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Abstract

We develop a novel unified representation for the argumentation mining task facilitating the
extracting from text and the labelling of the non-argumentative units and argumentation compo-
nents—premises, claims, and major claims—and the argumentative relations—premise to claim
or premise in a support or attack relation, and claim to major claim in a for or against relation—
in an end-to-end machine learning pipeline. This tightly integrated representation combines the
component and relation identification sub-problems and enables a unitary solution for detecting
argumentation structures. This new representation together with a new deep learning architec-
ture composed of a mixed embedding method, a multi-head attention layer, two biLSTM layers,
and a final linear layer obtains state-of-the-art accuracy and F1 scores on the Persuasive Essays
(PE) dataset. Furthermore, the augmentation of the PE corpus by including copies of major
claims substituting the n-gram tokens that occur right before the major claim tokens with other
major claim-introducing n-grams has aided in this increased performance on the PE dataset.

Keywords: word embeddings, argumenation mining sub-tasks, unified-representation, data
augmentation, natural language processing
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Summary for Lay Audience

Argumentation Mining is a research area in the field of Natural Language Processing. To de-
tect, extract and identify argumentative structures from natural text we have to consider several
sub-tasks which define the whole argumentation mining problem. Previous research works
consider the argumentation detection problem as a set of many different sub-tasks. The sub-
tasks are: 1) Separating non-argumentative units (sentences, words) from the argumentative
units. 2) Predicting different types of argumentative components. 3) Identifying relations
(support or attack) between the argumentative components. 4) Predicting the distance (textual
distance measured by the number of sentences before or after) between the detected argu-
mentative components. For example, the following sentence contains argumentative elements:
“We should not get a long-haired cat (Claim) because cats with long hair shed all over the
house (Premise supporting the Claim).” Previous research works have solved the argumenta-
tion detection task in a de-coupled way. They first detect the argumentative components, then
identify stance or other relational attributes between each of the detected components. Some
of the previous research works have worked with fewer sub-tasks and have obtained signif-
icant improvement regarding the detection of argumentation components. They assume that
the spans of the argumentative elements (sentences, words) have been given and try to predict
the correct type of argumentative components and relations from them. We have introduced a
novel representation to jointly solve all four sub-tasks mentioned above. We have developed a
novel neural network architecture to detect and solve all the sub-tasks related to argumentation
mining. With our novel representation of the argumentation problem and the deep learning
architecture, we have achieved state of the art results on the Persuasive Essays (PE) Corpus.
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Chapter 1

Introduction

Argumentation is the method of constructing and handling arguments. It is an essential part of
human intelligence. Humans need the ability to engage in argumentation in order to compre-
hend new issues, conduct scientific reasoning, and articulate, explain, and defend their view-
points in their everyday lives. Arguments consist of claims and premises and the relationships
among them. Argumentation Mining is a recent research topic in the field of Natural Language
Processing. The aim of argumentation mining is to identify the arguments in a text document
and the internal structure of each argument. There are four subtasks of the problem. Since we
are using the Persuasive Essay (PE) dataset [42] these subtasks can be made more precise:

1. Segmenting the argument components: separate the argumentative text from the non-
argumentative text;

2. Labelling each argument component: whether the argumentative text is a Major Claim,
Claim, or Premise;

3. Determining which argumentation components are in a relationship: this is represented
as the text distance (the number of sentences before or after) between two related com-
ponents; and

4. Classifying the stance of the relations between argument components: as “support” or
“attack” between premises and claims or between premises and premises; and between
claims and major claims as “for” or “against”.

Previous research has approached the development of a computational argumentation min-
ing method from two distinct viewpoints. The first approach views the input as text and
searches for a method to solve all four of the subtasks mentioned above. Stab and Gurevych
[42] and Eger et al. [10] are noteworthy examples of this strategy. [42] provide the PE dataset

1



Chapter 1. Introduction 2

(a detailed description of this dataset can be found in Chapter 3), which we use in the devel-
opment of our method. Eger et al. [10] provide (what was up until the work described in this
thesis) the state-of-the-art method to which we compare our new method. Both of these works
approach argumentation mining as a sequence tagging problem, that is, with a sequence as an
input, for each item of that sequence, an appropriate tag needs to be found. Both works first
detect entities and then predict the argument structure on top of that. Recently, Persing and Ng
[35] have developed an unsupervised machine learning method that provides all but the stance
information for the relations. They also use the PE dataset.

The second view of the argumentation mining problem assumes the first subtask, the seg-
menting of the text into argumentative and non-argumentative components, has been done, and
the input to the method are the argumentative components. Peldszus [31], Peldszus and Stede
[32], Stab and Gurevych [42], Niculae et al. [26], Potash et al. [37], Kuribayashi et al. [18], and
Bao et al. [4] are noteworthy examples. They have produced the best results when considering
only the last three subtasks of the argumentation mining problem. We compare some of our
results with the last five of these works (The first two works are focused on a different corpus
and we could not compare our results with those research works).

The method proposed here takes the first approach, solving all four subtasks. As there are
subtasks, previous argumentation mining works have decoupled various subtasks, solved them
separately, and then combined the solutions. The end-to-end learning method proposed here
differentiates itself from these previous works by approaching the problem in a unified manner.
Our research objectives and contributions are summarized as follows:

1. Argumentation mining is formulated as a single problem by integrating all of its subtasks:
separating the non-argumentative tokens from the argumentative tokens, labelling the
argument components, identifying the related components, and classifying the stance of
the relation. We show that combining all the subtasks results in improved performance.

2. By constructing a dense representation of the problem we are able to achieve a better
than previous performance with a model comprising two biLSTM layers, a fully con-
nected layer, and stacked embedding for creating a better representation of paragraphs.
We complete the model by including a multi-head attention layer, giving the best perfor-
mance.

3. We have developed some augmentation techniques (this experiment has been done on the
paragraph version of the PE corpus) based on the n-gram tokens that indicate the starting
of the major claim tokens. We have identified 108 n-gram tokens of different sizes that
frequently occur before the major claims of the authors in the texts. With the augmented
datasets we have further improved the results on the PE corpus.



Chapter 1. Introduction 3

With the new formulation of the problem, our model, Unified-AM, reaches state-of-the-art
argument mining performance on detecting and labelling argument components and relations
for the PE corpus.

This thesis has five chapters. Chapter 2 discusses previous research work in the argumen-
tation mining area. It also contains the literature review of the deep learning architecture com-
ponents that we have used to build our model. Chapter 3 describes the methodologies that we
have used to develop the novel unified representation. The detailed description of the proposed
model and the PE corpus can be found in this chapter. Chapter 4 shows the state-of-the-art
results that we have obtained after applying the proposed model to the task of argumentation
mining of the PE corpus. Chapter 5 concludes the thesis. It summarizes the contributions and
comments on the limitations of this work. In addition, it suggests a number of directions that
can be investigated to advance the work provided here.



Chapter 2

RelatedWork

2.1 Word Embeddings

Word embeddings is the technique to represent words or characters in the multi-dimensional
vector spaces. Word embeddings are more powerful than a simple bag of words representation
of words. Unlike the sparse representation of the word token generated by the bag of words
method, word-embedding methods produce dense vectors for each of the word tokens available
in the vocabulary. Word embedding models have become so impressive that these word vectors
can group words in such a way that if we make equations with the learned word vectors, it will
give highly accurate results regarding the relationships. For example, if we represent the word
king, queen, man, and woman with their corresponding word vectors K, Q, M, and W, we can
have an equation where: (K - M +W) will give us the vector values which will be close to Q’s
vector values.

2.1.1 Word2Vec

Researchers at Google invented 2 types of model architectures (collectively known as the
Word2Vec models) for the distributed representation of words [24]. They are: CBOW (Con-
tinuous Bag of Words) and the Skip-Gram model. Both models use shallow two-layer neural
networks that are trained in two different ways. The CBOW model predicts the target word
given the fixed size context words surrounding the target word. On the other hand, the Skip-
Gram model identifies context words given the corresponding target word. Figure 2.1 shows
these two types of Word2Vec models.

4



Chapter 2. RelatedWork 5

Figure 2.1: Word2Vec Model Architectures (from Mikolov et al. [24])

2.1.2 GloVe

Pennington et al. [33] developed GloVe, an unsupervised approach of learning word vectors.
In the Word2Vec model, the generated embedding focusses only on the context window sur-
rounding the target word which has the local positional and contextual information but does
not have global statistical information. Contrarily, the other method of learning word vectors,
known as the global matrix factorization method [8], has a limitation in the representation of
the word vectors because it is more biased to the globally most frequent word tokens. This
new model addresses both the global factorization and the local context window features in a
combined fashion.

2.1.3 FastText Embedding

The FastText embedding [7] was developed by Facebook AI researchers. It is based on the
Skip-Gram model, described previously. Predicting context words can be formulated by a set
of independent binary-classification tasks. If a word is in position t, all context words (words
occurring just before or after position t) are treated as positive examples for that position and
the negative examples (words that are not occurring near position t) are sampled from the
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vocabulary. If a word ‘w’ is in position t and the context word for the word is in position c, we
can use the binary logistic loss for the chosen context position c. The negative log-likelihood
formula is given below. In equation 2.1, Nt,c is a set of negative examples sampled from the
vocabulary.

log(1 + e−s(wt ,wc)) +
∑

n∈Nt,c

log(1 + es(wt ,n)) (2.1)

For the scoring function between the context word and a word, the dot product of their respec-
tive vectors are used. In particular, if we have one word wt and a context word wc the scoring
function s between their corresponding vectors uwt, vwc can be defined as:

s(wt,wc) = uT
wtvwc (2.2)

Equations 2.1 and 2.2 are formulas related to the Skip-Gram model with negative sampling
[7]. However, during the generation of the word vectors for the FastText embedding, the scor-
ing function has been modified which takes into account the internal structure of words. It does
not learn vectors for words. Instead, it represents each word as an n-gram of characters. For
example, take the word, ‘Everything’ with n = 3, the FastText representation of this word is
“⟨Ev, Eve, ver, ery, ryt, yth, thi, hin, ng⟩”, where the angle brackets indicate the beginning and
end of the word. This enables the embedding to learn and capture the meaning of shorter words.
This n-gram technique also enables the embedding to learn suffixes and prefixes. In particular
a word w can be denoted as the set of n-grams appearing in the word. Let, Gw ⊂ (1, ...,G) be
the set of n-grams representing the word. Each n-gram g is represented with a vector zg. Then,
the word w is represented by the sum of its n-gram vectors. The final scoring function is given
below:

s(w, c) =
∑
g∈Gw

zT
g vc (2.3)

2.1.4 Byte-pair Embedding

Byte-pair embedding [12] uses the byte pair encoding (BPE) technique. It sees a series of
texts as a sequence of symbols and merges the most frequent symbols iteratively. E.g., a
text might consist of merging the frequent pair ‘t’ and ‘i’ into ‘ti’. Then ‘ti’ and ‘m’ merged
into ‘tim’ and in the next iteration ‘tim’ and ‘e’ could be merged into ‘time’. After creating
symbols with the BPE algorithm, the pre-trained embedding GloVe is used for the symbols.
Word level partitioning tries to solve the unknown words problem by presuming words can be
reconstructed from their parts. As our corpus contains unknown words in the test set and the
whole corpus heavily contains suffix and prefix dependent words, we have used both Fasttext
and Byte-pair embeddings together with the help of a framework which will be described in
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the next section.

2.1.5 Stacked Embedding

Alan et al. [2] introduced an NLP framework where we can mix different types of embedding
and construct effective representations for a specific problem. In many tasks, a combination
of different embeddings may work better than using only one embedding class. For example,
Lample et al. [19] mixed classic word embeddings with character level features for their spe-
cific task and attained good results. For our task, we have used the stacked embedding class
from the FLAIR framework for combining FastText and Byte-pair embedding.

2.2 Sequence Architecture

2.2.1 LSTM Architecture

A standard neural network does not have the mechanism to store previous information to pre-
dict new information from sequence data. For example, consider THE sentence: ‘Australia
cricket team won the 2020 world cup by defeating South Africa’. To predict the word ‘de-
feating’ from this sequential input sentence, a network should store the previous words and
information about ‘winning the world cup’. The feed-forward network lacks this mechanism.
So for sequence data like sentences, where words and characters are interdependent and have
some semantic relationships, the feed-forward network does not perform well as its weight
matrix reasoning becomes ambiguous. It is unable to retain information from previous words
and characters. It cannot infer semantic relationships between words from an input because
it does not have a loop-back mechanism. To predict or infer accurately from sequential data,
like texts, it is important to know the relationships between words in a sentence. Feed-forward
networks are unable to learn these relationships from the sequential data.

As time-step and sequential data-input ideas have evolved, the recurrent neural network
(RNN) comes into play. The RNN architecture has feedback loops and it has been designed
to store previous information to predict future components. Though RNN promises to capture
long-term dependencies theoretically, it struggles to retain long-term information which could
be found in long sentences and paragraphs because of the vanishing and exploding gradient
problem [6, 30]. When backpropagation algorithms perform their weight updates from the
output layer towards the input layer, the gradients used to modify the weights can get very
small. For this reason the weights of the initial layers remain unchanged and the gradient
descent does not converge to the optimum. This issue is known as the vanishing gradient
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Figure 2.2: Unfolded Version of LSTM (from Colah [27])

problem. On the other hand, gradients can also become very large as the backpropagation
algorithm runs. Called the exploding gradient problem, these large gradients lead to large
weight updates which cause sub-optimal performance of the neural network.

LSTM [15] was created to solve the vanishing/exploding gradient problem as well as to
capture long-distance dependencies in texts. In the recurrent unit, LSTM implements three
types of gates allowing it to recall important details and dependencies from longer sequential
data. It has a forget, input, and output gate that allows it to choose which information to carry
and which to discard from memories. The vanishing and exploding gradient issues are resolved
with this novel recurrent neural architecture. Figure 2.2 represents the unfolded version of the
LSTM for viewing the internal structure and mechanism of a single LSTM cell:

Cell state is responsible for passing information through the LSTM chain. The gate mech-
anism of the LSTM enables it to pass information to the cell state and also remove previous
information. Gates are composed of sigmoid neural networks. The “forget gate” takes a look
in ht−1 and xt to decide which unimportant information has to be removed. In equation (2.4),
[ht−1, xt] means a concatenation operation. Next, to add new information and update the current
cell state, there are two layers involved. A sigmoid layer called the input gate layer (it) decides
which values to be updated and the other layer is a tanh layer that constructs a vector of new
C̄t values which could be the potential addition to the cell state. To update the old cell state we
first multiply ft with Ct−1 to forget unimportant information. Then we add (it * C̄t) to create the
new cell state. The output gate finally outputs the results by filtering with the help of a sigmoid
and tanh layer. The sigmoid layer is first applied to select the parts which will be the output.
Then, the tanh layer is applied to the newly created cell state and then multiplies it with the
output from the sigmoid layer. Below are the equations related to all of the gates described



Chapter 2. RelatedWork 9

above:
ft = σ(W f .[ht−1, xt] + b f ) (2.4)

it = σ(Wi.[ht−1, xt] + bi) (2.5)

C̄t = tanh(Wc.[ht−1, xt] + bc) (2.6)

Ct = ft ∗Ct−1 + it ∗ C̄t (2.7)

ot = σ(Wo.[ht−1, xt] + bo) (2.8)

ht = ot ∗ tanh(Ct) (2.9)

For its capability of retaining long-distance information from sequential texts, we used
Sequence LSTM in both paragraph and sentence levels for the argumentation task.

2.3 Rise of Transformer and Multi-Head-Attention

2.3.1 Sequence-to-Sequence Models

A sequence to sequence model has an architecture composed of an encoder and a decoder.
Both the encoder and decoder consist of recurrent neural network (LSTM) architectures. This
architecture can be used in machine translation, question answering, and many other natural
language problems. The encoder takes an input sentence and creates a representation of it. The
final hidden state generated by the encoder is used as the input to the decoder side. Using the
context information from the final state of the encoder, the decoder generates an output. The
main drawback of this architecture is the information bottle-neck which has been created when
producing one single vector to represent the entire context of the sentence for the decoder side.
Figure 2.3 shows the issue related to the architecture.

2.3.2 Sequence-to-Sequence Models with Attention

To mitigate the bottle-neck issue of the encoder-decoder architecture Bahdanau et al. [3] and
Luong et al. [23] introduced the technique named “Attention” which allows the decoder side
of the architecture to attend to the hidden states generated at each time-step of the encoder.
Unlike the previous methodology, this time instead of only passing the hidden state and the
previous cell’s output state, a context vector is also provided to each time-step of the decoder.
This context vector is the weighted sum of the encoder hidden states. Figure 2.4 shows the
context vector c at each time-step. Here, c is the weighted sum of the encoder hidden states
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Figure 2.3: Information bottle-neck (from Lihala [21])

Figure 2.4: Context Vector at each Time-step of the Decoder (from Lihala [21])

and can be computed as:

ci =

Tx∑
j=1

(ai jh j) (2.10)

where ai j is the attention value relating the ith output to the jth output and h j is the encoder
state for the jth input. This attention score ai j is calculated as:

ai j = Softmax(ei j) =
ei j∑Tx

k=1 exp(eik)
(2.11)

where ei j is produced by a small neural network f (see Figure 2.5) which is trained to detect
how well the inputs around position j and the output at position i match where si−1 represents
the hidden state from the previous time-step. The formula for calculating ei j is:

ei j = f (S i−1, h j) (2.12)
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Figure 2.5: Alignment Model ei j (from Lihala [21])

Figure 2.6: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of sev-
eral attention layers running in parallel. (from Vaswani et al. [43])

2.4 Transformer

The invention of the transformer model [43] has been a major break-through in the field
of deep-learning. It has improved the performance in many specific natural language tasks
(machine translation, natural language inference, question-answering, text-generation, text-
summarization, etc.) significantly. The attention function of the transformer uses query, key
and value vectors for each input token. All of the query (q), key (k), and value (v) vectors corre-
sponding to input tokens are packed together to compute them simultaneously as matrices (Q,
K, V). The formula which combines the query with corresponding key and gives the weighted
values is given below:

Attention(Q,K,V) = Softmax
(

QKT

√
dk

)
V (2.13)

First, the Q and K matrices are computed using the dot product. This dot product is scaled
by a factor of 1

√
dk

. Then a Softmax function is applied to have weighted values V . Figure 2.6
shows the scaled dot-product attention function.

This attention function is used h times to linearly project the query, key, and values h times
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Figure 2.7: Transformer Full Architecture (from Vaswani et al. [43])

which leads to the idea of multi-head attention (see Figure 2.6). The multi-head attention
block is the most important component of the transformer architecture. Besides the multi-head
attention block, both the encoder and decoder side of the transformer have positional encoding,
layer normalization and a final fully connected layer. Figure 2.7 shows the full architecture of
a transformer model.

2.5 The Argumentation Mining Task

Argumentation mining deals with finding argumentation structures in text using computational
methods. Extracting these structures requires the detection of claims and premises. In a sen-
tence, a premise is a reason which supports or attacks the related claim. For example, if we
look at a sentence from the PE corpus: “Through cooperation children can learn about inter-
personal skills which are significant in the future life of all students (claim). What we required
from teamwork is not only how to achieve the same goal with others but more importantly how
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to get along with others (premise supporting the claim)”. Palau and Moens [28] looked at the
key research questions surrounding argumentation mining, as well as the various methods that
have been researched and built up to that time to overcome the challenges of argumentation
mining in legal texts. Their landmark work established that argument mining would need to
detect claims and premises and their relationships.

Stab and Gurevych [41, 42] provided the PE dataset, a corpus annotated with a scheme that
includes claims, premises, and also attack or support relations. Stab and Gurevych [41] pro-
vided an annotation scheme that includes the annotation of claims, premises, and also attack
or support relations. Inter-rater agreement of αU = 0.72 for argument components and αU =

0.81 for argumentative relations are the proof that this annotated corpus can be used for fu-
ture research for detecting argumentation structures. The inter-rater agreement is a metric used
for measuring how much the annotators have agreed while labelling a corpus. The inter-rater
agreement score lies between 0 and 1. Stab and Gurevych [42] addressed the argumentation
problem by training independent models for each of the subtasks and then combining them
with an Integer Linear Programming Model for the end-to-end task. They identified argu-
mentative components by sequence labeling and then argumentative relations using an integer
linear programming model. This joint model architecture outperforms challenging heuristic
baselines.

Eger et al. [10] got improvement by addressing the argumentation problem as a sequence
tagging problem. They have the best accuracy of 61.67% on the PE corpus by using the
LSTM-ER model which has been introduced by Miwa and Bansal [25]. They did not follow
the machine learning pipeline structures of previous research. They did joint learning with the
help of deep learning rather than a pipeline approach of training different models in different
subtasks and then combining them with integer linear programming (ILP). The LSTM-ER
model identifies entities and then extracts relations between the detected entities. Their model
improves over the feature-based model on end-to-end relation extraction. Miwa and Bansal
[25] used a stacked architecture of Sequence and Tree LSTM. First, entities are detected with
Sequence LSTM. Then this model detects relation candidates using all possible combinations
of the detected entities or words where the words ended with ‘L’ or ‘U’ labels in the BILOU
scheme.

Persing and Ng [34] state that a persuasive essay’s argumentative structure requires dis-
cussing two issues. Identifying the elements of the essay’s claim and the relationships that exist
between them is a challenging task. They presented the first findings on end-to-end argument
mining in student essays using a pipeline approach. This paper discusses error propagation
inherent in the pipeline approach by performing joint inference using an Integer Linear Pro-
gramming (ILP) framework. They introduced a new objective function that enables an ILP
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solver to directly optimize F-score. They tested their combined approach with the specific ob-
jective function on a publicly available corpus of 90 writings, which yielded an 18.5 percent
relative error reduction in the F-score over the pipeline scheme.

Ferrara et al. [11] introduced an unsupervised approach to detect a subtask of the argu-
mentation mining. They examined whether topic modeling could be used to detect claims and
premises in a sentence. Preliminary evaluation results are an indicator that unsupervised topic
modeling could be a useful technique for detecting argumentative units. Persing and Ng [35]
have also developed an unsupervised machine learning method that provides all but the stance
information for the relations.

The discovery of the argument structure present in the argumentative text is one of the
main goals of automatic argumentation mining. To establish this structure, one must first com-
prehend how the various individual parts of the overall statement are interconnected. The
argument components form a hierarchy of persuasion, which manifests itself in a tree struc-
ture, according to common opinion in this area. Potash et al. [37] presented the first neural
network-based approach to argumentation mining, focusing on extracting links between argu-
ment components and classifying types of argument components as a secondary goal. They
suggested a modified Pointer Network structure to solve this problem. They built a joint model
to increase the contribution by attempting to learn the form of argument components while
also continuing to predict links between argument components. On two different evaluation
datasets, the proposed model achieved state-of-the-art results. Furthermore, introducing a fully
connected layer prior to the RNN unit could significantly improve performance.

A number of works have investigated approaches for subtasks 2, 3, and 4. Peldszus [31]
uses a small German corpus and constructs different machine learning methods to detect ar-
gumentation structures where they obtain positive results. The experiment generates textual
contents and shows that trained annotators can efficiently detect argumentation structure and
invites further research for results and methods on detecting argumentation structure.

Peldszus and Stede [32] use an MST decoding algorithm and evidence graph where the
edge contains the parameter or weight values for the different subtasks mentioned above. Their
approach outperforms baseline and data-driven models in relation, function, and central claim
identification and compares well with a complicated mstparser pipeline.

Niculae et al. [26] outperform the unstructured baseline in both web comments and argu-
mentative essays dataset. They jointly approach unit type detections and relation predictions
on their new CDCP dataset and the PE dataset. They have introduced parametrizations in SVM
and RNN. Their model architecture can apply constraints and manifests dependencies between
propositions and relations.

In their work, Kuribayashi et al. [18] focus on Argumentation Structure Parsing (ASP).
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Their analysis of other works regarding the span representation led them to the development of
a simple task-dependent addition for the ASP. A substantial amount of analysis indicates those
representations achieve high performance and supply difficult types of instances for parsing.

Bao et al. [4] avoid previous inefficient enumeration operations for detecting relational
attributes. For that, they introduce a transition-based methodology that follows an incremental
procedure for building graphs based on argumentation. Secondly, their neural model can handle
both tree and non-tree structures and is independent of structural constraints.

We investigated some neural architectures and how additional handcrafted features can help
boost the accuracy on certain sequence tagging tasks such as Part of Speech (POS) tagging.
Ahmed et al. [1] extracted additional features for POS tagging by using different methodol-
ogy. They used character level embedding for words to capture morphological features, extract
bigram (2 adjacent words) features, and also some handcrafted features (prefix, suffix, pat-
terns) were extracted to feed the final network model. It gave, at that time, state-of-the-art
performance in POS, NER, and Chunking tasks. Sense embedding has also been used besides
word-level embedding. The idea of combining different learned vectors by different techniques
has led to better performance.

We have developed a novel unified representation of the argumentation structures contained
in the PE corpus that has been provided by Stab and Gurevych [41, 42]. We have experimented
with our proposed neural model architecture together with the novel unified representation on
this corpus. Our neural architecture is composed of a stacked embedding layer, two biLSTM
layers, a multi-head attention layer, and a final linear layer. We have compared our results with
those of Eger et al. [10] which obtained the previous state-of-the-art results on the PE corpus
when considering all of the subtasks of the argumentation mining problem. The description
of all of the subtasks can be found in Chapter 1. After comparing the results using the same
metrics, we show that our methodology has achieved the new state-of-the-art results on the PE
corpus.



Chapter 3

Methodology

In this chapter we present the method that we have developed to generate the argumentation
structure for the Persuasive Essay (PE) data set. First, the data set is described. Then, we
introduce the novel multi-label representation that allows us to consider argumentation mining
as a single unified problem. After this, we describe our proposed model and its components
and hyper-parameters that we have used to solve the argumentation task. Finally, we describe
the methodology developed for interpreting multi-label outputs and a post-processing function
to detect spans.

3.1 Data Set Preparation

The PE dataset was created by Stab and Gurevych [42] and used in Eger et al. [10]. The
essays are written on controversial topics to let the authors make their opinions and take
their stances. The corpus is tagged with the BIO scheme. Non-argumentative components
are tagged as ‘O’ in the corpus. Argumentative components have either a ‘B’ (Beginning
of the component) or an ‘I’ (Continuation of the component) as a label. The dataset has
3 types of argumentative components: MajorClaim, Claim, and Premise. The ‘Claim’
component has either ‘For’ or ‘Against’ labels which indicate the stance type and how it
is connected with the MajorClaim component. The ‘Premise’ component has a ‘Support’
or ‘Attack’ relation and it is connected to another ‘Premise’ or ‘Claim’ component with a
relative distance value (from -11 to +11) which indicates how many sentences before or af-
ter the connected component is located in the corpus. There are essay and paragraph ver-
sions of the data set. We have worked with both versions of the corpus. Some words with
the labels from the paragraph corpus are shown below. First we have the word number in a
paragraph, then the word, and lastly the corresponding label of that particular word has been
given. Appendix A contains one full essay as an example of the essay version of the corpus.

16
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76 From O

77 this O

78 point O

79 of O

80 view O

81 , O

82 I O

83 firmly O

84 believe O

85 that O

86 we B-MajorClaim

87 should I-MajorClaim

88 attach I-MajorClaim

89 more I-MajorClaim

90 importance I-MajorClaim

91 to I-MajorClaim

92 cooperation I-MajorClaim

93 during I-MajorClaim

94 primary I-MajorClaim

95 education I-MajorClaim

96 . O

1 First O

2 of O

3 all O

4 , O

5 through B-Claim:For

6 cooperation I-Claim:For

7 , I-Claim:For

8 children I-Claim:For

9 can I-Claim:For

10 learn I-Claim:For

11 about I-Claim:For

12 interpersonal I-Claim:For

13 skills I-Claim:For

14 which I-Claim:For

15 are I-Claim:For

16 significant I-Claim:For

17 in I-Claim:For

18 the I-Claim:For

19 future I-Claim:For

20 life I-Claim:For

21 of I-Claim:For

22 all I-Claim:For

23 students I-Claim:For

24 . O

25 What B-Premise:-1:Support

26 we I-Premise:-1:Support

27 acquired I-Premise:-1:Support

28 from I-Premise:-1:Support

29 team I-Premise:-1:Support

30 work I-Premise:-1:Support

31 is I-Premise:-1:Support

32 not I-Premise:-1:Support

33 only I-Premise:-1:Support

34 how I-Premise:-1:Support

35 to I-Premise:-1:Support

36 achieve I-Premise:-1:Support

37 the I-Premise:-1:Support

38 same I-Premise:-1:Support

39 goal I-Premise:-1:Support

40 with I-Premise:-1:Support

41 others I-Premise:-1:Support

42 but I-Premise:-1:Support

43 more I-Premise:-1:Support

44 importantly I-Premise:-1:Support

45 , I-Premise:-1:Support

46 how I-Premise:-1:Support

47 to I-Premise:-1:Support

48 get I-Premise:-1:Support

49 along I-Premise:-1:Support

50 with I-Premise:-1:Support

51 others I-Premise:-1:Support

52 . O
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Figure 3.1: Corpus Structure (from Eger et al. [10])

Stab and Gurevych [42] has provided the dataset and the train-set, development-set, and
test-set splits consisting of 1,587 paragraphs totalling 105,988 tokens in the train-set and 449
paragraphs with 29,537 tokens in the test-set1. The development set has 12,657 tokens available
in 199 paragraphs. In the essay version of the corpus, there are 285 essays in the train-set. The
development and the test set have 35 and 79 essays, respectively.

Figure 3.1, taken from Eger et al. [10], shows two representations of an essay. In the upper
part of the figure, the argumentation structure can be viewed as a forest with each tree rooted
by a green circle (MC1, MC2) representing the author’s major claim. C1, C2, C3 are the claims.
They are connected to all of the major claims with either ‘for’ (solid line) or ‘against’ (dotted
line) relations. P1 to P6 are all of the premises where each premise is related to exactly one
claim or premise. Premises have either ‘support’ or ‘attack’ relations to the claims or other
premises. The lower part of the figure represents the text that is the input to the model. All of
the blue squares refer to non-argumentative components. One important piece of information
is that the argumentation structure is completely contained in the paragraph except for some
relations from claims to major claims which are not in the same paragraph. We have extracted
the dataset at the essay, paragraph and sentence levels for our task.

We have observed that the PE corpus is imbalanced, both component and stance-wise.
There are 16,332 claim, 47,683 premise, 34,124 non-argumentative tokens and only 7,849
major claim tokens in the corpus. We further look for stances and their number in the corpus.

1This differs slightly from what is detailed in Eger et al. [10]
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Table 3.1: PE Corpus Statistics

Component Quantity % Stance Quantity %
Major Claim 7,849 7.41

Claim 16,332 15.41
For 13,536 82.88
Against 2,796 17.12

Premise 47,683 44.99
Support 45,162 94.71
Attack 2,521 5.29

BIO Label Quantity %
Beginning (B) 4302 4.06
Continuation (I) 67562 63.74
Non-argumentative (O) 34,124 32.20
Total 105,988

Out of 47,683 premise tokens, 45,162 tokens have ‘support’ stances and only 2,521 tokens have
‘attack’ stances. Similarly, 13,536 claim tokens have a ‘for’ relation and only 2,796 tokens have
an ‘against’ relation with major claims. A summary of these corpus statistics is provided in
Table 3.1

3.2 New Problem Formulation

Sequence labeling is the task where, given a sequence of observations, we predict a class
label for each observation. Some of the examples of the sequential data are textual streams,
audio and video clips, time-series data, etc. As sentences, paragraphs, essays, or any other
type of text can be represented and interpreted as a sequence of words, sequence tagging is
very popular and common in the Natural Language Processing field. We are addressing the
argumentation mining problem as a sequence labeling task, classifying each word or token as
beginning argumentative / continuation argumentative / non-argumentative, premise / claim /
major claim, support / attack, for / against, and the distance between the current component
and the component it relates to. The maximum and minimum distances from premise to claim
or premise suggested in Eger et al. [10] are +11 and -11, respectively.

For the sequential representation of the words, LSTM is a popular choice. After getting
the representation from the word embedding layer, words are fed according to their position
to the LSTM which processes each word sequentially (see Section 2.2). Thus, it generates a
word sequence representation of a sentence, paragraph or even longer sequence such as essays
by observing each previous word’s sequence representation and generating a representation for
the present word.

To integrate all of the sub-problems (argumentative and non-argumentative unit classifi-
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cation; major claim, claim, and premise component classification; relation identification, and
distance between 2 entities) into a single task, we construct a binary vector of size 33 for our
target labels. Figure 3.2 is an example of this new problem representation where we combine
component and relational units. Thus, we have constructed a dense unified representation of
the argumentation mining problem. By formulating the argumentation mining task as a multi-
label problem, we do not have to think of separated and decoupled solutions for each of the
subtasks. Here the columns represent different components related to argumentative units. We
took some sample tokens from one of the paragraphs in the PE dataset where the author is
concluding the section with his/her major claims. The value ‘1’ represents that the token be-
longs to that particular (non-)argumentative unit or in the case of argumentative components,
the token is the continuation or beginning of that component; ‘0’ indicates otherwise. Figure
3.2 only represents the first 10 columns. Some of the preliminary experiments where we have
tested our unified representation for only the components and stance classifications (while not
considering the distance) use this 10 labels (see Tables 4.1, 4.2, 4.3). However, all the final
experiments have the distance metric and the binary vector has the size of 33 dimensions in-
stead of 10. If the vector is representing a premise then the corresponding appropriate distance
position will also contain ‘1’ (between -11 to +11).

3.3 Neural Architecture and Hyper-Parameters

Figure 3.3 represents our final argumentation model architecture (Unified-AM) which we have
created for detecting argumentation structures. The figure includes mixed embedding but in
the experimental analysis we have also experimented without the pre-trained mixed embed-
ding and trained a plain embedding layer instead. Here, we describe the final model. Our
final model architecture includes: stacked embedding, axial positional embedding, multi-head
attention layer, a 2-layered biLSTM and the final linear layer. The output of the model is opti-
mized with BCEWithLogitsLoss. We have implemented an interpretation function to represent
our multi-label outputs from the Unified-AM model. Section 3.4 describes this function. For
its capability of retaining long-distance information from sequential texts, we use biLSTM in
sentence, paragraph and essay levels for the argumentation mining task. We have determined
the number of layers by using a trial and error methodology, i.e., we have tried two layers of
biLSTM with one linear layer, one biLSTM layer with one linear layer, and so on. We have
found one linear layer and two biLSTM layers achieve the best accuracy. Throughout all of
our experiments (from base architecture to the final architecture) we use a consistent set of hy-
perparameter values for different parts of the architecture. After trying several hyperparameter
values for each of the different components we have chosen the final values for maintaining



Chapter 3. Methodology 21

Token O B I MC Cl P Sup For At Ag
we 0 0 1 1 0 0 0 0 0 0

should 0 0 1 1 0 0 0 0 0 0
attach 0 0 1 1 0 0 0 0 0 0
more 0 0 1 1 0 0 0 0 0 0

importance 0 0 1 1 0 0 0 0 0 0
to 0 0 1 1 0 0 0 0 0 0

cooperation 0 0 1 1 0 0 0 0 0 0
during 0 0 1 1 0 0 0 0 0 0

primary 0 0 1 1 0 0 0 0 0 0
education 0 0 1 1 0 0 0 0 0 0

. 1 0 0 0 0 0 0 0 0 0

Figure 3.2: Example of the New Compact Representation of the Argumentation Problem (with-
out the 23 distance items). O: Non-Argumentative Token, B: Beginning of Argument Com-
ponent, I: Continuation of Argument Component, MC: Major Claim Component, Cl: Claim
Component, P: Premise Component, Sup: Support Relation Identifier, For: For Relation Iden-
tifier, At: Attack Relation Identifier, Ag: Against Relation Identifier

consistency among all the experiments. We use dropout values of 0.5 for the linear layer, and
0.65 for the biLSTM layer of our architecture. We use the default dropout value (0.0) for the
multi-head attention layer. We do not use any type of activation function in-between the layers.
A learning rate of 0.001 has been used in all of the experimental design stages. The Adam op-
timizer is used throughout. During training, we have used random shuffling for all of the final
experiments. We have trained our model around 1000-1100 epochs for all of the experiments
except the data augmentation experiment (see Tables 4.9, 4.10). For determining the default
training epochs (1000-1100) we have closely observed the development set accuracy value af-
ter every 5 epochs. If after some epochs the development set accuracy stops increasing or starts
fluctuating somewhat between a small range of accuracy values, we have stopped the training
procedure. We also observe the training loss and find that when it reaches around 0.0005 loss
value, the model has the highest development set accuracy. If we further train and decrease the
loss value, it does not help to improve the accuracy value of the development set. As we have
also increased the original PE corpus by augmenting the data in our augmentation experiments
(see Section 4.5), we also increase the training epochs to reach around the 0.0005 training loss
which has given us improvements regarding the C-F1, R-F1 and F1 scores.
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Figure 3.3: Unified-AM: Final Argumentation Model Architecture

3.4 Interpretation Function for the Multi-label Outputs of
the Model

We have formulated the argumentation problem in a unified way. As a result, it has become
a multi-class, multi-label problem. As it becomes a multi-label problem when we create a
unified representation, we just want to choose the index for each of the categories that has the
highest logit value in that specific category (components, stances, and distance). For this, we
have created an interpretation function. Figure 3.4 represents our interpretation function steps
applied to our model outputs.

3.5 Post-Processing

To calculate the argumentative spans located in the corpus we have done some post process-
ing steps after applying the interpretation function on our model logits. Whenever the model
has predicted one argumentative span, we have checked the entire span (each token or word
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Figure 3.4: Interpretation Function for Our Model Output Values
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Figure 3.5: Post Processing Steps for Finalizing Spans

available in that particular span) and tagged that span as an argumentative component which
has the highest number of predictions. Figure 3.5 illustrates the post processing steps for the
argumentation detection task.

3.6 Evaluation Metrics

We have used the same evaluation metrics that have been used by Eger et al. [10] to compare
our model’s performance with their models. First, we have described the true positive (TP),
false positive (FP), false negative (FN), and the true negative (TN) components.

True positive (TP): A true positive is the model’s prediction where it correctly predicts the
positive class.

True negative (TN): A true negative is the model’s prediction where it correctly predicts
the negative class.

False positive (TN): A false positive is the model’s prediction where it incorrectly predicts
the positive class.

False negative (TN): A false negative is the model’s prediction where it incorrectly predicts
the negative class.

Based on these components (TP, FP, FN), the evaluation metrics (accuracy, precision,
recall, and F1 score) that we have used to measure the performance of our model are given
below.

Precision =
TP

TP + FP
(3.1)

Recall =
TP

TP + FN
(3.2)

F1 =
2 ∗ Precision × Recall

Precision + Recall
(3.3)
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Accuracy: We have also measured accuracy. Accuracy is defined as the number of correct
predictions divided by the total number of predictions. We have calculated the accuracy score
at the token or word level.



Chapter 4

Experiments and Analysis of Results

In this chapter, we present our results and experiments in a bottom-up style, starting with a base
architecture to which we make a series of additions, since we want to discuss the motivation
for these additions. We provide at each stage the performance increase given by that addition.
We compare the final model’s performance with that achieved by Eger et al. [10], the state of
the art prior to this thesis.

4.1 Experiment with Base architecture

In the first experiment, we do not consider using any pre-trained word embedding and have
trained an embedding layer initialized with random values with the newly created compact
representation of the argumentation task. First, a few tables (Tables 4.1, 4.2, and 4.3) contain
results where we do not consider the distance prediction problem and we have represented the
argumentation problem with only the first 10 labels (see Figure 3.2). The base architecture
is composed of the embedding layer, two layers of biLSTM, and one linear layer. We have
measured accuracy at the token level. Our simple model architecture has achieved an accuracy
of 72.58% where we did not consider the distance aspect of the problem (see Figure 3.2).

The results related to the experiment indicates that when we use the unified representation
of the problem where we have represented both components and relations, it does not hurt the
token level accuracy. Rather, the novel unified representation motivates us to carry on further
experiments that we have described in the next sections.

To further support our claim that the new problem representation is an important reason
to solve the entity and relation classification subtasks in a unified manner, we were motivated
to investigate the use of the new representation at the sentence level since this decouples the
interaction that happens when solving at the paragraph level. The accuracy declines to 66.01%.
The primary reason for the decline is argumentation structures are contained at the single para-

26
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Table 4.1: Results of the Experiments on Paragraph Level with the Base Architecture and the
Stacked Pre-trained Embedding

Paragraph Level

Embedding Model Token Accuracy

Embedding Layer
(No Pre-trained

Embedding Used)

biLSTM
(2 Layers) 72.58%

Linear
(1 Layer)

Flair Stacked Embedding
(Standard FastText Embedding

and Byte-Pair Embedding)

biLSTM
(2 Layers) 79.17%

Linear
(1 Layer)

graph level (with the exception of some claim to major claim relations) and relations are only
sometimes contained in a single sentence.

4.2 Addition of Stacked Embedding

In the second experiment, the embedding layer in the base architecture is replaced with a
stacked embedding. Akbik et al. [2] has developed an NLP framework where we can combine
different types of embeddings. For our task, we use the memory-efficient stacked embedding
class from the Flair framework for combining FastText and Byte-pair embedding [2]. As our
corpus contains unknown words in the test set and the whole corpus contains many suffix and
prefix dependent words, we have used these two types of embedding together.

We obtain an accuracy of 79.17%. The only difference here is the addition of the stacked
embedding class and the mixing of two pre-trained embeddings. FastText and Byte-pair em-
beddings jointly handled the out of vocabulary words in our test set. Also, it has produced
a richer representation for the tokens available in the PE dataset. We do not fine-tune these
two pre-trained embedding classes for our argumentation task. The results of the first two
experiments are summarized in Table 4.1.

4.3 Additional Linguistic Information

Having had the successes described above, we looked for other aspects of the problem that
could be improved upon. Noting that the major claims are the roots of the argumentation
tree structure and because the first experiment pointed to how important is the interaction of
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learning the different aspects of the problem, it was thought that improving on the recognition
of major claims would help to improve the recognition of claims because they are related. This
would then further improve the recognition of premises. Taking inspiration from the addition
of linguistic information done by Ahmed et al. [1] in their work, we have considered adding
this type of knowledge. We have observed (as did Kuribayashi et al. [18], and Persing and Ng
[35]) that many major claims, claims, and premises are prefaced by a reasonably small set of
n-grams. An n-gram is a continuous sequence of n words. Some examples of the n-grams that
are found in the PE corpus are: ‘I firmly believe that’, ‘In conclusion ,’, ‘Hence ,’, and ‘Firstly
,’. We have presented all of the 108 n-grams that we have collected from the train-set for all
the experiments related to n-grams in Appendix B.

We have experimented with a joint architecture where the first model attempts to detect
only the n-gram, major claim, and non-argumentative tokens. We have hypothesized that, if
we detect the major claim tokens together with the collected n-gram tokens and separate the
prediction of the two other argumentative components (premise and claim) by using a second
model, it would help the model distinguish between the root (major claim tokens) and the other
argumentative components observed in the PE corpus. We have collected the n-gram features
for major claims, premises, and claims and added the subtasks of predicting n-grams to improve
accuracy on entity identification. For this experiment, the target labels for our first model
become: Y = [N-gram for major claim, Non-argumentative, Major Claim, Premise/Claim flag,

N-gram for premise and claim] (total 5 target labels). This model, a simple biLSTM, easily
learns the n-grams: accuracy for major claim n-gram is 98.61%, for premise and claim (one
label for a merged class) the accuracy is 99.74%. In this first model, a ‘premise-claim flag’ label
is used to separate both premise and claim tokens from major claim tokens. We reintroduce
premise and claim labels separately in a second model. Instead of labelling the n-gram tokens
as non-argumentative tokens, we introduce n-gram tokens as a separate class.

The target labels for this second model are: Y = [N-gram for major claim, Non-argumentative,

Major Claim, Premise/Claim flag, N-gram for premise and claim, Claim, Premise, Support,

For, Attack, Against] (11 target labels). We create the joint model in two ways. First, we take
the first model’s biLSTM outputs and concatenate it with the second model’s biLSTM output
prior to the linear layer. The accuracy score is 73.98%. This low accuracy may be due to
information loss since concatenation doubles the size of the vector which is then projected into
a lower dimensional space by the linear layer. To overcome this information loss, we replace
concatenation with a summation operation in a second joint model. The accuracy is increased
to 77.64%, but is still below that obtained by our basic architecture with stacked embedding
(see Table 4.1).

Although it is expected that introducing information about the n-grams for major claims
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Table 4.2: Experiment on Joint Architecture and Introduction of N-gram Prediction as Subtasks

Joint Architecture on Paragraph Level
Combination Token Wrong MC

method Accuracy Predictions
Concatenation 73.98% 788

Summation 77.64% 658

would improve the major claim token prediction accuracy, it actually decreases. The best
wrong major claim predictions is for the second model: 658. The basic architecture with
stacked embedding (see Section 4.2) achieves better results for major claim tokens—618 wrong
predictions for major claims (1516 correct out of 2134 major claim tokens)—and overall accu-
racy. Table 4.2 provides a summary of this information for these two joint models.

Although the joint model idea does not result in the anticipated improvements, we are still
committed to incorporate the n-gram information (next sections have addressed this problem
by working on the model architecture by introducing attention module). We now move in the
next sections to the last addition to the model, which gives the final architecture (see Figure
3.3), and the analysis of the performance of this final model.

4.4 Addition of Multi-Head Attention

In our next experiment we introduce a multi-head attention module (see Section 2.4). Experi-
ments with a full Transformer layer produced poorer results. We use axial positional embed-
ding for the positional information [13, 17]. With the multi-head attention module we have
returned to using our single level architecture scheme of stacked embedding, biLSTM, and
a final fully connected linear layer (see Figure 3.3) rather than using the just discussed joint
model in the previous section. Attention mechanism has proven to be very effective for solv-
ing many types of natural language tasks (machine translation, natural language inference,
question-answering, text-generation, etc.). We have tried experimenting with the attention
module to represent specifically the n-gram features which in turn will help to increase the
accuracy of detecting the major claim tokens. We have experimented to construct different
representations for our word vectors to feed the query, key and value matrices of our attention
module (see Section 2.4 for the description of the transformer). Our goal in this particular case
is to induce the model with n-gram features specifically for better prediction on the detection
of the major claim tokens. We only consider the stacked embedding representation of the word
tokens which are contained in n-grams. For other word tokens we use 0 valued vectors. We
feed these representations to our attention module to persuade the model to focus on the word
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Table 4.3: Induced Methodology For Increasing Major Claim Prediction Accuracy

Operation
difference

Extra
biLSTM

used

Multi-
head

attention
integration

Major
Claim
correct

predictions

Overall
token
level

accuracy

Training
loss

Summation No
After

biLSTM 1445 74.68 0.0004

Concatenation No
After

biLSTM 1495 77.07 0.0004

Concatenation No
After

biLSTM 1371 77.24 0.0002

Summation Yes
Before

biLSTM 1490 76.25 0.0003

Concatenation Yes
Before

biLSTM 1491 75.21 0.0002

tokens which represent our hand-crafted n-gram features only. Table 4.3 contains accuracy
information for different operations related to the above experiment.

We speculate that the reason we do not have any significant improvements on the major
claim detection tasks by this induced methodology is because major claim tokens are relatively
rare in the whole corpus. About only 7.40% of the whole corpus represent the major claim
tokens which make the prediction task difficult for this particular token even after injecting
extra relevant n-gram information that has been considered useful. The more we train our
argumentation model it directs itself toward gaining higher overall accuracy. We address this
relatively low frequency of the major claim tokens later in Section 4.5. But before doing that
we now discuss the experiments done on the final argumentation model architecture.

In the next experimental setup, we have used the multi-head attention module and have fed
the stacked embedding representation for all tokens to the query, key and value matrices that
we are using for solving the argumentation mining task instead of considering the persuasive
methodology for the major claim task discussed previously (i.e., only using the stacked repre-
sentation for the hand-crafted features and representing other words as 0-valued vectors). For
our 400-dimension embedding class we use four heads for the multi-head attention layer for
this experiment. We have called this final model architecture, Unified-AM (see Figure 3.3).
Regarding this problem our target label vector becomes: Y = [Non-Argumentative, Beginning,

Continuation, Major Claim, Claim, Premise, Support, For, Attack, Against, (-11 to +11)] (33
labels). We have used the distance values from -11 to +11 that were observed by Eger et al.
[10] in the PE data set.

With this final architecture, we are in a position to begin comparing our results with those
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Table 4.4: Experiment on Paragraph Level with the Integration of Multi-head Attention
(Unified-AM) Compared with LSTM-ER [10]

Paragraph Level

Model Token C-F1 C-F1 R-F1 R-F1 F1 F1
Accuracy (100%) (50%) (100%) (50%) (100%) (50%)

Unified-AM 66.79% 68.88 78.22 51.14 56.41 60.00 67.32
LSTM-ER 61.67% 70.83 77.19 45.52 50.05 55.42 60.72

given by Eger et al. [10] which until now have been state-of-the-art. Before presenting the re-
sults of this experiment, an important difference between the results presented in the remainder
of the thesis and those given earlier needs to be pointed out. Previously, “token level accu-
racy” meant the correct prediction of the 10 component labels only, i.e., were the words in the
text given the correct major claim, claim, or premise label, and the correct stance labels for
claim (‘for’ and ‘against’) and premise (‘support’ and ‘attack’). This labelling was considered
sufficient to make some decisions in the early architecture design development. Henceforth,
“token level accuracy” will mean the correct prediction of the complete labels as annotated in
the corpus. This now includes the distance metric. In addition, new scores are also computed:
C-F1 100% and R-F1 100%. These scores represent the F1-scores of predicted spans of text
that perfectly match the test-set spans for component labels (Beginning, Continuation, Major
Claim, Claim, and Premise) and relation labels (stance and distance), respectively, where true
positives are defined as the set of predicted spans which perfectly match the true spans. C-F1
50% and R-F1 50% are the respective scores for predicted spans that have at least a 50% over-
lap with the test-set spans, that is, true positives are defined as the set of predicted spans which
overlap the true spans at least 50%. The meaning of these scores correspond to that given by
Eger et al. [10].

This final architecture, Unified-AM, achieves token level accuracy of 66.79% for the argu-
mentation mining task on the paragraph-level. Table 4.4 summarizes the result for this experi-
ment, including the F1 score for the component and relation tasks, and a global F1 score. The
results from Eger et al. [10] have been included for comparison. Now, compared to the Eger et
al. decoupled method for computing the relation identification [10], the unified representation
of the problem in Unified-AM couples this task with the component identification task and
leads to the better performance. Table 4.4 shows the results.

We have also experimented on the essay-level of the argumentation corpus and our Unified-
AM model has achieved the highest token level accuracy, C-F1, and R-F1 scores. The exper-
iments on the essay version of the corpus show the robustness of the unified representation of
all the subtasks with our model. When we experiment on the essay version of the corpus, our
scores and results have not decreased like the LSTM-ER model and its decoupled solution.
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Table 4.5: Experiment on Essay Level with the Integration of Multi-head Attention (Unified-
AM) Compared with LSTM-ER [10]

Essay Level

Model Token C-F1 C-F1 R-F1 R-F1 F1 F1
Accuracy (100%) (50%) (100%) (50%) (100%) (50%)

Unified-AM 62.88% 67.78 76.20 48.24 52.49 58.01 64.35
LSTM-ER 54.17% 66.21 73.02 29.56 32.72 40.87 45.19

Table 4.6: Precision, Recall and F1-score for the Argumentation Mining Classes for Unified-
AM (Paragraph Level)

Class Precision Recall F1 Score Token Percentage
(Approx)

Non-Argumentative 88.38 88.27 88.33 32.20
Major Claim 73.87 74.18 74.02 7.41

Claim 65.37 58.05 61.48 15.41
Premise 88.01 90.87 89.42 44.99
Support 86.79 89.69 88.22 42.61

For 60.96 57.05 58.94 12.77
Attack 32.52 26.77 29.37 2.38
Against 60.81 29.97 40.15 2.64

Table 4.5 summarizes the results for this experiment.

In Table 4.6, we present individual precision, recall and F1 scores for the unified represen-
tation of the components and relations that are available in the PE corpus. We observe low
precision and recall scores for the claim tokens even though the class is not the least frequent
one in the PE corpus. A similar phenomenon was noted by the creators of the corpus: the
lowest agreement score among the human annotators for the argument component types (Ma-
jor Claim, Claim, Premise) is also for Claim [42]. We have observed the lowest recall value
for the ‘attack’ component. This component is only about 2% of the whole training dataset.
During the training procedure, the model has found very few example sentences where this
component occurs and as a result the false negative rate is high for the ‘attack’ component.
Similarly Table 4.7 shows individual precision, recall and F1 score for the essay version of the
corpus.

We now turn to the final argumentation model performance improvement. Recalling that
the previous modifications to the model architecture to induce detection of the major claim
tokens did not work, we now turn to augmenting the corpus to increase the frequency of this
component type.
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Table 4.7: Precision, Recall and F1-score for the Argumentation Mining Classes for Unified-
AM (Essay Level)

Class Precision Recall F1 Score Token Percentage
(Approx)

Non-Argumentative 89.26 91.27 90.25 32.20
Major Claim 70.34 72.05 71.19 7.41

Claim 56.11 49.34 52.51 15.41
Premise 87.18 88.32 87.74 44.99
Support 85.09 88.35 86.69 42.61

For 56.41 50.76 53.43 12.77
Attack 27.08 7.10 11.25 2.38
Against 21.01 10.23 13.76 2.64

4.5 Data Augmentation Experiment on the Paragraph Ver-
sion of the PE Corpus

In this experimental setup, we have augmented the PE dataset (which consists of paragraphs)
in two ways. Below, we describe the two different augmentation techniques that we have used
to augment the PE corpus. We also compare the performance of Unified-AM on both of the
augmented and original corpora.

4.5.1 Augmentation with New Paragraphs

We have augmented the paragraph-level corpus with new paragraphs. These new paragraphs
are copies of those paragraphs that contain one of the 108 n-gram tokens that occur immediately
before the major claim tokens (see Appendix B) but have had the n-gram randomly swapped
with a same size n-gram token. This augmentation increases the number of major claim tokens
in the whole corpus but with different introductory n-grams. We have hypothesized that if
we increase the root element, i.e., the major claim components of the corpus, by swapping
frequently occurring n-gram tokens that appear immediately before the component, it would
help the model to accurately detect this type of component and differentiate between the three
types of components that are available in the PE corpus. We have shown below an example of
the original paragraph and the augmented paragraph after applying the described augmentation
method:

Original Paragraph: "It is always said that competition can effectively promote the devel-
opment of economy . In order to survive in the competition , companies continue to improve
their products and service , and as a result , the whole society prospers . However , when we
discuss the issue of competition or cooperation , what we are concerned about is not the whole



Chapter 4. Experiments and Analysis of Results 34

society , but the development of an individual’s whole life . I firmly believe that we should
attach more importance to cooperation during primary education."

Augmented Paragraph: "It is always said that competition can effectively promote the
development of economy . In order to survive in the competition , companies continue to
improve their products and service , and as a result , the whole society prospers . However ,
when we discuss the issue of competition or cooperation , what we are concerned about is not
the whole society , but the development of an individual’s whole life . I truly believe that we
should attach more importance to cooperation during primary education."

Description of the Augmentation Process: In this particular example we have substituted
the n-gram "I firmly believe that" with an equal size randomly chosen n-gram "I truly believe
that" from our collected n-gram list. The words following in that particular sentence are major
claim tokens. Here, the n-grams consist of 4 words.

4.5.2 Augmentation of New Sentence as Paragraphs

In this method, we only take the particular sentence which contains the n-gram tokens as well
as the major claim tokens to create a new sentence which will be treated as a separate paragraph
during the training phase. One example is shown below:

Original Paragraph: "It is always said that competition can effectively promote the devel-
opment of economy . In order to survive in the competition , companies continue to improve
their products and service , and as a result , the whole society prospers . However , when we
discuss the issue of competition or cooperation , what we are concerned about is not the whole
society , but the development of an individual’s whole life . I firmly believe that we should
attach more importance to cooperation during primary education."

Augmented Sentence as Paragraph: "I truly believe that we should attach more impor-
tance to cooperation during primary education."

Description of the Augmentation Process: Here, we have swapped the n-gram "I firmly
believe that" with the randomly chosen "I truly believe that" and created a paragraph of only
one sentence that contains major claim tokens after the n-gram. Both n-grams have 4 words.

4.5.3 Augmented Corpus Statistics and Results Comparison

Overall corpus statistics after augmentation are shown in Table 4.8. After creating the aug-
mented corpus, we have trained our Unified-AM model (see Figure 3.3) on both of the aug-
mented corpora. We have achieved highest token level accuracy on the paragraph-level argu-
mentation corpus. Previously, without augmentation, we have achieved 66.79% token level
accuracy on the PE dataset (see Table 4.4) and after applying the augmentation methodology
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Table 4.8: Augmented Corpus Statistics

Original Corpus (Paragraph level)
Total

Major Claim
Tokens

Total
Claim
Tokens

Total
Premise
Tokens

Total
Non-Argumentative

Tokens
Total New Paragraphs

7849 16332 47683 34124 -
Augmented Corpus (Addition of New Paragraphs)

Total
Major Claim

Tokens

Total
Claim
Tokens

Total
Premise
Tokens

Total
Non-Argumentative

Tokens
Total New Paragraphs

11794 18480 48168 42862 265
Augmented Corpus (Addition of New Sentence as Paragraphs)

Total
Major Claim

Tokens

Total
Claim
Tokens

Total
Premise
Tokens

Total
Non-Argumentative

Tokens
Total New Paragraphs

11650 16788 47683 35635 265

we have achieved the highest token level accuracy of 68.02%. Also, all other performance
measures have been improved significantly. We further worked on the paragraph-level aug-
mentation and trained it more (1500-1600 epochs). Table 4.9 shows the results related to the
augmented datasets. If we compare Unified-AM’s performance between the augmented cor-
pus and the original corpus (see Table 4.9), the model has much higher token level accuracy,
C-F1, R-F1, and F1 scores when we apply augmentation techniques on the training corpus. We
have reached the highest component C-F1(100%) score of 71.35% where Eger et al. [10] has
obtained 70.83%.

We present in Table 4.10, the token level improvements and compare them with the original
PE corpus results. In the test set, we have in total 2,134 major claim tokens, 4,238 claim tokens,
13,728 premise tokens, and 9,437 non-argumentative tokens. Our goal is to increase the major
claim tokens which can be considered as the root of the argumentation structure. The results
provided in Table 4.10 show the overall token level improvements that we get compared to
the original paragraph version of the PE corpus. These results indicate that both augmentation
techniques have significantly improved the previous predictions regarding the major claim,
claim, and premise tokens.
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Table 4.9: Experiment on the Augmented Corpus with the Integration of Multi-head Attention
(Unified-AM)

Original Paragraph Corpus

Model
Token

Accuracy
C-F1

(100%)
C-F1
(50%)

R-F1
(100%)

R-F1
(50%)

F1
(100%)

F1
(50%)

Unified-AM 66.79% 68.88 78.22 51.14 56.41 60.00 67.32
Augmented Corpus (Addition of New Paragraphs)

Model
Token

Accuracy
C-F1

(100%)
C-F1
(50%)

R-F1
(100%)

R-F1
(50%)

F1
(100%)

F1
(50%)

Unified-AM 67.02% 71.03 79.82 52.50 58.25 61.77 69.04
Augmented Corpus (Addition of New Paragraphs) Training Epochs: 1500-1600

Model
Token

Accuracy
C-F1

(100%)
C-F1
(50%)

R-F1
(100%)

R-F1
(50%)

F1
(100%)

F1
(50%)

Unified-AM 68.03% 71.35 80.21 54.27 59.46 62.81 69.83
Augmented Corpus (Addition of New Sentence as Paragraphs)

Model
Token

Accuracy
C-F1

(100%)
C-F1
(50%)

R-F1
(100%)

R-F1
(50%)

F1
(100%)

F1
(50%)

Unified-AM 66.85% 69.74 80.72 52.26 58.92 61.00 69.82

Table 4.10: Token level Comparison between the Original and the Augmented Datasets

Original Corpus (Paragraph level)
Correct

Major Claim
Tokens

Correct Claim Tokens
(with Stance: For, Against)

Correct Premise Tokens
(with Stance: Support, Attack

and Distance -11 to + 11)

Correct Non-
Argumentative

Tokens
1542 2057 7329 8217

Augmented Corpus (Addition of New Paragraphs)
Correct

Major Claim
Tokens

Correct Claim Tokens
(with Stance: For, Against)

Correct Premise Tokens
(with Stance: Support, Attack

and Distance -11 to + 11)

Correct Non-
Argumentative

Tokens
1633 2287 7612 8266
Augmented Corpus (Addition of New Paragraphs) Training Epochs: 1500-1600

Correct
Major Claim

Tokens

Correct Claim Tokens
(with Stance: For, Against)

Correct Premise Tokens
(with Stance: Support, Attack

and Distance -11 to + 11)

Correct Non-
Argumentative

Tokens
1597 2344 7956 8196

Augmented Corpus (Addition of New Sentence as Paragraphs)
Correct

Majo Claim
Tokens

Correct Claim Tokens
(with Stance: For, Against)

Correct Premise Tokens
(with Stance: Support, Attack

and Distance -11 to + 11)

Correct Non-
Argumentative

Tokens
1567 2120 7275 8153
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Figure 4.1: Comparison of Relation Classification Accuracy with Distance |d|

4.6 Error Analysis

We have done some error analysis and comparison among our neural architectures. The re-
sults obtained show how all the models perform on the argumentation task. The argumentation
model which consider subtasks of distance learning (total 33 labels), we observe a higher ac-
curacy of predicting longer distance in the paragraphs compared to the essays. Figure 4.1
shows the distance accuracy information. One of the key strategies that we have followed for
all of these experimental setups: We ensure the models share all of their learned parameters
while solving any particular subtask (component detection and labelling, relation classifica-
tion, or accurate distance prediction) of the main Argumentation Mining problem. This denser
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Table 4.11: Error Analysis and Comparison Between Our Three Models (False Positives +
False Negatives) on Original Paragraph Version of the Corpus

Number of Wrong Predictions
Major
Claim Claim Premise Relations Non

Argumentative
Trained

Embedding
+ biLSTM
+ LINEAR

1306 4011 4787 10004 3255

Pretrained
Stacked Embedding

(FastText + Byte-pair)
+ biLSTM
+ LINEAR

1176 3215 3122 7653 2120

Unified-AM 1111 3082 2953 7301 2202

representation of the whole argumentation task enables our neural models to share all of the
parameters while making predictions for each of the subtasks which has led to a high perfor-
mance. According to Eger et al. [10], around two-thirds of the relation distances have values
of -2, -1, and 1. Figure 4.1 compares the accuracy obtained by Eger et al. [10] with ours.
We observe that the LSTM-ER model’s probability of correctness given true distance is below
40% (no details regarding which version of the corpus they have used to compare relation clas-
sification accuracy with distance [10]) and it is below 20% when we observe distances which
are larger than 3. But in our case, we see above 50% accuracy for distances 1, 2, and 3 (on
the original paragraph corpus), and distances 1 and 2 (on the original essay corpus). Our fi-
nal model (see Figure 3.3) has higher accuracy regarding smaller distances but its prediction
accuracy declines as we observe larger distance values in the PE corpus. For our augmented
data experiment, we observe the highest accuracy on the distance prediction task over a longer
range. Our Unified-AM model maintains prediction accuracy of above 50% for distances 1, 2,
3, 4, and 5. The performance drops when we consider predicting distance values in the essay
version of the corpus. The reason is essays are much longer text sequences and that could affect
the learning of our Unified-AM model which is based on biLSTM. Longer sequence lengths
can cause the vanishing gradient problem [14] which makes it difficult for the model to learn
the specific subtask.

We compare the number of wrong-predictions between our pre-trained stacked embedding
model without multi-head attention (see Section 4.2), non-pre-trained embedding model (see
Section 4.1), and the final Unified-AM model (seeFigure 3.3). Table 4.11 represents error
analysis results for the non-argumentative units, argumentative components, and relations. For
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Table 4.12: Comparison between Unified-AMs with other models (which do not consider sub-
task 1) on Original Paragraph Version of the Corpus

Method ACTC
Macro MC Claim Premise

Joint-ILP 82.6 89.1 68.2 90.3
St-SVM-full 77.6 78.2 64.5 90.2

Joint-PN 84.9 89.4 73.2 92.1
Span-LSTM 87.3 - - -

Span-LSTM-Trans 87.5 93.8 76.4 92.2
BERT-Trans 88.4 93.2 78.8 93.1
Unified-AM 89.18 92.30 78.25 96.98

Table 4.13: F1 scores on the BIO labeling task

STag_BLCC LSTM-ER ILP HUB

Unified
AM

Original
Corpus

Unified
AM

Augmented
Paragraph

Training Time
(1500-1600

epochs)

Unified
AM

Augmented
Paragraph

Unified
AM

Augmented
Sentence

Essay 90.04 90.57 - - 90.52 - - -
Paragraph 88.32 90.84 86.67 88.60 89.69 89.88 90.40 89.46

each of the mentioned argumentative units we present the total number of errors (false negatives
+ false positives). For relations (support, attack, for, and against), we have combined the errors
from each class and report this combined value. There are somewhat fewer wrong predictions
when the stacked embedding is incorporated into the model. Without stacked embedding, the
total number of wrong predictions for all of the classes on the paragraph level is 23,363. With
the addition of stacked embedding the total number of wrong predictions becomes 17,286.
After using this pre-trained embedding, the error rate is reduced by 26.01%. The total number
of errors for the Unified-AM model is 16,649. The Unified-AM model further reduces the error
rate by 3.69%.

Recalling that subtask 1 of the argumentation mining problem is the separation of the ar-
gumentative text from the non-argumentative text (see Chapter 1), we compare Unified-AM’s
performance with some of the recent works where the output of subtask 1 of the argumentation
problem has already been obtained. We look for 100% accuracy of span detection (successful
segmentation of the argumentative text from the non-argumentative text) by Unified-AM and
only on those spans do we measure F1 values for individual component type identification to
compare our results with the other models (which assume subtask 1 is given). Lastly we calcu-
late the macro-F1 score. Table 4.12 contains the results. We obtain the highest macro-F1 score
of 89.18% when we do not consider subtask 1. We have the highest individual F1 score for
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Table 4.14: Individual F1 scores on the BIO labeling task

Beginning
(B)

F1 score

Continuation
(I)

F1 score

Non-Argumentative
(O)

F1 score

Macro
F1

Score
Augmented Corpus

(Addition of New Paragraphs) 87.19 94.81 89.20 90.40

Augmented Corpus
(Addition of New Paragraphs)
Training Epochs: 1500-1600

85.90 94.78 88.97 89.88

Augmented Corpus
(Addition of New Sentences

as Paragraphs)
85.21 94.55 88.62 89.46

the premise tokens (96.98%) which boosts the macro F1 score considerably.
For major claim, premise, and claim, there are two different tags in the PE corpus, B:

Beginning of a component and I: Continuation of a component. Non-Argumentative tokens
are tagged as ‘O’ in the BIO scheme. We compare the component segmentation task (subtask
1) results with other works that have been mentioned in Eger et al. [10]. Table 4.13 shows
the results between the models. We see that LSTM-ER has the highest macro-F1 score when
we consider only the BIO labeling task. We obtain a similar macro-F1 score for the essay
version of the PE corpus. In the original paragraph version of the PE corpus, we did not get the
highest score when we consider this subtask. When we analyze the BIO labeling score on the
augmented corpus, we find that if we train it for 1500-1600 epochs for which we get the highest
C-F1 and R-F1 scores (see Table 4.9), the BIO F1 score decreases. We individually observe the
F1 scores related to ‘B’ (Beginning), ‘I’ (Continuation) and ‘O’ (Non-Argumentative) and find
that training for more epochs actually decreases the F1 score related to ‘B’ significantly. The
other two components’ F1 score do not change much. For the default training epochs (1000-
1100), we obtain 90.40% macro-F1 score and the individual F1 score related to ‘B’ is 87.19%.
On the other hand, this F1 score related to the ‘B’ component decreases to 85.90% when we
train it for 1500-1600 epochs. The PE corpus does not contain that many ‘B’ components.
Only about 4.05% of the whole corpus (see Table 3.1) has this component and that could be
one of the reasons for the model to not get a high F1 score for this class while training for
more epochs. Because we are trying to solve all of the class labels together with our unified
representation and during training time, the model could get biased to reduce the loss and
increase the accuracy for the highly available components. Table 4.14 shows the individual
BIO labelling F1 scores on the paragraph version of the corpus.
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Conclusions and Future Work

5.1 Conclusions

In this research work, we show that rather than using a complex stacked architecture, as that
used by Eger et al. [10], for a problem which has different subtasks (where all the subtasks
are related to each other), we can have a compact and unified representation of all of the sub-
problems and can tackle it as a single problem with less complicated architectures. These sub-
tasks are: segmenting the argument components; labelling each argument component as Major
Claim, Claim, or Premise; determining which argumentation components are in a relationship
which has been given by a distance value in this corpus; and classifying the stance of the re-
lations between argument components. We have introduced a novel multi-label representation
for solving the argumentation mining task for one linguistic genre, persuasive essays, which is
exemplified by the Persuasive Essays (PE) corpus [42]. We have created a full representation
of all the sub-tasks with a 33-dimensional vector.

We obtain an improved performance over Eger et al. [10] in recognizing the argument
components and relations by jointly solving all of the subtasks. This improvement is achieved
by introducing the Flair stacked embedding [2] to represent the text input. In addition to the
biLSTM layers in the model, we introduce a multi-head attention layer to our final neural
architecture which leads us to the highest accuracy on both the paragraph-level and essay-level
versions of the PE corpus.

On the paragraph version of the PE corpus, we have the highest F1 score of 60% where
Eger et al. [10] has achieved 55% (see Table 4.4). We have obtained 58% F1 score on the
essay version of the corpus which has improved the previous result by 8 percentage points (see
Table 4.5).

Observing that the imbalanced corpus may be creating problems for this model to learn
certain underrepresented features of the corpus, we have used the standard technique of data
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Table 5.1: Summary of the State-of-the-art Results Obtain by the Unified-AM Model Archi-
tecture and Comparison with the LSTM-ER Model of Eger et al. [10]

Paragraph Corpus

Model
Token

Accuracy
C-F1

(100%)
C-F1
(50%)

R-F1
(100%)

R-F1
(50%)

F1
(100%)

F1
(50%)

Unified-AM 68.03% 71.35 80.21 54.27 59.46 62.81 69.83
LSTM-ER 61.67% 70.83 77.19 45.52 50.05 55.42 60.72

Essay Corpus

Model
Token

Accuracy
C-F1

(100%)
C-F1
(50%)

R-F1
(100%)

R-F1
(50%)

F1
(100%)

F1
(50%)

Unified-AM 62.88% 67.78 76.20 48.24 52.49 58.01 64.35
LSTM-ER 54.17% 66.21 73.02 29.56 32.72 40.87 45.19

augmentation to achieve further gains in performance. We have created two augmented ver-
sions of the PE training corpus by using different combinations of the n-grams that occur im-
mediately before approximately two-thirds of the major claim components (see Section 4.5).
The augmentations have been done on the paragraph version of the corpus. By using the aug-
mentation methodology, we further improve the Unified-AM model’s performance on the test
set. We have obtained the highest token level accuracy, C-F1, R-F1, and the global F1 score
(which is the combination of both C-F1 and R-F1 scores) on the paragraph version of the PE
corpus by applying the augmentation techniques.

There are some limitations with regards to the model and the unified representation pro-
posed here. In this thesis work, the argumentation structure prediction task is done in a su-
pervised way where we need to have an annotated corpus. Without any labelling, we would
be unable to train our model. Also, our novel unified representation is created specifically for
the PE corpus. Although this representation can be modified based on other corpora, we have
not tried our unified representation with other argumentation mining corpora that have become
available. We have introduced some of the new corpora related to argumentation mining in
Section 5.2.

We summarize the results our model architecture in Table 5.1. These new results are com-
pared with the performance of that of Eger et al. [10] showing that our model has obtained new
state-of-the-art results for all of the measures on both the paragraph and essay versions of the
PE corpus. Shared parameter values across different subtasks enhanced the accuracy score and
also the model’s capability for accurate detection of components, relations and distance in the
argumentation mining task.
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5.2 Future Works

In this section, we describe some of the future research works and ideas that can be imple-
mented to solve and detect argumentation structure contained in the texts.

5.2.1 Decoupled Solution Only to Detect Distance

We have introduced a novel multi-label representation for solving the argumentation task. Fu-
ture work can decouple this 33-length vector in a unique way to solve the distance prediction
task separately with the introduction of a second model. In this joint architecture, the first
model could be used and trained for detecting argumentative components and relations be-
tween them, the second model (can be a graph neural network [39], or a convolutional neural
network [16]) will be trained by extracting information of components and relations from the
first model to detect only the distance between the detected components.

5.2.2 Introduction of Graph Neural Network to Represent Distance

Introduction of graph neural networks to represent the textual distance [38, 44] can improve
the results further for detecting argumentation structure. We have observed relative distance
values from -11 to +11 in the PE corpus between premise to claim through a supporting or
attacking relation. If we can represent the whole argumentation problem separately as a graph
structure where premise to claim will have an edge with a particular type (support or attack)
during the training time, it can positively affect the learned parameter or weight values of the
main neural architecture. While evaluating our model on the test set, we will not use the graph
information (as it contains prediction labels as distance values). We will only let the main
neural architecture model, which has been trained with the extra graph-like label information
during the training step, to detect argumentation structure in the test corpus.

5.2.3 New Methodology for N-grams

We have tried several ways to incorporate information about certain n-grams (we have found a
total of 108 n-grams that occur frequently before the major claim spans) into the model. The
augmentation of the PE corpus on the paragraph level has led to the highest accuracy obtained
on the test set of the PE corpus. However, we also tried several other approaches 4.2 regarding
injecting the n-gram information into the model to boost the performance but it did not work
well. In future, research works and experiments can be carried out based on the n-gram tokens.
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The future research work can be based on collecting new n-gram tokens that occur before claim
and premise spans or injecting n-gram information in a different and more efficient way.

5.2.4 Future Research on Other Available Argumentation Mining Cor-
pus

Recently, Park and Cardie [29], Levy et al. [20], and Shnarch et al. [40] have published new
benchmark argumentation mining corpora which will help researchers in this particular field
to carry out further research and findings. Future work can include analysis, experiments, and
evaluation of the unified representation (or a slightly modified representation for the different
classes available in the new datasets) to solve the argumentation mining problem in these new
standardized corpora.

5.2.5 Contextual Embedding

Many robust and efficient transformer models like BERT [9], RoBERTa [22], and other con-
textual embeddings [36] can be used to represent the textual inputs for the argumentation task.
These bigger models may need fine-tuning for this downstream argumentation structure detec-
tion task.

5.2.6 Curriculum Learning

Curriculum learning (CL) [5] is a technique that can be used in the future research works to
train the existing (Unified-AM) or new models. CL learns from the easier to label data samples
progressing to the harder ones. CL has proven to be efficient and powerful to increase the
generalization and convergence rate of different types of models in different machine learning
fields (for example, in computer vision and natural language processing).
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Appendix A

An Example of an Annotated Essay

1 Should O

2 students O

3 be O

4 taught O

5 to O

6 compete O

7 or O

8 to O

9 cooperate O

10 ? O

11 It O

12 is O

13 always O

14 said O

15 that O

16 competition O

17 can O

18 effectively O

19 promote O

20 the O

21 development O

22 of O

23 economy O

24 . O

50
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25 In O

26 order O

27 to O

28 survive O

29 in O

30 the O

31 competition O

32 , O

33 companies O

34 continue O

35 to O

36 improve O

37 their O

38 products O

39 and O

40 service O

41 , O

42 and O

43 as O

44 a O

45 result O

46 , O

47 the O

48 whole O

49 society O

50 prospers O

51 . O

52 However O

53 , O

54 when O

55 we O

56 discuss O

57 the O

58 issue O

59 of O

60 competition O
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61 or O

62 cooperation O

63 , O

64 what O

65 we O

66 are O

67 concerned O

68 about O

69 is O

70 not O

71 the O

72 whole O

73 society O

74 , O

75 but O

76 the O

77 development O

78 of O

79 an O

80 individual O

81 ’ O

82 s O

83 whole O

84 life O

85 . O

86 From O

87 this O

88 point O

89 of O

90 view O

91 , O

92 I O

93 firmly O

94 believe O

95 that O

96 we B-MajorClaim
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97 should I-MajorClaim

98 attach I-MajorClaim

99 more I-MajorClaim

100 importance I-MajorClaim

101 to I-MajorClaim

102 cooperation I-MajorClaim

103 during I-MajorClaim

104 primary I-MajorClaim

105 education I-MajorClaim

106 . O

107 First O

108 of O

109 all O

110 , O

111 through B-Claim:For

112 cooperation I-Claim:For

113 , I-Claim:For

114 children I-Claim:For

115 can I-Claim:For

116 learn I-Claim:For

117 about I-Claim:For

118 interpersonal I-Claim:For

119 skills I-Claim:For

120 which I-Claim:For

121 are I-Claim:For

122 significant I-Claim:For

123 in I-Claim:For

124 the I-Claim:For

125 future I-Claim:For

126 life I-Claim:For

127 of I-Claim:For

128 all I-Claim:For

129 students I-Claim:For

130 . O

131 What B-Premise:-1:Support

132 we I-Premise:-1:Support
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133 acquired I-Premise:-1:Support

134 from I-Premise:-1:Support

135 team I-Premise:-1:Support

136 work I-Premise:-1:Support

137 is I-Premise:-1:Support

138 not I-Premise:-1:Support

139 only I-Premise:-1:Support

140 how I-Premise:-1:Support

141 to I-Premise:-1:Support

142 achieve I-Premise:-1:Support

143 the I-Premise:-1:Support

144 same I-Premise:-1:Support

145 goal I-Premise:-1:Support

146 with I-Premise:-1:Support

147 others I-Premise:-1:Support

148 but I-Premise:-1:Support

149 more I-Premise:-1:Support

150 importantly I-Premise:-1:Support

151 , I-Premise:-1:Support

152 how I-Premise:-1:Support

153 to I-Premise:-1:Support

154 get I-Premise:-1:Support

155 along I-Premise:-1:Support

156 with I-Premise:-1:Support

157 others I-Premise:-1:Support

158 . O

159 During B-Premise:-2:Support

160 the I-Premise:-2:Support

161 process I-Premise:-2:Support

162 of I-Premise:-2:Support

163 cooperation I-Premise:-2:Support

164 , I-Premise:-2:Support

165 children I-Premise:-2:Support

166 can I-Premise:-2:Support

167 learn I-Premise:-2:Support

168 about I-Premise:-2:Support
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169 how I-Premise:-2:Support

170 to I-Premise:-2:Support

171 listen I-Premise:-2:Support

172 to I-Premise:-2:Support

173 opinions I-Premise:-2:Support

174 of I-Premise:-2:Support

175 others I-Premise:-2:Support

176 , I-Premise:-2:Support

177 how I-Premise:-2:Support

178 to I-Premise:-2:Support

179 communicate I-Premise:-2:Support

180 with I-Premise:-2:Support

181 others I-Premise:-2:Support

182 , I-Premise:-2:Support

183 how I-Premise:-2:Support

184 to I-Premise:-2:Support

185 think I-Premise:-2:Support

186 comprehensively I-Premise:-2:Support

187 , I-Premise:-2:Support

188 and I-Premise:-2:Support

189 even I-Premise:-2:Support

190 how I-Premise:-2:Support

191 to I-Premise:-2:Support

192 compromise I-Premise:-2:Support

193 with I-Premise:-2:Support

194 other I-Premise:-2:Support

195 team I-Premise:-2:Support

196 members I-Premise:-2:Support

197 when I-Premise:-2:Support

198 conflicts I-Premise:-2:Support

199 occurred I-Premise:-2:Support

200 . O

201 All B-Premise:-3:Support

202 of I-Premise:-3:Support

203 these I-Premise:-3:Support

204 skills I-Premise:-3:Support
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205 help I-Premise:-3:Support

206 them I-Premise:-3:Support

207 to I-Premise:-3:Support

208 get I-Premise:-3:Support

209 on I-Premise:-3:Support

210 well I-Premise:-3:Support

211 with I-Premise:-3:Support

212 other I-Premise:-3:Support

213 people I-Premise:-3:Support

214 and I-Premise:-3:Support

215 will I-Premise:-3:Support

216 benefit I-Premise:-3:Support

217 them I-Premise:-3:Support

218 for I-Premise:-3:Support

219 the I-Premise:-3:Support

220 whole I-Premise:-3:Support

221 life I-Premise:-3:Support

222 . O

223 On O

224 the O

225 other O

226 hand O

227 , O

228 the B-Premise:1:Support

229 significance I-Premise:1:Support

230 of I-Premise:1:Support

231 competition I-Premise:1:Support

232 is I-Premise:1:Support

233 that I-Premise:1:Support

234 how I-Premise:1:Support

235 to I-Premise:1:Support

236 become I-Premise:1:Support

237 more I-Premise:1:Support

238 excellence I-Premise:1:Support

239 to I-Premise:1:Support

240 gain I-Premise:1:Support
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241 the I-Premise:1:Support

242 victory I-Premise:1:Support

243 . O

244 Hence O

245 it O

246 is O

247 always O

248 said O

249 that O

250 competition B-Claim:Against

251 makes I-Claim:Against

252 the I-Claim:Against

253 society I-Claim:Against

254 more I-Claim:Against

255 effective I-Claim:Against

256 . O

257 However O

258 , O

259 when B-Premise:2:Support

260 we I-Premise:2:Support

261 consider I-Premise:2:Support

262 about I-Premise:2:Support

263 the I-Premise:2:Support

264 question I-Premise:2:Support

265 that I-Premise:2:Support

266 how I-Premise:2:Support

267 to I-Premise:2:Support

268 win I-Premise:2:Support

269 the I-Premise:2:Support

270 game I-Premise:2:Support

271 , I-Premise:2:Support

272 we I-Premise:2:Support

273 always I-Premise:2:Support

274 find I-Premise:2:Support

275 that I-Premise:2:Support

276 we I-Premise:2:Support
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277 need I-Premise:2:Support

278 the I-Premise:2:Support

279 cooperation I-Premise:2:Support

280 . O

281 The O

282 greater O

283 our O

284 goal O

285 is O

286 , O

287 the O

288 more O

289 competition O

290 we O

291 need O

292 . O

293 Take B-Premise:1:Support

294 Olympic I-Premise:1:Support

295 games I-Premise:1:Support

296 which I-Premise:1:Support

297 is I-Premise:1:Support

298 a I-Premise:1:Support

299 form I-Premise:1:Support

300 of I-Premise:1:Support

301 competition I-Premise:1:Support

302 for I-Premise:1:Support

303 instance I-Premise:1:Support

304 , I-Premise:1:Support

305 it I-Premise:1:Support

306 is I-Premise:1:Support

307 hard I-Premise:1:Support

308 to I-Premise:1:Support

309 imagine I-Premise:1:Support

310 how I-Premise:1:Support

311 an I-Premise:1:Support

312 athlete I-Premise:1:Support
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313 could I-Premise:1:Support

314 win I-Premise:1:Support

315 the I-Premise:1:Support

316 game I-Premise:1:Support

317 without I-Premise:1:Support

318 the I-Premise:1:Support

319 training I-Premise:1:Support

320 of I-Premise:1:Support

321 his I-Premise:1:Support

322 or I-Premise:1:Support

323 her I-Premise:1:Support

324 coach I-Premise:1:Support

325 , I-Premise:1:Support

326 and I-Premise:1:Support

327 the I-Premise:1:Support

328 help I-Premise:1:Support

329 of I-Premise:1:Support

330 other I-Premise:1:Support

331 professional I-Premise:1:Support

332 staffs I-Premise:1:Support

333 such I-Premise:1:Support

334 as I-Premise:1:Support

335 the I-Premise:1:Support

336 people I-Premise:1:Support

337 who I-Premise:1:Support

338 take I-Premise:1:Support

339 care I-Premise:1:Support

340 of I-Premise:1:Support

341 his I-Premise:1:Support

342 diet I-Premise:1:Support

343 , I-Premise:1:Support

344 and I-Premise:1:Support

345 those I-Premise:1:Support

346 who I-Premise:1:Support

347 are I-Premise:1:Support

348 in I-Premise:1:Support
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349 charge I-Premise:1:Support

350 of I-Premise:1:Support

351 the I-Premise:1:Support

352 medical I-Premise:1:Support

353 care I-Premise:1:Support

354 . O

355 The O

356 winner O

357 is O

358 the O

359 athlete O

360 but O

361 the O

362 success O

363 belongs O

364 to O

365 the O

366 whole O

367 team O

368 . O

369 Therefore O

370 without B-Claim:For

371 the I-Claim:For

372 cooperation I-Claim:For

373 , I-Claim:For

374 there I-Claim:For

375 would I-Claim:For

376 be I-Claim:For

377 no I-Claim:For

378 victory I-Claim:For

379 of I-Claim:For

380 competition I-Claim:For

381 . O

382 Consequently O

383 , O

384 no O
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385 matter O

386 from O

387 the O

388 view O

389 of O

390 individual O

391 development O

392 or O

393 the O

394 relationship O

395 between O

396 competition O

397 and O

398 cooperation O

399 we O

400 can O

401 receive O

402 the O

403 same O

404 conclusion O

405 that O

406 a B-MajorClaim

407 more I-MajorClaim

408 cooperative I-MajorClaim

409 attitudes I-MajorClaim

410 towards I-MajorClaim

411 life I-MajorClaim

412 is I-MajorClaim

413 more I-MajorClaim

414 profitable I-MajorClaim

415 in I-MajorClaim

416 one I-MajorClaim

417 ’ I-MajorClaim

418 s I-MajorClaim

419 success I-MajorClaim

420 . O
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Appendix B

The collected n-gram list

0. In conclusion ,

1. I think that

2. I believe that

3. I reckon that

4. I agree that

5. I support that

6. I feel that

7. I contend that

8. I suppose that

9. I convinced that

10. I firmly believe that

11. I strongly believe that

12. I would contend that

13. I truly believe that

14. I agree with that

15. I completely agree that

16. I strongly agree that

17. I would state that

18. I personally think that

19. I feel certain that

20. I do think that

21. I would conclude that

22. I will conclude that

23. I am convinced that

24. I always believe that

63
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25. I would maintain that

26. I definitely feel that

27. I really believe that

28. I agree to that

29. I would argue that

30. I nevertheless believe that

31. I still believe that

32. I believe that that

33. I definitely believe that

34. I strongly feel that

35. I totally agree that

36. I would say that

37. I personally suppose that

38. I totally believe that

39. I completely argue that

40. I do believe that

41. I really believe that that

42. I believe that without that

43. I certainly can say that

44. I want to say that

45. I advocate the idea that

46. I would definitely agree that

47. I personally agree with that

48. I am strongly convinced that

49. I want to mentioned that

50. I hold the contention that

51. I strongly agree with that

52. I am utterly convinced that

53. I tend to think that

54. I would like to say that

55. I agree with that idea that

56. I strongly affirm the conclusion that

57. I agree with the view that

58. I favor the former ; that

59. I favor the latter ; that

60. I agree to that fact that
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61. I can say for certain that

62. I ’ m absolutely sure that

63. I am inclined to believe that

64. I strongly agree with notion that

65. I am of the view that

66. I admittedly and strongly agree that

67. I agree to the argument that

68. From my point of view ,

69. from my point of view ,

70. All in all ,

71. In my point of view ,

72. As far as I am concerned ,

73. To conclude ,

74. In my opinion ,

75. in my opinion ,

76. In my personal opinion ,

77. By way of conclusion ,

78. In my perspective ,

79. in my perspective ,

80. To my view ,

81. to my view ,

82. In my view ,

83. in my view ,

84. To sum up ,

85. From my perspective ,

86. from my perspective ,

87. I think ,

88. I believe ,

89. In sum ,

90. In summary ,

91. I still hold the firm view that

92. I once again restate my position that

93. Therefore ,

94. Thus ,

95. Hence ,

96. First of all ,
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97. Moreover ,

98. To begin with ,

99. Last but not least ,

100. Firstly ,

101. Secondly ,

102. Thirdly ,

103. Lastly ,

104. First ,

105. Second ,

106. Admittedly ,

107. Furthermore ,
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