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Abstract 

We present a connectionist model of event knowledge that is 
trained on examples of sequences of activities that are not 
explicitly labeled as events. The model learns co-occurrence 
patterns among the components of activities as they occur in 
the moment (entities, actions, and contexts), and also learns to 
predict sequential patterns of activities. In so doing, the model 
displays behaviors that in humans have been characterized as 
exemplifying inferencing of unmentioned event components, 
the prediction of upcoming components (which may or may 
not ever happen or be mentioned), reconstructive memory, 
and the ability to flexibly accommodate novel variations from 
previously encountered experiences. All of these behaviors 
emerge from what the model learns. 
 
Keywords: events; schema; scripts; prediction; recurrent 
connectionist model 

Introduction 
We know many things about the world. How that 
knowledge is organized, its content, and how it is stored, 
accessed, and learned have been the subject of semantic 
memory research for some time. A long and rich tradition of 
scholarship has produced a relatively stable set of 
theoretical constructs that are used for discussing this kind 
of knowledge, including categories, concepts, and features. 

But people also possess another type of knowledge that 
has been long recognized as extremely important, although 
it is less clearly understood. This is knowledge about 
common situations and events, and has been referred to by a 
range of names, including pragmatic knowledge and world 
knowledge. Such knowledge appears to serve multiple 
purposes. It guides our own behavior, and helps us interpret 
the behavior of others. We use this knowledge to anticipate 
the consequences of events as they unfold. We use this 
knowledge extensively in language understanding to make 
inferences about unstated components of situations that may 
be incompletely described. 

Bartlett (1932) was one of the first psychologists to talk 
about the role of such knowledge in memory. Later, in the 
1970s and 1980s, cognitive psychologists such as Bransford 
and colleagues demonstrated that event knowledge is 
important in encoding and retrieving details about 
situations. Garrod and Sanford, among many others, showed 
that this kind of knowledge supports inferences in language 

comprehension. One assumption that appears to be shared 
(though was often implicit) was that the use of 
world/pragmatic/event knowledge in language 
comprehension occurred at late stages in processing. In 
large part this reflected theoretical assumptions of the time 
in linguistics and psycholinguistics, but it is also true that 
the typical experimental tasks used at the time were off-line, 
and did not lend themselves to tracking real-time 
incremental processing. 

Over the years, there have been a number of attempts to 
formalize this kind of knowledge, giving rise to mechanistic 
explanations involving frames (Minsky, 1974), scripts 
(Schank & Abelson, 1977), schema (Norman & Rumelhart, 
1981), and stories (Mandler, 1984), among others. Although 
the core intuitions motivating these proposals were widely 
accepted, the actual implementations revealed a number of 
challenges. Templates were inherently rigid and inflexible. 
Yet most situations admit a large range of variation and 
novelty. Moreover, many situations involved blends of 
multiple events. Symbolic architectures did not lend 
themselves to dealing with such challenges. Thorny 
questions were raised and not satisfactorily answered:  What 
is an event (and what is not)? What is the content and detail 
of event knowledge? Does event knowledge have a structure 
common across all event types? How is event knowledge 
accessed and used? How is event knowledge learned? These 
questions remain open to this day. 

Several recent developments have encouraged cognitive 
scientists to focus more intensely on event knowledge and 
how best to model it. Our own interest arises from work in 
language processing using real-time measures to examine 
processing as comprehenders deal with incrementally 
presented input. There is now considerable evidence that 
event knowledge plays a significant role in comprehension 
very early in processing, indeed, guiding expectations even 
in advance of input being received. The time course of how 
this knowledge is accessed and deployed is now not only of 
great theoretical interest (insofar as it may constrain our 
theories about the cognitive architecture underlying 
language understanding), but has become something that 
can be measured empirically. 

A second development has been the emergence of non-
symbolic computational frameworks that demonstrate the 
ability to capture behaviors that simultaneously reflect 



 2 

awareness of global abstractions as well as sensitivity to 
ways in which those abstractions may be graded and 
affected by subregularities and even idiosyncracies. Both 
Bayesian and connectionist models have these qualities. Our 
research uses a connectionist model because they exhibit 
key additional capabilities. They learn by example, and they 
allow us to probe in (simulated) real time the dynamics of 
the network’s responses to incrementally presented input. 

In the remainder of this paper, we present a model and 
report a set of simulations we have conducted. We begin by 
explaining the design criteria that guided model 
development. These criteria were chosen because we 
believe they are needed to model processes that reflect the 
use of event knowledge in human behavior. We conclude by 
discussing what we have learned from the model, and ways 
in which it might guide future experimental research. 

The Model 

Design Criteria 
The model’s architecture was developed with the goal that it 
should have the following four properties. 
 
Learn the components that comprise an activity. We 
make the assumption that events can be viewed as 
sequences of activities, where activities occur in the 
moment and are comprised of various participants, 
actions, and contexts. Rather than prespecifying a 
template for necessary or sufficient components, the 
model must learn which components occur and co-occur 
across contexts and sequences. These co-occurrences 
may be statistically variable, and the model must learn 
these (often high-order) statistical interdependences. 

 
Learn the temporal structure of activity sequences. We 
also assume that the temporal structure of activity sequences 
that make up an event may be variable across instances of 
any given event type. The model must learn this temporal 
structure, including cases in which that structure is rigid and 
obligatory as well as cases in which there is a high degree of 
variability or optionality. The model should be able to use 
its knowledge of the temporal structure to anticipate likely 
future activities, given previously encountered sequences. 
These expectations should reflect both global contingencies 
as well as predictions that may reflect more idiosyncractic 
variants of an activity sequence. In human terms, the model 
should be able to make predictive inferences. 
 
Learn to generalize from specific examples of events. 
Although the model will learn from multiple examples of a 
given event type, it must learn the (often graded) patterns 
that underly them. It must also learn subregularities and if 
possible, exceptions. 
 
Fill in missing information. Both during learning and 
testing, the model may be exposed to activity descriptions in 

which some highly expected information is omitted. The 
model should be able to activate missing elements, as 
appropriate (pattern completion). In human terms, the model 
should be able to make elaborative inferences. 

Architecture 
The architecture of the model is shown in Figure 1. 

 
Figure 1 

 
There is a single network, but the left and right portions play 
complementary roles. The left portion receives input from 
the world in the form of (localist) specifications of potential 
participants, actions, and contexts that might characterize 
the current activity under description. Each rectangle thus 
represents a number of possible inputs of the same category 
(agents, patients, etc.). It should be emphasized, however, 
that there is no representational status to these groups. As 
far as the network is concerned, every input node in all of 
these groups is orthogonal to every other node. If there are 
similarities in terms of behavior or statistics of privilege of 
occurrence, the network must discover them. Input nodes 
are fully connected to nodes in the Hidden Unit layer, and 
hidden units also connect (with different weights) back to 
input units. This use of recurrence allows the network not 
only to learn co-occurrence patterns among input units, but 
also to implement constraint satisfaction. This means that 
after the network has learned, it has the potential to activate 
missing elements in an input pattern, as appropriate. The 
Next Activity side of the network consists of units that are 
identical to the Current Activity units, but the job of the 
Next Activity units is to predict which activity will follow, 
given the sequence so far. Recurrent connections from the 
hidden units back to themselves are critical for this function 
because they provide the network with an internal 
representation (which must be learned) of the past that can 
be used for prediction. This architecture builds on elements 
of prior modeling that has provided a strong foundation for 
the present approach, including in particular Botvinick and 
Plaut (2004), Elman (1990), Rogers and McClelland (2004), 
Rumelhart, Smolensky, McClelland, and Hinton (1986), St. 
John and McClelland (1990), and Reynolds, Zacks, and 
Braver (2007). 

Training and Testing  
Simulations were carried out using the rbp package from the 
PDPtool simulator (McClelland, 2016). Weights in the 
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network were initialized with random values between ±0.1 
and adjusted gradually using backpropagation through time 
(Williams & Zipser, 2004). Training stimuli were either 
artificially generated activity sequences (Studies 1-3) 
presented one activity at a time, or sequences obtained from 
human norming data (Study 4). After training, testing was 
conducted by freezing weights and presenting the network 
with input sequences designed as analogs of stimuli used in 
human experimental paradigms. Details of the general 
training regime can be found in 
http://tatar.ucsd.edu/jeffelman/EventModelTraining.html, 
and details relevant to each simulation are given below. 

Simulation Results 

Study 1: Pattern completion and elaborative and 
predictive inferences 
Typical language use relies heavily on interlocutors’ shared 
knowledge. This allows speakers to omit information that is 
assumed to be known by the comprehender, and allows 
comprehenders to infer unstated information. A frequent 
distinction is made between elaborative inferences, which 
involve unstated details regarding an activity currently 
described, and predictive (or forward) inferences, which 
involve expectations about what will occur next. Bridging 
inferences are those in which a comprehender draws on 
knowledge only as needed to understand a prior statement. 
The extent to which, and conditions under which, such 
inferences are drawn remains a topic of debate. Bridging 
inferences are largely uncontroversial. However, whether, 
and under which conditions, elaborative and predictive 
inferences occur is still debated (for review, see Murray, 
Klin, & Myers, 1993). In Study 1, we first verify that the 
constraint satisfaction properties of the network do support 
inference under optimal conditions. We then examine the 
fragility or robustness of such inferencing because it has 
been claimed that discrepant data have arisen from stimulus 
properties and the sensitivity of behavioral measures. 
 
Simulation 1.1 The network was trained on event 
sequences that ranged in length from three to six activities. 
The sequences might be glossed as (1) John goes to a fancy 
restaurant; (2) John is cutting wood in the forest, using an 
axe; (3) John (and other people) cut themselves accidentally 
with a knife, and he bleeds; (4) John (and other people) cut 
themselves accidentally with an axe and the wound is fatal; 
(5) Mary and Penny are in the library and Mary asks Penny 
a question, which Penny answers. Having learned these 
sequences, the model was then tested on novel sequences. 
The sequences were novel both in that they omitted critical 
information, and they involved new combinations of 
activities that the model had not encountered in the same 
event. Figure 2 shows activations in the Next Activity units 
in response to the input sequence John is in a restaurant; 
John cuts himself; What happened to John? (the query takes 
the form of simply presenting John without any specified 
result, so the network must fill in the information). Figure 3 

shows similar activations, but in response to the sequence 
John is in the forest; John cuts himself; What happened to 
John? 

 
Figure 2 

 
Figure 3 
 
After receiving the input that John is in a restaurant, a knife 
is inferred to be present, whereas in the forest, axe is 
activated. These may be considered elaborative inferences. 
Then when John cuts himself, with no instrument 
mentioned, the network immediately begins to predict the 
result that is consistent with the instrument. These are 
predictive inferences. Such inferences have not always been 
found in humans, however. One possibility raised by 
Murray et al. (1993) is that failures to detect predictive 
inferences may result from experimental stimuli in which 
either the forward inference is disrupted, or it is not tested 
soon enough. In Error! Reference source not found., we see 
what happens when the discourse is disrupted by switching 

to a new topic 

 
(a situation involving Mary) immediately after the cutting 
activity. The network begins to predict that John will bleed 
(because he is assumed to have cut himself with a knife, 
given the restaurant context). However, as soon as Mary is 
introduced, the activations of all consequences of cut 
decrease sharply. Probing for the consequence of John 
cutting himself subsequent to this topic change would show 

Figure 4 
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little or no evidence of the predictive inference, consistent 
with Murray et al.’s findings. 

Simulation 1.2 One open question concerns exactly how far 
in the future comprehenders predict when processing 
incrementally presented language. In much of the 
experimental literature focusing on prediction in language, 
there has been an implicit assumption that the next word in a 
sequence is anticipated by comprehenders, but nothing 
beyond that. However, more recent findings suggest that 
when language is used to describe an event, comprehenders 
anticipate event-relevant elements even at points in the 
discourse where they might not be appropriate (Metusalem, 
Kutas, Urbach, Hare, McRae, & Elman, 2012). A simplified 
example of their stimuli is the short story The crowd is in 
the stands. The crowd looks around. The skater goes to the 
podium. The audience applauds, The skater receives a ___. 
Participants’ brain activity was measured while reading the 
final noun. When an event-appropriate word, such as medal, 
was presented, the N400 amplitude was small. A final word 
that was completely anomalous (e.g., bleach) elicited a large 
N400. However, an word that was contextually anomalous 
but event-appropriate (e.g., podium) produced an N400 with 
intermediate amplitude. The authors interpreted this as 
evidence that event elements are activated and available 
even at times when they might not be immediately expected.  
In Figure 5, we see the network’s activations in the Next 
Activity units throughout such a stimulus sequence. 

 
Figure 5 

By the second activity, the network has already activated 
two event-appropriate elements, podium and medal; bleach 
is not activated at all. As the focus shifts in the fourth 
activity back to the crowd, both medal and podium are 
deactivated. However, near the end, the network re-activates 
both. The re-activation of medal is not surprising because it 
has been mentioned explicitly. However, the network has 
also learned that podium is the likely location for awarding a 
medal and so activates it as well, though at a lower level. 
There are two lessons from this simulation. First, behavioral 
evidence for the activation of putatively inferred event 
elements may depend on the timing of the probe. Second, it 
may be that only highly sensitive behavioral measures will 
reveal the presence of partially activated event elements. 
These elements, even if only partially activated, become 
more easily accessible should subsequent discourse make 
reference to them. This in fact was seen in Simulation 1.1. 

Study 2: Novel Events and Blending 
In real life, events not only exhibit variability (which the 
model accommodates, as we see in Figures 1 and 2) but 
often are combined in novel ways. Fixed templates or rigid 
structures are ill suited for dealing with this. In the next 
simulation, we test the model’s ability to flexibly respond 
when events are combined in unusual ways. 
 
Simulation 2.1 The model was trained on sequences that 
included examples of going to a restaurant (as in Simulation 
1.1), and activities corresponding to a romantic relationship 
between two people (John and Mary), with Mary being 
married to a third person (Bill). Furthermore, the model was 
exposed to examples of aggressive behavior between 
various people (but not including John or Bill). In many of 
the latter examples, weapons are used. Gun is a more typical 
weapon, but knives are occasionally used. After training, the 
model was tested on a sequence that we might gloss as John 
and Mary are at a fancy restaurant. John and Mary cut 
steak with a knife. Bill enters the restaurant. Bill attacks 
John. Activations of relevant nodes are shown in Figure 6. 

 
Figure 6 

Two things are apparent. First, as soon as Bill enters the 
restaurant, the model quickly adjusts its expectations about 
what it predicts will happen next. Second, and more 
interesting, is that although the model has learned that gun 
is the most common weapon used in aggressive behavior, 
the presence of knife that was established from the outset 
(even prior to its mention) leads to the knife being the 
predicted instrument in this new situation. Thus, the model 
not only adjusts to a change in sequence structure that it has 
not encountered before, but it also flexibly incorporates 
relevant components from the first event into the second 
event. That is, the model produces a novel response to a 
situation it has never encountered before by drawing and 
integrating knowledge from different events. 

Study 3: Priming 
Studies 1 and 2 illustrate examples of priming. There is a 
large literature showing that event relevant information 
facilitates processing target elements related to that event. 
These include typical agents, patients, and instruments 
priming their event-relevant verbs, priming between event-
relevant nouns, and verbs priming their event-related agents, 
patients, and instruments (for review, see McRae & 
Matsuki, 2009). The model exhibits the same behavior, not 
shown here because of space limitations. Instead, we 
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demonstrate an example of priming involving second order 
dependencies between event elements. Bicknell et al. (2010) 
found that the patient that is expected to follow a given verb 
may depend on the agent carrying out the action. Thus, 
shopper saved… primes money, whereas the lifeguard 
saved… primes person. (Control conditions established that 
the priming was not directly between the agent or verb and 
the patient, but that it required the combination.) 
 
Simulation 3.1 The model was trained on various examples 
of shoppers and lifeguards (and other people) in events in 
which saving was one of the activities. Typically, reflecting 
the corpus analyses carried out by Bicknell et al., shoppers 
save money whereas lifeguards save people. When probed 
with the partial description of an activity shopper+saved 
(Error! Reference source not found.), the model predicted 
money as the most likely patient, compared to 
lifeguard+saved, which led to greater activation of person 
(Error! Reference source not found.). However, we also 
see that that there is an asymmetry in the responses, such 
that at later stages in processing, lifeguard+saved results in 
an increased activation of money (though still lower than 
person). 

    
Figure 7                                         Figure 8 
     
This reflects asymmetries in the training data that mirror 
asymmetries in corpus analyses, that is, that save is overall 
more commonly associated with money than with people. 
We might test the model’s predictions (to our knowledge, as 
of now untested) by testing whether the timing of the patient 
probe leads to different degrees of facilitation, depending on 
when the probe was presented. 

Study 4: Learning from Human Data 
In the previous simulations, we used training sets that were 
designed by hand. The design of the training was controlled 
to carefully probe the network’s behavior under different 
learning situations. This strategy is similar to that used in 
many human behavioral experiments. But in real life, 
people’s knowledge of events results from experiences that 
may involve considerably greater variability. Consolidating 
such experiences and making sense of commonalities, 
subregularities, and exceptions is a challenge. Furthermore, 
temporal structure may vary considerably not only between 
different event types but even within a single event type. For 
example, there may be some parts of an event in which the 
ordering of activities is consistent and even obligatory (eggs 
must be broken before they are fried), whereas activity 
sequences in other parts of the event may be optional (one 
might make coffee before making eggs, or after). To 

investigate these issues, we conducted a norming study to 
sample people’s knowledge of types of events. 
 
Norming study 4.1 We used 81 events, drawing on prior 
literature that has used stimuli that describe events and 
situations. Some of these events have clear goals and 
outcomes (e.g., fixing a flat tire). Other events are more 
situation-like, in that things happen but the goal and 
outcome are less clear (e.g., going to a picnic). Using 
Mechanical Turk, participants were asked to list up to 12 
activities for each event. Participants saw a random subset 
of 10-12 of the 81 events, and each event was presented to 
22-24 different participants. Table 1 shows responses from 
three participants for fixing a flat tire. 

Table 1: fixing a flat tire 

Pull over Get out of car Pull over 
Get out of car Loosen lug nuts Open trunk 
Open trunk Jack up car Get tire iron 
Get spare tire Remove lug nuts Get spare tire 
Get jack Remove flat tire Put on hazard lights 
Remove flat tire Put on new tire Jack up car 
Put on new tire Tighten lug nuts Remove lug nuts 
Tighten lug nuts Remove jack Take flat tire off 
Put flat tire in trunk  Put on new tire 
  Tighten lug nuts 
  Lower car 

 
The data can be visualized using graph analysis, in which 
nodes represent activities and directed arrows show 
temporal sequence (size indicates frequency), as in Figure 9. 

 
Figure 9 

Some of the sequences are consistently ordered (e.g., jack 
up car > remove flat tire > put on new tire), undoubtedly 
reflecting causal constraints. Other sequences may be 
performed optionally at different times. How does the model 
deal with such data? 
Simulation 4.1 The model was trained on the activity 
sequences provided by 23 participants for fixing a flat tire. 
Of particular interest is that although the model responds 
appropriately to the data it was trained on, its responses also 
incorporate what it has learned from other participants. The 
model thus does not slavishly reproduce the individual 
training data, but detects general patterns that are common 
across all the data. 

Can the model generate activity sequences on its own? We 
tested this by seeding the model with a reasonable starting 
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activity, and then using the most activated predicted 
elements as the subsequent input. This process iterated until 
the event was complete. The initial five activities in the 
network’s self-generated sequence are shown in Figure 10 
(presenting greater than five makes the figure unreadable). 
Notably, the network’s self-generated activity sequence is 
not identical to any single participant’s sequence. However, 
it is a completely reasonable abstraction of the sequencing 
across all participants’ descriptions. 

 
Figure 10 

Discussion 
Our goal was to develop a model that could learn the 

structure and temporal dynamics of activity sequences, as 
well as the co-occurrence properties of participants, 
activities, and contexts in those sequences. Although we 
might call these sequences events, the concept of event is 
not a primitive in the model and events are not pre-defined 
templates. Rather, what we might call an event is an 
epiphenomenal consequence of having to learn about 
activity sequence structure. Having done this, the 
architecture of the model allows it to perform pattern 
completion, both in the moment (supporting elaborative 
inferences) and across time (supporting predictive 
inferences). The model replicates a wide range of behavioral 
studies (only a few of which are described herein) for which 
event knowledge has been hypothesized to play a role. It 
also produces unanticipated behaviors that can be tested 
empirically to validate the model. 

A great deal remains to be done. The model’s inputs serve 
as cues to event knowledge, but the model itself does not 
provide those cues. Those cues must come from perceptual 
or motor evidence from the world as well as a language 
processor. Nor does the model provide an account for how 
these various cues can serve to alter focus on different event 
elements, including adjusting how the temporal contour of 
the event is understood (e.g., by aspect). We are guardedly 
optimistic that these are tractable problems and that the 
model we propose here provides a solid framework for 
understanding how people acquire, represent, and use 
knowledge of events in the world. 
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