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Abstract 

The scaled aerodynamic model of a bridge is often tested in the boundary layer wind tunnel 

laboratory (BLWTL). In this study a numerical model of the Baluarte Bridge subjected to wind 

loading is investigated. The scaled full bridge aerodynamic model was previously studied at 

the University of Western Ontario, Canada. For the numerical model a finite element model 

(FEM) is implemented, and the characterization of the buffeting forces are considered on the 

frequency and time domain. In the former case, the so-called pseudo excitation method is used 

to characterize the wind load, while in the latter the spectral representation method (SRM) is 

used to generate the synthetic wind speed field. In both cases, an inhomogeneous stochastic 

process is generated. The corresponding energy of the wind is formulated in terms of the power 

spectral density function, and appropriate coherence functions. Apart from the formulation of 

non-homogeneous wind, the simulation of non-stationary fluctuating winds at multiple points 

is also considered.  

Both the frequency domain approach and the time domain approach are used to evaluate the 

root-mean-square (RMS) displacements, due to the fluctuating horizontal and vertical winds. 

For the time domain, the lateral RMS displacement obtained from the FEM is similar to the 

one obtained on the experimental tests. In contrast, for the frequency domain approach the 

results are on average 20-30% and 2-15% below, for the case of buffeting and self-excited 

forces, respectively. For the vertical RMS displacement, the values are on average 30% below, 

with an exception when the wind speed of 45 m/s is considered. In this case, the difference 

becomes 30% for the frequency and 20% for the time domain. The results indicate that by 

using the large deformation option on the time domain analysis, the displacements at high wind 

speed are closer to those ones predicted under the BLWTL. A sensitivity analysis conducted 

on the decay parameter indicates that the exponential decay coefficients of the coherence could 

significantly influence the calculated RMS values, particularly for the case of vertical 

displacements. 

Key words: Stationary processes, non-homogeneous wind, Boundary Layer Wind Tunnel 

Laboratory, buffeting forces, self-excited forces, gust wind. 



 

iii 

 

 

Summary for Lay Audience 

The scaled model of a bridge is often tested on the Wind tunnel facility. A full bridge scaled 

model of a major bridge in Mexico was tested at the wind tunnel laboratory at the University 

of Western Ontario, Canada. The modelling and analysis of the Baluarte Bridge subjected to 

wind loading is investigated. The analysis of the numerical model is carried out on the 

frequency and time domain approaches. For the frequency domain, the energy content of the 

wind is characterized by a series of harmonic analyses. For the time domain analysis, synthetic 

time histories of the wind fluctuations are generated. In both cases, an inhomogeneous wind 

field is generated. The energy of the wind is modelled by the spectrum, and appropriate 

coherence functions. Apart from the formulation of an inhomogeneous wind, the simulation of 

non-stationary fluctuating winds at multiple points is also considered.  

Both, the frequency and the time domain analysis are used to evaluate the responses of the 

bridge due to the fluctuating horizontal and vertical wind. For the time domain, in the case of 

fluctuating lateral displacement, the results are almost identical to those from the Wind tunnel. 

In contrast, on the frequency domain the results are 20-30% and 2-15% below, for fluctuating 

wind alone, and for fluctuating wind and self-excited forces, respectively. In the case of the 

vertical fluctuating wind, the displacements of the numerical model are on average 30% below 

those from the experimental tests. However, by considering a wind speed of 45 m/s, the 

difference becomes 30% for the frequency and 20% for the time domain analysis. The results 

indicate that by using the large deformation option on the time domain analysis the 

displacements at high wind speed are closer to the experimental results. A sensitivity analysis 

conducted on the decay parameter indicates that the exponential decay coefficients of the 

coherence could significantly influence the calculated displacement, particularly in the case of 

vertical fluctuating wind.  

Key words: Wind tunnel facility, full bridge scaled model, numerical model, experimental 

model, inhomogeneous wind 
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    Instantaneous wind fluctuations for horizontal wind 

𝑢0    Stationary process with a mean wind speed 𝑈0 

u(t)    Instantaneous wind fluctuations for horizontal wind 
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𝑁    Total number of observations   

𝑚    Ranked value 
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Chapter 1 

Introduction 

 Introduction and background 

For the study of the aerodynamic response of long-span bridges, it is of paramount 

importance the relation between numerical and experimental modeling. The  numerical 

model is carried out by means of a Finite Element (FE) model in the case of the structural 

model, while in the case of characterizing wind forces is studied in terms of stochastic 

processes. The numerical or analytical model is generally calibrated with the aid of 

experimental data obtained from boundary layer wind tunnel laboratory (BLWTL). The 

test models are classified as a full-bridge aeroelastic model, scaled section model, and taut-

strip model. The purpose of the scaled model is to test the aerodynamic performance of the 

deck cross section, or to modify the original design to improve its aerodynamic 

performance. A taut-strip model is a simplification of the full aerodynamic model with the 

objective of matching the dynamic characteristics of the bridge. For this type of model, the 

main degrees of freedom  are set up by springs that are adjusted to give the correct 

frequencies of the section under study (Scanlan, 1983). The study of the spatial structure 

of the wind, which is related to the wind coherence or the force coherence can easily be 

implemented into this type of model. Besides, the taut-strip models also allow different 

sinusoidal mode shapes to participate in the gust wind response (Larsen, 1993). On the 

other hand, the third type of medelling, which is  the full-bridge aerodynamic model, allows 

a complete assessment of the bridge performance in relation to the spatio temporal gusty 

wind. 

In 1965 one of the first boundary layer wind tunnels laboratory (BLWTL) in the world 

was constructed by Alan G. Davenport (1967) and associates, at The University of Western 

Ontario, Canada.  Subsequently, many of the world’s tallest buildings and longest span 

bridges were tested in this facility. A robust description of the fundamental principles that 

exist between a scaled model under the wind tunnel and its corresponding prototype is 

given by Wardlaw (1980): 



2 

 

 “Model scale observations can only be extrapolated with confidence to prototype scale 

if sound scaling principles have been applied in the design of the model and the experiment. 

This will ensure that the relative magnitudes of the various forces involved in the bridge 

dynamics -the gravitational, inertial, aerodynamic, elastic, and structural damping forces- 

will be the same for the model and the prototype and that the motion amplitudes will be in 

the same proportion as the geometric scale ratio. As will be shown, the scaling of different 

physical variables will not always be compatible and judicious relaxations of one or more 

of the dimensionless scaling parameters will be required after careful examination of their 

relative importance in the behavior of the bridge.’’ 

In a preliminary stage, under the study of buffeting forces, nondimensional 

aerodynamic coefficients are obtained from section model studies. These coefficients are 

used to translate nondimensional forces into the model, and to assess the stress levels. The 

aerodynamic forces under study are generally divided into static, self-excited, and buffeting 

forces. The description of the static component is based on the mean time average wind 

load component.  

Self-excited and buffeting forces are related to the interaction between structure and 

wind, and to the gust wind component, respectively. These two dynamic components of 

the load are separated on the bases of linearized theory. The linearization is valid below 

the onset of flutter instability, where displacements are assumed to be small.  Admittance 

functions represent the transfer function between the gust wind component and the 

buffeting forces. Flutter derivatives, on the other hand, represent the transfer function 

between the gust wind component and the self excitaed forces.  

Generally, admittance functions and flutter derivatives are  measured on the section 

model studied under the Wind tunnel. Both functions undermine the possibility that wind 

loads for buffeting and self-excited forces are not necessarily quasi-steady. To consider the 

temporal and spatial variation of aerodynamic forces, Davenport (1962) introduced the 

concept of aerodynamic admittance function and joint acceptance function in the study of 

line-like structures. This type of structures are extended longitudinally in one direction, 

while the cross section dimensions are relatively small (ex. Bridges and transmission lines). 
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The self-excited forces and the problem of flutter instability on bridges were first presented 

by Scanlan and Tomoko, (1971). The aerodynamic performances of several bridges, 

including the standard airfoil case and the Tacoma Narrows bridge cross section were 

investigated based on this approach. 

A standard methodology within the study of aerodynamic forces on cable-stayed 

bridges is to obtain under the mean wind loading the deformation of the bridge, and to 

perform with the deformed configuration a linearization of the aerodynamic forces around 

the steady equilibrium position. The influence of the steady deformation on the Bosporus 

suspension bridge, due to the mean wind component on the critical wind velocity is studied 

by Salvatori and Spinelli (2007). In this study a linearization around the reference 

configuration, which is the cross section of the bridge before applying the steady load, and 

around the steady deformed configuration are evaluated and compared. The steady 

deformed configuration tends to alter the bridge aerodynamics when compared to the 

reference configuration.  

In the study of analytical models on bridges, different theoretical models can be 

considered that are originated from the underlying physical assumptions made during the 

modelling process. A category theory-based modelling approach is presented by Kavrakov 

et al. (2019) between a diverse set of models for the study of bridge aerodynamics. A 

simplified form of aerodynamic forces is considered by any of the theoretical approaches 

presented by Kavrakov and associates, which can account or neglect certain physical 

phenomena based on different assumptions. For example, any of the theoretical models can 

conider or not the aerodynamic nonlinearity, the fading fluid memory, or the aerodynamic 

coupling. The aerodynamic nonlinearity is associated to the use of unsteady models and 

the use of flutter derivatives; the fading fluid memory relates unsteady models on the time 

domain via the use of indicial functions. Aerodynamic coupling, on the other hand refers 

to the coupling between different modes. 

The main analytical model considered in this investigation is the quasi-steady model. 

One of the main drawbacks of this particular model is that it ignores frequency dependent 

characteristics in the modeling of aerodynamic forces.  When considering the quasi-steady 



4 

 

model, the admittance functions are taken as one, and self-excited forces are qualitatively 

approximated via steady coefficients. The quasi-steady model represents  a simplification 

of the aeroelastic problem. In this case,the estimation of the fluid-structure interaction is 

based on information extracted from the study of the steady coefficients. Even though, the 

quasi-steady model considers nonlinearities in the aerodynamic forces, it disregards the 

unsteady fluid memory effect that is characteristic of  the unsteady model. Functional 

relationships that exist between the quasi-steady model and the unsteady model are 

discussed by Chen and Kareem (2002).  

In contrast to the unstedy model, the quasi-steady model is valid for small values of 

the reduced frequency. Besides, another important feature of this type of model is that it 

can only be used when the disturbance in the flow has appreciably larger dimensions 

compared to the deck. A study of the quasi-steady approach with emphasis on the self-

excited forces is presented by Chen et al. (2009). In this study decay coefficients of 

coherence functions from buffeting forces are obtained from the experimental model of the 

Xiaoguan bridge. This study suggest that wind analysis based on the  coherence of wind 

turbulence may considerably underestimate the buffeting response when compared to the 

actual experimentally measured force coherence. Similar findings are also found in Larose 

and Mann (1998), who actually study more carefully the span-wise coherence of buffeting 

forces. 

When unsteady models are used, frequency-dependent characteristics are incorporated 

into the theoretical model. In the case of buffeting forces, the frequency-dependent 

characteristics are introduced via   admittance and the by the use of the joint acceptance 

function. Conversely, frequency-dependent characteristics for self-excited forces are 

introduced via experimentally quantified flutter derivatives. For the case  of unsteady 

models, the fluid memory effect generates a frequency-dependent attenuation and a phase 

delay in the aerodynamic forces. When considering the problem in the time domain, 

indicial or rational functions are fitted based on experimentaly obtained flutter derivatives.  

By the use of convolution integrals and rational function approximations, Chen et al. 

(2000a) studied the effect of coupled flutter and buffeting response on a bridge. The 
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unsteadiness from self-excited forces is mapped from experimentally measured flutter 

derivatives by means of rational functions. Similarly, the unsteadiness of buffeting forces 

is mapped from experimentally measured aerodynamic admittance functions and spanwise 

coherence. For very long-span bridges, unsteady characteristics of wind forces and 

aerodynamic coupling can have a significant influence on the bridge response, and in the 

assesment of the bridge aerodynamics. Chen et al. (2000a) studied a bridge of 2000 meters 

and emphasizes the importance of unsteady characteristics derived from experimentally 

measured spanwise coherence of aerodynamic forces. Chen et al. (2009), found that the 

pressure field throughout the bridge deck has a higher spanwise correlation to that one of 

the wind field which is considered under the strip assumption. Similar observations are 

found in the work of Larose and Mann (1998). In this case, it is possible that the strip 

assumption, can possibly underestimate the gust wind response.  

The strip assumption stablishes that the spatial distribution of the wind fluctuations can 

be taken as representative of the spatial distribution of the force loading produced by 

buffeting (Larose, 1998). In Jakobsen et al. (1997), the span-wise correlation of buffeting 

lift and overturning moment on a bridge box-girder is estimated based on surface pressure 

measurements under the wind tunnel. The span-wise structure of buffeting forces, again is 

found to be considerably stronger than the structure of the oncoming turbulence. A similar 

study on cylinders with flat hexagonal and rectangular cross sections is presented by 

Kimura et al. (1997). This study also indicates that the cross-correlation of pressures is 

significantly greater than the correlation of the incident turbulence. Sankaran and 

Jancauskas, (1993) found that an increase in both turbulence intensity and length scale 

produces a significant increase in cross-correlation and coherence. When considering more 

recent studies, Li et al. (2018) suggest that the ratio of characteristic lengths of structures 

to the integral length scales of turbulence has a significant impact in the study of the 

spanwise coherence.  

The comparison of analytical and experimental modeling are indispensable in the study 

of aerodynamic forces on bridges. An extensive literature concerned with this topic has 

been generated over the last years. However, the comparison of the numerical model and 

the full bridge scaled model are very scarse. One of the first of this type of studies is  
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presented by Larose et al. (1992). In this case, the consistency of the experimental results 

from the BLWTL are verified in relation to a theoretical model based on the quasi-steady 

aerodynamic approach. The theoretical prediction for the lateral RMS is consistent with 

experimental results in the case of  the Humber bridge, with a more conservative 

predictions for a high reduced velocity. A similar  work of this kind is presented by Larsen, 

(1993) for the Great-Belt East bridges. In this last  study, the peak lateral response obtained 

from the numerical model result in a lower displacement when compared to the 

experimental model under the full bridge scaled model.  

The full bridge aeroelastic model of the Stonecutters bridge is studied by Hui and Yau, 

(2010) by means of a 3-D finite element model. Hui and Yau improved the traditional 

approach based on wind coherences, and instead made use of  the coherence of wind 

preassures.  Another study related to the comparison between numerical and experimental 

model for the Akashi-Kaikyo bridge is presented by Boonyapinyo, (1999).  

All of the main contributions of the comparison between a numerical and of a full bridge 

scaled model are presented in Table 1.1, for easy of reference. Besides, in the following a 

brief description of the work of Diana et al. (1995), which is considered at the time the 

more complete study related to this topic, is presented. 

Table 1.1 Previous studies conducted in the past related to the  comparison between 

numerical and full bridge scaled models 

Name of the bridge 
 Authors of the 

study year Scale Compared response 

Humber bridge, 
England 

G.L. Larose, A.G. 
Davenport and 

J.P.C. King 
1992 1:175 

RMS of 
displacements and 

accelerations 

The Great Belt  East 
bridge, Denmark 

A. Larsen 1993 1:200 
The peak lateral 

response  

Stretto di Messina 
suspension bridge, Italy 

G. Diana, M. 
Falco, S. Bruni, A. 

Cigada, G.L. 
Larose, A. 

Damsgaard and 
A. Collina 

1995 1:250 
Comparision of a 
torsional mode 
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The Akashi Kaikyo 
bridges, Japan 

V. Boonyapinyo,  
T. Miyata and H. 

Yamada 
1999 1:100 

horizontal and 
torsional buffeting 

responses  

The Stonecutters 
bridge, Hong Kong 

M.C.H. Hui and 
D.M.S. Yau 

2010 1:200 
Spatial correlation 
of buffeting forces  

 

The most important study conducted in the past related to the  comparison between 

numerical and the full bridge scaled model is the one of Diana et al. (1995),  on the Strait 

of Messina bridge, located in Italy. This study was conducted under a full bridge aeroelastic 

model at the Martin Jensen Wind tunnel, on a 1:250 scale. The FE model and the theoretical 

model of wind forces were developed by Politecnico de Milano (Falco et al. 1992). The 

implemented theoretical model in this case is based on a quasi-steady corrected theory, 

which differentiates between a low and a high frequency component of the turbulence. For 

the quasi-steady corrected theory,  flutter derivatives are considered for a zero-incidence 

case and for a variation of the incident angle of attack, for the range of high frequencies. 

This same numerical modeling was also considered by Diana et al. (1992) for the study of 

the Humber bridge in the United Kingdom. 

The study of modal coupling on the Akashi-Kaikyo bridge is presented by Katsuchi et 

al. (1998). This Akashi-Kaikyo bridge has a central span of 1,991 m, which makes the 

bridge very susceptible to wind forces. In this particular case, when the wind speed 

increases, the coupling effects on the multimode calculation become significant. The effect 

of aerodynamic coupling is also investigated by Chen et al.(2000b).  Chen and associates 

pointed out that for long-span suspension bridges, the vertical and torsional motions are 

likely to be coupled at high wind speeds. Conversely, Jain et al. (1996) studied the behavior 

of a cable-stayed bridge with a central main span of 430 m. In this case, the model presents 

well-separated frequencies, and the adequacy of the single-mode procedures is adequate 

for the analysis. 

The characterization of aerodynamic forces can be considered on the frequency domain 

or time domain approach. In the frequency domain, the characterization of the stochastic 
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process is presented in terms of the power spectral density function (PSDF). The PSDF 

characterizes the energy content of the gust wind troughout different ranges of frequencies. 

In contrast, the time-domain approach requires the simulation of the fluctuating wind 

component as a time history based on the stochastic characterization of the wind. 

Frequency domain analysis is based on a linear hypothesis, where the evaluation of the 

response can be considered by numerically integrating the product of the bridge's transfer 

function and the wind load spectra (Yang et al. 1997). For the frequency domain approach, 

Sun et al. (1999) uses a finite element approach and a pseudo excitation method for the 

characterization of wind forces. For the pseudo-excitation method, aeroelastic forces on a 

bridge deck are changed into nodal forces to form aeroelastic damping and stiffness 

matrices, while aerodynamic forces are converted into  nodal forces and assigned to the 

deck, towers, and cables.  As mentioned previously, the use of unsteady models in the 

frequency domain approach facilitates the modeling of frequency dependent characteristics 

considered for unsteady aerodynamic forces, via experimentally measured flutter 

derivatives. Nevertheless, this type of approach is constrained by the assumptions of 

linearity in structural dynamics, aerodynamics, and stationarity of wind fluctuations (Chen 

and Kareem, 2003).  

Several methods for synthesizing homogeneous random fields based on the second-

order statistics are discussed in Spanos and Zeldin (1998). Two of the more used methods 

for simulating sample functions on the time domain are the auto-regressive moving average 

(ARMA) method (Kareem, 2008; Di Paola, 1998) and the spectral representation method 

(SRM) (Shinozuka,1972). The SRM is a well-known method for digital simulation in 

engineering that made use of the superposition of trigonometric functions and the use of a 

random phase angle. An improvement in the computational efficiency of the SRM by using 

the fast Fourier transform (FFT) was developed in previous studies (Yang, 1972; Witting 

& Sinha, 1975). Another modification to the SRM was made by Cao et al, (2000), who 

expressed the Cholesky decomposition of the cross-spectral density matrix in algebraic 

formulas. However, the improvement is only valid for an homogeneous process simulated 

at equidistant points.  
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A historical perspective of the different types of simulation, for the  inflow 

conditions is summarised in Kareem, (2008), which includes Non-stationary, non-

homogeneous processes, non-Gaussian simulation, and conditional simulation of Gaussian 

processes. The inhomogeneity of the wind is an important aspect of the characterization of 

wind processes throughout the study of the Baluarte bridge. The non-homogeneous wind 

is produced by the canyon. In this case, compression on the wind flow is produced when 

the flow cross throughout the canyon, generating disturbances that accelerate the intensities 

of the pressures on the main girder in an inhomogeneous manner. 

 Wind force modeling 

The wind is usually decomposed as mean wind component and fluctuating wind 

component (Simiu and Scanlan 1996).  The wind force acted on bridges may be classified 

as (Salvatori and Borri 2007):  

a) mean wind velocity dependent steady load,   

b) fluctuating wind dependent buffeting load, and 

 c) aeroelastic self-excited load which depends on the motion of the cross-section.   

The mean wind velocity dependent load is treated as a static load.  The studies given 

by Davenport (1962) provided the theoretical framework to evaluate the buffeting force 

and the structural responses to buffeting force based on the gust factor approach.  The study 

of Davenport (1962) and Scanlan (1978) also provided the basis for the frequency domain 

approach to evaluate the bridge response subjected to wind load.  Consider as a particular 

case the bridge deck cross-section shown in Figure 1.1, which is subjected to the wind 

field.  In the figure, U represents the (along wind) mean wind velocity, 𝑢 and 𝑤 are the 

fluctuating winds in the alongwind and crosswind directions. �̇� and ℎ̇ are the lateral and 

vertical velocities of the deck cross section. 
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Figure 1.1 Illustration of the bridge deck subjected to wind loading. 

In general, the forces that are related to the deck cross-section can be written as (Simiu 

and Scanlan 1996; Chen and Kareem 2002; Strømmen 2010), 

𝐹𝑋(𝑡) = 𝐹𝐷𝑐𝑜𝑠𝜙 + 𝐹𝐿𝑠𝑖𝑛𝜙, (1.1a) 

𝐹𝑍(𝑡) = 𝐹𝐷𝑠𝑖𝑛𝜙 + 𝐹𝐿𝑐𝑜𝑠𝜙, (1.1b) 

and, 

𝐹𝑀 =
1

2
𝜌𝑈𝑟

2𝐵2𝐶𝑀(𝛼𝑒), (1.1c) 

where 𝐶𝐷 = 𝐶𝐷(𝛼𝑒), 𝐶𝐿 = 𝐶𝐿(𝛼𝑒) and 𝐶𝑀 = 𝐶𝑀(𝛼𝑒) are the force coefficients as functions 

of the effective angle of attack 𝛼𝑒, 𝛼𝑒 = 𝛼𝑠 + 𝛼 + 𝜙, where  𝛼𝑠, is the steady wind angle 

of attack, 𝛼 the rotational displacement of the bridge deck, and 𝜙 the dynamic angle of 

attack originated from the bridge deck motion, given by, 
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𝜙 = tan−1 (
𝑤+ℎ̇+𝜂𝐵�̇�

𝑈+𝑢−�̇�
), (1.2) 

The drag and lift forces are given by, 

𝐷𝑠 =
1

2
𝜌𝑈𝑟

2𝐵𝐶𝐷(𝛼𝑒), (1.3a) 

and, 

𝐿𝑠 =
1

2
𝜌𝑈𝑟

2𝐵𝐶𝐿(𝛼𝑒), (1.3b) 

in which 𝜌 is the air density, 𝐵 a characteristic length (i.e., section width), and the wind 

velocity of the quasi-steady model, or relative velocity 𝑈𝑟, is given by,  

𝑈𝑟 = √(𝑈 + 𝑢 − �̇�)2 + (𝑤 + ℎ̇ + 𝜂𝐵�̇�)
2
 (1.4) 

where 𝜂 is the coefficient for the dynamic angle of attack that specifies the difference 

between the center of stiffness and aerodynamic center in the case of self-excited forces. 

By assuming that the instantaneous effective angle of incidence is small, and if the use 

of the linearized forces (Simiu and Scanlan 1996; Chen and Kareem 2002; Strømmen 2010) 

is adequate, the drag force, lift force, and torsional moment, denoted as D, L, and M acted 

on the bridge deck can be expressed as, 

𝐷𝑏 =
1

2
𝜌𝑈2𝐵 [𝐶𝐷 + 2𝐶𝐷

𝑢

𝑈
+ 𝐶𝐷

′ 𝑤

𝑈
] (1.5a) 

𝐿𝑏 =
1

2
𝜌𝑈2𝐵 [𝐶𝐿 + 2𝐶𝐿

𝑢

𝑈
+ (𝐶𝐿

′ + 𝐶𝐷)
𝑤

𝑈
] (1.5b) 

and, 

𝑀𝑏 =
1

2
𝜌𝑈2𝐵2 [𝐶𝑀 + 2𝐶𝑀

𝑢

𝑈
+ 𝐶𝑀

′ 𝑤

𝑈
] (1.5c) 

where 𝐶𝐷 = 𝐶𝐷(𝛼𝑠), 𝐶𝐿 = 𝐶𝐿(𝛼𝑠) and 𝐶𝑀 = 𝐶𝑀(𝛼𝑠) are the steady coefficients as a 

function of the steady angle of attack 𝛼𝑠, and the prime assigned to the steady coefficients 
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is the abbreviation for 𝑑𝐶𝐷/𝑑𝛼, 𝑑𝐶𝐿/𝑑𝛼 and  𝑑𝐶𝑀/𝑑𝛼, respectively. Further, 𝜌 is the 

density of the air, 𝑈 the abbreviation for the reference mean wind velocity 𝑈(𝑧), 𝑢 the 

longitudinal gust wind, and 𝑤 the vertical gust wind component. The first component in 

Eqs. (1.5a) to (1.5c) forms the static force while the remaining components represent the 

buffeting forces.  Note that the use of the frequency domain approach was considered in 

Sun et al. (1999) for analyzing bridges, where the calculation of the power spectral density 

of the responses is based on the so-called pseudo-excitation method.  In the pseudo-

excitation method, the loading spectrum is decomposed by applying eigenvalue 

decomposition and use as the basis to define the non-homogeneous loads for an array of 

selected frequencies.  The obtained responses are then used to obtain the power spectrum 

of the responses.  This method will be explained in detail and used to calculate the response 

of the Baluarte bridge based on the frequency domain approach. 

The characterization of the aeroelastic self-excited forces is more completed than 

characterizing the mean wind and buffeting forces.  Salvatori and Borri (2007) considered 

that aeroelastic self-excited forces could be classified as quasi-steady self-excited forces, 

unsteady self-excited forces in the frequency domain, and unsteady self-excited forces in 

the time-domain through indicial functions. In the case of indicial functions, aerodynamic 

forces have a rise in time and attain their quasi-steady value asymptotically. This type of 

model, on the time domain allows structural nonlinearities. However, nonlinearity on the 

wind load is not considered, since indicial functions are obtained from flutter derivatives, 

and flutter derivatives are obtained based on a linearized theory (Salvatori and Spinelli, 

2007). In contrast, the quasi-steady formulation can consider nonlinearities in the 

aerodynamic forces related to the incidence angle of the wind. However, the quasi-steady 

theory discards the unsteady fluid memory effect.  

The derivation of the quasi-steady load model is similar to the case of deriving the 

buffeting forces, except that it considers that the wind forces are affected by the motion of 

the bridge deck (Miyata et al. 1995; Salvatori and Borri 2007).  In this case, the wind forces 

(D, L, and M) (i.e., including the mean, buffeting, and quasi-steady force) can be written 

as, 
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𝐷𝑎𝑒 =
1

2
𝜌𝑈2𝐵 [𝐶𝐷 + 2𝐶𝐷

𝑢

𝑈
+ 𝐶𝐷

′ 𝑤

𝑈
+ (𝐶𝐿

′ + 𝐶𝐷)
ℎ̇+𝜂𝐵�̇�

𝑈
+ 𝐶𝐷

′ 𝛼 + 2𝐶𝐷
�̇�

𝑈
] (1.6a) 

𝐿𝑎𝑒 =
1

2
𝜌𝑈2𝐵 [𝐶𝐿 + 2𝐶𝐿

𝑢

𝑈
+ (𝐶𝐿

′ + 𝐶𝐷)
𝑤

𝑈
+ (𝐶𝐿

′ + 𝐶𝐷)
ℎ̇+𝜂𝐵�̇�
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and, 
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where a dot over p, h, and  (which denote the horizontal displacement, vertical 

displacement, and rotation) represent their derivatives with respect to time. 

The unsteady self-excited forces in the frequency domain were introduced by Scanlan 

and Tomko (1971).  In this case, Scanlan and Tomoko (1971), further extended to include 

the along wind forces and displacements, as: 

𝐷𝑎𝑒 =
1

2
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∗ �̇�
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where 𝑘(= 𝜔𝐵/𝑈) is the reduced frequency; 𝑃𝑚
∗ , 𝐻𝑚

∗ , and 𝐴𝑚
∗ , (m=1,…,6) are the 

aeroelastic derivatives, and the subscript ae to D, L, and M is used to indicate that these 

quantities are aeroelastic forces to be included as part of the drag force, lift force, and 

torsional moment.  The derivation of these equations was elaborated in Salvatori and Borri 

(2007) and Karvrakov et al. (2019). 

Instead of presenting the aeroelastic forces in terms of aerodynamic derivatives, 

Scanlan et al. (1974) introduce the concept of indicial aerodynamic functions for bridge 

decks.  The studies of Scanlan et al. (1974), Chen et al. (2000a, b), and Salvatori and Borri 

(2007) indicated that it is advantageous to use the indicial aerodynamic functions in 

carrying out the responses of the bridge to wind load based on the state-space formulation.  
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The estimation of the indicial function from experimental procedures was discussed in 

Caracoglia and Jones (2003). 

It should be noted that in the frequency approach, it is often assumed that the 

fluctuating wind component is a stationary Gaussian process.  The consideration of the 

nonstationary or non-Gaussian process complicates the analysis in the frequency domain.  

In such a case, the analysis could be carried out in the time domain, which involves the 

simulation of the fluctuating winds and analysis of the structural response using the time 

history method.  A short description of the stochastic process and the simulation of the 

stochastic process is presented in the following section. 

 Modelling of fluctuating wind speed 

The wind speed is frequently decomposed into the mean and fluctuating wind component. 

Winds can be treated as stationary or as nonstationary.  Since the fluctuating winds vary in 

time in a random manner, it is generally modeled as a stochastic process with the 

assumption that the fluctuating wind speed is a stationary Gaussian process (Simiu and 

Scanlan 1996). A Gaussian process could be viewed as a generalization or extension of a 

multivariate normally distributed random variable.  The marginal probability of the 

Gaussian process is a normal distribution.  The use of the stochastic process as the input to 

a dynamic system for estimating the structural response and structural reliability can be 

found in Madsen et al. (2006). 

A stationary process can be characterized by the power spectral density (PSD) function, 

which can be estimated based on the samples of the stochastic process and Fourier 

amplitude spectrum (Newland 2012).  Given the PSD function of a stationary process, the 

samples of the process can be simulated by applying the very popular spectral 

representation method (SRM) (Shinozuka and Jan 1972). According to the SRM, the 

sample of a Gaussian stationary process X(t) with one-sided power spectral density 

function S(n), can be sampled using, 

𝑥(𝑡) = √2∑ √𝑆((𝑙 − 1)𝛥𝑓)𝛥𝑓 𝑐𝑜𝑠(2𝜋((𝑙 − 1)𝛥𝑓)𝑡 + 𝜙𝑙)
𝑁/2+1
𝑙=1 , (1.8) 
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where l is an independent and uniformly distributed phase angle, distributed between 0 

and 2, and f is a considered frequency increment.   

The multivariate stationary processes can be characterized by the non-crossed or 

crossed PSD function: 

𝑆𝑋1𝑋2
(𝜔) = √𝑆𝑋1

(𝑧1, 𝜔)𝑆𝑋2
(𝑧2, 𝜔) 𝑐𝑜ℎ(𝑧1, 𝑦1, 𝜉𝑧 , 𝜉𝑦 , 𝜔 ) (1.9) 

where 𝜉𝑧 = 𝑧2 − 𝑧1 and 𝜉𝑦 = 𝑦2 − 𝑦1; 𝑆𝑋1
 and 𝑆𝑋2

 are the PSD of the fluctuating wind 

speed at height 𝑧1 and 𝑧2; 𝑐𝑜ℎ() is the coherence function between fluctuating wind speeds. 

If 𝑆𝑋1
, 𝑆𝑋2

 and the coherence are independent of their coordinates, the spectrum and the 

coherence are simplified, and the cross power spectral density (C-PSD) function, 

corresponds now to the case of homogeneous stationary random processes, 

𝑆𝑋1𝑋2
(𝜔) = 𝑆0(𝜔)𝑐𝑜ℎ( 𝜉𝑧 , 𝜉𝑦 , 𝜔 ) (1.10) 

where 𝑆0(𝜔), is a homogeneous stationary Power Spectral Density (PSD) function.  

Note that several generalizations of the SRM are given in the literature, including 

simulating the vector of evolutionary processes (Shinozuka and Deodatis 1996), where the 

evolutionary spectrum is defined by Priestley (1965).  It can also be used to simulate the 

sum of several evolutionary processes (e.g., Shinozuka and Deodatis 1996; Huang and 

Chen 2009). It was also extended to simulate the nonstationary non-Gaussian process in 

several studies, including Shields and Deodatis (2013). 

Rather than considering the fluctuating wind as an evolutionary process, based on the 

observation that the commonly used power spectral density function of fluctuating wind 

depends on the mean wind speed, Hong (2016) proposed the use of the amplitude 

modulated and frequency modulated process to model the fluctuating winds with a time-

varying mean, or to model a vector of winds, each with a different mean wind speed.  In 

such a case, the use of the time transformation concept (Yeh and Wen 1990) is employed.  

Other methods for simulating the stationary and nonstationary processes are also available.  
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The interested readers are referred to Phoon et al. (2002); Ghanem and Spanos (2003); 

Spanos and Zeldin (1998); and Shield and Kim (2017). 

Note that, by using the simulated fluctuating winds, the responses of a bridge subjected 

to wind load that is formulated based on quasi-steady theory was presented in Chen et al. 

(2009) by using the simulated vector of fluctuating winds. For their analysis, a finite 

element model was developed to represent the full bridge.  Since, once the quasi-steady 

theory is adopted, the finite element model is independent of whether the wind field is 

nonstationary or non-Gaussian or inhomogeneous. Therefore, this time domain analysis is 

very practical and relatively simple to use.  It is adopted in Chapter 3 to evaluate the 

response of the Baluarte bridge to the wind load based on the time domain approach. 

In the case of non-stationary random processes, the concept of a spectral density 

function differs quite significantly from the case of stationary processes. In this case, 

Priestly (1966), gives a legitimate description of a time-variant frequency content by means 

of the evolutionary power spectral density (EPSD) function. With the aid of the 

Evolutionary spectrum is possible to study processes with continuously changing spectral 

patterns in time, with the only requisite of using slowly varying functions. The Non-

stationarity aspect of wind forces represents a challenging problem within the study of 

random processes. Non-stationary events such as hurricanes and thunderstorms are in 

constant flux and are very difficult to be measured. Chen and Letchford, (2007) presented 

a model for the characterization of non-stationary thunderstorm downburst wind fields. 

The fluctuating wind is modeled as a uniformly modulated evolutionary vector process, 

which is generated by modulation of the amplitude of a stationary Gaussian process. Chay 

et al. (2006) also used the concept of amplitude modulation, but instead of the SRM they 

applied the autoregressive moving average (ARMA) technique for the simulation. In 

certain cases, not only the amplitude presents a challenge for the study of non-stationary 

processes, but also the frequency modulation needs to be included in the analysis. Yeh and 

Wen (1990) showed that the time-varying frequency content has a significant impact on 

the response of structures. The model proposed by Ye and Wen is a modification of the 

amplitude and frequency modulated random processes originally proposed by Grigoriu et 

al. (1988). The concept of amplitude and frequency modulation has been applied in wind 
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engineering for the simulation of nonstationary fluctuating winds at multiple points, which 

are best represented by AM/FM processes (Hong, 2016).  

 Some studies of wind loading on bridges and boundary 
layer wind tunnel tests 

A well-known example of bridge failure is the collapse of the 1940 Tacoma narrow bridge 

- a suspension bridge in the U.S. states that spanned the Tacoma Narrows strait of Puget 

Sound between Tacoma and the Kitsap Peninsula (Amman et al. 1941; Billah and Scanlan 

1991).  Footage of the failure can be found on the YouTube website (e.g., 

https://www.youtube.com/watch?v=j-zczJXSxnw, https://www.youtube.com/watch?v=KogpyCUecLk, 

Access July 8, 2021). For the design of long bridges, often model tests are carried out in the 

boundary layer wind tunnel based on a scaled model of the bridges, to find several 

coefficients that are required to evaluate the wind forces and effects acted on the bridges. 

The test could be done for a section model (i.e., rigid model of the bridge deck), or an 

aeroelastic model, including topographic effect. 

The wind test was originally used for the aeronautical industry. It could be an open-

circuit type where the air is drawn into the tunnel from the external environment at the inlet 

and discharged at the outlet. It could also be a closed-circuit type, where the air is 

circulating within the tunnel. The open-circuit configuration is more convenient to control 

the flow; the closed-circuit configuration is more suitable for cases where atmospheric 

pressure is considered important. One of the earlier major wind tunnels used for tall 

buildings and long bridges was constructed at the University of Western Ontario 

(Davenport et al. 1985). The development of the boundary layer wind tunnels (BLWTs) 

for application in civil engineering was presented in Cermak (2003), emphasizing that 

physical modelling of wind effects requires a properly simulated boundary-layer flow.  

More sophisticated wind tunnels such as the WindEEE dome at the University of Western 

Ontario were developed in recent years. This type of facility could be used to simulate the 

tornado effects on structures (Hangan 2014) (see also 

https://www.eng.uwo.ca/windeee/facilities.html). 

https://www.youtube.com/watch?v=j-zczJXSxnw
https://www.youtube.com/watch?v=KogpyCUecLk
https://www.eng.uwo.ca/windeee/facilities.html
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There are numerous tall buildings and bridges that have been tested in the BLWT, at the 

University of Western Ontario. The test results provide the basis for the design of buildings 

and bridges subjected to wind loads.  In this case an aeroelastic model of a major cable-

stayed bridge – Baluarte bridge – that was built in Mexico was tested at the BLWTL at the 

University of Western Ontario (King and Kong 2010; King et al. 2011).  The test includes 

the topographic effects. A short description of the wind tunnel tests for the Baluarte bridge 

is presented in this section. 

The BLWT test results of bridges served the civil engineering community well in 

designing such structural systems efficiently.  The comparison of the responses from the 

wind tunnel test to the numerical modelling of the bridges subjected to wind loads is 

starting to attract the interest of several researchers. For instance, Diana et al. (1995, 2013), 

provided an overview of the wind tunnel activities and methodologies developed to support 

the design of long suspension bridges.  They called for a synergistic approach in dealing 

with the design and evaluation of bridges under wind loading by incorporating numerical 

modelling and wind tunnel experimental methodologies. Prior to the study of Diana, Larose 

et al. (1992) compared quasi-steady numerical models of the Humber suspension bridge in 

England, the Farø Bridge in Denmark, and the Sunshine Skyway bridge in the U.S.A. with 

full-bridge aero-elastic models of each bridge. Another study of this kind is the one of Hui, 

(2013), where a 1:200 scale full aeroelastic model of the Stonecutters Bridge in Hong 

Kong, is compared to analytical results. On the study of Hui, M.C.H, buffeting analysis 

was conducted based on direct measurement of buffeting forces on a section model. 

Another important study of this kind is the one conducted by Katsuchi et al. (1998) on the 

Akashi-Kaikyo Bridge. In this case, analytical studies of mode coupling in the flutter and 

buffeting of the Akashi-Kaikyo Bridge were performed and compared with the behavior of 

a full bridge scaled model on the wind tunnel. 

The evaluation of bridge responses to aerodynamic and aeroelastic effects could be 

carried out based on the frequency domain approach or time domain approach.  These 

subjects were presented extensively in the literature, including Scanlan and Tomko (1971), 

Sun et al. (1999); Chen et al. (2000a, b), Chen and Kareem (2002); Salvatori and Borri 

(2007); Chen et al. (2009), Strømmen (2010).  The frequency domain approach requires 
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the characterization of the fluctuating wind component as a stochastic process using the 

power spectral density function; the time-domain approach requires the simulation of the 

fluctuating wind component based on the stochastic characteristics of the fluctuating wind. 

Atmospheric motion is primarily the result of complex boundary conditions, such as 

differences in temperature distributions, non-uniform roughness, topography, and local 

climatological factors. This complexity of the natural wind often differs from those 

characteristics associated with the most conventional boundary layers. In most cases, the 

turbulence structure may be inhomogeneous in planes parallel to the surface. ‘‘Because of 

this strong nonlinear interaction between atmospheric motion and the objects over which 

flow takes place, engineers have learned to rely more heavily on physical modeling and 

similarity analysis than on mathematical analysis for a quantitative description of the wind 

effects’’ (Cermak 1975). 

One fundamental aspect of the wind tunnel which connects experimental and 

mathematical procedures is the integration of the mean wind pressures, which enables the 

prediction of the aerodynamic forces (Davenport and Isyumov 1967). The aerodynamic 

forces are expressed in terms of the static coefficients. Nondimensional aerodynamic 

coefficients are extracted from sectional tests to test the aerodynamic performance of the 

deck cross section. Sectional model tests of the Baluarte bridge were conducted at the 

CSTB (Centre Scientifique et Technique du Batiment, in French) BLWT, in Nantes, 

France, on July 2003. From the section model studies, fundamental aerodynamic 

information on the bridge deck was provided. The studies considered the aerodynamic 

coefficients at a different steady angle of attack (𝛼𝑠). A 1:50 scale was considered between 

model/prototype. From these preliminary studies, an improvement in the performance of 

the main span deck was achieved by adding three ranks of baffles under the bridge deck to 

suppress the vortex shedding. Another improvement was generated by implementing a 45° 

cornice throughout 200 meters of length located at the centerline of the main span. The 

modifications to the main-span deck for the scaled model is presented in Figure 1.2 

(Flamand, 2003). 
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Figure 1.2 Scaled section model with three ranks of baffles and a 45° inclined cornice 

(Flamand, 2003). 

 

Table 1.2 Aerodynamic coefficients from the scaled section model (Flamand 2003; 

King et al. 2010). 

 CD CL CM /DdC d  /LdC d  /MdC d  

Composite section for 

main span  

0.145 -0.097 -0.033 0.086 6.217 1.518 

Concrete section for 

side span  

0.190 -0.307 0.012 -0.115 7.678 0.285 

After the preliminary study on the section model on the Wind tunnel located in France, 

the study of the  full bridge aerodynamic model was initiated by members of the Engineer 

Institute (II), at UNAM (Universidad Nacional Autónoma de México, in Spanish). The 

main purpose of this second study was to provide an overall picture of the bridge response 

to wind forces and to assure the stability of the structure under high winds. On this 

occasion, the scaled model was studied under a three-dimensional gust wind condition, 

and over a full range of wind speeds. The study of the full aerodynamic model of Baluarte 

bridge was conducted at the University of Western Ontario, Canada (King et al. 2010). 

A uniform wind profile and a profile of the expected site conditions were considered 

for the experimental setups. In both profiles, a portion of the topography near the bridge 

was considered, with the sole purpose of creating a transition between the floor and the 

base of the model (King et al. 2010). The Wind tunnel setups for a smooth flow simulation 

(without roughness elements) and for the expected site conditions are presented in Figure 

1.3. A roughness length 𝑧0, of 0.0005 m and an average turbulence intensity of 0.2%, are  
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considered for the smooth flow profile. In the case of the expected site conditions, a 

roughness length 𝑧0, of 1.5 m, and an average turbulence intensity 𝐼𝑢, of 1.7%, are 

considered. The main purpose of the smooth flow profile is to identify any vortex shedding 

associated with the isolated pylon, or the erection and final stages of construction of the 

main deck. No instabilities were found below 37 m/s for the cantilevered construction 

stage, and below 45 m/s for the completed bridge configuration. The previous values are 

above the mean hourly wind speed at the deck level that is used for design purposes. In this 

case, the value of the 200-year, 3-second gust wind speed is 35.7 m/s. This guarantees that 

no instability would occur. The nominal damping of the actual bridge performed by CSTB 

was based on Eurocode or British Standard, which estimates 0.32%    0.64%. The 

studies at CSTB on actual bridges show that the damping can reach very low values and it 

was preferred to take the value of  𝜉, as 0.32%. 

 

 

Figure 1.3 Simulation of the ABL for uniform flow and expected site conditions (King et 

al. 2010). 

Several non-dimensional numbers are used regularly to translate the wind effects from 

the prototype into the  scaled model on the Wind tunnel. Some of the most fundamental 

parameters associated with non-dimensional numbers are the thickness of the boundary 

layer 𝛿, the reference velocity 𝑈, the reference pressure 𝑃, the gravitational acceleration 𝑔, 

the air mass density 𝜌, and the viscosity of the flow 𝜇, or kinematic viscosity of the flow, 
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𝜈(= 𝜇/𝜌) (Simiu and Scanlan 1996). Some of the non-dimensional numbers and 

associated parameters are defined as: 

1.The Euler number 𝐸𝑢(= 𝑝/𝜌𝑈2), associates the different pressures throughout the 

model.  

2. The Reynolds number 𝑅𝑒(= 𝑈𝛿/𝜈) is the ratio of inertial to viscous forces.  

3. The reduced frequency 𝑓∗(= 𝛿𝑛/𝑈) can be either be the Strouhal number, if the 

frequency is associated with the vortex shedding frequency 𝑛𝑠, or the Rossby number 

if the frequency is associated with the Coriolis parameter 𝑓𝑐 . 

4. The Froude number 𝐹𝑟(= 𝑈2/𝑔𝛿), is the ratio of gravitational to inertial forces. 

5. the Jensen number 𝐽𝑒(= 𝛿/𝑧0),  is the ratio of the roughness length to the boundary 

layer thickness. 

The scale ratio of the boundary layer thickness 𝜆𝛿 is the most important parameter, and 

other scale parameters depend on it. This parameter is not an independent quantity, and the 

selection of the Jensen number is related to the size of the wind tunnel, the thickness of the 

ABL, and the roughness length, 𝑧0.‘‘When geometric similarity is preserved, ‘‘exact’’ 

dynamic similarity can be achieved if each of the following parameters is equal for the two 

systems: Rossby number (𝑅0); Richardson number (𝑅𝑖); and Reynolds number (𝑅𝑒)’’ 

(Cermak 1987). However, the modeling of the ABL is considered based on ‘‘approximate 

similarity’’, in which the primary compromise is in the relaxation of the Reynolds and the 

Rossby numbers. The Rossby number, in general, can be eliminated from the similarity 

requirements if the horizontal length is less than 150 km. In the scaled turbulent boundary 

layer, the upwind terrain was modelled within the 42.6 m length of the wind tunnel section, 

which corresponds to 10.7 km of upwind fetch. In this case, the Rossby number is in the 

order of 0.1, and the convective or local accelerations dominate over the Coriolis 

acceleration (Cermak 1987).   

On a scaled model, the roughness characteristics can make the flow approach similarity 

asymptotically and become Reynolds number independent. For turbulent flows, the 
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effective Reynolds number is in the order of 1000 times smaller than the one considered 

under the condition of laminar flow. With this in mind, it is possible to achieve similarity 

for the gross characteristics of gust winds. On the other hand, when considering a local 

cross section of the scaled model, if the geometry that interacts with the flow patterns 

presents sharp edges, the mean flow patterns can also become Reynolds number 

independent (Cermak 1966). The Reynolds number for the laboratory boundary layer is 

approximately 500 times smaller than those values of the atmospheric boundary layer 

(ABL) (Cermak 1984). 

Some similarity requirements are presented in Table 1.3, where the subscript 𝑚 and 𝑝 

are the real physical model and the prototype of the bridge. On the BLWT tests, the density 

ratio defined by 𝜆𝜌, is preserved. The length scale ratio 𝜆𝐿, which is the ratio between the 

physical length of the model 𝐿𝑚 and the length of the prototype 𝐿𝑚 is considered as 1:250. 

The velocity ratio 𝜆𝑈, presents the same value as the time scale 𝜆𝑇. The time scale 𝜆𝑇, can 

also be defined as the reduced ratio of length 𝜆𝐿 divided by the reduced ratio of the velocity 

𝜆𝑈. 

Table 1.3 Scaling parameters ratios between model and prototype. 

Parameter Unit Reduced ratio  
Similarity definition 

Length m 1:250 
 

Velocity m/s 1:15.81 

Density kg/m3 1 

 

Time s 1:15.81  

Mass per unit length kg/m 1:62500 

 

  
Mass moment of inertia 

per unit length 
kg-m2/m 1:3.91E9 

 

   
 

Elastic stiffness N-m2 1:9.77E11  

 

 

𝜆𝐿 = 𝐿𝑚/𝐿𝑝 

𝜆𝑈 = 𝑈𝑚/𝑈𝑝 

𝜆𝜌 = 𝜌𝑚/𝜌𝑝 

𝜆𝑇 = 𝑇𝑚/𝑇𝑝=𝜆𝐿/𝜆𝑈  

𝜆𝑚 = 𝜆𝜌𝜆𝐿
2 

𝜆𝑗 = 𝜆𝑚𝜆𝐿
2 

𝜆𝐸𝐼 = 𝜆𝑈
2 𝜆𝐿

4 
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From the wind tunnel tests, it was decided that the Froude number 𝐹𝑟(= 𝑈2/𝑔𝛿), 

should be preserved. Since velocity and length scales are coupled by the Froude number, 

low wind speeds are considered in the simulation. Another number that was preserved in 

the tests was the Cauchy number 𝐶𝑎(= 𝜌𝑈2/𝐸). This last number represents the ratio of 

the elastic forces of the bridge to the inertial forces of the flow.  The Cauchy number is 

related to the similarity requirement of the elastic stiffness  𝜆𝐸𝐼 .  The parameter of mass 

per unit length is related to the length reduced ratio squared 𝜆𝐿
2 and the density reduced 

ratio 𝜆𝜌. The mass moment of inertia per unit length is related to the ratio of mass per unit 

length and the reduced ratio of velocity squared 𝜆𝑈
2 . For more information in regards to the 

scaled parameter the reader is referred to King et al. (2011).   

 Computational fluid dynamics (CFD) in the study of 
bridges 

Incident wind flow and forces on bridges are related by means of static nonlinear 

relationships based on steady coefficients and their derivatives, throughout the use of quasi-

steady theory (Davenport,1962). However, this type of theory cannot cope completely with 

the unsteady nature of the wind forces and the problem of fluid-structure interaction. Even 

though flutter derivatives can deal with the problem of unsteady forces, the theory is only 

valid for small displacements, before the actual onset of flutter (Scanlan and Tomoko, 

1971). Another type of nonlinear behavior of the flow-deck system is produced at a high 

incidence angle of the wind, or at a high stall. In some cases, highly complicated flows can 

be developed, which can also alter the original configuration of the deck section. The study 

of Computational Fluid Dynamics (CFD) can be of great advantage in the prediction of 

aerodynamic forces or for the study of highly complicated flows (Dagnew and 

Bitsuamalak, 2013). CFD models can also enhance our understanding of the phenomenon 

of fluid-structure interaction. This section included within the first chapter is devoted to a 

brief introduction into Computational Fluid Dynamics (CFD), and the role of this discipline 

in the study of bridge aerodynamics. 

Nowadays, bridges have incredibly large spans that are spanning between one and two 

kilometers. These types of structures are likely to present all kinds of difficulties in relation 
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to experimental and analytical models. And perhaps the section of the Wind tunnel in which 

this type of model could be studied must be of quite an enormous size. In this case,  not all 

conventional tunnels can cope with that requirement. For the study of flow structure 

interaction, wind tunnel tests have been the dominant procedure via the use of flutter 

derivaives. Flow separation and reattachment, three-dimensional and complex geometric 

environments are inherent qualities associated with the wind flow (Dagnew and 

Bitsuamalak, 2013). In recent years, the advances in computational power and turbulence 

modeling on Computational wind engineering (CWE), had made these types of modeling 

an attractive alternative for the study of aerodynamic forces. The term CWE in this case 

refers to the study of the structure of the wind flow, whereas the term CFD is referred to 

the use of any kind of fluid flow (Tamura, 2015). One of the advantages of the use of CFD 

is the direct applicability of high Reynolds numbers under the computational domain. 

Typical Reynolds numbers in the order of 105-108 (Turkiyyah et al, 1995; Patruno, 

2015), are used for CWE simulations. This range of the Reynolds number are the ones 

regularly used under the Wind tunnel under operational conditions. Beatke and Werner 

(1990) pointed out, that numerical simulations of turbulent flows over and around different 

obstacles, with the use of high Reynolds numbers, are an important aspect in the study of 

wind engineering. For instance, elements such as cables, elements with smooth edges, and 

decks at high stalls are influenced by a difference in the Reynolds number. A numerical 

simulation around a fixed section model of the Great Belt East bridge is presented by 

Kuroda (1997), with particular emphasis on high Reynolds numbers. The comparison of 

the steady coefficients obtained from their computational model on CFD compared well 

with those obtained from the Wind tunnel at the Danish Maritime Institute (DMI). The 

flutter derivatives and the critical wind speed of a great diversity of bridge decks typologies 

are presented by Patruno (2015). This study is related to the use of different Reynolds 

numbers and different incidence angles of attack from the wind. It was found that the cases 

that are more susceptible to a variation in the Reynolds number, are those measured at 

different angles of attack.. Another study associated with the study of the Reynolds number 

is the one presented by Sarrate et al. (2001). In this study, Sarrate and associates presented 

an algorithm for fluid rigid body interaction, and an analysis of the attenuation of the 

rotational motion of a rectangular cylinder submerged in a viscous fluid.   
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Two of the main methods used in CFD to generate the flow field are the Reynolds-

averaged Navier Stokes (RANS) and the Large Eddy Simulation (LES) (Dagnew and 

Bitsuamalak, 2013). The RANS model is recommended for geometrically simple domains 

with simple boundary conditions. The RANS model offers maximum accuracy for a 

reasonable computational cost and is very practical for the case of a 2-D analysis. 

Nevertheless, this type of model is not recommended for a wide range of flows and 

geometries (Ferziger, 1993). The analysis of the steady wind around the main deck of the 

girder, for the Baluarte bridge is presented in Appendix A. In this case, a RANS simulation 

is considered for the analysis on CFD. The main objective of Appendix A is to present the 

contours of the different velocities around the deck and to highlight the shortcoming 

associated with the strip assumption, and quasi-steady theory that was previously discussed 

in section 1.2. Although this is not a rigourus deduction, we can observe that the steady 

flow is translated into a range of different pressures around the deck, which highlights the 

actual difference between oncoming wind and measured preasures.  

While the steady force might be well computed by a RANS model, the frequency and 

intensity of the unsteady forces are better represented by LES. The latter type of model is 

recommended for the study of a three-dimensional model, or for the study of separated 

flows (Beatke, 1990). Well-resolved LES models are not generally recommended, since 

the grid requirements can become computationally overwhelming. Also, establishing a 

fully developed turbulence model may take a significant amount of computing time. 

Therefore, in order to provide initial turbulent conditions is important to initialize the flow 

with a particular form of perturbation. It is also important that the perturbation must be 

spatially correlated as in the case of real flows (Huang et al, 2010). Some LES simulations 

can start by initializing the inlet boundary condition from the flow field of previous RANS 

solutions. The Reynolds stress terms from the previous RANS solution are used to 

construct the spatially and temporally correlated perturbed inlet for the initial conditions of 

the LES model (Smirnov et al. 2001). A turbulence inflow generator technique that is used 

as the inflow boundary condition in LES is proposed by Aboshosha et al. (2015). The 

proposed technique can reproduce, both the turbulent spectra and the coherence function 

of the target atmospheric boundary flow (ABL).  



27 

 

An analysis by CFD of an unsteady flow field past a two-dimensional square cylinder 

is reviewed by Murakami and Mochida (1995). While it is found that the 2-D computation 

of the LES cannot provide a good representation of the flow field around the square 

cylinder, a 3-D LES results in a better agreement between computational and experimental 

data from the Wind tunnel. Larsen and Walther (1997) also considered a 2-D analysis, but 

contrary to Murakami and Mochida  they applied the discrete vortex method. In the study 

of Larsen and Walther, the drag coefficients, Strouhal number, and the aerodynamic 

derivatives of different girders are assessed.  In the study of CFD models, it is found that 

there are sections that are characterized by strong detachments on the leading edge. 

Predicting the moving reattachment point on the top and bottom flanges of a girder is an 

equally challenging problem. According to Fradsen (2004), the flutter predictions appear 

to be mainly affected by the leading-edge separations and the associated pressure forces. 

In this respect, CFD can improve our understanding of the complexities associated to 

different types of flows. Besides, CFD models can also support information gathered from 

experimental studies under the Wind tunnel. 

Most fluid FE analyses are accomplished using the Eulerian description in which the 

mesh is fixed in space and the material particles flow through the mesh.  The flow 

simulation around a stationary bridge deck adopts the Eulerian scheme in the entire fluid 

domain. In an aeroelastic analysis, the Eulerian description is inadequate as the domain 

surrounding the structure is itself in motion. The usual numerical representation for 

structural motion is the Lagrangian description in which the mesh motion coincides with 

the motion of the material particles. The discrete vortex method, which is used extensively 

by Larsen and Walther (1997), made use of the Lagrangian formulation. In this type of 

representation, the equations of the flow are formulated in terms of vorticity rather than in 

terms of velocity (Barba et al. 2005). One of the main difficulties for the vortex methods 

to be accepted in main CFD, is related to their numerical complexity. The fluid structure 

interaction on CFD is sometimes treated as a moving boundary problem. The study of the 

problem of a classical flutter on the Great Belt East Bridge (Denmark), is considered by 

Frandsen (2004). In this case, Frandsen considers an Arbitrary Lagrangian-Eulerian (ALE) 

finite element method for the simulation of fluid domains with moving structures. The 

interface between the fluid and the solid domains is part of the fluid domain, and its position 
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is unknown a priori (Sarrate et al. 2001). The Lagrangian scheme is adopted near the 

boundaries between the fluid and the moving structure, and it gives the fluid the ability to 

be deformed, accordingly. The Eulerian formulation is used in the remaining fluid domain.  

Flutter derivatives of the Great Belt East Bridge are identified by CFD simulation by 

Grinderslev et al. (2018), and compared with experimental results from the Danish 

Maritime Institute (DMI) and the University of Western Ontario. Reasonable agreement 

between the results from CWE and experimental results demonstrates the potential 

application of CFD for nonlinear aeroelastic analysis. However, caution must be taken for 

decks with secondary elements.  The study of CFD models related to the interaction 

between flow and structure can be of great advantage in the understanding of bridge 

aerodynamics. Besides, the simple visualization of the flow that the CFD models provide, 

can enhance our understanding concerning  the accurate representation of the wind flow. 

 Objectives and thesis organization 

Cosidering the complexity of the physical study of turbulence, and the interaction between 

the random characteristics of gusts and the motion of the bridge deck, the quasi-steady 

theory is a convenient tool for the calculation of displacements. However, in the case of 

vertical displacement for long-span bridges, the lenghtscales of the vertical gusts are not 

necessary larger than the depth of the bridge deck. In this case, what is needed is a more in 

depth understanding of the character of the gust forces, and in particular for the physical 

characterization of the coherence that would be evaluated on the numerical model.  

In actuality, a distinction is made between the coherence of the wind fluctuations and 

the coherence of the actual wind forces on the bridge deck. In this case, it is stablished by 

previous experience that the coherence of the wind forces is greater than the coherence of 

the fluctuating wind (Larose and Mann, 1998). When experimental data of the force 

coherence is not available, the decay parameter can be used to stablish the gab that exist  

between the coherence of wind fluctuations  and the coherence of wind forces (or 

preassures). Consequently, a more reliable prediction of the wind  forces acting on the deck 

can be stablished.  
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The main objectives of this thesis are: 

1) To give an overall perspective on the progress of bridge aerodynamics and wind 

engineering, and to explore the study and calibration of numerical models in regards 

to the experimental scaled model studied under the BLWTL. 

2) To compare the mean and RMS responses of the Baluarte bridge obtained from the 

aeroelastic model test, including the topographical effects, to the response obtained 

based on a developed finite element model subjected to an inhomogeneous wind 

field on the frequency domain   

3) To compare the mean and RMS responses of the Baluarte bridge obtained from the 

aeroelastic model test, including the topographical effects, to the response obtained 

based on a developed finite element model subjected to an inhomogeneous wind 

field on the time domain. 

4) To compare the differences of the  RMS responses on the numerical model, when 

applying the frequency domain  or the time domain approach. 

5) To show that the time domain approach can be easily employed to evaluate the 

response of the bridge subjected to nonstationary and inhomogeneous wind fields.   

6) To evaluate and analyse the underlying conditions that generate the discrepancy 

between the results on the RMS displacements, obtained from the BLWT tests and 

the numerical modeling, based on previous experiences from similar studies 

conducted in the past (similarities and differences between experimental and 

numerical modelling).  

7) Stablish the importance of the decay parameter for the correct  parametrization of 

the force coherence, when experimental data are not available to determine the 

experimental coherence. In this case, a sensitivity analysis of the decay parameter 

is conducted to determine the rate of change of the RMS vertical displacement in 

relation to different values assignd to the parameter. 
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To achieve these objectives, a detailed finite element of the Baluarte bridge is 

developed.  The dynamic characteristics of the finite element model are compared with 

those obtained from the BLWT tests.  The results of this sophisticated finite element model 

are used as the basis to evaluate equivalent section properties which are used to develop a 

simplified finite element model that can be used for evaluating the responses subjected to 

wind loads. A recapitulation of numerical models that are used for the study of buffeting 

where  described in this Chapter 1.  

The development of the finite element model, as well as the evaluation of the bridge 

responses to buffeting load on the frequency domain are presented in Chapter 2. In chapter 

3, similar analysis is carried on, but this time considering the time domain analysis. In this 

Chapter a brief introduction to the characterization of nonstationary processes is also 

included. Finally, the main findings and final conclusions,  as well as coments of the 

potential future research work are discussed in Chapter 4. 
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Chapter 2 

 Comparison of Boundary Layer Wind Tunnel 
Laboratory Test Results and Finite Element Results 

for Baluarte Bridge 

 Introduction 

Long-span bridges are highly susceptible to wind excitations because they are light and 

flexible. The interaction between the wind and the bridge is quite complex.  The theoretical 

basis to evaluate the bridge response to the wind load are well developed (Strømmen 2010).  

The analysis of the wind-induced response of the a bridge system can be evaluated based 

on the frequency-domain approach or time-domain approach.  The frequency-domain 

approach for estimating the structural response subjected to stochastic wind load was 

developed and elaborated by Davenport (1962, 1981, 1983) and by Scanlan and Tomko 

(1971). In this approach, the wind speed is decomposed into a mean wind component and 

a fluctuating wind component that is defined by its power spectral density (PSD) function. 

The use of the random vibration theory and the PSD function of the wind leads to the PSD 

of the response that is used to evaluate the gust factor. An extensive review of the numerical 

modelling and classification of the wind forces on bridges was presented in Salvatori and 

Borri (2007). It indicates that the wind load is usually linearized, and the load is classified 

as (i) a mean wind velocity dependent steady load, (ii) a fluctuating wind dependent 

buffeting load, and (iii) an aeroelastic self-excited load depending on the motion of the 

cross-section. The aeroelastic force can be further classified as quasi-steady self-excited 

forces, unsteady self-excited forces in the frequency domain (Scanlan and Tomko 1971), 

and unsteady self-excited forces in the time domain (Scanlan et al. 1974). The quasi-steady 

load is evaluated based on experimental coefficients measured on a rigidly supported cross-

section. The unsteady load model for self-excited forces in the frequency domain is 

characterized by aerodynamic derivatives that depend on the frequency. The unsteady self-

excited forces in the time domain are evaluated by using the convolution and the indicial 

functions. 
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The application of the frequency-domain approach was applied to estimate the 

response of bridges subjected to wind load by many researchers, including Davenport 

(1962, 1981, 1983), Jain et al. (1996), Simiu and Scanlan (1996), Xu et al. (1998), Sun et 

al. (1999), and Chen et al. (2000a, b), and Caracoglia and Jones (2003). The wind load 

acted on the bridge is sensitive to the geometric shape of structural components of the 

bridge, especially to the geometric shape of the deck (Gu et al. 2001; Chen and Kareem 

2002; Chowdhury and Sarkar 2003).  

Model scale tests of the deck section and full aeroelastic model of the bridge are often 

carried out to assess the drag, lift, and pitching moment coefficients, the change of these 

coefficients with respect to the attack angle of the wind, and dynamic characteristics. 

Moreover, aerodynamic derivatives of the bridge are estimated from the boundary layer 

wind tunnel test results, and the maximum structural responses, including the critical wind 

speed for instability, are also measured. Easy to implement procedures of the frequency 

approach with existing finite element software to estimate the bridge responses were 

presented in Hua et al. (2007) and Chen et al. (2009).  However, a comparison of responses 

from the full aeroelastic model of the bridge, with those obtained from finite element 

modelling and by considering quasi-steady self-excited forces in the case of the frequency 

domain is scarce.  It is noted that Diana et al. (1995, 2013) carried out a comparison of the 

responses obtained from the wind tunnel tests on a full aeroelastic model of the proposed 

bridge over Stretto di Messina. The tests and comparison were aimed at verifying the 

aerodynamic behaviour of the bridge in smooth and turbulent flow and the threshold wind 

speed for the flutter instability. 

For the case of a frequency domain approaches, Sun et al. (1999) uses a finite element 

approach and a pseudo excitation method for the characterization of wind forces. The 

pseudo excitation method considers the wind load spectra in terms of the power spectral 

density function (PSDF) for wind processes, and the spectrum is discretized into its 

different frequency components and applied to the structure as a series of harmonic loads. 

In the case of considering the effects of self-exited forces, aeroelastic forces on a bridge 

deck are changed into nodal forces to form aeroelastic damping and stiffness matrices. 

Frequency domain analysis is based on a linear hypothesis, where the evaluation of the 
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response can be considered by numerically integrating the product of the bridge's transfer 

function and the wind load spectra (Yang et al. 1997). 

It must be emphasized that the pressure coefficients, and the rate of their change with 

the angle of attack, are sensitive to the geometric and dynamic characteristics of the bridge.  

As such characteristics vary from a bridge to bridge, the test of a full aeroelastic model of 

a proposed major bridge is always carried out in a boundary layer wind tunnel. A major 

cable-stayed bridge – Baluarte bridge – was proposed and constructed in Mexico.  The 

bridge crosses a gorge in the Sierra Madre Occidental mountains with a clearance of 390 

metres below the deck; the bridge is one of the most important of its kind in the world.  A 

full aeroelastic model of the bridge was tested in the Boundary layer wind tunnel laboratory 

(BLWTL) at the University of Western Ontario (UWO).  The test was carried out in the 

topographic flow conditions by including the topographic model as well. The inspection of 

the design and construction of the Baluarte bridge was under the supervision of the Institute 

of Engineering at the Autonomous National University of  Mexico (UNAM).  

The main objectives of this chapter are to carry out the finite element modelling of the 

bridge, compare the dynamic characteristics of the aeroelastic model, and most 

importantly, compare the measured responses to those calculated by using the established 

finite element model. The bridge response evaluation in this chapter is carried out using 

the frequency-domain approach.  The considered wind forces are those determined based 

on the quasi-steady theory.  It is acknowledged that some of the aerodynamic derivatives 

for the section model of the bridge were available for the Baluarte bridge (Costa et al. 

2007), the consideration of these coefficients for the unsteady self-excited forces as well 

as the study of a yaw angle of the mean wind is outside of the scope of this study.  

 General characteristics of the bridge 

The Baluarte Bridge is a cable-stayed bridge located at the border between the states of 

Sinaloa and Durango, in the Northwest part of Mexico.  This bridge that is in operation 

since 2013 has a total length of 1224 m, and a mid-span length of 520 m. The main deck 

of the bridge reaches a maximum height of 390 m above the canyon (with the road deck at 

403 m above the valley below), which is one of the highest bridges in the world.  A full 
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perspective of the bridge is presented in Figure 2.1. 

 

 

      

Figure 2.1 Location and photos: a) Geographic location and, b) and c) photos of Baluarte 

bridge (https://vidamaz.com/2013/11/09/our-first-trip-on-the-durango-mazatlan-highway-

and-the-baluarte-bridge/;https://www.pinterest.ca/pin/364017582355349438/). 

 

The superstructure of the bridge is supported by two delta shape pylons, eight reinforced 

concrete frame piers, and two abutments at the ends of the bridge.  The two main pylons 

are made of a hollow concrete box section. Their total heights are 169 m for the pylon 

situated on the side of Durango, and 147 m for the pylon on the side of Mazatlán.  From 

each one of the main pylons, 76 stayed cables are anchored to the upper section of the pylon 

and to the edge of the deck. All piers are made of reinforced concrete frames, by a system 

https://www.pinterest.ca/pin/364017582355349438/
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of columns connected by post-tension beams.  The height of the piers ranges from 40 to 

140 m, approximately. An elevation view of the whole bridge is presented in Figure 2.2. 

In the case of the superstructure, the cross-section of the side-spans is made of prestressed 

concrete box dowels and the main-span of A-50 steel I beams.  Both cross-sections are 

presented in Figure 2.3. 

 

Figure 2.2 Elevation view of the bridge (Pozos-Estrada et al. 2016). 
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Figure 2.3 Cross-section of the main span (top plot) and side span deck (bottom plot) (King 

et al. 2011). 

The cover slab for the superstructure is of prestressed concrete.  A membrane of asphalt 

concrete on top of the slab is used as the bearing surface. The widths of the cross-sections 
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are 22.06 and 19.76 m, for side-spans and midspan, respectively. 

An aeroelastic model was designed for the whole bridge with a geometric scale of 

1:250 (see Figure 2.4). This scale was determined based on the characteristics of the 

turbulent wind flow generated in the wind tunnel, as well as the overall length of the bridge 

(King and Kong 2010; King et al. 2011). In addition to the overall geometric similarity, the 

design of the full aeroelastic model preserved the Froude number and the Cauchy number 

scaling. The density ratio was preserved, and the damping ratio was assumed to take a 

value of 0.32% of the critical. The full aeroelastic bridge model was tested under smooth 

and topographic flow conditions in the Boundary Layer Wind Tunnel Laboratory 

(BLWTL) at the University of Western Ontario (UWO) (King and Kong 2010).  The test 

results of the whole bridge aeroelastic model, including the dynamic characteristics, the 

mean wind response, and the buffeting responses, are also presented in  King and Kong 

(2010). The dynamic characteristics of the full bridge aerodynamic model on the wind 

tunnel and the sophisticated and simplified FE model are presented in Table 2.1. 

 

   

Figure 2.4 Test setup in the BLWTL at UWO (King and Kong 2010). 
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Table 2.1 Dynamic characteristics of the bridge. 

 
Test 

(BLWTL) 

Sophisticated 3D-FE 

model 

Simplified FE model 

 
FE 

analysis 

Relative 

difference 

  

Mode shape 
Frequency 

(Hz) 
  

  

Lateral vibration 0.251 0.251 < 0.1% 0.251 
< 

0.1% 

Vertical 

vibration 
0.299 0.299 < 0.1% 0.309 3.4% 

2nd lateral 

vibration 
0.388 0.405 4.2% 0.397 2.4% 

Torsion 0.434 0.437 0.6% 0.435 0.2% 

 

Before the study of the full aerodynamic model test on the BLWT, a section model test 

for the deck was initiated at CSTB(Centre Scientifique et Technique du Batiment, in 

French), by Flamand,(2003) in France.  The main objective of the study conducted by 

Flamand was to assess the aerodynamic characteristics of the central span of the bridge 

deck during construction and at the service stage. The considered geometric scale for the 

scaled model of the deck is 1:50. The aerodynamic coefficients, from the tests, are 

summarized in Table 2.2. In this case, CD, CL, and CM are the drag, lift, and pitching 

moment coefficients, and  represents the incidence angle. The rate of change of the drag 

coefficient is positive for the composite section and negative for the concrete section 

considered for the side spans. The rate of change for the lift and moment coefficients are 

both positive   In addition to the aerodynamic coefficients for the deck, the drag 

coefficients for the principal pylons and the cables are equal to 1.7 and 1.2, respectively 

(CAN/CSA S16-19 2019).  

Table 2.2 Aerodynamic coefficients for drag, lift, and moment, and their derivatives with 

respect to the angle of attack  from the scaled section model. 

 CD CL CM /DdC d  /LdC d  /MdC d  

Composite section for 

main span  

0.145 -0.097 -0.033 0.086 6.217 1.518 

Concrete section for 

side span  

0.190 -0.307 0.012 -0.115 7.678 0.285 
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After the studies conducted conducted by Flamand on the scaled deck section of the 

bridge,  the studies of the scaled full bridge were conducted at the BLWT at UWO by King 

et al. (2011). In the study of the scaled full aerodynamic model of the bridge two 

characteristic wind profiles are characterized. In the first case a free flow simulation to 

study possible vibrations and instabilities on the bridge, and in the second case, a flow 

simulation of the expected site conditions which also considers the surrounding 

topography. A roughness length 𝑧0 of 1.5 m and an average turbulence intensity Iu of 15% 

are considered for the case of the expected site conditions, and for the simulation of the 

wind profile. In contrast, a roughness length 𝑧0 of 0.0005 m and average turbulence 

intensity, Iu of 2%, are considered for the free flow simulation. In order to provide a 

transition between the floor and the base of the model for both types of flow, a portion of 

the topography near the bridge was modelled (Fig 2.4) (King et al. 2011).  

 Validation of  Finite Element Models based on 
experimental results from the BLWTL 

2.1.1 Finite element modelling 

A three-dimensional FE (3D-FE) model of the Baluarte Bridge is developed in ANSYS 

(2017), according to the prototype design employed for the full aeroelastic model.  The 

material properties and geometric variables consistent with those used for the prototype 

design are used to develop the FE model for the bridge.  These variables are given in Table 

2.3.  A complete isometric view of the developed model and the global coordinates are 

depicted in Figure 2.5.  There are a total of 13765 elements for the developed FE model 

with an average element size of 4 m.  The model is developed by taking into account the 

requirement of accurate modelling but with a manageable computational effort for 

evaluating peak wind responses.  The full-bridge FE model, including the piers, pylons, 

deck, and cables, are modelled with details given below. 
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Table 2.3 Parameters considered for developing the FE model of Baluarte Bridge. 

Bridge 

component 
Member Parameter Value used in the FE model 

Deck 

Longitudinal steel girder; 

steel supporting beam. 

Elastic modulus 200 GPa 

Density 7.85 × 103 kg/m3 

Poisson’s ratio 0.30 

Concrete topping 

Elastic modulus 24.9 GPa 

Density 2.83 × 103 kg/m3 

Poisson’s ratio 0.15 

Thickness 17.5 cm 

Concrete girder 

Elastic modulus 24.9 GPa 

Density 2.40 × 103 kg/m3 

Poisson’s ratio 0.15 

Pylon Hollow concrete sections 

Material properties are the same as for the 

concrete girder. 

Thickness(1) 40 cm 

Pier Hollow concrete sections 

Material properties are the same as for the 

concrete girder. 

Thickness 70 cm 

Cable Circular cross-sections(2) 

Elastic modulus 195 GPa 

Density 7.85 × 103 kg/m3 

Poisson’s ratio 0.30 

Area 1950 ~ 8680 mm3 

Length 62.09 ~ 270.05 m 
Note: (1). The thickness of 40 cm is obtained by averaging the design thickness of the hollow sections of the 
pylon; (2). The material properties of cables are obtained from the design data. 
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Figure 2.5 Isometric view of the (high-resolution model) 3D-FE model of Baluarte Bridge. 

The piers and pylons of the bridge are modelled using the SHELL181 element (see 

ANSYS (2017)) with three or four nodes depending on the shape of the meshed element. 

There are six degrees of freedom at each node, including translations in the x, y, and z 

directions and rotations about the x, y, and z-axes.  Since the piers and pylons are designed 

with hollow cross-sections, the use of the shell element is considered to be suitable to 

analyze these thin shell structures.  The coordinates of the nodes and thickness for the shell 

elements are defined in accordance with the prototype design.  To accurately reflect the 

tested full-scale aeroelastic model, the first and the last piers of the bridge, as designed, are 

not included in the FE model, since they are not included in the aeroelastic model.  

The bridge deck consists of concrete topping, concrete box girders (longitudinal), steel 

girders (longitudinal), and steel supporting beams (longitudinal and transversal).  Except 

for the steel supporting beams, other components are modelled by SHELL181 element with 

four nodes.  The use of such an element is due to the fact that it is well-suited for linear, 

large rotation, and/or large strain nonlinear applications.  The coordinates of the nodes for 
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defining the shell elements, as well as the thicknesses of each component, are defined in 

accordance with the prototype design.  For the concrete topping, an equivalent thickness 

of 20 cm is used to take into account its half-hollow shape. The steel supporting beams 

beneath the concrete topping are modelled by using the 2-node BEAM188 element in 

ANSYS for its suitability and computation efficiency. For modelling the supporting beams, 

the nodes used to define the shell elements for the concrete topping are first selected 

according to the design geometry of the supporting beams.  The selected nodes are then 

used to model the beam elements with defined cross-sections.  Further, these elements are 

offset to the actual location of the supporting beams to form a concrete-steel composite 

deck component.  An illustration of the modelled concrete-steel composite deck is shown 

in Figure 2.6, where the modelled components of the deck are rigidly connected. 

 

 

Figure 2.6 Modelling of the deck of mid-span. 

The stay cables are modelled by the 2-node TRUSS180 element in ANSYS.  Each node 

of the element has three translational degrees of freedom, and the element is specified to 

take the tension only along the direction of the cable.  Again, the geometry of the cables 

and their corresponding material properties are consistent with the full-scale model (King 

and Kong 2010). 
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The cables are pre-tensioned due to the effect of the dead load from the deck and self-

weight.  To define the initial geometry of the cable profile and the coordinates of the 

nodes, an iterative procedure is used to calculate the coordinates of the needed nodes to 

define the elements for the cable.  The procedure starts by modelling the geometry of the 

cable and deck without gravity load.  Static analysis is carried out by applying the gravity 

load to determine its deformed shape and the corresponding coordinates of the nodes.  

Since the deformed shape is unlikely to meet the straight target line of the deck, the 

coordinates of the nodes for the deformed cable are adjusted iteratively to meet the target 

configuration of the deck.  The results from the initial configuration of the cable for the 

last iteration (i.e., before applying gravity) are used to define the initial geometry of the 

cable profile.  Further, the initial strain for the last iteration is adjusted to ensure the strain 

of cable due to gravity load is identical or within a specified tolerance to the strain 

calculated by using design tension (which includes the load effect from the dead load of 

the deck).  

The boundary conditions of the Finite Element model are as follows. Fixed restraints 

are used between the deck and pylon, and deck and piers through coupling the degrees of 

freedom of the connecting nodes.  The cables are hinged at both ends.  The foundations of 

the piers and pylons are fixed to the ground.  The ends of the bridge are restrained for the 

vertical motion and deck torsion but allow for longitudinal displacement. 

A modal analysis is carried out using the developed FE model to identify the dynamic 

characteristics of the bridge. More specifically, the dead load (i.e., gravity load) is first 

applied to the modelled bridge. The modal analysis is then performed considering the stress 

caused by the pre-tensioned cables.  Four identified modes with the predominant motion 

of the bridge (i.e., the modes with the predominant motion of cables are ignored) are 

identified and shown in Figure 2.7.  The obtained vibration frequencies are summarized in 

Table 2.1 and compared with those obtained from the aeroelastic model.  The table shows 

that the predicted dynamic characteristics of the bridge by using the developed detailed 

3D-FE model match well those obtained from the tests.  The relative differences are less 

than 5% for the considered modes. 
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a) b) 

 
c) d) 

Figure 2.7 Identified vibration modes by using the 3D-FE model. 

  

2.1.2 Simplified FE model and its dynamic characteristics 

An attempt is made in applying the frequency-domain and time-domain analysis 

procedure to estimate the wind responses.  It is found that the use of the sophisticated 3D-

FE model described in the previous section for such a purpose is extremely time-

consuming.  Subsequently, a simplified version of the sophisticated 3D-FE model of the 

bridge is developed.  The simplified 3D FE model with 1565 elements is shown in Figure 

2.8.  For the simplified model, the equivalent material properties and geometric variables 

shown in Table 2.4 are used.  The equivalent material properties and geometric variables 

are derived based on the sophisticated FE model presented in the previous section.  The 

estimation of the equivalent properties for the simplified model is explained in the 
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following. 

 

 

Figure 2.8 Isometric view of the simplified 3D-FE model of Baluarte Bridge. 

 

Table 2.4 Parameters for simplified FE model. 

Bridge 

component 
Member Parameter 

Value used in the FE 

model 

Deck 

Longitudinal steel girder; 

steel supporting beam. 

Elastic modulus 200 GPa 

Density 7.85 × 103 kg/m3 

Poisson’s ratio 0.30 

Concrete topping 

Elastic modulus 68 GPa 

Density 3.25 × 103 kg/m3 

Thickness 30 cm 

Width per element  2.5 m 

Poisson’s ratio 0.15 

Concrete girder 
Material properties are the same as the 

sophisticated model 

Pylon Hollow concrete Material properties are the same as the 
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sections sophisticated model 

Cross-section area(1) 5.04 ~ 6.68 m2 

Pier 
Hollow concrete 

sections 

Material properties are the same as the 

sophisticated model 

Cross-section area(1) 5.26 ~ 8.64 m2 

Cable Material properties are the same as the sophisticated model 

Note: (1). The cross-section area is obtained by averaging the design cross-sections of the 

hollow sections of the pylon. 

 

For the simplified 3D-FE model, the deck of the bridge is modelled using the 2-node 

BEAM188 element with six degrees of freedom at each node.  The concrete topping of the 

deck is represented by using the horizontal beam elements along the transversal direction 

of the bridge with an interval of 4 m.  The material properties and the cross-sections of the 

beam elements used to represent the topping are adjusted through trial and error such that 

the mass and stiffness of the deck of the sophisticated and simplified 3D models are 

practically identical.  The beam element is also used for longitudinal girders, forming a 

frame to represent the deck of the bridge, as shown in Figure 2.9. In the figure, the 

simplified model of the main span deck with defined cross-sections for the beam elements 

is also shown.  A comparison of the properties of the main span deck for the sophisticated 

and simplified 3D-FE models is presented in Table 2.5, indicating that their resemblance 

is satisfactory.  For the simplified FE model, the hollow cross-sections for piers and pylons 

are modelled using the average section area.  For the cables, the same model used for the 

sophisticated FE model is employed.  The considerations for the connections and boundary 

conditions are identical to those for the sophisticated 3D-FE model, as explained in the 

previous section.  
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Figure 2.9 Simplified model of the main span of the deck: a) frame formed by beam 

elements; b) beam elements with defined cross-sections. 

 

Table 2.5 Comparison of the properties of the main span deck. 

Parameters 
Sophisticated FE 

model 

Simplified FE 

modal 

Relative 

difference 

Vertical moment of 

inertia 
2.27 m4 2.12 m4 7.0% 

Lateral moment of 

inertia 
67.44 m4 64.18 m4 5.1% 

Torsional constant 1.95×10-3 m4 1.89×10-3 m4 3.2% 

Mass per unit length 19912 kg/m 19195 kg/m 3.7% 

 

A modal analysis is carried out to obtain vibration modes and vibration frequencies. The 

obtained four vibration models corresponding to those shown in Figure 2.7 are shown in 

Figure 2.10, and the comparison of the vibration frequencies to those obtained from the 

wind tunnel test is shown in Table 2.1.  The vibration models shown in Figure 2.10 are 

consistent with those presented in Figure 2.7.  From Table 2.1, it can be observed that the 

vibration frequencies obtained from the simplified 3D-FE model are in very good 

agreement with those obtained from the sophisticated 3D-FE model and from the full 

aeroelastic model.  
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a)  b) 

  
c)  d) 

Figure 2.10 Vibration modes obtained based on a simplified 3D-FE model. 

 

 Procedure to calculate responses to wind load based 
on the frequency domain approach 

2.2.1 Basic equations to estimate responses to winds based on 
random vibration theory  

The theoretical basis for estimating the bridge response subjected to the wind load is 

well-established and presented in Davenport (1962, 1966, 1981, 1983), Simiu and Scanlan 

(1996), and Strømmen (2010). The wind load on bridges could be classified as time-

averaged static, buffeting, and aeroelastic forces.  The treatment of the static force is 

straightforward.  The buffeting forces are due to the spatiotemporally varying winds, and 

the aeroelastic forces are caused by the interaction of the wind and the oscillation of the 

bridge. The drag force D(t), lift force L(t), and pitching moment M(t), due to wind can be 

written as (Simiu and Scanlan 1996), 
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)()()( tDtDDtD aebs ++= , (2.1a) 

)()()( tLtLLtL aebs ++= , (2.1b) 

and, 

)()()( tMtMMtM aebs ++= , (2.1c) 

where D, L, and M denote the drag force, lift force, and pitching moment, and s, b, and ae 

are the subscripts for the time-averaged static, buffeting, and aeroelastic forces. The static 

forces for a unit length, and characteristic dimension B, are: 

𝐷𝑠 = 𝜌𝑈2𝐶𝐷𝐵/2, (2.2a) 

𝐿𝑠 = 𝜌𝑈2𝐶𝐿𝐵/2, (2.2b) 

and, 

𝑀𝑠 = 𝜌𝑈2𝐶𝑀𝐵2/2 (2.2c) 

where  is the air mass density; U, representing U(z), and denotes the time-averaged mean 

wind velocity at the elevation of the bridge deck z (m); CD, CL, CM, and  are the set of 

coefficients and the incidence wind angle of attack. The buffeting forces are defined as (see 

Chen et al. (2009)), 

2 ( ) ( )
( ) D L

b s

D

C Cu t w t
D t D

U C U

  −
=  +  

 
, (2.3a)  

2 ( ) ( )
( ) L D

b s

L

C Cu t w t
L t L

U C U

  +
=  +  

 
, (2.3b)  

and, 

2 ( ) ( )
( ) M

s s

M

Cu t w t
M t M

U C U

 
= −  +  

 
, (2.3c) 
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where u(t) and w(t) are the fluctuating wind speeds along the mean wind direction and 

perpendicular to the mean wind direction; DC , LC  and MC  are used as short notations for 

the derivatives of CD, CL, and CM with respect to .  Further, based on the quasi-steady 

theory (Davenport 1966) (see also Chen et al. (2009)), the aeroelastic forces per unit span 

in the global axes can be written as, 

𝐷𝑎𝑒(𝑡) =
1

2
𝜌𝑈2𝐵 [−𝐶𝐷

�̇�(𝑡)

𝑈
− (𝐶𝐷

′ − 𝐶𝐿)
ℎ̇(𝑡)

𝑈
+ 𝜂𝐵(𝐶𝐷

′ − 𝐶𝐿)
�̇�

𝑈
− 𝐶𝐷

′ 𝛼] (2.4a) 

𝐿𝑎𝑒(𝑡) =
1

2
𝜌𝑈2𝐵 [−𝐶𝐿

�̇�(𝑡)

𝑈
− (𝐶𝐿

′ + 𝐶𝐷)
ℎ̇(𝑡)

𝑈
+ 𝜂𝐵(𝐶𝐿

′ + 𝐶𝐷)
�̇�

𝑈
− 𝐶𝐿

′𝛼] (2.4b) 

and, 

𝑀𝑎𝑒(𝑡) =
1

2
𝜌𝑈2𝐵2 [𝐶𝑀

�̇�(𝑡)

𝑈
+ 𝐶𝑀

′ ℎ̇(𝑡)

𝑈
− 𝜂𝐵𝐶𝑀

′ �̇�

𝑈
+ 𝐶𝑀

′ 𝛼] (2.4c) 

where �̇�(𝑡), ℎ̇(𝑡), �̇� are the deck velocities in the horizontal, vertical, and rotational 

directions, respectively, and  is the coefficient that specifies as a fraction of the girder 

width, the distance between the aerodynamic and shear center. 

To evaluate the bridge responses to wind, it is considered that the bridge can be 

adequately represented by the simplified 3D-FE model, and the equation of motion is 

expressed by, 

𝑀�̈� + 𝐶�̇� + 𝐾𝑋 = 𝐹𝑠 + 𝐹𝑏 + 𝐹𝑎𝑒 (2.5) 

where M, C, and K are the global mass, damping, and stiffness matrices; X, X  and X  are 

the nodal displacement, velocity, and acceleration vectors; F with the subscripts s, b, and 

ae are the static, buffeting, and aeroelastic forces, respectively. The aeroelastic forces in 

the global axes can be expressed in the following matrix form,  

𝐹𝑎𝑒 = 𝐾𝑎𝑒𝑋 + 𝐶𝑎𝑒�̇� (2.6) 

By substituting Eq. (2.6)  into Eq. (2.5) and re-arrange terms, the equation of motion is, 

𝑀�̈� + (𝐶 − 𝐶𝑎𝑒)�̇� + (𝐾 − 𝐾𝑎𝑒)𝑋 = 𝐹𝑠 + 𝐹𝑏 (2.7) 
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Note that for the analysis, it is considered that Rayleigh damping is applicable, and C and 

Cae are replaced by �̄� = 𝛼𝐷𝑎𝑚𝑝𝑖𝑛𝑔𝑀 + 𝛽𝐷𝑎𝑚𝑝𝑖𝑛𝑔(𝐾 − 𝐾𝑎𝑒) and �̄�𝑎𝑒 = 𝐶𝑎𝑒 −

𝛽𝐷𝑎𝑚𝑝𝑖𝑛𝑔𝐾𝑎𝑒 , where Damping and Damping are the proportionality coefficients for Rayleigh 

damping.  Eq. (2.7) indicates that the system could be nonlinear if Kae and Cae are functions 

of displacement and velocity.  However, if Kae and Cae are assumed to be constant, the 

system is linear.  For simplicity, this approximation is considered for the numerical analysis 

in the following. Moreover, it is considered that one could estimate the static responses by 

considering the time-averaged mean wind speed and the gravity load.  This allows one to 

apply these two forces to the structure first and to obtain the static equilibrium.  The 

buffeting force and aeroelastic force are then considered to obtain the dynamic responses 

by solving, 

𝑀�̈� + (�̄� − �̄�𝑎𝑒)�̇� + (𝐾 − 𝐾𝑎𝑒)𝑋 = 𝐹𝑏 (2.8) 

It must be emphasized that the responses obtained based on Eq. (2.8) are the responses 

with the static load and mean wind effect removed.  In this chapter, the statistics of the 

peak responses due to buffeting and aerodynamic forces (i.e., solution of Eq. (2.8)) are 

evaluated based on the frequency-domain approach (Simiu and Scanlan 1996; Chen et al. 

2009; Strømmen 2010).  The details on the evaluation of the buffeting and aerodynamic 

forces on the bridge, as well as the use of the frequency-domain procedure, are described 

in the following sections. 

2.2.2 Characteristics of wind and Buffeting force  

As shown in Eq. (2.3), the buffeting force is due to the fluctuating wind which is a 

stochastic process and is often characterized using the concept of the power spectral density 

function (Simiu and Scanlan 1996).  One of the commonly used PSD functions is the one 

proposed by Kaimal et al. (1972).  The Kaimal PSD functions of u(t) and w(t) can be written 

as (Simiu and Scanlan 1996),  

𝑓𝑆𝑢(𝑧,𝑓)

𝑢∗
2 =

200𝜁

(1+50𝜁)5/3, (2.9a) 

and 
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𝑓𝑆𝑤(𝑧,𝑓)

𝑢∗
2 =

3.36𝜁

1+10𝜁5/3 (2.9b) 

where 𝜁(= 𝑓𝑧/𝑈) is the Monin coordinate or reduced frequency, 𝑓 the frequency in Hz; 𝑧  

the height above the ground surface, and *u  the shear friction velocity. The use of these 

equations results in that the standard deviation of u(t), u , equals √6𝑢∗, and the standard 

deviation of w(t), w , equals √1.67𝑢∗. By definition, u  is the product of the along-wind 

turbulence intensity (i.e., coefficient of variation) and the mean wind speed. 

The fluctuating wind speed varies in time and space. The cross power spectral density 

(XPSD) function of u(t) and w(t) at two points pi and pj along the bridge deck can be used 

to describe such a spatial correlation of u(t) and of w(t) along the bridge deck.  The XPSD 

function can be expressed as (Davenport, 1968), 

𝑆𝑢𝑢(𝑝𝑖 , 𝑝𝑗 , 𝑓) = √𝑆𝑢(𝑧𝑖, 𝑓)𝑆𝑢(𝑧𝑗, 𝑓) 𝑒𝑥𝑝(−
𝑓 

�̄�
(𝐶𝑦

2(𝑦𝑖 − 𝑦𝑗)
2
+ 𝐶𝑧

2(𝑧𝑖 − 𝑧𝑗)
2
)

1

2
),

 (2.10a) 

and, 

𝑆𝑤𝑤(𝑝𝑖 , 𝑝𝑗, 𝑓) = √𝑆𝑤(𝑧𝑖 , 𝑓)𝑆𝑤(𝑧𝑗, 𝑓) 𝑒𝑥𝑝 (−
𝑓

�̄�
𝐶𝑤|𝑦𝑖 − 𝑦𝑗|), (2.10b) 

where yi and yj, zi and zj are the coordinates of two points pi and pj; Cy and Cz are the 

exponential decay coefficients for the coherence of along-wind in the directions of y-axis 

and z-axis, respectively; Cw is the exponential decay coefficient for the spanwise coherence 

of cross-wind; U  are the average of the mean wind speed between pi and pj. For the 

numerical analysis to be presented, Cy =16, Cz =10, and Cw = 8 are considered (Simiu and 

Yeo, 2019). For the finite element modelling, since the deck element is small, 

√𝑆𝑢(𝑧𝑖, 𝑓)𝑆𝑢(𝑧𝑗, 𝑓) and √𝑆𝑤(𝑧𝑖, 𝑓)𝑆𝑤(𝑧𝑗, 𝑓) could be approximated by 𝑆𝑢(�̄�, 𝑓) and 

𝑆𝑤(�̄�, 𝑓), respectively, where �̄� equals the average value of zi and zj. Similar to many 

applications (Simiu and Scanlan 1996; Strømmen 2010), the coherence between u(t) and 

w(t) is neglected in the present study. 
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The mean wind speed at a spatial point is required in defining the PSD functions. If a 

constant mean wind speed is considered for the entire bridge, the wind field is a 

homogeneous random field.  However, because of the along height varying wind speed, as 

well as the topographic effect, the mean wind speed experienced by the bridge may not be 

treated as a constant value.  In such cases, the spatially-varying mean wind speed leads to 

the wind field being a nonhomogeneous random field. 

To obtain the buffeting force on the nodes of elements of the FE model, the mean wind 

speed profile of the bridge needs to be defined.  For the Baluarte Bridge, the horizontal 

wind speed, which varies in the longitudinal direction of the bridge at the main deck height, 

was reported in King and Kong (2010). This variation is considered in the present study to 

define the spatially varying time-averaged mean wind speed. In order to define a spatially-

varying mean wind speed, considering that the horizontally varying mean wind speed for 

the Baluarte bridge is significantly affected by the topography, it is considered that the 

power-law model (Davenport 1965) can be adopted. The along height mean wind speed is 

considered to be calculated using, 

𝑈(𝑥, 𝑧) = 𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥)) × (
𝑧

𝑧𝑑𝑒𝑐𝑘(𝑥)
)

𝛼(𝑥)

 (2.11) 

where 𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥)) represents the wind speed at a reference height (i.e., at the deck 

height ( )deckz x ), which depends on the coordinate x, x is measured from the left pylon to 

the right pylon at the deck height (see Figures 2.2 and 2.11), ( )x  is the power-law 

coefficient that depends on the upstream terrain condition, usually taken equal to 0.16 for 

open country terrain (NRC 2010).  Based on the wind tunnel test results, regression analysis 

results indicate that (0) equal to 0.180 and (520) equal to 0.198 could be adequate. It 

was assumed that the power-law exponent at the point near the middle of the two pylons 

(i.e., at the point where the depth from the deck to the bottom of the canyon equals 390 m 

(see Figures 2.2 and 2.11) equals 0.15 (i.e., (260) = 0.15)).  To determine 𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥)), 

the mean wind speed profile along the bridge deck determined from the wind tunnel test 

and normalized with respect to Umid was employed, where this normalized wind profile 

represented by 𝑟𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥)) = 𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥))/𝑈𝑚𝑖𝑑 with 𝑈𝑚𝑖𝑑 =
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𝑈𝑚𝑖𝑑(260, 𝑧𝑑𝑒𝑐𝑘(260)) is also shown in Figure 2.11 and Umid represents the reference 

hourly-mean wind speed at the “middle” span. A mean wind speed surface based on the 

above by assuming Umid = 30 m/s is illustrated in Figure 2.11 as well. 

a) b)  

c)  

Figure 2.11 Coordinates and the mean wind profile for Baluarte bridge: a). Defined 

coordinates; b) Horizontal mean wind speed profile 𝑟𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥)) along the deck; c) 

Mean wind speed surface. 

 

To take into account the buffeting forces acting on the bridge deck, consider that the 

bridge deck can be modelled using the 2-node beam elements (i.e., 3-D 2-node line element 

with rotational degrees of freedom in ANSYS) as shown in Figure 2.12.  It is considered 

that the distributed buffeting force acting along the length of the element in the direction 

of the bridge spanning can be approximated by the equivalent nodal forces, as shown in 
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Figure 2.12.  By assuming that the pressure coefficients and the fluctuating wind velocities 

within an element can be represented by their values at the midpoint of the element, these 

forces can be expressed as (Hua et al. 2007; Hu 2009),  

𝐹𝑏
𝑒 = 𝐸𝑏

𝑒𝑞𝑒 (2.12) 

where 𝐹𝑏
𝑒 denotes the nodal forces on the deck, 𝑞𝑒 = [𝑢𝑒(𝑡),𝑤𝑒(𝑡)]𝑇 denotes the 

fluctuating along and crosswind velocities at the midpoint of the deck element, and 𝐸𝑏
𝑒  is 

given by (Sun et al. 1999), 

𝐸𝑏
𝑒 =

[
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 (2.13a) 

where C1 =U2B/2, C2 =U2B2/2, and l is the length of the element. 

 

Figure 2.12 Illustration and adopted displacement notations for the two-node beam 

element, and the lumped forces on the beam element (after Hu 2009). 

 

For the buffeting forces acting on the bridge pylon, consider that the 2-node beam 

elements used for modelling the deck can also be employed for modelling the vertical 

pylon.  Notice that the wind angle of attack here is the angle of normal incident wind 

referring to the vertical plane of the pylon segment.  By assuming that the aerostatic 
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coefficients are independent of the wind angle of attack, i.e., the derivatives of the 

coefficients equal to zero, 𝐸𝑏
𝑒  for the bridge pylon, denoted as 𝐸𝑏,𝑝

𝑒 . can be derived as, 

𝐸𝑏,𝑝
𝑒 =

[
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𝑙2

𝑈
0

 

0 𝐶1,𝑝𝐶𝐷,𝑝
𝑙

𝑈
𝐶1,𝑝𝐶𝐿,𝑝

𝑙

𝑈
𝐶2,𝑝𝐶𝑀,𝑝

𝑙

𝑈

𝐶1,𝑝𝐶𝐿,𝑝

6

𝑙2

𝑈
−

𝐶1,𝑝𝐶𝐷,𝑝

6

𝑙

𝑈

0 0
𝐶1,𝑝𝐶𝐷

2

𝑙

𝑈
0

𝐶1,𝑝𝐶𝐷,𝑝

12

𝑙2

𝑈
0

]

𝑇

 (2.13b) 

where the subscript p is used to denote the coefficients for the pylon and l is the length of 

the vertical element. 

Further, to take into account the buffeting forces acting on the bridge cables, which are 

modelled as a 2-node link element with three translational degrees of freedoms of each 

node, 𝐸𝑏
𝑒  for the bridge cable, termed as 𝐸𝑏,𝑐

𝑒 , can be derived as, 

𝐸𝑏,𝑐
𝑒 = [0 𝐶1,𝑐𝐶𝐷,𝑐

𝑙

𝑈
𝐶1,𝑐𝐶𝐿,𝑐

𝑙

𝑈
0 𝐶1,𝑐𝐶𝐷,𝑐

𝑙

𝑈
𝐶1,𝑐𝐶𝐿,𝑐

𝑙

𝑈
]
𝑇

 (2.13c) 

where the subscript c is used to denote the coefficients for the cable and l is the length of 

the link element representing the cable.  Note that for assembling the nodal force matrix, 

𝐸𝑏,𝑐
𝑒  is to be extended into a 2×12 matrix by setting zeros to the elements corresponding to 

the rotational degrees of freedoms in the matrix.   

The nodal forces given in the local coordinate for the elements representing deck, 

pylons and cables, denoted as 𝑭𝑏
𝑒 , are converted into the global coordinate system through 

the 6(n+1)×12 coordinate transformation matrix 𝑻𝑒  (n denotes the number of 2-noded 

elements with six degrees of freedoms at each node), and the forces in the global coordinate 

represented by 𝑭𝐵
𝑒,𝑠

 are given by (Hua et al. 2007; Hu 2009; Hu et al. 2012), 

𝑭𝐵
𝑒,𝑠 = 𝑻𝑒𝑭𝐵

𝑒  (2.14) 

The transformation matrix e
T  is derived as, 
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(𝑻𝑒)𝐸𝑙𝑒𝑚𝑒𝑛𝑡=𝑘−>𝑁𝑜𝑑𝑒(𝑖,𝑗) = [
06×6 06×6 . . . 𝐼6×6(𝑖)

. . . 06×6(𝑗) . . . 06×6

06×6 06×6 . . . 06×6(𝑖) . . . 𝐼6×6(𝑗)
. . . 06×6

]

𝑇

 (2.15) 

where 𝐼6×6 is the 6×6 identity matrix and the extra subscript denote the position of the 

submatrix, 06×6 is the 6×6 zero matrix and the extra subscript denotes the position of the 

submatrix.  

By assembling the buffeting force vector 𝑭𝐵
𝑒,𝑠

 for all the elements, the global buffeting 

force vector for the bridge deck, pylons, and cables 𝑭𝐵 is, 

𝑭𝐵 = ∑ (𝑻𝑒𝑭𝐵
𝑒 )𝑘

𝑛
𝑘=1 = ∑ (𝑻𝑒𝑬𝐵

𝑒 𝒒𝑒)𝑘
𝑛
𝑘=1 = 𝑻𝑷 (2.16) 

where 𝑻 = [(𝑻𝑒)1, (𝑻
𝑒)2, … , (𝑻𝑒)𝑘, … , (𝑻𝑒)𝑛], 

𝑷𝑇 = [(𝑬𝐵
𝑒 𝒒𝑒)1, (𝑬𝐵

𝑒 𝒒𝑒)2, … , (𝑬𝐵
𝑒 𝒒𝑒)𝑘, … , (𝑬𝐵

𝑒 𝒒𝑒)𝑛]𝑇,  and the subscript k denotes the k-

th element; 
e

BE  is the element force matrix assembled by using 
e

bE , ,

e

b pE , and ,

e

b cE . 

Since the displacements of the element ue(t) and we(t) (i.e., u(t) and w(t) for the 

considered element) are stochastic processes that are characterized by their corresponding 

PSD functions, Fb represents a vector of stochastic processes for given Te and 𝑬𝐵
𝑒 .  It can 

be shown that the spectral density function matrix of FB, 𝑺𝐹𝐹(𝑓), can be expressed as (Sun 

et al. 1999; Hua et al. 2007; Hu 2009) (note that the frequency in here is represented in Hz 

while that used in Hu (2009) is expressed in rad/s), 

𝑺𝐹𝐹(𝑓) = 𝑻

[
 
 
 
 
𝑺𝑃1𝑃1

𝑒 (𝑓) 𝑺𝑃1𝑃2

𝑒 (𝑓) ⋯ 𝑺𝑃1𝑃𝑛

𝑒 (𝑓)

𝑺𝑃2𝑃1

𝑒 (𝑓) 𝑺𝑃2𝑃2

𝑒 (𝑓) ⋯ 𝑺𝑃2𝑃𝑛

𝑒 (𝑓)

⋮ ⋮ ⋱ ⋮
𝑺𝑃𝑛𝑃1

𝑒 (𝑓) 𝑺𝑃𝑛𝑃1

𝑒 (𝑓) ⋯ 𝑺𝑃𝑛𝑃𝑛

𝑒 (𝑓)]
 
 
 
 

𝑻𝑇 (2.17) 

where the submatrix ( )
i j

e

PP fS  representing the 12×12 cross-spectral density function 

matrix of the nodal forces on the i-th element and the j-th element, and is given by 

𝑺𝑃𝑖𝑃𝑗

𝑒 (𝑓) = (𝑬𝐵
𝑒 )𝑖𝑺𝑞𝑖𝑞𝑗

𝑒 (𝑓)[(𝑬𝐵
𝑒 )𝑗]

𝑇
 (2.18) 
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in which,  

𝑺𝑞𝑖𝑞𝑗
𝑒 (𝑓) = [

𝑆𝑢𝑢(𝑝𝑖, 𝑝𝑗 , 𝑓) 𝑆𝑢𝑤(𝑝𝑖 , 𝑝𝑗 , 𝑓)

𝑆𝑤𝑢(𝑝𝑖, 𝑝𝑗 , 𝑓) 𝑆𝑤𝑤(𝑝𝑖 , 𝑝𝑗 , 𝑓)
] (2.19) 

where pi and pj are the midpoints of the i-th and j-th elements; 𝑆𝑢𝑢(𝑝𝑖 , 𝑝𝑗, 𝑓), and 

𝑆𝑤𝑤(𝑝𝑖 , 𝑝𝑗, 𝑓) are defined in Eqs. (2.10).  As mentioned earlier 𝑆𝑢𝑤(𝑝𝑖 , 𝑝𝑗 , 𝑓) and 

𝑆𝑤𝑢(𝑝𝑖 , 𝑝𝑗 , 𝑓) are assumed to be zero. 

2.2.3 Modelling aeroelastic forces and analysis procedure 

To take into account the aeroelastic forces in the deck, the 2-node matrix element 

MATRIX27 in ANSYS is employed for assembling the global aeroelastic stiffness and 

damping matrices as indicated in Eq. (2.7) and (2.8). The coordinate system of the element 

used to assemble the matrices is illustrated in Fig 2.13.  Following Chen et al. (2009), 

element E2 is employed to model aerodynamic stiffness, and element E3 to model 

aerodynamic damping.  The nodes I and J are the shared nodes for the beam element and 

the two matrix elements. 

 

 

Figure 2.8 Schematic of the modelling matrix element. 

The constructed aerodynamic stiffness and damping matrices for the element are (Chen et 

al. 2009), 
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𝐾𝑎𝑒
𝑒 =

1

2
𝜌𝑈𝐵𝐿

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
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20
𝑎 0 0 0 0 0
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𝑎 0 0

0 0 0
7

20
𝑏 0 0 0 0 0
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0 0 0
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3
𝑐 0 0 0 0 0
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6
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7

20
𝑎 0 0

0 0 0
3

20
𝑎 0 0 0 0 0
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3
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𝑏 0 0 0 0 0
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20
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𝑎 0 0 0 0 0
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20
𝑎 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.20) 

𝐶𝑎𝑒
𝑒 =

1

2
𝜌𝑈𝐵𝐿

[
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 (2.21) 

where 𝑎 = −𝐶𝐷
′ ; 𝑏 = −𝐶𝐿

′ ; 𝑐 = 𝐶𝑀
′ ; 𝑑 = −2𝐶𝐷; 𝑒 = −2𝐶𝐿; 𝑓 = 2𝐶𝑀; 𝑔 = −(𝐶𝐷

′ − 𝐶𝐿); 

ℎ = −(𝐶𝐿
′ + 𝐶𝐷); 𝑖 = −𝐶𝑀

′ ; 𝑗 = −𝜂𝐵(𝐶𝐷
′ − 𝐶𝐿); 𝑘 = −𝜂𝐵(𝐶𝐿

′ + 𝐶𝐷); 𝑚 = −𝜂𝐵𝐶𝑀
′ . 

Based on the assembled stiffness matrix and damping matrix, including the stiffness 

and damping matrices due to aeroelastic force, and the wind load due to buffeting force, 

Eq. (2.8) is completely defined.  To solve Eq. (2.8) based on the frequency-domain 

approach, it is noted that the spectral density matrix of the buffeting force 𝑺𝐹𝐹(𝑓) can be 

decomposed as, 

𝑺𝐹𝐹(𝑓) = 𝑳∗(𝑓)𝑫(𝑓)𝑳𝑇(𝑓) (2.22a) 
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where L(f) is a decomposed matrix obtained by using Cholesky decomposition or 

eigenvalue decomposition (if Cholesky decomposition is used L(f) is a low triangular 

matrix; if the eigenvalue decomposition is used L(f) contains orthonormal vectors), 𝑫(𝑓) 

is a diagonal matrix, and the superscript ＊ denotes the complex conjugate. Note that since 

some of the degrees of freedom are restrained, they do not take loads.  The matrix 𝑺𝐹𝐹(𝑓) 

contains rows and columns of zeros associated with those degrees of freedom. In such a 

case, the rows and columns with zeros need to be removed to decompose the matrix.  Once 

the decomposition is completed, the matrices should be re-arranged such that Eq. (2.22a) 

holds. 

Let Lk(f) denote the k-th column of 𝑳(𝑓) and dk(𝑓) denote the k-th diagonal element of 

𝑫(𝑓).  𝑺𝐹𝐹(𝑓) shown in Eq. (2.17) can be re-written as, 

𝑺𝐹𝐹(𝑓) = ∑ 𝑑𝑘(𝑓)𝑳𝑘
∗ (𝑓)𝑚

𝑘=1 𝑳𝑘
𝑇(𝑓) (2.22b) 

where m is the size of the matrix 𝑫(𝑓).  Then the spectral density function of the response 

X, 𝑺𝑋𝑋(𝑓), is given by (Sun et al. 1999), 

𝑺𝑋𝑋(𝑓) = ∑ 𝑑𝑘(𝑓)𝑋𝑘
∗(𝑓)𝑚

𝑘=1 𝑋𝑘
𝑇(𝑓) (2.23) 

where 𝑋𝑘(𝑓) = 𝑯(𝑖𝑓)𝒇𝑘(𝑓), 𝑯(𝑖𝑓) = [−(2𝜋𝑓)2𝑴 + 𝑖(2𝜋𝑓)(�̄� − �̄�𝑎𝑒) + (𝑲 − 𝑲𝑎𝑒)]
−1 

is the transfer function for the bridge system obtained based on Eq. (2.8), and 𝒇𝑘(𝑓, 𝑡) =

𝑳𝑘(𝑓) 𝑒𝑥𝑝( 𝑖2𝜋𝑓𝑡) for k=1,2, …, m.  The stochastic response X is then completely 

characterized by its PSD matrix (including the cross-terms). 

In summary, the steps to determine the PSD function of the responses X are: 

1) Evaluate the static response due to gravity load and the mean wind speed; 

2) Assemble the global aeroelastic stiffness and damping matrices (see Eqs. (2.20) and 

(2.21)) and include them in defining the stiffness and damping coefficient matrix (see 

Eq. (2.8)); 

2) Establish the PSD matrix for the buffeting force by considering the elements used to 

model the structure (most importantly, elements used to model the deck and the cables) 
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(see Eq. (2.22a).  Decompose the PSD matrix of the buffeting force for a series of 

frequencies ranging from a lower bound to an upper bound frequency bound (e.g., 0.003 

to 0.6 Hz) with an increment of 0.005 Hz (see Eq. (2.22b)); 

3) For each considered frequency of the buffeting load, carry out structural analysis 

subjected to 𝒇𝑘(𝑓, 𝑡) = 𝑳𝑘(𝑓) 𝑒𝑥𝑝( 𝑖2𝜋𝑓𝑡) (i.e., subjected to harmonic excitations) and 

evaluate the PSD matric of X, ( )XX fS  (see Eq. (2.23)). 

Consider a response of interest r such as the bridge midspan horizontal, vertical or 

torsional displacement.  The PSD function of r, denoted as Sr(f), can be identified from 

𝑺𝑋𝑋(𝑓).  The obtained Sr(f) can then be used to evaluate the statistics of peak response or 

mean peak response of r due to the mean and fluctuating winds.  According to Davenport 

(1964), the probability distribution of peak response of r over a duration T (s), 𝐹(𝜂𝑝), can 

be approximated by the Gumbel probability distribution,  

𝐹(𝜂𝑝) = 𝑒𝑥𝑝(−𝑒𝑥𝑝(−
√2 𝑙𝑛(𝑣0

+𝑇)

𝜎𝑟
(𝜂𝑝 − �̄� − 𝜎𝑟√2 𝑙𝑛( 𝑣0

+𝑇)))) (2.24) 

where �̄� is the response due to mean wind speed, 𝜂𝑝 is the peak response, 𝑣0
+ = 𝜎�̇�/𝜎𝑟 the 

zero up-crossing rate,  𝜎𝑟 and 𝜎�̇� are the standard deviations of r and of its temporal 

derivative, respectively.  
r  and 

r  can be calculated using, 

𝜎𝑟
2 = ∫ 𝑆𝑟(𝑓)

∞

0
𝑑𝑓, (2.25a) 

and, 

𝜎�̇�
2 = ∫ (2𝜋𝑓)2𝑆𝑟(𝑓)

∞

0
𝑑𝑓. (2.25b) 

The mean peak response (i.e., the mean of 𝜂𝑝), m, based on the Gumbel probability 

distribution shown in Eq. (2.23) is, 

𝑚𝜂 = �̄� + 𝑔𝑝𝜎𝑟, (2.26) 
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where 𝑔𝑝 = √2 𝑙𝑛( 𝑣0
+𝑇) + 0.577/√2 𝑙𝑛( 𝑣0

+𝑇) is known as the peak factor, and 𝐺𝑇 =

1 + 𝑣𝑟𝑔𝑃 is known as the gust factor, in which vr equals rr / , representing the coefficient 

of variation of the response. 

 Numerical analysis results and comparison  

For the analysis,  is considered equal to 1.2929 kg/m3.  This value is used for Candian 

codified structural design.  It is acknowledged that this value could be high for Mexico in 

general, but could be a conservative assumption for wind load.  The values of CD , CL and 

CM for the steel deck and concrete deck are already shown in Table 2.2.  For the pylons, 

CD,p = 1.4 suggested by Canadian Highway and Bridge Design Code (Can/CSA S16-19 

2019) is adopted for the analysis, and it is assumed that the buffeting effects due to lifting 

and bending of the pylons on the response of the main span are negligible.  For the cables, 

CD,c = 1.2 and CL,c = 0.2 are employed based on the discussion given in the previous 

sections.  The turbulence intensity is considered to be equal to 0.15, which agrees with that 

considered for carrying out the wind tunnel test, as mentioned earlier. 

The values of DC , LC  and MC  are also given in Table 3.2 for the steel deck and concrete 

deck.  The width of the concrete deck and the width of the steel deck are taken as 22.06 m 

and 19.76 m, respectively.  It is assumed that the wind loads on the side-spans can be 

neglected.  Static analysis is carried out for Umid = 30 and 40 m/s, and the corresponding 

displacements for the mean wind component are shown in Table 2.6. These two values of 

the mean wind speed were also used by King et al. (2011) for the tests on the BLWTL at 

UWO.  Also shown in Table 2.6 is the displacement obtained based on the wind tunnel 

tests (King and Kong 2010; King et al. 2010).   

The results of the lateral displacement and the vertical displacement at the midspan 

obtained from the static analysis are compared with the wind tunnel test results (Table 2.6). 

For the static analysis, first, the gravity load is applied to the bridge, and then the wind load 

due to mean wind speed is used with the option for large deformation in ANSYS.  The 

comparison indicates that the horizontal displacement obtained by using the simple 3D-FE 

model developed in the present study compares well to the results from the BLWT.  
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However, the calculated vertical response differs from that measured from the aeroelastic 

model in the wind tunnel, especially for Umid = 40 m/s.  However, since the magnitude of 

the vertical displacement is so small, no additional adjustment to the developed finite 

element model is made. This successful comparison validates the FE model at least for the 

static loads.   

Table 2.6 Mean response of the bridge considering static wind loading condition. 

Umid 
Midspan lateral displacement (m) Midspan vertical displacement (m) 

BLWT test FE model BLWT test FE model 

30 m/s 0.212 0.237 0.02 0.023 

40 m/s 0.364 0.421 0.01 0.009 

 

Based on the above considerations and by using the 3D-FE model, first, the frequency-

domain analysis described extensively in the previous sections is carried out for the 

Baluarte bridge by considering the buffeting force but neglecting the aeroelastic effect.  For 

the analysis, again, first, the gravity load is applied to obtain a deformed structure by 

considering large deformation.  Using the deformed structure, a new bridge configuration 

and finite element model are defined. For this newly defined bridge, the harmonic analysis 

option in ANSYS is used to carry out the analysis.  This harmonic analysis is repeated by 

including the fluctuating wind load defined by Lk(f).  The harmonic analysis provides the 

response (i.e., 𝑋𝑘(𝑓)) due to fluctuating wind defined by Lk(f).  Note that the harmonic 

analysis implicitly assumes that the structure response is linear elastic.  𝑋𝑘(𝑓) is used to 

obtain the PSD function of the responses, as shown in Eqs. (2.22) and (2.23) for a frequency 

equal to 0.01 to 0.7 with a frequency increment of 0.02 Hz for the frequency within 0.01 

to 0.21 or within 0.5 to 0.7, and 0.01 Hz for frequency within 0.21 to 0.50, respectively. 

The obtained PSD functions of the horizontal and vertical displacements at the midspan 

are shown in Figure 2.14 for Umid = 30 m/s and Umid = 40 m/s.  These PSD functions show 

a clear peak near the first and second vibration frequencies of the bridge.  They have similar 

looks to the multiplication of the mechanic admittance function and the power spectral 

density function of the wind force due to fluctuating winds that can be obtained analytically 

for a linear elastic single-degree-of-freedom system (Simiu and Scanlan 1996).  This is 

surprising, considering that the excitation considered is nonuniform in space (i.e., the mean 
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wind speed is spatially varying), the fluctuating wind is not fully coherent, and the 

considered bridge system consists of more than 1500 nodes with many dynamic degrees of 

freedom.  For the horizontal displacement, the peak occurred near 0.25 Hz which is 

associated with the first vibration modes for the horizontal displacement (see Table 2.1).  

The PSD function for the vertical displacement exhibits a large peak at 0.30 Hz, which is 

associated with the first vertical vibration mode (see Table 2.1).  The results in Figure 2.14 

are shown in the semi-logarithmic paper.  This point will be discussed further in terms of 

the root mean square (RMS) response, shortly. 

   

Figure 2.9 PSD functions of the horizontal displacement and vertical displacement at 

midspan by considering the buffeting effect. 

The analysis that is carried out by considering the buffeting alone with the results shown 

in Figure 2.14 is repeated but considers both the aeroelastic and buffeting effects.  The 

obtained results are presented in Figure 2.15.  A comparison of the results presented in 

Figures 2.14 and 2.15 indicates that the PSD functions for the responses are comparable, 

and the frequencies where the peak values of PSD functions occur are shifted to a lower 

frequency, especially for the horizontal displacement.  This shift can be explained by noting 

that the stiffness matrix is modified by considering the aeroelastic effect (see Eq. (2.19)). 
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Figure 2.10 PSD function of the horizontal displacement and vertical displacement at 

midspan by considering the aeroelastic and buffeting effect. 

Based on the obtained PSD function shown in Figures 2.14 and 2.15, and Eqs. (2.23) 

and (2.25), the RMS responses (i.e., horizontal displacement and vertical displacement) at 

the mid-span are calculated, and the obtained results are compared to the BLWT test results  

(Table 2.7). The RMS responses obtained by considering the buffeting force alone, are 

lower than those obtained from the wind tunnel test.  The predicted RMS displacements 

for both horizontal and vertical directions range from 70% oto 84% of that obtained from 

the full aeroelastic model BLWT if a mean wind speed of 30 m/s is considered.  The ratios 

become 79% to 98% for the horizontal displacement and 66% to 71% for the vertical 

displacement if the mean wind speed of 40 m/s is considered. 

An effort is made to find the cause of the discrepancy between the calculated and full 

aeroelastic model test results. It is possible that the strip assumption, which is the basis of 

the quasi-steady theory, can underestimate the gust wind response.  Chen et al. (2000a) 

emphasized the importance of unsteady characteristics derived from experimentally 

measured spanwise coherence of aerodynamic forces. Similarly, Larose and Mann (1998) 

showed that the pressure field throughout the bridge deck has a higher spanwise correlation 

than that one derived from wind speeds, and the consideration of the Strip assumption. 

Some aspects of the study of wind coherence would be treated in Chapter 3 in the time-

domain analysis. However, the study of force coherence by carrying out new wind tunnel 

tests is beyond the scope of this investigation. 

As part of a parametric investigation, additional analysis is carried out by varying Umid 



65 

 

from 20 to 45 m/s. The obtained RMS of horizontal and vertical displacements at mid-span 

is presented in Figure 2.16.  The results presented in the figure indicate that as Umid 

increases, the difference between the calculated and test RMS horizontal displacement 

reminds almost constant. In contrast, the difference between the calculated and test RMS 

vertical displacement increases with an increase in wind speed The consideration of 

buffeting and aeroelastic forces leads to the RMS responses always that are greater than 

those obtained by considering the buffeting forces alone. 

Table 2.7 RMS displacements due to fluctuating wind component. 

 Lateral displacement (m) Vertical displacement (m) 

Umid 
(m/s) 

BLWT test 
results 

FE model 
Buffeting 

FE model 
Buffeting 

& 
aeroelastic 

BLWT test 
results 

FE Model 
Buffeting 

FE model 
Buffeting & 
aeroelastic 

30 0.053 0.037 0.045 0.162 0.112 0.119 

40 0.095 0.075 0.093 0.314 0.208 0.224 
Note: * The RMS results from the wind tunnel test are obtained by considering the peak 

responses, and a peak factor gT is 3.5 (King and Kong 2010). 

 

 r  

Figure 2.11 RMS of the horizontal displacement and vertical displacement at midspan for 

a range of Umid values. 

Finally, it is noted that the frequency domain approach is based on linear elastic 

assumption.  Therefore, the RMS responses for a turbulence intensity other than 0.15 can 

be obtained by simply scaling the RMS responses obtained for the turbulence intensity 
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equal to 0.15. For example, the scaled RMS responses for turbulence intensity equal to 

0.10, 0.15, and 0.20 are shown in Figure 2.17.  That is, the RMS responses for turbulence 

intensity equal to 0.10, 0.15, and 0.20 are equal to the 0.1/0.15, 0.15/0.15, and 0.20/0.15 

times the RMS response for turbulence intensity equal to 0.15.  To validate this scaling, 

the response analysis by using the frequency approach is carried out for Umid = 30 m/s and 

the turbulence intensity Iu = 0.10 and 0.20.  The obtained RMS responses are shown in 

Figure 2.17, verifying the adequacy of the scaling. 

 

(a)  (b)  

(c)  (d)  

Figure 2.12 Influence of turbulence intensity on the RMS of the horizontal displacement 

and vertical displacement at midspan for a range of Umid values.  
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 Conclusions 

The wind and bridge interaction is complex, and the light and flexible long-span bridges 

are highly susceptible to wind excitations.  Two finite element (FE) models of the Baluarte 

bridge, a sophisticated FE model and a simple FE model, are developed and implemented 

in commercial software.  The sophisticated FE model is developed by mimicking the 

designed structure and the full aeroelastic model.  Since the number of nodes for the 

sophisticated FE model is too large for the buffeting and aeroelastic analysis, a simplified 

FE is developed using equivalent structural component properties derived from the 

sophisticated model.  

A comparison of the dynamic characteristics of the developed FE models and of the full 

aeroelastic model indicates that both the identified frequencies of the first few modes of 

the FE models agree well with the full aeroelastic model. Based on a simple FE model, 

bridge responses are calculated by considering the nonhomogeneous mean wind speed, the 

buffeting force alone, and the buffeting and aeroelastic forces.  The obtained static analysis 

results indicate that the calculated horizontal and vertical displacements at the mid-span of 

the bridge by using the simple FE model match those obtained from the wind tunnel test.  

Numerical analysis of the bridge subjected to buffeting load alone, and buffeting and 

aeroelastic load is carried out.  A comparison of the RMS responses to those obtained from 

the full aeroelastic model indicates that the RMS for lateral displacement is on average 

30% below those obtained from the full aeroelastic model when only the buffetting force 

are considered. An increase in displacement is observed when buffetting and aeroelastic 

forces are considered. In this case the difference is 15% below from those observed in the 

tests. In the case of the vertical RMS, the values from the numerical model are on average 

30% below those from the experimental tests.  

It is possible that the strip assumption, which is the basis of the quasi-steady theory 

could underestimate the gust wind response. Several authors have stated the importance of 

unsteady characteristics derived from experimentally measured spanwise coherence of 

aerodynamic forces. Yet, from the full bridge aeroelastic model tests under the wind tunnel, 

no information related to force coherence is available now. Therefore, the study of force 
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coherence was beyond the scope of the present investigation. However,  a recognition of 

the importance of a sensitivity analysis in regards to the decay parameter that defines the 

amount of coherence based on experimental evidence is made in the next chapter. The 

variability of this parameter has a big influence in the estimated bridge responses, and in 

particular for the vertical directions.   
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Chapter 3 

 Response of Baluarte bridge subjected to wind 
loading – an application of the time-domain 

approach 

 Introduction 

In general, the wind load acted on a bridge could be classified as (Salvatori and Borri 

2007): (i) a mean wind steady load, (ii) a fluctuating wind dependent buffeting load, and 

(iii) an aeroelastic self-excited load depending on the motion of the cross-section.  The self-

excited load could be further grouped as the steady and unsteady loads, where the unsteady 

self-excited forces are associated with aerodynamic derivatives (Scanlan and Tomko 

1971).  The self-excitation load for bridges is due to the aerodynamic wind-bridge 

interaction, which is a key issue to evaluate the bridge response and bridge stability.  The 

interaction described by the frequency-dependent aerodynamic derivatives could also be 

expressed in terms of convolution integrals of the aerodynamic indicial functions (Scanlan 

et al. 1974).  The computational efficiency could be gained by representing the 

aerodynamic forces using the auxiliary state-space variables and the first order differential 

equations (Boonyapinyo et al. 1999; Chen et al. 2000a,b).  

In many practical cases, the experimental results required to determine the aerodynamic 

derivatives are unavailable. In this case, one could resort to the quasi-steady linear theory 

(Davenport 1961, 1982) to approximate the aerodynamic forces based on the steady 

aerodynamic coefficients and their derivatives with respect to wind attack angle.  

According to Chen et al. (2009), such an approach could lead to adequate results.  This 

simplifies the evaluation of the bridge response to wind load significantly since it does not 

require the consideration of the frequency-dependent aerodynamic forces or solving an 

additional set of differential equations to determine the self-excited forces.  In such a case, 

the estimation of the bridge responses to buffeting and aerodynamic forces could be carried 

out in the frequency domain, as shown in Chapter 2.  Alternatively, one could also carry 

out the time domain analysis (Boonyapinyo et al. 1999; Chen et al., 2000a,b) by using 
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commercially available software such as ANSYS and simulated wind field as shown in 

Chen et al. (2009).  

The simulation of the fluctuating wind component could be carried out in several ways.  

Perhaps, the most popular technique to simulate the turbulent or fluctuating wind field is 

the so-called spectral representation method (SRM) (Shinozuka and Jan 1972; Deodatis 

and Shinozuka 1989; Shinozuka and Deodatis 1996; Liang et al. 2007; Kareem, 2008). 

This approach is directly related to the definition of the stationary stochastic process 

presented by Cramer (1942) and of the evolutionary process presented in Priestley (1965).  

Other techniques to simulate random fields include those that are based on the Karhunen–

Loéve expansion (Phoon et al. 2002; Ghanem and Spanos 2003; Spanos et al. 2007), 

polynomial chaos (Dai et al. 2019), autoregressive moving average (Mignolet and Spanos 

1992; Spanos and Zeldin 1998).  Some of these methods could also be used to generate the 

non-Gaussian and nonstationary fields.  In general, the use of these models is associated 

with more sophisticated mathematical concepts and is less efficient.  Since the PSD 

function of fluctuating wind velocity depends on the mean wind velocity (Simiu and 

Scanlan 1996), the PSD function becomes dependent on both the frequency and time if the 

mean wind speed is spatiotemporally-varying.  To simplify the task of simulating the 

nonstationary fluctuating wind, Hong (2016) proposed the use of a uniformly amplitude 

modulated and frequency modulated (AM/FM) process to model nonstationary fluctuating 

wind.  This consists of applying the time transformation concept (Yeh and Wen, 1990).  

The nonstationary fluctuating wind is then represented by amplitude modulating a process 

that is nonlinearly time transformed from a stationary process.  The modeling of the 

fluctuating winds as the stationary inhomogeneous process (i.e., fluctuating winds that are 

stationary in time and spatially varying mean wind speed) and as the AM/FM process are 

considered in this chapter. 

It is noted that the full aeroelastic model tests, including the topographic effect, in the 

wind tunnel, as well as the numerical modelling of the bridge, are frequently carried out in 

wind engineering.  Diana et al. (1995, 2013) presented such a comparison for the proposed 

bridge over Stretto di Messina, aiming at verifying the aerodynamic behaviour of the bridge 

in smooth and turbulent flow and the threshold wind speed for the flutter instability. The 
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development of the FE model and the theoretical model for the wind forces are developed 

by Politecnico de Milano (Falco et al. 1992).  The study of the full bridge aeroelastic model 

was conducted at the Martin Jensen Wind tunnel for a 1:250 scale between the model and 

prototype.  

In the present chapter, we consider the Baluarte bridge – the largest cable-stayed bridge 

in Mexico.  The construction of the bridge at the site was carried out under the supervision 

of the Institute of Engineering at UNAM (Universidad National Autonoma de México, in 

Spanish).  A full bridge aerodynamic model test was carried out at the Boundary Layer 

Wind Tunnel (BLWT) at the University of Western Ontario (UWO) before its construction. 

The model was constructed and tested in a topographic flow condition similar to the one 

expected at the bridge site. The test results were made available for the present study (King 

and Kong 2010; King et al. 2011), providing a unique opportunity to investigate the 

difference between measured bridge responses obtained from the full aeroelastic model 

and calculated responses from finite element modelling. Such an analysis was carried out 

already, based on the frequency domain approach (see Chapter 2). However, there are 

limitations to the frequency-domain approach.  For example, its use is difficult in dealing 

with the nonstationary wind field (i.e., wind field with time-varying mean wind speed and 

time-varying frequency content). 

The main objective of the present chapter is to evaluate the response of the Baluarte 

bridge to wind load based on the time domain approach, and to compare the estimated 

response to those obtained from the full aeroelastic model and calculated based on the 

frequency domain.  Similar to Chapter 2, it is acknowledged that some of the aerodynamic 

derivatives for the section model of the bridge were available for the Baluarte bridge (Costa 

et al. 2007), but the consideration of these coefficients for the unsteady self-excited forces 

is outside of the scope of this study. 

 Recapitulation of results from the frequency domain 
approach 

An aeroelastic model for the whole bridge with a geometric scale of 1:250 was tested 

at the BLWTL at UWO (King and Kong 2010; King et al. 2011).  The design of the full 
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aeroelastic model preserved the Froude number, the Cauchy number scaling, and the 

density ratio (King et al. 2011).  A scaled model of the topography surrounding the bridge 

was modelled as well in the wind tunnel test (see Chapter 2).  Some of the test results for 

the aeroelastic model, the dynamic characteristics of the model as well as the frequency 

domain analysis results are summarized in Tables 3.1 to 3.3 (for completeness and easy 

reference). 

Two finite element (FE) models, a sophisticated model with 13765 elements and a 

simplified model with 1565 elements, were developed and described in Chapter 2.  Both 

models matched the dynamic characteristics of the full aeroelastic model well. The 

sophisticated model is used as the basis to assign the section properties for the simplified 

model. It was indicated, in Chapter 2 that the use of the sophisticated FE model is 

computing time-consuming and that the use of the simplified three-dimensional FE (3D-

FE) model provides sufficient accurate representation for the Baluarte bridge wind 

response. This simplified 3D-FE model, which is shown in Figure 3.1, is used in this 

chapter to evaluate the dynamic responses of the bridge subjected to wind forces 

determined based on the quasi-steady theory, and the time domain approach.  Figure 3.1 

also shows the first four vibration modes. For more details on the FE modelling, the reader 

is referred to Chapter 2. 

Table 3.1 Dynamic characteristics of the bridge. 

 
Test 

(BLWTL) 

Sophisticated 3D-FE 

model 

Simplified FE model 

 
FE 

analysis 

Relative 

difference 

  

Mode shape 
Frequency 

(Hz) 
  

  

Lateral vibration 0.251 0.251 < 0.1% 0.251 
< 

0.1% 

Vertical 

vibration 
0.299 0.299 < 0.1% 0.309 3.4% 

2nd lateral 

vibration 
0.388 0.405 4.2% 0.397 2.4% 

Torsion 0.434 0.437 0.6% 0.435 0.2% 
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Table 3.2 Mean response of the bridge. 

Umid 
Midspan lateral displacement (m) Midspan vertical displacement (m) 

BLWT test FE model BLWT test FE model 

30 m/s 0.212 0.237 0.02 0.023 

40 m/s 0.364 0.421 0.01 0.097 

 

Table 3.3 RMS displacements dues to fluctuating wind component. 

 Lateral displacement (m) Vertical displacement (m) 

Umid 
(m/s) 

BLWT test 
results 

FE model 
Buffeting 

FE model 
Buffeting 

& 
aeroelastic 

BLWT test 
results 

FE Model 
Buffeting 

FE model 
Buffeting & 
aeroelastic 

30 0.053 0.037 0.045 0.162 0.112 0.119 

40 0.095 0.075 0.093 0.314 0.207 0.220 
Note: * The RMS results from the wind tunnel test are obtained based on the peak responses 

and a peak factor gT of 3.5 (King and Kong 2010). 

 

 

a) 
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b) c)  

d) e)  

Figure 3.1 Isometric view of a simplified 3D-FE model of Baluarte Bridge and the four 

selected vibration modes. 

 

 Modelling and simulation of wind speed field acted on 
the bridge 

3.3.1 Mean wind profiles at the Baluarte bridge site 

For the Baluarte Bridge,  the horizontal mean wind speed at the main deck height was 

measured at the BLWT at the UWO.  Also, the vertical wind profiles along the height at 

two particular locations (two principal pylons) were measured at the Wind tunnel.  By 

considering that spatially-varying mean wind speed could be modeled by using the power-

law model (Davenport 1965), and throughout a spatial interpolation, it is suggested that the 

horizontally varying mean wind speed is significantly affected by the topography. In this 

case, the along height mean wind speed is considered to be, 

𝑈(𝑥, 𝑧) = 𝑟𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥)) × (
𝑧

𝑧𝑑𝑒𝑐𝑘(𝑥)
)

𝛼(𝑥)

𝑈𝑚𝑖𝑑 (3.1) 
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where 𝑟𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥)) = 𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥))/𝑈𝑚𝑖𝑑, represents the along the deck wind profile 

normalized with respect to 𝑈𝑚𝑖𝑑 = 𝑈𝑚𝑖𝑑(260, 𝑧𝑑𝑒𝑐𝑘(260)), which depends on the 

coordinate x, and x is measured from the left pylon to the right pylon at the deck height 

(see Figures 3.2), ( )x  is the power-law coefficient that depends on upstream terrain 

conditions usually taken equal to 0.16 for open country terrain (NRC 2010).  Based on the 

wind tunnel test results, it was concluded that  (0) equal to 0.18 and (520) equal to 0.20 

could be adequate.  Also, it was assumed that the power-law exponent at the point near the 

middle of the two pylons (i.e., at the point where the depth from the deck to the bottom of 

the canyon equals 390 m (see Figures 3.2) equals 0.15 (i.e., (260) = 0.15). The mean wind 

speed profile along the bridge deck 𝑈(𝑥, 𝑧𝑑𝑒𝑐𝑘(𝑥)) is considered to be equal to the one 

determined from the wind tunnel test and normalized with respect to Umid, where Umid 

represents the reference hourly-mean wind speed at the “middle” span.  A mean wind speed 

surface based on the above, by assuming Umid = 30 m/s is illustrated in Figure 3.2b also. 

a) b)  
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c)  

Figure 3.2 Coordinates and the mean wind profile for Baluarte bridge: a) Defined 

coordinates; b) Horizontal mean wind speed profile, 𝒓𝑼(𝒙, 𝒛𝒅𝒆𝒄𝒌(𝒙)) = 𝑼(𝒙, 𝒛𝒅𝒆𝒄𝒌(𝒙))/

𝑼𝒎𝒊𝒅; and c) Mean wind speed surface. 

 

3.3.2 Characterization of the fluctuating wind field and its simulation 

The fluctuating wind at a point p (with coordinates y and z) can be characterized using 

the power spectral density function (Simiu and Scanlan 1996).  If the Kaimal PSD function 

is adopted, the PSD function of the fluctuating wind along the mean wind direction 𝑢(𝑝, 𝑡) 

and the fluctuating wind perpendicular to the mean wind direction 𝑤(𝑝, 𝑡) at p can be 

written as (Simiu and Scanlan 1996),  

𝑓(𝑧,𝑓)

𝑢∗
2 =

200𝜁

(1+50𝜁)5/3, (3.2a)  

and, 

𝑓𝑆𝑤(𝑧,𝑓)

𝑢∗
2 =

3.36𝜁

1+10𝜁5/3, (3.2b)  

where 𝜁(= 𝑓𝑧/𝑈(𝑧)) is the Monin coordinate or reduced frequency, 𝑓  the frequency in 

Hz; z is the height above the ground surface, and 𝑢∗ the shear friction velocity.  The use of 

these equations results in the standard deviation of 𝑢(𝑝, 𝑡), 𝜎𝑢(𝑧), that equals √6𝑢∗, and 

the standard deviation of 𝑤(𝑝, 𝑡), 𝜎𝑤(𝑧), that equals √1.67𝑢∗. 
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The fluctuating wind speed varies in time and space.  The cross power spectral density 

(XPSD) function of 𝑢(𝑝, 𝑡) and of 𝑤(𝑝, 𝑡) at two points pi and pj, denoted as 𝑆𝑢𝑢(𝑝𝑖 , 𝑝𝑗, 𝑓) 

and 𝑆𝑤𝑤(𝑝𝑖 , 𝑝𝑗 , 𝑓), can be expressed as Davenport (1968), 

𝑆𝑢𝑢(𝑝𝑗, 𝑝𝑘 , 𝑓) = √𝑆𝑢(𝑧𝑗 , 𝑓)𝑆𝑢(𝑧𝑘 , 𝑓) 𝑒𝑥𝑝 (−
𝑓

�̄�𝑗,𝑘
(𝐶𝑦

2(𝑦𝑘 − 𝑦𝑘)2 + 𝐶𝑧
2(𝑧𝑗 − 𝑧𝑘)

2
)
1/2

), (3.3a) 

and, 

𝑆𝑤𝑤(𝑝𝑗, 𝑝𝑘 , 𝑓) = √𝑆𝑤(𝑧𝑗 , 𝑓)𝑆𝑤(𝑧𝑘 , 𝑓) 𝑒𝑥𝑝 (−
𝑓

�̄�𝑗,𝑘
𝐶𝑤|𝑦𝑗 − 𝑦𝑘|), (3.3b) 

where (yj, zj) and (yk, zk) are the coordinates of the points pj and pk; Cy and Cz are the 

exponential decay coefficients for the coherence of along-wind in the directions of y-axis 

and z-axis; Cw is the exponential decay coefficient for the spanwise coherence of cross-

wind; �̄�𝑗,𝑘 is the average of the mean wind speed between points pj and pk.  Similar to many 

applications (Simiu and Scanlan 1996; Strømmen 2010), the coherence between 𝑢(𝑝, 𝑡) 

and 𝑤(𝑝, 𝑡) is neglected in this study. 

By adopting the fluctuating wind models given in Eqs. (2.6) and (2.8) and considering 

the process as Gaussian, the simulation of the fluctuating winds at m points can be carried 

out based on the spectral representation method (SRM) (Shinozuka and Jan 1972). This 

involves assembling the power spectral density matrix or coherence matrix, decomposing 

the matrix by applying the Cholesky decomposition technique, and introducing random 

phases to sample the wind time histories that match the prescribed power spectral density 

function and coherence function.  The power spectral density matrix, 𝑆(𝑓), is formed by 

the (j,k)-th element defined by Eq. (3.3a) if the fluctuating wind in the alongwind direction 

is considered and by Eq. (3.3b) if the fluctuating wind in the crosswind direction is 

considered.  The matrix can be re-written as, 

𝑆(𝑓) = 𝐿𝛾(𝑓)𝐷(𝑓)𝐿𝛾(𝑓)𝑇 (3.4) 

where 𝐷(𝑓) is the diagonal matrix with the i-th diagonal element equal to 𝑆𝑢(𝑧𝑖 , 𝑓), and 

𝐿𝛾(𝑓) represents the matrix obtained by decomposing the coherence matrix, which is 

formed by the (p,q)-th element 𝑆𝑢𝑢(𝑝𝑗, 𝑝𝑘 , 𝑓)/√𝑆𝑢(𝑧𝑗, 𝑓)𝑆𝑢(𝑧𝑘, 𝑓).  Instead of obtaining 
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the lower triangle matrix by applying Cholesky decomposition, 𝐿𝛾(𝑓) could also be 

represented by the matrix with orthonormal vectors that are obtained based on eigenvalue 

decomposition.  The application of SRM results in that the sampled vector of fluctuating 

winds is given by, 

𝑢(𝑝𝑗 , 𝑡) = ∑ √2𝑆𝑢(𝑧𝑗, 𝑓𝑘)𝛥𝑓 × (𝐿𝛾(𝑓𝑘)𝐶(𝑓𝑘 , 𝑡))𝑑𝑖𝑎𝑔−𝑗
𝑁
𝑘=1  (3.5) 

where 𝑓𝑘 = (𝑘 − 1)𝛥𝑓, 𝛥𝑓 is the increment of the frequency, and the (p,q)-th elements of 

the matrix 𝐶(𝑓, 𝑡) are formed by, 

𝐶𝑝𝑞,𝑗 = 𝑐𝑜𝑠 (2𝜋𝑓𝑗𝑡 + 𝑡𝑎𝑛−1 [ℑ (𝑙𝛾,𝑝𝑞(𝑓𝑗)) /ℜ(𝑙𝛾,𝑝𝑞(𝑓𝑗))] + 𝜙𝑞,𝑗), (3.6) 

in which p, q = 1,∙∙∙, m; ℑ( ) and ℜ( ) represent the imaginary and real part of their 

arguments; 𝑙𝛾,𝑝𝑞(𝜁𝑗) is the (p,q)-th element in 𝐿𝛾(𝑓), q,j are the independent and 

identically uniformly distributed phase angles, between 0 to 2. The subscript diag-j to a 

matrix denotes the j-th diagonal element of the matrix, in which p, q = 1,∙∙∙, m. Note that 

since 𝐿𝛾(𝑓) is real, the phase due to 𝑙𝛾,𝑝𝑞(𝜁𝑗) equals zero.  For the numerical analysis to 

be presented in this section, Cy =16 Cz =10 and Cw = 8 are considered (Simiu and Yeo 

2019).  An example of the simulated winds and their characteristics is shown in Figures 

3.3 to 3.5. 

Figure 3.3 illustrates typical sampled fluctuating winds in the alongwind direction at 

four locations on the main deck of the bridge. The locations are identified as L1, L2, L3, 

and L4 with x equal to 250, 258, 266, and 314 m, respectively (see Figure 3.2).  For the 

simulation, Umid = 45 m/s, the time increment 0.05 seconds, and turbulence intensity of 

0.15.  Figure 3.4 shows the estimated average of the power spectral density functions from 

25 sampled records.  The figure indicates that the average matches its corresponding target, 

in relation to the corresponding PSD function.  Also, the estimated average values of the 

coherence obtained from 25 pairs of simulated samples are presented in Figure 3.5. These 

last results indicate that the coherence between different stations matches the 

corresponding target. 
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Figure 3.3 Illustration of the typical sampled records at four locations by using SRM. 

 

Figure 3.4 Comparison of the average of the PSD function estimated from the sampled 

records to its target. 
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. 

 
 

 

Figure 3.5 Comparison of the average of the coherence functions estimated from the 

sampled records to its target. 

 

It is noted that in considering winds with time-varying mean wind speed U(t), the 

fluctuating wind may be assumed to be an amplitude modulated process (Chen and 

Letchford 2005, 2007; Chay et al. 2006; Kwon and Kareem 2009), 

𝑢(𝑡) = 𝜎(𝑧, 𝑡) ×
𝑢0(𝑡)

𝜎0(𝑧)
, (3.7) 

where u0(t) denotes the fluctuating winds with standard deviation equal to 0(z) and mean 

wind speed equal to U0(z). The time-varying standard deviation (z,t) equals U(t) 

multiplying the turbulence intensity.  The samples of the process could also be simulated 

by using SRM.  In particular, if 𝑢(𝑝𝑗 , 𝑡) = (𝜎(𝑝𝑗 , 𝑡)/𝜎0(𝑧𝑗)) × 𝑢0(𝑝𝑗 , 𝑡), j = 1,…, m, 

where 𝑢0(𝑝𝑗, 𝑡) represents a stationary process with a mean wind speed of U0j, the samples 

of the process 𝑢(𝑝𝑗 , 𝑡) could be obtained by applying Eq. (3.5) to simulate 𝑢0(𝑝𝑗, 𝑡) and 
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scale it by 𝜎(𝑝𝑗, 𝑡)/𝜎0(𝑧𝑗).  For example, if the mean wind speed U0j is selected to be the 

same as those shown in Figure 3.2 and 𝜎(𝑧, 𝑡)/𝜎0(𝑧) is assumed to be equal to 1 if t ≤ 60 

s, 1 + 𝑠𝑖𝑛(𝜋(𝑡 − 60)/180) if 60 < t ≤ 240, and 1 if t > 240, the sampled records shown in 

Figure 3.3 become those presented in Figure 3.6.  However, it must be emphasized that the 

guidelines and justifications to select U0j for this type of model are unclear. 

Note that by considering the time-varying mean wind speed and Eqs. (3.2) to (3.4) that 

are applicable, the resulting coherence is time and frequency-varying.  In such a case, the 

application of Eq. (3.5) requires the decomposition of the coherence function to be carried 

out for combinations of t and f.  This is a time-consuming computing proposition, 

especially if the time increment of the sampled record is small (e.g., 0.01 to 0.1 s) and the 

duration of the record is long (e.g., for the wind loads applied at 250 nodes, with frequency 

to be considered ranging from 0 to 5 with an increment of 0.01 and a duration of wind of 

30 minutes with a time increment of 0.05 Hz, the algorithm requires to decompose 250×250 

matrix (5/0.01) × (30*60/0.1) = 9 × 106 times). 
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Figure 3.6 Illustration of the typical nonstationary sampled records at four locations by 

considering nonstationary effects. 

 

Rather than using the model shown in Eq. (3.7), one could consider the use of the 

amplitude modulated and frequency modulated (AM/FM) processes to model the 

nonstationary fluctuating wind.  In such a case and for multiple processes, instead of using 

the average of the mean wind speed at pj and pk, �̄�𝑗,𝑘 , in Eqs. (3.3a) and (3.3b) to evaluate 

the coherence function, one may use the weighted average mean �̄�𝑗,𝑘 = (𝑈(𝑧𝑗)/𝑧𝑗 +

𝑈(𝑧𝑘)/𝑧𝑘)/(1/𝑧𝑗 + 1/𝑧𝑘).  The implication of using this suggested weighted average 

mean was discussed in the context of the amplitude modulated and frequency modulated 

process (Hong 2016).  More specifically, as the mean wind speed varies vertically and 

horizontally, according to the measurements obtained from the wind tunnel test (see Figure 

3.2) for the Baluarte bridge, the wind field is inhomogeneous.  Let �̃�(𝑝, 𝜏) = 𝑢(𝑝, 𝑡)/𝜎𝑢(𝑧) 

and the non-dimensional time 𝜏 = 𝑈(𝑧)𝑡/𝑧  (note that U(z) depends on p) if the mean wind 

speed is time-invariant.  It can be shown that the PSD of ( , )u p  which is a function in the 

 domain, 𝑆𝑢(𝜁),  
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𝑆𝑢(𝜁) = (𝑈(𝑧)/𝑧)) × 𝑆𝑢(𝑧, 𝑓)/𝜎𝑢
2(𝑧) =

𝑢∗
2

𝜎𝑢
2(𝑧)

200

(1+50𝜁)5/3 =
2

3

50

(1+50𝜁)5/3, (3.8) 

and cross-PSD (XPSD) function of ( )u   at two points pi and pj, 𝑆𝑢,𝑗𝑘(𝜁), is given by, 

𝑆𝑢,𝑗𝑘(𝜁) = (𝑆𝑢,𝑗(𝜁)𝑆𝑢,𝑘(𝜁))
1/2

× 𝛾𝑢,𝑗𝑘(𝜁, 𝑝𝑗, 𝑝𝑘) = 𝑆𝑢(𝜁) × 𝛾𝑢,𝑗𝑘(𝜁, 𝑝𝑗 , 𝑝𝑘) (3.9a) 

where 𝜁 = 𝑓𝑧/𝑈(𝑧),  

𝛾𝑢,𝑗𝑘(𝜁, 𝑝𝑗, 𝑝𝑘) = 𝑒𝑥𝑝(−𝜁 × ℎ𝑢(𝑝𝑗, 𝑝𝑘)), (3.9b) 

and, 

ℎ𝑢(𝑝𝑗, 𝑝𝑘) = [𝐶𝑧
2×(𝑧𝑗 − 𝑧𝑘)2 + 𝐶𝑦

2×(𝑦𝑗 − 𝑦𝑘)2]
1/2

/[2/(1/𝑧𝑗 + 1/𝑧𝑘)], (3.9c) 

The relation between the XPSD function of 𝑢(𝑝, 𝑡), 𝑆𝑢,𝑗𝑘(𝑓, 𝑡), and 𝑆𝑢,𝑗𝑘(𝜁) is given by 

(Hong 2016), 

𝑆𝑢,𝑗𝑘(𝑓, 𝑡) =
𝜎(𝑝𝑗,𝑡)𝜎(𝑝𝑘,𝑡)

𝜏𝑗𝑘
′ (𝑡)

𝑒𝑥𝑝 (−𝑖2𝜋𝑛
𝜏𝑗(𝑡)−𝜏𝑘(𝑡)

𝜏𝑗𝑘
′ (𝑡)

) 𝑆𝑢,𝑗𝑘 (
𝑓

𝜏𝑗𝑘
′ (𝑡)

) (3.10) 

where 𝜏′𝑗𝑘(𝑡) = (𝜏′𝑗(𝑡) + 𝜏′𝑘(𝑡))/2.  For constant mean wind speed case (i.e., 𝜏𝑗 =

(𝑈(𝑝𝑗)/𝑧𝑗)𝑡), 𝜏′𝑗(𝑡) = 𝑈(𝑝𝑗)/𝑧𝑗 and 𝜏′𝑗𝑘(𝑡) = (𝑈(𝑝𝑗)/𝑧𝑗 + 𝑈(𝑝𝑗)/𝑧𝑗)/2.  It is seen from 

Eq. (3.9) that the use of the weighted (time-invariant) mean wind speeds at two points 

results in a consistent formulation of the coherence function in the original and 

nondimensional time domain.  However, a time-dependent phase was introduced, 

Following the same procedure, one can show that the PSD of �̃�(𝑝, 𝜏) = �̃�(𝑝, 𝑡)/𝜎𝑢(𝑧), 

𝑆�̃�(𝜁),  

𝑆�̃�(𝜁) = (𝑈(𝑧)/𝑧)) × 𝑆𝑤(𝑧, 𝑓)/𝜎𝑤
2(𝑧) =

𝑢∗
2

𝜎𝑤
2 (𝑧)

3.36

1+10𝜁5/3 =
2

10

10

1+10𝜁5/3, (3.11)  

and the XPSD function of �̃�(𝜏) at two points pi and pj, 𝑆�̃�,𝑗𝑘(𝜁), is given by, 

𝑆�̃�,𝑗𝑘(𝜁) = (𝑆�̃�,𝑗(𝜁)𝑆�̃�,𝑘(𝜁))
1/2

× 𝛾�̃�,𝑗𝑘(𝜁, 𝑝𝑗 , 𝑝𝑘) = 𝑆�̃�(𝜁) × 𝛾�̃�,𝑗𝑘(𝜁, 𝑝𝑗 , 𝑝𝑘), (3.12)  

where 𝛾�̃�,𝑗𝑘(𝜁, 𝑝𝑗, 𝑝𝑘) = 𝑒𝑥𝑝(−𝜁 × ℎ�̃�(𝑝𝑗, 𝑝𝑘)) and  ℎ�̃�(𝑝𝑗, 𝑝𝑘) = 𝐶𝑤|𝑦𝑖 − 𝑦𝑗|/[2/(1/
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𝑧𝑗 + 1/𝑧𝑘)]. 

For the case when the mean wind speed at p is time-varying (i.e., ( , )U z t ), the non-

dimensional time at p, , is given by (Hong 2016), 

𝜏 = 𝜏(𝑡, 𝑝) =
1

𝑧
∫ 𝑈(𝑧, �̂�)𝑑�̂�

𝑡

0
, (3.13) 

where z is the height above the ground surface that corresponds to the point p.   

Based on the standardized fluctuating wind formulation, the equation to simulate the 

vector of fluctuating wind at m points was given in Hong (2016).  This is done by first 

simulating m stationary processes using the SRM (Shinozuka and Jan 1972) in the -

domain based on the m×m PSD matrix of the processes, 𝑆𝑢(𝜁), with its element defined by 

Eq. (3.8) or 𝑆�̃�(𝜁) with its elements defined by Eq. (3.11).  The m×1 vector of fluctuating 

winds u(p,t), is then given by (Hong 2016), 

𝑢(𝑝, 𝑡) = 𝛤(𝑝, 𝑡) ⊙ �̃�(𝑝, 𝜏) = 𝛤(𝑝, 𝑡) ⊙ ∑ √2𝛥𝜁 × 𝐿𝐶𝑗(𝜁𝑗 , 𝜏)
𝑁
𝑗=1  (3.14) 

where 𝛤(𝑝, 𝑡) is an m×1 vector with the j-th element 𝜎(𝑝𝑗 , 𝑡); ⊙ denotes the element-to-

element multiplication of two vectors; �̃�(𝑝, 𝜏) is the m×1 vector of simulated incoherent 

stationary processes with the j-th element �̃�(𝑝𝑗 , 𝜏) and =j(t).  The m×1 vector  𝐿𝐶𝑗(𝜁𝑗, 𝜏) 

in Eq. (3.14) is formed by the diagonal element of 𝐿(𝜁𝑗)[𝐶𝑗(𝜏)]
𝑇
, where the subscript T 

denotes the transpose of a matrix, L(j) denotes the lower triangle matrix obtained from 

the Cholesky decomposition of 𝑆𝑢(𝜁𝑗), and the elements of the m×m matrix Cj() are given 

by, 

𝐶𝑝𝑞,𝑗 = 𝑐𝑜𝑠 (2𝜋𝜁𝑗𝜏 + 𝑡𝑎𝑛−1 [ℑ (𝑙𝑝𝑞(𝜁𝑗)) /ℜ(𝑙𝑝𝑞(𝜁𝑗))] + 𝜙𝑞,𝑗), (3.15)  

in which p, q = 1,∙∙∙, m; lpq(j) is the row-column element in L(j). 

Based on this algorithm, simulated winds at a few selected nodes for the model of the 

Baluarte bridge are illustrated in Figures 3.7 to 3.9.  Figure 3.7 illustrates typical sampled 

nonstationary (i.e., frequency modulation and spatially inhomogeneous) wind records for 

Umid = 45 m/s.  Figure 3.8 shows the samples of the average of the PSD function of 25 

simulated wind records in frequency f (that corresponds to the original time domain t) as 

well as in nondimensional frequency  (that corresponds to nondimensional time ).  It 
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shows that the average of the PSD function agrees well with its target.  The comparison of 

the coherence function estimated from the samples in terms of  is shown in Figure 3.9.  

The statistical variability presented in Figures 3.8 and 3.9 is consistent with that observed 

from the application of SRM for the stationary case. 

 

Figure 3.7 Illustration of the typical sampled records at four locations by considering 

nonstationary effects (amplitude modulation and frequency modulation). 
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Figure 3.8 Comparison of the average of the PSD function estimated from the sampled 

records to its target: a) to d) Comparison at four locations in terms of ζ , e) to h) Comparison 

at four locations in terms of frequency. 
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Figure 3.9 Comparison of the average of the coherence function estimated from the 

sampled records to its target in terms of ζ. 

 

 RMS of the responses by considering time-invariant 
mean wind speed 

3.4.1 Time history responses at the midspan 

By using the simulated vector of wind velocity at the nodal points of the finite element 

model of the Baluarte bridge and carrying out a time history analysis, the time history of 

the displacements at all points is obtained.  For the analysis, first, the gravity load is applied 

to the structure. This is followed by the application of the wind load corresponding to the 

mean wind velocity.  Then, the dynamic time history wind load due to 10 minutes of the 

fluctuating wind is applied to the bridge.  The fluctuating winds are sampled with a time 

increment of 0.1 seconds and considering f equal to 1/300.  An illustration of the sampled 

horizontal and vertical fluctuating winds at x = 250 m at the deck height is shown in Figure 

3.10.  Typical time histories for the horizontal and vertical displacements of the bridge at 

midspan are presented in Figure 3.11 for a mean wind speed of 30 m/s and 40 m/s.  For the 

analysis, the buffeting force and buffeting combined with the self-excited forces are 
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considered. By comparing Figures 3.10 with 3.11, we can observe that the time histories 

of the displacements do not match those of the fluctuating wind. This is to be expected 

since the wind field is inhomogeneous and incoherent and since the displacements are 

controlled not only by the background response but also by the resonant responses and the 

natural frequency of the principal mode shapes. 

 

(a)  (b)  

(c)  (d)  

Figure 3.10 Sampled wind at midspan (x = 250 m, see Figure 3.2):  The first row for Umid 

= 30 m/s, and the second row for Umid = 40 m/s. 

 

 

(a)  (b)  
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(c)  (d)  

Figure 3.11 Typical horizontal and vertical displacements at the midspan (x = 250 m, see 

Figure 3.2) due to wind load.  The displacements are related to their static equilibrium 

position, including the large deformation effect.  The first row for Umid = 30 m/s, and the 

second row for Umid = 40 m/s. 

The RMS of the displacements calculated based on the time histories is also calculated.  

This calculation process is repeated for each of the considered mean wind velocities.  The 

obtained RMS based on 25 runs for Umid = 30 m/s, each with 10 minutes time history, is 

calculated and is equal to 0.054 m for the horizontal displacement and 0.107 m for the 

vertical displacement if only the buffeting forces are considered.  These RMS values 

become 0.055 m  and 0.112 m if both the buffeting and the aeroelastic forces based on 

quasi-steady theory are considered.  Similarly, by considering Umid = 40 m/s instead of 

30 m/s, the obtained RMS responses are presented in  Table 3.4 and Table 3.5. Besides, 

the horizontal and vertical displacements for Umid = 30 m/s and Umid = 40 m/s are also 

compared to the results obtained from the full aeroelastic model test and the frequency 

domain analysis, obtained in the previous chapter. 

The comparison presented in the table indicates that the RMS of the horizontal 

displacement obtained from the time domain analysis is about 35% higher than those 

obtained based on the frequency domain analysis. One of the reasons for the observed 

differences between horizontal displacement could be due to that in using harmonic 

analysis in the frequency domain approach the large deformation could not be considered. 

However, for the vertical displacement, the RMS response for the time and frequency 

domain are more similar.  The discrepancies are found between displacements from the 

numerical model and the BLWT test results.   
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Table 3.4 Comparison of the RMS horizontal displacements dues to fluctuating wind 

component. 

 

 

 

 

 

 

 

 

Table 3.5 Comparison of the RMS vertical displacements dues to fluctuating wind 

component. 

 

 

 

 

 

 

 

 

Note: * The RMS results from the wind tunnel test are obtained based on the peak responses 

and a peak factor GT of 3.5 (King and Kong 2010). 

 

It is possible that the strip assumption, which is the basis of the quasi-steady theory, 

can underestimate the gust wind response. Jakobsen et al. (1997) showed that the span-

wise correlation of buffeting forces is considerably stronger than the structure of the 

oncoming turbulence. Larose and Mann (1998), and Chen et al. (2009), also found that the 

pressure field throughout the bridge deck has a higher spanwise correlation than that one 

of the wind field which is considered under the strip assumption.  

 

3.4.2 Influence of mean wind speed and the exponential decay 
coefficients for the coherence on the responses 

To assess the influence of the mean wind speed on the RMS of the displacement, the 

analysis that is carried out in the previous sections is repeated by considering Umid ranging 

from 10 to 45 m/s.  The obtained RMS for horizontal and vertical displacements at the mid-

 Lateral displacement (m) 

BLWT 

test 

results 

Frequency domain approach Time domain approach 

Umid 

(m/s) 

FE model 

Buffeting 

FE model 

Buffeting & 

aeroelastic 

FE 

model 

Buffeting 

FE model 

Buffeting & 

aeroelastic 

30 0.053 0.038 0.045 0.060 0.061 

40 0.095 0.078 0.093 0.108 0.113 

 Vertical displacement (m) 

BLWT 
test 

results 

Frequency approach Time approach 

Umid 
(m/s) 

FE model 
Buffeting 

FE model 
Buffeting & 
aeroelastic 

FE model 
Buffeting 

FE model 
Buffeting & 
aeroelastic 

30 0.162 0.112 0.119 0.106 0.111 

40 0.314 0.207 0.224 0.219 0.231 
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span are presented in Figure 3.12 and compared with those obtained based on the frequency 

approach obtained in Chapter 2.  The differences between the obtained results based on the 

time history analysis and the frequency approach are consistent with those discussed in the 

previous section.  The consideration of buffeting and aeroelastic forces leads to a slight 

increase in the RMS responses, when compared to the buffeting forces alone.  

 

Figure 3.12 RMS of the horizontal displacement and vertical displacement at midspan for 

a range of Umid values and comparison of RMS obtained based on time-domain and 

frequency domain approach. 

There are differences between the obtained responses based on the time-domain 

approach and frequency approach. The differences are more obvious in the case of the 

lateral  RMS. Part of these differences could be attributed to the consideration of larger 

deformation in the time domain approach.  To assess and compare the effect of considering 

and neglecting the large deformation, the analysis that is carried out with larger 

deformation for the mean wind speed equal to 30 m/s and considering the buffetting and 

aeroelastic forces is repeated but neglects the larger deformation.  This is done by setting 

the initial state of the bridge equal to that determined based on the gravity load under the 

large deformation.  Then, the option of the larger deformation in ANSYS is switched-off, 

and the analysis in the time domain is carried out.  The obtained average of the RMS of the 

horizontal and vertical displacements equals 0.0271 and 2.411, respectively.  Such results 

are entirely unreasonable.  This may be explained by noting that the initial deformed 

configuration, which is set equal to that determined by the gravity load under large 

deformation is immediately bounced to the deformed configuration that is associated with 
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neglecting the large deformation once the time-history analysis starts.  The deformed state 

without large deformation is likely to release some of the prestress associated with large 

deformation.  In short, such an analysis is not advisable.  A comparison of these values to 

those shown in Tables 3.4 and 3.5 indicates that indeed the horizontal RMS response is 

reduced by neglecting the large deformation.  It suggests that the consideration of large 

deformation in defining the initial bridge state is important for the analysis of bridge 

responses to wind load. 

In addition, it is expected that the exponential decay coefficients for the coherence can 

impact the calculated responses.  As no measured wind records in the boundary layer wind 

tunnel test or at the bridge site can be used to assess such coefficients, a parametric analysis 

was carried out by varying the exponential decay coefficients.  The obtained results are 

shown in Tables 3.6 and 3.7 .  The results show that the RMS of the vertical displacement 

is very sensitive to the assigned Cw but insensitive to Cx and Cy.  In contrast, the RMS of 

the horizontal displacement depends on the assigned Cx and Cy but is insensitive to Cw.   

Table 3.6 Effect of the assigned coherence and turbulence intensity on the estimated 

RMS responses ( sensitivity to the decay coefficient Cw for Cx = 16 and Cy = 10). 

Value of Cw 
I = 0.11 I = 0.15 Test 

Vertical Lateral Vertical Lateral Lateral Vertical 

2 0.1061 0.0449 0.1449 0.0613 

0.0530 0.1620 

5 0.0892 0.0449 0.1219 0.0609 

8 0.0812 0.0444 0.1109 0.0607 

11 0.0761 0.0444 0.1039 0.0606 

14 0.0724 0.0443 0.0989 0.0606 

 

Table 3.7 Effect of the assigned coherence and turbulence intensity on the estimated 

RMS responses ( sensitivity to the decay coefficient Cx and Cy for Cw = 8) 

 Cx Cy 
I = 0.11 I = 0.15 Test 

Vertical Lateral Vertical Lateral Lateral Vertical 

16 10 0.0812 0.0444 0.1109 0.0607 

0.0530 0.1620 12 10 0.0813 0.0464 0.1111 0.0634 

16 6 0.0812 0.0456 0.1109 0.0624 
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 Conclusions 

In this chapter, a review of fluctuating wind modeled as a stochastic process is first 

presented.  This is followed by a brief explanation of using the spectral representation 

method used to simulate an inhomogeneous wind field. Simulated winds are used to 

evaluate the response of the Baluarte bridge by using the time history analysis.  The 

obtained RMS displacements of the bridge based on the time domain approach are 

compared with those obtained based on the frequency domain approach and the full 

aeroelastic model test results.  The major observations from the analysis results and 

comparison are: 

1) The RMS of the horizontal displacement at bridge midspan obtained from the time 

domain analysis are almost identical to the displacements obtained from the Wind 

tunnel tests. In the case of the vertical RMS, the results of the time domain analysis 

are more similar to those obtained from the frequency domain analysis. However, 

for very high wind speeds the time domain analysis approximates better the target 

results from the Wind tunnel. One of the reasons for the observed differences 

between time and frequency domain could be due to the fact, that in using harmonic 

analysis in the frequency domain approach, the large deformation could not be 

considered.  

2) The time domain analysis could be used to evaluate the bridge responses subjected 

to wind loading by considering the large deformation effect.  This is advantageous, 

although multiple runs could be time-consuming.  The obtained results, in this case, 

approximate better the responses obtained from the full model scale wind tunnel 

test results.  

3) There are some differences between the numerically calculated and wind tunnel 

tests for vertical displacement.  While an effort is made to find out the reason for 

the discrepancy, the actual reason for the discrepancy could not be pinpointed. This 

is because the actual wind records from the wind tunnel or at the bridge site are 

unavailable for assessing the exponential decay coefficient of the coherence, and 

such a coefficient can influence significantly the estimated bridge responses in the 

horizontal and vertical directions.  In fact, as the sensitivity analysis shows that 
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depending on the assigned exponential decay coefficient of the coherence, the 

estimated RMS horizontal and vertical directions can be made close to aeroelastic 

model test results from the BLWTL. 

4) The applicability and advantages of the time domain approach to evaluate the 

bridge responses of nonstationary inhomogeneous winds is illustrated.  Once the 

fluctuating winds are simulated (Gaussian or non-Gaussian), the time domain 

approach can be employed. The concept of amplitude modulation and frequency 

modulation are able to incorporate the variability of the amplitude and the 

frequency into the spatially incoherent simulated time history.  However, due to the 

unavailability of the actual measurments of the nonstationary winds at the bridge 

site.  The analysis for realistic scenario wind events could not be carried out.  It is 

suggested that such an exercise could be carried out in a future study. 
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Chapter 4 

 Summary, conclusions, and potential future works 

 Summary and conclusions 

This study is focused on comparing the responses of the Baluarte bridge obtained based 

on full aeroelastic model test results obtained from BLWT and those calculated from a 

finite element model.  The estimation of the responses due to mean wind velocity is 

straightforward.  However, the evaluation of the responses for the fluctuating component 

of the wind that is modeled as a stochastic process is much more involved. 

Two finite element (FE) models of the Baluarte bridge, a sophisticated FE model and a 

simple FE model, are developed and implemented in ANSYS.  The sophisticated FE model 

is developed by mimicking the designed structure and the full aeroelastic model.  Since the 

number of nodes for the sophisticated FE model is too large for the buffeting and 

aeroelastic analysis, a simplified FE is developed by using equivalent structural component 

properties derived from the sophisticated model.  A comparison of the dynamic 

characteristics of the developed FE models and of the full aeroelastic model indicates that 

the models have a good agreement with the model tests. 

Both the frequency domain approach and the time domain approach are used to evaluate 

the root-mean-square (RMS) responses due to the fluctuating horizontal and vertical winds.  

When using the frequency approach with the commercially available ANSYS, the 

harmonic analysis option is employed.  However, for the harmonic analysis, it was 

observed that the large deformation option could not be implemented. Consequently, the 

large deformation of the cable could not be taken into account. 

When considering the frequency domain approach, the lateral RMS is on average 15% 

to 30% below the RMS measured on the aeroelastic scaled model from the wind tunnel 

tests for a mean wind speed of 30 m/s. In the case of the RMS of the vertical displacement, 

the difference is about 30%. For both RMS of the horizontal and vertical displacement, 

similar results are found when buffetting and aeroelastic forces are considered.  The 

observed differences depend on the considered mean wind speed.  
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The estimation of the bridge responses analysis is also carried out based on the time 

domain approach. In this case, the large deformation effect was taken into account, since 

the dynamic analysis option is used in ANSYS, instead of the harmonic analysis. From the 

time domain analysis, it is observed that the RMS of the horizontal lateral displacements 

are close to those obtained from the full aeroelastic model tests. In this case, the 

consideration of the large deformation is made.  This allows for fully prestressed cables on 

the FE model. 

It should be noted that wind records from the wind tunnel test or at the bridge site are 

unavailable for assessing the decay coefficients of the coherence.  The analysis was carried 

out using the typical decay coefficient suggested in the literature.  However, a parametric 

investigation was carried out by varying the decay coefficients for the coherence in three 

orthogonal directions.  It was shown that the decay coefficient for the coherence has a 

significant impact on the estimated RMS responses.  Therefore, a more convincing 

comparative study should be carried out once the wind records (with subsecond sampling 

interval) become available and the actual exponential decay coefficient of the coherence 

could be assigned. 

Apart from the formulation of non-homogeneous wind, the simulation of nonstationary 

fluctuating winds at multiple points is also explored. In this case, the simulated processes 

are discussed in terms of the amplitude modulation and frequency modulation, which 

seems a better representation of the continuous changing nature of wind processes 

throughout the evolution of time.  

 Potential future research works 

Several potential future research topics could be valuable, based on this study.  

1).  Further extends the analysis by considering unsteady self-excitation forces and the 

study of flutter. Comparison of the unsteady model via flutter derivatives against the 

quasi-steady model with static coefficients. 

2).  Although the application of nonstationary inhomogeneous wind is illustrated by 

considering the Baluarte bridge, the actual nonstationary characteristics of the winds 

at the Baluarte bridge site are unknown. If wind measurements are available in the near 
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future, the statistical properties of these winds can be implemented into the finite 

element model. 

3).  The hurricane winds and thunderstorm winds may not be Gaussian.  The non-Gaussian 

effect on the peak response of the Baluarte bridge would be unknown.  This topic 

represents an innovative and attractive study for future research. 

4).  It would be desirable to secure funding to carry out full scale instrumentation of the 

Baluarte bridge and to measure the bridge responses to the wind.  Moreover, a 

comparison of responses from the fullscale measurements, numerical modeling, and 

scaled full aeroelastic model test results is highly desirable to compare the pros and 

cons of each different approach. 

5).  A detailed wind hazard modeling and reliability assessment of the bridge is highly 

desirable for emergency preparedness planning. 

4.2.1 Assessment of time history responses with nonstationary mean 
winds 

An advantage of using the time domain approach is that it can cope with possible time-

varying mean wind.  In other words, it can be used to evaluate the responses of structures 

subjected to the nonstationary and non-homogenous wind field.  To illustrate this, we 

consider that, 

𝑈𝑚𝑖𝑑 = {

𝑈𝑚𝑖𝑑0 𝑡 < 60

𝑈𝑚𝑖𝑑0 + 𝑈𝑚𝑖𝑑1 𝑠𝑖𝑛 (𝜋
𝑡−60

180
) 60 < 𝑡 < 240

𝑈𝑚𝑖𝑑0 240 < 𝑡

, (4.1)  

where Umid0 and Umid1 are model parameters and t is in seconds. 

A set of samples of the simulated time history at four points are shown in Figure 4.1 for 

Umid0 = 10 m/s and Umid1 = 50 m/s.  By considering the sampled winds applied to the bridge, 

a time history analysis is carried out.  The obtained time histories of the horizontal and 

vertical displacements at the midspan for the simulated winds (i.e., mean and fluctuating 

winds) are shown in Figure 4.1.  For comparison purposes, the response obtained by 

considering the time-varying mean wind speed is also calculated and shown in Figure 4.2.  

The plots show that the displacements by including the fluctuating winds are greater than 
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those obtained by excluding the fluctuating nonstationary winds.  The difference is most 

significant for the vertical displacement.  It must be emphasized that this analysis is used 

for illustration purposes since the nonstationary winds that are applicable to the site are 

unknown.  The numerical example is used to highlight the usefulness of the time-domain 

analysis in evaluating the bridge responses to nonstationary non-homogeneous winds. 

 

 

Figure 4.1 Samples nonstationary winds at a few selected locations: a) Mean and 

fluctuating wind, b) fluctuating horizontal wind, and c) fluctuating vertical wind. 
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Figure 4.2 Caluclated time histories of the displacements at midspan:  a) horizontal 

displacement and b) vertical displacement. 
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Appendix A Preliminary analysis of the deck girder from 

the Baluarte bridge by CFD 

The strip assumption considers that the span-wise structure of turbulence can represent 

the span-wise structure of the associated forces on a line-like structure, and that the wind 

coherence is equivalent to the coherence of wind forces. This simplification must be 

acknowledged, to gain a certain perspective associated with the possible drawbacks of the 

theory. A simple example for this purpose is presented in the following by means of the 

Commercial Computational fluid dynamics (CFD) package STAR-CCM+. The steady 

analysis of the flow is solved, and the instantaneous velocity field around the deck cross 

section of the Baluarte bridge is presented in Fig A.1. The velocity profile for the Reynold-

averaged Navier-Stokes (RANS) simulation is defined by a power law, with an α equal to 

0.15, and a mean wind velocity at the height of the girders equal to 36.24 m/s. By only 

considering the steady component of the wind, a huge and complex variation in the velocity 

contours is observed. In this case, the wind speeds throughout the girder contour range 

from -8 to 45 m/s. The girder cross section in this case is the original bridge cross section 

without baffles and deflectors. The visualization of the flow highlights the complexities 

associated to the wind flow flowing throughout the girder contour. The visual inspection 

of the wind flow puts into perspective the complex structure associated to the wind forces. 

Further, if careful insight and evaluation are not considered the line-like structure concept 

used in the quasi-steady theory could misinterpret the complexities of the actual fluid flow 

complexity. 
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Figure A.1 RANS simulation for the mid-span cross section of the Baluarte bridge, for a 

mean wind velocity of 36.24 m/s. 

The shape of the girder is an important aspect in the study of the aerodynamic behavior 

of the bridge. The strip assumption, which is considered under the line-like structure, is 

just a simplification of a complex problem that involves separation, reattachment, and 

recirculation of the wind flow. Even though this study is not particularly concerned with 

the study of a CFD model, it is important to consider its actual contribution that CFD is 

having on  wind engineering. 
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Appendix B Preliminary analysis of the wind hazard for 

the country of Mexico 

B.1 Introduction 

The regional wind speeds could be defined as the most probable maximum wind 

velocities that are expected over a specific return period. For the development of regional 

maps, it is of common practice to define the characteristics of the wind as homogeneous 

conditions. Therefore, a standard roughness and a standard height of the anemometer are 

considered. The standard height of the anemometer is ten meters, while the standard 

roughness corresponds to open country exposure. The records are also classified by the 

number of years of measured data, the lapse of the average of the wind speed, and the 

quality of the wind records.  Besides, the regional map of wind speeds for Mexico is 

presented as a three-second gust wind speed map. The wind speeds without  roughness 

correction, and before being standardized as homogeneous conditions, are retarded on 

account of frictional forces near the ground surface. 

The regional map of wind velocities for Mexican standards includes the analysis of 

synoptic type of wind and a combination of synoptic wind and hurricane for the coastal 

regions. For the analysis of hurricanes, the maximum wind speed is determined from the 

reconstruction of paths and intensities from the hurricane database.  For the analysis of 

synoptic wind, the mean annual maximum wind speed is defined based on an extreme 

value analysis for a predefined return period. The return period is based on the range of 

importance of the structure and can vary significantly from a preliminary construction 

stage with a small return period, to a highly important category for service stage. In the 

last case, the damage of the structure can cause great economic or life losses.  

Another important aspect in the development of regional maps is the inspection of the 

actual quality of the available data. The datasets are filtered in regards to different sources 

of error, that is associated to the quality of equipment in use. The main objective of the 

present study is to identify the different sources of errors within the meteorological 

database, and to incorporate a statistical extreme value analysis for the icorpoation 
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ofmaximum wind speeds. For the extreme value analysis, the Gumbel and the Generalized 

extreme value (GEV) distribution (Gumbel, 2004) are used for the prediction of the mean 

annula maximum wind speed. In order to reduce an excessive amount of information 

within this study, only the 200-year mean annual maximum wind speed is considered for 

the investigation. Structures studied under this category, are structures considered under 

group A (CFE, 2008), by CFE (Comisión Federal de Electricidad) standards. The damage 

of such infrastructure can cause important life loss or exceptional cultural or cost losses, 

therefore these type of structures have a highly elevated level of security. 

 

B.2 General background 

Based on previous studies, in the year 1993 an update of the existing CFE Wind Design 

Handbook was conducted, incorporating new data and reviewing formulations and 

procedures of the wind design handbook (CFE, 2008). The statistical procedures for the 

analysis of wind speeds are described in  López (1995). Originally, 57 meteorological 

stations are considered for the statistical analysis of gust wind speeds. The regional maps 

for the country of Mexico are updated and organized, and include both synoptic and 

hurricane type of winds. For the analysis of hurricanes, a fluid dynamic model (Aguirre, 

1986) is used to determine hurricane wind speeds, on the Pacific coast, the Gulf of Mexico, 

and the Caribean coast. 

Based on the regional map from  CFE (CFE, 2008), in Fig B 1 is  reproduced the 200 

year mean annual maximum wind speed. The isopleths within the regional map are divided 

into five different categories associated to the levels of risk. The homogeneous conditions 

considered within the regional map include the three-second maximum gust wind speed, 

ten meters height measurements and the standardization of the roughness into open country 

exposure.  Within the CFE map, the highest risk level is observed near the coastal regions 

on the Pacific Coast and the Gulf of Mexico. Baja California Sur in the former case and 

Yucatan and Quintana Roo in the later. Both zones are highly susceptible to the constant 

landing of hurricanes, depicted by the red zones within the CFE map. Another highly 
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susceptible zone is located between the boarder of  U.S.A and the states of Coahuila, Nuevo 

Leon, and Tamaulipas. Even though, the wind speeds are not as critical as those generated 

under the red zone, their values still oscillate between 160 and 195 km/h. This  zone also 

include part of the  coasts from  the states of Tamaulipas, and Veracruz on the side of the 

Gulf of Mexico, and a small portion of land from Sinaloa , Michoacán and Colima from 

the Pacific Coast side. 

 

Figure B 1 Regional velocities from CFE-2008, Tr=200 years. 

Another regional map appart from the one of CFE  was proposed in the year 2015, by 

the institution's SEP and INIFED (Institution of Public Education and Educative 

Infrastructure, by their acronym in Spanish) (INIFED, 2015). Since the database has 

increased from 74 stations in the year 2003 to 172 stations in  2017 (Lopez et al. 2018), 

there is a considerable  difference between the regional map presented by CFE (CFE, 2008) 

and that one presented by SEP and INIFED. 

The shape of the isopleths and the mean annual maximum wind speed can differ from 

case to case depending on the number of stations used in the study, on the lebel of 

refinement and on the quality control of the study. One of the limitations of this study is 
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that no separation by wind direction or azimuthal bins are considered. If the direction of 

the wind is considered, a more precise prediction of maximum wind speeds can be 

expected. However, from the inspected datasets a great number of stations can be 

synthesised under homogeneous characteristics of topography, when in the periphery of 

the station a homogneous terrein is presented.  

 

B.3 Categorization of data  and predicting models 

A general overview of the procedure used to categorize wind speed records is 

presented. In this case, erroneous meassurements are identified and extracted from the 

original record. The downloaded information consist of meteorological station with at 

least 20 years of available data. The records are found at the National Center of 

Environmental Information (NOAA), at the website: 

https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly. One of the most common errors found 

within the records is not enough continuity of records for a particular period (months or 

years), or for a particular lapse of time. For instance, a discontinuity related to the density 

of annual records between the years 1960-1990, is found for the station of Monclova, 

Coahuila (Fig B 2). In this case, in order to guarantee continuity within the the station, 

years prior to 1991 are extracted from the record. Thus, only years between 1991 and 2017 

are considered. 

https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly
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Figure B 2 Monthly records from the year 1956 to 2017, for the station of Monclova, 

Coahuila. 

A similar analysis is carried out for the daily registered records. In this case, in order 

to guarantee the continuity within the records, an individual  meassurement that is 

separated from the rest in more than 3 hours is extracted out of the records compiled on 

that day. Again, an example is presented for the station of Monclova, Coahuila in Fig. B 

3. In this case,  the records from the day 2017-05-15 registered at 0:00 and  3:00 hr are 

extracted from the measurements registered on that day. In contrast, the day 2017-05-16 

did not present any anomaly. 
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Figure B 3 Wind speed records, for the days 15 and 16 of May 2017, from the station 

of Monclova, Coahuila. 

Since only information related to synoptic wind is considered in the analysis of wind 

records, wind speeds above 120 km/h are extracted from the datasets. Considering that 

hurricanes are extremely rare events, and since it is hard to conceive that an anemometer 

can registering such an event, it is recommended to corroborate such an event with the 

actual hurricane database. The hurricane database is available at 

https://www.nhc.noaa.gov/data/#hurdat. 

The original datasets for investigation consisted in stations with at least 20 years of 

available data obtained from the NOAA website.  The first dataset was constituted by 115 

stations from Mexico, 100 stations from U.S.A., 9 from Guatemala, and 2 from Belize. 

The location of all the meteorological stations of this  first dataset is presented in Fig B 4, 

below. 

https://www.nhc.noaa.gov/data/#hurdat
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Figure B 4 Downloaded datasets from NOAA (the download year: 2017). 

From this first arrangement of stations, all the datasets were analysed and fitted into 

the Gumbel or the GEV distribution. The datasets that were able to best fit within any of 

the two types distributions were chosen and presented as best datasets(Fig. B 5). In this 

case,  a total of 89 stations were considered for the extreme value analysis. From these 

stations, 56 stations are located in Mexico, 28 stations are located  in U.S.A., 4 stations in 

Guatemala, and 1 in Belize. In the case of the stations from the U.S.A., the considered 

datasets  belong to the automated surface observation system (ASOS), dataset 9956, 

available at the National Climatic Data Center (NCDC, 2006). 
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Figure B 5 Selected stations with the best datasets for the 200-year mean annual maximum 

wind speed. 

First, the Gumbel distribution (Kimball, 1955) is used for the extreme value analysis. 

The Gumbel distribution (Martins, 2000), or extreme value distribution Type 1 is: 

𝐹𝑋(𝑥) = exp(−exp(−𝑦))        (B.1a) 

𝑦 =
(𝑥−𝑢)

𝛼
          (B.1b) 

where 𝐹𝑋(𝑥) is the cumulative distribution function (c.d.f.), 𝑥 the variate, and 𝑦 the 

reduced variate.  The parameters that map the variate 𝑥 into the reduced variate 𝑦, are the 

location parameter 𝑢 and the scale parameter 𝛼. Generally, 𝐹𝑋(𝑥) is expressed in terms of 

the probability of exceedance and the return period. In the case of the 200-year return 

period, the risk or probability of exceedance is 0.005, and the return period can be 

expressed as, 

𝑇𝑟 =
1

1−𝐹𝑋(𝑥)
          (B.2) 
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By substituting Eq. B.2 into Eq. B.1, and by replacing the variate 𝑥 for the wind speed 

at the height 𝑧 (10 meters in theory, however such information needs to be corroborated): 

𝑈𝑧 = 𝑢 −
1

𝛼
{𝑙𝑛 (𝑙𝑛 (1 −

1

𝑇𝑟
))}       (B.3) 

For the extreme value analysis, all observed annual maxima are ranked as 𝐺𝑖(=

𝑚/( 𝑁 + 1)); where 𝑚 is the rank of the observation, and 𝑁 the total number of 

observations. There are other ways recommended for an unbiased plotting, such as 

(𝑚 − 0.44)/(𝑁 + 0.12), originally proposed by Palutikof, (1999). Nevertheless, the 

predicted values of the mean annual maximum wind speed tend to be  conservative. 

The analysis of the Gumbel probability paper for representative metereological stations 

is presented in section B 7, at the end of this Appendix. In the Gumbel probability paper 

the ordinate represents the linearization of the probability of exceedance and the abscissa 

the annual maxima for wind speeds. For the Gumbel distribution, the method of moments 

(MOM) and the least square method (LSM) are used for fitting purposes. Nevertheless, 

several other methods can also be used for the fitting of the Gumbel distribution. These 

other methods are known as the method of maximum likelihood (MML), the probability-

weighted moments (PWM), and the method of L-moments (MLM) or the Lieblein BLUE. 

The implementation of these methods for the Gumbel distribution are not considerd in this 

study. The study of the relative performance of these different fitting methods is studied 

by Hong (2013), in terms of their efficiency, bias, and root means square error.  

For the Gumbel distribution, the sample mean and standard deviation are defined by 

�̂� + 0.577�̂� and 𝜋�̂�/√6, respectively. Where �̂� and �̂�  are the estimated location and scale 

parameter When the MOM is used, the estimated parameters of the distribution are defined 

based on the samples mean and standard deviation. In contrast, when the  LSM is 

considered, the estimated distribution parameters are the product of an optimization 

problem based on the minimization of the distance between observed and predicted value 

from the distribution. Contrary to  the Gumbel distribution, the GEV distribution requires 

a non-linear model for the process of optimization. In this case three parameters are 

neccesary for the numerical optimization, which in this case include the scale 𝑢, the 
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location 𝛼 and the shape 𝜉 parameter. Similar as in the case of the LSM, the non-linear 

least square optimization for the GEV distribution  consists in the minimization of the 

distance between observed ranked data and the fitting distribution model.  Generally the  

relation between the difference from estimated and ranked value  is called the residual.  

The p.d.f. and the cumulative density function (c.d.f.) for the GEV distribution 

(Martins, 2000), are given by: 

𝑓𝑋(𝑥) =
1

𝛼
([1 + 𝜉𝑦])

−
1

𝜉
−1

𝑒𝑥𝑝 {−(1 + 𝜉𝑦)
−

1

𝜉}     (B.4a)  

𝐹𝑋(𝑥) = exp (−(1 + 𝜉𝑦)
−

1

𝜉)         (B.4b) 

where y is the reduce variate (see Eq. B.1b), ξ  the shape parameter, 𝑓𝑋(𝑥) the p.d.f. 

and  𝐹𝑋(𝑥) the c.d.f.  One of the advantages of the GEV distribution is that the Gumbel, 

Fréchet, and Weibull distributions are contained within this same distribution, based on 

the shape parameter ξ. The extreme value distribution types II and III, referred as the 

Fréchet and Weibull distribution corresponds to the GEV distribution when the shape 

parameter is 𝜉 < 0 or 𝜉 > 0 (Coles, 2011), respectively. In contrast, the Gumbel 

distribution represents  the limit case of the GEV distribution when 𝜉 → 0, leading to the 

Fisher Tippett  Type I, or Gumbel distribution (Gumbel, 2004). 

For the GEV distribution, the estimated values for each ranked annual maximum are 

given by 𝐹𝑖(𝑥𝑚)(see Eq. B.4b), as a function of the scale, location, and shape parameter 

(𝛼, 𝑢 𝑎𝑛𝑑 𝜉). For the optimization of the GEV distribution, our main interest is focused on 

the merit function. The merit function which in this case minimizes the sum of residuals is 

given by (Pujol, 2007),  : 

𝑠(𝑥) = ∑ (𝐹𝑖(𝑥𝑚) − �̂�𝑖(𝑥𝑚))
2

𝑁
𝑖=1        (B.5) 

where 𝐹𝑖(𝑥𝑚) is given by Eq. B.4b, 𝐺𝑖(𝑥𝑚) is the empirical probability of the mean annual 

maximum wind speed given by m/(N+1), were m represents the ranked value, �̂�(𝑥𝑚) the 

estimated value of 𝐺𝑖(𝑥𝑚), and N the number of  years of available data for each station. 
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Martins and Stedinger, (2000) compared the performance of the maximum likelihood 

estimators (MLE), the method of moments (MOM) and the L-moments estimator. In this 

case, their study suggest that the MLE is preferred in comparision to the other methods in 

relation to their efficiency, bias, and root mean square error. 

A practical solution of the non-linear least square problem is presented by the MLE, 

with the aid of the Newton-Raphson method for the optimization of the parameters of the 

distribution. One of the advantages of the Newton-Raphson method is that it approximates 

second-order derivatives by the well known Jacobian i.e., the squared product of the 

Jacobian  𝐽 ∗ 𝐽𝑇is equivalent to the Hessian matrix. This particular issue is of great 

advantage since it allows to find without much numerical difficulty the values of the scale, 

location, and  shape parameter. 

A typical approach for solving the c.d.f. of the GEV distribution 𝐹𝑖(𝑥), is in terms of 

the well known  Taylor series expansion, by making an estimation of the solution by 

expanding in relation to an initial guess point, 

𝐹𝑖(𝑥) ≈ �̂�𝑖(𝑥0) + ∑
𝜕𝐹𝑖

𝜕𝑥𝑖
|𝑁

𝑗=1
𝑥=𝑥0

(𝑥𝑖 − 𝑥𝑖
0);   𝑖 = 1,… ,𝑁  (B.6) 

By simplifying the notation for the expansion, in terms of 𝛿𝑖 = 𝑥𝑖 − 𝑥𝑖
0, and  𝑐𝑖 =

𝐹𝑖(𝑥) − �̂�𝑖(𝑥0), the merit function (Pujol, 2007), is given by: 

𝑠(𝑥) = (𝑐𝑇 − 𝛿𝑇𝐽𝑇)(𝑐 − 𝛿𝐽) = 𝑐𝑇𝑐 − 2𝑐𝑇𝐽𝛿 + 𝛿𝑇𝐽𝑇𝐽𝛿    (B.7) 

The minimization of the merit function 𝑠(𝑥), requires the computation of the 

derivatives of Eq B.7 in relation to 𝛿𝑖, and setting Eq B.7 equal to zero,  

(𝐽𝑇𝐽)𝛿𝑖 = −𝐽𝑇𝑐𝑖         (B.8) 

As mentioned previously, an advantage of  the Gauss-Newton method is that the 

Hessian matrix is approximated by the product of the Jacobian 𝐽𝑇𝐽, and second-order 

derivatives are not necessary. Thus,  based on the maximum likelihood score function 

(Gatey, 2011), 
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𝜕

𝜕𝑢
𝑙𝑜𝑔𝑓𝑖(𝑥) = −

𝜉

𝛼(1+𝜉𝑦𝑖)
−

1

𝛼
(1 + 𝜉𝑦𝑖)

−
1

𝜉
−1

      (B.9a) 

𝜕

𝜕𝛼
𝑙𝑜𝑔𝑓𝑖(𝑥) = −

1

𝛼
+

(1+𝜉)𝑦𝑖

𝛼(1+𝜉𝑦𝑖)
−

𝑦𝑖

𝛼
(1 + 𝜉𝑦𝑖)

−
1

𝜉
−1

     (B.9b) 

𝜕

𝜕𝜉
𝑙𝑜𝑔𝑓𝑖(𝑥) = −

1

𝜉2 𝑙𝑜𝑔(1 + 𝜉𝑦𝑖) (1 − (1 + 𝜉𝑦𝑖)
−

1

𝜉) −
𝑦𝑖(1+𝜉−(1+𝜉𝑦𝑖)

−
1
𝜉)

𝜉(1+𝜉𝑦𝑖)
  (B.9c) 

where 𝑓𝑖(𝑥) is the p.d.f. (see Eq. B.4a), 𝑦𝑖 the reduced variate ( see Eq. B.1b), 𝑢 the 

location parameter,  𝛼 the scale parameter, and ξ the shape  parameter. For the solution of 

the merit function 𝑠(𝑥) (see Eq. B.5), a damped solution can be used such as the one 

presented by Levenberg  (1944), or the one purposedby Marquardt (1963). For the 

numerical optimization problem,  the Levenberg- Marquardt damped least-squares 

solution is given by(Pujol, 2007), 

(𝐽𝑇𝐽 + 𝜆𝐼)𝛿𝑖 = −𝐽𝑇𝑐𝑖         (B.10) 

where 𝐼 is an identity matrix, 𝛿𝑖 = 𝑥𝑖 − 𝑥𝑖
0, 𝑐𝑖 = 𝐹𝑖(𝑥) − �̂�𝑖(𝑥), and  𝜆 is a functional 

parameter that can take different values  in order to approach the minimization process of 

the merit function 𝑠(𝑥), and that can change its value depending on each consecutive 

iteration. Thus, as a first step in the solution of the merit function 𝑠(𝑥) , we define  𝜆1 =

0.1 and 𝜆1 = 10, and obtained the corresponding merit function, 𝑠𝜆1=0.1 (𝑥) and 

𝑠𝜆1=10 (𝑥). From the first  iteration, the smallest value obtained from the merit function is 

stored, and we proceed to the next iteration. When the merit function 𝑠(𝑥) is closer to the 

solution, 𝜆  approaches zero. In contrast, when the values of 𝑠(𝑥) is distant from the 

solution, 𝜆 takes a high value. In the former case the solution converges to  the Gauss-

Newton method, while in the latter to the Steepest Descent method. Even though, the latter 

case can guarantee the convergence of the solution, theis method becomes extremely slow 

after a couple of iterations. Both of the methods originally purposed by  Marquardt (1963), 

or by  Levenberg  (1944) can take the best features of both the Gauss-Newton and the 

Steepest descent methods. 
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B.4 Roughness correction 

Well established procedures are used for the roughness correction into a single type of 

terrain exposure, which  is generally considered as open country exposure.The correction 

of the exposure based on ESDU standards follows the criteria followed by Harris and 

Deaves boundary layer method (Harris and Deaves, 1980; Deaves, 1981). The considered 

procedure incorporates the transitions of roughness length over varying fetches. Most of 

the land use considered for the categorized stations are divided into built-up areas or 

farmlands (see Table B 1). 

Table B 1 List of roughness lengths (after ESDU, 01008). 

BUILT-UP AREAS       

  
Centres of large 
towns  

Centres of small 
towns: Suburbs, villages: Airports; runway area: 

  and cities:       

z0  (m) = 0.7 0.5 0.3 0.03 

          

FARMLAND         

  
Many trees, 
hedges, 

Many hedges, 
some  Hedges, few trees: Open country with  

  few buildings: trees:   
isolated trees, some 
hedges: 

z0  (m) = 0.2 to 0.3 0.08 0.05 0.03 

 

The simplified method proposed by  Hong, (2013) can also be used for the roughness 

correction. In this method the annual maxima is assigned to different azimuthal bins at 

10° increments, based on the wind direction. None of this methodologies are  considered 

within this study, for simplicity on the correction of erroneus data within the different 

datasets.. Nevertheless, most of the stations analysed within this study presented regular 

conditions of roughness, in general. However, stations that could differ from the previous 

type of homogenization into a single cataegory of terrain, are identified. The identified 

stations are marked with an  asterisk before the name of the station (see Tables B 2 and B 

3). For instance,  Table B 2 displays the stations of  Mexico, where nine stations were 

identified as presenting inhomogeneous roughness. In contrast, 47 stations are considered 

as having homogeneous roughness conditions.  
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Table B 2 Name of station, location and number of years of available data for stations in 

Mexico 

     number of 
years of data No. state station* latitude longitude 

1 Baja California *GENERAL_RODOLFO_SANCHEZ_TABOAD 32.63 -115.24 28 

2  ISLA_GUADALUPE 29.17 -118.32 21 

3  SAN_FELIPE_BCN 31.03 -114.85 33 

4 Baja California Sur GENERAL_MANUEL_MARQUEZ_DE_LEON 24.07 -110.36 42 

5  *LA_PAZ_BCS 24.17 -110.30 41 

6  LOS_CABOS_INTL 23.15 -109.72 25 

7 Campeche CIUDAD_DEL_CARMEN_INTL 18.65 -91.80 30 

8  INGENIERO_ALBERTO_ACUNA_ONGAY 19.82 -90.50 27 

9 Chihuahua HIDALGO_DEL_PARRAL_CHIH 26.93 -105.67 29 

10  NUEVA_CASAS_GRANDES_CHIH 30.37 -107.95 35 

11  TEMOSACHIC_CHIH 28.95 -107.82 37 

12 Coahuila *MONCLOVA_INTL 26.96 -101.47 26 

13  PLAN_DE_GUADALUPE_INTL 25.55 -100.93 25 

14 Colima 'MANZANILLO_COL 19.05 -104.32 41 

15  'PLAYA_DE_ORO_INTL 19.15 -104.56 39 

16 Distrito Federal LICENCIADO_BENITO_JUAREZ_INTL 19.44 -99.07 26 

17 Durango *DURANGO_DGO 24.05 -104.60 43 

18  DURANGO_INTL 24.12 -104.53 42 

19 Estado de Mexico *LICENCIADO_ADOLFO_LOPEZ_MATEOS 19.34 -99.57 27 

20  'TOLUCA_MEX 19.28 -99.68 33 

21 Guanajuato GUANAJUATO_GTO 21.00 -101.28 38 

22  GUANAJUATO_INTL 20.98 -101.48 27 

23 Guerrero ACAPULCO_GRO 16.75 -99.75 42 

24  CHILPANCINGO_RO 17.55 -99.50 42 

25  GENERAL_JUAN_N_ALVAREZ_INTL 16.76 -99.75 43 

26  'IXTAPA_ZIHUATANEJO_INTL 17.60 -101.46 37 

27 Hidalgo PACHUCA_HGO 20.13 -98.75 34 

28 Jalisco COLOTLAN_JAL 22.10 -103.27 22 

29  *DON_MIGUEL_HIDALGO_Y_COSTILLA 20.52 -103.31 28 

30  GUADALAJARA_JAL 20.67 -103.38 35 

31  LICENCIADO_GUSTAVO_DIAZ_ORDAZ 20.68 -105.25 28 

32 Michoacan MORELIA_MICH 19.70 -101.18 41 

33 Monterrey *DEL_NORTE_INTL 25.87 -100.24 45 

34 Morelos GENERAL_MARIANO_MATAMOROS 18.84 -99.26 28 

35 Nayarit TEPIC 21.42 -104.84 28 

36 Oaxaca HUAJUAPAN_DE_LEON_OAX 17.80 -97.77 33 

37  'PUERTO_ANGEL_OAX_1 15.68 -96.48 33 

38  'PUERTO_ESCONDIDO_INTL 15.88 -97.09 29 
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39 Puebla HERMANOS_SERDAN_INTL 19.16 -98.37 29 

40 Queretaro QUERETARO_INTERCONTINENTAL 20.62 -100.19 23 

41 Quintana Roo CANCUN_INTL_1 21.03 -86.87 20 

42  'CHETUMAL_INTL 18.51 -88.33 44 

43  COZUMEL_INTL 1 20.52 -86.92 21 

44  FELIPE_CARRILLO_PUERTO_Q_ROO 19.57 -88.05 35 

45 San Luis Potosi RIO_VERDE_S.L.P 21.93 -99.98 35 

46 Sinaloa CHOIX_SIN 26.73 -108.28 32 

47 Sonora CIUDAD_OBREGON_SON 27.48 -109.92 21 

48 Tamaulipas CIUDAD_VICTORIA_TAMPS 23.73 -99.13 45 

49  GENERAL_PEDRO_JOSE_MENDEZ_INTL 23.70 -98.96 31 

50  *QUETZALCOATL_INTL 27.44 -99.57 28 

51 Tlaxcala *TLAXCALA_TLAX 19.317 -98.25 36 

52 Veracruz COATZACOALCOS_VER 18.183 -94.5 32 

53  ORIZABA_VER 18.85 -97.1 31 

54 Yucatan PROGRESO_YUC 21.3 -89.65 30 

55  VALLADOLID_YUC 20.683 -88.2 41 

56 Zacatecas SOMBRERETE_ZAC 23.633 -103.650 39 

(*) inhomogeneous roughness   

 

In addition, Table B 3 presents the stations near the borders of U.S.A., Guatemala, and 

Belize. In this case,  only one station is considered as inhomogeneous (see Table B 3). 

Table B 3 Name of station, location and number of years of available data for stations in 

the boarder of U.S.A., Guatemala and Belize. 

     Number of 
years of data No. country station* latitude longitude 

1 USA BURBANK-GLENDALE-PASA_ARPT 34.201 -118.358 37 

2  LONG_BEACH_DAUGHERTY_FIELD 33.812 -118.146 67 

3  MARINE_CORPS_AIR_STATION 33.3 -117.35 35 

4  NAF 32.817 -115.683 34 

5  NORTH_ISLAND_NAS 32.7 -117.2 73 

6  SAN_NICOLAS_ISLAND_NAVAL_OUTLY 33.24 -119.458 35 

7  SOUTHERN_CALIFORNIA_LOGISTICS 34.583 -117.383 50 

8  TWENTY_NINE_PALMS 34.3 -116.167 28 

9  *EL_PASO_INTERNATIONAL_AIRPORT 31.811 -106.376 68 

10  MARFA_MUNICIPAL_AIRPORT 30.371 -104.017 34 

11  ROSWELL_INTERNATIONAL_AIR_CENT 33.308 -104.508 68 

12  LAUGHLIN_AFB_AIRPORT 29.367 -100.783 54 

13  SAN_ANGELO_REGIONALMATHS_FIEL 31.352 -100.495 45 
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14  WINKLER_COUNTY_AIRPORT 31.78 -103.202 40 

15  DAVIS-MONTHAN_AFB_AIRPORT 32.167 -110.883 65 

16  ERNEST_A_LOVE_FIELD_ARPT 34.652 -112.421 28 

17  LUKE_AFB_AIRPORT 33.55 -112.367 59 

18  PHOENIX_SKY_HARBOR_INTL_AIRPOR 33.428 -112.004 45 

19  SIERRA_VISTA_MUNICIPAL-LIBBY_A 31.588 -110.344 53 

20  WILLIAMS_GATEWAY_AIRPORT 33.3 -111.667 62 

21  YUMA_MARINE_CORPS_AIR_STATION 32.667 -114.6 27 

22  CHASE_NAVAL_AIR_STATION 28.367 -97.667 20 

23  CORPUS_CHRISTI_INTERNATIONAL 27.774 -97.512 63 

24  CORPUS_CHRISTI_NAS 27.683 -97.283 45 

25  HONDO_MUNICIPAL_AIRPORT 29.36 -99.174 34 

26  LACKLAND_AIR_FORCE_BASE_KELLY 29.383 -98.583 72 

27  RANDOLPH_AFB_AIRPORT 29.533 -98.262 70 

28  SAN_ANTONIO_INTERNATIONAL_AIRP 29.544 -98.484 66 

29 Guatemala FLORES_SANTA_ELENA 16.917 -89.883 22 

30  HUEHUETENANGO 15.317 -91.467 38 

31  LA_AURORA 14.583 -90.527 40 

32  SAN_JOSE 13.936 -90.836 23 

33 Belize PHILIP_S_W_GOLDSON_INTL 17.539 -88.308 25 

(*)inhomogeneous roughness   
 

Some examples concerned to the categorization of roughness length for some stations 

is discussed above. From the Google maps landscape the surrounding of the station are 

presented. In this case, a zoom within two and ten kilometers is shown. For the station of 

Guadalajara presented in Fig B 6, a roughness length 𝑧0 of 0.5 is considered. In this 

case,the roughness characterisation is considered as an homogeneous condition 

throughout the periphery. Similar as to the station of Guadalajara, a roughness length of 

0.5 is also considered for  the state of Toluca (station no. 20, Table B 2). This particular 

roughness length is a typical value that is regularly used in the case of centres of small 

towns. Both Guadalajara and Toluca are relatively dense cities, within the country of 

Mexico. Small towns is referred more to the average height of the surunding buildings, 

instead of the size of the city. Therfore, when cities as toulca and Guadalajara are referred 

as small towns, this is in reference to big cities with high skycrapers such as New York in 

U.S.A., Toronto, in Canada, or Mexico city in the country of Mexico. Therefore, from all 

the analysed meteorological stations, the highest roughness length was considered for the 

airport station in Mexico City (station no. 16, Table B 2), with a value of 𝑧0 of 0.7. 
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Figure B 6 Station of Guadalajara,  Jalisco (circumference of 4 and 20 km in diameter). 

Another example of roughness correction is presented in Fig. B 7, for the station of 

Oaxaca, in the village of Huajuapan de Leon. In this case, the terrain is not as homogeneous 

as in the previous example considered for the station of Guadalajara (Fig. B 6). However, 

the homogenization of the terrain is still considered. In this case, a roughness length 𝑧0 of 

0.3, is assigned for the first two kilometers. After the first two kilometers, the surrounding 

area is classified as farmland with many hedges and few trees. In this case, the roughness 

length is considered as 0.08. 

 

 
Figure B 7 Station Huajuapan de Leon, Oaxaca. 
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Another example of  roughness correction is presented for the station of Morelia 

Michoacan (Fig B 8). In this satation, a roughness length 𝑧0 of 0.3 is considered, in the 

case of the the first four kilometers. Beyond the first four kilometers of radius,  a 𝑧0 of 0.2 

is considered. In the former case, the zone is categorized as suburbs and villages, and in 

the latter as farmland with many trees and hedges and few buildings. Similar corrections 

as the ones presented in this section are generated for all the stations (Table B 2 and B 3), 

considered within the analysis. 

 

Figure B 8 Station Morelia, Michoacan. 

B.5 Results and discussion 

The 200-year mean annual maximum wind speed for a  different states in Mexico (see 

also Table B 2)is presented in Table B 4. The probability paper for some of the  the 

analized statios is presented in section B 7.  The fitted data presents good stability that is 

seen  throughout the linearized distribution of the Gumbel or GEV distribution. Another 

important attribute of the selected data is the quality and stability that the upper tale of the 

linearized distribution pesents. This aspect within the linearized distribution guarantees 

the efficency and the accurate prediction of the extreme. As it is observed within the 

Gumbel probability paper (see section B 7), the stability of the upper tale of the linearized 

data is appropiat and in all cases promote the  stability of the data. 
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For accepting or rejecting data within the anlysis of the different metereological 

stations, the predicted models were evaluated based on the  Kolmogorov-Smirnov test. In 

this type of test, the allowed deviation between the observed value and predicted model is 

tested.  From the Kolmogorov-Smirnov tests, most of the fitting distributions fall above 

80% of the confidence level. The Kolmogorov-Smirnov test for different stations, and 

considereing a particular significance level, are shown in Table B 4. In the Table are also 

presented the day of the registered maximum wind speed and its value, the 200 year mean 

annual maximum wind speed and the used distribution model. 

 

Table B 4 200 year mean annual maximum wind speeds for the stations of Mexican  

 
 

maximum 
wind 

registered 

day of 
maximum 

wind 

 
Mean annual 

maximum wind 
speed (km/h) 

   

 
 

distribution 
type 

Kolmogorov Smirnov test 

No.  α Dcrit,α Dn 

1  118.80 1992-11-29 Gumbel 148.0 0.20 0.197 0.141 

2  118.80 1990-10-20 GEVD 144.4 0.20 0.226 0.081 

3  115.20 2006-01-21 Gumbel 148.2 0.20 0.186 0.095 

4  115.20 1992-07-25 GEVD 159.4 0.20 0.165 0.124 

5  115.20 1991-04-30 Gumbel 167.4 0.20 0.167 0.128 

6  111.24 1995-10-28 Gumbel 173.0 0.20 0.208 0.140 

7  111.24 1991-06-28 GEVD 140.4 0.20 0.190 0.128 

8  111.60 2013-04-20 GEVD 176.7 0.20 0.200 0.141 

9  118.80 1989-03-06 Gumbel 183.2 0.20 0.193 0.091 

10  108.00 2006-02-19 Gumbel 142.4 0.10 0.202 0.201 

11  108.00 1998-11-09 Gumbel 145.4 0.20 0.176 0.082 

12  100.08 2007-10-23 Gumbel 129.9 0.20 0.204 0.201 

13  118.44 2005-12-11 GEVD 163.7 0.20 0.208 0.104 

14  118.80 1989-08-11 Gumbel 147.2 0.20 0.167 0.116 

15  111.24 1994-11-18 GEVD 119.9 0.20 0.171 0.146 

16  107.28 2005-02-08 GEVD 193.2 0.20 0.204 0.172 

17  133.20 1997-02-07 GEVD 194.7 0.20 0.163 0.119 

18  120.24 2000-12-18 GEVD 158.5 0.20 0.165 0.147 

19  108.00 1992-09-08 GEVD 183.3 0.20 0.200 0.138 

20  115.20 1998-05-02 Gumbel 229.0 0.20 0.186 0.137 

21  90.00 1996-06-28 GEVD 135.9 0.20 0.226 0.109 

22  118.44 1994-12-01 GEVD 144.3 0.20 0.221 0.179 

23  108.00 2007-02-11 GEVD 127.1 0.20 0.216 0.170 

24  108.00 2004-06-07 Gumbel 195.9 0.20 0.165 0.067 
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25  110.88 1976-05-10 GEVD 121.8 0.02 0.232 0.209 

26  111.24 2001-06-05 GEVD 139.0 0.10 0.201 0.179 

27  118.80 2008-03-12 Gumbel 210.4 0.20 0.200 0.060 

28  97.20 2014-03-26 Gumbel 144.4 0.20 0.221 0.116 

29  110.88 1993-01-12 GEVD 148.9 0.20 0.197 0.139 

30  108.00 2008-11-18 GEVD 236.1 0.20 0.177 0.154 

31  101.52 1993-04-23 GEVD 121.1 0.20 0.197 0.125 

32  108.00 1995-01-30 GEVD 162.9 0.20 0.167 0.132 

33  115.20 1992-12-05 GEVD 170.0 0.20 0.156 0.103 

34  118.80 2016-11-19 GEVD 183.4 0.20 0.197 0.137 

35  104.40 2017-05-08 GEVD 143.3 0.20 0.197 0.133 

36  115.20 1997-07-27 GEVD 166.1 0.20 0.186 0.122 

37  118.80 1998-09-16 Gumbel 173.8 0.20 0.186 0.095 

38  111.24 1998-10-17 Gumbel 167.2 0.20 0.193 0.097 

39  118.80 1996-04-08 GEVD 162.1 0.20 0.193 0.132 

40  118.44 1995-08-29 GEVD 147.3 0.20 0.216 0.175 

41  107.64 1991-03-29 Gumbel 173.7 0.20 0.233 0.128 

42  118.80 1994-05-07 GEVD 172.1 0.20 0.165 0.130 

43  96.12 1993-11-27 Gumbel 167.4 0.20 0.226 0.112 

44  115.20 2005-12-09 Gumbel 188.5 0.20 0.181 0.149 

45  111.60 2006-03-26 Gumbel 197.2 0.20 0.181 0.133 

46  104.40 2015-05-30 Gumbel 163.3 0.20 0.189 0.110 

47  114.84 1974-04-18 GEVD 185.1 0.20 0.226 0.090 

48  94.32 1975-04-28 GEVD 153.8 0.20 0.156 0.087 

49  118.44 1988-01-20 Gumbel 177.3 0.20 0.192 0.130 

50  111.24 1998-11-11 Gumbel 175.9 0.20 0.197 0.132 

51  118.80 2002-11-29 Gumbel 215.0 0.20 0.178 0.098 

52  111.60 2014-09-20 Gumbel 140.1 0.20 0.189 0.133 

53  100.80 1998-01-07 GEVD 162.4 0.20 0.192 0.146 

54  100.80 1990-01-13 Gumbel 122.0 0.20 0.190 0.076 

55  90.00 2011-09-05 GEVD 157.9 0.20 0.167 0.097 

56  108.00 1993-01-14 GEVD 146.3 0.20 0.171 0.108 

 

The same information used for Table B.4., is now elaborated for the the stations 

located in the U.S.A, Guatemala, and Belize (see Table B 5). By observing  the  

Kolmogorov-Smirnov test, most of the fitting data are above  80%  of the confidence level. 

While for few station for both table B 4 and .B 5, the confidence level is even higher, for 

both table B 4 and .B 5. 
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Table B 5 200-year annual maximum wind speeds for U.S.A., Guatemala, and Belize. 

 
maximum 

wind 
registered 

day of 
maximum 

wind 
distribution 

type 

Mean annual 
maximum wind 
speed (km/h) 

   

 Kolmogorov Smirnov test 

No. α Dcrit,α Dn 

1 114.84 1998-02-02 GEVD 174.9 0.10 0.201 0.182 

2 101.88 1976-08-15 Gumbel 175.4 0.20 0.131 0.113 

3 92.52 2005-09-23 Gumbel 122.6 0.20 0.177 0.076 

4 101.88 2006-03-20 Gumbel 122.8 0.20 0.184 0.127 

5 100.08 2005-05-25 GEVD 117.5 0.20 0.125 0.105 

6 101.88 1992-01-17 Gumbel 104.4 0.20 0.177 0.076 

7 87.12 1954-03-17 Gumbel 105.2 0.20 0.148 0.071 

8 92.52 2004-08-24 Gumbel 111.7 0.20 0.197 0.126 

9 100.08 1950-05-05 GEVD 138.3 0.20 0.148 0.105 

10 116.64 1980-01-11 Gumbel 155.6 0.20 0.184 0.115 

11 107.28 1980-01-11 Gumbel 122.8 0.20 0.130 0.101 

12 111.24 1990-04-26 Gumbel 127.8 0.20 0.146 0.097 

13 118.44 1980-03-31 Gumbel 134.3 0.20 0.156 0.119 

14 113.04 1996-12-11 Gumbel 134.5 0.20 0.165 0.136 

15 100.08 2011-07-05 Gumbel 135.4 0.20 0.131 0.081 

16 83.52 2010-01-22 Gumbel 98.3 0.20 0.197 0.134 

17 111.60 2016-07-30 GEVD 138.6 0.20 0.139 0.104 

18 103.68 1978-10-20 GEVD 171.2 0.20 0.156 0.096 

19 109.44 1997-04-24 GEVD 132.7 0.20 0.147 0.078 

20 100.08 1945-08-02 GEVD 146.0 0.20 0.136 0.070 

21 103.68 1978-12-09 Gumbel 172.2 0.20 0.200 0.099 

22 97.92 1975-06-09 Gumbel 157.3 0.20 0.232 0.132 

23 113.04 1947-05-20 GEVD 160.4 0.05 0.171 0.161 

24 113.04 2010-08-07 Gumbel 152.8 0.20 0.156 0.140 

25 87.12 2017-06-05 GEVD 119.5 0.20 0.184 0.100 

26 114.84 1997-05-28 GEVD 180.1 0.20 0.126 0.104 

27 103.68 1993-06-25 GEVD 149.5 0.20 0.128 0.105 

28 116.64 1979-02-23 GEVD 192.8 0.05 0.167 0.155 

29 64.80 2003-09-15 Gumbel 114.6 0.20 0.221 0.136 

30 81.36 1988-11-09 Gumbel 138.6 0.20 0.174 0.124 

31 115.20 1981-12-21 GEVD 189.4 0.20 0.165 0.100 

32 105.48 2002-03-26 Gumbel 155.7 0.20 0.177 0.098 

33 111.24 1994-05-30 Gumbel 178.8 0.20 0.208 0.159 

 

For synoptic type of  wind, the isopleths of  the 200-year mean annual maximum wind 

speed are presented in Fig. B 9. The highest risk is presented throughout different regions 
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within the country, withvariations in wind speed ranging from 168 to 195 km/h. From the 

Pacific coast,  the peninsula of Baja California and part of  Sinaloa present the highest 

wind speeds, while on the Gulf of Mexico, the border of Tamaulipas and Veracruz. 

Besides, in the central part of the country the states of Queretaro, Puebla, and  Oaxaca are 

also prone to the highest wind speeds. The average value of the mean annual maximuma 

wind speeed within the country is in the range of 153 to 168 km/h, and is the typical value 

expected for most of the country, with the exception of the boarder between Mexico and 

the U.S.A. in which lower values of wind speed are expected 

 

 

Figure B 9 Regional velocities for synoptic type of wind, from the NOAA datasets 

 

 

 

km-h 
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B.6 Conclusions 

For the country of Mexico, a preliminary regional map of the 200-year mean annual 

maximum wind speed is presented. The analysis of wind speed is focused exclusively on  

synoptic type of wind. Before arriving at conclusions, is important to acknowledge the 

actual condition of the existing datasets from the different metereoogical stations. One of 

the main objectives from this study was to generate  a more standard and homogeneous 

database for the analysis of wind speeds. Therefore, the correction of raw data was 

stablished in a systematic manner. For the extreme value analysis, the Gumbel and the 

Generalized Extreme Value (GEV) distribution are used as fitting models. The roughness 

correction of the terrain is also presented. From the total number of analysed stations only 

the stations that presented the best fit for the Gumbel or GEV distribution were selected. 

In this case, fifty-seven stations from Mexico, twenty-nine stations from the U.S.A., four 

from Guatemala, and one from Belize, were considered in the anlysis of wind records. 

The analysis of the ispleths for the 200-year retun period maps is mainly base on Synoptic 

type of wind. A furtuer to include the hurricane wind is not considered, since the data that 

was analysed in most cases was found to be highly contaminated. In this case, for synptic 

type of wind, the highest risk is presented within the lower region of Baja California Sur 

and the upper part of Sinaloa on the Pacific coast, and near the border of Tamaulipas and 

Veracruz on the Gulf of Mexico. Besides, in the center of the country, the states of 

Queretaro, Puebla, and Oaxaca, are also sensitive to high wind speeds.  
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B 7 Prediction models from the Gumbel and Generalized 

extreme value (GEV) distribution 
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