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Abstract

Breast cancer is a leading cause of cancer death in women, with the majority of these deaths

caused by metastasis to distant organs. The most common site of breast cancer metastasis

is the bone, which has been shown to provide a rich microenvironment that supports the

migration and growth of breast cancer cells. Additionally, growing evidence suggests that

breast cancer cells that do successfully metastasize have a stem-like phenotype including

high activity of aldehyde dehydrogenase (ALDH) and/or a CD44+CD24- phenotype. In the

current study, we tested the hypothesis that these ALDHhiCD44+CD24- breast cancer cells

interact with factors in the bone secondary organ microenvironment to facilitate metastasis.

Specifically, we focused on bone-derived osteopontin and its ability to promote the migration

and stem-like phenotype of breast cancer cells. Our results indicate that bone-derived

osteopontin promotes the migration, tumorsphere-forming ability and colony-forming ability

of whole population and ALDHhiCD44+CD24- breast cancer cells in bone marrow-condi-

tioned media (an ex vivo representation of the bone microenvironment) (p�0.05). We also

demonstrate that CD44 and RGD-dependent cell surface integrins facilitate this functional

response to bone-derived osteopontin (p�0.05), potentially through activation of WNK-1

and PRAS40-related pathways. Our findings suggest that soluble bone-derived osteopontin

enhances the ability of breast cancer cells to migrate to the bone and maintain a stem-like

phenotype within the bone microenvironment, and this may contribute to the establishment

and growth of bone metastases.

Introduction

Breast cancer is the most frequently diagnosed cancer among North American women, cur-

rently accounting for approximately 26% of all newly diagnosed cancer cases [1, 2]. Breast can-

cer’s high mortality rate (ranked second among women after lung cancer) is primarily due to

the failure of conventional therapy to mitigate and eliminate metastatic disease. While breast
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cancer patients with localized disease at the time of diagnosis have an excellent (almost 90%)

chance of long-term survival, a patient with metastatic disease has a mere 22% chance of sur-

viving longer than ten years [1, 2].

Although lethal, metastasis is a surprisingly inefficient process, with the rate-limiting steps

being the ability to initiate growth after extravasation into the secondary tissue and to maintain

that growth into clinically detectable macrometastases [3]. Growing evidence suggests that

breast cancer cells that can successfully initiate a primary tumor and traverse the entire meta-

static cascade may be “stem-like” cells or so-called “cancer stem cells” (CSCs) because of their

unique ability to self-renew and differentiate into a heterogenous tumor [4–7]. These stem-like

breast cancer cells can be isolated using specific markers including a CD44+CD24- phenotype

and/or high aldehyde dehydrogenase activity (ALDHhi) [8, 9]. Our laboratory has pioneered

functional characterization of these cells with regards to metastatic behavior, and were the first

to report that stem-like ALDHhiCD44+CD24- cells demonstrate increased proliferation, adhe-

sion, migration and invasion in vitro and metastasis in vivo relative to their non-stem-like

ALDHlowCD44-CD24+ counterparts [10].

Clinically, breast cancer metastasizes in an organ-specific pattern to lymph nodes, lung,

liver, bone and brain, with the bone being the most common site of metastasis [11–15]. Ste-

phen Paget’s seminal “seed and soil” hypothesis, first proposed in 1889, posits that this organ-

specific metastatic dissemination is mediated by crosstalk between a subset of cancer cells (the

‘seeds’) and specific organ microenvironments (the ‘soil’) [13]. A cancer cell’s altered genetic

or molecular signature and unique cell surface receptors results in a predilection for certain

organ microenvironments, and in turn a favorable niche provides conditions that promote

metastatic development [16]. In support of this, a meta-analysis of published autopsy data [12]

demonstrated that more bone metastases can be detected in breast cancer patients than would

be expected by blood flow alone, indicating that the bone microenvironment is likely very

important for metastatic dissemination and growth.

In the context of the CSC hypothesis, the bone microenvironment has been shown to be a

rich stem cell niche [17]. Notably, studies have demonstrated that the majority of early-dissem-

inated breast cancer cells found in the bone of breast cancer patients have a stem-like pheno-

type, an observation that complements the stem cell hypothesis of cancer metastasis [18].

Specifically, breast cancer cells with a CD44+ phenotype have been shown to have increased

adherence to human bone marrow endothelial cells [19]. Furthermore, previous studies in our

lab have demonstrated that both whole population and ALDHhiCD44+ breast cancer cells

show enhanced migration towards bone marrow-conditioned media relative to control [20],

although the soluble molecular factors that drive this require further investigation.

Within the bone microenvironment, the acidic phosphoglycoprotein osteopontin (OPN)

is the most abundant non-collagenous extracellular matrix protein present, and as such, is a

protein of interest when considering the bone as a favorable niche for breast cancer meta-

stases. OPN mediates cell-matrix and cell-cell communication through interactions with a

variety of cell surface receptors (i.e. CD44, α9β1, αvβ3 and αvβ5), leading to downstream

activation of pathways that ultimately contribute to survival, migration, adhesion, prolifera-

tion, angiogenesis, and metastasis [21–24]. Clinically, OPN has been shown to have prognos-

tic value, with observed correlations between plasma OPN levels, metastatic tumor burden

and survival in breast cancer patients [25–27]. Although extensive biological research has

focused on investigating the functional implications of tumor cell-derived OPN in cancer,

the role of bone-derived OPN in the metastatic progression of breast cancer remains poorly

understood.

In the current study, we therefore tested the hypothesis that soluble bone-derived OPN

plays an important role in the metastatic behavior of breast cancer cells. We demonstrate that
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bone-derived OPN promotes the migration and stem-like properties of breast cancer cells via

the cell surface receptor CD44 and RGD-dependent cell surface integrins, resulting in activa-

tion of WNK-1 and PRAS40. Our findings suggest that soluble bone-derived OPN enhances

the ability of breast cancer cells to migrate to bone and maintain a stem-like phenotype within

the bone microenvironment, and this may contribute to the establishment and growth of bone

metastases.

Materials and methods

Cell culture and reagents

MDA-MB-231 human breast cancer cells [28] were obtained directly from American Type

Culture Collection (cat #ATCC-HTB-26; Manassas, VA) and maintained in DMEM/F12 +

10% fetal bovine serum (FBS). SUM159 human breast cancer cells [29] were obtained directly

from Asterand Inc. (cat # SUM-159PT, Detroit, MI) and maintained in HAMS:F12 + 5% FBS +

5 μg/mL insulin + 1 μg/mL hydrocortisone + 10mM HEPES. Media/supplements were from

Invitrogen (Carlsbad, CA) and FBS was from Sigma-Aldrich (St. Louis, MO). Cell lines were

authenticated via third-party testing (IDEXX, Columbia, MO).

Bone-marrow conditioned media

Mice were used for this study. All studies were carried out in strict accordance with the recom-

mendations of the Canadian Council for Animal Care. The protocol was approved by the Ani-

mal Care Committee at the University of Western Ontario (protocol# 2009–064). Euthanasia

was performed with the use of CO2 and all efforts were made to minimize suffering. Bone mar-

row-conditioned media (BMCM) was generated as previously described [20] using bones har-

vested from healthy female nude mice. Briefly, healthy female nude mice (6–12 weeks old;

Hsd: Athymic Nude-Foxn1nu; Harlan Sprague-Dawley, Indianapolis, IN) were euthanized and

bone marrow was collected by flushing femur cavities. Aspirates were dissociated into single

cells by pipetting and cells were washed and plated in DMEM + 10% FBS + penicillin/strepto-

mycin (pen/strep). Resulting adherent bone marrow stromal cells (BMSCs) were passaged 2–3

times, washed, and exposed to DMEM/F12 + Mito+™ + pen/strep. Conditioned media was col-

lected after 72 hours and stored at -20˚C. To account for mouse-to-mouse variability, BMCM

from multiple mice was pooled prior to use.

Protein array analysis

To identify soluble factors present within BMCM, RayBio1 AAM-BLM-1 label-based mouse

antibody arrays were used to simultaneously assess of expression of 308 soluble murine target

proteins (RayBiotech Inc., Norcross, GA) as described previously [20]. Results were visualized

using chemiluminescence and film exposure (CL-Xposure Film, Pierce). Densitometric analy-

sis was conducted using Image J with the MicroArray Profile Macro and results (N = 3/media

condition) were analyzed using the RayBiotech analysis tool for AAM-BLM-1 as described

previously [20]. To identify potential phosphorylation changes in human breast cancer cells in

response to BMCM, MDA-MB-231 human cells were incubated in basal media, BMCM, or

BMCM depleted of OPN and cell lysates were harvested after 2 hours. Protein concentrations

were determined with a DC protein assay (BioRad). Cell lysates were incubated with the

Human Phospho-Kinase Array membranes (ARY003B, R&D Systems) overnight at 4˚C. Bioti-

nylated detection antibodies were applied and membranes were visualized using chemilumi-

nescence. Densiotometric analysis was performed using the Protein Array Analyzer for ImageJ

(N = 3/ media condition).

Bone-derived OPN promotes migration and stem-like behavior of breast cancer cells
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Immunodepletion

Osteopontin was immunodepleted from BMCM using a rat anti-mouse OPN-specific anti-

body (R&D Systems, Burlington, ON). Antibodies were incubated for 20 minutes at room

temperature (RT) with Dynabeads Protein G (8 μg OPN-specific antibody per mg of beads;

Novex/Life Technologies, Oslo). Bead-antibody complexes were then incubated with BMCM

for 30 minutes at RT. Resulting bead-antibody-antigen complexes were removed from BMCM

using a DynaMag-2 magnet (Novex/Life Technologies). The concentration of OPN in depleted

BMCM was assessed by Quantikine ELISA kits specific for mouse OPN (R&D Systems). Nega-

tive controls included BMCM exposed to beads only (no antibody). GST-tagged human OPN

(GST-hOPN; a kind gift from Dr. Ann Chambers, London Regional Cancer Program, London,

ON [30]) was used for rescue experiments at the same concentration that was originally

depleted from BMCM.

Cell migration assays

Transwells1 (6.5 mm, 8 μm pore size; Falcon, Corning, NY) were coated with 6 μg of gelatin

per well. Osteopontin-depleted, non-depleted BMCM, or basal media was placed in 24-well

dishes (n = 3 per condition). MDA-MB-231 or SUM-159 human breast cancer cells (5 x 104

cells per well) were plated on top of the gelatin-coated Transwells1 and inserted into 24-well

dishes. In experiments involving functional blocking of CD44 or RGD, cells were incubated

for 30 minutes at RT with rat anti-human CD44 antibody (10 μg per 5 x 105 cells; Calbiochem,

Mississauga, ON) or an RGD-sequence specific peptide (50 μg per 5 x 105 cells for MDA-

MB-231 breast cancer cells, 100 μg per 5 x 105 cells for SUM-159 breast cancer cells; Sigma-

Aldrich). For PI3K/Akt inhibitor experiments, breast cancer cells were first serum-starved for

18 hours, harvested and pretreated for 1 hour with 20 μM of either LY294002 or Triciribine

(Millipore, Temecula, CA) or an equivalent concentration of vehicle (DMSO) prior to the

migration assay. After 18 hours, Transwells1 were fixed and non-migrated cells were removed

from the inner surface and migrated cells on the lower surface were stained with DAPI. Five

high-powered fields (HPFs) of view were counted for each membrane using ImageJ [National

Institutes of Health (NIH), Bethesda, MD] software. Results are expressed as a fold-increase

from negative control (N = 3).

Sphere-limiting dilution assays (SLDA) and colony-forming assays

MDA-MB-231 human breast cancer cells were seeded into 96-well plates for colony-forming

assays (Corning, Lowell, Massachusetts) or 96-well Ultra-Low Attachment plates (Corning)

for the sphere-limiting dilution assay (SLDA) in a serial-diluted fashion ranging from 1000–

0.001 cells/well. For functional blocking experiments, anti-CD44 antibody or RGD-sequence

specific peptide were used as described for the migration assays. Osteopontin-depleted, non-

depleted BMCM, or basal media was added to the wells and cells were cultured for 5 days. At

the end of the assay, each well was scored for the presence or absence of colonies or tumor-

spheres (N = 3 each) using L-Calc™ Software (Stem Cell Technologies, Vancouver, BC).

Fluorescence-activated cell sorting (FACS) and flow cytometry

ALDHhiCD44+CD24- and ALDHloCD44-CD24+ cells subpopulations were isolated from the

MDA-MB-231 human breast cancer cell line as described previously [10, 31]. Briefly, cells

were concurrently labeled with 7-amino-actinomycin D (7-AAD), ALDEFLUORTM assay kit

(StemCell Technologies; Vancouver, BC) and fluorescently-conjugated antibodies including

anti-CD44 (clone IM7) conjugated to allophycocyanin (APC) and anti-CD24 (clone ML5)

Bone-derived OPN promotes migration and stem-like behavior of breast cancer cells
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conjugated to phycoerytherin (PE) (BD Biosciences). ALDH activity was used as the primary

sort criteria (top ~20% = ALDHhi; bottom ~20% = ALDHlow) and CD44+CD24- phenotype as

the secondary sort criteria (top ~10% gated on ALDHhi; bottom ~10% gated on ALDHlow).

Cell viability was assessed by 7-AAD staining during cell sorting, and confirmed by trypan

blue exclusion post-sorting. FACS-isolated cells were used immediately for in vitro assays.

For flow cytometry analysis, MDA-MB-231 and SUM159 human breast cancer cells were

grown to 80% confluence in normal growth media, harvested and resuspended at 1 x 106 cells/

ml. Cells were then incubated with phycoerytherin (PE)-conjugated CD44 (BD Biosciences,

San José, CA), fluorescein isothiocyanate (FITC)-conjugated αvβ3 (R&D Systems), Alexafluor

(AF)-488-conjugated αvβ5 (R&D Systems), AF-488-conjugated β1 (R&D Systems) or AF-

488-conjugated α9β1 (R&D Systems) antibodies for 1 hour at 4˚C. Negative controls included

cells only (no antibody) and cells incubated with an isotype-matched IgG-control. Samples

were analyzed on a Beckman-Coulter EPICS XL-MCL flow cytometer.

Immunoblotting

MDA-MB-231 human cells were incubated in basal media, BMCM, or BMCM depleted of

OPN and cell lysates were harvested after 2 hours. Protein concentrations were determined

with a DC protein assay (BioRad). Immunoblotting was used to assess the expression of total

PRAS40 (anti-human PRAS40 [Clone 660928], R&D Systems), phosphorylated PRAS40 (anti-

human Phospho-PRAS40 [T246] [Clone 760502], R&D Systems), total WNK-1 (anti-human

polyclonal Ab, Cell Signaling), or phosphorylated WNK-1 (anti-human Phospho-WNK1

[T60] polycolonal, R&D Systems). β-actin was used as a loading control (anti-human anti-

ACTB [SAB2108641], Sigma).

siRNA targeting of WNK1 and PRAS40

For knockdown of WNK1 and PRAS40, ON-TARGETplus SMART pools of 4 specific or con-

trol small interfering RNAs (siRNA) (Dharmacon Thermo Scientific, Lafayette, CO) were used

in combination with transient transfection of MDA-MB-231 human breast cancer cells. All

siRNAs were suspended in sterile RNAse-free water at a concentration of 25 μM. Scrambled

control, WNK1, or PRAS40 siRNA pools (6ul) and 10ul Lipofectamine RNAiMAX reagent

(Invitrogen) were diluted into serum-free Opti-MEM media (Invitrogen) and incubated for 20

min at room temperature before addition to MDA-MB-231 cells (50% confluency) in 60 mm

culture dishes. After 48 hours of incubation at 37˚C, 5% C02, cells were harvested, assessed for

knockdown efficiency by immunoblotting and used for migration assays as described above.

Data analysis

In vitro experiments were performed a minimum of three times with three technical replicates

within each experiment. Unless otherwise noted, data are presented as mean ± SEM. Statistical

analysis was performed using GraphPad Prism 6.0 (GraphPad Software, San Diego, CA) using

one-way analysis of variance (ANOVA) with Tukey’s or Bonferroni’s post-hoc tests. In all

cases, values of p<0.05 were classified as being statistical significant.

Results

Soluble OPN is produced in the bone microenvironment and enhances

breast cancer cell migration

An initial investigation of potential soluble factors present in the bone microenvironment was

carried out using protein array analysis of bone marrow-conditioned media (BMCM) as a

Bone-derived OPN promotes migration and stem-like behavior of breast cancer cells
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model system [20]. Of the proteins identified in BMCM, several were found to be associated

with metastasis, including the soluble phosphoprotein osteopontin (OPN) (S1 Table). In the

current study, we chose to focus our work on OPN because of its established function in both

the normal bone microenvironment and during breast cancer metastasis [21–24]. ELISA anal-

ysis demonstrated that that BMCM contains significant amounts of bone-derived OPN com-

pared to basal media (P�0.05; Fig 1A). To assess the effect of bone-derived OPN on human

breast cancer cell migration, OPN was immunodepleted from BMCM. TranswellTM migration

assays were then used to assess the migration of MDA-MB-231 and SUM-159 human breast

cancer cells to basal media, BMCM and BMCM depleted of OPN. Both cell lines exhibited

increased migration toward BMCM relative to basal media (P�0.05; Fig 1B and 1C) and

exhibited significantly decreased migration to BMCM depleted of OPN, back down to levels

comparable to basal media (P�0.05; Fig 1B and 1C). To validate that bone-derived OPN was

specifically responsible for the observed effects on breast cancer cell migration, recombinant

human OPN (GST-hOPN) was added back into BMCM depleted of OPN at the same concen-

tration that was originally depleted. The addition of GST-hOPN to BMCM rescued the migra-

tory effect on both MDA-MB-231 and SUM-159 cells, causing cells to migrate at similar levels

as non-depleted BMCM (Fig 1B and 1C). These results demonstrate that bone-derived OPN

enhances breast cancer cell migration towards BMCM.

Bone-derived OPN enhances the migration and stem-like behavior of

ALDHhiCD44+CD24- breast cancer cells

As previously discussed, “stem-like” ALDHhiCD44+ CD24- breast cancer cells show enhanced

metastasis to multiple different organs, including bone [7, 10]. We have previously shown that

this subpopulation is found within the MDA-MB-231 cell line and shows increased migration

to BMCM relative to ALDHloCD44-CD24+ cells [20]. Thus, we wanted to investigate if bone-

derived OPN influenced the migration of this population. Using FACS, ALDHhiCD44+CD24-

and ALDHloCD44-CD24+ subpopulations were isolated from the MDA-MB-231 cell line

using the strategy outlined in S1 Fig and used in migration assays in combination with basal

media, BMCM, or BMCM depleted of OPN. The ALDHhiCD44+ CD24- subpopulation dem-

onstrated significantly increased migration toward BMCM compared to basal media, an ef-

fect that was abrogated when OPN was depleted from BMCM (P�0.05; Fig 2A). In contrast,

ALDHloCD44-CD24+ cells did not display significantly increased migration towards either

BMCM or BMCM depleted of OPN compared to basal media (P>0.05; Fig 2A).

Next, we used a sphere limiting dilutions assay (SLDA) to assess the effect of bone-derived

OPN on the tumorsphere-forming capacity of breast cancer cells. Whole population MDA-

MB-231 cells demonstrated increased tumorsphere-forming capacity in BMCM compared

to basal media (P�0.05; Fig 2B). This tumorsphere-forming ability decreased when BMCM

was depleted of OPN (P�0.05; Fig 2B), suggesting that bone-derived OPN supports this capac-

ity in MDA-MB-231 cells. Additionally, the tumorsphere-forming ability of ALDHhiCD44+

CD24- cells was reduced in the presence of BMCM depleted of OPN relative to BMCM

(P�0.05; Fig 2C), indicating that this cell subpopulation is responsible for the tumorsphere-

forming capacity of MDA-MB-231 cells in BMCM and that bone-derived OPN supports their

stem-like phenotype. We also investigated the influence of bone-derived OPN on the colony-

forming ability of MDA-MB-231 cells. Whole population MDA-MB-231 cells show increased

colony-forming abilities in BMCM compared to basal media (P�0.05; Fig 2D). When cells

were exposed to BMCM depleted of OPN, their colony-forming capacity was significantly

reduced (P�0.05; Fig 2D), suggesting that bone-derived OPN also plays a role in the colony-

forming ability of breast cancer cells.

Bone-derived OPN promotes migration and stem-like behavior of breast cancer cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0177640 May 12, 2017 6 / 20

https://doi.org/10.1371/journal.pone.0177640


Fig 1. Soluble OPN is produced in the bone microenvironment and enhances human breast cancer cell migration. (A) Goat anti-mouse

OPN primary antibody was incubated for 20 min at RT with DynaBeads® Protein G prior to incubation with BMCM for 30 min at RT. The beads-

antibody-antigen complex was removed with a DynaMag™-2 magnet. Concentration of OPN in BMCM, BMCM with beads only (no antibody) and

BMCM depleted of OPN (ΔOPN) was assessed by ELISA. Data are presented as mean ± SEM (N = 3). (B) MDA-MB-231 and (C) SUM-159 cells

were subjected to transwell migration assays (5 x 104 cells/well; 8μm pore size) using basal media (DMEM/F12 + Mito+), BMCM, BMCM depleted of

OPN (ΔOPN) or BMCM ΔOPN rescued with GST-hOPN. Plates were incubated at 37˚C, 5% CO2 for 18 hr, fixed and stained. Five high-powered

fields of view (HPF) were captured per transwell and migrated cells were analyzed. Data are presented as mean ± SEM (N = 3; fold-change from

negative control basal media). * = significantly different than basal media; ϕ = significantly different than BMCM (P�0.05).

https://doi.org/10.1371/journal.pone.0177640.g001
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Bone-derived OPN interacts with CD44 and RGD-dependent integrins to

enhance migration

OPN is known to influence multiple steps in the metastatic cascade through the cell surface

receptor CD44, as well as multiple different cell surface integrins; including αvβ1, α9β1 αvβ3

and αvβ5 [21]. Thus, we first evaluated the expression of CD44, β1, α9β1 αvβ3 and αvβ5 on

the MDA-MB-231 and SUM-159 cell lines. Flow cytometry indicated that both cell lines are

positive for the expression of CD44 and these four cell surface integrins (S2 and S3 Figs). Next,

we investigated the role of these cell surface proteins in the migration of breast cancer cells

using an anti-CD44 functional blocking antibody or an Arg-Gly-Asp (RGD) peptide. OPN

Fig 2. Bone-derived OPN enhances the migration and stem-like behavior of ALDHhiCD44+CD24- breast cancer cells. (A) ALDHhiCD44+CD24- and

ALDHloCD44-CD24+ cell subpopulations were isolated from the MDA-MB-231 human breast cancer cell line by FACS and subjected to transwell migration

assays (5 x 104 cells/well; 8μm pore size) using basal media (DMEM/F12 + Mito+), BMCM, or BMCM depleted of OPN (ΔOPN). Plates were incubated at

37˚C, 5% CO2 for 18 hr, fixed and stained. Five high-powered fields of view (HPF) were captured per transwell and migrated cells were analyzed. (B)

Whole population or (C) ALDHhiCD44+CD24- and ALDHloCD44-CD24+ subpopulations isolated from the MDA-MB-231 breast cancer cell line were plated

in a limiting dilution fashion on 96-well ultra-low attachment plates for 7 days in basal media, BMCM, or BMCM ΔOPN and subjected to sphere-forming

assays. (D) Whole population MDA-MB-231 cells were plated in a limiting dilution fashion on normal 96-well plates for 7 days in basal media, BMCM, or

BMCM ΔOPN and subjected to colony-forming assays. Data are presented as mean ± SEM (N = 3). * = significantly different than basal media; ϕ =

significantly different than BMCM (P�0.05).

https://doi.org/10.1371/journal.pone.0177640.g002
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contains an RGD sequence that is recognized by β1, α9β1 αvβ3 and αvβ5 integrins; therefore

incubating the cells with the RGD-sequence specific peptide prior to use in functional assays

should block the recognition of OPN via the RGD sequence [30, 32].

We observed that blocking CD44 on the MDA-MB-231 and SUM-159 cells significantly

decreased migration to BMCM compared to migration of untreated cells (P�0.05; Fig 3A and

3B). The migration of CD44-blocked MDA-MB-231 cells to BMCM was only reduced to a

level similar to untreated cells exposed to BMCM depleted of OPN, suggesting that CD44

specifically contributes to the effect of bone-derived OPN on breast cancer cell migration

(P>0.05; Fig 3A). In contrast, CD44-blocked SUM-159 cell migration to BMCM was signifi-

cantly lower than untreated SUM-159 cell migration to BMCM depleted of OPN (P�0.05; Fig

3B). This suggests that CD44 may mediate the interaction of SUM-159 with bone-derived

OPN as well as other soluble factors within BMCM.

Our results also indicate that treatment of MDA-MB-231 and SUM-159 breast cancer cells

with a RGD-blocking peptide significantly reduces their migration to BMCM relative to

untreated cells (P�0.05; Fig 3C and 3D). RGD-blocked MDA-MB-231 cells showed signifi-

cantly decreased migration to BMCM compared to untreated cells exposed to BMCM depleted

of OPN (P�0.05; Fig 3C). These results suggest that RGD-dependent integrins may mediate

the interaction of MDA-MB-231 with bone-derived OPN as well as other soluble factors

within the BMCM. In contrast, RGD-blocked SUM-159 cells showed similar migratory levels

to BMCM as untreated cells to BMCM depleted of OPN, suggesting that RGD-dependent cell

surface integrins specifically mediate the interaction of SUM-159 cells with bone-derived OPN

(P>0.05; Fig 3D).

Promotion of breast cancer cell stem-like behavior by bone-derived OPN

is mediated through CD44 and RGD-dependent integrins

Given that CD44 and RGD-dependent integrins mediate the interaction between breast cancer

cells and bone-derived OPN to influence migration to BMCM, we wanted to explore if these

cell surface receptors also influence the stem-like phenotype of breast cancer cells. The anti-

CD44 blocking antibody and RGD-sequence specific peptide were used to block MDA-

MB-231 in the SLDA. Both CD44-blocked and RGD-blocked MDA-MB-231 cells showed

decreased tumorsphere-forming capacity when exposed to BMCM and BMCM depleted of

OPN compared to untreated cells exposed to BMCM depleted of OPN (P�0.05; Fig 4A and

4B). This suggests that both CD44 and RGD-dependent integrins can mediate the tumor-

sphere-forming capacity of breast cancer cells through interactions with OPN.

Bone-derived OPN induces phosphorylation of WNK1 and PRAS40

Thus far, we have shown that bone-derived OPN influences the migratory ability and stem-

like phenotype of breast cancer cells via CD44 and RGD-dependent integrins. Considering

this, we wanted to investigate the effect of bone-derived OPN on downstream pathways within

breast cancer cells. MDA-MB-231 cells were exposed to basal media, BMCM, or BMCM

depleted of OPN. Cell lystates were collected after 2 hours and assessed using human phos-

pho-kinase arrays. We observed that phosphorylation of WNK1, PRAS40, and HSP60

increased after exposure to BMCM, and this phosphorylation was abrogated when OPN was

depleted (Fig 5A). We were able to validate these findings for PRAS40 (Fig 5B) and WNK1

(Fig 5C) using immunoblotting, but not HSP60. These findings indicate that bone-derived

OPN leads to phosphorylation of WNK1 and PRAS40 and suggests that activation of these

pathways may be a potential contributing mechanism underlying the functional role of bone-

derived OPN in the malignant behavior of breast cancer cells.
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WNK1 and PRAS40-related pathways play a role in BMCM-mediated

migration of breast cancer cells

To explore the potential role of these factors further, we directly targeted WNK1 and PRAS40

using siRNA. We observed that knockdown of WNK1 resulted in a significant reduction of

breast cancer cell migration in response to BMCM relative to a non-specific siRNA control

(Fig 6A; P�0.05). In contrast, knockdown of PRAS40 had no effect on BMCM-mediate breast

cancer cell migration (Fig 6B). Since PRAS40 is downstream of both PI3K and Akt [33], we

hypothesized that its activation and effect on migration was indirectly related to the activity

of one of these pathways. We observed that treatment with the PI3K inhibitor LY294002

resulted in a significant reduction of breast cancer cell migration in response to BMCM (Fig

6C; P�0.05), whereas treatment with the Akt inhibitor Triciribine or a vehicle control had no

effect (Fig 6C).

Fig 3. Bone-derived OPN interacts with CD44 and RGD-dependent integrins to enhance breast cancer cell migration. MDA-MB-231 and SUM-

159 human breast cancer cells were blocked with an anti-CD44 antibody (A, B) or an RGD sequence-specific blocking peptide (C, D) for 30 min and

subjected to transwell migration assays (5 x 104 cells/well; 8μm pore size) using basal media (DMEM/F12 + Mito+), BMCM, or BMCM depleted of OPN

(ΔOPN). Plates were incubated at 37˚C, 5% CO2 for 18 hr, fixed and stained. Five high-powered fields of view (HPF) were captured per transwell and

migrated cells were analyzed. Data are presented as mean ± SEM (N = 3; fold change from negative control of basal media). * = significantly different

than basal media; ϕ = significantly different than non-blocked BMCM, δ = significantly different than non-blocked BMCM ΔOPN (P�0.05).

https://doi.org/10.1371/journal.pone.0177640.g003
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Discussion

Approximately 85% of all breast cancer patients who die from their disease are expected to

show metastasis to the bone [34]. These bone metastases pose an extreme burden for breast

Fig 4. Breast cancer cell stem-like behavior is mediated by bone-derived OPN through CD44 and

RGD-dependent integrins. MDA-MB-231 human breast cancer cells were blocked with (A) an anti-CD44

antibody or (B) an RGD sequence-specific blocking peptide for 30 minutes prior to plating in a limiting dilution

fashion on ultra-low adhesion 96-well plates for 7 days in basal media (DMEM/F12 + Mito+), BMCM or BMCM

ΔOPN in the sphere limiting dilution assay (SLDA). Data are presented as mean ± SEM (N = 3; fold change

from negative control of basal media). * = significantly different than basal media; ϕ = significantly different

than non-blocked BMCM (P�0.05).

https://doi.org/10.1371/journal.pone.0177640.g004
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cancer patients, resulting in pain, fractures and hypercalcaemia, and the current clinical man-

agement for metastatic patients fails to prevent or cure these skeletal lesions [34].

The frequency of bone metastases in patients suggests that the bone microenvironment is

conducive to the migration and growth of breast cancer cells [35]. Many previous studies have

focused on the contribution of breast cancer cell-specific genes, receptors and secreted factors

that contribute to the establishment of bone metastases in breast cancer patients. For example,

Fig 5. Bone-derived OPN induces phosphorylation of WNK1 and PRAS40. MDA-MB-231 human breast cancer cells were exposed to

basal media, BMCM and BMCM depleted of OPN (BMCM ΔOPN) for 2 hours, and cell lysates were harvested. (A) Cell lysates were assessed

using with Human Phospho-Kinase Array membranes (ARY003B, R&D Systems) overnight at 4˚C. Biotinylated detection antibodies were

applied and membranes were visualized using chemiluminescence. Densitometry analysis was performed using the Protein Array Analyzer for

ImageJ (N = 3 for each media condition). * = significantly different than basal media; ϕ = significantly different than BMCM (P�0.05). Only

proteins with significantly different phosphorylation or expression between at least two treatments are shown. Proteins within the rectangular

box demonstrated a similar pattern of phosphorylation to each other (increase in response to BMCM, with a subsequent decrease upon

depletion of bone-derived OPN). (B) Phosphorylation patterns for PRAS40 and WNK1 were successfully validated using immunoblotting

(N = 3).

https://doi.org/10.1371/journal.pone.0177640.g005
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Fig 6. WNK1 and PRAS40-related pathways play a role in BMCM-mediated migration of breast cancer cells. (A, B) MDA-MB-231 human breast

cancer cells were subjected to siRNA knockdown of WNK1 (A) or PRAS40 (B). Knockdown was confirmed by immunoblotting (top panels) prior to

carrying out transwell migration assays (bottom panels; 5 x 104 cells/well; 8μm pore size) using basal media (DMEM/F12 + Mito+) or BMCM. (C)

MDA-MB-231 human breast cancer cells were serum-starved and treated with 20μM of PI3K inhibitor (LY294002) or Akt inhibitor (Triciribine) or an

equivalent concentration of vehicle (DMSO) for 1 hour before being subjected to transwell migration assays (5 x 104 cells/well; 8μm pore size) using

basal media (DMEM/F12 + Mito+) or BMCM. Plates were incubated at 37˚C, 5% CO2 for 18 hr, fixed, and stained. Five high-powered fields of view
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there exists in the literature a wide breadth of knowledge on the effect of tumor-derived OPN

in multiple steps of the metastatic cascade [24, 36–46]. However, much less research has been

conducted on the effect of host-derived OPN in the tumor microenvironment. The current

study focused on elucidating the role of bone-derived OPN on the migration, stem-like behav-

ior and downstream signaling response of breast cancer cells.

We first demonstrated that OPN promotes the migration of breast cancer cells toward

bone-marrow conditioned media. Taken together with previous work demonstrating that

OPN-deficient mice display less colonization and growth of injected melanoma cells in bone

than wild-type mice [47], this data suggests that bone-derived OPN increases breast cancer cell

migration to and colonization in bone, thus promoting breast cancer bone metastases. Inter-

estingly, both human breast cancer cell lines used in this study (MDA-MB-231 and SUM-159)

displayed reduced migration towards BMCM depleted of OPN compared to non-depleted

BMCM. However, levels of migration toward BMCM depleted of OPN were still significantly

higher than migration toward basal media, suggesting that other factors within the BMCM

may be contributing to the migration of these cancer cells. We identified other soluble factors

present within the BMCM that could be responsible for the observed effect, including matrix-

metalloproteinase-14 (MMP-14; MTI-MMP) and intracellular adhesion molecule-1 (ICAM-

1), and these require further investigation.

Our results also suggest a novel function for bone-derived OPN in promoting the tumor-

sphere and colony-forming abilities of breast cancer cells. Sphere-limiting dilution assays

(SLDA) and colony-forming assays were used assess the number of tumorsphere-initiating

cells present in populations and the ability of cells to proliferate into colonies at very low num-

bers, which taken together can help evaluate the “stemness” of a population in vitro [48].

In healthy tissues, normal stem cells reside in specialized niches that influence their ability

to remain quiescent, self-renew or differentiate via cell-to-cell interactions and/or via response

to various secreted soluble factors and extracellular matrix components [49, 50]. The bone

marrow is known to provide a rich stem cell niche, particularly for hematopoietic stem cells

(HSCs) [49, 51] and OPN has recently been shown to be integral in supporting the HSC niche

in bone by promoting the migration and lodging of HSCs within the bone endosteal region

[52]. Similar to healthy stem cells within the normal bone marrow niche, stem-like cancer cells

have also been shown to be influenced and maintained by components of the microenviron-

ment in which they reside, such as stromal cells and soluble factors [53]. Recent work has

implicated OPN in the maintenance of “stemness” in different types of cancers. Pietras et al

(2014) showed that OPN was able to promote stemness in proneural glioblastoma [54], and

Cao et al (2015) showed that OPN promotes a cancer stem cell-like phenotype in hepatocellu-

lar carcinoma cells. The ability of bone-derived OPN to maintain the stem-like behavior of

breast cancer cells in vitro suggest that it may also support the establishment of breast cancer

metastases in the bone in vivo.

Given our work showing that bone-derived OPN promotes the migration and stem-like

behavior of breast cancer cells, we wanted to investigate which cell surface receptors bone-

derived OPN uses to influence breast cancer cell properties, and we chose to evaluate the role

of CD44 and RGD-dependent integrins in these functions. CD44 plays an important role in

metastasis by participating in a variety of signaling networks that promote migration, invasion,

growth and survival [55] and our lab has recently showed that breast cancer cells preferentially

migrate toward lung-derived OPN in a CD44-dependent manner [20]. RGD-dependent cell

(HPF) were captured per transwell and migrated cells were analyzed. Data are presented as mean ± SEM (N = 3; fold change from negative control of

basal media). * = significantly different than basal media; ϕ = significantly different than BMCM + siCON (A, B) or BMCM + vehicle (C) (P�0.05).

https://doi.org/10.1371/journal.pone.0177640.g006
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surface integrins (α5β1, α8β1 and all αv-containing integrins) assist in adhesion and migration

by recognizing ligands that contain the RGD motif (Arg-Gly-Asp), mainly found in compo-

nents of the extracellular matrix such as OPN, fibronectin, and vitronectin [56].

Our results show that blocking CD44 or RGD-dependent integrins on the surface of breast

cancer cells abrogates migration toward BMCM. Interestingly, we found cell line-specific

migratory responses when the OPN-CD44 or the OPN-RGD interactions are blocked. MDA-

MB-231 cells seem to be more dependent on CD44 versus RGD integrins for their response to

bone-derived OPN; whereas SUM-159 cells depend more heavily on RGD integrins for this

response. Flow cytometry analysis revealed that both cell lines express significant amounts of

CD44 and similarly moderate amounts of RGD-dependent β1, αvβ3 and αvβ5 and RGD-inde-

pendent α9β1, suggesting that the differences in migratory function observed could be depen-

dent on the expression of other cell surface receptors including integrins such as α5β1 and

α8β1.

Finally, we wanted to begin to explore the downstream signaling pathways that OPN acti-

vates to influence breast cancer cell properties and functions. We observed that bone-derived

OPN specifically promoted the phosphorylation of WNK-1 and PRAS40, and that these path-

ways are important for mediating the migration of breast cancer cells in response to BMCM.

WNK1 is a seronine-threonine protein kinase that is involved in the MAPK cascade and in

EGF-dependent stimulation of ERK1/2 and ERK5 [57, 58]. Previous studies have shown that

knockdown of WNK1 in leads to the suppression of ERK1/2 by EGF and results in reduced

cell growth and migration [57]. WNK1 is also known suppress TGF-β signaling. TGF-β is inte-

gral in inducing the epithelial-to-mesenchymal transition (EMT) thus loss or inactivation of

WNK1 activity could promote EMT of epithelial tumor cells [59]. WNK1 is linked to Rho

GTPases, which control the dynamics of the cytoskeleton and are integral in cell migration

and invasiveness [60, 61]. Our data support this role for WNK1, as knockdown of WNK1

resulted in reduced migration of breast cancer cells in response to BMCM. WNK1 is also a

substrate of Akt, suggesting that it may play a role in the PI3K/Akt pathway [58]. Its role in

this pathway could cause WNK1 to be indirectly phosphorylated by the interaction of bone-

derived OPN with αvβ3 on breast cancer cells, and thus could contribute to breast cancer

migration, invasiveness and cell growth downstream of OPN. PRAS40 is a proline-rich sub-

strate of Akt and mTORC1 that acts at the intersection of the Akt and mammalian target of

rapamycin (mTOR) signaling pathways. The expression of phospho-PRAS40 is upregulated

in 40% of primary breast cancer samples and correlates with PI3K-Akt signaling and activa-

tion [33]. Based on our results, it is likely that bone-derived OPN causes phosphorylation of

PRAS40 indirectly by activating the PI3K pathway since OPN signals through this pathway via

αVβ3 to promote migration, invasion, cell survival and proliferation [62]. While experimental

studies have demonstrated a role for the PI3K pathway in bone metastasis of breast cancer

[63, 64], to the best of our knowledge neither WNK1 or PRAS40 have previously been specifi-

cally implicated in bone metastasis. Our results support the need for future studies aimed at a

detailed investigation of the role of these pathways and their potential as therapeutic targets for

breast cancer bone metastasis.

In conclusion, this study shows that bone-derived OPN promotes the migration of breast

cancer cells and contributes to maintaining the stem-like behavior of breast cancer cells

through interactions with CD44 and RGD-dependent integrins. This study also shows that

bone-derived OPN activates a downstream signaling response in breast cancer cells involving

the phosphorylation of WNK-1 and PRAS40, and that these pathways contribute to enhanced

migration of breast cancer cells in the context of the soluble bone microenvironment. While

the cancer research community has known about specific metastatic patterns and organ pref-

erences that breast cancers exhibit for over a century, only recently have efforts focused on the
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role of the secondary site or “soil” in promoting and supporting metastatic growth at these

sites. It is becoming increasingly clear that the bone microenvironment offers an optimal

niche for the establishment and progression of metastases. Our study shows that bone-derived

soluble factors–specifically OPN–contribute to this process, possibly by interacting with stem-

like breast cancer cells. Future studies should concentrate on further elucidating the crosstalk

between the “seed” and “soil” during metastasis as this knowledge could direct the develop-

ment of novel therapeutics aimed at preventing and treating metastasis.

Supporting information

S1 Fig. Strategy for isolation of ALDHhiCD44+CD24- and ALDHloCD44-CD24+ breast can-

cer cell subpopulations. MDA-MB-231 human breast cancer cells were labeled with anti-

CD44-APC, anti-CD24-PE, the ALDEFLUORTM assay kit, and 7-AAD viability dye. Cell sub-

sets were isolated using a four-colour protocol on a FACS ARIA III. (A) Cells were first iso-

lated based on expected light scatter and then (B) viability based on 7-AAD exclusion. (C)

Cells are then analyzed for ALDH activity; the top 20% most positive for ALDH activity are

deemed ALDHhi and the bottom 20% for lowest ALDH activity are deemed ALDHlo. (D)

ALDHhi cells are selected for CD44+/CD24- phenotype and (E) ALDHlo cells are selected for

CD44-/CD24+ phenotypes.

(TIF)

S2 Fig. MDA-MB-231 human breast cancer cells express CD44 and multiple different cell

surface integrins. Representative histograms are shown from flow cytometry characterization

of MDA-MB-231 cells incubated with (A) PE-conjugated anti-CD44, (B) AlexaFluor-488-con-

jugated anti-β1 integrin, (C) FITC-conjugated anti-αvβ3 integrin, (D) AlexaFluor-488-conju-

gated anti-αvβ5 integrin or (E) AlexaFluor-488 conjugated anti-α9β1 integrin antibodies for 1

hour at 4˚C compared to cells incubated with an isotype-matched IgG-control. Samples were

run on a Beckman-Coulter EPICS XL-MCL flow cytometer (N = 3).

(TIF)

S3 Fig. SUM-159 human breast cancer cells express CD44 and multiple different cell sur-

face integrins. Representative histograms are shown from flow cytometry characterization of

MDA-MB-231 cells incubated with (A) PE-conjugated anti-CD44, (B) AlexaFluor-488-conju-

gated anti-β1 integrin, (C) FITC-conjugated anti-αvβ3 integrin, (D) AlexaFluor-488-conju-

gated anti-αvβ5 integrin or (E) AlexaFluor-488 conjugated anti-α9β1 integrin antibodies for 1

hour at 4˚C compared to cells incubated with an isotype-matched IgG-control. Samples were

run on a Beckman-Coulter EPICS XL-MCL flow cytometer (N = 3).

(TIF)

S1 Table. Metastasis-associated proteins identified in bone marrow-conditioned media

with the RayBio1 Biotin label-based mouse antibody array.
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