is very technically challenging and therefore, currently its clinical use has been limited. These technical demands stem from the inherently low pulmonary \(^1\)H abundance and corresponding low \(^1\)H signal that can be measured using conventional MRI approaches. Furthermore, the multitude of lung air–tissue interfaces generate significant magnetic field distortions or susceptibility artifacts, further diminishing pulmonary \(^1\)H MRI signal. For these reasons, and until recently, the major applications of conventional pulmonary \(^1\)H MRI included intravenous contrast agents to evaluate pulmonary blood flow and vessel hemodynamics.104 Methods have also been devised that combine relaxation signals and intravenous contrast that provide a way to differentiate inflammation105, smooth muscle remodeling, edema, and mucus deposition.104,105 Taken together, these methods provide a way to identify the underlying pathologies associated with COPD. However, because signal intensity is generally very low using \(^1\)H MRI, careful calibration with other organs in the same field of view is required. In addition, because gravity-dependent changes occur, signal averaging over time may not provide physiologically relevant information in the dependent lung regions, where atelectasis may occur in minutes while supine.

Another way to address these challenges is to reduce the time (echo time [TE]) required to acquire the pulmonary MR signal. As shown in Fig. 5, conventional, ultrashort TE (UTE) pulse sequences, as suggested two decades ago106, significantly improve pulmonary MR signal so that emphysematous regions can be identified and quantified, based on the difference between tissue-poor emphysematous bullae and more normal parenchyma. So-called ultrashort-echo or zero echo time MRI methods help address the inherent challenges of low tissue and \(^1\)H density107 by minimizing the effects of rapid MR signal decay. The relationship between MRI signal intensity and tissue density108, as previously shown for pulmonary CT, is clearly important for further development of the method. The first studies employing UTE methods reported that the tissue density was related to MR signal109 and \(T_2^*\). UTE MRI was also used to measure signal intensity and \(T_2^*\) in emphysema110 and showed good correlations with histological measurements, while \(T_2^*\) correlated with pulmonary function measurements111 and pulmonary signal intensity was related to tissue density, pulmonary function, and CT density measurements.108 Very recently, methods have been developed that exploit optimized112 and so-called zero echo time (ZTE)113 approaches and this has resulted in excellent MR image quality and signal in pulmonary images that is very similar to CT. Another method for measuring regional lung function involves using inhaled oxygen in combination with \(^1\)H MRI114 and this exploits the alteration of lung tissue \(^1\)H relaxation times by molecular O\textsubscript{2}. In this manner, wash-in or difference maps can be generated by using the inherent signal differences that stem from breathing room air and pure O\textsubscript{2}. While pulmonary ventilation is reflected by O\textsubscript{2} wash-in maps, the alveolar-capillary transfer may be reflected by the O\textsubscript{2}-enhancement ratio.115 Like all \(^1\)H-based MRI, O\textsubscript{2}-enhanced MRI is limited by the weak proton signal and the fact that O\textsubscript{2}-enhanced measurements still require histopathological validation. In fact, for all MRI measurements of COPD, validation of the pathologies directly or indirectly measured is still pending.

To tackle the challenge of very low pulmonary \(^1\)H signal intensity, Bauman and colleagues116–118 proposed another ingenious approach that relies on MRI signal oscillations that occur with the differences in lung volume during normal tidal breathing. It was hypothesized that the \(^1\)H MRI signal oscillations during breathing could be employed to generate both ventilation and perfusion images. They developed a way119 using Fourier decomposition (FD) of oscillating \(^1\)H signal intensity120 related to the compression and expansion of the lung parenchyma and blood flow121 to generate pulmonary ventilation and/or perfusion measurements. Importantly, this method was recently shown in COPD subjects with emphysema122 and contrast can be generated using static volumetric \(^1\)H MRI methods123. Figure 5 shows very recent examples of FD of pulmonary magnetic resonance imaging (FDMRI) in
COPD subjects across GOLD grades and excellent comparisons were also shown in animal studies. FDMRI exploits free-breathing 1H MRI and nonrigid registration to generate ventilation images. Importantly, although image registration and analysis is complex, and again dependent on weak 1H MRI contrast, this approach does not depend on inhaled gas or injected contrast agents, and therefore there is strong potential for clinical translation. Again, a more complete validation still needs to be undertaken.

Inhaled 19F and Hyperpolarized 129Xe/ 3He MRI Structural and Functional Phenotypes

Similar to FD and O2-enhanced 1H MRI methods, MRI using inhaled 19F gas (after multiple breaths of perfluoropropane mixed with oxygen), or hyperpolarized noble gases such as 3He and 129Xe (after a single breath mixed with 4He or N2), provides a way to visualize pulmonary ventilation by taking advantage of high gas density in the lung. For inhaled 3He and 129Xe, increased nuclear polarization generates ventilation images of the airways and airspaces and to measure apparent diffusion coefficients that estimate gas displacement. For 129Xe, similar to Xe-CT methods, the fractional solubility of Xe gas in biological tissues has additional applications for measuring gas exchange, alveolar surface area, and perfusion. For all three gases, the nuclear proton provides the MRI signal. In the case of 19F, MR signal is inherently strong because of the high gyromagnetic ratio of 19F such that extra polarization (and polarization
equipment) is not required. For both 3He and 129Xe, however, nuclear polarization is achieved126,127 using laser polarization equipment. As shown in Fig. 5, 3He and 129Xe MRI provide superior signal-to-noise ratio ventilation images in COPD subjects, and typically, image quality using 3He MRI is the greatest compared with polarized 129Xe and unpolarized 19F due to larger gyromagnetic ratio and high polarization rates for 3He. For these reasons, currently 3He MRI is most commonly used in research even though the global quantities of 3He are very limited and expensive. Although experience with 129Xe and 19F is still limited,128,129 these inhaled gas MRI methods provide the strongest translational potential because of the relative abundance and low cost of these gases.

Notwithstanding these challenges, recent acute therapy studies in COPD post-salbutamol130 and post-COPD exacerbation therapy requiring hospitalization131 show the potential for inhaled gas MRI ventilation defect measurements to represent the subtle (post-exacerbation) and not so subtle (post-salbutamol) ventilation improvements after therapy. It is important to note that the visibly obvious and statistically significant improvements in ventilation in these cases were not related to FEV\textsubscript{1} improvements. In addition, in a number of these previous COPD studies132, and as shown in Fig. 6 ventilation measured using MRI was directly related to CT-derived measurements of abnormally remodeled airways and emphysema. Importantly, previous work also showed the relationship of ventilation

FIGURE 6: MR ventilation imaging reflecting the effects of both emphysema (slow-filling units) and airways disease (airway obstruction)—a unique predictor of COPD exacerbations in mild disease.
abnormalities with subclinical disease in smokers with normal lung function. Moreover, regional ventilation worsening in COPD has been measured over a follow-up period of 2 years even in patients with no change in FEV₁. The Polarized Helium Imaging of the Lung (PHIL) Study was performed in three European centers in 122 COPD patients and is the largest COPD MRI-CT multicenter comparison study completed to date. This important study showed the potential for COPD biomarkers stemming from a comprehensive, prospectively planned, multimodal and multimodality imaging approach. Another innovative example showed the potential of ventilation MRI to interrogate the role of regional collateral ventilation in COPD patients with bullous emphysema. Finally, MRI measurements of ventilation in mild and moderate patients (GOLD I/II COPD) were also predictive of COPD exacerbation requiring hospital care, and in these patients previous exacerbation and FEV₁ were not.

For all inhaled gas MRI methods, diffusion due to random Brownian motion within the lung airways and airspaces can be measured using diffusion-weighted imaging similar to that used in conventional MRI. ³He or ¹²⁹Xe diffusion-weighted methods provide measurements of parenchymal microstructures, including the alveoli and acini that define the boundaries of the fundamental units for gas exchange. The apparent diffusion coefficient (ADC) map provides quantitative regional airspace measurements information that is in agreement with the presence of emphysematous damage. Such measurements are consistent with alveolar changes related to differences in lung volumes gravitational dependence and aging. Previous COPD studies have shown that ADC correlates with pulmonary function, and histological measurements of lung surface area, and is highly reproducible in COPD, while sensitive to subclinical disease and disease progression. Novel approaches have also been used to measure diffusion in longer time frames, providing a way to generate information about acinar duct and airway connectivities, including communication and collateral ventilation. Long-range ADC appears to be more than twice as sensitive to parenchymal differences associated with COPD than short-range ADC. Unfortunately, this important information has not yet been exploited in clinical research studies.

Gadolinium-Enhanced MRI Pulmonary Perfusion Phenotypes

Given the relative lack of ¹H signal in the lung using conventional approaches, gadolinium-enhanced imaging of first-pass pulmonary perfusion provides sensitive and relatively reproducible measurements of signal increase and its change over time (slope). Fourier transformation of the signal change allows for the assessment of pulmonary blood flow, mean transit time, and pulmonary blood volume. These measures can be attained over the whole lung or the lung periphery in order to evaluate microvascular perfusion. Pulmonary perfusion deficits were observed more frequently in COPD patients as compared to healthy volunteers; the largest study to date noted largely diminished pulmonary microvascular blood flow in mild to severe COPD with strong spatial correlations in severe disease to centrilobular and panlobular emphysema.

Conclusion

As summarized in Table 1, pulmonary CT and MRI are on the threshold of providing regional, noninvasive measurements of ventilation, perfusion, and parenchymal destruction as intermediate endpoints of COPD. However, whereas pulmonary CT measurements have been evaluated in COPDGene, ECLIPSE, MESA Lung, CanCOLD, and SPIROMICS, and cardiac MRI has been utilized in over 5000 participants in MESA, pulmonary MRI has not been exploited in large-scale studies. There are many reasons for this, even though pulmonary MRI is rapid, well-tolerated, and radiation-free, so it serves as an ideal platform for serial and longitudinal evaluations in patients.

Table 1. MRI and CT COPD Phenotypes

<table>
<thead>
<tr>
<th>Imaging biomarkers of COPD</th>
<th>Airways disease</th>
<th>Emphysema</th>
<th>Perfusion abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>Lumen area</td>
<td>Low attenuating clusters</td>
<td>Total pulmonary vascular volume</td>
</tr>
<tr>
<td></td>
<td>Wall area %</td>
<td>Low attenuating area</td>
<td>Iodine perfusion</td>
</tr>
<tr>
<td></td>
<td>Pi¹⁰</td>
<td>RA950</td>
<td>RA856</td>
</tr>
<tr>
<td></td>
<td>PRM-gas trapping</td>
<td>PRM-emphysema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xe gas ventilation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>Ventilation defect percent</td>
<td>ADC</td>
<td>Gadolinium perfusion</td>
</tr>
<tr>
<td></td>
<td>Percent ventilated volume</td>
<td></td>
<td>Xe perfusion/diffusion</td>
</tr>
</tbody>
</table>

Journal of Magnetic Resonance Imaging

552 Volume 43, No. 3
widespread use of all imaging biomarkers has been limited for a number of key reasons, including: 1) lack of support to harmonize image acquisition software; 2) universally available image analysis software; 3) regulatory boundaries for emerging approaches; and 4) historically weak links between respiratory and radiology clinical programs. Notwithstanding these issues, as shown in Fig. 6 CT and MRI measurements of COPD are being developed to provide a better understanding of disease onset, develop COPD treatments that improve outcomes, and to provide better predictive measurements of COPD exacerbations and progression.

The unique and complementary ability of both MRI and CT to measure disease morphological and functional consequences and explore mechanisms of disease pathophysiology has not yet translated to improved COPD patient care. In COPD, there is an increasing recognition that different phenotypes exist and that these patient groups may have different responses to therapy. Moreover, as therapies become more targeted and patient-specific, imaging will likely be one of the only ways to verify response and efficacy for an individual patient or group of patients. This will require imaging to become more quantitative, sensitive, and accessible to justify its current cost and complexity. Although the risks related to tobacco smoking will decrease over time in the developed world, as the world becomes more industrialized and polluted, and smoking habits change in the developing world, respiratory illnesses will continue to increase in prevalence, morbidity, and overall mortality. It is in this clinical context that development and appropriate utilization of pulmonary MRI and CT remain critically important.

Acknowledgments

We thank our research teams and collaborators for their continued support in the development and application of new pulmonary CT and MRI tools for the measurement and monitoring of COPD. We also thank Khadija Sheikh, Dante Capaldi, Melissa Shirk, Jered Sieren, and Ann Thompson for their assistance with figures and article preparation. This work was the result of extensive discussions during the 6th International Workshop for Pulmonary Functional Imaging, Madison, WI.

References

64. Peinado VI, Ramirez J, Roca J, Rodriguez-Roisin R, Barbera JA. Identification of vascular progenitor cells in pulmonary arteries of patients