
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-21-2022 11:15 AM

Algorithms for Regular Chains of Dimension One Algorithms for Regular Chains of Dimension One

Juan P. Gonzalez Trochez, The University of Western Ontario

Supervisor: Moreno Maza, Marc, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Juan P. Gonzalez Trochez 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Applied Mathematics Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Gonzalez Trochez, Juan P., "Algorithms for Regular Chains of Dimension One" (2022). Electronic Thesis
and Dissertation Repository. 8530.
https://ir.lib.uwo.ca/etd/8530

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=ir.lib.uwo.ca%2Fetd%2F8530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fetd%2F8530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8530?utm_source=ir.lib.uwo.ca%2Fetd%2F8530&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
One of the core commands in the RegularChains library inside Maple is Triangularize. The

underlying decomposes the solution set of a polynomial system into geometrically meaningful
components represented by regular chains. This algorithm works by repeatedly calling a pro-
cedure, called Intersect, which computes the common zeros of a polynomial p and a regular
chain T .

As the number of variables of p and T , as well as their degrees, increase, the call to the
function Intersect(p,T) becomes more and more computationally expensive. It was observed
in [16] that when the input polynomial system is zero-dimensional and T is one-dimensional
then this cost can be substantially reduced. The method proposed by the authors is a proba-
bilistic algorithm based on evaluation and interpolation techniques. This is the type of method
which is typically challenging to implement in a high-level language like Maple’s language,
as a sharp control of computing resources (in particular memory) is needed. In this document,
we report on a successful implementation of this algorithm in Maple as well as in the BPAS
library.

On the other hand, multivariate Laurent series are a generalization of multivariate power
series. They play an important roll when defining Puiseux series, and in consequence, they are
required to implement Nowak’s version of the famous Newton-Puiseux algorithm. In this doc-
ument, we also report a first implementation of a Laurent series object inside Maple together
with the challenges that we have encountered during its development.

Keywords: Regular chains, modular method, evaluation and interpolation, Laurent series,
power series, subresultant chains

ii

Lay Summary
Regular chains are triangular sets of polynomials used to solve systems of polynomial equa-
tions. In this work, we focused in one dimensional regular chains. That is, regular chains where
the number of equations is one less than the number of variables. In particularly, we solve the
intersection between a one dimensional regular chain and a polynomial by means of evaluation
and interpolation, under certain hypothesis. A Maple and a C version of this modular algorithm
is presented. In addition, we also report a first implementation of a Laurent series object inside
Maple as a first step to achieve multivariate Puiseux series. Multivariate Laurent series are a
generalization of multivariate power series; and Puiseux series are key when computing limit
points of one dimensional regular chains.

iii

Contents

Abstract ii

List of Tables vi

List of Figures vii

List of Algorithms viii

1 Introduction 1
1.1 A modular method for the Intersect algorithm 6
1.2 Algorithms for arithmetic operations on multivariate Laurent series 8

2 A modular approach for the Intersect algorithm 10
2.1 Preliminaries . 10

2.1.1 Triangular set . 10
2.1.2 Regular chain . 11
2.1.3 Normalized regular chain . 11
2.1.4 Regular GCD . 12
2.1.5 The algorithms Intersect and Regularize 12
2.1.6 Triangular decomposition . 12
2.1.7 Specialization and border polynomial 13

2.2 The non-modular method and its genericity assumptions 13
2.3 The modular method . 17
2.4 Implementation in Maple . 22

2.4.1 The modp1 library . 23
2.4.2 Computation of subresultant chains 23

2.5 Implementation in C . 24
2.6 Benchmarking . 25

2.6.1 A promising example . 25
2.6.2 Random test . 25

3 Algorithms for multivariate Laurent series 28
3.1 Preliminaries . 28

3.1.1 Cones . 28
3.1.2 Total orders . 29

3.2 Construction . 30

iv

3.3 Algorithms . 30
3.3.1 Graded reverse lexicographic order . 31
3.3.2 The Laurent series object . 32
3.3.3 Addition and multiplication . 34
3.3.4 Inversion . 37

The minimum grevlex element of supp(g(xR)) 37
Multivariate power series in Maple with a defined rational analytic ex-

pression . 42
Multivariate power series in Maple with an undefined or non-rational

analytic expression . 43
3.4 An overview of the Laurent series object in Maple 45

4 Conclusions and future work 47

Bibliography 49

Curriculum Vitae 51

v

List of Tables

2.1 Profiling of Example 1 . 26
2.2 Examples 1 . 26
2.3 Examples 2 . 27

vi

List of Figures

1.1 An illustration of incremental solving . 3
1.2 A Maple session with the Triangularize command 3
1.3 An illustration of expression swell from dimensions 1 to 0 4
1.4 Illustration of Maple’s LimitPoints . 5

3.1 Support of g . 39
3.2 Support of g(xy, xy−1) . 40
3.3 Laurent series object . 45
3.4 Creation Laurent series . 45
3.5 Multiplication of Laurent series . 46
3.6 Addition of Laurent series . 46
3.7 Inverse of a Laurent series . 46

vii

List of Algorithms

1 SubresultantChain . 19
2 ModularSRCForBivariatePolynomials . 19
3 GoodSpecializationPoint . 20
4 SubresultantsOfIndexZeroAndOne . 20
5 CollectingImages . 21
6 Interpolate . 22
7 IntersectBySpecialization . 22
8 GrevLexComparison . 31
9 MakeRaysCompatible . 35
10 Multiply . 36
11 Addition . 36
12 LookForSmallestTerm . 41
13 InverseOfAnalyticExpression . 43
14 InverseOfUndefinedAnalyticExpression . 44
15 Inverse . 44

viii

Chapter 1

Introduction

The theories of Gröbner bases and regular chains are two of the main tools on which algorithms
for polynomial algebra rely. They were introduced respectively in [13] by Bruno Buchberger
and in [20] by Michael Kalkbrener, a PhD student of Bruno Buchberger. These theories support
a variety of algorithms covering problems like solving systems of polynomial (algebraic or
differential) equations, and operating on ideals and varieties. See the landmark textbook [17]
of David A. Cox, John Little and Donal O’Shea for an introduction to those problems.

In an attempt to highlight the specific features of each of these two theories, one can say
that Gröbner bases are better suited for manipulating polynomial ideals, while regular chains
are well adapted for operating on algebraic varieties and constructible sets. Algorithms based
on Gröbner bases tend to either decompose polynomials into homogeneous components, or
proceed by variable elimination. Meanwhile, the most successful algorithms based on regular
chains use the paradigm of incremental solving, where solving a system of equations

f1 = f2 = · · · = fm = 0

is done by, for i = 1, . . . ,m, solving fi = 0 against the solution set of

f1 = f2 = · · · = fi−1 = 0.

In the realm of methods for solving polynomial systems, the principle of incremental solv-
ing plays a major role, yielding elegant algorithms and attractive complexity results. This
principle allows one to control the properties and the size of the algebraic entities (curves,
surfaces, etc.) that are produced at each computational step. See the works of Lazard [21],
Lecerf [22] and Faugère [8].

Lazard proposed incremental solving for computing triangular decompositions by means of
regular chains, a path which was extended and improved by Moreno Maza [26] and Chen [16].
In their work, the incremental solving process is based on a procedure, named Intersect,
which computes the intersection of

1. a hyper-surface V(f) and,
2. the quasi-component W(T) of a regular chain T .

To rephrase the above statement in loose terms, the procedure Intersect computes the com-
mon solutions of a regular chain and a polynomial.

Returning to a more formal presentation, for a field K, ordered variables x1 < · · · < xn,
a given multivariate polynomial f ∈ K[x1, . . . , xn] and a regular chain T ⊂ K[x1, . . . , xn], the

1

2 Chapter 1. Introduction

function call Intersect(f ,T) returns regular chains T1, . . . ,Te ⊂ K[x1, . . . , xn] such that we
have:

V(f) ∩W(T) ⊆ W(T1) ∪ · · · ∪W(Te) ⊆ V(f) ∩W(T), (1.1)

where V(f) denotes the zero set of f , W(T) denotes the common solutions of the polynomials
of T and W(T) denotes the topological closure of W(T) for the topology of Zariski. The reader
may be surprised to see that V(f)∩W(T) is not given by an equality. Instead, Intersect(f ,T)
computes an “approximate decomposition” W(T1) ∪ · · · ∪W(Te) which contains V(f) ∩W(T)
and is contained in V(f) ∩ W(T). Since V(f) ∩ W(T) and V(f) ∩ W(T) are topologically
very close, this approximation is sharp. Moreover, it turns out that, when solving a system of
polynomial equations, say

F =


f1 = 0
f2 = 0
...

...
fm = 0

,

by repeated applications of the procedure Intersect with f1, f2 . . . , fm, regular chains
{T1, . . . ,Tv} ⊂ K[x1, . . . , xn] are obtained such that we have:

V(F) = W(T1) ∪ · · · ∪W(Tv).

This is essentially how the Triangularize command of the RegularChains library in Maple
works.

Figure 1.1 illustrates how Triangularize solves an input polynomial system F incre-
mentally, while Figure 1.2 shows a Maple session displaying Triangularize’s output for the
same system F.

On Figure 1.1, all regular chains (the intermediate ones and those in the output) are orga-
nized by dimension. At the bottom, we see the regular chains in the output and note that they all
have dimension zero, that is, each of them has finitely many solutions. Immediately above the
zero-dimensional regular chains, all regular chains have dimension one; indeed each of them
has 3 equations for 4 variables. In the above row, regular chains have dimension two; above
them is the regular chain {y + w}, which has dimension three. One can see that, in solving
the system F, the step from regular chains of dimension one to regular chains of dimension
zero, has the dominant computational cost. This observation is very often true for systems with
finitely many solutions. Figure 1.3 provides another illustration of this observation.

This observation motivates the first objective of this dissertation: controlling expression
swell when computing Intersect(f ,T) with a one-dimensional regular chain. Our contribu-
tion to this question is summarized in Section 1.1 and detailed in Chapter 2.

Not all polynomial systems are zero-dimensional, of course. Therefore, obtaining regular
chains of positive dimension in the solution set of a polynomial system may happen, in partic-
ular, when the input system has fewer equations than variables. Consider then a polynomial set
F ⊂ K[x1, . . . , xn] and regular chains T1, . . . ,Tv ⊂ K[x1, . . . , xn] such that we have:

V(F) = W(T1) ∪ · · · ∪W(Tv),

and at least one regular chain, say T , is of dimension 1. From the definition of a regular chain
(see Section 2.1) and since variables are ordered as x1 < x2 < · · · < xn, one can assume that the

3

∅

F[1]
y
{y + w}

F[2] {
5y + 1
5w − 1

}
,

{
y
w

}
F[3] 

x + z2 + 1
5y + 1
5w − 1

,


5y + 1

z
5w − 1

,


x + z2 + 1

y
w

,


y
z

w


F[4]

x + z2 + 1
5y + 1

z8 + · · ·

5w − 1

,


x − z

5y + 1
z2 + z + 1

5w − 1

,


x

5y + 1
z

5w − 1

,


x2 + 1
5y + 1

z
5w − 1

,


x + z2 + 1

y
z8 + · · ·

w

,


x − z

y
z2 + z + 1

w

,


x2 + 1

y
z

w

,


x
y
z

w

F =


y + w
5w2 + y
xz + z3 + z
x5 + x3 + z

Figure 1.1: An illustration of incremental solving

Figure 1.2: A Maple session with the Triangularize command

4 Chapter 1. Introduction

Figure 1.3: An illustration of expression swell from dimensions 1 to 0

regular chain T looks like

T :


t2(x1, x2) = h2(x1)xd2

2 + · · ·

t3(x1, x2, x3) = h3(x1)xd3
3 + · · ·

...
...

...

tn(x1, x2, ..., xn) = hn(x1)xdn
n + · · · ,

(1.2)

where t2, t3, . . . , tn have respective leading variables x2, x3, . . . , xn, with respective leading co-
efficient h2, h3, . . . , hn and respective leading degrees d2, d3, . . . , dn. By definition, A point
z = (z1, . . . , zn) ∈ K

n
, where K is the algebraic closure of K, belongs to the quasi-component

W(T) of T (that is, the solution set of T) if z belongs to V(T) (that is, cancels t2, . . . , tn) and
z does not cancel any of h2, h3, . . . , hn. Therefore, the quasi-component W(T) may not be
closed in Zariski topology. Of course, the closure W(T) is necessarily contained in V(F), since
V(F) is closed. Therefore, if W(T) is not closed, there exist regular chains Ti1 ,Ti2 , . . ., with
2 ≤ · · · ≤ i1 < · · · ≤ i2 ≤ · · · ≤ v such that we have:

W(T) \W(T) ⊆ W(Ti1) ∪W(Ti2) ∪ · · · .

Because W(T) \W(T) is necessarily zero-dimensional, the regular chains Ti1 ,Ti2 , . . . are likely
(but not necessarily) to be zero-dimensional too. Since, when solving a polynomial system,
the computation of the zero-dimensional regular chains has often a dominant cost, it is natural
to ask whether W(T) \W(T) could be computed at some lower cost “directly” from W(T) by
means of analytical arguments.

A positive answer to this question was given in [3] by Alvandi, Chen and Moreno Maza. We
summarize their construction. From now on, we assume that K is the field C of complex num-
bers. Let h be the product of the polynomials h2, h3, . . . , hn. Note that we have h ∈ K[x1]. Let
ζ ∈ K be a root of h. Since W(T) is one-dimensional, the set T can be seen as a parametrization
of a space curve C with x1 as a parameter. It is natural to ask what are the limit points of C when
x1 approaches ζ. It turns out that the set of all the limit points obtained in this way (thus consid-
ering all roots ζ of h) is exactly W(T) \W(T). As a byproduct, this explains why W(T) \W(T)

5

Figure 1.4: Illustration of Maple’s LimitPoints

is a zero-dimensional algebraic set. Moreover, the limit points of C when x1 approaches ζ can
be computed as follows. For simplicity, assume ζ = 0. Over the algebraically closed field
C((x∗1)) of univariate Puiseux series in x1, the univariate polynomial t2(x1, x2) ∈ C((x∗1))[x2] has
d2 roots. Substituting each of those roots into t3(x1, x2, x3) yields polynomials in C((x∗1))[x3],
which in turn have d3 roots, etc. Continuing in this manner, one can compute the solution set
V(T) of T regarded as a zero-dimensional chain in C((x∗1))[x2, x3, . . . , xn]. In practice, the co-
ordinates of those points ofV(T) are computed up to a precision which is sufficient to separate
those points from each other.

The authors of [3] have proved that the limit points of C when x1 approaches ζ are obtained
by evaluating at x1 = 0 all the points (s2, . . . , sn) ofV(T) so that each Puiseux series s2, . . . , sn

has a non-negative order. The computation of limit points of one-dimensional regular chains
was implemented in Maple by the authors of [3] as the command LimitPoints of the sub-
package AlgebraicGeometryTools of the RegularChains library.

As a first example of limit point computation, consider the following regular chain T ⊆
K[x, y, z] for the variable ordering z < y < x:

T :=
{

z x − y2

y5 − z4 .

The setV(T) of the Puiseux series solutions of T consisting of the single point

(x = z3/5, y = z4/5)

Clearly the Puiseux series z3/5 and z4/5 have non-negative orders and evaluating the above point
at z = 0 yields (0, 0). Thus we have:

W(T) \W(T) = {(0, 0, 0)}.

Consider now this other regular chain T ⊆ K[x, y, z] for the variable ordering z < y < x:

T :=
{

z x − y2 = 0
y5 − z2 = 0 .

6 Chapter 1. Introduction

The setV(T) of the Puiseux series solutions of T consisting of the single point

(x = z−1/5, y = z2/5)

Since the Puiseux series z−1/5 has a negative order, we have:

W(T) \W(T) = ∅.

Figure 1.4 illustrates how Maple computes the Puiseux series of a regular chain (with the
command RegularChainBranches) and the corresponding limit points (with the command
LimiPoints).

The above discussion shows that the computation of limit points of one-dimensional regular
chains essentially boils down to solve univariate polynomials over a field of univariate Puiseux
series. There is a number of algorithms for this latter task, in particular the so-called Extended
Hensel-Sasaki Construction studied in [2] and implemented in Maple by Alvandi. The Ex-
tended Hensel-Sasaki Construction does make an explicit use of Puiseux series arithmetic and
reduces computations to polynomial arithmetic. Other algorithms make explicit use of Puiseux
series arithmetic and thus of Laurent series arithmetic. This is the case for the algorithm of
Krzysztof Nowak [27]. Nowak’s construction is a 2-way divide-and-conquer algorithm re-
ducing the factorization of polynomials in C((x∗1))[x2] to Hensel lifting in C[[x1]][x2] by means
Tschirnhaus transformation. Recent work with this type of algorithms, see [12] has lead to very
successful implementation of Hensel lifting in C[[x1, . . . , xn−1]][xn] in both Maple and C/C++.
This observation motivates the second objective of this dissertation: developing effective al-
gorithms for multivariate Laurent series so as to factorize polynomials in C((x∗1, . . . , x

∗
n−1))[xn].

Our contribution to this question is summarized in Section 1.2 and detailed in Chapter 3.

1.1 A modular method for the Intersect algorithm
To understand the challenges that the present document is addressing, let us describe loosely
the algorithm underlying Intersect(f ,T). Assume that f is a non-constant polynomial with
main variable v and T contains a polynomial Tv with the same main variable v. Up to details
that we shall ignore here, Intersect(f ,T) proceeds as follows:

1. compute the subresultant chain of f and Tv w.r.t. v; this produces the resultant r of f
and Tv w.r.t. v modulo the lower part of T (that is, the regular chain consisting of the
polynomials in T with main variable less than v);

2. if r = 0 then replace Tv by gcd(f ,Tv) (actually the GCD of f and Tv w.r.t. v modulo the
lower part of T) in T , obtaining a new regular chain T ′ and returning {T ′};

3. if r is a non-zero constant, then V(f) ∩W(T) is empty and the empty-list {} is returned;
4. otherwise r is a non-constant polynomial, Intersect(r,T) is computed recursively, ob-

taining regular chains T1, . . . ,Te and the union of Intersect(f ,T1), . . . , Intersect(f ,Te) is
returned.

This process leads to computing iterated resultants which, in general, have “large extraneous”
factors. By that, we mean factors that not only bring no useful information, but also create
massive expression swell. The Triangularize algorithm manages, of course, to remove those
extraneous factors, but this is an expensive task. Ideally, one would prefer not to compute those
extraneous factors at all!

1.1. A modular method for the Intersect algorithm 7

In case T is a one-dimensional regular chain (that is a regular chain with n variables and
n − 1 polynomials) it was proved by Chen and Moreno Maza in [16] that the iterated resultant
involved in the computations of Intersect(f ,T) can be computed efficiently as follows:

1. Let x1 be the variable of T which is free, so that we can assume that T looks like

T :


t2(x1, x2) = h2(x1)xd2

2 + · · ·

t3(x1, x2, x3) = h3(x1)xd3
3 + · · ·

...
...

...

tn(x1, x2, ..., xn) = hn(x1)xdn
n + · · · ,

(1.3)

where t2, t3, . . . , tn have respective main variables x2, x3, . . . , xn, with respective initials
h2, h3, . . . , hn and respective main degrees d2, d3, . . . , dn;

2. Let D be the Bézout bound of the input system (assumed to be zero-dimensional) from
which T was obtained;

3. Choose m := (2D + 1) values v1, . . . , vm for x1 so that for each v ∈ {v1, . . . , vm} we have
h2(v) , 0, h3(v) , 0, . . . , hn(v) , 0 so that the specialized triangular set Tx1=v remains a
regular chain;

4. For each v ∈ {v1, . . . , vm}, let Nv be the reduced lexicographical Gröbner basis of the ideal
generated by Tx1=v (note that Nv is a regular chain where each initial is equal to 1) and
Let fv be the polynomial f specialized at x1 = v;

5. For each v ∈ {v1, . . . , vm} compute rv the iterated resultant of fv and Nv;
6. Using rational function interpolation, interpolate the points (v1, rv1), . . . , (vm, rvm) which

yields a univariate rational function R in x1; and
7. Return the numerator of R.

We stress the fact that the above procedure only computes the iterated resultant res(f ,T) (see
Section 2.1 for a definition) of the polynomial f w.r.t. T . In other words, this procedure does
not compute Intersect(f ,T). We also note that Section 6 in [16] explains with details why the
above procedure is a solution to controlling expression swell in the computations of iterated
resultants. It follows that one can derive from that procedure an algorithmic solution to control
expression swell when computing Intersect(f ,T) by means of subresultant theory.

The goal of the present document is actually to enhance the above procedure so that it com-
putes Intersect(f ,T) while avoiding extraneous factors. There is, however, a major obstacle
to overcome in order to implement this enhancement: while res(f ,T) does not need to split
the computations into different cases, splitting may be needed for computing Intersect(f ,T).
Moreover the evaluation-interpolation scheme of the above procedure makes this obstacle
even harder to overcome. Indeed, given two different values v1 and v2 at which x1 can
be specialized, it is possible that Intersect(fx1=v1 ,Tx1=v1) splits computations differently than
Intersect(fx1=v2 ,Tx1=v2) does. Thanks to the concept of equiprojectable decomposition intro-
duced in [18], there is a solution to this challenge and we shall present our solution in a forth-
coming paper.

In fact, towards that solution, we first need to handle the “non-splitting case”. By that, we
mean the case where none of Intersect(fx1=v,Tx1=v), for each v ∈ {v1, . . . , vm}, needs to split. But
here comes another challenge: before computing Intersect(f ,T), we may not know in advance
whether splitting will or will not be needed.

The present document addresses that second challenge and offers an algorithm computing

8 Chapter 1. Introduction

Intersect(f ,T) by means of an evaluation-interpolation scheme. To keep the presentation sim-
ple, we explain this algorithm in the context of trivariate polynomials. We believe that the
expert reader will understand how our results can be extended to polynomials with an arbitrary
number of variables; we shall present this extension in the forthcoming paper mentioned above.

With this trivariate presentation, we have three polynomials f , t, b ∈ K[x, y, z] so that T :=
{t, b} is a regular chain and we aim at computing Intersect(f , {t, b}). In Section 2.2, we exhibit
conditions on f , t, b so that Intersect(f , {t, b}) returns a single zero-dimensional regular chain
C; see Theorem 1.

These conditions can be understood as genericity assumptions. Those are slightly less re-
strictive than those of the Shape Lemma [9] and slightly more restrictive than equiprojectabil-
ity [18]. The advantage of those conditions (namely Hypotheses 1, 2, 3 and 4) is that they
can be tested during the execution of the proposed algorithm for computing Intersect(f , {t, b}).
As a result, this algorithm, which is presented in Section 2.3, returns either the regular chain
C of Theorem 1 or an error message indicating which genericity assumption does not hold. In
that latter case, Intersect(f , {t, b}) can be computed by the general algorithm presented in [16].
Therefore, the proposed algorithm for computing Intersect(f , {t, b}) can be seen as an opti-
mization of the general algorithm. And, indeed, the experimentation reported in Section 2.6
shows that this is the case in practice. More comments on this appear in Section 4.

The information presented in Chapter 2 has been accepted for publication in the Maple
transactions journal (see [14]).

1.2 Algorithms for arithmetic operations on multivariate Lau-
rent series

A Laurent series is a generalization of a power series in which negative degrees are allowed.
In this document, we follow the ideas exposed by Monforte and Kauers in [25]. Our objective
is to report on a first implementation of multivariate Laurent series inside of Maple. In order
to accomplish this goal, we make use of the already existing MultitivariatePowerSeries
package (see [5]).

To reach our goal, we first need to select an additive total order. Thus, we choose the well-
known graded reverse lexicographic order or grevlex order for short. The grevlex order is said
to be compatible with a cone C ⊆ Rp if 0 � k holds, for all k ∈ C ∩ Zp. It can be proved
that a cone C is compatible with the grevlex order, if and only if C is generated by a set of
non-negative grevlex rays.

After having selected a total order, the basic implementation strategy is to define any mul-
tivariate Laurent series f as the composition of a multivariate power series g and an affine
transformation, given by a point e and a set of non-negative grevlex rays R = {r1, r2, . . . , rm},
mapping the exponent vectors of g to those of f . The properties of that affine transformation
guarantee that the set formed by the exponent vectors of the non-zero monomials (that is, the
support) in our Laurent series f are contained inside of the cone, C, generated by R. Monforte
and Kauers have shown that the set of multivariate Laurent series with support contained inside
a cone C, denoted by KC[[x]], form an integral domain. Furthermore, they have proved that

1.2. Algorithms for arithmetic operations on multivariate Laurent series 9

the sets
K�[[x]] :=

⋃
C∈CKC[[x]] and K�((x)) :=

⋃
e∈Zp xeK�((x)),

are respectively a ring and a field, where C is the set of all cones C ⊆ Rp which are
compatible with an additive order, and

xeK�((x)) :=
⋃
C∈C

xeKC[[x]].

Laurent series with support contained inside the same cone can be added or multiplied
easily. Thus, our first challenge is as follows: given two cones C1 and C2 compatible with
the grevlex order, how can we add and multiply elements inside of KC1[[x]] with elements in
KC2[[x]]? The first step to solve this is to find a cone C, compatible with the grevlex order
and containing the cones C1 and C2. The easiest choice would be to take C as C1 + C2. This,
however, would imply that generating set of C would be equal to the union of the generating
set of C1 and the generating set of C2. For computational efficiency reasons, we would like to
avoid this inflation in the number of generators. Hence, we develop, in Chapter 3 Section 3.3,
Algorithm 9. This algorithm takes two or three generating sets and returns a minimal generat-
ing set, such that its generated cone contains the cones generated by the input generating sets.
By applying this algorithm before adding and multiplying, we guarantee that the generating set
of the result is small.

We also observe that the inversion of multivariate Laurent series is hard to compute. Since,
we are using multivariate power series as part of our construction, we need to take them into
account. It is known that, every power series is invertible if and only it has a non-zero constant
term. Thus, inverting Laurent series with an internal power series with a non-zero constant is
not a challenge. Now, if a power series does not have a non-zero constant term, how do we
invert a Laurent series associated with it? Following Monforte and Kauers ideas, we need to
look for the minimum element inside the support of our Laurent series, and then factor it out
the respective monomials in our Laurent series. This, however, causes a great computational
problem. How do we find the minimum element of a possibly infinite set? As it is stated in
Chapter 3 Section 3.3, this is not always possible. Furthermore, this depends greatly of the
generating set.

If the generating set of a Laurent series contains at least a vector with the sum of its compo-
nents equal to zero (a so-called zero-ray), we show that it is not always possible to to find the
minimum element of the support. Thus, our solution for the multiplicative inverse presented
in Chapter 3 is only a partial solution. Nevertheless, we have divided the problem into various
cases for which we are able to guarantee that the inverse of a Laurent series has been found
even when we have a zero-ray. For instance, if a Laurent series has an associate power series
with a fraction of polynomials as its analytic expression, then standard calculations produce
the inverse of that power series.

Chapter 2

A modular approach for the Intersect
algorithm

In this chapter, we develop the necessary concepts to understand our modular approach for
computing the intersection between a 1-dimensional regular chain and a polynomial. We ex-
plain first the basic concepts of the regular chains theory, and also we make an introduction
of the Algorithm Intersect (Section 2.1). Following, we explain a non-modular method for
solving our problem (Section 2.2). Next, we detail the modular method and the necessary con-
ditions for our algorithm to work correctly (Section 2.3). After this, in Sections 2.4 and 2.5,
we can find information about our Maple and C implementations of the modular algorithm.
Lastly, Section 2.6 contains the collected data during our experimentation.

2.1 Preliminaries
This section is a short review of concepts from the theory of regular chains and triangular
decompositions of polynomial systems. Details can be found in [16]. This document also relies
on the theory of subresultants and we refer the unfamiliar reader to the concise preliminaries
section of [6].

Throughout this chapter, let K be a perfect field, K be its algebraic closure, and K[X] be
the polynomial ring over K with n ordered variables X = X1 < · · · < Xn. Let p ∈ K[X].
Assume that p < K holds. Denote by mvar(p), init(p), mdeg(p), and tail(p), respectively, the
greatest variable appearing in p (called the main variable of p), the leading coefficient of p
w.r.t. mvar(p) (called the initial of p), the degree of p w.r.t. mvar(p) (called the main degree
of p) and the reductum of p w.r.t. mvar(p) (called the tail of p). For F ⊆ K[X], we denote by
〈F〉 and V(F) the ideal generated by F in K[X] and the algebraic set of K

n
consisting of the

common roots of the polynomials of F, respectively.

2.1.1 Triangular set
Let T ⊆ K[X] be a triangular set, that is, a set of non-constant polynomials with pairwise
distinct main variables. Denote by mvar(T) the set of main variables of the polynomials in
T . A variable v ∈ X is called algebraic w.r.t. T if v ∈ mvar(T), otherwise it is said free

10

2.1. Preliminaries 11

w.r.t. T . For v ∈ mvar(T), we denote by Tv and T−v (resp. T +
v) the polynomial f ∈ T with

mvar(f) = v and the polynomials f ∈ T with mvar(f) < v (resp. mvar(f) > v). Let hT be
the product of the initials of the polynomials of T . We denote by sat(T) the saturated ideal
of T : if T = ∅ holds, then sat(T) is defined as the trivial ideal 〈0〉, otherwise it is the ideal
〈T 〉 : h∞T . The quasi-component W(T) of T is defined as V(T) \ V(hT). For f ∈ K[X], we
define Z(f ,T) := V(f) ∩ W(T). The Zariski closure of W(T) in K

n
, denoted by W(T), is

the intersection of all algebraic sets V ⊆ K
n

such that W(T) ⊆ V holds; moreover we have
W(T) = V(sat(T)). For f ∈ K[X], we denote by res(f ,T) the iterated resultant of f w.r.t. T ,
that is: if f ∈ K or T = ∅ then f itself, else res(res(f ,Tv, v),T−v) if v ∈ mvar(T) and v = mvar(f)
hold, or res(f ,T−v) otherwise.

2.1.2 Regular chain

A triangular set T ⊆ K[X] is a regular chain if either T is empty, or letting v be the largest
variable occurring in T , the set T−v is a regular chain, and the initial of Tv is regular (that is,
neither zero nor zero divisor) modulo sat(T−v). Let H ⊆ K[X]. The pair [T,H] is a regular
system if each polynomial in H is regular modulo sat(T). If H consists of a single polynomial
h, then we also write [T, h], for short, instead of [T,H]. The dimension of T , denoted by
dim(T), is by definition the dimension of its saturated ideal and, as a property, equals n − |T |,
where |T | is the number of elements of T . If T has dimension zero, then T generates sat(T) and
we have V(T) = W(T).

A regular chain T , or a regular system [T,H], is square-free if for all t ∈ T , the polynomial
der(t) is regular w.r.t. sat(T), where der(t) = ∂t

∂v and v = mvar(t). When the regular chain T is
square-free, then the ideal sat(T) is radical.

The saturated ideal sat(T) of the regular chain T enjoys important properties, in particular
the following, proved in [10]. Let U1, . . . ,Ud be all the free variables of T . Then sat(T) is
unmixed of dimension d. Moreover, we have sat(T) ∩ K[U1, . . . ,Ud] = 〈0〉. Another property
is the fact that a polynomial p belongs to sat(T) if and only if p reduces to 0 by pseudo-division
w.r.t T , see [7]. Last but not least, a polynomial p is regular modulo sat(T) if and only if we
have res(f ,T) , 0.

2.1.3 Normalized regular chain

The regular chain T ⊆ K[X] is said to be normalized if for every v ∈ mvar(T), none of the
variables occurring in init(Tv) is algebraic w.r.t. T−v . Denote by d the dimension of T . Let Y
and U = U1, . . . ,Ud stand respectively for mvar(T) and X \ Y . Then, T normalized means
that for every t ∈ T we have init(t) ∈ K[U]. It follows that if T is normalized, then T is
a lexicographical Gröbner basis of the ideal that T generates in (K[U])[Y] (that is, over the
field (K[U]) of rational functions), and we denote by nf(p,T) the normal form of a polynomial
p ∈ (K[U])[Y] w.r.t. T as a Gröbner basis. In particular, if T is normalized and has dimension
zero, then for every t ∈ T we have init(t) ∈ K.

12 Chapter 2. A modular approach for the Intersect algorithm

2.1.4 Regular GCD

Let i be an integer with 1 ≤ i ≤ n, let T ⊆ K[X] be a regular chain, let p, t ∈ K[X] \ K
be polynomials with the same main variable Xi, and g ∈ K or g ∈ K[X] with mvar(g) ≤ Xi.
Assume that

1. Xi > X j holds for all X j ∈ mvar(T); and
2. both init(p) and init(t) are regular w.r.t. sat(T).

Denote byA the total ring of fractions of the residue class ring K[X1, . . . , Xi−1]/
√

sat(T). Note
that A is isomorphic to a direct product of fields. We say that g is a regular GCD of p, t w.r.t.
T whenever the following conditions hold:
(G1) the leading coefficient of g in Xi is invertible inA;
(G2) g belongs to the ideal generated by p and t inA[Xi]; and
(G3) if deg(g, Xi) > 0, then g divides both p and t in A[Xi], that is, both prem(p, g) and

prem(t, g) belong to
√

sat(T).
When Conditions (G1), (G2), (G3) and deg(g, Xi) > 0 hold, we have:
(G4) if mdeg(g) = mdeg(t), then

√
sat(T ∪ t) =

√
sat(T ∪ g) and W(T ∪ t) ⊆ Z(hg,T ∪ t) ∪

W(T ∪ g) ⊆ W(T ∪ t) both hold;
(G5) if mdeg(g) < mdeg(t), let q = pquo(t, g), then T ∪ q is a regular chain and the following

two relations
(a)
√

sat(T ∪ t) =
√

sat(T ∪ g) ∩
√

sat(T ∪ q),
(b) W(T ∪ t) ⊆ Z(hg,T ∪ t) ∪ W(T ∪ g) ∪W(T ∪ q) ⊆ W(T ∪ t),

hold;
(G6) W(T ∪ g) ⊆ V(p); and
(G7) V(p) ∩W(T ∪ t) ⊆ W(T ∪ g) ∪ V(p, hg) ∩W(T ∪ t) ⊆ V(p) ∩W(T ∪ t).

2.1.5 The algorithms Intersect and Regularize

Let p ∈ K[X] and let T ⊆ K[X] be a regular chain. The function call Intersect(p,T) computes
regular chains T1, . . . ,Te ⊆ K[X] such that:

V(p) ∩W(T) ⊆ W(T1) ∪ · · · ∪W(Te) ⊆ V(p) ∩W(T). (2.1)

The function call Regularize(p,T) computes a set of regular chains {T1, . . . ,Te} such that:
1. for each i = 1, . . . , e, either p ∈ sat(Ti) holds or p is regular w.r.t. sat(Ti);
2. we have W(T) = W(T1)∪· · ·∪W(Te), and mvar(T) = mvar(Ti) holds for each i = 1, . . . , e.

2.1.6 Triangular decomposition

Let F ⊆ K[X]. Regular chains T1, . . . ,Te of K[X] form a triangular decomposition of V(F)
in the sense of Kalkbrener (resp. Wu and Lazard) whenever we have V(F) = ∪e

i=1W(Ti) (resp.
V(F) = ∪e

i=1W(Ti)). Hence, a triangular decomposition of V(F) in the sense of Wu and Lazard
is necessarily a triangular decomposition of V(F) in the sense of Kalkbrener, while the converse
is not true.

2.2. The non-modular method and its genericity assumptions 13

2.1.7 Specialization and border polynomial
Let [T,H] be a regular system (resp. square-free regular system) of K[X]. Recall that Y and
U = U1, . . . ,Ud stand respectively for mvar(T) and X \ Y . Let a = (a1, . . . , ad) be a point of
K

d
. We say that [T,H] specializes well at a if:
(i) for each t ∈ T the polynomial init(t) is not zero modulo the ideal 〈U1 − a1, . . . ,Ud − ad〉;

and
(ii) the image of [T,H] modulo 〈U1 − a1, . . . ,Ud − ad〉 is a regular system (resp. square-free

regular system).
Let BT,H be the primitive and square-free part of the product of all res(h,T) (resp. res(der(t),T),
res(h,T)) for h ∈ H ∪ {hT } and t ∈ T . We call BT,H the border polynomial of [T,H]. Propo-
sition 1 follows from the specialization property of sub-resultants and states a fundamental
property of border polynomials [23].

Proposition 1. The system [T,H] specializes well at a ∈ K
d

if and only if the border polynomial
satisfies BT,H(a) , 0.

2.2 The non-modular method and its genericity assumptions
Let K be a field of characteristic zero or a prime field of sufficiently large characteristic, where
that latter condition will be specified later. Let f , t, b ∈ K[x, y, z] be non-constant polynomials
in the ordered variables x > y > z. Assume that T := {t, b} is a regular chain with mvar(t) = x
and mvar(b) = y.

Our goal is to compute the intersection V(f) ∩ W(T) in the sense of the function call
Intersect(f ,T), as specified in Section 2.1. That is, we want to compute regular chains T1, . . . ,Te

⊆ K[x, y, z] such that we have:

V(f) ∩W(T) ⊆ W(T1) ∪ · · · ∪W(Te) ⊆ V(f) ∩W(T). (2.2)

We shall show that under some assumptions, one can compute a single regular chain C ⊆
K[x, y, z] so that C is zero-dimensional and we have

V(f) ∩W(T) = W(C). (2.3)

The first of those assumptions makes the problem truly trivariate as follows.

Hypothesis 1.
mvar(f) = x. (2.4)

Let S (t, f , x) be the subresultant chain of t and f (resp. f and t) regarded as polynomials in
(K[y, z])[x] if mdeg(t) ≥ mdeg(f) (resp. mdeg(t) < mdeg(f)). Let S 0(t, f , x) and S 1(t, f , x) be
the subresultants of index 0 and 1 from S (t, f , x). We let

r := S 0(t, f , x) and ` := S 1(t, f , x). (2.5)

To make the problem generic, we assume the following:

14 Chapter 2. A modular approach for the Intersect algorithm

Hypothesis 2.
r < K and mvar(r) = y. (2.6)

Let S (r, b, y) be the subresultant chain of r and b (resp. b and r) regarded as polynomials
in (K[z])[y] if mdeg(r) ≥ mdeg(b) (resp. mdeg(r) < mdeg(b)). Let S 0(r, b, y) and S 1(r, b, y) be
the subresultants of index 0 and 1 from S (r, b, y). We let

s := S 0(r, b, y) and g := S 1(r, b, y). (2.7)

We denote by s the squarefree part of s, that is, s/gcd(s, der(s)).
Continuing in making the problem generic, we assume the following:

Hypothesis 3. The polynomial set C := {s, g, `} is a regular chain.

Hypothesis 3 has a number of consequences which, essentially, rephrase the fact that C is a
regular chain. Proposition 2 gathers those consequences. Building on that, Proposition 3 yields
Equation (2.8) which plays a key role in our method for computing Intersect(f ,T).

Proposition 2. The polynomials s, g, ` are non-constant with respective main variables z, y, x.
Moreover, the initial hg is invertible modulo s and the initial h` is invertible modulo the ideal
〈s, g〉 generated by s and g in K[y, z].

Proposition 3. The polynomial g is a regular GCD of r and b modulo the regular chain {s}.
Moreover, we have:

V(s, r, b) = V(s, g). (2.8)

Proof. We first prove that g is a regular GCD of r and b modulo the regular chain {s}. Since
{g, s} is a regular chain, Property (G1) of a regular GCD clearly holds. We prove (G2). Subre-
sultant theory tells us that there exist polynomials u, v ∈ K[y, z] so that we have:

ur + vb = g. (2.9)

LetA be the total ring of fractions of the residue class ring K[z]/〈s〉. Since s is squarefree, the
ring A is actually a direct product of fields and Equation (2.9) tells us that g is the GCD (in
the sense of a Euclidean domain) of r and b over each of those fields. Therefore, Property (G2)
holds. In particular, both r and b belong to the ideal generated by g in A[y]. Thus, there exist
polynomials qr, qb ∈ A[y] so that the following hold inA[y]:

r = qrg and b = qbg. (2.10)

Every polynomial p ∈ A[y] can be written as the fraction of a polynomial n ∈ K[y, z] over a
polynomial d ∈ K[z] so that d is invertible modulo s. Therefore, there exist polynomials in
K[y, z], that we denote again qr, qb for convenience, so that the following hold in K[z, y]:

r ≡ qrg mod s and b ≡ qbg mod s. (2.11)

From the above, it is clear that g pseudo-divides (actually divides) both r and b modulo s.
Therefore, Property (G3) holds and we have proved that g is a regular GCD of r and b modulo
the regular chain {s}. The second claim of this proposition follows from the first one and
Lemma 1. �

2.2. The non-modular method and its genericity assumptions 15

Lemma 1. Let ĝ ∈ K[y, z] be a non-constant polynomial with mvar(ĝ) = y. Assume that ĝ is a
regular GCD of r and b modulo the regular chain {s}. Then, we have:

V(s, r, b) = V(s, ĝ). (2.12)

Proof. It follows from Property (G7) that we have:

V(r) ∩W({s, b}) ⊆ W({s, ĝ}) ∪ V(r, hĝ) ∩W({s, b}) ⊆ V(r) ∩W({s, b}), (2.13)

where hĝ is the initial of ĝ. Since hĝ is invertible modulo s we observe that we have:

V(r, hĝ) ∩W({s, b}) = ∅. (2.14)

In addition, since V({s, b}) and V({s, ĝ}) are both zero-dimensional we have:

V(s, b) = W({s, b}) = W({s, b}) and V(s, ĝ) = W({s, ĝ}). (2.15)

Therefore, Relation (2.13) simply becomes:

V(r, s, b) ⊆ V(s, ĝ) ⊆ V(r, s, b). (2.16)

This completes the proof. �

Our last genericity assumption is the following:

Hypothesis 4. The initial of the polynomial t is invertible modulo the ideal sat({s, g}) = 〈s, g〉.

Proposition 4 yields Equation (2.17) which is another key ingredient in our method for
computing Intersect(f ,T).

Proposition 4. The polynomial ` is a regular GCD of f and t modulo the regular chain {s, g}.
Moreover, we have:

V(f , s, g, t) = V({s, g, `}). (2.17)

Proof. We first observe that K[z, y]/〈s, g〉 is a direct product of fields. Indeed, s is squarefree
and deg(g, y) = 1. Therefore, proving that ` is a regular GCD of f and t modulo the regular
chain {s, g} is done similarly to the proof that g is a regular GCD of r and b modulo the regular
chain {s} in the proof of Proposition 3. The second claim of this proposition follows from the
first one and Lemma 2. �

Lemma 2. Let ˆ̀ ∈ K[x, y, z] be a non-constant polynomial with mvar(ˆ̀) = x. Assume that ˆ̀ is
a regular GCD of f and t modulo the regular chain {s, g}. Then, we have:

V(f , s, g, t) = V({s, g, ˆ̀}. (2.18)

Proof. It follows from Property (G7) that we have:

V(f) ∩W({s, g, t}) ⊆ W({s, g, ˆ̀}) ∪ V(f , h ˆ̀) ∩W({s, g, t}) ⊆ V(f) ∩W({s, g, t}), (2.19)

16 Chapter 2. A modular approach for the Intersect algorithm

where h ˆ̀ is the initial of ˆ̀. Since h ˆ̀ is invertible modulo 〈s, g〉, we observe that we have:

V(f , h ˆ̀) ∩W({s, g, t}) = ∅. (2.20)

In addition, since V({s, b}) and V({s, b}) are both zero-dimensional we have:

V(s, g, t) = W({s, g, t}) = W({s, g, t}) and V(s, g, ˆ̀) = W({s, g, ˆ̀}). (2.21)

Therefore, Relation (2.19) simply becomes:

V(f , s, g, t) ⊆ V(s, g, ˆ̀) ⊆ V(f , s, g, t). (2.22)

This completes the proof. �

Theorem 1 tells us that, under our genericity assumptions, Intersect(f , {t, b}) is simply
given by the regular chain C = {s, g, `}.

Theorem 1. With our four Hypotheses 1, 2, 3 and 4, we have:

V(f , t, b) = V(s, g, `). (2.23)

Proof. This follows immediately from Proposition 3, Proposition 4 and Lemma 3. �

Lemma 3. Let ĝ ∈ K[y, z] be a non-constant polynomial with mvar(ĝ) = y and let ˆ̀ ∈ K[x, y, z]
be a non-constant polynomial with mvar(ˆ̀) = x. Assume that ĝ is a regular GCD of r and
b modulo the regular chain {s}. Assume also that ˆ̀ is a regular GCD of f and t modulo the
regular chain {s, ĝ}. Then, we have:

V(f , t, b) = V(s, ĝ, ˆ̀). (2.24)

Proof. Since r belongs to the ideal generated by f and t in in K[x, y, z], we have:

V(f , t, b) = V(f , t, b, r). (2.25)

Since s belongs to the ideal generated by r and b in in K[x, y, z] we have:

V(f , t, b) = V(f , t, b, r, s). (2.26)

Since s is the squarefree part of s, we also have:

V(f , t, b) = V(f , t, b, r, s). (2.27)

With Lemma 1, we deduce:
V(f , t, b) = V(f , t, ĝ, s). (2.28)

Finally, with Lemma 2, we deduce

V(f , t, b) = V(ˆ̀, ĝ, s). (2.29)

�

2.3. The modular method 17

2.3 The modular method
The key ideas of the proposed modular method are:

1. computing the subresultants r = S 0(t, f , x), ` = S 1(t, f , x), s = S 0(r, b, y), and g =

S 1(r, b, y) by evaluation and interpolation, specializing the variable z;
2. using for this evaluation-interpolation scheme, as a degree bound, the smallest possible

multiple of the Bézout bound D = deg(f) deg(t) deg(b) of the (zero-dimensional) variety
V(f , t, b), and trying to avoid the traditional, and often more pessimistic, bounds from
subresultant theory; and

3. verifying the genericity assumptions as we recover s, g, ` from this evaluation-interpolation
scheme, and returning an error message, if one of those hypotheses is not met.

Since the proposed modular method aims at computing s, g, ` by specializing z, we need bounds
for the degree in z of each of the polynomials s, g, `. We start with `. Consider the Sylvester
matrix of t and f (resp. f and t) regarded as polynomials in (K[y, z])[x] if mdeg(t) ≥ mdeg(f)
(resp. mdeg(t) < mdeg(f)). The degree of the resultant r satisfies:

deg(r) ≤ deg(f , x) deg(t, y) + deg(t, x) deg(f , y) ≤ 2 deg(f) deg(t), (2.30)

where deg(r), deg(f), deg(t) are the total degrees of r, f , t respectively, and where deg(., x) and
deg(., y) denote partial degrees w.r.t. x and y, respectively. Consider now the determinantal
formulations of the subresultant ` = S 1(t, f , x) of index 1, using the notations of Section 2.2.
Each of the two coefficients w.r.t. x of ` has a total degree (and thus in degree in z) bounded
over by 2 deg(f) deg(t).

Recall that s is the resultant of r and b (resp. b and r) regarded as polynomials in (K[z])[y]
if mdeg(r) ≥ mdeg(b) (resp. mdeg(r) < mdeg(b)). From the classical proof of Bézout theorem
(in the case of plane curves) based on the Sylvester resultant, see for instance [17], we have

deg(s) ≤ deg(r) deg(b), (2.31)

which yields:
deg(s) ≤ 2D. (2.32)

Of course, one can also use

deg(s) ≤ min(deg(r) deg(b), deg(r, y) deg(b, z) + deg(b, y) deg(r, z)) (2.33)

yielding an improved upper bound for deg(s).
It remains to find an upper bound for deg(g, z). Considerations based on determinantal

formulations of the subresultant of index 1 and Relation (2.30) yields

deg(g, z) ≤ 4D. (2.34)

However, in practice deg(g, z) ≤ 2D is usually true. Indeed, in a given subresultant chain, the
height of the coefficients in a subresultant generically increases as the index of the subresultant
decreases. However, cancellations may happen making this observation false in non-generic
situations, for instance, when the subresultant of index 0 (that is, the resultant) is constant.

18 Chapter 2. A modular approach for the Intersect algorithm

Therefore, our modular method has two flavors. The first one is probabilistic and uses 2D
as a bound for deg(s), deg(g, z), deg(`, z). The second one is deterministic and uses 2D as a
bound for deg(s), deg(`, z), while using 4D as a bound for deg(g, z).

When the probabilistic method is used and returns a regular chain s, ĝ, ˆ̀, one can check
whether

1. ĝ divides r and b modulo the regular chain {s}, and
2. ˆ̀ divides f and t modulo the regular chain {s, ĝ},

both hold; if they do then V(s, ĝ, ˆ̀) ⊆ V(f , t, b) holds. Moreover, if deg(s) = D holds then we
have V(s, ĝ, ˆ̀) = V(f , t, b). We note that using a probabilistic approach for computing resul-
tants in modular fashion is common, see for instance [24, 6]. In the sequel of the section, for
simplicity of presentation, we focus on the probabilistic approach and we note that switching
to the deterministic approach requires minor adjustments in our pseudo-code.

Our proposed modular method is stated in the form of pseudo-code with Algorithms 1 2,
3, 4, 5, 6 and 7.

Algorithm 7 is the top level procedure: it takes the polynomials f , t, b ∈ K[x > y > z] as
input and:

1. returns a regular chain {s, ĝ, ˆ̀} so that V(s, ĝ, ˆ̀) = V(s, g, `) holds, if Hypotheses 1, 2, 3
and 4 all hold; or

2. an Error message otherwise.
Algorithm 7 directly calls Algorithms 5 and 6 which, respectively:

1. collects modular images of the polynomials s, g, ` as well as modular images of other
polynomials; and

2. combines those modular images in order to produce the polynomials s, ĝ, ˆ̀ as well as
other polynomials which are used to decide whether Hypotheses 1, 2, 3 and 4 hold or
not; moreover, if no Error message is returned we know that g and ` are, up to a unit in
K[z]/〈s〉, equal to ĝ and ˆ̀ respectively.

Algorithm 5 relies on Algorithms 1, 2 and 4 for computing subresultants of univariate poly-
nomials and subresultants of bivariate polynomials. Algorithm 3 is a helper function of Algo-
rithm 5.

Notation 1. In Algorithm 1, 3 and 5 we use the symbol + to denote the concatenation of lists.

The basic idea of Algorithm 7 is to specialize, in our regular chain T := {t, b}, the variable
z at sufficiently many good points v ∈ Z, using the notions and results of Section 2.1.7. In other
words:

1. we require that after specializing b to bv := b(y, v), its initial is non-zero; and
2. we require that after specializing t to tv := t(x, y, v), its initial is invertible modulo bv.
Next, we need to check that fv := f (x, y, v), the specialization of f at z = v, has the

same main variable and main degree as f . If any of the above conditions is not fulfilled,
then we discard the point v and try a new one. This process continues until we have obtained
B := 2(deg(f) deg(t) deg(b)) + 1 good specializations of T and f .

After checking that v is a good specialization point, we normalize the regular chain Tv :=
{tv, bv} to T̃v := {t̃v, b̃v}, see Lines 11 and 12 in Algorithm 5. The following step (see Algorithm
4) consists of computing the subresultants

rv := S 0(t̃v, fv, x) and `v := S 1(t̃v, fv, x) (2.35)

2.3. The modular method 19

Algorithm 1 SubresultantChain
Require: a, b ∈ B[y] with m = deg(a) ≥ n = deg(b) and B an integral domain; note that when this

algorithm is called, the domain B is a prime field.
Ensure: the subresultant chain (S 0, S 1, . . . , S m−1, S m) if a and b, where S i is the subresultant of index

i.
1: S := () . Initializing S to the empty list.
2: if m > n then S := (lc(b)m−n−1b) + S . Inserting an element into S .
3: s := lc(b)m−n

4: A := b; B := prem(a,−b)
5: S := (B) + S
6: d := deg A
7: while true do
8: if B = 0 then return (0, . . . , 0)d−1 + S . Inserting d − 1 zeros into S .
9: e := deg B; δ := d − e

10: C := lc(B)δ−1
B

sδ−1 . With B a prime field, no need to use Lazard’s optimization.
11: if δ > 1 then S := (C) + (0, . . . , 0)δ−2 + S . Inserting δ − 2 zeros into S .
12: if deg C = 0 then return S
13: B := prem(A,−B)

sδlc(A) . With B a prime field, no need to Ducos’ optimization.
14: S := (B) + S
15: A := C
16: s := lc(A)
17: d := deg A

Algorithm 2 ModularSRCForBivariatePolynomials
Require: a, b ∈ K[x][y] with m = deg(a) ≥ n = deg(b), an upper bound D on the degree in x of the

subresultants of a, b w.r.t. y.
Ensure: the subresultants S 0 and S 1 of index 0 and 1 for a, b .

1: S 0 := (); S 1 := (); V := () . Initializing S 0, S 1,V to the empty list.
2: v := 1 . The next value for specializing x.
3: N := 0 . The number of specializations used so far.
4: while N < D do
5: Let A and B be the images of a and b in K[x, y]/〈x − v〉
6: if deg(A, y) = deg(a, y) and deg(B, y) = deg(b, y) then
7: S := SubresultantChain(K, A, B) . Good specializations since lc(a, y) , 0.
8: . and lc(b, y) , 0 at x = v.
9: S 0 := S 0 + (S [0]), S 1 := S 1 + (S [0]) . Adding the images at x = v of the subresultants.

10: V := V + (v) . Adding v to the list of good specializations.
11: N := N + 1
12: v := v + 1 . Get the next specialization.
13: s0 := Interpolate(V, S 0) . Computing the resultant S 0 of a, b w.r.t. y by interpolation.
14: s1 := InterpolateCoefficients(V, S 1) . Computing the coefficients w.r.t y of S 1.
15: return s0, s1

between t̃v and fv (resp. fv and t̃v), if mdeg(t̃v) ≥ mdeg(fv) (resp. mdeg(fv) > mdeg(t̃v)).

20 Chapter 2. A modular approach for the Intersect algorithm

Algorithm 3 GoodSpecializationPoint
Require: f , t, b ∈ K[x, y, z] satisfying the hypotheses of Section 2.2; in particular, we have mvar(f) = x,

mvar(t) = x, mvar(b) = y; we are also given a point v ∈ K.
Ensure: true, if z = v is a good specialiazation, false otherwise.

1: h f := init(f), ht := init(t), hb := init(b)
2: Let Hb be the image of hb inK[x, y, z]/〈z−v〉 and H f ,Ht be the images of h f , ht inK[x, y, z]/〈z−v, b〉
3: if Hb = 0 or H f is zero-divisor or Ht is zero-divisor then
4: return false
5: else
6: return true

Algorithm 4 SubresultantsOfIndexZeroAndOne
Require: fv, tv, bv ∈ K[x, y] with mvar(f) = x, mvar(t) = x, mvar(b) = y, a point v ∈ K.
Ensure: rv, `v, sv, gv, λv, θv as in Equations 2.35, 2.36, 2.37.

1: if mdeg(tv) ≥ mdeg(fv) then
2: rv, `v := ModularSRCForBivariatePolynomials(tv, fv, x, y)
3: else
4: rv, `v := ModularSRCForBivariatePolynomials(fv, tv, x, y)
5: if rv ∈ K then
6: throw Error
7: if mdeg(rv) ≥ mdeg(bv) then
8: sv, gv := SubresultantChain(rv, bv, y)
9: else

10: sv, gv := SubresultantChain(bv, rv, y)
11: λv := resultant(init(`v), gv)
12: θv := resultant(init(tv), gv)
13: return rv, sv, gv, `v, λv, θv

Then, we calculate the subresultants

sv := S 0(rv, b̃v, y) and gv := S 1(rv, b̃v, y) (2.36)

between rv and b̃v (resp. b̃v and rb), if mdeg(rv) ≥ mdeg(b̃v) (resp. mdeg(b̃v) > mdeg(rv)).
Here, we additionally compute the resultants,

λv := res(init(lv), gv) and θv := res(init(tv), gv). (2.37)

These extra computations are used to check our Hypotheses 3 and 4. Additionally, we also
check that rv is not constant.

Notation 2. Let V be the collection of good specialization points v and let S, G, L, Λ, Θ be the
collections of images sv, gv, `v, λv, θv, respectively, for v ∈ V.

Note that, in Algorithm 5, if we encounter a polynomial rv with degree less than the cur-
rently set value dr, then we discard v. On the other hand, if the degree of rv is greater than the
current dr, then we discard all the previously saved images and start again with dr := deg rv.

2.3. The modular method 21

Algorithm 5 CollectingImages
Require: f , t, b ∈ K[x, y, z] with mvar(f) = x, mvar(t) = x, mvar(b) = y.
Ensure: V, S ,G, L,Λ,Θ as in Notation 2.

1: V := (); S := (); G := (); L := (); Λ := (); Θ := () . Initializing S ,G, L,Λ,Θ to the empty list.
2: v := 1 . The next value for specializing x.
3: B := 2(deg(f) deg(t) deg(b)) + 1 . Number of images to be collected.
4: N := 0 . Number of images collected so far.
5: dr := 0 . Candidate to degree of r.
6: while N < B do
7: if not GoodSpecializationPoint(f, t, b, v) then
8: v := v + 1 . Get the next specialization.
9: next

10: fv, tv, bv := f (x, y, z = v), t(x, y, z = v), b(y, z = v) . Specializing f , t, b at z = v.
11: b̃v := init(bv)−1bv . We normalize {tv, bv}.
12: t̃v := init(t)−1

v tv mod b̃v . We normalize {tv, bv}.
13: try
14: rv, sv, gv, `v, λv, θv := SubresultantsOfIndexZeroAndOne(fv, t̃v, b̃v, v)
15: catch Error
16: throw Error
17: end try
18: if mdeg(rv) < dr then . z = v is an unlucky specialization.
19: v := v + 1 . Get the next specialization.
20: next
21: if mdeg(rv) > dr then . All previous specializations were unlucky.
22: dr := mdeg(rv); N := 0; V := (); S := (); G := (); L := (); Λ := (); Θ := () . So, restart
23: . from scratch.
24: S ,G, L := S + (sv),G + (gv), L + (`v) . Adding sv, gv, `v to their respective list.
25: Λ,Θ := Λ + (λv),Θ + (θv) . Adding λv, θv to their respective list.
26: V := V + (v) . Adding v to the list of good specializations.
27: v := v + 1 . Get the next specialization.
28: N := N + 1
29: if dr = 0 then
30: throw Error . Checking whether Hypothesis 2 holds or not.
31: return V, S, G, L, Λ, Θ

This checking is needed since we do not know a priory the degree of r, and after specializing
f and t to z = v, the degree of rv could be different than deg r.

After collecting enough images and points v, we interpolate all the coefficients of sv, gv, `v

into s, ĝ, ˆ̀ using the Interp modp1 function (see Algorithm 6). At this point, we apply rational
function reconstruction to these interpolated values, and we write s, ĝ, ˆ̀ as a fraction between
two polynomials. Finally, we take only their numerators and called them again s, ĝ, ˆ̀. We also
interpolate our λv and θv into λ and θ, respectively.

Notation 3. Let s, ĝ, ˆ̀, λ, θ be the polynomials obtained by interpolation using the respective
value sets S ,G, L,Λ,Θ, and the point set V.

Note that we compute the square free part, s, of s during Algorithm 6. At this point, it

22 Chapter 2. A modular approach for the Intersect algorithm

Algorithm 6 Interpolate
Require: V, S ,G, L,Λ,Θ as in Notation 2.
Ensure: s, ĝ, ˆ̀, λ, θ as in Notation 3.

1: m:=1
2: for v ∈ V do
3: m := (z − v)m . “Product of the moduli”.
4: s := Interpolate(V, S)
5: s := RationalFunctionReconstruction(s,m) . We apply rational function reconstruction to s.
6: s := Numerator(s) . We get the numerator of s.
7: s := SquareFreePart(s) . We compute the squarefree part of s.
8: ĝ := InterpolateCoefficients(V,G) . We interpolate the coefficients of the polynomials in G.
9: ĝ := RatFuncRecCoeff(ĝ,m) . We apply rational function reconstruction to the coefficients of ĝ.

10: ĝ := numer(ĝ) . We write ĝ as a fraction and take its denominator.
11: ˆ̀ := InterpolateCoefficients(V, L) . We interpolate the coefficients of the polynomials in L.
12: ˆ̀ := RatFuncRecCoeff(ˆ̀,m) . We apply rational function reconstruction to the coefficients of ˆ̀.
13: ˆ̀ := numer(ˆ̀) . We write ˆ̀ as a fraction and take its denominator.
14: λ := Interpolate(V,Λ)
15: θ := Interpolate(V,Θ)
16: return s, ĝ, ˆ̀, λ, θ

Algorithm 7 IntersectBySpecialization
Require: f , t, b ∈ K[x > y > z] with mvar(f) = x, mvar(t) = x, mvar(b) = y, assuming {t, b} is a regular

chain.
Ensure: {s, ĝ, ˆ̀} as defined in Section 2.2.

1: V, S ,G, L,Λ,Θ := CollectingImages(f , t, b)
2: s, ĝ, ˆ̀, λ, θ := Interpolate(S ,G, L,Λ,Θ)
3: if deg(gcd(init(g), s)) , 0 or deg(gcd(λ, s)) , 0 then
4: throw Error . Hypothesis 3 does not hold.
5: if deg(gcd(θ, s)) , 0 then . θ is Not Regular modulo s.
6: throw Error . Hypothesis 4 does not hold.
7: return {s, ĝ, ˆ̀}

remains to check that {s, ĝ, ˆ̀} is a regular chain and that the initial of t is regular modulo this
regular chain. For this purpose, we can easily check whether init(ĝ) is regular modulo s using
gcd computations in one variable. Thus, we only need to check that init(ˆ̀) and init(t) are
regular modulo {s, ĝ}. Here, we apply to λ and θ the same process as the one applied to init(ĝ).
Putting all of the above together leads us to Algorithm 7.

2.4 Implementation in Maple

We implemented the algorithms presented in Section 2.3, over a large prime field, using the
release 2021 of the Maple language. This version is required to use the algorithm. A released
version can be found in the github repository [15].

2.4. Implementation inMaple 23

2.4.1 The modp1 library

A key point of our implementation is that it only relies on well-optimized kernel functions
of Maple. For instance, all of our subresultant chain computations are done using the modp1
library. The modp1 functions provide efficient arithmetic and other key operations for the
domain Zn[x] of univariate polynomials over the integers modulo n. To achieve high perfor-
mance, modp1 uses a special representation. If the integer n is small enough, arithmetic in Zn

is performed directly with machine-word arithmetic instead of using multi-precision integer
arithmetic [1].

The most relevant modp1 functions used in the development of the modular algorithm are
the following ones:

1. ConvertIn\ConvertOut: convert to and from the modp1 representation.
2. Constant: convert in a constant polynomial to the modp1 representation for a given

variable.
3. Add\Multiply\Quo\Power\Rem: basic operations modulo a prime.
4. Prem: pseudoremainder modulo a prime.
5. Degree\Coeff: degree of a modp1 polynomial and the coefficient of a monomial of a

given degree.
6. Eval: evaluation at a point.
7. Interp: univariate polynomial interpolation.
An important remark is that the modp1 package does not provide a rational function recon-

struction procedure. Thus, before applying the Maple function Ratrecon, we must convert out
of the modp1 representation to the Maple representation. This is done after using the Interp
function.

2.4.2 Computation of subresultant chains

The modular method presented in Section 2.3 relies on the computations of subresultant chains
of univariate polynomials as well as the computations of subresultant chains of bivariate poly-
nomials.

For the case of subresultant chains of univariate polynomials, we follow (a variant of) Al-
gorithm 1 from [6]. Our code takes advantage of Maple’s modp1 library for univariate polyno-
mial arithmetic. In particular, the input polynomials, as well as the returned subresultant chain
are in the the modp1 representation. It is also important to mention that since we are working
over a Finite Field, we did not need the Ducos optimization when developing Algorithm 1.

For computing the subresultant chain of two bivariate polynomials, we use a modular ap-
proach, reconstructing only the subresultants S 0 and S 1. We specialize one of the variables and
then compute the subresultants chain of our, now, univariate polynomials. As a consequence of
this, our approach is not “speculative” (discussed below). We repeat this process at sufficiently
many points, and subsequently use univariate interpolation to reconstruct the coefficients of
S 0 and S 1. Most of these computations are performed with the modp1 representation; avoiding
conversions between the Maple and the modp1 representations as much as possible. Our imple-
mentation was inspired by Michael Monagan’s modp1 library code for computing the resultant
of bivariate polynomials.

As a first remark, we apply our modp1 conversions during the computations of rv and `v,

24 Chapter 2. A modular approach for the Intersect algorithm

i.e., during the calculation of subresultant chains of polynomials in two variables. Our im-
plementation of Algorithm 2 takes as input two polynomials in the Maple representation and
converts them to the modp1 representation. Then, our implementation of Algorithm 1 requires
its input polynomials to be in the modp1 representation, again avoiding conversions. Also, both
Algorithms 2 and 1 output modp1 polynomials.

Finally, it is important to mention that there is large room for improvement. Indeed, using
a modular method opens the door to using speculative algorithms for computing subresultants;
see [6]. Speculative algorithms are asymptotically fast algorithms that:

1. compute the subresultants of index 0 and 1 without computing the other subresultants,
while

2. being able to resume the computations for obtaining the subresultants of higher index, if
needed.

2.5 Implementation in C

A second version of the algorithms presented in Section 2.3, over a large prime field, using the
C programming language was developed. In C, we have sharp control of computing resources,
in particular memory. This brings a huge improvement to our BPAS implementation of Algo-
rithm IntersectBySpecialization. To be precise, we make use of the Basic Polynomial Algebra
Subprograms (BPAS) library (see [4]). BPAS provides support for arithmetic operations with
polynomials on modern computer architectures, in particular hardware accelerators. In this
version, we make use of speculative algorithms for computing subresultants (see [6]), which
improves even more the performance of our BPAS implementation compare to our previous
Maple version.

Instead of using Algorithms 1 and 2, we decide to use Half-GCD based versions of the
subresultant algorithm for univariate and bivariate polynomials. Specifically, we make use of
the already existing versions inside BPAS. The univariate algorithm is based in the Half-GCD
algorithm (for details see [6]). Thus, we only compute the subresultants of index 0 and 1, and in
case we need to compute subresultants of higher index, we are able to resume our computations.
This greatly improves the speed of Algorithm 4. On the other hand, the bivariate version of the
subresultant algorithm works by means of evaluation an interpolation in a similar way than our
Maple implementation (Algorithm 2). The main difference with the Maple version is that the
BPAS algorithm uses the Half-GCD univariate subresultant algorithm instead of computing
the whole subresultant chain between the input polynomials. Thus, this algorithm also only
computes subresultants of index 0 and 1.

For the interpolation part (Algorithm 6), we use the implementation for univariate Lagrange
interpolation inside of BPAS. As it was shown in Figure 5.1 of [11], this Algorithm is faster
than the linear equations method and also the Maple’s CurveFitting:-PolynomialInterpolation.

All of these improvements, make the BPAS implementation of Algorithm IntersectBySpe-
cialization much faster than its Maple counterpart as shown in the experimental results in
Tables 2.2 and 2.3 of Section 2.6.

2.6. Benchmarking 25

2.6 Benchmarking
Our experimentation was collected on a laptop running Linux Mint 19.3 with a Intel Core
i7-9750H processors at 2.60 GHz, and a 8GB DDR3 memory.

2.6.1 A promising example
For the following experiments, we use a prime characteristic of 469762049. Although, our
implementations supports any big enough characteristic. We can observe that the modular al-
gorithm performs better with increasing degrees of the input polynomials. All the examples
described in this section can be found in the github repository [15]. It is important to men-
tion that these experiments were made using our probabilistic approach, and the results were
verified using the non-modular and deterministic algorithms provided in the RegularChains
package of Maple.

Example 1. Consider the following promising example in characteristic 469762049. Let t =

4x9−40x5y2z+6x3y3z+27xy6 +68xy3z2−11z5, b = −33y8z+8y5z2−69y4z2−34z6−58y5−53yz2

and f = −7x3y2z4−50y4z5−70x3y5+19xy5−5y3z+48x. If we compute the intersection between
f and the regular chain T := {t, b}, using the Intersect command of Maple the time spent is
approximately 298.017s. On the other hand, if we use our Maple version of the modular
algorithm the computations only take 30.187s.

The previous example shows how much we can improve by using modular methods in the
computations of intersections. We can also use the Maple command CodeTools:-Profiling:-
Profile to profile the time spent by each of our procedures. Table 2.1 presents the profiling of
the most important statements executed when calling Algorithm 7 during the computation of
Example 1. There, the first column represents the number of the statement in the procedure.
The next three columns give the count of the number of calls of that statement, the total time
spent executing the statement (in seconds), and the number of memory words allocated while
executing the statement. The last column gives the name of the statement.

Here, it is important to notice that most of the time is spent computing the images
sv, gv, `v, λv, θv (PROC 38). Thus, by improving the performance of this procedure using modp1,
we were able to enhance the overall performance of the algorithm. Also note, that since we are
using the Interp function of the modp1 package, the interpolations of polynomials are cheap
(PROC 68). Unfortunately, the modp1 package does not provide a rational function reconstruc-
tion procedure. Thus, we are working in the Maple representation (PROC 70).

2.6.2 Random test
The examples presented in Table 2.2 and 2.3 are given by randomly generated polynomials
t, b, f of fixed degree in the variables x > y > z (columns 2, 3 and 4). There, we compare the
times taken by the Intersect algorithm (of RegularChains), our Maple version of Intersect
by Specialization algorithm and our BPAS version of Intersect by Specialization algorithm

26 Chapter 2. A modular approach for the Intersect algorithm

Calls Seconds Words Name

PROC 1 29.434 547420758
...

...
...

...
...

30 1459 0.878 11276713 GoodSpecializationPoint
...

...
...

...
...

38 1459 23.292 417278789 SubresultantsOfIndexZeroAndOne
...

...
...

...
...

68 1 0.046 8979 Interpolate(V, S)
...

...
...

...
...

70 1 1.425 92824827 RationalFunctionReconstruction(s)
...

...
...

...
...

74 1 3.362 21229523 InterpolateCoefficients(V, L)
RatFuncRecCoeff(`)

75 1 0.081 1210070 InterpolateCoefficients(V, G)
RatFuncRecCoeff(g)

...
...

...
...

...

83 1 0.031 8984 Interpolate(V, Λ)
...

...
...

...
...

87 1 0.030 8979 Interpolate(V, Θ)

Table 2.1: Profiling of Example 1

(columns 7, 8 and 9). We also include the bound B := 2(deg(f) deg(t) deg(b)) + 1 of the input
system as well as the number of iterations needed to reach that bound (columns 5 and 6). These
numbers differ when a bad specialization point is discovered.

N deg(t) deg(b) deg(f) bound B Num.
Iterations

Intersect Intersect by
Specialization

Intersect by
Specialization
(BPAS)

1 5 4 5 201 201 0.184s 1.705s 0.0983s
2 5 4 4 161 161 0.126s 0.377s 0.0392s
3 5 4 5 201 201 0.200s 0.673s 0.0772s
4 5 4 5 201 201 0.433s 1.091s 0.1038s
5 8 8 8 1025 1025 24.687s 13.763s 2.6651s
6 8 8 8 1025 1025 43.324s 18.497s 4.1805s
7 8 8 8 1025 1025 43.557s 16.778s 3.4076s
8 8 8 8 1025 1025 5.700s 12.683s 2.4368s

Table 2.2: Examples 1

2.6. Benchmarking 27

N deg(t) deg(b) deg(f) bound B Num.
Iterations

Intersect Intersect by
Specialization

Intersect by
Specialization
(BPAS)

9 8 8 8 1025 1025 1.696s 7.075s 0.9383s
10 7 6 7 589 589 13.110s 11.313s 1.3616s
11 8 7 8 897 897 17.246s 16.084s 2.1516s
12 8 7 8 897 897 20.584s 17.331s 2.8275s
13 9 9 9 1459 1459 301.062s 27.999s 7.6849s
14 8 8 8 1153 1153 63.850s 23.085s 4.6934s
15 8 7 8 897 897 15.580s 15.870s 2.2245s
16 8 7 8 897 897 10.970s 16.910s 2.3988s
17 8 8 8 1025 1025 24.418s 12.920s 2.7127s
18 9 8 9 1153 1153 70.321s 24.952s 4.6852s

Table 2.3: Examples 2

As stated before, we observe that when the degrees of the input system f , t, b grow larger,
the performance of the modular method improves significantly. As a remark, we do not display
any information about a version of the Intersect inside of BPAS in Tables 2.2 and 2.2 because
software limitations. Unfortunately, the current version of BPAS does not count with a version
of this algorithm for prime characteristic. Though, there is a version of the Intersect algorithm
in characteristic zero. It would not be fair, however, to compare against it.

Chapter 3

Algorithms for multivariate Laurent series

The current chapter is about arithmetic operation between multivariate Laurent series. We first
present the preliminary concepts needed to develop our theory (Section 3.1). Then, we show
the most important aspects from the algebraic construction develop by Monforte and Kauers
in [25] (Section 3.2). The following section handles the algorithmic part of this work (Section
3.3). This is the main section of this chapter, and here we can find our approach for coding the
Laurent series object, addition and multiplication between these objects and also computing the
multiplicative inverse of them. Finally, Section 3.4 illustrates how to use the basic commands
of our Laurent series object.

3.1 Preliminaries

We start by recalling the notion of a cone. We do not state that notion in its full generality,
but rather with additional constrains adapted to our context. Then, we explain the relation-
ship between cones and total orders. We use these tools in our constructive presentation and
implementation of fields of multivariate Laurent series.

3.1.1 Cones

A set C ⊆ Rp is a cone whenever v ∈ C and c ≥ 0 hold, then we have cv ∈ C; however, we
require additional constrains leafing to the following definition.

Definition 1. A set C ⊆ Rp is a cone when the following properties hold:
1. if v ∈ C and c ≥ 0 hold, then we have c · v ∈ C.
2. C is finitely generated, i.e., there exist r1, . . . , rm ∈ R

p such that

C = {z1r1 + · · · + znrm | z1, . . . , zm ≥ 0}.

When the above holds, the set R := {r1, . . . , rm} is called a generating set of C (also
denoted by C(R) to emphasize that R is a generating set) and its members are called rays
of the cone C.

3. C is rational, i.e., C is finitely generated and has a generating set {r1, . . . , rm} ⊂ Z
p.

28

3.1. Preliminaries 29

We also define the translation of the cone C(R) to e ∈ Rp by

C(e,R) := e + C(R) := {e + z1r1 + · · · + zmrm | z1, . . . , zm ≥ 0}.

We refer to C(e,R) simply as the cone C with vertex e and rays R.

An another property of cones that we use through this document is the following: C is said
to be line-free if for every v ∈ C \ {0}, we have −v < C.

Remark 1 (see [25]). With our definition, cones:
1. are closed in the Euclidean topology,
2. contain 0,
3. are either unbounded or equal to {0},
4. are convex, that is, for all v1, v2 ∈ C and for all c ∈ [0, 1] we have cv1 + (1 − c)v2 ∈ C as

well,
5. v1, v2 ∈ C implies that v1 + v2 ∈ C,
6. when C and D are cones, then so is C + D = {v1 + v2 | v1 ∈ C, v2 ∈ D}.

3.1.2 Total orders
Definition 2. A total or linear order is a partial order in which any two elements are compara-
ble. In other words, a total order is a binary relation � on a set S , which satisfies the following
properties for all s1, s2 and s3 in S

1. s1 � s1;
2. s1 � s2 and s2 � s3, imply s1 � s3;
3. s1 � s2 and s2 � s1, imply s1 = s2;
4. s1 � s2 or s2 � s1.

A monomial order is a total order over the set of all monomials of a given polynomial ring
with the additional property that for all monomials s1, s2 and s3 we have:

s1 � s2 =⇒ s1s3 � s1s3.

We said that a total order � on Zp is additive if for all i, j,k ∈ Zp, we have:

i � j =⇒ i + k � j + k.

Definition 3. An additive order � on Zp is said to be compatible with a cone C ⊆ Rp if 0 � k
holds, for all k ∈ C ∩ Zp.

Lemma 4 (see [25]). Let C,D ⊆ Rp be cones and let � be an additive order on Zp. Let
{v1, . . . , vk} be a set of generators of C.

1. If C is compatible with �, then C is line-free.
2. C is compatible with �, if and only if 0 � vi for all i.
3. If C,D are compatible with �, then C + D is also compatible with �.

Lemma 5 (see [25]). Let � be an additive order on Zp and C ⊆ Rp be a cone. If � is compatible
with C, then � is a well-founded order on C ∩ Zp, i.e., every strictly decreasing sequence
v1 � v2 � v3 � . . . of elements in C ∩ Zp terminates, or equivalently, every subset of C ∩ Zp

contains a �-minimal element.

30 Chapter 3. Algorithms for multivariate Laurent series

3.2 Construction
Let K be a field, x = x1, . . . , xp and u = u1, . . . , um be indeterminates. We denote by K[[u]] the
set of formal power series with coefficients over the field K, i.e., g(u) ∈ K[[u]] implies that

g(u) =
∑
k∈Nm

akuk,

for some ak in K, and uk is a notation for uk1
1 · · · u

kp
p where k, . . . , kp are non-negative in-

tegers. The set K[[u]] together with the usual addition and multiplication form a Unique
Factorization Domain (UFD). Now, we consider all the formal infinite Laurent series of the
form

f (x) :=
∑

k

akxk,

where the sum runs over all k = (k1, . . . , kp) ∈ Zp, the ak are elements of K, and xk =

xk1
1 · · · x

kp
p . These objects together with the natural addition and scalar multiplication form a

vector space over K. We define the support of the Laurent series f by

supp(f (x)) := {k ∈ Zp | ak , 0}.

Notation 4. Let C ⊆ Rp be a line-free cone. Then, we denote by KC[[x]] the set of the Laurent
series f over K and with variables x so that we have:

supp(f (x)) ⊆ C.

Theorem 2 (see [25]). KC[[x]] together with the natural addition and multiplication is an
integral domain.

Theorem 3 (see [25]). Let C ⊆ Rp be a line-free cone and f (x) =
∑

k akxk ∈ KC[[x]]. Then,
there exists g(x) ∈ KC[[x]] with f (x)g(x) = 1, if and only if a0 , 0.

Definition 4. Let � be an additive order in Zp. Then, we define the sets

K�[[x]] :=
⋃

C∈CKC[[x]] and K�((x)) :=
⋃

e∈Zp xeK�[[x]],

where C is the set of all cones C ⊆ Rp which are compatible with �, and

xeK�[[x]] :=
⋃
C∈C

xeKC[[x]].

Theorem 4 (see [25]). If � is an additive order on Zp, then K�[[x]] is a ring and K�((x)) is a
field.

3.3 Algorithms
In order to develop a complete implementation of a Laurent series object in Maple, we need
to do at least the following: Choose an additive total order in Zp; define a way to represent a
Laurent series in Maple; implement addition and multiplication of Laurent series; and finally,
implement the inversion of a Laurent series. Subsections 3.3.1, 3.3.2, 3.3.3, and 3.3.4 take care
of all these tasks, respectively.

3.3. Algorithms 31

3.3.1 Graded reverse lexicographic order
The first decision to be made is the election of the monomial order. For our implementation,
we choose the well-known graded reverse lexicographic order or grevlex order for short, and
we denote it by <glex (see [28]). The grevlex order compares first the total degree, then uses
a reverse lexicographic order as tie-breaker. But it reverses the outcome of the lexicographic
comparison so that lexicographically larger monomials of the same degree are considered to be
the grevlex smaller. We denote grevlex-greater, grevlex-less or equal, grevlex-greater or equal,
and grevlex-equal, respectively by >glex,≤glex,≥glex,=glex.

Also, notice that the grevlex order can be defined as a sequence of the weight vectors 1p :=
(1, 1, 1, . . . , 1), 1p−1 := (1, 1, . . . , 1, 0), . . . , 11 := (1, 0, . . . , 0). Indeed, let v = (v1, . . . , vp) ∈ Rp,
then for i = 1, . . . , p, define the i-weight of v as wi(v) := v · 1i. We also define the weight of v
as |b| := wp(v). Thus, if we have v1 = (v1, . . . , vp), v2 = (v′1, . . . , v

′
p) ∈ Rp, and we wish to know

if v1 >glex v2, v1 <glex v2 or v1 =glex v2, we can apply the following algorithm:

Algorithm 8 GrevLexComparison
Require: v1 = (v1, . . . , vp), v2 = (v′1, . . . , v

′
p) ∈ Rp.

Ensure: v1 <glex v2, v1 >glex v2 or v1 =glex v2.
1: for i from p to 1 do
2: if wi(v1) < wi(v2) then . i-weight Comparison.
3: return v1 <glex v2
4: else if wi(v1) > wi(v2) then . i-weight Comparison.
5: return v1 >glex v2
6: else
7: next . We check the next weight.
8: return v1 =glex v2

Lemma 6. Let v1, v2 elements of Zp, then

wi(v1 + v2) = wi(v1) + wi(v2),

for i = 1, . . . , p.

Proof. Set i ∈ {1, . . . , p}. Then

wi(v1 + v2) = (v1 + v2) · 1i = v1 · 1i + v2 · 1i = wi(v1) + wi(v2).

�

Now, we establish that ≤glex is additive.

Proposition 5. The grevlex order is additive on Zp.

Proof. Let v1, v2, v3 elements of Zp, with v1 ≤glex v2. If v1 =glex v2, then the result follows
directly. Indeed, by Lemma

wi(v1 + v3) = wi(v1) + wi(v3) = wi(v2) + wi(v3) = wi(v2 + v3),

32 Chapter 3. Algorithms for multivariate Laurent series

for i = 1, . . . , p, which implies that v1 + v3 =glex v2 + v3.
Now, assume that v1 <glex v2. Then, there exist i in {1, . . . , p}, such that

wi(v1) < wi(v2), and w j(v1) = w j(v2) for j = i + 1, . . . , p.

Hence, by the additivity of < and = in Z, and Lemma 3.3.1, we have:

wi(v1) + wi(v3) < wi(v2) + wi(v3), and
w j(v1) + wi(v3) = w j(v2) + wi(v3) for j = i + 1, . . . , p.

Thus,

wi(v1 + v3) < wi(v2 + v3), and
w j(v1 + v3) = w j(v2 + v3) for j = i + 1, . . . , p.

Consequetly, we have: v1 + v3 <glex v2 + v3. �

Example 2. Set v1 = (1, 0,−1), v2 = (0, 0, 0), v3 = (1, 1,−1), and v4 = (2,−1,−1). Then,
1. Since the weight of v3 is 1, and the weight of v1, v2, v4 is 0, we observe that

v3 >glex vi, with i = 1, 2, 4.

2. Now, we can compute the 2-weight of v1, v2, v4, and we get 1, 0, 1, respectively. Thus,
v2 <glex vi with i = 1, 4. Finally, the 1-weights of v1, v4, are, respectively, 1, 2. Hence,
v1 <glex v4. In summary,

v2 <glex v1 <glex v4 <glex v3.

Remark 2. Notice that if v ∈ Zp is a grevlex non-negative vector with zero weight (that is,
wp(v) = 0) then for any integer s ≥ 0, the vector sv is also a grevlex non-negative vector with
weight equal to 0. This property makes it challenging to work with a cone C, counting, within
its generating set, at least one ray with weight zero. This observation will be illustrated with
Example 4 of the following section.

3.3.2 The Laurent series object
Our objective is to encode Laurent Series as objects (to be referred as LSO in the se-
quel of this paper) in Maple. In order to achieve this, we will make use of the existing
MultitivariatePowerSeries package (see [5]).

Recall that K is a field and that we work with two groups of variables x = x1, . . . , xp

and u = u1, . . . , um. To keep the presentation of this document as simple as possible,
we shall assume that m ≥ p holds. However, our Maple implementation, within the
MultitivariatePowerSeries package, does not make that assumption, and thus can handle
the case where m < p holds. By Theorem 4, to encode a Laurent series f ∈ K�((x)), it is
enough to find a set of grevlex non-negative rays R := {r1, . . . , rm} ⊂ Z

p, and e ∈ Zp such that
f ∈ xeKC[[x]], where C the cone generated by R. Thus, we need first to encode KC[[x]].

Now notice that the cone C can also represent a change of variables. Indeed, consider the
ring of multivariate power series K[[u]], where u := (u1, . . . , um) are ordered indeterminates.

3.3. Algorithms 33

Also, consider the change of variables ui := xri . Then, for every g ∈ K[[u]], we observe
that g(u1 = xr1 , . . . , um := xrm) is an element of KC[[x]]. Next, observe that the monomial xe,
multiplying our LSO, can simply be seen as an e. Our idea is to encode a Laurent series object
f ∈ KC[[x]] as a power series g ∈ K[[u]] together with a set of rays R := {r1, . . . , rm} ⊂ Z

p and
the point e ∈ Zp. In summary,

Proposition 6. Let g ∈ K[[u]] be a power series, e ∈ Zp be a point, and R := {r1, . . . , rm} ⊂ Z
p

be set of grevlex non-negative rays. Then,

f = xeg(xr1 , . . . , xrm),

is a Laurent series living in xeKC[[x]], where C is the cone generated by R.

Remember that the rays used to generate the cone C, of our object, must be grevlex non-
negative. Hence, Lemma 4 guaranties that our cone will be line-free and compatible with ≥glex.
Thus, KC[[x]] is an integral domain.

Example 3. Consider

f := x−4y5
∞∑

i=0

x2iy−i.

If we want to encode f as a LSO, we can choose the following parameters:

x = [x, y],
u = [u, v],
g = Inverse(PowerSeries(1 + uv)),
r = [[1, 0], [1,−1]],
e = [x = −4, y = 5],
C = Cone(R).

Notice that [1, 0] ≥glex [0, 0] and [1,−1] ≥glex [0, 0], so the ring KC[[x]] is well defined.
Also, the cone C generates a change of variable equal to u = x and v = xy−1.

We can use Maple’s command MultitivariatePowerSeries:-Truncate to obtain the terms of
the power series g up to a specific degree. As an example, if we type Truncate(g, 10), we get

g(u, v) = 1 − uv + u2v2 − u3v3 + u4v4 − u5v5.

Now, if we apply our change of variables , we see that

g(x, xy−1) = 1 − x2v−1 + u4v−2 − u6v−3 + u8v−4 − u10v−5.

Thus, x−4y5g(x, xy−1) will produce the first terms of our Laurent series f .

For simplicity, we define xR := xr1 , . . . , xrm and also R = (rT
1 , . . . , r

T
m), where A 7−→ AT

denotes matrix transposition.

Remark 3. Let g ∈ K[[u]] be a power series, and R := {r1, . . . , rm} ⊂ Z
p be set of grevlex non-

negative rays. Then, the following identities follow immediately from the notations introduced
above.

1. g(xR) = g(xr1 , . . . , xrm).
2.

(
xR

)k
= xk1r1 · · · xkmrm = xk1r1+···+kmrm = xR·kT

for all k = (k1, . . . , km) ∈ Zm.
3. u = xR ⇔ ui = xri for all i = 1, . . . ,m.

34 Chapter 3. Algorithms for multivariate Laurent series

3.3.3 Addition and multiplication
Throughout this subsection, let C1 ⊆ Zp be a line-free cone given by a set of rays, R1 :=
{r′1, . . . , r

′
m} ⊂ Z

p, and C2 ⊆ Z
p be a line-free cone given by a set of rays, R2 := {r′′1 , . . . , r

′′
m} ⊂

Zp, with m ≥ p. Let also e1, e2 be two points in Zp. Now, if we want to add or multiply two
Laurent series, f1 ∈ xe1KC1[[x]] and f2 ∈ xe2KC2[[x]], we must first compute a line-free cone C
containing the union of C1 and C2. Suppose that

f1 = xe1g1(xR1) and f2 = xe2g2(xR2),

with g1, g2 ∈ K[[u]]. Note that, in order to simplify the presentation, we are assuming that
R1 and R2 have the same number of rays m ≥ p. The general case is a direct consequence of
the procedures presented in this document, and has already been implemented in Maple.

Next, note that we have:

f1 f2 = (xe1xe2)
(
g1(xR1)g2(xR2)

)
= xe1+e2

(
g1(xR1)g2(xR2)

)
.

Thus, we can set the point e, of our new Laurent series, simply as e1 + e2. The selection of
the rays R for the cone C is, however, not as easy. Since g1(xR1) and g2(xR2) are Laurent series,
respectively living in KC1[[x]] and KC2[[x]], we must compute a line-free cone C that contains
the union of C1 and C2. Then, we would deduce g1(xR1)g2(xR2) ∈ KC[[x]] and f1 f2 ∈ xeKC[[x]].

Note that, for the case of addition, we can do a similar trick. Let the point e be the grevlex-
minimum between e1 and e2. Without lost of generality, assume e = e1. Then, we can re-write
f1 + f2 as

f1 + f2 = xe
(
g1(xR1) + xe2−eg2(xR2)

)
.

Observe that e2−e is grevlex non-negative. Thus, searching for a cone C such that f1 + f2 ∈

xeKC[[x]], is equivalent to look for a cone C such that

g1(xR1) + xe2−eg2(xR2) ∈ KC[[x]].

Hence, it is enough to find a cone C that contains the cone generated by the set of rays
R1 ∪ R2 ∪ {e2 − e}.

Note that by Lemma 4, we can simply choose the cone C to be C1+C2 for the multiplication,
and the cone generated by the rays R1 ∪ R2 ∪ {e2 − e}, for the case of the addition. However,
since we desire to keep the number of rays associated to a given Laurent series to a minimum
(for computational efficiency purposes), we develop Algorithm 9, which takes a set of grevlex
non-negative rays and an order x = (x1, . . . , xp) as input, and returns a minimal set of p grevlex
non-negative rays. The cone generated by this new set of rays contains the cones generated by
the input rays. As a consequence, we will be able to write R1 and R2 in terms of R.

In algorithm 9, LookForGreatestGrevlexLess takes a rational vector as input and returns
an integer vector that is grevlex less or equal than the input and that has the same weight as
it. Note that this algorithm is based in Algorithm 8. Observe also that algorithm 9 proceeds as
follows:

1. while i varies between p and 1, we select all the rays in W with positive i−weight;
2. then, we make all these rays comparable by dividing them by their norm; after this, we

select the grevlex-smallest one between them, say v;

3.3. Algorithms 35

Algorithm 9 MakeRaysCompatible
Require: R1, R2, R3 sets of grevlex-non negative rays, a field K, ordered indeterminates x :=

(x1, . . . , xp).
Ensure: A set of p rays R such that C(R) ⊇ C(R1) ∪C(R2) ∪C(R3).

1: W := R1 ∪ R2 ∪ R3
2: for i from p to 1 do
3: S := {w ∈ W | w · 1i > 0} . We get all the rays in W with positive i-weight.
4: if |S | > 1 then . |S | denotes the number of elements in S .
5: S ′ := {s/(s · 1i) | s ∈ S } . We “normalize” the elements of S
6: . to make them comparable.
7: v := minglex(S ′) . We get the grevlex smallest element of S ′.
8: v′ := LookForGreatestGrevlexLess(v) . v ∈ Qp, so we look for v′ ∈ Zp

9: . such that v ≥glex v′ and |v| = |v′|.
10: else
11: v′ := S [1]
12:
13: R[i] := v′ . We save v′.
14: for w ∈ W do
15: if w ∈ S then
16: w := w − w·1i

R[i]·1i
· R[i] . We subtract a multiple of R[i]

17: . to achieve w · 1i = 0.
18: return R

3. if v is not an integer vector, we replace v by an integer and grevlex non-negative vector
v′ such that v ≥glex v′ and |v| = |v′|; then v is renamed R[i];

4. the last step of this iteration is to subtract the biggest possible multiple of R[i] from the
rays selected in W with positive i−weight such that the different is grevlex non-negative.

By doing this last step, we guarantee that in the next iteration, i = i + 1, all the rays in W
are grevlex less or equal to R[i]. Thus, by following this process we obtain a list of p rays such
that R[p] ≥glex R[p − 1] ≥glex . . . ≥glex R[1]. Also, every ray in R1,R2 and R3 can be written
as a linear combination of the rays in R.

Remark 4. Observe that at Line 17, of Algorithm 9, the fraction w·1i
R[i]·1i

is always going to be
integer. Indeed, if |S | > 1, then v · 1i = 1, and in consequence v′ · 1i = 1. Thus, R[i] · 1i = 1 as
well. On the other hand, if |S | = 1, then w·1i

R[i]·1i
= v·1i

v·1i
= 1.

Proposition 7. Every vector in W = R1∪R2∪R3 is a non-negative integer linear combination
of the vectors in R, as computed in Algorithm 9.

Proof. Let Ci be the integer cone generated by W and R at the beginning of each iteration of
Algorithm 9, i.e.,

Ci :=

∑
w∈W

aww +
∑
r∈R

brr | aw ≥ 0, br ≥ 0 ∈ Z

 ,
with i ∈ {p, p − 1, . . . , 1}. Observe that in the first iteration R is empty, and also that in

the last iteration W is empty. Now, notice that Ci ⊆ Ci−1, by construction. Thus, we have that

36 Chapter 3. Algorithms for multivariate Laurent series

the integer cone, Cp, generated by W is contained inside the integer cone, C1, generated by R.
Finally we see that Remark 4 implies that in each iteration of Algorithm 9, we are subtracting
from W and integer multiple of Ri. Hence, the vectors of W are a non-negative integer linear
combination of the vectors in R. �

Algorithm 10 Multiply

Require: Laurent series f1(x) = xe1g1(xR1), f2(x) = xe2g2(xR2). Remember R1 := {r′1, . . . , r
′
m} ⊂ Z

p

and R2 := {r′′1 , . . . , r
′′
m} ⊂ Z

p.
Ensure: xeg(xR) the product of f1 and f2.

1: e := e1 + e2 . We get the exponent of xe1xe2 .
2: R := MakeRaysCompatible([R1,R2], x) . We get the rays of a cone C such that
3: . C1 ∪C2 ⊆ C.
4: u′ := xR . We compute the new change of variable.
5:
6: for i from 1 to m do . We see g1(u) and g2(u) as a function of u′:
7: Solve(r′i = R · kT

i) . We compute ki such that r′i = R · kT
i .

8: Solve(r′′i = R · (k′i)
T) . We compute k′i such that r′′i = R · (k′i)

T .

9: g′1(u′) := g1((u′)k1 , . . . , (u′)km) . g′1(u′) ∈ K[[u′]].
10: g′2(u′) := g2((u′)k′1 , . . . , (u′)k′m) . g′2(u′) ∈ K[[u′]].
11: g := g′1g′2 . We multiply Power Series in K[[u′]].
12: return x,u′, g,R, e

Algorithm 11 Addition

Require: Laurent series f1(x) = xe1g1(xR1), f2(x) = xe2g2(xR2). Remember R1 := {r′1, . . . , r
′
m} ⊂ Z

p

and R2 := {r′′1 , . . . , r
′′
m} ⊂ Z

p.
Ensure: xeg(xR) the addition between f1 and f2.

1: e := mingrevlex(e1 + e2) . We get the grevlex-smallest exponent.
2: if e , e1 then . We assume e = e1.
3: return Addition(f2, f1)
4: R := MakeRaysCompatible([R1,R2, e2 − e], x) . We get the rays of a cone C such that
5: . C1 ∪C2 ∪ {e2 − e} ⊆ C.
6: u′ := xR . We compute the new change of variable.
7:
8: for i from 1 to m do . We see g1(u) and g2(u) as a function of u′:
9: Solve(r′i = R · kT

i) . We compute ki such that r′i = R · kT
i .

10: Solve(r′′i = R · (k′i)
T) . We compute k′i such that r′′i = R · (k′i)

T .

11: Solve(e2 − e = R · kT) . We compute k such that e2 − e = R · kT .
12: g′1(u′) := g1((u′)k1 , . . . , (u′)km) . g′1(u′) ∈ K[[u′]].
13: g′2(u′) := g2((u′)k′1 , . . . , (u′)k′m) . g′2(u′) ∈ K[[u′]].
14: m(u′) = (u′)k . m(u′) ∈ K[[u′]].
15: g := g′1 + m · g′2 . We do power series operations in K[[u′]].
16: return x,u′, g,R, e

3.3. Algorithms 37

Now, if we want to compute the product of f1 and f2, then, we follow Algorithm 10.
The addition is a little more complicate than the multiplication, see Algorithm 11 for de-
tails. It follows, however, similar ideas as Algorithm 10. In Algorithm 11, it is important
to notice that e2 ≥glex e implies that e2 − e is grevlex non-negative. So, when we apply
MakeRaysCompatible([R1,R2, e2 − e], x), we are looking for a cone that contains the union of
the cones associated to f1 and f2 and also the cone generated by the ray e2 − e. Observe also
that Proposition 7 guarantees that the vectors ki’s and k′i’s have non-negative components. In
consequence, g′1, g′2 and m are going to be well-defined as multivariate power series. A similar
argument can be used in Algorithm 10.

3.3.4 Inversion

From now and through this subsection, let C ⊆ Zp be a line-free cone described by the set of
rays, R := {r1, . . . , rm} ⊂ Z

p, and let e ∈ Zp be a point. Now, let f ∈ xeKC[[x]] be a non-zero
Laurent series, with

f = xeg(xR),

where g ∈ K[[u]] is a power series. We wish to compute the inverse of f . Note that the
power series g is invertible if and only if it has a constant term (see [19] for details). Hence, f
can be easily inverted

f −1 = x−eg−1(xR).

On the other hand, if g does not have a constant term, then the power series g is not in-
vertible. The Laurent series g(xR), however, is invertible. Following the ideas of Monforte and
Kauers, from [25], we would like to look for the grevlex-minimum element of the support of
g(xR), say e. Then we would like to factor xe out of g(xR). Note that this would imply that
the support of g(xR)/xe is still formed by grevlex non-negative elements. Here we find the first
challenge of our implementation: the set supp(g(xR)) could be infinite and not increasingly
ordered. To better describe the problem, first we need to explain the relationship between the
support of g and the support of g(xR). Secondly, we describe the main ways of defining a
multivariate power series in Maple.

The minimum grevlex element of supp(g(xR))

Lemma 7. Let C ⊆ Zp be a line-free cone described by a set of grevlex non-negative rays
R := {r1, . . . , rm} ⊂ Z

p. Let e ∈ Zp be a point. Now, let f ∈ xeKC[[x]] be a Laurent series, with

f = xeg(xR),

where g ∈ K[[u]]. Then,

supp(g(xR)) = {(rT
1 , . . . , r

T
m) · kT

| k ∈ supp(g)} ⊆ Zp.

38 Chapter 3. Algorithms for multivariate Laurent series

Proof. Indeed, suppose g(u) =
∑

k∈Zm akuk =
∑

k∈Zm akuk1
1 . . . u

km
m , then,

g(xR) = g(xr1 , . . . , xrm) =
∑
k∈Zp

ak(xr1)k1 . . . (xrm)km

=
∑
k∈Zp

ak(xk1r1) . . . (xkmrm)

=
∑
k∈Zp

akxk1r1+...+kmrm .

Then, we can re-write k1r1 + . . . + kmrm as (rT
1 , . . . , r

T
m) · kT using matrix notation. Thus, by

definition of support, the result follows. �

Observe that Lemma 7 implies that knowing the support of the power series g is equivalent
to know the support of the Laurent series f . Therefore, looking for the grevlex-minimum
element of supp(f) can be done using the supp(g). Thus, how we access the monomials in g is
a key.

Multivariate power series in Maple are created in a lazy manner ([5]). This means that
computations are done only when they are necessary and only once. Thanks to this paradigm,
we compute the terms of a multivariate power series using its degree as a iterator, i.e., we
truncate the series up to a specific degree, and then Maple computes all the terms in our power
series up to that degree once and stores them. This means that, if we ask for those terms a
second time, Maple needs not to re-compute them. Since we use power series as a foundation
of our implementation of Laurent series, we must use the same paradigm of lazy evaluation
for Laurent series. To be more precise, when a Maple end-user truncates a Laurent series f ,
then (1) the underlying power series g must be truncated, (2) the composition of xR with those
terms must be computed, and (3) the whole thing is multiplied by xe. The above has a few
implications with respect to the computation of the minimum element:

1. In general, we can not find the smallest monomial of a power series easily. For instance,
imagine that in the internal power series all the elements up to degree 1010000000 are zero.
Finding this first element would take a while, and we will probably give up before that
happens. Also, if the power series is the trivial one (and we do not know it), then we
would never find this minimum element.

2. Finding the minimum element of a power series does not guarantee that we can find the
grevlex-minimum element of a Laurent series. To illustrate this, consider the following
examples.

Example 4. Let g := u3 +u2 +u+v25 ∈ K[[u, v]], R = {(1, 0), (1,−1)}, e = (0, 0), and x = (x, y).
Then, u = x and v = xy−1, and f = x3 + x2 + x + (xy−1)25. If we look for the monomial in g with
minimum degree, we get u. This term corresponds to x in the Laurent series f . However, the
grevlex-minimum element of f is (xy−1)25.

Example 4 shows the first challenge of our implementation. Whenever we have a zero-ray,
i.e., a ray with the sum of its components equal to zero, we can not guarantee that the grevlex-
minimum element is going to be found. Let us further illustrate this problem with a second
example.

3.3. Algorithms 39

Example 5. Consider a power series g ∈ K[[u, v]] with support equal to

{(0, 0), (1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 0), (4, 1), (4, 2), (4, 4), (5, 2), . . .},

a random infinite set. Let R = {(1, 1), (1,−1)}. Then, the support of g(xy, xy−1) is going to
be equal to

{(0, 0), (2, 0), (3,−1), (5,−3), (4, 0), (5,−1), (5, 1), (6, 0), (7,−1), (4, 4), (5, 3), (6, 2), (8, 0), (7, 3), . . .}.

Now, let us analyze the support of g.

Figure 3.1: Support of g

In Figure 3.1, the red arrows represent the vectors (1, 0) and (0, 1). We can think about
these two vectors as the generating rays of the cone

C1 := {(a, b) ∈ R2 | a ≥ 0 and b ≥ 0}.

We see that the supp(g) is contained inside C1. The green lines have equation u + v = d,
with d = 0, 1, 2, Thus, by intersecting supp(g) with u + v = d, we can get all the elements
in the support of g with degree equal to d. We also observe that, if d varies from 0 to∞, we get
in an increasing and ordered way all the elements in supp(g). Ideally, we would like to have
similar properties for supp(g(xy, xy−1)). We can analyze the support of g(xy, xy−1) in the same
way as follows.

In Figure 3.2, the red arrows represent the rays (1, 1) and (1,−1). These rays generate the
cone C2, and by construction we know that the supp(g(xy, xy−1)) is contained inside C2. The
green lines have equation x + y = d, with d = 0, 1, 2,

By applying Lemma 7, we can get the elements in supp(g(xy, xy−1)). Here we are just
applying a linear transformation to the elements inside supp(g). However, as we observe in
Figure 3.2, now the intersection between the line x + y = d and supp(g(xy, xy−1)) does not
generate a bounded region. This explains geometrically, why we can never be sure that we
have found the minimum element of the support of a Laurent series f , whenever the cone used
in the representation of f is generated by at lest one zero-ray.

40 Chapter 3. Algorithms for multivariate Laurent series

Figure 3.2: Support of g(xy, xy−1)

As just illustrated by Examples 4 and 5, having at least one zero-ray makes the process of
determining the grevlex minimum element of a Laurent series not always possible. On the other
hand, whenever we do not have a zero-ray, we are able to determine the minimum element of
our Laurent series based in the element of our internal power series with smallest degree (as
long as we can find it).

Proposition 8. Let g ∈ K[[u]] be a power series, e ∈ Zp be a point, and R := {r1, . . . , rm} ⊂ Z
p

be a set of grevlex positive rays. Set

f = xeg(xr1 , . . . , xrm) ∈ xeKC[[x]],

with C the cone generated by R. Then

min supp(g(xR)) = min
{
R · kT

| k ∈ supp(g) with
∣∣∣R · kT

∣∣∣ ≤ ∣∣∣∣R · kT ∣∣∣∣} ,
with k the smallest element in supp(g) and R = (rT

1 , . . . , r
T
m).

Proof. Note that Lemma 7 implies that

supp(g(xR)) =

{
R · kT | k ∈ supp(g),

∣∣∣R · kT
∣∣∣ ≤ ∣∣∣∣R · kT

∣∣∣∣} ∪ {
R · kT | k ∈ supp(g),

∣∣∣R · kT
∣∣∣ > ∣∣∣∣R · kT

∣∣∣∣} .
Let k be an element of supp(g) such that∣∣∣R · kT

∣∣∣ > ∣∣∣∣R · kT
∣∣∣∣ .

Then, by definition of the grevlex order

R · kT >glex R · k
T
.

Hence, the grevlex minimum element of supp(g(xR)) must be the grevlex minimum element
of {

R · kT | k ∈ supp(g),
∣∣∣R · kT

∣∣∣ ≤ ∣∣∣∣R · kT
∣∣∣∣} .

�

3.3. Algorithms 41

As a remark, notice that all of the above is only possible as long as we are able to find k,
which as we mentioned before, it is not always feasible.

To handle our zero-ray case, we decided to implement an internal bound. We ask for k in
the support of our internal power series object such that

∣∣∣R · kT
∣∣∣ is less or equal to this bound.

Then, we select between the images, R · kT , of these k′s the one with smallest grevlex degree,
say e = R · sT , and we assume that this is the smallest element of the support of our Laurent
series. If this is not the case, then an Error message will be raised whenever we discover
that our assumption was false. The only way of knowing that we have made a mistake in the
selection of our xe is through our Truncate function. When the user asks for more terms of our
inverse, Maple internally checks that the selection of xe was not wrong.

Definition 5. We refer to the just mentioned bound (when we have a cone generated by at least
a zero-ray) or to the bound

∣∣∣∣R · kT ∣∣∣∣ (as in Proposition 8) as the inversion bound of our Laurent
series f .

Algorithm 12 LookForSmallestTerm

Require: Laurent series f (x) = xeg(xR).
Ensure: e the candidate to smallest term in supp(g(xR)). B the internal bound of f .

1: if HasZeroRays(f) then . We check if f has a zero ray.
2: B := InternalBound(f) . We get the internal bound of f .
3: e := minglex{k ∈ supp(g(xR) |

∣∣∣R · kT
∣∣∣ ≤ B)} . Smallest element in supp(g(xR))

4: else
5: k := min supp(g(u)) . Smallest element in supp(g(u))
6: B :=

∣∣∣∣R · kT
∣∣∣∣ . We compute the internal bound of f .

7: e := minglex{k ∈ supp(g(xR) |
∣∣∣R · kT

∣∣∣ ≤ B)} . Smallest element in supp(g(xR))

8: return e, B

Now, suppose we have already made the selection of our e as shown in Algorithm 12, and
it is correct. Then, we can factor out xe from g(xR). Now, g(xR)

xe has a constant element, and in
consequence it is invertible. Hence,

f −1 = x−ex−e
(
g(xR)

xe

)−1

= x−e−e
(
g(xR)

xe

)−1

.

We can categorize multivariate power series in Maple into two types: power series with a
defined analytic expression and power series with an undefined analytic expression (see [5]).
For each power series g, created by the command PowerSeries as the image of a polynomial p
(under the natural embedding from C[u] to C[[u]]) the polynomial p is the analytic expression
of g. We can define a power series by the sequence of its homogeneous parts. In this case, the
user can optionally specify the sum of that series which is then set as analytic expression of the
power series. As a nice property, we see that power series with a defined analytic expression
are closed under addition, multiplication and inversion.

42 Chapter 3. Algorithms for multivariate Laurent series

Multivariate power series in Maple with a defined rational analytic expression

We can use analytic expressions to define multivariate power series in Maple and this infor-
mation is saved inside the MultivariatePowerSeriesObject. Note that multiplying or adding
multivariate power series with a rational analytic expression generate a new power series with
a rational analytic expression. Also, the analytic expression of the inverse of a multivariate
power series (in case it exists), is a rational function. Then, any rational analytic expression
can be seem as a rational function of the form q(u) =

q1(u)
q2(u) by applying basic polynomial arith-

metic. Notice that using the analytic expression associated to a power series g, we can easily
invert the Laurent series g(xR). Indeed,

Proposition 9. Let g ∈ K[[u]] be a power series, and R := {r1, . . . , rm} ⊂ Z
p be a set of grevlex

non-negative rays. Assume that g has an associated analytic expression q(u) =
q1(u)
q2(u) , where

q1(u) and q2(u) are polynomials in the variables u. Then,
1. If q1 has a constant term, then

g(xR)−1 = q(xR)−1 =
q2(xR)
q1(xR)

∈ KC[[x]],

with C the cone generated by R.
2. If q1 does not have a constant term, then there exists a minimum set of rays R′ :=
{r′1, . . . , r

′
p} ⊂ Z

p, polynomials q′1 and q′2 such that

g(xR)−1 = x−e q′2(xR′)
q′1(xR′)

∈ x−eKC′[[x]],

with C′ the cone generated by R’ and e the grevlex minimum element of supp(q1(xR)).

Proof. Let C the cone generated by R.
1. If q1 has a constant term, them q1 is invertible as a power series. Thus,

g(xR)−1 = q(xR)−1 =
q2(xR)
q1(xR)

∈ KC[[x]],

is well defined.
2. Suppose that q1 does not have a constant term. Now let e be the grevlex minimum

element of the finite set supp(q1(xR)) and s be the respective element in supp(q1(u)),

such that e = R · sT . Set q′′1 (u) =
q1(u)

us , and note that q′′1 is not necessarily a power
series. Define the cone C′ as the sum between the cone C, and the cone generated by the
non-negative grevlex set of rays

{k − e | k ∈ supp(q1(xR))} ∪ {e}.

Then, q′′1 (xR) and q2(xR) are elements in KC′[[x]], since supp(q′′1 (xR)) ⊆ C′ and
supp(q2(xR)) ⊆ C′. Now, compute a set of non-negative grevlex generators of C′,
R′ := {r′1, . . . , r

′
p} ⊂ Zp, as the output of Algorithm 9. Then, for i ∈ {1, . . . ,m}, there

exists a ki ∈ Z
p such that ri = R′ · kT

i . Define

3.3. Algorithms 43

q′1(v) = q′′1 (vk1 , . . . , vkm) and q′2(v) = q2(vk1 , . . . , vkm),

with v = v1, . . . , vp. Now observe

q′1(xR′) =

q1

((
xR′

)k1
, . . . ,

(
xR′

)km
)

(
xR′)s =

q1

(
xR′·kT

1 , . . . , xR′·kT
m
)

xR′·sT
=

q1(xR)
xe

.

Proposition 7 guarantees that k1, . . . ,kp are non-negative integer vectors. Thus, q′1 and
q′2 are well-defined multivariate power series. Notice also that q′1(v) is invertible as a
power series, since it has a constant term. Thus,

g(xR)−1 = q(xR)−1 = x−e q′2(xR′)
q′1(xR′)

∈ x−eKC′[[x]].

�

In Algorithm 13, we describe Proposition 9 in an algorithmic way.

Algorithm 13 InverseOfAnalyticExpression

Require: q(u) =
q1(u)
q2(u) , with q1(u), q2(u) polynomials. xR a change of variables with R := {r1, . . . , rm} ⊂

Zp.
Ensure: q−1(xR) the inverse of q.

1: if HasConstantTerm(q1) then
2: return q2(xR)−1

q1(xR)−1 . If q1 has a constant term, then q is invertible.
3: else
4: e := minglex supp(q1(xR)) . We get the grevlex-smallest element in supp(q1(xR)).
5: Solve(e = R · sT) . We compute s such that e = R · s.

6: q′′1 (u) :=
q1(u)

us . We define a new function. Note q′′1 could not be a power series.

7: R1 := {k − e|k ∈ supp(q1(xR))} ∪ {e} . A set of grevlex non-negative terms.
8: R′ := MakeRaysCompatible(R,R1,K, x) . We get the rays for our new cone.
9: for i from 1 to m do

10: Solve(ri = R′ · kT
i) . We compute ki such that r′i = R′ · kT

i .

11: v := v1, . . . , vp . New ordered variables for our power series.
12: q′1(v) := q′′1 (vk1 , . . . , vkm) . q′1(v) ∈ K[[v]].
13: q′2(v) := q2(vk1 , . . . , vkm) . q′2(v) ∈ K[[v]].

14: return x−e (q′2)−1(xR′)
(q′1)−1(xR′)

Multivariate power series in Maple with an undefined or non-rational analytic expression

Now, for the case of a power series with an undefined or non-rational analytic expression we
can consider two types of Laurent series: Those with zero-rays and those without them. As

44 Chapter 3. Algorithms for multivariate Laurent series

explain in Section 3.3.4, for both of our cases, we have a process to find a candidate for the
minimum grevlex element, e, of supp(g(xR)). We can also compute s, such that e = R · sT .
After this selection, the process for computing the inverse of f is almost the same in both of
our cases (see Algorithm 14). We want to compute generating rays for a cone that contains the
inverse. For that, we select all the elements in the supp(g(xR)) with weight less or equal to the
inversion bound B of f , since we hope that the min supp(g(xR)) is between them, and the rays
in R that are grater than e. Then, we subtract e from them.

S := {R · k − e | |R · k| ≤ B and k ∈ supp(g)} ∪ {r − e | r ∈ R and r >glex e}.

Then, we get a new set of rays R′ using our Algorithm 9 together with the sets R and S .
Thus, the cone generated by R′, will contain the cone C(−e,R). After this, we compute a
change of variable, v, for the power series g(u)/us with respect to R′ and apply it. This new
power series, g′(v), has a constant term and in consequence, it is now invertible. Hence,

g(xR)−1 = x−eg′(xR)−1.

Algorithm 14 InverseOfUndefinedAnalyticExpression

Require: Laurent series g(xR) with undefined or non-rational analytic expression and R :=
{r1, . . . , rm} ⊂ Z

p.
Ensure: The inverse g−1(xR) of g.

1: if HasConstantTerm(g) then
2: return g−1(xR) . If g has a constant term, then g is invertible as a power series.
3: else
4: B, e := LookForSmallestTerm(g(xR)) . Smallest term in supp(g(xR)).
5: S := {R · k − e | |R · k| ≤ B and k ∈ supp(g)} ∪ {r − e | r ∈ R and r >glex e}
6: R′ := MakeRaysCompatible(R, S ,K, x) . We get the rays for our new cone.
7: for i from 1 to m do
8: Solve(ri = R′ · kT

i) . We compute ki such that r′i = R′ · kT
i .

9: v := v1, . . . , vp . New ordered variables for our power series.
10: Solve(e = R′ · sT) . We compute s such that e = R′ · sT .
11: g′′(u) := g(u)/us . We factor us out from g.
12: g′(v) := g′′(vk1 , . . . , vkm) . g′(v) ∈ K[[v]].
13: return x−e(g′)−1(xR′)

For a complete implementation of the Inverse of a multivariate Laurent series see Algo-
rithm 15. Here we put together all the ideas explained in Subsection 3.3.4.

Algorithm 15 Inverse

Require: Laurent series f (x) = xeg(xR).
Ensure: The inverse f −1 of f .

1: if AnalyticExpression(f) = Undefined or non-rational then
2: return x−eInverseOfUndefinedAnalyticExpression(g(xR))
3: else
4: q := AnalyticExpression(f) . The analytic expression of f .
5: return x−eInverseOfAnalyticExpression(q, xR)

3.4. An overview of the Laurent series object inMaple 45

3.4 An overview of the Laurent series object in Maple

As mentioned in Section 3.3 a first implementation of the Laurent series object has been im-
plemented inside the package MultitivariatePowerSeries of Maple 2022. Currently,
this object and its associate commands are hidden, though. Thus, if we want to access to
this object, we must do it through the package MultitivariatePowerSeries, i.e., like
MultitivariatePowerSeries:-LaurentSeriesObject. In order to make this process
easier, we can use Maple kernelops() command, see Figure 3.3.

Figure 3.3: Laurent series object

As illustrated in Figure 3.4, there are two main ways of defining a Laurent series Object in
Maple:

1. We can define an order, X, for the space KC[[X]]; another order, U, for the space K[[U]];
a generating set R for the cone C; a list of equations, e, representing the exponents of
the monomial multiplying our Laurent series; and finally our internal multivariate power
series g.

2. We can define a list of equations representing the change of variables to be applied to our
internal multivariate power series g; a list of equations, e, representing the exponents of
the monomial multiplying our Laurent series; and finally our internal multivariate power
series g.

Figure 3.4: Creation Laurent series

We can also add and multiply Laurent series objects, see Figures 3.6 and 3.5. Finally, as
shown in Figure 3.7, we can compute the inverse of a Laurent series and check the result via a

46 Chapter 3. Algorithms for multivariate Laurent series

multiplication. Here, we are only showing the main commands inside the Laurent series object,
there are more worth mentioning, though:

1. ApproximatelyZero, ApproximatelyEqual to compare Laurent series;
2. GrevLexGreater, Positive, Smallest to do grevlex comparisons;
3. ChangeOfVariables to compute change of variable that is applied to the internal power

series;
4. Truncate to truncate our Laurent series up to a certain degree making use of the internal

power series.

Figure 3.5: Multiplication of Laurent series

Figure 3.6: Addition of Laurent series

Figure 3.7: Inverse of a Laurent series

Chapter 4

Conclusions and future work

We have discussed an algorithm for computing Intersect(f ,T) where T is a one-dimensional
regular chain. Our presentation was specialized to the case of trivariate polynomials.

This algorithm permits the control of expression swell by means of an evaluation-
interpolation scheme, assuming that the computations do not need to split. Genericity assump-
tions ensure this latter requirement and are tested by the algorithm. When those assumptions
are not met, the algorithm fails, in which case the general (and non-modular) algorithm for
Intersect(f ,T) can take over.

When those assumptions are met, the modular algorithm relies on the computations of
subresultants of index 0 and index 1, without requiring subresultants of higher indices. This
strategy opens the door to using speculative algorithms for computing subresultants, an idea
introduced and studied in [6]. Such algorithms are asymptotically fast algorithms that:

1. compute the subresultants of index 0 and 1, without computing the other subresultants,
while

2. being able to resume the computations for obtaining the subresultants of higher index, if
needed.

As we demonstrate in Section 2.5 and 2.6, using those speculative algorithms within our
modular algorithm for computing Intersect(f ,T)

1. further improve performance, while
2. allowing us to relax the genericity assumptions.
As mention in Section 2.5, our BPAS implementation of the Algorithm 6 is based in an im-

proved version of Lagrange interpolation. Thus, a natural future direction of research would be
to consider a Fast Fourier Transform (FFT) approach instead of the current Lagrange interpo-
lation. Another natural direction of research would involve a parallelized version of Algorithm
5, which should be easy to implement inside BPAS. We will also like to relax our genericity
assumptions as much as possible as well as to solve for n variable case.

On the other hand, we have successfully written a first implementation a Laurent series
object inside Maple. With this object, we are able to define multivariate Laurent series, multi-
ply them, add them and find their inverse (in most of the cases). There is, however, room for
improvements. As we have shown with Example 5, whenever we have a cone C generated by
at least a zero-ray, there exists the possibility of not been able of finding the inverse of a given
Laurent series with support is contained in C. The natural question to ask in this moment is:
Could it be possible to avoid this issue by choosing a different total order?

47

48 Chapter 4. Conclusions and future work

It is possible to define any monomial ordering by a sequence of weight vectors (for details
see [17]). As we mention in Subsection 3.3.1, the grevlex order can be defined as a sequence
of the weight vectors 1p := (1, 1, 1, . . . , 1), 1p−1 := (1, 1, . . . , 1, 0), . . . , 11 := (1, 0, . . . , 0). Thus,
we could try to change 1p by an adequate weight vector in such way that problem illustrated
in Example 5 is avoided. We could also try to find another way of handling cones generated
by at least a zero-ray. The propose of using the ring KC[[x]] is to only have to deal with a
finite number of monomials with a set degree d at the same time. This, however, exclude the
monomials of degree zero, since in this case we could have an infinite amount of them. Thus,
by effectively manipulating this cones, we could find better ways of operating Laurent series,
and in particular inverting them.

A next possible direction of research is the implementation of Puiseux series. The famous
Newton-Puiseux algorithm (and its extensions) essentially allows for the local study of curves
(separating their branches about a point) via the manipulation of Laurent and Puiseux series.
Thus, by extending our current implementation of a multivariate Laurent series to multivariate
Puiseux series, we should be able to code at least one of the version of the Newton-Puiseux
algorithm that only relies in Puiseux series arithmetic. For instance, the Nowak’s construction
[27].

Bibliography

[1] Maple modp1 online help. https://www.maplesoft.com/support/help/maple/
view.aspx?path=modp1.

[2] Parisa Alvandi, Masoud Ataei, Mahsa Kazemi, and Marc Moreno Maza. On the extended
Hensel construction and its application to the computation of real limit points. J. Symb.
Comput., 98:120–162, 2020.

[3] Parisa Alvandi, Changbo Chen, and Marc Moreno Maza. Computing the limit points of
the quasi-component of a regular chain in dimension one. In Vladimir P. Gerdt, Wolfram
Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Computer Algebra in Scientific
Computing - 15th International Workshop, CASC 2013, Berlin, Germany, September 9-
13, 2013. Proceedings, volume 8136 of Lecture Notes in Computer Science, pages 30–45.
Springer, 2013.

[4] Mohammadali Asadi, Alexander Brandt, Changbo Chen, Svyatoslav Covanov, Farnam
Mansouri, Davood Mohajerani, Robert H. C. Moir, Marc Moreno Maza, Delaram Ta-
laashrafi, Linxiao Wang, Ning Xie, and Yuzhen Xie. Basic Polynomial Algebra Subpro-
grams (BPAS), 2021. www.bpaslib.org.

[5] Mohammadali Asadi, Alexander Brandt, Mahsa Kazemi, Marc MorenoMaza, and Erik J.
Postma. Multivariate power series in Maple. In Robert M. Corless, Jürgen Gerhard, and
Ilias S. Kotsireas, editors, Maple in Mathematics Education and Research, pages 48–66,
Cham, 2021. Springer International Publishing.

[6] Mohammadali Asadi, Alexander Brandt, and Marc Moreno Maza. Computational
schemes for subresultant chains. In François Boulier, Matthew England, Timur M.
Sadykov, and Evgenii V. Vorozhtsov, editors, Computer Algebra in Scientific Computing
- 23rd International Workshop, CASC 2021, Sochi, Russia, September 13-17, 2021, Pro-
ceedings, volume 12865 of Lecture Notes in Computer Science, pages 21–41. Springer,
2021.

[7] Philippe Aubry, Daniel Lazard, and Marc Moreno Maza. On the theories of triangular
sets. J. Symb. Comput., 28(1-2):105–124, 1999.

[8] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of the F5
Gröbner basis algorithm. J. Symb. Comput., 70:49–70, 2015.

49

https://www.maplesoft.com/support/help/maple/view.aspx?path=modp1
https://www.maplesoft.com/support/help/maple/view.aspx?path=modp1
www.bpaslib.org

50 BIBLIOGRAPHY

[9] Eberhard Becker, Teo Mora, Maria Grazia Marinari, and Carlo Traverso. The shape of
the shape lemma. In Malcolm A. H. MacCallum, editor, Proceedings of the International
Symposium on Symbolic and Algebraic Computation, ISSAC ’94, Oxford, UK, July 20-22,
1994, pages 129–133. ACM, 1994.

[10] François Boulier, François Lemaire, and Marc Moreno Maza. Well known theorems
on triangular systems and the D5 principle. In Proc. of Transgressive Computing 2006,
Granada, Spain, 2006.

[11] Alexander Brandt. High performance sparse multivariate polynomials: Fundamental data
structures and algorithms. Master’s thesis, Western University, 2018.

[12] Alexander Brandt and Marc Moreno Maza. On the complexity and parallel implementa-
tion of hensel’s lemma and weierstrass preparation. In François Boulier, Matthew Eng-
land, Timur M. Sadykov, and Evgenii V. Vorozhtsov, editors, Computer Algebra in Sci-
entific Computing - 23rd International Workshop, CASC 2021, Sochi, Russia, September
13-17, 2021, Proceedings, volume 12865 of Lecture Notes in Computer Science, pages
78–99. Springer, 2021.

[13] Bruno Buchberger. An algorithm for finding a basis for the residue class ring of a zero-
dimensional polynomial ideal. PhD thesis, Ph. D. thesis, University of Innsbruck, Austria,
1965.

[14] Matt Calder, Juan P. González Trochez, Marc Moreno Maza, and Erik Postma. A maple
implementation of a modular algorithm for computing the common zeros of a polynomial
and a regular chain maple. Maple Transactions, 2021.

[15] Matt Calder, Juan Pablo González Trochez, Marc Moreno Maza, and Erik
Postma. Modular intersect. https://github.com/JuanPabloGonzalezTrochez/
ModularIntersect, 2021.

[16] Changbo Chen and Marc Moreno Maza. Algorithms for computing triangular decompo-
sition of polynomial systems. J. Symb. Comput., 47(6):610–642, 2012.

[17] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and algorithms - an
introduction to computational algebraic geometry and commutative algebra (2. ed.). Un-
dergraduate texts in mathematics. Springer, 1997.

[18] Xavier Dahan, Marc Moreno Maza, Éric Schost, Wenyuan Wu, and Yuzhen Xie. Lifting
techniques for triangular decompositions. In ISSAC 2005, Beijing, China, 2005, Proceed-
ings, pages 108–115, 2005.

[19] Gerd Fischer. Plane algebraic curves, volume 15. American Mathematical Soc., 2001.

[20] Michael Kalkbrener. A generalized euclidean algorithm for computing triangular repre-
sentations of algebraic varieties. J. Symb. Comput., 15(2):143–167, 1993.

[21] Daniel Lazard. A new method for solving algebraic systems of positive dimension. Dis-
cret. Appl. Math., 33(1-3):147–160, 1991.

https://github.com/JuanPabloGonzalezTrochez/ModularIntersect
https://github.com/JuanPabloGonzalezTrochez/ModularIntersect

BIBLIOGRAPHY 51

[22] Grégoire Lecerf. Computing the equidimensional decomposition of an algebraic closed
set by means of lifting fibers. Journal of Complexity, 19(4):564–596, 2003.

[23] Marc Moreno Maza, Bican Xia, and Rong Xiao. On solving parametric polynomial
systems. Math. Comput. Sci., 6(4):457–473, 2012.

[24] Michael B. Monagan. Probabilistic algorithms for computing resultants. In ISSAC, pages
245–252. ACM, 2005.

[25] Ainhoa Aparicio Monforte and Manuel Kauers. Formal Laurent series in several vari-
ables. Expositiones Mathematicae, 31(4):350–367, 2013.

[26] Marc Moreno Maza. On triangular decompositions of algebraic varieties. Technical
Report TR 4/99, NAG Ltd, Oxford, UK, 1999. Presented at the MEGA-2000 Conference,
Bath, England. http://www.csd.uwo.ca/∼moreno.

[27] Krzysztof Jan Nowak. Some elementary proofs of Puiseuxs theorems. Univ. Iagel. Acta
Math, 38:279–282, 2000.

[28] Wikipedia contributors. Monomial order — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Monomial_order&oldid=
1004440098, 2021.

https://en.wikipedia.org/w/index.php?title=Monomial_order&oldid=1004440098
https://en.wikipedia.org/w/index.php?title=Monomial_order&oldid=1004440098

Curriculum Vitae

Name: Juan Gonzalez Trochez

Post-Secondary University of Western Ontario
Education and London, ON
Degrees: 2020 - 2022 M.Sc. Computer Science

2019 - 2020 M.Sc. Mathematics

Universidad del Norte
Barranquilla, Colombia
2016 - 2018 Master in Mathematics
2011 - 2015 Mathematics

Honours and Uninorte Caribe scholarship
Awards: 2011-2015

Related Work Teaching Assistant
Experience: The University of Western Ontario

2019 - 2022

Lecturer
Universidad del Norte
2018 - 2019

Teaching Assistant
Universidad del Norte
2016 - 2017

Publications:

Matt Calder, Juan P. González Trochez, Marc Moreno Maza, and Erik Postma. A maple im-
plementation of a modular algorithm for computing the common zeros of a polynomial and a
regular chain maple. Maple Transactions, 2021

52

	Algorithms for Regular Chains of Dimension One
	Recommended Citation

	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	A modular method for the Intersect algorithm
	Algorithms for arithmetic operations on multivariate Laurent series

	A modular approach for the Intersect algorithm
	Preliminaries
	Triangular set
	Regular chain
	Normalized regular chain
	Regular GCD
	The algorithms Intersect and Regularize
	Triangular decomposition
	Specialization and border polynomial

	The non-modular method and its genericity assumptions
	The modular method
	Implementation in Maple
	The modp1 library
	Computation of subresultant chains

	Implementation in C
	Benchmarking
	A promising example
	Random test

	Algorithms for multivariate Laurent series
	Preliminaries
	Cones
	Total orders

	Construction
	Algorithms
	Graded reverse lexicographic order
	The Laurent series object
	Addition and multiplication
	Inversion
	The minimum grevlex element of supp(g(xR))
	Multivariate power series in Maple with a defined rational analytic expression
	Multivariate power series in Maple with an undefined or non-rational analytic expression

	An overview of the Laurent series object in Maple

	Conclusions and future work
	Bibliography
	Curriculum Vitae

