
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-16-2010 12:00 AM 

Improvements in Cardiac Spect/CT for the Purpose of Tracking Improvements in Cardiac Spect/CT for the Purpose of Tracking 

Transplanted Cells Transplanted Cells 

Eric Sabondjian, The University of Western Ontario 

Supervisor: Robert Z. Stodilka, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Medical Biophysics 

© Eric Sabondjian 2010 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Medical Biophysics Commons 

Recommended Citation Recommended Citation 
Sabondjian, Eric, "Improvements in Cardiac Spect/CT for the Purpose of Tracking Transplanted Cells" 
(2010). Electronic Thesis and Dissertation Repository. 69. 
https://ir.lib.uwo.ca/etd/69 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/668?utm_source=ir.lib.uwo.ca%2Fetd%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/69?utm_source=ir.lib.uwo.ca%2Fetd%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


IMPROVEMENTS IN CARDIAC SPECT/CT FOR THE PURPOSE OF 
TRACKING TRANSPLANTED CELLS 

 
 
 
 

(Spine title: Improving SPECT/CT for tracking transplanted cells) 
 

(Thesis format: Integrated-Article) 
 
 
 
 

by 
 
 

Eric Sabondjian 
 
 

Graduate Program 
in 

Medical Biophysics 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
 
 
 

School of Graduate and Postdoctoral Studies 
The University of Western Ontario 

London, Ontario, Canada 
 
 
 
 

© Eric Sabondjian 2010 
 
 
 

 



THE UNIVERSITY OF WESTERN ONTARIO 
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES 

 
 

CERTIFICATE OF EXAMINATION 
 
 
Supervisor 
 
______________________________  
Dr. Robert Z. Stodilka  
 
 
Supervisory Committee 
 
______________________________  
Dr. Frank S. Prato 
 
______________________________  
Dr. R. Terry Thompson 

Examiners 
 
______________________________  
Dr. Curtis B. Caldwell 
 
______________________________  
Dr. Jonathan Romsa 
 
______________________________  
Dr. R. Terry Thompson 
 
______________________________  
Dr. Eugene Wong 
 

 
Dr. Gerald Wisenberg 
 

The thesis by 
 
 

Eric Sabondjian
 

entitled: 
 

IMPROVEMENTS IN CARDIAC SPECT/CT FOR THE PURPOSE OF 
TRACKING TRANSPLANTED CELLS 

 
is accepted in partial fulfillment of the  

requirements for the degree of  
Doctor of Philosophy 

  
 
 
Date__________________________ _______________________________ 

Chair of the Thesis Examination Board 
  
 

ii 



ABSTRACT 

Regenerative therapy via stem cell transplantation has received increased attention to 

help treat the myocardial injury associated with heart disease.  Currently, the hybridisation 

of SPECT with X-ray CT is expanding the utility of SPECT.  This thesis compared two 

SPECT/CT systems for attenuation correction using slow or fast-CT attenuation maps (µ-

maps).  We then developed a method to localize transplanted cells in relation to 

compromised blood flow in the myocardium following a myocardial infarction using 

SPECT/CT.  Finally, a method to correct for image truncation was studied for a new 

SPECT/CT design that incorporated small field-of-view (FOV) detectors. 

Computer simulations compared gated-SPECT reconstructions using slow-CT and   

fast-CT µ-maps with gated-CT µ-maps.  Using fast-CT µ-maps improved the Root Mean 

Squared (RMS) error from 4.2% to 4.0%.  Three canine experiments were performed 

comparing SPECT/CT reconstruction using the Infinia/Hawkeye-4 (slow-CT) and Symbia 

T6 (fast-CT).  Canines were euthanized prior to imaging, and then ventilated.  The results 

showed improvements in both RMS errors and correlation coefficients for all canines. 

A first-pass contrast CT imaging technique can identify regions of myocardial 

infarction and can be fused with SPECT.  Ten canines underwent surgical ligation of the 

left-anterior-descending artery.  Cells were labeled with 111In-tropolone and transplanted 

into the myocardium.  SPECT/CT was performed on day of transplantation, 4, and 10 days 

post-transplantation.  For each imaging session first-pass perfusion CT was performed and 

successfully delineated the infarct zone.  Delayed-enhanced MRI was performed and 

correlated well with first-pass CT.  Contrast-to-noise ratios (CNR) were calculated for 111In-

SPECT and suggested that cells can be followed for 11 effective half-lives. 

 iii



We evaluated a modified SPECT/CT acquisition and reconstruction method for 

truncated SPECT.  Cardiac SPECT/CT scans were acquired in 14 patients.  The original 

projections were truncated to simulate a small FOV acquisition.  Data was reconstructed in 

three ways: non-truncated and standard reconstruction (NTOSEM), which was our gold-

standard; truncated and standard reconstruction (TOSEM); and truncated and a modified 

reconstruction (TMOSEM).  Compared with NTOSEM, small FOV imaging incurred an 

average cardiac count ratio error greater than 100% using TOSEM and 8.9% using 

TMOSEM.  When we plotted NTOSEM against TOSEM and TMOSEM the correlation 

coefficient was 0.734 and 0.996 respectively. 

 

Keywords: SPECT/CT, attenuation maps, slow-rotating CT, fast-rotating CT, stem cell 

imaging, first-pass perfusion CT, cell localization, 111In labelling,  contrast-to-noise ratio, 

local tomography, cardiac imaging, projection truncation.  
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CHAPTER 1:   GENERAL INTRODUCTION 

 

1.1 INTRODUCTION 

The World Health Organization estimates that by the year 2020 heart disease will 

be the number one cause of disability [1].  Therefore, methods to diagnose and treat heart 

disease will take on increasingly important roles in managing the health of the 

population.  

This thesis focuses on myocardial infarction, which is the destruction of heart 

tissue resulting from obstruction or reduction of blood flow to the myocardium.  Once 

the myocardium is damaged the contracting muscle is replaced by fibrotic scar over a 

period of months [2].  The self-healing or regenerative capacity of the heart is limited 

compared with other organs, because of the small number of native cardiac stem cells, 

making recovery from the infarction dependent upon medical intervention in the healing 

process [3].                                                                                                                                                      

Current treatments for heart disease involve medications, surgery or a 

combination or both.  Patients with myocardial infarctions are currently treated acutely 

with medications such as blood thinners to reduce the risk for a second event in the short 

term; however, if blood flow remains compromised to the region of injury and there is 

still viable heart muscle, balloon angioplasty or bypass surgery may improve heart 

function and reduce the risk for another myocardial infarction [4].  In cases of extensive 

injury with little to no hope for improvement in function a heart transplant may be 

required.  Unfortunately, transplant procedures have significant disadvantages including 
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severity of surgery, a scarcity of donor hearts, transplant rejection, and the requirement 

that the patient be on long term immunosuppressive therapy which increases the risk for 

infections and cancer. 

One potential alternative to heart transplantation that is receiving increased 

attention over the past decade is regenerative therapy via stem cell transplantation [5]. 

The hope of this alternative is to restore the function of the original heart in situ in a 

minimally invasive manner. In 2001, Orlic et al reported that the cardiac transplantation 

of marrow-derived cells differentiated into cardiomyocytes and significantly reduced 

myocardial fibrosis in a mouse model [6].  Although this study sparked great interest in 

stem cell transplantation to help in myocardial regeneration, subsequent work in clinical 

trials did not show the same level of improvement and gave mixed results [7, 8, 9].  It is 

now clear that developing regenerative therapy is a very difficult undertaking that will 

require scientific discovery on many fronts, from molecular biology to biomaterials and 

imaging sciences. In addition, the optimum cell line to use, the route of administration of 

the cells, the timing of the transplant in relationship to the infarct, and whether the 

recipient tissue has been reperfused or is still subject to coronary occlusion still remains 

to be determined.  For medical imaging, techniques to visualize cell delivery, degree of 

retention, and long-term survival are needed to help provide the answers to the above 

questions [10, 11]. 
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1.2 IMAGING THE HEART FOR MONITORING STEM CELL THERAPY 

Three popular modalities for cardiac imaging are: Magnetic Resonance Imaging 

(MRI), Positron Emission Tomography (PET), and Single Photon Emission Computed 

Tomography (SPECT). Cardiac applications on these modalities may require the use of 

exogenous contrast agents to measure aspects of tissue or vascular properties; or – in the 

case of cell therapies – the transplanted cells themselves. 

 A common contrast agent for MRI is Gadolinium-Diethylenetriamine Penta-

acetic Acid (DTPA), which is marketed as Magnevist by Bayer Schering Pharma.  Its 

paramagnetic property, in a concentration dependent fashion, reduces the T1 relaxation 

time (and to some extent the T2 and T2* relaxation times) in MRI, which is the source of 

its clinical utility. A popular method of using Gd-DTPA is for delayed enhancement MRI 

(DE-MRI) where the contrast agent is injected and allowed sufficient time 

(approximately 10 minutes depending on the exact protocol) to accumulate in infarcted 

regions, due to the breakdown in cellular membrane integrity, and then MR images are 

acquired [12].  MRI currently provides the most accurate means of identifying infarct 

extent and location [13]. 

In cell therapy applications, MRI may also be used to visualize specially-labeled 

cells that have been transplanted into the heart.  One class of cellular label that has 

attracted considerable attention is nano-sized iron oxide particles, such as Super 

Paramagnetic Iron Oxide nanoparticles that are incorporated into the transplanted cells.  

MRI of transplanted iron oxide labeled cells has shown promise in several animal studies 

[14, 15].  However, interesting challenges for this label include the lack of specificity for 

intact, viable cells since the iron label from dead cells is taken up by macrophages that 
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are attracted as part of the inflammatory response to the infarction, and the dilution of the 

label that occurs while cells are dividing [10, 16]. 

Positron Emission Tomography (PET) is in widespread use for cardiac 

applications. Although perceived as expensive, it is currently enjoying tremendous 

growth that has only been accelerated by the ongoing shortage of reactor-produced radio-

isotopes.  Like MRI, PET too can image tissue properties and track labeled cells with the 

use of 18F-fluorodeoxyglucose (18F-FDG), but is limited by the short half-life (110 

minutes) of the radioisotope and rapid clearance from labeled cells [17].  Recently, it has 

been shown that cells may also be labeled with 64Cu-Pysuvaldehyde-Bis(N4-

Methylthiosemicarbazone) (PTSM), allowing cells to be followed for longer periods of 

time than with 18F-FDG.   However, 64Cu is not readily available and its half-life of 13-

hours is still short for following cell lines over extended periods [18]. 

Single Photon Emission Computed Tomography (SPECT) is the most widely 

used nuclear medicine modality.  Even with the availability of MRI and PET, the 

majority of myocardial perfusion studies are performed with SPECT.  Like MRI and 

PET, SPECT can assess multiple parameters including the imaging of myocardial 

perfusion and the visualization of labeled stem cells.  In addition, SPECT is multi-

spectral; therefore multiple parameters may be assessed simultaneously if different radio-

nuclides can be assigned to each parameter.  For example, a 99mTc labeled molecule is 

typically used for perfusion imaging and allows inferring coronary obstruction to a 

limited extent [19]; while, transplanted cells can be labeled with an 111In labeled 

molecule [20].  Since 99mTc and 111In emit gamma rays of energies sufficiently different 

to be discriminated by a gamma camera, they can be imaged simultaneously by SPECT. 
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 The radiotracer in wide-spread use for imaging cardiac blood flow is 99mTc-

labeled methoxyisobutyl isonitrile (MIBI) [21].  99mTc has a radioactive half-life of 6.02 

hours and emits 140 keV gamma-rays.  A popular protocol for MIBI SPECT involves 

comparing coronary perfusion in a resting state to the stressed state to detect stress-

induced myocardial blood flow deficits. This test is typically included in the initial 

assessment of suspected ischemia, and as a prognostic indicator following infarction.  

Rest/Stress imaging requires two radioisotope injections, each one followed by SPECT 

imaging [19, 22]. The first injection takes place with the patient in a resting state, while 

the second injection takes place with the patient in a stressed state.  Stress can either be 

induced by running on a treadmill to reach a certain specified heart rate (90% of 

maximum heart rate), or via intravenous injection of the vasodilator dipyridamole which 

induces coronary hyperemia, or the sympathomimetic drug dobutamine, which by 

increasing myocardial oxygen demands, also induces a hyperemic response.  

 111In-tropolone is used routinely to label white blood cells for imaging 

inflammation [23].  The 111In radionuclide has a radioactive half-life of 2.82 days and 

emits gamma rays at both 173keV and 247keV.  The relatively long half life of 111In 

makes it useful for tracking cells over days or even weeks [24].  111In-tropolone labels 

cells by first diffusing freely across the cell membrane. Once inside the cell, cytosolic 

proteins bind the radiolabel, thus radiolabeling the cell from the inside. 

In the end, the 99mTc SPECT image shows cardiac perfusion, and the 111In SPECT 

the transplanted cells location within the heart and also their relationship to the area of 

reduced perfusion. This information is potentially useful to evaluate the accuracy of 
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transplantation, monitor the migration pattern of the cells, infer viability of the 

transplanted cells, or monitor the size of the underlying infarct. 

 

1.2.1 Radiation dose from 99mTc and 111In 

Research has demonstrated that, in the process of labeling, the radiation dose per 

cell cannot exceed certain levels depending on the type of cell since toxicity analysis has 

shown that higher levels of radiation can cause cell death [25].  To determine the whole 

body dose that one would receive from labeled cells transplanted in the myocardium, one 

can use the typical dose of 111In-tropolone for labeling white blood cells as part of a 

clinically performed inflammation study as a comparison.  Labeled white blood cells 

would provide a whole body equivalent dose of 7mSv [26].  The whole body radiation 

exposure dose for a patient undergoing a rest/stress protocol is approximately 12.5mSv 

[26].  However, for stem cell labeling we would be using a tenth of the 111In dose to label 

the cells reducing the whole body exposure dose to less than 1mSv. 

 

1.3 SPECT DATA ACQUISITION 

 Data in SPECT are acquired using a Gamma Camera.  A typical gamma camera 

consists of a collimator, a scintillation crystal, photomultiplier tubes, and positioning 

electronics.  The role of the collimator is to act as a ‘lens’ for the imaging system by 

rejecting gamma rays with undesirable trajectories. In the case of a parallel-hole 

collimator, which was used in all of our experiments, the holes are parallel to each other 

and perpendicular to the plane of imaging. This configuration passes only gamma rays 

that are approximately perpendicular to the imaging plane and hence useful for image 
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formation. The gamma rays that pass through the collimator impinge onto the 

scintillation crystal, which converts them into light. Currently, the most popular choice of 

scintillation crystal in SPECT is thallium-doped sodium iodide – NaI(Tl).  The 

photomultiplier tubes convert the light from the scintillation crystal into an electrical 

signal, via the photoelectric effect, and amplify the signal using a series of dynodes.  The 

amplified electrical signal is then passed through circuits that combine signals from 

adjacent photomultiplier tubes to determine the position of the original gamma ray’s 

interaction with the scintillation crystal.  These locations are transferred to a computer 

that tabulates successive gamma ray detection events into a two-dimensional array, 

which is a projection of the radioactive distribution.  In SPECT, these projections are 

acquired at multiple angles around the patient. After data acquisition is complete, these 

projections are used to reconstruct three-dimensional tomographic images of the original 

distribution of radioisotope inside the patient. 

Making SPECT quantitative is not straightforward. Three physical phenomena 

that are central to interfering with quantitative SPECT are: photon attenuation, photon 

scatter and distance-dependent resolution [27]. 

In an ideal SPECT imaging scenario all gamma rays emitted by the radioactively 

decaying radionuclides would escape the body and be available for detection by a gamma 

camera.  In a realistic scenario, however, gamma rays pass through many layers of tissue 

and often interact with that tissue prior to exiting the body. In this interaction, gamma-

rays can be either absorbed photoelectrically, or scattered from their original trajectory 

potentially away from the gamma camera [28]. Either way, they may not reach the 

gamma camera.  The amount and extent of attenuation is dependent on the gamma ray 
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energy, the thickness of tissue the gamma ray has to pass through as well as the 

composition of the tissue, since bone will attenuate more per unit path length than softer 

tissues such as fat and muscle [29, 30]. 

 

Figure 1.1: Attenuation 

Figure displaying a radioactive distribution inside a patient with initial intensity I0.  

When the gamma ray travels through the patient, it will experience attenuation through 

either photoelectric absorption (gamma ray A), or scattering (gamma ray B). 

 

The gamma rays that are measured by the detector will have a measured intensity 

value of I.  µ is the linear attenuation coefficient of the object and is dependent on its 

composition, and S is the path the gamma ray travels before reaching the detector (figure 

1.1).  These are related through the following equation for attenuation [28]: 
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I0 = reference intensity 
I = measured intensity 
S = Path taken by gamma ray 
μ(x,y) = linear attenuation coefficient as a function of location in tissue 
ds = differential of the tissue thickness encountered along path S 
 

 Scatter can also be defined as the detection of mis-positioned gamma rays. The 

presence of scatter in SPECT imaging generally degrades image contrast and 

compromises quantitative accuracy. In SPECT, gamma rays can become mis-positioned 

through the physical phenomenon of Compton scattering. In Compton scattering, a 

gamma ray emitting from a decaying radionuclide is deflected from its original trajectory 

but is detected anyway. Fortunately, since the energy of Compton scattered gamma rays 

are different from those of primary gamma rays, they may be distinguishable through 

energy discrimination.  Thus, the energy of each gamma ray is measured as it is detected. 

If that gamma ray’s energy falls outside a pre-set tolerance – commonly referred to as an 

energy ‘window’ – then that gamma ray can be rejected. A common window for clinical 

SPECT using 99mTc is 140 keV +/-7.5%. However, scatter rejection by energy 

discrimination is not perfect: in clinical SPECT imaging, a 140 keV +/-7.5% energy 

window contains approximately 1/3 scattered gamma rays [31]. Reducing this scatter is 

the subject of extensive research, and is described in section 1.6. 
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Figure 1.2: Scatter  

Figure displaying the effect of scatter that occurs within an object.  Gamma rays that 

should have been detected at a certain location are detected elsewhere due to the scatter 

interaction. 

 

 A third important source of image quality degradation is the loss of spatial 

resolution due to the physical collimator on a gamma camera and the intrinsic spatial 

resolution of the detection crystal. The collimator consists of a series of holes separated 

by septa, made from a material with high atomic number, such as lead. Typically, the 

holes are hexagonal in shape and arranged into a honeycomb (see figure 1.3). 
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Figure 1.3: Collimator holes 

Figure displaying the hexagonal holes of the collimator arranged in a honeycomb pattern.  

The number of holes typically range from 10000 to 150000.  The hole diameter (D) can 

range from 1 mm to 3 mm 

 

As stated previously, the purpose of the collimator is to admit gamma rays 

traveling in a preferred direction (i.e. perpendicular) relative to the imaging plane, and 

reject other gamma rays. In practice, however, collimators admit gamma rays with a 

small angular deviation away from the perpendicular imaging plane. The geometry of 

this ‘acceptance angle’ strongly influences spatial resolution on the imaging plane (see 

figure 1.4). In fact, the spatial resolution on the image becomes a function of the distance 

between the source of gamma rays and the collimator [30]. This phenomenon is referred 

to as distance-dependent resolution. The acceptance angle can be reduced by making the 

collimators holes smaller in diameter or increasing the length of the septa (figure 1.4), 

leading to improvements in spatial resolution. However, the trade-off to reducing the 
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acceptance angle is a decrease in sensitivity, leading to increases in image noise due to 

the decrease in signal.  The following equation can be used to relate the distance-

dependent resolution (figure 1.4): 

                                             )tan(Φ⋅= DR       (1.2) 

Where R = Resolution 
  D = Distance from point source to crystal 
  Φ = Acceptance angle 
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Figure 1.4: Distance-dependant blurring 

This figure demonstrates how a radioactive point source is blurred due to the acceptance 

angle of a parallel hole geometry collimator.  D is the distance from the point source to 

the crystal, H is the hole diameter of the septa, while L is the length.   

 

1.4 TOMOGRAPHIC RECONSTRUCTIONS IN SPECT 

 Many algorithms have been developed for tomographic reconstruction from 

projection data. Up until the past decade, the most popular algorithm was filtered back-

projection, which was adapted from X-ray Computed Tomography [32]. Although 
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computationally efficient, filtered back-projection did not allow the reconstruction of 

quantitative images in SPECT. This was due primarily to the inability to incorporate the 

physics of gamma ray propagation into the filtered back-projection algorithm, and to a 

lesser extent, the inaccurate modeling of Poisson noise in gamma ray detection [33]. 

Today, filtered back-projection has been replaced extensively with iterative 

reconstruction. Although much more computationally demanding, iterative 

reconstruction can incorporate gamma ray attenuation, Compton scatter, and distance-

dependent resolution effects, as well as modeling noise properly [34]. 

We provide a brief introduction to iterative reconstruction. The reader is referred 

to [35] for a detailed review. First, we consider the process of measuring a distribution of 

radioactivity using a gamma camera. Let the vector F, with size M×1 and elements 

f1…fM, be a discretized representation of the distribution of radioactive disintegrations in 

a region that we are interested in measuring. The elements of F represent the individual 

volume elements, or voxels, of the object. Let the vector G, with size N×1 and elements 

g1…gN, represent the pixel-by-pixel measurements of the radioactivity as recorded by a 

gamma camera as it rotates around the source of radioactivity – the elements of a 

sinogram. Thus G would be a measure of the projection of F. This can be written 

mathematically as: 

                                                            AFG =       (1.3) 

Where A is an N×M matrix.  Each element in A, corresponds to the probability that the 

gamma ray emitted in a particular voxel is detected by a particular pixel at a particular 

gamma camera position (during its rotation around the radioactive source).  For example, 

elements in A represent the probability that voxel fi emits gamma rays that are recorded 
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by the gamma camera in pixel gj. Equation (1.3) is commonly referred to as the forward 

projection, and A the transition matrix. The attractiveness of iterative reconstruction lies 

in the flexibility of the transition matrix. The transition matrix can include extremely 

detailed models of the physics of both photon propagation in non-uniform media and 

detection with a gamma camera. Various groups have developed methods to include 

attenuation effects using radioisotope transmission images [36, 37] or X-ray CT [38, 39, 

40] or even MRI [41]. Incorporation of Compton scatter, although more computationally 

demanding, has received considerable attention [42, 43], as has distance-dependent 

resolution effects [44]. 

One of the most popular iterative reconstruction algorithms is Maximum-

Likelihood Expectation Maximization (MLEM), introduced to the nuclear medicine 

society by Shepp and Vardi [45], and Lange and Carson [46]. We provide a brief 

introduction to the algorithm, but the reader is referred to Lange and Carson [46] for a 

detailed derivation. The objective of tomographic reconstruction is to solve Equation 

(1.3) by finding the best estimate of F: the mean number of radioactive disintegrations in 

the measurement region that can produce the measurements G with the highest 

likelihood assuming Poisson statistics. The MLEM formula is designed to find this best 

estimate of F. It can be written as [46]: 
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Where = new estimate 
1+k

mf

   = old estimate 
k

mf
   = measured number of counts ng
  n = bin number 
  m = pixel number 
  k = iteration number 
  anm = probability photon emitted from mth pixel will be detected in nth bin 

 

 

This equation seems complex at first presentation, but is simply a set of 

successive projection and back-projection operations. It can be expressed more simply in 

words [47]: 

Image (k+1) = Image (k) × Normalized Backprojection of Measured Projections  (1.5) 
            Projection of image (k)

 

The MLEM algorithm requires a starting estimate of the image to be 

reconstructed, referred to as F0 in Equation (1.4) or Image0 in Equation (1.5).  This is 

often a uniform disk of the value 1. As the MLEM iterations proceed, the image 

gradually converges to the tomographic representation of the original distribution of 

radioactivity that was measured. My research utilized a modified version of MLEM 

known as Ordered Subsets Expectation Maximization (OSEM) [48].  Studies have shown 

that OSEM converges to a useful image faster than MLEM, and so it is sometimes 

termed an accelerated version of MLEM. Similar equations and process previously 

described are used by both algorithms, but are implemented differently.  For the case of 
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MLEM a projection/back-projection calculation must be done for every projection angle 

before an updated estimate can be generated.  In OSEM, only a portion of the projection 

angles are projected and back-projected for each iteration. Successive iterations utilize 

different subsets, gradually stepping through all projection angles.  

Attenuation, scatter, and distant-dependent resolution are important forms of 

image degradation.  For the purpose of this thesis we will discuss methods to compensate 

for all these physical effects, but will concentrate more on attenuation correction since 

this thesis’ primary focus is on methods of attenuation correction. 

 

1.5 CORRECTING FOR ATTENUATION IN SPECT 

To correct for the effects of attenuation the distribution of electron density must 

be determined in the object being imaged.  Two popular methods for measuring density 

include radioisotope transmission imaging [37], and more recently X-ray Computed 

Tomopgraphy – leading to the so-called Hybrid SPECT/CT [38]. The technique of 

radioisotope transmission imaging placed a gamma-ray emitting radioisotope adjacent to 

the patient but opposite to the gamma camera, as shown in figure 1.5. The gamma 

camera would record the passage of gamma rays through the patient, and then repeat that 

measurement without the patient. By comparing the two measurements and by using the 

principles of computed tomography, one could calculate the distribution of attenuation 

inside the patient’s body [49]. The advantages of radioisotope transmission imaging are a 

large field of view and a relatively small radiation burden.  Perisinakis et. al. [50] report 

that for a 153Gd radioisotope source, the radiation dose would be approximately 3.2 µSv, 

and since both transmission and emission could be performed simultaneously (with some 
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implementations) there would be only minimal probability of mis-registration between 

the patient’s SPECT scan and their attenuation map [37].  Some disadvantages include 

the requirement of high activity radioisotope source, and the final attenuation maps 

tended to have poor spatial resolution and considerable noise [49]. 

   

Figure 1.5: Transmission imaging with a scanning line source 

Figure displaying a dual detector SPECT camera with a scanning line source 

transmission imaging system. 

 

Over the past decade, radiosotope transmission imaging was gradually replaced 

with X-ray Computed Tomography (a concept first proposed by Hasegawa [51]), 

bringing about the hybrid SPECT/CT scanner.  X-ray CT had several important 

advantages over radioisotope transmission imaging, including (i) images of sufficient 

resolution and low-noise to offer some diagnostic value, (ii) images acquired fast enough 

(depending on the implementation) to be relatively free of motion artifacts, and (iii) a 
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radiation source that could be de-activated and would not decay. Disadvantages include: 

the SPECT and CT are acquired sequentially providing the potential of mis-registration, 

and higher costs and radiation dose [49]. 

One chapter of this thesis examines two different SPECT/CT systems, where the 

two systems are differentiated primarily based on their CT rotational speed. One system 

utilizes a slow-rotation CT for acquiring the transmission data.  In this scenario the X-ray 

tube and detector are attached to the gamma camera gantry, and therefore can only rotate 

as fast as the gamma camera gantry, which is approximately 15 seconds for a full 3600 

rotation.  For each rotation four slices of data are acquired, with each slice being 5mm 

thick.  Scanning a 10cm axial field-of-view therefore requires approximately 5 minutes. 

This period of time is too long for a patient to hold their breath, thus patients are freely 

breathing during data acquisition. Although these images are subject to respiratory 

motion, they still have a much better spatial resolution than those acquired via 

radioisotope transmission imaging. Although the images are not of diagnostic quality, 

some studies have shown that for attenuation correction an image of diagnostic 

resolution is not required [52, 53].  In terms of ionizing radiation burden to the patient: 

for a rest/stress cardiac scan (which is a typical SPECT/CT application), two CT scans 

would be required for a combined dose of 0.5mSv [54]. Despite this dose being higher 

than from radioisiotope transmission imaging (few micro Sieverts [50]) it still compares 

favourably relative to the dose attributed to the injected radiotracer – which is 

approximately 12.5mSv [26].   

A second SPECT/CT design features a SPECT scanner coupled to a high-speed 

CT capable of producing images of diagnostic quality. A typical 360o rotation speed for 
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such a system is 0.6 seconds, while acquiring between 6 to 64 slices per rotation.  This 

high speed enables a CT acquisition within a single breath-hold, which eliminate motion 

artifacts related to breathing, and therefore yields a higher contrast image.  The improved 

image quality however, is associated with increased ionizing radiation dose: the CT 

portion of a cardiac rest/stress scan will contribute 2-4mSv of radiation burden to the 

patient [55]. 

 

1.6 CORRECTING FOR SCATTERED GAMMA RAYS IN SPECT 

In SPECT imaging, the gamma ray detects both primary gamma rays as well as 

scattered gamma rays. One method of reducing scatter content is to reject scattered 

gamma rays via energy discrimination. Currently, this is employed by all gamma 

cameras, as previously described. For example 99mTc imaging is frequently acquired 

using an energy window centered at 140 keV, with a 15% width. Gamma rays with 

energies outside that range are rejected – but low-angle scatter is still admitted. In 

principle one could further remove scatter rejection by reducing the width of the energy 

acceptance. Unfortunately this width is ultimately limited by the finite energy resolution 

of the gamma camera, which is approximately 10%. In an effort to improve energy 

resolution, recent efforts have focused on solid state detectors which replace both the 

scintillation crystal and photomultiplier tubes found in conventional gamma cameras .  

Solid-state detectors using either Cadmium Zinc Telluride (CZT) or Cadmium Telluride 

(CdTe) are currently being studied [56]. Early indications have demonstrated that these 

materials could improve the energy resolution to approximately 5% -- a substantial 

improvement over conventional gamma cameras [57, 58, 59]. 
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Despite the use of energy discrimination, some scattered gamma rays cannot be 

differentiated from primary gamma rays and thus end up being included during data 

acquisition.  The presence of scatter in SPECT degrades resolution and image contrast, 

and therefore it is desirable to minimize its presence. A popular method of scatter 

correction used clinically is to acquire projection data from energy windows adjacent to 

the photopeak window, and use this data to estimate the distribution of scatter in the 

photopeak energy window.  In 99mTc radioisotope imaging (which represents the majority 

of SPECT imaging), a typical scatter correction is the “dual-energy” scatter correction 

method first presented by Jaszczak et al [60] and later refined by Ogawa et al [61], 

illustrated in figure 1.6.  This scatter correction method assumes that the spatial 

distribution of scattered gamma rays in the photopeak energy window is the same as all 

gamma rays recorded in the adjacent (lower energy) window. The scatter correction is 

effected by scaling the data recorded in the adjacent energy window by an 

experimentally-determined constant and then subtracting that scaled data from the data 

measured in the photopeak energy window. After the scattered gamma rays are removed 

from the photopeak projection data, the ‘corrected’ measurements are processed for 

tomographic reconstruction.  For the case of radio-isotopes that have two energy peaks, 

which is the case of 111In, down-scatter is present at the photo-peak centered at 173keV 

coming from the higher photo-peak centered at 247keV.  In this situation a triple-energy 

window (TEW) scatter correction method is used by placing one scatter window just 

below and one just above the primary window around 173keV (figure 1.6) [62]. 
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Figure 1.6: Scatter correction techniques 

For 99mTc imaging and “dual energy” scatter correction a narrow window just below the 

photopeak window is chosen.  With this scatter window a triangle is made, with the 

height equivalent to the average number of counts measured in the scatter window, and 

the base being the width of the primary window.  The area under this triangle is an 

estimate of the scatter measured in the photopeak window.  Scatter correction is then 

implemented by subtracting this scatter estimate from the counts in the photopeak 

window.   For 111In imaging and TEW scatter correction a trapezoid is formed with the 

scatter windows above and below the photopeak window, with the base being the width 

of the photopeak window, and the area under the trapezoid would be subtracted from the 

photopeak window to correct for scatter. 
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1.7 CORRECTING FOR DISTANCE-DEPENDENT RESOLUTION IN SPECT 

 The detector and collimator response functions can be measured and incorporated 

into the iterative reconstruction algorithm to compensate for the distance-dependent 

resolution [63].  To measure the detector response function the collimator is removed and 

a lead plate consisting of a narrow slit is placed on the NaI(Tl) crystal and is irradiated 

with a radioactive source.  The FWHM of this slit is then measured and is typically 

calculated to be approximately 4.0mm.  It should be noted that the detector response is 

not dependent on distance.  The collimator response function is however distance-

dependent (as discussed in Section 1.3), and can be measured with a line source of 

activity placed at different distances from the collimator.  The line profile of the activity 

source is measured at different distances and fit to a Gaussian function and the FWHM is 

measured.  The FWHM of the detector and collimator response functions are then 

combined and plotted to fit a line.  This data is then incorporated into the transfer 

function of the iterative reconstruction algorithm to correct for distance-dependent 

blurring in a SPECT image. 

 

1.8 TOWARDS THE MONITORING OF CARDIAC STEM CELL THERAPY 

USING SPECT/CT 

My thesis explores several technical challenges associated with the use of 

SPECT/CT in monitoring cardiac regenerative therapy. This first aspect concerns the 

adoption of solid-state gamma cameras, which is inevitable if their costs continue to 

decrease. 
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 Since stem cells are sensitive to radiation dose, it is desirable to label them with 

as little radioisotope as possible.  Our group has performed studies to determine the 

toxicity levels acceptable for cells to continue to proliferate, which was shown to be 0.1 

Bq of 111In per cell, for the case of bone marrow derived mesenchymal stem cells [25].  

In our studies involving canine models of heart disease, we would aim to transplant 

approximately 30 million cells [64]. Thus, at most, the activity transplanted to a target 

site (such as an infarction) would be 3 MBq.  This activity level is much lower than the 

20 to 30MBq of 111In used to label white blood cells in routine clinical applications.  In 

addition, these cells are widely dispersed throughout the whole body, as opposed to the 

limited geographic distribution of the transplanted stem cells.  With such a limited 

amount of radioactivity, greater attention must be paid to maximizing image quality 

including the implementation of corrections for the physical effects of gamma ray 

attenuation and scatter. One opportunity for minimizing the presence of scatter in SPECT 

may lie with the adoption of solid-state gamma cameras.  Compared with conventional 

gammas cameras utilizing scintillation crystals and photomultiplier tubes, solid-state 

detectors can achieve superior energy and spatial resolution, in addition to enhanced 

image contrast [56]– all of which would benefit imaging transplanted radiolabeled cells.  

The use of solid-state gamma cameras is currently limited due to very high 

manufacturing costs, especially for large field-of-view (FOV) detectors.  For the 

application of monitoring cardiac stem cell therapy, however, a large FOV detector may 

not be necessary since the region of interest – the heart – is relatively small. However, in 

general, the use of small detectors requires caution since object truncation always 

becomes more of a concern [65, 66].  However no one has addressed the problems of 
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image truncation when performing hot-spot imaging.  It will be shown that provided the 

hot-spot is within each projection that truncation is less of a problem if the reconstruction 

method is guided by an anatomical imaging method such as CT. 

When imaging radioactive distributions larger than the gamma camera, artifacts 

caused by object truncation can appear at the periphery of the FOV.  These artifacts can 

be especially prominent in iterative reconstructions, and are the result of the 

reconstruction algorithm attempting to find a distribution of activity in that FOV most 

consistent with the projection data (as described in Section 1.4 earlier). However, since 

there is by definition, radioactivity beyond the FOV, the algorithm converges to an 

incorrect solution; and the error is seen as the “hot rim” truncation artifact.  

Correcting for truncation artifacts is important when imaging a small FOV 

because the artifact can easily interfere with the imaging of the object of interest. 

Methods for correcting image truncation have been discussed in the past [66, 67]. In 

CHAPTER 4, I evaluate an iterative reconstruction algorithm modified to reduce the 

presence of truncation artifacts. The algorithm is evaluated in the context of cardiac 

imaging where the imaging apparatus is a small FOV gamma camera coupled to a large 

FOV X-ray CT. 

 The low amount of activity used in cardiac stem cell therapy monitoring using 

SPECT emphasizes the need for dealing with the physical effects of scatter and 

attenuation.  The previous section introduced the necessity for improved scatter rejection; 

however, the matter of gamma-ray attenuation will also need to be addressed.  Currently 

the most widely implemented method for attenuation correction is via X-ray CT.  

However, as previously described, two CT designs exist for SPECT/CT systems; a slow-
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rotation CT and a fast-rotation CT.  We should note a third CT design exists that 

incorporates a flat panel x-ray detector that can image the entire chest in a single rotation. 

At the time of the experiments the flat panel design was not available and therefore the 

latter two were studied.  Experiments were required to determine which design will 

perform a more correct method of attenuation correction.  In Chapter 2, I study how 

respiratory motion impacts the quality of cardiac SPECT imaging when attenuation 

correction is based on fast vs slow rotation CT. I evaluate both designs using computer 

simulations and experiments in a canine model. 

Many aspects of cardiac stem cell therapy remain to be studied and optimized.  

To achieve successful cell therapy, it is believed that cells should be transplanted into the 

periphery of the infarct, and not directly in the infarct center where blood flow is 

compromised [68].  Therefore, methods to properly localize transplanted cells in relation 

to blood flow must be developed.  Here, SPECT can offer a solution due to its multi-

spectral imaging capabilities.  We previously demonstrated the ability of SPECT to 

image simultaneously, in a canine model, cardiac-transplanted 111In-labeled cells, 

myocardial perfusion using 99mTc-MIBI, and an 131I-labeled FIAU reporter probe (See 

Figure 1.7).  However, the resolution of the SPECT blood flow image with 99mTc is not 

ideal to properly localize the cells relative to the region of reduced blood flow.  CT has 

been shown to be a viable alternative for perfusion imaging [69, 70], and has the 

resolution required to localize the 111In labeled cells seen on SPECT.  Recent studies 

have confirmed that the CT in hybrid systems such as PET/CT can be used for perfusion 

imaging [71].  In Chapter 3, I demonstrate a newly developed method of combining 
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SPECT with first-pass perfusion CT for the localization of cells in relation to region of 

reduced blood flow in a canine model of myocardial infarction. 

 

Figure 1.7: Multi-spectral imaging using SPECT 

SPECT is capable of imaging multiple isotopes simultaneously.  In this particular 

example of a canine study, the injected cells were labeled with 111In (GREEN), the 

cardiac perfusion image was obtained with 99mTc (RED), and a reporter probe imaged 

with 131I (BLUE).  All of these isotopes are combined to form a single image. 
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CHAPTER 2:  CARDIAC SPECT/CT: SLOW CT OR FAST CT? 
 
 
 
2.1 INTRODUCTION 
 

For many decades SPECT has been routinely used for myocardial perfusion 

imaging [1].  However, the diagnostic quality and quantitative accuracy of SPECT is 

affected by the physical effects of attenuation and scatter [2, 3], and therefore, SPECT 

would benefit from proper correction of these physical effects.  The dominant effect 

reducing quantitative and diagnostic accuracy in cardiac SPECT is photon attenuation [4, 

5, 6, 7].  In the past, non-uniform attenuation correction in SPECT was accomplished by 

way of radioisotope transmission imaging [8, 9, 10, 11, 12, 13, 14, 15, 16, 17].  Some of 

the challenges of radioisotope transmission imaging are limited resolution in the 

attenuation map, longer acquisition times that may increase the likelihood of patient 

motion, conversion of attenuation coefficients from the transmission energy to the 

emission energy, cross-talk between the transmission and emission data acquisitions, and 

the cost of frequently replacing the transmission radioisotope [4, 18, 19, 20, 21, 22, 23, 

24, 25, 26, 27, 28].  The natural progression of transmission imaging moved toward x-ray 

CT [29], in part to address these concerns, and in part to provide the added benefit of 

improved anatomical localization.   

Following the success in PET/CT [30], several manufacturers are now developing 

hybrid Single Photon Emission Computed Tomography / X-ray Computed Tomography 

(SPECT/CT) platforms [31].  The concept of utilizing CT for SPECT attenuation 

correction and image fusion has been studied even before the development of PET/CT 

[23, 32, 33].  The importance of SPECT/CT lies with the desire to provide anatomical 
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context to the functional information provided by SPECT, and the growing recognition 

that, in SPECT, attenuation is inherently non-uniform and correcting for its effects 

requires knowing the distribution of tissue density in the body with high spatial 

resolution [28].  Thus, moving to CT was received well, and it largely eliminated the 

problems associated with radioisotope transmission imaging [29, 30, 33, 34, 35].  In fact, 

a multi-centre evaluation of attenuation correction using both x-ray CT and radioisotope 

transmission imaging concluded that a high-quality attenuation map provided the best 

results when comparing uniformity in normal myocardium and defect contrast [36]. 

Attenuation correction depends upon the registration accuracy between SPECT 

and CT [37] and that the attenuation map matches the conditions under which the SPECT 

scan was acquired. In SPECT, due to the axial length of the gamma camera 

(approximately 30cm), all tomographic slices can be acquired simultaneously. Although 

some manufacturers acquire data with a gamma camera in continuous rotation, the 

majority of them acquire data in a stop-and-acquire manner, with each projection lasting 

about 5 to 20 seconds, depending on the application. Thus, when imaging the torso in 

SPECT the acquisition of each projection is averaged over the multiple phases, or even 

multiple cycles, of the respiratory cycle. CT gantries, on the other hand, move much 

faster and in a continuously rotating manner.  In merging SPECT and CT platforms, 

manufacturers have taken one of two approaches to CT design. In the "slow rotation" 

design, a CT gantry completes a full 360o rotation in approximately 15 seconds [8]; thus 

each CT projection is acquired during a different phase of the respiratory cycle, since 

breathing is maintained.  Upon reconstructing data acquired in this manner, transaxial 

slices are often found to contain radial streaking artifacts that could have negative 
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implications for attenuation correction [38].  The "fast rotation" design completes a full 

3600 rotation in as little as 0.6 seconds, allowing all projections to be acquired during a 

single phase of the respiratory cycle (i.e. a breath-hold).  With either design, the CT data 

will not be registered to the SPECT due to respiratory motion during the acquisition of 

the latter [39, 40], and hence quantitative accuracy will be compromised [41, 42, 43]. 

Given the above disparity between the methods of acquiring SPECT and CT, the 

question then arises: which is more suitable for SPECT attenuation correction, "slow 

rotation" or "fast rotation" CT?  The idea of using a slow rotation or fast rotation has 

already been under debate in PET/CT systems [44].  Phantom and clinical studies have 

already demonstrated that a slow-rotating CT design in SPECT/CT provides adequate 

resolution and anatomical localization capabilities for attenuation correction purposes 

[45, 46], but studies comparing it to fast-rotation CTs have not been published.  The 

purpose of this work was to compare “slow-rotation” with “fast-rotation” CT for their 

ability to correct for non-uniform attenuation in cardiac SPECT/CT taking into account 

the impact of physiological motion in both computer simulations and canine 

experiments. 

 

2.2 METHODOLOGY 

2.2.1 Computer Simulations 

Computer models were developed of SPECT/CT systems with two CT designs.  

The slow-rotation CT design has a full-orbit (3600) rotation time of 15 s, with slice 

thickness of 5 mm and acquires 4 slices per revolution.  The fast-rotation CT features a 

full-orbit rotation time of 0.6 s, with 1.0 mm slice thickness and a 6-slice detector. These 
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models were meant to approximate the CT designs of the Infinia/Hawkeye-4 (General 

Electric, Waukesha, WI, USA) (slow CT) and Symbia/T6 (Siemens, Erlangen, Germany) 

(fast CT), both of which are in widespread clinical use. 

 

Cardiac computer phantom 

Our study used the 4DNCAT [47] digital phantom (see fig 2.1a), which simulates 

the human chest, including organs in a 3-dimensional spline frame, and features 

physiologic motion. 

For this experiment, motion due to respiration was simulated, wherein the heart 

moved axially by a maximum of 2.3 cm.  The cardiac cycle was not simulated.  A five 

second sinusoidal breathing period was used, which was divided into ten frames 

comprising the respiratory cycle (0.5 s/frame). The 2.3 cm cardiac displacement is 

typical in humans during quiet breathing from rest or functional residual capacity (FRC) 

to FRC plus tidal volume (TV) [48].  Greater displacement would occur in respiratory 

disease with increased TV (i.e. emphysema), or during non-quiet breathing (i.e. 

sighs/yawns).  The phantom was configured to simulate the distribution of the radiotracer 

99mTc-MIBI, which is commonly used to evaluate myocardial viability (see fig 2.1b). The 

concentration of the radiotracer in each organ was derived from patient scans acquired in 

our clinic. The 4DNCAT phantom was also used to simulate the CT scans, which were 

converted into 140keV equivalent attenuation maps.  Attenuation coefficients were 

calculated from measured values collected in clinical scans, which concur with published 

values [49].  These attenuation coefficients were for a narrow-beam CT acquisition.  We 

have converted these results to provide broad-beam attenuation coefficients [50], to 
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compensate for the effects of scatter (Soft tissue = 0.12; Bone = 0.18; Lung = 0.04) 

during SPECT reconstruction. 

 

Figure 2.1: The computer phantom model of the chest 

(A) 4DNCAT phantom displaying the organs that are simulated.  (B) Activity 

distribution of the different organs.  The ratio of the activity distribution was taken from 

clinical scans at our institution (soft tissue:lung:heart = 2:4:75). 

 

Simulation of SPECT data acquisition 

SPECT was simulated using SimSET (University of Washington, Division of 

Nuclear Medicine), which is a Monte Carlo based simulation software that models the 

physical effects of photon propagation in the phantom and the performance 

characteristics of typical SPECT systems. For the case of these simulations we used a 

typical parallel hole collimator (thickness = 2.405 cm; hole radius = 0.0555 cm; septal 

thickness = 0.016 cm), and with a detector crystal modelled to have a 10% intrinsic 

energy resolution.  For SPECT, 1.5M counts were simulated to be detected over 128 

projections over 360 degrees using 128x128 projection matrices. These parameters are 
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typical in our clinical cameras and cardiac procedures.  The SPECT simulation was gated 

to the same respiratory cycle as the 4DNCAT phantom; therefore, 10 SPECT 

acquisitions were obtained providing approximately 150k counts per frame of the 

respiratory cycle. 

 

Simulation of X-ray CT data acquisition  

To model the slow rotation CT, different points in the respiratory cycle were 

selected and projected into arc-segments of the radon transform, leading to a set of 

inconsistent projections. These projections were tomographically reconstructed using 

filtered-backprojection, resulting in “motion-corrupted” tomographic slices, which were 

then used as the attenuation map in SPECT iterative reconstructions (see Fig.2.2A). To 

model the fast rotation CT, the respiratory cycle was fixed at FRC for the entire 

acquisition, and used as the attenuation map [51] in SPECT iterative reconstruction (see 

Fig.2.2B).  As well nine other fast CT acquisitions were simulated, each one taken at a 

single point in the respiratory cycle progressing from the (FRC phase + TV/5) to (FRC + 

TV) and back down to FRC corresponding to a total of 10 CT data sets equally 

separating the cardiac displacement over 2.3cm.   

 

Simulated SPECT/CT data reconstruction 

SPECT data were reconstructed using an ordered subset iterative reconstruction 

algorithm [52] with four different scenarios:  
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(1) For the slow rotation CT, each of the 10-gated SPECT acquisitions 

were reconstructed using the single motion-corrupted CT as the 

attenuation map. (gated-SPECT/slow-CT) 

(2) For the fast rotation CT, a breath hold CT at FRC was used as the 

attenuation map for each of the 10-gated SPECT reconstructions. 

(gated-SPECT/fast-CT) 

(3) Reconstructions of the gated SPECT acquisitions with the 

corresponding gated CT as the attenuation map were used as our gold 

standard. (gated-SPECT/gated-CT) 

(4) Finally, reconstructions with no attenuation correction were performed 

on the 10-gated SPECT acquisitions. (gated-SPECT/no-CT) 

 

2.2.2 Analysis of computer simulations 

Simulated attenuation maps 

 A comparison of the slow rotation CT and fast rotation CT attenuation maps with 

that of the gold standard was measured through the use of a linear sum algorithm [54].  

The same central slice of the heart was taken for each map, and the sum of all lines 

(linear sum) from the centre of the attenuation map towards the exterior was taken for 

128 angles spaced uniformly over 360 degrees (figure 3A).  The RMS error was 

measured between the slow rotation and fast rotation CT attenuation maps with that of 

the gold standard for each of the 10 frames in the respiratory cycle using the following 

equation: 
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Where, 
i = angle 
N = Total number of angles (360) 
GOLD(map) = Gold standard attenuation map 
TEST(map) = Slow rotation or fast rotation CT derived attenuation map 
  

Simulated SPECT reconstructions 

A polar plot was constructed for each of the reconstructed data in all four 

scenarios (1 to 4 from section 2.2.1: Simulated SPECT/CT data reconstruction) using in-

house software [53].  To analyse and compare the different reconstruction methods the 

polar plots were compared in a pixel-by-pixel manner for each of the 10 frames of 

respiratory cycle and the root mean squared (RMS) error between (1) and (3), (2) and (3), 

and (4) and (3) was calculated as: 
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Where,  
i = pixel 
N = total number of pixels 
GOLD = Gold Standard (gated-SPECT/gated-CT) and, 
SIM = Attenuation corrected reconstruction with slow CT (gated-SPECT/slow-CT) OR 
fast CT (gated-SPECT/fast-CT) 
Note: The summation is taken over all pixels in the polar plot. 
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2.2.3 Canine experiments 

Canine studies were approved by the Animal Use Subcommittee at the University 

of Western Ontario.  A total of three adult canines (20 kg average mass) were used for 

this study.  For each experiment the canine was injected with 400MBq of 99mTc- 

methoxyisobutylisonitrile (99mTc-MIBI) for myocardial perfusion imaging, and 

underwent cardiac SPECT/CT scans using an Infinia/Hawkeye-4 (General Electric 

Healthcare, Waukesha, WI, USA) (slow rotating CT), and a Symbia/T6 (Siemens 

Medical Systems, Erlangen, Germany) (fast rotating CT) and, both of which use dual-

head SPECT.  SPECT scans were acquired using 128 projections over 360 degrees (64 

projections over 180 degrees per gamma camera head), 128x128 image matrices, and 

high-resolution parallel hole collimators (Symbia/T6: thickness = 2.405 cm; hole radius 

= 0.0555 cm; septal thickness = 0.016 cm, Infinia/Hawkeye-4: thickness = 3.5 cm; hole 

radius = 0.075 cm; septal thickness = 0.02 cm). 

The canine was kept alive for a period of 1.5 hours to maximize the 99mTc-MIBI 

uptake.  After which point the canine was euthanized and imaged on the 

Infinia/Hawkeye-4 SPECT/CT 4 hours post-mortem.  Myocardial perfusion cardiac 

SPECT/CTs were performed with no ventilation (no respiratory motion: slow gold 

standard), and followed with assisted ventilation at 8 breaths/min to simulate respiratory 

motion.  For the case of the Infinia/Hawkeye-4 scans the euthanized canines were 

ventilated for both the SPECT and CT portion due to the longer scan time for the slow 

rotation CT.  The CT scan consisted of 5 mm thick slices.  The time per projection for 

the SPECT scan was chosen to achieve a 1.5M count level for the entire slow gold 

standard scan (~35 s/projection), which is what is typically seen for clinical acquisitions.  
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To compensate for the effects of physical decay of the 99mTc, the time/projection for the 

SPECT scan with respiratory motion was increased to provide approximately the same 

total counts per projection as the slow gold standard scan. 

The canine was then scanned on the Symbia/T6 7 hours post-mortem with no 

respiratory motion (fast gold standard), followed by another while the canine was 

ventilated (8 breaths/min) to once again simulate the motion of breathing.  Since the 

Symbia/T6 is equipped with a fast rotating CT, the CT for this case was taken at end 

expiration (no ventilation) to simulate the acquisition at FRC that would have occurred if 

the canine was alive.  The CTs of the chests were once again performed at a slice 

thickness of 5mm to be comparable to that of the Infinia/Hawkey-4’s slow rotating CT.  

The time per projection for the SPECT scan was once again chosen to achieve a 1.5M 

count level for the entire fast gold standard scan (~45 s/projection).  To compensate for 

the effects of physical decay of the 99mTc, the time/projection for the SPECT scan with 

respiratory motion was increased to provide approximately the same total counts per 

projection as the fast gold standard scan. 

 All the data from the Infinia/Hawkeye-4 canine experiments were reconstructed 

on the Xeleris workstation (version 2.0532) (General Electric Healthcare, Waukesha, WI, 

USA) and all the data from the Symbia/T6 canine experiments were reconstructed on the 

Symbia workstation (version 8.1.15.7 SP2) (Siemens Medical Systems, Erlangen, 

Germany). Clinical cardiac reconstruction parameters were used (ordered subset 

expectation maximization (OSEM) iterative algorithm consisting of 3 iterations, 16 

subsets).  In addition all reconstructions were normalized to the total counts in the image, 
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which corresponded to the gold standard for either the slow rotation CT or fast rotation 

CT equipped SPECT/CT. 

 

2.2.4 Analysis of canine experiments 

 Experiments performed on the Infinia/Hawkeye-4 and the Symbia/T6 each had 

their own gold standard, which consisted of imaging with no respiratory motion 

(euthanized canine).  Since changes in anatomy occur post-mortem [55], imaging on the 

Infinia/Hawkeye-4 commenced approximately 4 hours post-mortem, and images 

acquired while the canine was ventilated (with respiratory motion) were compared to 

images acquired with no respiratory motion.  A region of interest (ROI) in a central slice 

of the heart was chosen and an RMS error was calculated between the two sets of images 

using the following equation: 

( ) 1001 2 ×−∑
i

N
ii VENTILATEDGOLD

N
  (2.3) 

Where, 
i = pixel 
N = total number of pixels in slice 
GOLD = Gold standard (no motion SPECT/CT reconstruction) 
VENTILATED = SPECT/CT reconstruction with motion using either slow or fast CT 
attenuation maps 
Note: Ventilated data was normalized to total counts in gold data 
 

In addition to the RMS error, the ventilated data for the Infinia/Hawkeye-4 and 

Symbia/T6 was compared with the slow and fast gold-standard respectively using a 

scatter plot of the same ROI in the central slice of the heart and a correlation coefficient 

was recorded. 
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2.3 RESULTS 

2.3.1 Computer Simulations 

Results of the slow- and fast-CT 4DNCAT computer simulations are shown in 

Figure 2.2. Motion artifacts due to respiratory motion are readily apparent in the 

attenuation map reconstruction from the data acquired by the slow rotating CT. The 

artifacts can be seen in coronal and trans-axial planes, and are visualized qualitatively as 

(i) blurring in the direction of motion, most evident at the base of the lungs in the coronal 

plane, (ii) a contrast reduction in small structures, such as the ribs, and (iii) a background 

“noise” seen throughout soft-tissue and lung regions. Additionally, in the trans-axial 

plane, some radial streaking is apparent in soft-tissue regions around the periphery.  

From a quantitative perspective a profile through the coronal plane confirmed blurring 

artifacts at object boundaries, the loss of contrast of smaller structures and the presence 

of noise. The fast CT simulated attenuation map provided an attenuation map without 

blurring, contrast reduction and image noise. 
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A B

 

Figure 2.2: Comparing slow and fast CT attenuation maps 

(A) Coronal slice of a slow CT attenuation map and a (B) fast CT attenuation map.  

Profiles taken across the dashed-line in (A) and (B) are seen in (C).  Trans-axial slice of a 

(D) slow and a (E) fast rotation CT attenuation map at the level of the diaphragm.  Notice 

the motion artifacts associated with the slow CT, and the loss of contrast in the image 

compared to the Fast CT acquisition at FRC.  
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Simulated attenuation maps 

The result of the linear sum analysis of the attenuation maps is shown in Figure 

2.3.  First, for the slow rotating CT and fast rotating CT, the overall RMS error, relative 

to the gold standard (gated-CT) depends upon the respiratory frame.  The slow-CT RMS 

error is never zero, since it is never equal to the gold standard.  However, with the fast-

CT, the RMS error is zero when comparing the same frame in the gold standard (gated-

CT) that was used as the attenuation map for the fast-CT acquisition.  By comparison of 

the slow-CT and fast-CT attenuation maps the average RMS error across all frames of 

the respiratory cycle improves from 2.4% to 1.5% respectively.  Additional insight can 

be gained by considering the angular dependence of the error in linear sums.  Figure 

2.3(A) illustrates the location of the linear sums as a function of angle.  Figure 2.3 (B) 

shows the linear sums as a function of angle for the slow-CT, the fast-CT as well as the 

gold-standard (gated-CT) (frames #1 and #5 are both shown).  Linear sums are a function 

of angle as well as the frame in the respiratory cycle.  For the slow-CT, linear sums are 

different than the gold standard (gated-CT) for both frames in the respiratory cycle at 

nearly all angles.  For the fast-CT, linear sums are equal to frame #1 in the gold standard 

for all angles since this was the frame chosen for the fast-CT attenuation map, but 

substantial differences are noted for all angles when comparing fast-CT with the gold 

standard (gated-CT) at Frame #5. 
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Figure 2.3: Linear sum errors comparing slow and fast CT attenuation maps 

(A) Image displaying profile lines taken across all angles of the attenuation map. (B) 

Sum of profiles at each angle around the attenuation map for the slow-CT, fast-CT, and 

the gold standard (gated-CT) (frame#1 and frame#5).  Note that the profiles for ‘Gold: 

Frame #1’ overlap with the profile for ‘Fast CT’.  (C) RMS error per frame of respiratory 

cycle between slow-CT and fast-CT attenuation maps compared to gold standard (gated-

CT).  Note: Frame #1 is equal to the FRC frame of the respiratory cycle. 
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Simulated SPECT reconstructions 

Figure 2.4 summarizes the RMS errors for each frame in the respiratory cycle 

when analysing the computer simulation respiratory gated SPECT data reconstructed 

with attenuation correction.  The RMS error in this case is calculated relative to the gold 

standard of gated-SPECT and gated-CT (gated-SPECT/gated-CT).  The RMS error plot 

in figure 2.4 follows a similar trend as the plot in figure 2.3C for both the slow-CT and 

fast-CT attenuation maps.  The RMS error for the first frame of the respiratory cycle was 

zero when using the fast-CT attenuation map.  This is because the frame in the 

respiratory cycle used for the CT attenuation map (simulation of FRC) was equal to the 

frame of the respiratory cycle of the SPECT data that were collected.  For the fast-CT as 

we move further away from the initial frame (i.e. from FRC to FRC + TV), the RMS 

errors increase, and gradually returns back towards zero as we return back to the 

exhalation frame (i.e. FRC of the respiratory cycle).  For the slow-CT attenuation map 

the RMS error is never zero since the frame of the respiratory cycle of the CT data will 

never be equivalent to the frame of the respiratory cycle of the SPECT data.  The RMS 

errors averaged across the frames respiratory cycle were found to be 4.2% for the  

SPECT data corrected with the slow-CT attenuation maps (gated-SPECT/slow-CT), and 

4.0% for the SPECT data corrected with the fast-CT attenuation map (gated-SPECT/fast-

CT). However, when no attenuation correction was used in SPECT reconstruction 

(gated-SPECT/no-CT), the average RMS error increased to 68.1%, relative to the gold 

standard (gated-SPECT/gated-CT). 
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Figure 2.4: plot of error comparing SPECT reconstructions with slow and fast CT 

attenuation correction (From equation 2.2) 

RMS error plot per frame of the respiratory cycle, comparing the SPECT reconstructions 

using slow-CT and fast-CT attenuation maps (gated-SPECT/slow-CT and gated-

SPECT/fast-CT) with the gold standard (gated-SPECT/gated-CT).  The RMS error using 

the fast-CT at the first frame is zero, since this was the frame used for the fast-CT 

attenuation map.  The gated-SPECT/slow-CT RMS error is never zero, since the slow-

CT attenuation map is never equal that of the gold standard (gated-CT).  The SPECT 

simulations corresponded to 5 different lung volumes between FRC (frame #1) and 

FRC+TV (peaking at FRC+TV in frame #6).  The fast-CT was acquired at FRC, while 

the slow-CT was acquired over 15s while the heart moved with a breathing period of five 

seconds. 
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To gain further insight into the origins of these errors, we compared count density 

profiles across the left ventricle from gated-SPECT/slow-CT, gated-SPECT/fast-CT, and 

gated-SPECT/gated-CT (gold standard) reconstructions.  Figure 2.5 shows these profiles 

taken at frame 2 (FRC + TV/5) and frame 8 (FRC + TVx3/5) of the respiratory cycle.  

Using the slow-CT attenuation map (gated-SPECT/slow-CT), we notice a slight 

reduction in count density compared to the gold standard (gated-SPECT/gated-CT).  This 

reduction is more pronounced for gated-SPECT/slow-CT frame 2 (See arrow in Figure 

2.5a).   
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Figure 2.5:  Comparing profiles of SPECT reconstructions with slow and fast CT 

attenuation correction 

(A) Linear profile taken from frame 2 and (B) frame 8 from figure 2.4.  Profile taken 

across left ventricle of the heart.  (C) Coronal slice of the left ventricle displaying the 

location of the profiles taken across the heart.  The profiles of the heart are comparing the 

three different attenuation maps for image reconstruction. Notice the loss of contrast 

when using Slow-CT attenuation map.  Note: gated-SPECT/fast-CT and gated-

SPECT/gated-CT (gold) profiles essentially overlap. 
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2.3.2 Canine experiments 

 To remove the confound of comparing SPECT of a live canine with SPECT of a 

deceased canine, we focused our experiments on recently deceased canines only. 

However, to evaluate changes between living and deceased canines, we performed CT 

scans on each canine prior to euthanization, as well as at multiple times points post-

euthanization. Figure 2.6 shows that subtle differences are observed when comparing 

pre- and post-euthanized canines. Figures 2.6 a-c illustrate an enlargement of the 

mediastinum post-euthanization. 
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Figure 2.6: Changes in canine anatomy post-mortem 

(A) CT scan while canine was alive and being ventilated.  (B) CT taken after canine was 

euthanized, approximately 30min post-mortem, (C) 2 hours post-mortem, (D) 4 hours 

post-mortem, (E) 5 hours post-mortem, (F) 7 hours post-mortem, and (G) 8 hours post-

mortem.  For (A), (B), (C), (F), and (G) the CT scans were performed on the Symbia/T6 

and were taken at functional residual capacity (FRC) by switching the ventilator off 

during the scans.  For (D) and (E) the CT scans were performed on the Infinia/Hawkeye-

4 with and without respiratory motion respectively.  These images display the changes in 

the canine heart anatomy immediately after post-mortem, and the stabilization hours 

later. 
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The RMS errors comparing slow and fast rotation attenuation correction in the 

canine studies showed an improvement for all three canines when using the fast rotation 

CT of the Symbia/T6 (table 2.1).  Figure 2.7 and 2.8 displays the SPECT images for all 

canines using the Infinia/Hawkeye-4 and the Symbia/T6 respectively. The scatter plot 

and profile across the chest for the first canine is also shown.  The correlation 

coefficients calculated for all three canines improved when using the fast rotation 

attenuation map of the Symbia/T6 (table 2.2).  The profile taken across the chest of 

canine #1 comparing the reconstructions with and without respiratory motion shows near 

perfect alignment for the Symbia/T6 (figure 2.8), as opposed to differences in contrast 

and the position of the peeks for the SPECT reconstructions using data acquired from the 

Infinia/Hawkeye-4 (figure 2.7). 

Table 2.1: RMS error in Canine Studies 
Canine Infinia/Hawkeye-4 

(Slow-CT attenuation map) 
Symbia/T6 

(Fast-CT attenuation map) 

#1 44.4% 27.9% 
#2 17.8% 9.8% 
#3 21.9% 15.4% 
 

Table 2.2: Correlation Coefficients in Canine Studies 
Canine Infinia/Hawkeye-4 

(Slow-CT attenuation map) 
Symbia/T6 

(Fast-CT attenuation map) 
#1 0.71 0.92 
#2 0.92 0.99 
#3 0.92 0.96 
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Figure 2.7: Comparing images and scatter plots to gold standard for cardiac canine 

SPECT/CTs using slow rotation attenuation maps 

The first two columns are the central slices of the SPECT reconstruction using the 

Infinia/Hawkeye-4 slow rotating CT attenuation map with and without respiratory 

motion.  A square ROI shown in canine #2 was used around the heart for the RMS error 

calculation and scatter plots for all canines. The last column consists of a plot of the 

profile across the heart and a scatter plot for canine #1 comparing the scan with and 

without respiratory motion.  The profile was taken across the orange dashed line shown 

in the trans-axial image of canine #1. 
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Figure 2.8: Comparing images and scatter plots to gold standard for cardiac canine 

SPECT/CTs using fast rotation attenuation maps 

The first two columns are the central slices of the SPECT reconstruction using the 

Symbia/T6 fast rotating CT attenuation map with and without respiratory motion.  A 

square ROI shown in canine #2 was used around the heart for the RMS error calculation 

and scatter plots for all canines.  The last column consists of a plot of the profile across 

the heart and a scatter plot for canine #1 to compare the scan with and without 

respiratory motion.  The profile was taken across the orange dashed line shown in the 

trans-axial image of canine #1. 
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 2.4 DISCUSSION 

The value of attenuation correction in cardiac SPECT/CT has long been the 

subject of debate [56] with some authors in support of its use [57, 58] and others opposed 

[59, 60].  Although multiple studies have shown the potential benefits of attenuation 

correction in SPECT [61], there is now further debate as to how that attenuation 

correction should be implemented [62].  Therefore, a study comparing SPECT/CT 

systems available today is opportune to gain knowledge as to which route to take in 

design of future SPECT/CT technologies.  To our knowledge, there are no cardiac 

SPECT/CT publications comparing the respiratory motion artifacts arising from a slow 

rotation CT or a fast rotation CT attenuation map that is compared with no respiratory 

motion (gold standard). To this end, we performed both computer simulations using a 

well established digital phantom [47], and performed experiments in canines which are 

utilized widely as models of cardiac disease [63, 64, 65, 66]. 

 

2.4.1 Computer Simulations 

 We found that attenuation maps derived from a fast rotation CT had a lower RMS 

error (1.5%) than those derived from a slow rotation CT (2.4%).  The fast and slow 

methods of CT data acquisition are different, both in terms of acquisition time per 

rotation and spatial resolution.  These differences can be visualized easily (Figure 2.2). 

This improvement was found to propagate into the corresponding phantom SPECT 

reconstructions, where the error was found to depend on respiratory frame, when using 

both slow-CT and fast-CT attenuation maps.  In the fast-CT case, the error ranged from 

zero error when the fast-CT was in the same respiratory frame as the gold standard CT, 
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to a maximum error when the fast-CT and gold-standard were at opposite frames in the 

respiratory cycle. However, in the case of the slow CT attenuation map SPECT 

reconstructions, the RMS error is less varied as a function of the respiratory frame. The 

differences in SPECT reconstructions between slow-CT and fast-CT are minimized when 

summing SPECT frames together to form an averaged SPECT. These ‘average’ RMS 

errors are 4.0% and 4.2% for the fast-CT and slow-CT respectively.  

 

2.4.2 Canine Experiments 

Our canine experiments were performed on deceased animals to enable complete 

control of the respiratory cycle, and image acquisition in the absence of respiratory and 

cardiac motion.  Further, our study performed canine experiments in a design that 

allowed each canine to be its own gold standard.  Since each canine is different, and 

cannot be compared to one another, the experimental design was set up in this manner to 

properly evaluate the two SPECT/CT designs. 

Figure 2.6 shows that, without respiratory motion, CT image quality is similar for 

both fast and slow CT designs. However, in the presence of respiratory motion, slow 

rotation CT images were found to contain radial streak artifacts, as previously reported 

[38]; whereas the fast rotation CT remained free of motion artifacts.  By referring to the 

profile across the heart in figure 2.8, we notice that the profile using the fast CT 

attenuation map in the Symbia/T6 reconstruction has a near perfect alignment and offers 

similar correction with and without respiratory motion.  The profile across the heart for 

the slow CT attenuation map in the Infinia/Hawkeye-4 reconstruction (figure 2.7) shows 

an over correction in counts when respiratory motion is present.  This may be explained 
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by referring to the CT scan seen in figure 2.6d, where motion in the slow CT acquisition 

changes the attenuation coefficients to higher values which are similar to that of bone 

due to the streaking artifacts causing the over correction in the SPECT reconstructed 

image. 

Concerning the impact of the fast and slow CT attenuation maps on SPECT 

reconstructions, RMS errors were smaller and correlation coefficients were higher for the 

fast CT compared to the slow CT, for all three canines.  This effect was larger than what 

was recorded in the averaged computer simulations. It is important to note that our 

canine SPECT imaging was performed without respiratory gating, thus the impact of 

mis-registration is averaged across all SPECT frames of the respiratory cycle.  SPECT 

data is acquired across tens of minutes and each projection is averaged across all frames 

of the respiratory cycle. In the case of fast CT, data is acquired in seconds and in a single 

frame of the respiratory cycle (breath-hold). In the case of slow CT, data is acquired in a 

few minutes with the patient free breathing, thus projections are acquired in different 

frames of the respiratory cycle. These differences lead to mis-registration errors between 

SPECT and CT data and thus compromise attenuation correction. Perhaps one method 

for addressing the challenge of mis-registration is to acquire gated CT (cine CT) and 

gated SPECT, which has been proposed for PET/CT [53].  However, cine CT 

acquisitions will substantially increase patient dose, while gated SPECT will lead to a 

marked reduction in count density or lengthen SPECT acquisition time and increase 

patient discomfort. 
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2.4.3 Patient Motion in SPECT/CT 

Patient motion is an important determinant in SPECT/CT image quality. In 

cardiac imaging, two important aspects of motion arise from the beating heart and the 

respiratory cycle. Our study focused on respiratory motion only, which is generally 

larger in magnitude than cardiac motion [67]. For our computer phantom, we modelled a 

breathing phantom with a non-beating heart, and simulated data acquisition using 

respiratory-gated SPECT and CT, which is not standard clinical practice.  For our canine 

experiments, we once again only looked at respiratory motion and not cardiac motion. 

This was necessary since only in a deceased canine could we control and arrest 

completely the respiratory motion, which was required for the gold-standard in our 

experimental design. The assessment of motion artifacts arising from a beating heart is 

important, and future studies could examine this aspect via computer simulations. From 

an experimental perspective, other groups are looking into the potential of respiratory-

cardiac double-gated SPECT [68]. 

 

2.4.4 Radiation Dose 

 One concern with SPECT/CT is the increased dose associated with the CT scan.  

Radioisotope transmission imaging, the predecessor to CT in attenuation map 

measurements, typically imparted a dose of a few μSv [69].  The typical radiation dose 

experienced from a slow rotating CT such as the one used in the Infinia/Hawkeye-4, is 

on the order of 0.5 mSv [70].  The radiation dose associated with a fast rotation CT such 

as the design used in the Symbia/T6 is on the order of 2-4 mSv [71].  In addition to this 

radiation dose, the radioisotope dose given to the patient for the SPECT portion must 
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also be considered.  For the purpose of a rest/stress myocardial perfusion SPECT scan 

the radiation dose is approximately 12.5 mSv [71].  Thus, although the doses associated 

with measuring attenuation maps are only 10-20% of those involved with SPECT, there 

is a trend towards increasing dose as technology has progressed in attenuation maps 

measurements. 

 

2.5 CONCLUSION 

This study compared slow-rotation and fast-rotation CT in their abilities to 

facilitate non-uniform attenuation correction for myocardial perfusion cardiac 

SPECT/CT. Both strategies for CT data acquisition were susceptible to artifacts induced 

by breathing, and these artifacts compromised their ability to correct for attenuation.  

Effects are most pronounced for attenuation maps, where they are even visually 

apparent. Effects in SPECT reconstruction are more subtle, but can impact quantitative 

analysis. Fundamentally, SPECT and CT data are acquired over very different time 

frames relative to the respiratory cycle; thus fusing these two modalities will always 

challenge registration and, in turn, attenuation correction. 
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CHAPTER 3: HYBRID SPECT/CARDIAC-GATED FIRST-PASS 
PERFUSION CT: LOCATING TRANSPLANTED CELLS 
RELATIVE TO INFARCTED MYOCARDIAL TARGETS 

 

 
3.1 INTRODUCTION 

The transplantation of stem cells for the purpose of treating heart disease is being 

widely investigated [1].  To accurately evaluate the delivery and therapeutic 

effectiveness of transplanted cell (TC) therapy sophisticated non-invasive techniques 

must be established to visualize cell delivery, degree of retention, functionality, and long-

term survival.  Such techniques that afford the localization and quantification of TC 

populations throughout early infarct evolution are of particular interest, and several 

imaging techniques are under investigation [2, 3].  Magnetic Resonance Imaging (MRI) 

of TCs using iron-oxide particles has shown promise in several animal studies [4, 5]; 

however, it is currently limited by low sensitivity and lack of specificity for intact, viable 

cells [2, 6].  Despite this, delayed enhancement MRI does provide the most accurate 

means of identifying infarct extent and location [7].  Positron Emission Tomography 

(PET) can also be used to localize TCs with the use of 18F-fluorodeoxyglucose (18F-

FDG) labeling, but is limited by the short half-life of the radioisotope [8] and rapid 

clearance from labeled cells.  Recently, it has been shown that cells may also be labeled 

with 64Cu-Pysuvaldehyde-Bis(N4-Methylthiosemicarbazone) (PTSM), allowing cells to 

be followed for longer periods of time than with 18F-FDG.   However, 64Cu is not readily 

available and its half-life of 13-hours is still short for following cell lines over extended 

periods [9]. 
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Hybrid imaging using Single Photon Emission Computed Tomography / 

Computed Tomography (SPECT/CT), is a novel approach to the localization of TCs and 

may be accomplished through the labeling of cells with 111In [10]. 111In is more readily 

available than 64Cu and has a significantly longer half-life (2.8 days).  We have shown 

that this tracer can be used to follow transplanted bone marrow monocytes and 

mesenchymal cells for a period of two weeks [11], making this technique highly 

attractive for following TC populations.  By combining this technique with concurrently 

acquired CT (SPECT/CT), accurate spatial registration of these cells to anatomical 

landmarks can be accomplished.  However, it has recently been demonstrated that first-

pass cardiac-gated CT can allow spatial localization of myocardial infarction, raising the 

potential for a combined TC-infarct evaluation using this hybrid-imaging platform.  

Delayed-enhancement (DE) imaging using CT has been recently explored, 

mirroring the more established MRI technique used extensively in clinical practice [12, 

13].  However, it has also been observed that first-pass cardiac CT imaging also initially 

demonstrates hypo-enhancement in regions of myocardial infarction [14, 15]. These 

regions have been shown to correlate well to areas of reduced perfusion using 

Technetium (99mTc) perfusion imaging [16], and DE imaging with either MRI or CT and 

likely represent the infarct core where micro-vascular blood flow is most severely 

compromised [15, 17].  Such an evaluation for first-pass CT can be accomplished using 

low-dose calcium scoring CT protocols with similar sensitivity to high-dose protocols 

[18], which can be implemented in a commercial hybrid SPECT/CT system. 

We previously described experiments involving 111In radio-labeling of cells, 

transplanting those radiolabeled cells and visualizing the distribution of the 111In hotspot 
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using SPECT [11].  In that work, we saw that the background corrected signal intensity 

of the hotspot decreases with time, and we proposed an in-depth model for explaining 

this decrease [11].  That model proposes that some of the 111In remains in the cells and 

some washes out of the cells, and further, that some cells remain, and some die and/or are 

removed from the injection site [11].  In this manuscript, we describe similar experiments 

involving 111In radio-labeling of cells and then characterizing the 111In hotspot using 

SPECT in terms of minimum detectable activity.  We also evaluate the feasibility of 

temporally and spatially localizing 111In–labeled stem cells relative to infarcted 

myocardium using a hybrid SPECT/[first-pass perfusion CT] imaging protocol.   

 

3.2 METHODS 

3.2.1 Validation of SPECT and CT Image Co-Registration 

 SPECT/CT was acquired using a standard clinical protocol (64 projections, 

30s/projection, 128x128 image matrix) followed by a CT scan (17mAs, helical CT).  

This was performed on two capillary tubes (1mm inner diameter) containing identical 

mixtures of 300mgI/mL CT contrast (Omnipaque, General Electric Healthcare, 

Waukesha, WI) and 50MBq 99mTc. These tubes were oriented in a ‘T’ pattern to measure 

SPECT and CT co-registration in three axes.  Spatial alignment was evaluated by 

comparing locations of tube centroids in SPECT and CT reconstructions. 
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3.2.2 Animal Preparation 

 Canine studies were approved by the Animal Use Subcommittee of the University 

of Western Ontario.  Ten adult female mongrel hounds were used (typical weight: 20 

kg). All canines underwent general anesthesia using propofol induction followed by 

Isoflurane (1.5-2%) maintenance and mechanical ventilation. Subsequently, during open 

thoracotomy, canines underwent surgical ligation of the left anterior descending (LAD) 

coronary artery using a suture placed distal to the first diagonal branch.  To provide a 

representation of both non-reperfused and reperfused myocardial infarction, 4 dogs 

underwent a permanent ligation of the LAD, while 6 had reperfusion after 2-hours by 

releasing the ligature. 

 

3.2.3 Cell Preparation 

Peripheral blood was harvested from each canine and endothelial progenitor cells 

(EPCs) were isolated using density gradient centrifugation with Ficoll-Paque PLUS 

(General Electric, Waukesha, WI). Culture expansion took place over eight-weeks to 

allow for cell expansion to thirty million cells, as previously described [19, 20]. Cells 

were then labeled with 111In (0.1 Bq/cell) by incubating them with 111In-tropolone in 

370C Hanks Balanced Salt Solution (HBSS) for 30 minutes [11, 19].  After washing three 

times with HBSS, the labeled cells were suspended in HBSS in preparation for cell 

delivery. 
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3.2.4 Cell Transplantation 

 Stem cell delivery was performed epicardially and endocardially.  Three canines 

with epicardial injections received the transplanted cells on the day of infarction.  These 

10 canines were split into two groups consisting of chronic occlusions (1) and reperfused 

occlusions (2).  Endocardial injections were performed on 7 canines, with 4 out of 7 

injections at 1-week post-infarction split evenly between chronic and reperfused cases 

while the rest were performed on the day of infarction consisting of 2 reperfused 

occlusions and 1 chronic occlusion (table 3.1). 

TABLE 3.1: Summary of Transplantation Method 
Dog Arterial Status Cell Injection Technique
1 Reperfused Endocardial* 

2 Reperfused Epicardial* 
3 Chronic Epicardial* 
4 Chronic Endocardial† 
5 Reperfused Endocardial† 
6 Chronic Endocardial* 
7 Reperfused Endocardial* 
8 Reperfused Epicardial* 
9 Reperfused Endocardial† 
10 Chronic Endocardial† 

* Injections performed on day of infarction 
† Injections performed one-week post-infarction 

 

3.2.5 Endocardial Injections 

Following femoral cut-down and insertion of a 7-French introducer sheath, the 

animal was transported to the angiography suite for cell injection.  With the animal in a 

supine position, separate right anterior (30º) and left anterior oblique (60º) contrast 

ventriculograms (Omnipaque) were obtained using a 6-French pigtail catheter.  

Endocardial injections were performed using the Stiletto™ Endomyocardial Injection 
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System (Boston Scientific, Natick, MA) under X-ray fluoroscopic guidance.  This system 

uses a retractable 26 gauge needle which extends beyond its casing with a length of 3.5 

mm.  The Stilletto catheter is guided to the endocardium inside a 7-French guiding 

catheter.  The guiding catheter tip was advanced to the distal anterior segment of the left 

ventricle until contact was made with the endocardium.  The catheter has a radiopaque 

marker, which allowed one to determine that the catheter is abutting perpendicular to the 

endocardial wall.   With confirmation of endocardial contact, the Stilletto catheter was 

advanced to the edge of the guiding catheter, and multiple (8-10) injections within a 1-2 

cm diameter zone into the peri-infarct region were performed for each animal, using the 

wall motion abnormalities seen on the contrast ventriculograms as a guide. 

 

3.2.6 Epicardial Injections 

For the epicardial approach, the cells were injected directly into the peri-infarct 

region (confirmed by visual identification of discoloration and reduced regional wall 

motion at the epicardial surface) at 8-10 sites within a 1-2 cm diameter zone using a 25-

gauge needle.  This was done in the same session as the infarction during the 

thoracotomy.   

 

3.2.7 SPECT/[First-Pass Perfusion CT] Imaging 

 The animals were transported while under anesthesia to the SPECT/CT suite 30-

40 minutes following stem cell injection, and SPECT/CT was acquired immediately 

using a 6-slice SPECT/CT scanner (Symbia T6, Siemens Healthcare, Erlangen, 

Germany).  The initial SPECT scan consisted of 64-projections at 30s/projection, and a 
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128x128 image matrix.  This was followed by baseline pre-contrast CT at end expiration 

[21], employing a 2.5mm slice thickness and in-plane resolution of 0.4x0.4mm (130kVP, 

15mAs, 15 second acquisition time).  A slice thickness of 2.5mm was chosen based upon 

reduced voxel size requirements for myocardial imaging and to ensure full heart 

coverage within a single breath hold.  A 30mL bolus of 300mgI/mL Omnipaque was then 

injected through a peripheral vein using a 30mL syringe by hand, with a cardiac-gated, 

helical-CT performed 5 seconds post-bolus using a Calcium Scoring protocol (Current = 

15mAs) [18,20].  On the Siemens Symbia T6 SPECT/CT the only method to perform a 

gated-CT is to use the pre-defined Calcium Scoring acquisition sequence, which consists 

of an ECG-gated helical-CT.  All CT imaging was performed at end-expiration. Identical 

follow-up SPECT/CT scans were performed in each of the canines at 4, and 10 days post 

stem cell injection. An increase in the SPECT projection time per view was made for the 

day 10 acquisitions to 120 seconds to partially compensate for the physical decay of 111In 

and anticipated loss of signal due to reduction in cell density at the transplantation site 

[11]. 

 

3.2.8 Dual-Isotope SPECT Imaging 

 Since SPECT has the capability to image two isotopes simultaneously, it is 

possible to label cells with 111In-tropolone as previously described, and inject 99mTc-

sestaMIBI for cardiac perfusion imaging.  This was done for one canine experiment with 

a reperfused occlusion and an endocardial injection strategy to compare this technique 

with that of SPECT/[first-pass perfusion CT] imaging.  The same SPECT image 

acquisition protocol was used as for the day of transplantation. 
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3.2.9 Validation of First-Pass Perfusion CT using DE MRI  

Two additional canines underwent contrast CT and DE MRI imaging on the same 

day to validate infarct localization using the contrast CT technique.  One canine had a 

reperfused occlusion of the LAD 65 days prior to imaging with the other having a non-

reperfused (chronic) ligation of the LAD 67 days prior to imaging.  The animals were 

anaesthetized and first-pass perfusion CT was performed using the previously described 

technique.  They were then directly transported to the MRI suite and had DE MRI 

performed during the same anesthetic period (2 hours).  

DE MRI was performed using a 3-Tesla MRI scanner (VERIO; Siemens 

Healthcare, Erlangen, Germany) and a 8-element body matrix radiofrequency coil.  

Cardiac gating was performed using a standard 3-lead system placed over the anterior 

thorax.  Intravenous gadolinium (0.2 mmol/kg Gadobutrol (Gd-BT-DO3A), Bayer 

Healthcare Pharmaceuticals) was administered by a peripheral vein and DE imaging 

performed 15 minutes later. A phase-sensitive inversion recovery (PSIR) pulse-sequence 

(with the inversion time adjusted in the standard fashion [22]) with matrix size 256 X 

192 and slice thickness 6 mm, gap 2 mm was used. The slices were taken from the 

atrioventricular annulus to the apex in the 4, 3 and 2-chamber views. 

Infarct location was visually assessed on both the DE MRI images and first-pass 

perfusion CT images by an experienced investigator [JW].  The presence and 

transmurality (0 to 100%) of contrast-enhancement (MRI) and hypo-enhancement (CT) 

was recorded for each myocardial segment using the AHA 17-segment model [23].  

Corresponding segmental scores were then compared between the 2 techniques. 
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3.2.10 Contrast-to-noise ratio (CNR) Calculations 

 111In SPECT images were corrected for background activity and reconstructed 

using Ordered Subset Expectation Maximization (OS-EM) (3 iterations, 16 subsets) [24].  

Contrast-to-noise ratio (CNR) was calculated for all the imaging sessions (10 canines, 3 

imaging sessions each).  CNR calculations were done by choosing an 111In volume-of-

interest (VOI) for each reconstruction.  The 111In VOI was defined to be the pixels 

greater than 10% of the maximum pixel value in the 111In SPECT reconstruction [25] for 

each imaging session.  Therefore, the 111In VOI was different for each imaging session 

depending on the maximum pixel value for each particular 111In SPECT reconstruction.  

The background activity for each session was taken to be 26 VOIs, each VOI being the 

same size as the 111In VOI for that particular session and directly adjacent to the 111In 

VOI [25].  This was performed for each imaging session.  The CNR for each session was 

calculated using the following equation [25]: 

)(

111

backgroundSD
backgroundsignalInCNR −

=        (3.1) 

Where 111In signal was equal to the sum of the counts in the 111In VOI, background is the 

mean of the sum of the counts in each of the 26 background VOIs, and SD(background) 

is the standard deviation of the sum of the counts inside each of the 26 background VOIs. 

 
3.3 RESULTS 

3.3.1 Validation of SPECT and CT Image Co-Registration 

 A reconstructed isotropic resolution of 11.5mm was observed in the SPECT, and 

5.9mm in the CT.  Once data is removed from the acquisition system, the SPECT data is 
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registered to the CT attenuation map, which is a down-sampled version of the high-

resolution CT; hence the lower CT resolution. Centroid measurements indicated minimal 

co-registration error between SPECT and CT data.  These measured 1.63mm, 0.24mm, 

and 1.34mm in the anterior-posterior, left-right, and apical-caudal directions, respectively 

(See Figure 3.1). 

 
Figure 3.1: SPECT and CT registration 

Images displaying both SPECT (RED) and CT (GREEN) reconstructions in the  

trans-axial (upper image) and the sagital (lower image) planes. The patient table is only 

CT visible, while the capillary tube phantom is imaged by both SPECT and CT. Notice 

the near perfect registration between the SPECT and CT (YELLOW). 
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Canine Infarct Validation Study 

 All 10 animals completed the study.  Examples of both endocardial and epicardial 

injections are shown in Figures 3.2 and 3.3 respectively. 

 

3.3.2 SPECT/[First-Pass Perfusion CT] Imaging 

 Baseline SPECT images on the day of cell transplantation demonstrated increased 

signal in the anterior left ventricular apex in all animals. The 111In-labeling technique was 

successful in allowing residual signal from retained cells to be visualized for at least 10 

days in all animals.  

Ten out of 10 (consisting of 30 imaging studies) of the simultaneously acquired 

first-pass perfusion CT datasets demonstrated regional hypo-enhancement in the distal 

anterior segments of the left ventricle, consistent with LAD coronary artery vascular 

distribution.   

Fusion of baseline SPECT and first-pass perfusion CT images was successful in 

all canines.  Examples of image fusion are shown in Figures 3.2 and 3.3, each 

demonstrating successful identification of transplanted stem cells within regions of hypo-

perfused myocardium.  The location of both the cells and zone of hypo-perfusion 

(infarction) were clearly visualized on the day of injection, and at all follow-up time 

points (Figures 3.2 and 3.3).  A distinct boundary separating normally perfused vs. 

reduced flow regions was clearly seen on first-pass perfusion CT studies in all of the 

imaging studies performed.  The 111In focus was visualized consistently at least up to 10 
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days post cell transplantation, despite a low 111In count rate on day 10 for every animal.  

For all canines and all imaging sessions, the center of the 111In focus was located within 

the infarct boundary. 
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Figure 3.2 
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Figure 3.2: Endocardial injection of cells seen on SPECT/[first-pass perfusion CT] 

(A) Imaging session on day 0 of endocardial injection (Dog 5: endocardial cell injection 

1 week post reperfused occlusion).  Top row: Contrast enhanced CT image displaying 

region of infarction (hypo-enhancement) at the left ventricular apex and extending into 

the lateral wall.  Bottom row: First-pass perfusion CT fused with SPECT displaying 

location of 111In labeled stem cells near region of infarct.  The labeled cells are localized 

on the inner wall of the left ventricle confirming an endocardial injection. 

(B) Day 4 follow-up images taken 4 days post cell transplantation.  We notice a weaker 

signal coming from the cells due to both the physical half-life decay of 111In and 

clearance of cells from the injection site. 

(C) Images acquired 10 days post cell transplantation.  Cellular signal is still weak, but a 

longer imaging session partially compensated for the loss of signal.  As well, the area of 

hypoperfusion seen on CT appears to be both smaller and the contrast between it and 

normally perfused myocardium is not as marked as on day 0, 1 week post infarct. 
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Figure 3.3 
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Figure 3.3: Epicardial injection of cells seen on SPECT/[first-pass perfusion CT] 

Imaging session on day 0 of epicardial injection (Dog 3: epicardial injection on day of 

chronic occlusion).  Top row: Contrast enhanced CT image displaying region of 

infarction (hypo-enhancement) at the left ventricular apex and extending into the lateral 

wall. Since this was a sustained occlusion the infarct can be seen much more clearly than 

in the animals with reperfusion injury as shown in fig 3.2.  Bottom row: First-pass 

perfusion CT fused with SPECT displaying location of 111In labeled stem cells near 

region of infarct.  The labeled cells were localized on the outer wall of the left ventricle 

confirming an epicardial injection for this case. 

(B) Day 4 follow-up images taken 4 days post cell transplantation. 

(C) Day 10 follow-up images acquired 10 days post cell transplantation. 

 

 

First-pass perfusion CT outlines reduced blood flow, and his region decreased in 

extent over time from the day of transplantation through to 10 days afterwards.  We 

hypothesize that this is due to augmented collateral flow into the initially hypo-perfused 

regions in this canine model, with progressive improvement in blood flow into the peri-

infarct region.  Another explanation for the reduced zone of hypo-enhancement could be 

that infarct size shrinks over time [26, 27] due to remodeling of the evolving scar.  
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3.3.3 Dual-Isotope SPECT Imaging 

 Figure 3.4 compares a dual-isotope SPECT acquisition, with that of 

SPECT/[First-Pass Perfusion CT].  In dual-isotope SPECT imaging 99mTc-MIBI shows 

the cardiac perfusion image while the 111In-tropolone displays the location of the cells 

that were injected.  The spatial resolution was not sufficient to distinguish whether these 

cells were injected epicardially or endocardially.  In addition, it is also more difficult to 

clearly delineate the zone of reduced blood flow in the cardiac perfusion image using 

99mTc-MIBI.  However, using the SPECT/[first-pass perfusion CT] technique the infarct 

zone was clearly delineated and the location of the cells were located on the inner wall of 

the left ventricle confirming an endocardial injection.  
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Figure 3.4: Comparing SPECT/[first-pass perfusion CT] with dual isotope SPECT 

Case example of endocardial injection of stem cells in a canine model performed 44 days 

post infarction (reperfused).  Cardiac perfusion images performed using first-pass 

perfusion CT (top left) and 99mTc-MIBI (top right), demonstrating a region of hypo-

perfusion consistent with the infarction territory (arrows).  Fused stem cell / perfusion 

imaging shown using SPECT 111In-tropolone /[First-Pass Perfusion CT] imaging (bottom 

left) and dual-isotope 99mTc-MIBI / 111In-tropolone SPECT imaging (bottom right).  The 

improved spatial resolution of the first pass CT perfusion-based fusion image permits a 

clearer recognition of stem cell delivery to the endocardial border of the myocardial 

infarction, and the trans-mural immediate contrast provides information regarding the 

micro flow environment in the region of the transplanted cells. 
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3.3.4 Validation of First-Pass Perfusion CT using DE MRI 

Two canines successfully underwent both first-pass perfusion CT and DE MRI 

following surgical ligation of the LAD.  The reperfused dog had CT hypo-enhancement 

scored in segments 13 and 14 with transmurality scored at 0-25% and 25-50%, 

respectively.  The corresponding DE MRI images were scored to have enhancement in 

the same segments with transmurality scores of 25-50% and 50-75%, respectively 

(Figure 3.5).  The non-reperfused (chronic occlusion) dog was scored to have CT hypo-

enhancement in segments 7, 13, 14 and 17 of the AHA segmental model, corresponding 

to the mid anterior, distal anterior, distal septal and apical segments.  The transmurality 

scores for each segment were 25-50% for segment 7, 50-75% for segments 13 and 14 , 

and 75-100% for segment 17.  The corresponding assessment by MRI confirmed 

enhancement in precisely the same segments with transmurality scores of 50-75% for 

segment 7 and 75-100% for all remaining segments. (Figure 3.6).   
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Figure 3.5: Comparing first-pass perfusion CT with delayed-enhanced MRI  

Comparison of Contrast enhanced CT (left panel) and delayed enhanced MRI in a dog 

with a reperfused infarct (Dog 7).  Once again, the degree of reduced signal is not as 

great on CT as is the degree of increased signal seen on the MR images but the smaller 

area of reduced perfusion in this subendocardial infarct can be identified.  The CT hypo-

enhancement scores in segments 13 and 14 of the AHA segmental model had 

transmurality scores of 1 and 2 out of 4, respectively.  The corresponding MRI images 

were scored to have enhancement in the same segments with transmurality scores of 2 

and 3 out of 4 respectively, respectively. 
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Figure 3.6: Comparing first-pass perfusion CT with delayed-enhanced MRI 

Comparison of Contrast enhanced CT (left panel) and delayed enhanced MRI (right 

panel) in a dog with a chronic occlusion infarct (Dog 4).  The degree of reduced signal in 

the infarct region on the CT images is less than the degree of increased signal seen in the 

MR image but the hypo-enhanced region is clearly seen (arrows).  The CT hypo-

enhancement in segments 7, 13, 14 and 17 of the AHA segmental model had 

transmurality scores of 2, 3, 3 and 3 out of 4, respectively.  The corresponding 

assessment by MRI confirmed enhancement in the same segments with transmurality 

scores of 3, 4, 4 and 4 out of 4, respectively. 
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3.3.5 Contrast-to-noise ratio (CNR) Calculations: 

 The mean and standard error of the mean (SEM) of the natural log of CNR for all 

10 canine experiments are shown in figure 3.7.  For all imaging sessions the CNR was 

well above the accepted minimum CNR criterion of 4 (i.e. Rose Criterion [28]).  Note 

that the CNR drops from day 0 to day 4, and then remains relatively unchanged going 

from day 4 to day 10. 

 
 
Figure 3.7: CNR analysis 

Plot of the average of the natural logarithm of the CNR for 10 dog experiments imaged 

on day of transplantation of canine endothelial progenitor cells and then at 4 days and 10 

days later. Error bars correspond to the SEM.  The dashed line near the bottom of the plot 

corresponds to the Rose criterion, the minimum CNR for a signal to be detectable, i.e. 

CNR=4. SPECT data acquisition time was increased four times on day 10 which reduced 

the expected drop in CNR as the effective half life of the 111In loss was 2 days. Note that 

a natural log (CNR) of 6.0 corresponds to a CNR of approximately 400. 
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3.4 DISCUSSION 

This study is the first to demonstrate the feasibility of temporally and spatially 

localizing TC populations over a 10-day period relative to infarct tissue using a 

commercially available hybrid SPECT/contrast-CT imaging approach. 

A central challenge for the field of cell therapy is the capability to document and 

monitor TC populations relative to the injured tissue.  There continues to be debate with 

respect to optimal delivery sites relative to recently infarcted tissue.  If cells are delivered 

to the infarct core the marked reduction in perfusion, associated hypoxia, and oxygen 

free radicals may compromise myocardial regeneration.  In contrast, cells placed towards 

the periphery of infarcted tissue are more likely to produce a therapeutic effect, 

presumably due to a less hostile environment [29].  While this hypothesis requires further 

validation, the use of first-pass perfusion CT imaging provides an appropriate means for 

a qualitative evaluation of myocardial blood flow.  Delayed imaging techniques, while 

attractive for the accurate delineation of full infarct extent, are not appropriate, as they do 

not define compromised flow within the infarct region. By aiming to deliver stem cells 

immediately adjacent to, but not within the hypo-perfused infarct core optimal 

survivability may be obtained. 

 

3.4.1 SPECT/[First-Pass Perfusion CT] in Cellular Imaging 

In this study, we report on the use of CT hypo-enhancement following bolus 

administration of contrast to identify the region of reduced flow.  Nieman, et al [12] 

demonstrated in patients that the extent of this hypo-perfused zone correlates well with 
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regions of contrast enhancement using contrast-CT or DE MRI, the latter of which is 

validated for measuring the extent of infarction [7].  In this study, it was confirmed that 

the hypo-enhanced site detected by CT is within the infarct boundary as determined by 

DE MRI.  In the two animals, the transmural extent of the zone of hypo-enhancement 

was smaller on CT imaging than the zone of enhancement on MRI, consistent with this 

representing the infarct core where myocardial blood flow is most diminished [17].  

SPECT/contrast-CT demonstrated very good registration accuracy (~1mm) using 

phantom experiments.  However, these experiments were performed on a non-moving 

phantom.  Visual inspection of the in vivo canine fused SPECT/contrast-CT images was 

performed by an experienced investigator [GW] and the injection strategy was 

determined 70% of the time.  Therefore, cells injected in outer wall (epicardial injection) 

could be distinguished from those injected in the inner wall (endocardial injection).   This 

implies that the registration accuracy is still sufficient even during in-vivo imaging.  

 

3.4.2 Hybrid Imaging for Cell Localization 

This study introduces another application for CT in hybrid SPECT/CT.  CT can 

be used to provide spatial localization of myocardial infarction in addition to providing 

general anatomic localization and SPECT attenuation correction.  Stodilka et al [30] have 

shown that a high-resolution CT signal can improve the ability to localize and quantify a 

relatively weak SPECT signal with low-resolution.  Thus we expect that, in the case of 

cell transplantation, as the SPECT signal decays over time due to physical decay and/or 

washout of cells, the CT can be used to aid in SPECT quantification.  It is true that 

SPECT can be used to image multiple isotopes and 99mTc perfusion imaging may be used 
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instead of CT perfusion to locate regions of reduce blood flow.  However, relying upon 

SPECT alone would not provide sufficient spatial resolution to clearly delineate the zone 

of reduced blood flow as well as the co-registered contrast-CT.  Additionally, the use of 

111In requires imaging with a medium energy collimator, which will further reduce the 

spatial resolution of the 99mTc perfusion SPECT scan. 

It could be argued that the introduction of PET/MRI would replace this 

application of SPECT/CT, given the increased sensitivity of PET and the reduction of 

ionizing radiation [31].  To-date the preferred PET isotope for cell localization is 64Cu 

[9].  3D-PET with 64Cu has approximately a 20-fold greater sensitivity than SPECT with 

111In; however, this advantage is lost by a two week time period due to physical half-life 

differences [32].  Interestingly evidence to date suggest that the limits of radio-label in 

Bq/cell are similar for 64Cu [9] and 111In [25], hence increasing the sensitivity of 

64Cu/PET by increasing the 64Cu load per cell is not an option. 

 

3.4.3 Contrast-to-Noise Ratio 

This average CNR curve (figure 7) can be used to predict how far out 

transplanted cells can be followed.  111In labeled canine EPCs have been shown to have 

an approximate effective half-life of 2 days (combining both biological and physical 

decay of 111In [11, 20]).  The average CNR decreases from day 0 to day 4.  Since 

imaging time was constant from day 0 to day 4 a decrease in CNR is expected due to the 

physical and biological decay of the 111In labeled cells.  However, the change in CNR 

from day 0 to day 4 is less than expected for an effective half-life of two days.  The 

signal in the 111In VOI does decrease with a 2-day half-life; however, the background and 
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the SD of background are significantly lower at 4 days increasing the CNR [25].  The 

background is higher at day 0 as within hours following cell transplantation a significant 

fraction of the cells leave the transplantation site.  These cells have a biological half-life 

in the region surrounding the transplant site of approximately 20 hours [11].  Hence, by 

day 4 they are mostly cleared resulting in the observed reduction in background, and SD 

of background resulting in increasing the CNR.  After day 4, the background activity and 

SD of background activity remains constant, and the change in CNR from day 4 to day 

10 has undergone decay from 3 half lives.  However, imaging time was increased by a 

factor of 4, which compensated for approximately half of the decay.  If we maintain a 

consistent imaging time after day 10, we would theoretically be capable of imaging 

transplanted cells for a period of 22 days (i.e. 11 two day effective half-lives), before the 

CNR drops below the Rose Criterion provided the background and SD of background do 

not increase.  This trend is similar to cardiac chest phantom experiments conducted by 

Jin et al [25].  However, to properly image TCs up to 22 days, the cell location must be 

known beforehand, and this can be accomplished with the aid of CT imaging [25, 30]. 

 

3.4.4 Risk to Patient 

 For the case of our CT imaging, the dose is relatively low, with a computed 

tomography dose index volume (CTDIvol) of 3.9 mGy.  With the settings used on our 

CT scanner this would produce an effective radiation dose to the patient of around 

0.7mSv [33].  This radiation dose would produce a cancer rate of 5.6 x 10-5, while the 

spontaneous cancer rate for a general population is 8.4 x 10-1 [34].  The risk associated 
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with CT contrast agents similar to the one used in this study is nephrotoxicity (renal 

toxicity), which has a prevalence in the general population of 0.9% [35]. 

 

3.4.5 Study Limitations 

The SPECT/CT registration experiment was performed on a non-moving 

phantom.  We chose to use a breath-hold CT acquisition at end-expiration for the canine 

experiments since recent clinical trials have shown this to be the optimal phase of the 

respiratory cycle for best image registration in SPECT/CT for the purpose of attenuation 

correction [21].  We recognize that the SPECT and CT data were not acquired under 

identical conditions since the SPECT data is averaged over multiple respiratory phases in 

a step and shoot manner, while the CT data was collected in a continuous rotation during 

a single phase of the respiratory cycle [36].  This is a challenge in hybrid SPECT/CT 

imaging; not only for image fusion but also for attenuation correction and this should be 

addressed in more detail in a future study.  In our experiments, the animals were 

ventilated, and the CT data acquisition occurred at the end-expiration phase of the 

respiratory cycle.  They were ventilated at a rate of 8 breaths per minute, and for 70% of 

the respiratory cycle the canines were at functional residual capacity (FRC).  Therefore, 

we expect the SPECT data to be averaged more closely to the end-expiration phase of the 

respiratory cycle and hence the end-expiration CT that was acquired.  Application to 

patients is expected to be straightforward.  Provided the patients can hold their breath 

during the CT acquisition for 15 seconds at FRC and can maintain normal tidal breathing 

during the SPECT portion. 
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The canines were not sacrificed, and were used in subsequent experiments; 

therefore, no follow-ups were conducted on the canines post-mortem to determine the 

effects of the cell transplantation.  A previous study in our lab used this technique to 

compare the survival of the cells following the two injection strategies [20]. 

 

3.5 CONCLUSIONS 

This study demonstrates the feasibility of hybrid SPECT/first pass perfusion CT 

imaging for the spatial localization of transplanted stem cells relative to infarcted 

myocardial tissue.  The combination of a diagnostic quality CT on the hybrid platform 

allows the determination of the 111In signal with transmural resolution, which is not 

possible using multi-spectral SPECT methods. 
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CHAPTER 4: SMALL FIELD-OF-VIEW CARDIAC SPECT CAN BE 
IMPLEMENTED ON HYBRID SPECT/CT PLATFORMS 
WHEREIN DATA ACQUISITION AND 
RECONSTRUCTION ARE GUIDED BY CT1

 
 

4.1 INTRODUCTION 

Image truncation in nuclear medicine is an increasing problem.  Current 

reconstruction techniques introduce errors into the image if the activity distribution 

extends beyond the detector field-of-view (FOV) [1].  Truncation in Single Photon 

Emission Computed Tomography (SPECT) can arise from several different reasons.  The 

first can be the natural evolution to improve SPECT detectors to incorporate more 

expensive solid-state technology and reducing field-of-view (FOV); secondly, data 

acquisition of large patients can cause the projections to be truncated; and lastly, the use 

of converging collimator geometries in SPECT. 

Solid-state detectors may achieve better energy and spatial resolution as well as 

enhance image contrast [2, 3].  Solid-state detectors demonstrated visual superiority and 

improved quantitative accuracy for SPECT compared with Anger type cameras [4].  

However, the primary detractor to the acceptance of solid-state technology is high cost 

both for raw material and fabrication.  Consequently, in an effort to reduce cost, several 

groups have explored the concept of using small detectors [5, 6].  The challenge 

associated with reduced detector size is object truncation. 

Data acquisition of large patients also produces object truncation in reconstructed 

images.  Lalush and Tsui [1] evaluated the MLEM iterative algorithm [7] and its 

                                                 
1 The contents of this chapter have been published as: Sabondjian E, Stodilka RZ, Belhocine T, King ME, 

Wisenberg G, Prato FS. Small field-of-view cardiac SPECT can be implemented on hybrid SPECT/CT platforms 
where data acquisition and reconstruction are guided by CT. Nuclear Medicine Communications 2009;30(9):718-726.  
It is reproduced with permission from the publishers.  
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accelerated derivatives, OS-EM [8] and RBI-EM [9] under circumstances of extreme 

truncation using the MCAT digital phantom.  They suggested a simple modification to 

the algorithm to substantially reduce truncation, but concluded that extreme truncation 

had to be avoided.  

Finally, truncation also occurs when performing SPECT with converging 

collimators [5].  Gullberg et al [10] introduced a reconstruction algorithm to correct for 

ring artifacts from image truncation when performing cone beam tomography of the 

heart.  Zeng et al [11, 12] discuss the use of fan-beam and cone-beam collimators with 

varying focal lengths to minimize the effects of truncation.  A new reconstruction 

algorithm was developed for such a collimator and has shown promise in reducing 

truncation artifacts.  Chang et al [5] proposed a method for local SPECT using a 

cylindrically-arranged array of small gamma cameras whose FOVs are focused onto a 

13.5 – 18.5 cm diameter central region-of-interest (ROI), sacrificing adequate sampling 

over the object periphery for improved sensitivity in the central ROI.  In a subsequent 

paper, the group hypothesized that the severity of artifacts is related to the amount of 

radiotracer present outside the central ROI, and used computer simulations to show 

errors of approximately 4-10% with a 99mTc-MIBI tracer when comparing truncated data 

to non-truncated data [9]. 

Many authors have studied truncation artifact reduction in radioisotope emission 

[5, 13] and transmission imaging [14, 15, 16, 17, 18].  Additionally, Defrise et al [19] 

present a theoretical analysis for reconstructing a small ROI from highly truncated data. 

Many of the techniques for reduction of transmission artifacts rely on a priori knowledge 

of the body contour, and their accuracy improves with the accuracy of the measured body 
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contour [20].  Given that solid-state detectors may be clinically realized in the context of 

hybrid SPECT/CT [21], and SPECT/CT is gaining popularity without increasing patient 

dose to unacceptable levels [22], we anticipate that a likely imaging scenario will involve 

the coupling of severely truncated SPECT data and non-truncated CT. In this case, a 

priori knowledge of the body contour available via CT may be useful in helping 

reconstruct a truncated SPECT data set.    

In this paper, we investigate the concept of SPECT/CT assuming highly truncated 

SPECT as might be expected when using small FOV detectors or converging geometries, 

in conjunction with a non-truncated CT.  Tomographic sampling is characterized using 

the concept of crosstalk, introduced by Gifford and Barrett [23].  Additionally, we 

investigate a simple modification to the OS-EM algorithm that significantly reduces 

artifacts when the object contour is known, which may be obtained from CT.  The 

modified algorithm was previously evaluated in canine studies [24]; in this paper we 

demonstrate its application in a cardiac chest phantom and a series of 14 clinical cardiac 

patients [25].  The modified algorithm is evaluated by comparing its performance using 

truncated data with the performance of standard OS-EM using non-truncated data.  The 

comparison is in terms of: relative quantification both for large regions-of-interest and 

individual voxels, as well as impact on defect size.     
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4.2 METHODS 

4.2.1 Proposed System 

Figure 4.1 is an example of a system that incorporates a small FOV gamma 

camera. In this system, the X-ray CT is acquired first and reconstructed.  The operator 

then positions onto the X-ray CT image a circular ROI (cylindrical across multiple trans-

axial slices) delineating the scanning area where SPECT measurements are to be 

obtained.  The diameter of the ROI is determined by the gamma camera FOV in the 

transaxial plane which, for the purpose of the present study, is taken to be 16cm.  The 

position of the ROI determines the trajectory of the gamma camera, which is constrained 

by the requirement to always face the ROI throughout its orbit.  The orbit may include 

tangential translation in the transaxial plane if the center of the ROI is not coincident 

with the X-ray CT FOV center.  The gamma camera is then tasked to acquire its data.  A 

similar approach has been demonstrated by Rahmim et al [26], which incorporated a 

converging collimator design. 

                           

 

Figure 4.1: The proposed system 

Side and front views of the proposed small FOV SPECT/CT system.  The right figure is 

an example of the SPECT/CT acquisition that would be achievable. 
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4.2.2 Sampling Theory 

 The forward imaging problem can be expressed as Y = AX, where Y is the 

projection data wherein gamma ray measurements are binned to provide counts yt in 

sinogram element t; A is the transition matrix comprised of elements atj representing the 

probability that an emission from voxel j is recorded at t, and X is the radiotracer 

distribution comprised of elements xj. 

 In reducing the size of the FOV, the sampling pattern will be altered drastically, 

leading to changes in sensitivity and resolution.  To characterize these changes, we used 

the cross-talk concept, originally developed by Gifford and Barrett [23] to study 

sampling patterns in the Fourier domain.  Following [27] we adapt this concept to the 

spatial domain.  The spatial cross-talk matrix is defined as [27]: H = ATA, where T 

indicates matrix transpose.  The diagonal elements of H represent the sensitivity of the 

sampling pattern to any voxel, and rows of H represent the degree of aliasing between 

any two voxels resulting from inadequate sampling. 

 For the purpose of calculating H, we used a simplified transition matrix derived 

from a radon transform of a single slice, without modeling attenuation, scatter, or 

detector response to isolate the characteristics of tomographic sampling. The radon 

transform of the single slice was modeled in accordance with our experimental data 

acquisition, described in the following section. 

 

4.2.3 Image Reconstruction 

Our phantom and patient data were acquired on a two head Infinia-Hawkeye-4 

slice (General Electric Healthcare, Waukesha WI, USA).  Data was sampled 
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tomographically over 120 uniformly spaced projections (60 steps per head).  The original 

34x34cm FOV gamma camera projections were truncated to simulate a small 16x16cm 

FOV gamma camera acquisition, where the orbit was selected to focus on the heart.  

Examples of a complete FOV and a truncated FOV sinogram are shown in figure 4.2 for 

a clinical 99mTc-MIBI scan.  The size of the SPECT sinogram matrix is chosen as if a full 

FOV gamma camera is being used; this representation illustrates clearly the truncated 

locations.  A typical human chest is approximately 30cm across, therefore as 

demonstrated in figure 4.2 a large portion of the data will be truncated. 

 

Figure 4.2: Displaying truncated projection data 

(A) Complete FOV sinogram. (B) Truncated sinogram to simulate small gamma camera. 

 

The ROI, delineated on the X-ray CT as previously described, is then re-sampled 

to the SPECT coordinate frame and projected into an empty matrix such that the spatial 

and angular coordinates of the projection pixels have a one-to-one correspondence with 

coordinates of the SPECT sinogram matrix.  The sinogram of the ROI is then thresholded 

to create a binary mask, which demarcates coordinates within the ROI where gamma 

camera measurements were acquired (binary value of 0), and coordinates outside of the 
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ROI, which are also beyond the FOV of the gamma camera (binary value of 1).  SPECT 

data is then reconstructed using the OS-EM algorithm of Hudson and Larkin [8], 

modified slightly to explicitly show truncated regions in the SPECT sinogram matrix.  

The modified OS-EM algorithm can be written in two parts as: 

Forward projector: 
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where gamma-ray measurements are binned to provide counts yt in sinogram elements t; 

the expected number of gamma-ray emissions from voxel j is denoted by xj, with its 

estimate after the kth iteration denoted as xj
k.  The elements atj represent the probability 

that an emission from voxel j is recorded at t; which is derived from a model of gamma-

ray propagation through tissue, which in the present case included non-uniform 

attenuation.  Sn denotes a subset of the sinogram elements grouped into those 

corresponding to a set of gamma camera gantry positions.  The final factor in square 

brackets in equation (4.2) includes the mask vector with elements mt corresponding to 

elements of the measured sinogram yt.  For all mt = 0, this factor reduces to the ratio of 

measured and re-projected data (i.e. yt/μt
k).  In this case equations (4.1) and (4.2) together 
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reduce to the well-known OS-EM algorithm.  For all mt = 1, the final factor reduces to 

unity.  In other words, when mt = 1, the corresponding xj’s are not updated.  The re-

projected data is considered unmeasured [1], rather than measured as 0 (as in regular OS-

EM).  Theoretically, the truly correct way to model truncation is to set appropriate terms 

in the transition matrix ‘A’ to zero; however, this is already known [1] and results in 

artifacts under conditions of extreme truncation [1].  The algorithm is initialized using a 

priori knowledge of the object support, available from X-ray CT.  Thus, the X-ray CT 

reconstruction is re-sampled to the SPECT voxel coordinate frame, the patient table is 

deleted; and all xj
0 (i.e. 0th iteration) are set to 1 within the object support, and to 0 

otherwise. 

 

4.2.4 Phantom Study 

An anthropomorphic torso phantom (model ECT/TOR/P, Data Spectrum Corp., 

Hillsborough NC, USA) was filled with 444MBq of 99mTc.  The cardiac insert with the 

standard defects supplied were placed in the apex and septal wall of the left ventrical.  

The activity ratios in heart: soft tissue: liver were set to 7: 1: 3, where the ratios were 

determined from SPECT/CT clinical scans at our center.  The acquisition time was set so 

that 10,000 counts/projection was recorded in the first projection, which is typical and 

was generally observed in clinical cardiac rest scans. 

The data was reconstructed in three different ways: (1) Using non-truncated data and 

standard reconstruction (gold standard - NTOSEM).  (2) Using truncated data and 

standard reconstruction (TOSEM).  (3) Using truncated data and the modified 

reconstruction (TMOSEM) 
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4.2.5 Clinical Study 

In addition to the phantom study, we evaluated our method in a series of fourteen 

patients (8 male, 6 female, mean age = 65 +/- 13 years, mean BMI = 32 +/- 5) who 

underwent SPECT/CT myocardial perfusion imaging (MPI) under a rest/stress 1-day 

protocol.  For this paper we analyzed the rest SPECT/CT studies, which were performed 

on patients 45 minutes after an injection of approximately 370MBq of 99mTc-MIBI. 

Among the patient group, 8 patients had a definitely normal study and 6 patients had a 

definitely abnormal study after SPECT/CT - MPI using the QGS/QPS software (Cedars-

Sinai Medical Center, Los Angeles, CA, USA). 

 

4.2.6 Image Analysis 

Voxel-by-Voxel Analysis

 Performance of the modified OS-EM algorithm was evaluated on a voxel-by-

voxel basis.  This was done by calculating the Pearson correlation coefficient for 

TOSEM vs NTOSEM; and TMOSEM vs NTOSEM, for each patient and the phantom, 

for voxels within the reconstructed region of interest (ROI).  We report the mean ± 

standard deviation of the correlation coefficients for the group of patient data.  Also, we 

include example difference images and scatter plots showing the voxel-by-voxel 

relationship between TOSEM vs NTOSEM; and TMOSEM vs NTOSEM.  Calculations 

were performed using MATLAB (The MathWorks, Natick, Massachusetts, USA).  To 

determine the impact of activity outside the reconstructed ROI on correlation 
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coefficients: we calculate the ratio of activity within the reconstructed ROI to activity 

outside the reconstructed ROI, and compared this ratio with the correlation coefficients. 

Count Ratios 
 

The cardiac images were aligned manually into standard orientations and a 

central coronal slice of the heart was chosen by an experienced operator [T.B.].  Three 

ROIs were drawn: (A) Apex, (B) Lateral Wall, and (C) Septal Wall of the left ventricle 

(see figure 4.4).  Each ROI was circular and had a diameter of 2cm.  The location of the 

ROIs were consistent for each patient.  Ratios were calculated (A/B, B/C, and A/C) for 

each reconstruction: NTOSEM, TOSEM, and TMOSEM. For each ratio the percent 

error, equation (4.3), was calculated and averaged for each patient. 

100
)(

)()(
×

−

GoldRatio
GoldRatioTruncatedRatio

= Percent Error,  (4.3) 

Ratios of normal and abnormal myocardium were both used.  The goal of the 

analysis was not to study the actual ratio value, but rather to compare the ratios of the 

truncated projections to that of the gold standard. 

Defect Size Comparison 
 

The resting defect size was determined by the thresholding technique [28], using 

a cutoff of 2.5 standard deviations below the mean of a group of normal patients to 

define the perfusion defect.  The defect size was determined using an in-house program.  

The size of the defect within the whole heart seen in the two truncated reconstructions 

(TOSEM, TMOSEM) was compared to that of the gold standard (NTOSEM) giving a 

relative percent error. 

100
)(

)()(
×

−
GoldDefect

GoldDefectTruncatedDefect = Relative %Error,  (4.4) 
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4.3 RESULTS 

4.3.1 Sampling Theory 

The diagonal elements of the crosstalk matrix (H) can be sorted into an image to 

visualize sensitivity (see Fig 4.3A).  For the case of the truncated FOV, the sensitivity 

within the ROI varied by -/+1%; indicating that sensitivity is relatively uniform in this 

region. This is also illustrated quantitatively in Fig 4.3D which is a profile across the ROI 

from Fig 4.3A.  The rows of H can also be sorted into an image showing the aliasing 

between voxels as shown in Figure 4.3B. 
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Figure 4.3: The sampling theory for large and small FOV gamma camera imaging 

Top row is for truncated FOV, bottom row is for non-truncated FOV.  Diagonal elements 

of H sorted into an image to visualize sensitivity across a transaxial plane (A, E).  The 

circular region represents the region of interest (ROI), with a diameter equal to the 

gamma camera FOV, where sensitivity is maximized.  Rows of H sorted into an image 

showing aliasing from a voxel within the ROI into nearby voxels (B, C, F, G).  Image (B) 

shows a relatively isotropic point-spread function with little aliasing.  Image (C) shows 

aliasing from a voxel beyond the ROI into nearby voxels, showing considerable 

anisotropic aliasing.  Together (B) and (C) indicate spatially variant resolution when the 

FOV is small.  Profiles across the dashed lines at the center of the sensitivity plots (D, 

H).  This demonstrates that sensitivity does not change going from small FOV to larger 

FOV gamma cameras in the ROI. 
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4.3.2 Clinical Study 

Figure 4.4 displays three clinical acquisitions and one phantom acquisition.  All 

examples are reconstructions of a region of interest (ROI) around the heart with trans-

axial slices being displayed. 
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Figure 4.4: Clinical and phantom results  

Diagram displaying location of ROIs chosen for ratio analysis shown on top.  Left 

ventricle displayed for three clinical patients and the phantom study (trans-axial view).  

Hot rim artifacts are seen when using TOSEM (shown with arrow in scan #1).  Scan #3 

had a significant perfusion defect, which becomes obscured when using TOSEM. In 

general, observation of the ROI around the heart shows the loss of cardiac signal with 

TOSEM; however, the signal is properly recovered when using TMOSEM. 
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4.3.3 Image Analysis 

Figure 4.5 shows scatter plots of the reconstructed counts with the heart that are 

associated with clinical scan #1 and scan #2 in figure 4 when compared to NTOSEM.  

For clinical scan #1, comparing TMOSEM with NTOSEM, the correlation coefficient 

was found to be 0.996; whereas when comparing TOSEM with NTOSEM, the 

correlation coefficient was found to be 0.734.  On average for the 14 patients the 

correlation coefficient was 0.991 -/+0.008 when comparing TMOSEM with NTOSEM, 

and 0.609 -/+0.130 when comparing TOSEM with NTOSEM.  The correlation 

coefficients for the phantom study were 0.999 and 0.996 when comparing TMOSEM and 

TOSEM with NTOSEM, respectively. 
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Figure 4.5: Scatter plots 

Difference images and scatter plot showing the voxel-by-voxel correlation between 

TMOSEM and NTOSEM as well as TOSEM and NTOSEM for clinical scan #1 and scan 

#2 in figure 4, and the phantom study.  The difference images and scatter plots only 

consider the counts within the reconstructed ROI. 
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The similarity in correlation coefficients for the phantom study may be related to 

the phantom having a higher ratio of activity within the reconstructed ROI to activity 

outside the reconstructed ROI, compared with the same ratio in clinical scenarios.  

Further, it was seen that the correlation coefficients of the patient data were related to 

this ratio. For example, as the ratio of activity within the reconstructed ROI to activity 

outside the reconstructed ROI decreased, the correlation coefficients decreased.  This is 

shown in Table 4.1. 

Table 4.1: Relationship between background activity and correlation coefficients 

 TOSEM vs NTOSEM 
Correlation Coefficient 

TMOSEM vs NTOSEM 
Correlation Coefficient 

Reconstructed 
ROI / 
Background 

Phantom 0.996 0.999 0.90 

Clinical Scan #1 0.734 0.996 0.36 

Clinical Scan #2 0.658 0.984 0.28 

 

Count Ratio and Defect Size Analysis 

Severe truncation led to large errors in count ratios between different heart 

regions. Table 4.2 shows that these errors for clinical data were on average larger than 

100% when reconstructing using TOSEM. Use of TMOSEM resulted in an average error 

of 8.9%, which is a substantial improvement. A similar improvement was noted for the 

phantom data. In the case of defect size analysis, severe truncation of data led to an 

average error of 17% for the clinical data. This error was reduced to 0.19% when data 

was reconstructed via TMOSEM (See Table 4.3). 
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Table 4.2: Error between count ratios compared to gold standard (NTOSEM) 

COUNT RATIO ANALYSIS Clinical Data Phantom Data 
 Min. 

Error 
Max. 
Error 

Average 
Error 

Average Error 

TOSEM 19.3% >100% >100% >100% 
TMOSEM 1.7% 17.4% 8.9% 4.3% 
 

Table 4.3: Percent error of defect size compared to gold standard (NTOSEM) 

DEFECT SIZE ANALYSIS Clinical Data 
Relative Difference Min. 

Error 
Max. 
Error 

Average 
Error 

TOSEM 9.56% 24.62% 17.13% 
TMOSEM 0.0% 0.46% 0.19% 
 

4.4 DISCUSSION 

In this manuscript, we used the cross-talk concept to evaluate the tomographic 

sampling characteristics of highly truncated SPECT. This analysis was independent of 

reconstruction algorithm, and is fundamental to the geometry of data acquisition. Cross-

talk analysis demonstrated that imaging with a small FOV gamma camera results in non-

uniform sensitivity across the trans-axial plane.  However, it is uniform within a small 

ROI corresponding to the size of the gamma camera FOV.  This was demonstrated in 

figure 3A, where the sensitivity was at its highest level within the ROI and gradually 

decreased away from the ROI.  Also, it was observed that within the ROI the resolution 

was isotropic, while it was highly anisotropic outside the FOV (figures 4.3B and 4.3C).  

The aliasing is consistent with the gamma camera sampling pattern. Areas within the 

ROI are always seen by the gamma camera, leading to circularly symmetric point spread 

functions. However, areas outside the ROI are seen only during limited arcs as the 

gamma camera rotates. Consequently, these areas featured elongated point spread 
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functions along dimensions that were under sampled.  As indicated in the methods 

section, we used a simplified transition matrix to isolate the effects of imaging geometry.  

In practice, the transition matrix ‘A’ is much more complex, being dependent upon the 

physical effects such as the object scatter and attenuation, and the depth dependent 

resolution effects for the collimator on the object being imaged.  Future work could 

explore the calculation of the crosstalk matrix using a Monte Carlo derived transition 

matrix evaluating the effects of attenuation, scatter, and collimator response.   

Using TOSEM resulted in the appearance of a hot rim artifact in the reconstructed 

images, which is seen commonly when projections are truncated.  This is because the 

OSEM algorithm, in many implementations, constrains the radioactivity to remain within 

the boundaries of the truncated projection data.  The OSEM algorithm is programmed to 

count all activity that is measured to be within the FOV of the camera causing the hot rim 

artifact.  The reconstruction method of equations 4.1 and 4.2 relax this constraint and use 

the body contour information provided by the full FOV X-ray CT to effectively eliminate 

artifacts within the reconstructed FOV.  This was demonstrated in figures 4.4 and 4.5, the 

scatter plot analysis for all patients, the count ratio analysis given in table 4.2 and the 

infarct size analysis given in table 4.3, when using TMOSEM compared to NTOSEM.  In 

the case of the phantom study, the differences seen were not as great.  This, we speculate, 

is due to comparatively less background activity injected around the cardiac insert of the 

torso phantom.  With less activity in the area outside the reconstructed ROI, there is less 

probability of image interference when analyzing the reconstructed ROI.  When 

analyzing the relationship between the ratio of counts in the reconstructed ROI to counts 

outside the reconstructed ROI and the correlation between TOSEM vs NTOSEM, we 
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discovered that the said count ratio decreased as the correlation decreased.  In other 

words, the performance of the conventional OSEM algorithm deteriorated.  Note that the 

performance of the modified OSEM algorithm, TMOSEM, also deteriorated, but not to 

the same extent.  It is important to note that there is no standard method for 

compensating for truncation in clinical systems, and manufacturers may take differing 

approaches [1]. For the sake of clarity here, we delineate explicitly the method of 

equations 4.1 and 4.2, which is simple to implement and extremely flexible in dealing 

with complex gamma camera orbits. 

When simulating acquisitions by a 16x16 cm FOV gamma camera, and 

comparing the ratio of counts within the heart and the change in defect size, the average 

errors using TMOSEM compared to NTOSEM were 8.9% and 0.19% respectively in our 

patient population.  The difference in defect size comparing TMOSEM and NTOSEM 

was less than 1%.  The errors when comparing count ratios are significantly less when 

using TMOSEM as opposed to TOSEM; however, a maximum error of 17.4% is high for 

many applications.  Future work could focus on better understanding the impact of 

TMOSEM outside the FOV and the role scattered activity originating outside of the FOV 

contribute information inside the reconstructed FOV.  Also, the optimization of the 

number of subsets and iterations of the modified OSEM could be studied. Future 

experiments could also focus on better understanding of how background noise will 

effect the reconstruction and the effect of the location and size of the ROI in the 

reconstruction. 
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4.5 CONCLUSION 

The topic of truncation and its management has always been important, and will 

likely grow with the potential benefits of solid state detectors which may decrease the 

size of gamma detectors, the increase in imaging of larger patients, using converging 

geometries in collimation, and the need of hotspot imaging to follow radio-labeled 

transplanted cells.  In this work we have demonstrated that significantly truncated 

SPECT data compromises tomographic sampling, yielding non-uniform sensitivity and a 

non-stationary anisotropic resolution. However, we also demonstrated in phantom and 

clinical cardiac data that within a small region that is sampled adequately, the truncated 

data can be largely restored back to its original non-truncated form via a simple 

modification to the OS-EM algorithm when non-truncated CT is available. 
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CHAPTER 5:   CONCLUSIONS 

 

5.1 Summary of Results 

 An important goal in myocardial stem cell therapy is the development of tools to 

determine the location of transplanted stem cells and assess their viability. This thesis 

demonstrated that a form of medical imaging technology – SPECT/CT – has the potential 

to achieve this goal.  Three aspects of SPECT/CT application to monitoring cardiac stem 

cell therapy were evaluated: comparing two popular models of SPECT/CT systems, 

evaluating use of contrast-enhanced CT in SPECT/CT to improve transplanted stem cell 

localization, and exploring the potential for small field-of-view gamma cameras in 

SPECT/CT. 

There are currently two popular SPECT/CT systems that are commercially 

available.  One incorporates a slow rotation CT (GE Infinia/Hawkeye-4), while the other 

incorporates a fast rotation CT (Siemens Symbia/T6).  To date there have been no 

publications comparing the two systems for attenuation correction in cardiac SPECT 

perfusion imaging, and therefore indicating which SPECT/CT system would be better 

suited for imaging cells.  Our computer simulations showed an improvement in RMS 

error comparing SPECT cardiac polar plots using a fast rotation CT attenuation map as 

opposed to a slow rotation CT attenuation map.  Canine experiments also showed an 

advantage of using a fast rotation CT. Improvements in RMS error and correlation 

coefficient were recorded for all canines when analyzing a central trans-axial slice of the 

heart when using a fast rotation CT attenuation map. 



 128

An important aspect of monitoring cardiac stem cell therapy is determining the 

location of transplanted cells relative to the region of reduced blood flow.  To this end, 

we developed a technique combining SPECT with cardiac gated first-pass perfusion CT, 

which is only possible when using a fast rotation CT, and evaluated it in a canine model 

of heart disease.  Our technique was capable of localizing the transplanted cells in 

relation to the region of reduced blood flow.  In addition, viability is also important in 

imaging transplanted cells, but before viability can be assessed, the period of time that 

cells can be followed had to be determined.  A CNR analysis was performed on the 

SPECT/CT system and results showed that cells can be followed for up to a period of 22 

days if the location of the cells is known, which is possible with the fused first-pass 

perfusion CT and SPECT imaging technique.  To image cells for an even longer period 

of time post-transplantation, improvements to the sensitivity of gamma camera imaging 

systems would be required.  Such an improvement might be achieved via solid-state 

detector technology. 

Several groups and manufacturers have begun to explore a “next generation” of 

gamma cameras wherein the scintillation crystal and photomultiplier tube combination is 

replaced with a solid-state semiconductor detector.  One challenge to the implementation 

of solid-state detectors is their very high cost.  For cardiac imaging, these high costs 

might be lessened by using small detectors that are sufficient in size to image the heart.  

However, in this scenario, the presence of radioactivity outside the heart introduces 

artifacts into the reconstructed SPECT images that compromise quantification.  In the 

case of cardiac imaging, we demonstrated that imaging with a small field-of-view 

detector can introduce errors in relative quantification in the heart of over 100%. We 



 129

introduced a new reconstruction algorithm that substantially reduced these artifacts and 

reduced errors to less than 10%. 

 

5.2 Future Work 

 As this field is still fairly new, there are many interesting avenues to investigate.  

To begin, the NCAT phantom in Chapter 2 can be manipulated to simulate both male and 

female anatomies in addition to different body types (from very thin to very obese).  

Currently, only the male anatomy in a standard body type was employed by us.  

Repeating our investigations using the female anatomy and more body types may further 

generalize our results in comparing slow and fast CT attenuation maps in SPECT.  In 

addition to body type, the NCAT phantom can include cardiac motion which was not 

modeled in the current experiments.  Regarding the canine imaging aspect: it might be 

beneficial to compare more SPECT/CT systems such as the design introduced by 

Phillips. 

For the experiments in chapter 3, a standardized delivery system using an 

automated power injector, rather than hand-injection for the contrast agent will help in 

the ability to better quantify the results obtained from the first-pass perfusion CT 

imaging.  Currently, these results are qualitative, but if the delivery system can be 

standardized allowing the same rate of injection for all studies, then perhaps the results 

can be made more quantitative, and may be used to measure the therapeutic effects of the 

transplanted cells.  The objective of this chapter was to introduce a new imaging 

technique and show its feasibility on clinical equipment (albeit with a pre-clinical large 

animal model of heart disease).  Since we demonstrated the technique can localize 
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transplanted cells in relation to an underlying infarct, its role could be expanded to 

evaluate the efficacy of different cell transplant locations for stem cell therapy. 

 A final direction that this project may take is to combine the techniques 

developed in this thesis into a single study.  Specifically: a study using a solid-state small 

field-of-view detector SPECT scanner coupled with a fast rotation CT to acquire first-

pass perfusion CT may prove to be the best combination for imaging transplanted 

myocardial stem cells.  The solid-state detector should improve SPECT counting 

statistics and scatter correction to image the transplanted cells for a longer period of time.  

Combining this with the localization aspect of the first-pass perfusion CT images could 

make this an interesting and powerful platform for cell tracking. 
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