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Abstract 

This thesis aims to develop a flexible approach for modelling time-dependent covariate 

effects on event risk using B-splines in the presence of correlated competing risks. The 

performance of the proposed model was evaluated via simulation in terms of the bias and 

precision of the estimation of the parameters and penetrance functions. In addition, we 

extended the concordance index to account for time-dependent effects and competing 

events simultaneously and demonstrated its inference procedures. We applied our 

proposed methods to data rising from the BRCA1 mutation families from the breast 

cancer family registry to evaluate the time-dependent effects of mammographic screening 

and prophylactic surgery on breast cancer risks, where ovarian cancer and death from 

other causes are competing events. Different time-dependent models were evaluated via 

time-dependent C-index and Brier scores. 

 

 

 

 

 

 

 

Keywords: family data; correlated frailty model; competing risks, time-dependent 

covariate; time-dependent effect; breast and ovarian cancers; B-spline; prediction; 

concordance index; Brier score 



 

iii 

 

Summary for Lay Audience  

Hereditary breast and ovarian cancer syndrome families have significantly higher lifetime 

risks of developing breast and ovarian cancer than the general population. Preventive 

interventions such as mammographic screening (MS) and risk-reducing salpingo-

oophorectomy (RRSO) can potentially reduce associated cancer risks. However, since the 

statuses and effects of these interventions vary over time and individuals may experience 

multiple cancers, the evaluation of these interventions is complicated.  

To understand how the interventions affect the risk of developing breast cancer in 

the presence of other events, we used a statistical method called the correlated frailty 

competing risks model, which is applicable for family data with multiple events. To 

flexibly evaluate the effect of interventions, we incorporated a flexible approach, B-

spline, instead of assuming the shape of the effect of RRSO on breast cancer. We further 

extended the concordance index, which is a common measure used to describe the 

predictive ability of a model to simultaneously account for the multiple events and 

changes in the interventions’ statuses. We applied our proposed method to BRCA1 

mutation carrier families recruited through the Breast Cancer Family Registry to evaluate 

the time-dependent effects of MS and RRSO on breast cancer risks in the presence of 

ovarian cancer and death from the other causes as competing events. Then, the predictive 

abilities of the models were compared by using the extended concordance index. 

 

 

 

 

 



 

iv 

 

Acknowledgments  

I would like to express my deepest gratitude to my supervisor, Dr. Yun-Hee Choi, 

for her countless hours of support throughout my studies. Without her invaluable 

guidance and encouragement, this thesis would not have been possible. I feel fortunate to 

have worked with her on my thesis. She has set an example of excellence as an advisor, 

instructor, and researcher. I am also grateful to my supervisory committee member, Dr. 

Guanyoung Zou, for his valuable feedback on the thesis. 

I would like to thank the Canadian Statistical Sciences Institute (CANSSI) and the 

Department of Epidemiology and Biostatistics for their financial support throughout my 

study at Western. 

I would like to note that the content of this manuscript does not necessarily reflect 

the views or policies of the National Cancer Institute or any of the collaborating centers 

in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, 

commercial products, or organizations imply endorsement by the USA Government or 

the BCFR. 

Finally, I would like to thank my parents for their support and encouragement 

throughout all my studies, as well as friends from the Department of Epidemiology and 

Biostatistics who helped me a lot in completing the thesis. 

 



 

v 

 

Table of Contents 

Abstract .............................................................................................................................. ii 

Summary for Lay Audience ............................................................................................ iii 

Acknowledgments ............................................................................................................ iv 

Table of Contents .............................................................................................................. v 

List of Tables .................................................................................................................. viii 

List of Figures .................................................................................................................. xii 

List of Abbreviations ...................................................................................................... xv 

Chapter 1  Introduction ................................................................................................... 1 

1.1 Motivation .............................................................................................................. 1 

1.2 Correlated competing risks .................................................................................. 2 

1.3 Time-dependent covariates .................................................................................. 3 

1.4 Time dependent effect........................................................................................... 4 

1.5 Objectives............................................................................................................... 5 

1.6 Organization of the thesis ..................................................................................... 6 

Chapter 2  Literature Review .......................................................................................... 7 

2.1 Competing risk models ......................................................................................... 7 

2.2 Frailty model in non-competing risk setting .................................................... 10 

2.3 Frailty model in competing risk settings ........................................................... 11 

2.4 Time-dependent covariate model and time-dependent coefficient model ..... 13 

2.4.1 Parametric models .................................................................................. 14 

2.4.2 Flexible model using B-spline ................................................................ 14 

Chapter 3  Proposed Statistical Models ........................................................................ 18 



 

vi 

 

3.1 Frailty competing risk model with time-dependent covariates and 

coefficients ........................................................................................................... 18 

3.2 Dependence induced by frailties ........................................................................ 21 

3.3 Likelihood construction with ascertainment correction ................................. 22 

3.4 Cause-specific penetrance function with time-dependent 

covariates/coefficients ......................................................................................... 27 

3.5 Variance estimation of regression coefficients ................................................. 30 

Chapter 4  Simulation study .......................................................................................... 32 

4.1 Objectives............................................................................................................. 32 

4.2 Simulation setting................................................................................................ 33 

4.3 Selection of parameter values ............................................................................ 36 

4.4 Data generation ................................................................................................... 38 

4.5 Evaluation criteria .............................................................................................. 40 

4.6 Simulation results................................................................................................ 42 

4.6.1 Correlated competing risk model with B-spline function ................... 43 

4.6.2 Impact of misspecified time-dependent effect functions ..................... 46 

Chapter 5  Model performance ..................................................................................... 65 

5.1 Discrimination ..................................................................................................... 65 

5.1.1 C-index for survival data........................................................................ 65 

5.1.2 Time-dependent C-index ........................................................................ 69 

5.1.3 C-index in competing risk setting .......................................................... 70 

5.1.4 Time-dependent Uno’s C-index for clustered competing risk ............ 71 

5.1.5 C-index and Kendall’s Tau .................................................................... 73 

5.1.6 Variance of C-index ................................................................................ 75 

5.1.7 Illustration of time-dependent C-index and its variance calculation 

for clustered competing risk .................................................................. 78 



 

vii 

 

5.2 Calibration ........................................................................................................... 85 

5.2.1 Brier score and integrated Brier score .................................................. 85 

5.2.2 Time-dependent Brier score for competing risk data ......................... 87 

Chapter 6  Application to Hereditary Breast and Ovarian Cancer Family .............. 88 

6.1 HBOC family data .............................................................................................. 88 

6.2 Model specification ............................................................................................. 91 

6.3 Analysis of risk of breast cancer ........................................................................ 93 

6.3.1 Genetic effect ........................................................................................... 96 

6.3.2 Screening effect ....................................................................................... 96 

6.3.3 RRSO effect ............................................................................................. 97 

6.3.4 Dependence between competing events ................................................ 99 

6.3.5 Penetrance estimation ........................................................................... 100 

6.3.6 Time-dependent Uno’s C-index ........................................................... 105 

6.3.7 Time-dependent Brier score................................................................. 107 

6.4 Summary ............................................................................................................ 109 

Chapter 7  Discussion ................................................................................................... 110 

7.1 Summary ............................................................................................................ 110 

7.2 Limitation and further work............................................................................ 111 

Appendix A: Additional plots and tables .................................................................... 115 

Appendix B: R codes for the illustration of the time-dependent C-index and its 

variance calculation ................................................................................................. 119 

Bibliography .................................................................................................................. 124 

Curriculum Vitae .......................................................................................................... 131 



 

viii 

 

List of Tables  

Table 4.1: Simulation study scenarios .............................................................................. 35 

Table 4.2: Accuracy and precision of parameter estimates from the correlated frailty 

competing risks model with time-dependent effect modelled with cubic B-spline with 2 

interior knots (7.5, 12.5) under BS+ and BS- scenarios with different correlations 

between competing events (𝜌 = 0.14 and 0.51) and different mutation effects (𝛾1𝑔 = 1.5 

and 2.25) based on 500 simulations each with 500 families. ........................................... 44 

Table 4.3: Empirical penetrance estimates at time 70 from the correlated frailty 

competing risks model with time-dependent effect (TDE) modelled with cubic B-spline 

with 2 interior knots (7.5, 12.5) under BS+ and BS- scenarios with different correlations 

between competing events (𝜌 = 0.14 and 0.51) and different mutation effects (𝛾1𝑔 = 1.5 

and 2.25). .......................................................................................................................... 45 

Table 4.4: Mean Squared Error (MSE) of the time-dependent effect (TDE) functions at  

5, 10, 15 and 20 years after intervention under CO+ and CO- scenarios based on 500 

simulations each with 500 families. .................................................................................. 47 

Table 4.5: Mean Squared Error (MSE) of the time-dependent effect (TDE) functions at 

5, 10, 15 and 20 years after intervention under BS+ and BS- scenarios based on 500 

simulations each with 500 families. .................................................................................. 48 

Table 4.6: Empirical parameter estimates from misspecified TDE models under CO+ 

scenario with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based on 500 simulations each with 500 families.

........................................................................................................................................... 50 

Table 4.7: Empirical parameter estimates from misspecified TDE models under CO- 

scenario with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based on 500 simulations each with 500 families.

........................................................................................................................................... 51 



 

ix 

 

Table 4.8: Empirical parameter estimates from misspecified TDE models under BS+ 

scenario with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based on 500 simulations each with 500 families.

........................................................................................................................................... 52 

Table 4.9: Empirical parameter estimates from misspecified TDE models under BS- 

scenario with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based on 500 simulations each with 500 families.

........................................................................................................................................... 53 

Table 4.10: Empirical penetrance estimates at time 70 for mutation carriers and non-

carriers with different intervention times from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions when data generated under 

the CO model with a positive TDE, high correlation between competing events (𝜌 =

0.51) and high mutation effect (𝛾1𝑔 = 2.25); Results are based on 500 simulations, each 

with 500 families............................................................................................................... 56 

Table 4.11: Empirical penetrance estimates at time 70 for mutation carriers and non-

carriers with different intervention times from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions when data generated under 

the CO model with a negative TDE, high correlation between competing events (𝜌 =

0.51) and high mutation effect (𝛾1𝑔 = 2.25); Results are based on 500 simulations, each 

with 500 families............................................................................................................... 57 

Table 4.12: Empirical penetrance estimates at time 70 for mutation carriers and non-

carriers with different intervention times from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions when data generated under 

the BS model with a positive TDE, high correlation between competing events (𝜌 =

0.51) and high mutation effect (𝛾1𝑔 = 2.25); Results are based on 500 simulations, each 

with 500 families............................................................................................................... 58 

Table 4.13: Empirical penetrance estimates at time 70 for mutation carriers and non-

carriers with different intervention times from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions when data generated under 

the BS model with a negative TDE, high correlation between competing events (𝜌 =



 

x 

 

0.51) and high mutation effect (𝛾1𝑔 = 2.25); Results are based on 500 simulations, each 

with 500 families............................................................................................................... 59 

Table 4.14: Average AIC values from the correlated frailty competing risks model with 

misspecified TDE model under different scenarios with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based 

on 500 simulations each with 500 families. ...................................................................... 64 

Table 5.1: Exemplary data of 2 families to compute time-dependent Uno’s C-index ..... 78 

Table 5.2: Computing the weighted number of comparable pairs accounting for 

censoring. .......................................................................................................................... 79 

Table 5.3: Estimating the penetrances at minimum time of a pair of two subjects for a 

subject with larger observed time. .................................................................................... 81 

Table 5.4: Determining the order of penetrances.............................................................. 82 

Table 6.1: Characteristics of BRCA 1 mutation carrier families. ..................................... 90 

Table 6.2: Characteristics of the times of mammography screening (MS) and risk-

reducing salpingo oophorectomy (RRSO) for BRCA 1 mutation carrier families. .......... 91 

Table 6.3: Parameter estimates and AICs based on the correlated competing risks models 

with frailties; the Cox and Oakes model is assumed for mammography screening (MS) 

and permanent exposure, Cox and Oakes and B-spline are used for risk-reducing 

salpingo-oophorectomy (RRSO). ..................................................................................... 95 

Table 6.4: Penetrance estimates at age 70 from the correlated frailty competing risks 

model with time-dependent effects (TDE) of mammographic screenings (MS) and risk-

reducing salpingo-oophorectomy (RRSO); Cox and Oakes model is assumed for MS; The 

permanent exposure, Cox and Oakes and B-spline models are considered for RRSO... 104 

Table 6.5: Total number of the concordant, discordant and comparable pairs at different 

truncation times (55, 70, 85, 100) for different time-dependent effect models among 166 

individuals underwent RRSO for different time-dependent effect models. ................... 106 



 

xi 

 

Table 6.6: Time-dependent Uno’s C-index at different time points (55, 70, 85, 100 years) 

among 166 individuals underwent RRSO....................................................................... 106 

Table 6.7: Brier score and integrated Brier score (IBS) for 166 individuals who 

underwent RRSO at different truncation times (55, 70, 85, 100). .................................. 108 

Table A.1: Hazard ratios and their 95% confidence intervals measuring the time-

dependent effect of risk-reducing salpingo-oophorectomy (RRSO) on breast cancer under 

different time-dependent effect models (B-spline, Cox and Oakes, Permanent Exposure) 

for BRCA 1 mutation families. ....................................................................................... 118 

 



 

xii 

 

List of Figures  

Figure 2.1: Basis functions for the linear B-spline (a) and quadratic B-spline (b) using 

equally spaced knots at 3.3 and 6.6 between 0 and 10. .................................................... 16 

Figure 4.1: Two shapes of time-dependent effects under the Cox and Oakes (left panel) 

and B-spline (right panel) models. The intervention time is 30, and the black line 

indicates no effect before the intervention. The red and blue lines represent the time-

dependent effects following the intervention time, with the red lines representing positive 

effects and the blue lines representing negative effects. ................................................... 34 

Figure 4.2: Bias and 95% confidence interval of the bias for penetrance estimations at 

time 70 for mutation carriers and non-carriers with different intervention times (30, 40, 

50, and 70 (no intervention)) estimated from the correlated frailty competing risks models 

with different time-dependent effect (TDE) functions. Data generated under the CO 

model with a positive TDE, a high correlation between competing events (𝜌 = 0.51) a 

high mutation (𝛾1𝑔 = 2.25). Results are based on 500 simulations each with 500 

families. ............................................................................................................................. 60 

Figure 4.3: Bias and 95% confidence interval of the bias for penetrance estimations at 

time 70 for mutation carriers and non-carriers with different intervention times (30, 40, 

50, and 70 (no intervention)) estimated from the correlated frailty competing risks models 

with different time-dependent effect (TDE) functions. Data generated under the CO 

model with a negative TDE, a high correlation between competing events (𝜌 = 0.51) a 

high mutation (𝛾1𝑔 = 2.25). Results are based on 500 simulations each with 500 

families. ............................................................................................................................. 61 

Figure 4.4: Bias and 95% confidence interval of the bias for penetrance estimations at 

time 70 for mutation carriers and non-carriers with different intervention times (30, 40, 

50, and 70 (no intervention))  estimated from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions under the BS model with 2 

file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182112
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182112
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182112
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182112
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182112
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182113
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182113
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182113
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182113
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182113
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182113
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182113
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182114
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182114
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182114
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182114
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182114
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182114
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182114
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182115
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182115
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182115
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182115


 

xiii 

 

interior knots and a positive TDE, a high correlation between competing events (𝜌 =

0.51) a high mutation (𝛾1𝑔 = 2.25) based on 500 simulations each with 500 families. . 62 

Figure 4.5: Bias and 95% confidence interval of the bias for penetrance estimations at 

time 70 for mutation carriers and non-carriers with different intervention times (30, 40, 

50, and 70 (no intervention))  estimated from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions under the BS model with 2 

interior knots and a negative TDE, a high correlation between competing events (𝜌 =

0.51) a high mutation (𝛾1𝑔 = 2.25) based on 500 simulations each with 500 families. . 63 

Figure 6.1: Hazard ratios (black) and their 95% confidence intervals (red) measuring the 

time-dependent effect of mammography screenings (MSs) on breast cancer, assuming 

Cox and Oakes model for the effects of MSs and B-spline model for the effects of risk-

reducing salpingo-oophorectomy (RRSO) in BRCA 1 mutation families. ...................... 98 

Figure 6.2: Hazard ratios and their 95% confidence intervals measuring the time-

dependent effect of risk-reducing salpingo-oophorectomy on breast cancer under 

different time-dependent effect models (B-spline (red), Cox and Oakes (blue), permanent 

exposure (black)) for BRCA 1 mutation families. ............................................................ 98 

Figure 6.3: Breast cancer penetrance estimations for mutation carriers with risk-reducing 

salpingo-oophorectomy (RRSO). The black line represents a woman who did not have 

RRSO, the green line a woman who had RRSO at age 30 years, the red line a woman 

who had RRSO at age 40 years, and the blue line a woman who had RRSO at age 50 

years. ............................................................................................................................... 101 

Figure 6.4: Time-dependent Brier score (left panel) and integrated Brier score (right 

panel) estimated from 16 to 100 years based on different time-dependent models 

(Permanent Exposure (green), Cox and Oakes (blue), and B-spline (red)). ................... 108 

Figure A.1: Penetrance estimates for breast cancer with respect to one to three 

mammographic screenings (MS) at age 35 with the consecutive screening gap times of 2 

file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182115
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182115
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182115
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182116
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182116
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182116
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182116
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182116
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182116
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182116
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182117
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182117
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182117
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182117
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182118
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182118
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182118
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182118
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182119
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182119
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182119
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182119
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182119
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182120
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182120
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182120
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182121
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182121


 

xiv 

 

years among those who had no risk-reducing salpingo-oophorectomy in the BRCA 1 

families. ........................................................................................................................... 115 

Figure A.2: Penetrance estimates for breast cancer with risk-reducing salpingo- 

oophorectomy (RRSO). The left most plot presents the penetrance with RRSO at age 30. 

To the right, they describe penetrance estimates with RRSO at age 40 and 50. ............ 116 

Figure A.3: Penetrance estimates for breast cancer with respect to one to three 

mammographic screenings (MS) at age 35 with the consecutive screening gap times of 2 

years and risk-reducing salpingo-oophorectomy (RRSO) at age 40. ............................. 117 

 

  

file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182121
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182121
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182122
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182122
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182122
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182123
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182123
file:///E:/여가/바이두/MSc%20thesis%20(Seungwoo%20Lee).docx%23_Toc102182123


 

xv 

 

List of Abbreviations 

AIC  Akaike Information Criterion 

ASE  Average Standard Error 

AUC  Area Under the Receiver Operating Characteristic Curve 

BC  Breast Cancer 

BCFR  Breast Cancer Family Registries 

BS  B-Spline 

C-index Concordance Index 

CO  Cox and Oakes 

ECP  Empirical Coverage Percentage 

ESE  Empirical Standard Error 

GCV  Generalized Cross-Validation 

HBOC  Hereditary Breast and Ovarian Cancer  

HR  Hazard Ratio 

IBS  Integrated Brier Score 

ICC  Intracluster Correlation Coefficient 

IPCW  Inverse Probability of Censoring Weight 

MS  Mammographic Screening 

MSE  Mean Squared Error 

OC  Ovarian Cancer 

PBIAS  Percentage Bias 

PE  Permanent Exposure 

PH  Proportional Hazard  

RRM  Risk-Reducing Mastectomy 

RRSO  Risk-Reducing Salpingo-Oophorectomy 

TDC  Time-Dependent Covariate 

TDE  Time-Dependent Effect 

TDUC  Time-Dependent Uno’s C-index   

TIC  Time Independent Covariate



 

1 

 

Chapter 1 Introduction 

 

1.1 Motivation 

Hereditary breast and ovarian cancer syndrome (HBOC) is an inherited cancer 

susceptibility syndrome caused mostly by mutations in BRCA 1 or 2 genes. As a 

hereditary condition, family members from HBOC are at high risk of developing breast 

cancer (BC) or ovarian cancer (OC). Members in HBOC families have significantly 

higher lifetime risks of developing BC and OC than the general population, where HBOC 

represents about 5 to 10% of all BCs and 18% of all OCs (Larsen et al., 2014; Ring and 

Modesitt, 2018). When mutated, this gene increases the risk of cancer, specifically BC 

and OC. The lifetime risk of BC for female carriers of BRCA 1 mutation is estimated to 

range from 46% to 87% (Petrucelli et al., 2022; Satagopan et al., 2001; Chen et al., 

2006).  

Preventive interventions such as mammographic screening (MS), risk-reducing 

mastectomy (RRM) and risk-reducing salpingo-oophorectomy (RRSO) can potentially 

limit the risk of associated cancer (Petrucelli et al., 2022). To understand the effect of 

interventions, precise estimates of the remaining cancer risk following interventions are 

tremendously important to help practitioners effectively treat families with HBOC. In 

particular, the occurrence of interventions may vary in time for different individuals, and 

their effects could also vary over time.  

Motivated by studies to HBOC families, our interest lies in developing statistical 

methods for the estimation of time-dependent effects of preventive interventions on the 

BC risk in the presence of competing events such as OC or death. Specifically, we aim to 

develop a flexible model that can evaluate the time-dependent intervention effect on the 

risk of BC. We focus on addressing three statistical challenges arising from modelling 

HBOC family data: competing risk, time-dependent covariate (TDC), and time-

dependent effect (TDE).  
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1.2 Correlated competing risks 

Standard survival data often assumes one to experience only one type of event over a 

follow-up period. However, such an assumption may not be appropriate as subjects may 

experience more than one type of event. For instance, members of HBOC families often 

experience multiple cancers such as BC, OC or death from other causes. When the first 

event among BC, OC, and death is the event of interest, we need to consider competition 

among them. For example, if an individual experiences OC as the first event, the other 

events cannot be the first event. More obliviously, if individuals died before developing 

BC or OC, they cannot experience BC or OC. Hence, in this sense, the occurrence of a 

competing event precludes the occurrence of the other events as the first event, vice 

versa. 

Conventional survival analysis methods, such as the Kaplan-Meier estimates or 

Cox proportional hazard model, treat the occurrence of the competing events as censored, 

assuming censoring is non-informative. The non-informative censoring assumption 

implies that the censoring mechanism is independent of the survival time. In other words, 

those who remain in the follow-up and those who are censored have the same future risk 

of experiencing an event of interest. However, treating the occurrence of competing risk 

as a censoring event would lead to overestimating the risk of the event of interest because 

it violates the assumption of non-informative censoring as the competing events would 

alter the risk of the event of interest. For example, Berry et al. (2010) showed that 

ignoring competing risks overestimated the risk of second hip fracture associated with 

age at the time of the first hip fracture in the Framingham Osteoporosis Study. The 

hazard ratio of the age at the time of the first hip fracture using the standard Cox model 

and competing risk regression were 1.3 and 0.9, respectively, indicating that advancing 

age of first hip fracture increases the risk of second hip fracture under the Cox model. In 

contrast, the competing risk regression suggested that advancing age lowers the risk of 

second hip fracture.  

When data arise from clustered/family-based studies under competing risk 

settings, individuals with competing events may be correlated within a cluster because of 

unobserved cluster effects across individuals. Zhou et al. (2012) referred to such data as 
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clustered competing risks. For clustered data, it is common to share the same random 

effect within a cluster to account for the potential dependence across the individuals 

within clusters and assign the random cluster effects to each cause of failure in the 

presence of competing risks. However, in a more complex situation, the competing 

events are likely to be related, leading to the potential dependence across causes in 

individuals within a cluster. Ignoring the dependence of the competing events by using 

independent cluster effects across competing events within each cluster can result in 

biased parameter estimates. For instance, Rutten-Budde et al. (2019) demonstrated that 

when the frailties are correlated, the independent frailty model generally results in over- 

or under-estimating the frailty variance and large root mean square error for a small or 

large number of clusters. Thus, the independent assumption of frailties for competing 

risks is not appropriate for the clustered competing risk data in the presence of correlation 

between the events. 

 

1.3 Time-dependent covariates 

Covariates can be classified as time-independent and time-dependent. Time-independent 

covariates (TICs) are often measured at the beginning of the study (baseline) or a single 

time-point and remain fixed throughout the entire duration of follow-up. Examples 

include sex, mutation status, or treatment status assigned at the beginning of the study 

that does not change over time. In contrast, some covariates may be repeatedly measured 

during the follow-up period and whose values are subject to change over time, referred to 

as TDCs. For instance, in the study of the BC risk among HBOC families, the RRSO 

status can be seen as a binary TDC, which takes the value of 0 prior to surgery and 1 

afterwards. Other examples of TDC include blood pressure, CD4 count, or weights 

collected at periodic intervals, whose value would change over time.  

It is a common mistake that treats TDC as TIC, which would lead to biased 

results. Consider a binary TDC indicating intervention such as RRSO, which would occur 

at some time during follow-up. If RRSO is considered as a TIC, classifying those who 

ever underwent RRSO as being treated regardless of surgery time, where the time even 
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before RRSO would be considered as exposure to RRSO, the recorded exposure time for 

treated individuals is much longer than their true exposure time. Then, it would result in 

exaggerating the benefit of the intervention or conversely underestimating the risk 

(Suissa, 2008). Thus, it is essential to incorporate TDCs within models correctly in 

analyses. For instance, Beyersmann et al. (2008) studied the effects of nosocomial 

pneumonia on length of stay in intensive care units, where the occurrence of nosocomial 

infection is the time-dependent covariate with a value of 0 before infection and 1 after the 

infection appears. They demonstrated that the effect of nosocomial pneumonia was -1.02 

with a hazard ratio of 0.36 when the infection status was erroneously treated as a TIC. In 

contrast, treating nosocomial pneumonia as a TDC correctly yielded an effect estimate of 

-0.28 with a hazard ratio of 0.75. The estimated effect of nosocomial pneumonia indicates 

a lower length of stay in intensive care units. The results show that the benefit of 

nosocomial pneumonia is overestimated if the time-dependent nature of exposure is 

ignored. 

 

1.4 Time dependent effect 

The Cox proportional hazard model requires the proportionality assumption that the 

hazard for those with the risk factor is proportional to the hazard of those without the risk 

factor. In other words, the relative hazard of an event or the effect of a given covariate in 

the model is assumed to be constant over time. This assumption is referred to as the 

proportional hazard (PH) assumption and is vital to the correct use of the Cox PH model. 

However, the ratio of hazards may not be constant over time when the effect of the 

covariate in the hazard function varies over time (Therneau and Grambsch, 2000). For 

example, under the PH assumption, the effect of RRSO on the risk of BC is the same for 

those who have recently undergone RRSO and those who underwent RRSO far in the 

past. However, this assumption would be violated if the effect of RRSO on BC changed 

over the follow-up period. Warwick et al. (2004) studied the time-dependent effect of 

some prognostic factors in women on breast carcinomas, such as tumour size, lymph 

node status and histologic grade. They showed that the effects of the prognostic factors 

differed and diminished over time, yielding a vital role of TDE, especially for long-term 
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survival, where the effects of the prognostic factors on the event of interest are more 

significant for those who survived longer than those who did not.  

 It is essential to understand that TDEs may manifest differently, with different 

patterns over time. Thus, depending on the nature of variables, different shapes of TDE 

trajectories can be considered. Keown-Stoneman et al. (2018) examined the effect of 

colon cancer recurrence on death using both a permanent exposure (constant effect) 

model and an exponential decay effect model. Although both models demonstrated that 

cancer recurrence increases the hazard of death, the AIC and likelihood ratio test 

suggested that the exponential decay model is a better fitting model. Thus, understanding 

the nature of time-dependent changes in treatment status is crucial to modelling risk 

effectively because early and late intervention may have different impacts on the risk of 

developing BC. 

 

1.5 Objectives 

To address the abovementioned statistical challenges, this thesis extends the cause-

specific correlated frailty competing risk model proposed by Choi et al. (2021) for more 

flexible modelling of time-dependent effects. It also demonstrates time-dependent 

performance measures to evaluate the predictive ability of the proposed model that 

accounts for clustered, competing events and time-dependent covariates.   

This thesis has two primary objectives: (1) to flexibly model time-dependent 

covariates within clustered competing risk models; and (2) to evaluate the performance of 

the proposed model for time-dependent covariates. To address objective (1), a flexible 

approach using B-splines (BS) is implemented to model the time-dependent effects of a 

binary time-dependent covariate. Simulation is then to evaluate the performance of the 

BS model compared to different parametric functions of the time-dependent effect as 

proposed by Choi et al. (2021). In addition, the proposed methods are applied to data on 

HBOC families recruited through Breast Cancer Family Registries (BCFR) (John et al., 

2004) to evaluate the effect of RRSO on BC under the different TDE models.  
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To address objective (2), the performance of the proposed BS model is then 

compared to models with different parametric functions of the time-dependent effect by 

applying the models to HBOC families. The existing measure of goodness of fit known 

as the concordance index, C-index, is adjusted to account for time-dependent effects of 

time-dependent covariates within clustered competing risk model and applied to evaluate 

the predictive ability of the proposed model. We further provide an estimation of the 

variance of the proposed C-index. In addition, other measures of prediction accuracy, the 

Akaike information criterion (AIC) and Brier score, are used to further evaluate the 

efficiency of the BS model. 

 

1.6 Organization of the thesis 

The remainder of the thesis is structured as follows. Chapter 2 presents a literature review 

on the correlated frailty model and time-dependent covariates/coefficients. The correlated 

competing risks model incorporating both parametric and flexible time-dependent effects 

of the time-dependent covariates is presented in Chapter 3. The simulation study 

evaluating the proposed model for estimating the parameters and penetrances is 

conducted in Chapter 4. Chapter 5 presents the different model performance measures 

such as Brier score and C-index and provides formulas of the adjusted C-index with its 

variance estimation. In Chapter 6, an application of our proposed model with the 

proposed C-index to the data from BRCA1 mutation families is presented. Finally, some 

discussion and limitations of the research are presented in Chapter 7. 
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Chapter 2 Literature Review 

 

This chapter reviews the literature on different survival models that account for 

competing risks, time-dependent covariates, and time-dependent effects with family-

based or clustered data to address the statistical challenges presented in Chapter 1. We 

focus on modelling the correlated frailty competing risk model with time-dependent 

covariates.   

 

2.1 Competing risk models 

Competing risks frequently occur in survival data, where the presence of other causes 

(competing risks) precludes or alters the probability of the occurrence of a specific cause 

of failure (event of interest). Conventional survival models assume competing risks as 

non-informative censoring results in overestimating the risk of experiencing the event of 

interest. Competing risk models are designed to extend conventional survival models by 

considering all events to address this problem. There are various methods for modelling 

competing risks data in the literature. In particular, the cause-specific hazard and 

subdistribution hazard regression models are widely used for analyzing competing risks 

data. 

The cause-specific hazard approach, proposed by Prentice et al. (1978), models 

the instantaneous rate of a specific event in currently event-free subjects. The 

corresponding risk set only includes those who have not experienced the specific event. 

The effect measure to account for competing risk is the absolute risk of an event of 

interest up to time point 𝑡, known as the cumulative incidence at time 𝑡. In contrast to the 

standard survival models, cause-specific cumulative incidence can be obtained by 

modelling hazard functions for each event separately. The cause-specific hazard is 

estimated by treating competing events as censored or equivalently fitting a standard Cox 

proportional hazard function for each event while treating all other events censored. 



 

8 

 

Then, the cumulative incidence function is obtained as the integral of the multiplication 

between the cause-specific hazard of the event of interest and the overall survival 

function. The overall survival function is obtained as the exponential of the sum of the 

negative cumulative hazard function for all events. As a result, estimating the cumulative 

incidence for a specific event requires all the hazards for all the events. This approach can 

be considered as the generalization of the Cox model. Thus, the cause-specific hazards do 

not have a direct interpretation with respect to the cause-specific cumulative incidence as 

all other hazard functions must be considered.  

Covariate effects on cause-specific hazards are, however, directly interpretable. 

Still, the effect of a covariate on the cause-specific hazard function of a particular event 

may not be the same as the effect of the covariate on the corresponding cumulative 

incidence function, leading each cause-specific hazard to have its unique interpretation of 

the effect of covariates (Gray, 1988). 

Alternatively, Fine and Gray (1999) proposed a subdistribution hazard, which 

models the instantaneous rate of an event of interest in event-free subjects or previously 

experienced competing events. The subdistribution hazard differs from the cause-specific 

hazard by the definition of the risk set. The risk set of the Fine and Gray model consists 

of those who have not experienced the event of interest and those who have experienced 

the competing events. That is, individuals who experience competing events remain at 

risk for the event of interest despite no longer being able to experience it. In contrast to 

the cause-specific hazard approach, the cumulative subdistribution hazard only requires 

the subdistribution of a specific event as there is a direct link between the effect of 

covariates and the cause-specific cumulative incidence under the proportional hazard 

assumption. However, the cause-specific hazard approach can provide a better 

understanding of the hazard function for a specific event and thus provide a more 

straightforward interpretation of the covariate effects on a particular event (Hinchliffe 

and Lambert, 2013).  

As this thesis aims to evaluate the effect of RRSO on BC alone, Prentice et al.’s 

(1978) cause-specific approach is used owing to its straightforward interpretation of the 



 

9 

 

cause-specific relative risk or cause-specific hazard ratio. The cause-specific hazard 

function ℎ𝑗(𝑡) at time 𝑡 is the instantaneous rate of occurrence of event 𝑗 in the short time 

interval [𝑡, 𝑡 + Δ𝑡] conditional on the subjects surviving until time 𝑡 or later. The 

observed event time in the presence of competing risks is defined as 𝑇 = min(𝑇𝑜 , 𝐶), 

where 𝑇𝑜 and 𝐶 denote the time to the event and the censoring time, respectively. Only 

the first event time is considered because any event after the first event is not evaluated. 

Let 𝛿 = 1,… , 𝐽 be the type of the first event among 𝐽 competing events and 𝛿 = 0 if 

censored. Conditional on a vector of covariates 𝑿, the cause-specific hazard for event 𝑗 is 

given by 

ℎ𝑗(𝑡|𝑿) = lim
Δ𝑡 →0

𝑃(𝑡 ≤  𝑇 < 𝑡 + Δ𝑡, 𝛿 = 𝑗| 𝑇 ≥ 𝑡, 𝑿)

𝑑𝑡
 

= ℎ0𝑗(𝑡)exp{𝜷𝑗
𝑇𝑿} 

where 𝜷𝑗 is the vector of the regression coefficients for 𝑗 event, and ℎ0𝑗(𝑡) describes the 

cause-specific baseline hazard function for event 𝑗. The corresponding cause-specific 

cumulative hazard function at time 𝑡, 𝐻𝑗(𝑡|𝑿), is the integral over the cause-specific 

hazard from time 0 to 𝑡, defined as 

𝐻𝑗(𝑡|𝑿) = ∫ ℎ𝑗(𝑢|𝑿)𝑑𝑢
𝑡

0

, 

and the probability of being free from any event up to time 𝑡, known as the overall 

survival function, is defined as  

𝑆(𝑡|𝑿) = exp {−∑ 𝐻𝑗(𝑡|𝑿)
𝐽

𝑗=1
}. 

Then, the probability of developing event j by age t in the presence of competing risks is 

defined as the cause-specific cumulative incidence function in the following form: 

𝐹𝑗(𝑡|𝑿) = ∫ ℎ𝑗(𝑢|𝑿)𝑆(𝑢|𝑿)𝑑𝑢 = ∫ ℎ𝑗(𝑢|𝑿)
𝑡

0

𝑡

0

exp {−∑ 𝐻𝑗(𝑢|𝑿)
𝐽

𝑗=1
} 𝑑𝑢 



 

10 

 

which represents the age-specific cumulative risk of event 𝑗 and is also referred to as the 

cause-specific penetrance function. The penetrance, i.e., cumulative risk, for event 𝑗 

depends on the cause-specific hazards for all 𝐽 types of events, indicating that the risks of 

all events affect the probability of the event 𝑗 occurring by time 𝑡. Hence, it is impossible 

to obtain the cause-specific penetrance for event 𝑗 unless cause-specific hazards for all 𝐽 

events are obtained. Since there is no one-to-one correspondence between cause-specific 

penetrance for event 𝑗 and cause-specific hazard for event 𝑗, the positive/negative effect 

of a covariate on the cause-specific hazard for a specific event 𝑗 does not necessarily 

indicate the same effect on the cause-specific cumulative incidence of that event (Putter 

et al., 2007).  

 

2.2 Frailty model in non-competing risk setting 

Clustered failure time data are often encountered when multiple subjects are sampled 

from the same family or cluster. A correlation or unobserved random cluster effect 

among members of the same family may be induced by the shared common environments 

or characteristics such as genes. Ignoring the cluster effect can lead to bias when 

estimating the hazard. For example, based on the Cox model with independent failure 

time data, a subject with a high risk score is expected to experience the event earlier than 

one with a low risk score. However, in clustered data, the subject with low risk score 

could have a higher risk of the event earlier due to the large cluster effects. Henderson 

and Oman (1999) demonstrated that ignoring the cluster effect in the analysis of clustered 

data results in biased coefficient estimates towards zero. Hence, it is necessary to 

accommodate the cluster effect correctly to handle clustered data. A natural way of 

modelling the dependence of clustered data is by introducing a cluster-specific effect. 

Vaupel et al. (1979) first introduced the term frailty to account for the random effects and 

association in the survival models by applying the concept of frailty to population 

mortality data. The frailty model is an extension of the Cox proportional hazard model, 

including an effect for each cluster, called frailty, which acts multiplicatively on the 
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baseline hazard function (Hougaard, 1995). The frailty is used in the model to account for 

the unobserved cluster effect in the population and is assumed to be constant over time. 

 Conventional statistical models assume that the observations are statistically 

independent of each other. However, this does not hold in many applications, such as 

clustered data or recurrent events. To address this, the shared frailty model was 

introduced by Clayton (1978) without using the notion of frailty, where frailty is shared 

among individuals within a cluster as a means of inducing dependence among them. The 

frailty model is helpful in explaining the correlation within clusters. The shared frailty is 

a conditional independence model in which survival times are assumed to be independent 

given the shared frailty. 

 The choice of the frailty distribution is essential as it determines the correlation 

structure of the data. Two different distributions are commonly assumed for frailty: the 

log-normal distribution and gamma distribution (Clayton 1978, Vaupel et al. 1979, 

Yashin and Iachine 1995, Hougaard 2000, Ripatti and Palmgren 2000, Pankratz et al. 

2005). Although the log-normal distribution allows for more flexible modelling of frailty 

correlation, the gamma distribution is mathematically convenient. The gamma 

distribution provides closed form expression of the log-likelihoods inference of the 

conditional likelihood less complicated as frailties may be integrated out. Due to 

computational convenience, a common choice for the distribution of frailties is a one-

parameter gamma distribution with shape parameter 𝑘 and scale parameter 1 𝑘⁄ , denoted 

Gamma(𝑘, 1/𝑘) (Clayton, 1978). 

 

2.3 Frailty model in competing risk settings 

In the shared frailty model, the event times are correlated within families, and the 

dependence is induced by single frailty shared within a cluster. However, in the presence 

of competing risks, event times of each event type could be correlated within the same 

cluster (Zhou et al., 2012). Using one frailty for each cluster acting on all different event 

types might not be plausible in a competing risk setting. To handle the correlations 
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between competing events, Gorfine and Hsu (2011) extended the competing risk model 

proposed by Prentice et al. (1978) to incorporate frailty variables within the cause-

specific hazards model by combining frailty variables multiplicatively while assuming a 

proportional hazard frailty model for each event. The flexible dependence structure 

among competing events within a cluster is provided by using the multivariate normal 

distribution between frailty variables to induce the association between cause-specific 

failure times. The survival times are assumed to be conditionally independent with 

respect to the frailties. Suppose there are 𝐽 competing risk events and 𝑍𝑓𝑗 is the 

unobserved shared frailty for the 𝑗th event in cluster 𝑓. Then, the 𝑗th cause-specific 

hazard function conditional on the 𝑗th event frailty in cluster 𝑓 is defined as 

ℎ𝑓𝑖,𝑗 (𝑡|𝑿𝑓𝑖 , 𝑍𝑓𝑗) = ℎ𝑜𝑗(𝑡)exp (𝜷𝑗
𝑇𝑿𝑓𝑖 + 𝑍𝑓𝑗) 

where ℎ𝑜𝑗(𝑡) is the baseline cause-specific hazard function for event 𝑗 and 𝜷𝑗 is the 

vector of regression coefficient for event 𝑗. Furthermore, suppose 𝒁𝑓 = {𝑍𝑓1 , … , 𝑍𝑓𝐽} is 

the vector of frailty variables for all 𝐽 competing events in cluster 𝑓. Gorfine and Hsu 

(2011) defined the dependence structure of frailty variables as 

𝒁𝑓 = {𝑍𝑓1 , … , 𝑍𝑓𝐽} ~ 𝑁(𝝁, 𝚺) 

where 𝑁(𝝁, 𝚺) is the multivariate normal distribution with 𝐽-dimensional mean vector 𝝁 

and 𝐽 × 𝐽 covariance matrix 𝚺.  

 Although the method of Gorfine and Hsu (2011) can easily incorporate the frailty 

model in competing risk settings, it requires computationally demanding numerical 

integration via the expectation-maximization algorithm for inference on model 

parameters. Alternatively, the frailty variables are decomposed into a sum of gamma 

components, allowing for derivations of closed form expressions for the log-likelihood, 

thereby avoiding computationally demanding integration. Yashin et al. (1995) introduced 

a correlated gamma frailty model to analyze the survival data of twins. They decomposed 

the frailty variable for twins into two variables where only one variable is shared. Thus, 

the frailties of twins are correlated. In competing risk settings, Rueten-Budde et al. (2018) 
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used a gamma decomposition to model dependence between the competing events, owing 

to its simplicity in construction and estimation and Choi et al. (2021) extended the 

correlated gamma frailty model by incorporating TDC using different parametric forms 

of TDE.  

 

2.4 Time-dependent covariate model and time-
dependent coefficient model 

The Cox proportional hazard model is one of the most widely used models in survival 

data modelling (Cox, 1972, Therneau and Grambsch, 2000). However, the Cox model is 

dependent on the proportional hazard assumption, which might not hold when covariates 

or their effects are time-dependent. For instance, when evaluating the effect of a 

treatment on the cancer risks, the treatment status could change during the follow-up 

time. This illustrates a binary TDC taking the value 0 before treatment and 1 afterwards. 

Crowley and Hu (1977) accommodated a binary time-dependent covariate as a 

multiplicative factor in the Cox proportional hazard model to analyze the Stanford heart 

transplant data by treating the transplant status as a time-dependent covariate. The Cox 

model with a time-dependent covariate has the form such as 

ℎ(𝑡|𝑋(𝑡)) = ℎ0(𝑡)exp{𝛽𝑋(𝑡)} 

where 𝑋(𝑡) is the time-dependent covariate, which takes a value 0 before transplant and 1 

afterward, and 𝛽 is the time-invariant effect of time-dependent covariate 𝑋(𝑡) (Crowley 

and Hu, 1977, Kalbfleisch and Prentice, 2002). 

 In a comparable situation, the effect of the time-dependent covariate on the event 

may not be constant over time. For instance, the effect of a treatment can be strong 

immediately after treatment but becomes weaker over time, which exemplifies the time-

dependent effect, 𝛽(𝑡). Incorporating the time-dependent effects of covariates into the 

Cox PH model, Hastie and Tibshirani (1993) proposed general time-dependent effect 

models, and Nan et al. (2005) accommodated the time-dependent effect of time-

dependent covariate as a multiplicative factor in the Cox proportional hazard model as   
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ℎ(𝑡|𝑋(𝑡)) = ℎ0(𝑡)exp{𝛽(𝑡)𝑋(𝑡)} 

where 𝛽(𝑡) is a smoothed function of time that is the time-dependent effect of the time-

dependent covariate, 𝑋(𝑡).   

 

2.4.1 Parametric models 

To investigate how the effect of a TDC changes over time, Choi et al. (2021) has 

implemented different parametric models, such as permanent exposure (PE), exponential 

decay and Cox and Oakes (CO), in a correlated frailty model for clustered competing 

risks data.  

Suppose the binary TDC, 𝑋(𝑡, 𝑡𝑥), is defined as 0 at 𝑡 ≤ 𝑡𝑥 and 1 at 𝑡 > 𝑡𝑥, where 

𝑡𝑥 is the intervention time at which the TDC’s value changed and its time-dependent 

effect as 𝑔(𝑡, 𝑋(𝑡, 𝑡𝑥)). If the effect of the TDC is assumed to be constant after 𝑡𝑥, which 

can be denoted as 𝑔(𝑡, 𝑋(𝑡, 𝑡𝑥)) = 𝛽𝑋(𝑡, 𝑡𝑥), it is referred to as the permanent exposure, 

since its effect stays constant over time from the treatment (Keown-Stoneman et al., 

2018). To incorporate the effect decaying over time, Cox and Oakes (1984) formulated 

exponentially decaying time-dependent effect in the following form, 

𝑔(𝑡, 𝑋(𝑡, 𝑡𝑥)) = {
0                               if 𝑡 ≤ 𝑡𝑥
𝜂0 + 𝛽𝑒

−𝜂(𝑡−𝑡𝑥)    if 𝑡 > 𝑡𝑥
 

where the effect of the TDC decreases over time with the rate of 𝜂, converges to 𝜂0, and 

this is referred to as the CO model.  

 

2.4.2 Flexible model using B-spline 

Although it is easy to describe the effect of TDC in different parametric models, such an 

approach requires some clinical knowledge to specify the functional form for effect 

behaviour over time. Finding the appropriate function might be challenging, or the 
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functional for may even be unknown. In contrast to the parametric approach, 

incorporating splines into the Cox model may better represent the time-dependent effect 

of TDCs (Sleeper and Harrington, 1990). A spline function is a series of polynomials of 

degree 𝐷 joined smoothly at breakpoints referred to as knots. The B-spline, originally 

introduced by De Boor et al. (1998), is one type of spline functions that is widely used 

due to its convenient numerical properties. The smoothness of the B-spline function 

depends on the number of interior knots and degree, which should be fixed in advance. 

Then the construction of the B-spline begins by choosing 𝐾 interior knots, which 

partition the interval [𝑎, 𝑏] into several subintervals. The choice of the number and 

location of the interior knots is often arbitrary, where too few or too many knots resulting 

in under- or overfitting of the data. The interior knots are often selected based on the 

quantiles of the data, where the equal number of the observations lie in each interval. In 

addition, there are 𝐷 + 1 augmented knots on each side of the interval [𝑎, 𝑏], where we 

have appended the lower and upper boundary knots. Such augmented knots are needed 

due to the recursive nature of the B-spline. Then, with 𝐾 interior knots and a polynomial 

degree 𝐷, there are 𝐾 + 𝐷 + 1 piecewise B-splines of degree 𝐷.  

Given a variable 𝑥 ∈ [𝑎, 𝑏] with 𝐾 interior knots and degree 𝐷, each spline basis 

𝐵𝑘,𝑑(𝑥) is defined recursively, where 𝑘 = 0, … , 𝐾 + 𝐷, and 𝑑 = 0,… , 𝐷, as 

𝐵𝑘,0(𝑥) = {
1, if 𝑡𝑘 ≤ 𝑥 < 𝑡𝑘+1
0, otherwise          

 

and 

𝐵𝑘,𝑑(𝑥) =
𝑥 − 𝑡𝑘
𝑡𝑘+𝑑 − 𝑡𝑘

𝐵𝑘,𝑑−1(𝑥) +
𝑡𝑘+𝑑+1 − 𝑥

𝑡𝑘+𝑑+1 − 𝑡𝑘+1
𝐵𝑘+1,𝑑−1(𝑥) 

where the locations of knots are placed at 𝑎 = 𝑡0 = ⋯ = 𝑡𝐷 ≤ 𝑡𝐷+1 ≤ ⋯ ≤ 𝑡𝐷+𝐾 = ⋯ =

𝑡𝐾+2𝐷+1 = 𝑏. 

The B-spline function of degree 𝐷 with 𝐾 interior knots can be expressed as 
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𝑓(𝑥) = ∑ 𝛽𝑘𝐵𝑘,𝐷(𝑥)

𝐾+𝐷

𝑘=0

 

where 𝛽𝑘 are the coefficients of the basis functions. 

 Figure 2.1 illustrates a) linear and b) quadratic B-spline basis functions created 

using two interior knots at 3.3 and 6.6 between 0 and 10. Two magenta-coloured vertical 

dotted lines indicate two interior knots. The linear B-spline consists of two linear pieces 

for each basis function joined at one interior knot, where four linear spline basis functions 

are denoted as 𝐵0,1, 𝐵1,1, 𝐵2,1 and 𝐵3,1. Similarly, the quadratic B-spline consists of three 

quadratic pieces joined at two interior knots, where five quadratic spline basis functions 

are denoted as 𝐵0,2, 𝐵1,2, 𝐵2,2, 𝐵3,2 and 𝐵4,2. The degree of the B-spline controls the 

smoothness and size of the curve. 

 

 

Figure 2.1: Basis functions for the linear B-spline (a) and quadratic B-spline (b) using 

equally spaced knots at 3.3 and 6.6 between 0 and 10. 
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The B-spline model flexibly estimates the effects of TDC using basis functions 

𝐵𝑘,𝐷(𝑡 − 𝑡𝑥), 𝑘 = 0,… , 𝐾 + 𝐷, such as  

𝑔(𝑡, 𝑋(𝑡, 𝑡𝑥)) = {

0                                          if 𝑡 ≤ 𝑡𝑥

∑ 𝛽𝑘𝐵𝑘,𝐷(𝑡 − 𝑡𝑥)   
𝐾+𝐷

𝑘=0
 if 𝑡 > 𝑡𝑥

 

The B-spline provides a smooth curve as it consists of piecewise polynomials connected 

at the interior knots. Thus, once the B-spline is incorporated into the Cox model, the 

coefficient of each basis function is not interpretable, but the effect of a covariate should 

be interpreted as a combination of B-spline basis functions and their effects (Eilers, 

1996). 
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Chapter 3 Proposed Statistical 
Models 

 

This chapter describes the correlated frailty competing risk model with different 

functions for TDEs of binary TDCs for clustered competing risk data. This chapter is 

divided into six sections. Section 3.1 describes the competing risk model with TDCs. 

Section 3.2 describes the within-cluster correlation between frailties for different events. 

Likelihood construction for the cause-specific model to estimate the parameters is shown 

in Section 3.3. In Section 3.4, the cause-specific penetrance function with TDCs is 

provided. The variance estimation procedures for parameters and cause-specific 

penetrance are described in Section 3.5.  

 

3.1 Frailty competing risk model with time-dependent 
covariates and coefficients 

Following the general framework of the correlated gamma frailty competing risk model 

proposed by Choi et al. (2021), we incorporate BS for more flexible modelling of the 

time-dependent effect of binary time-dependent covariate using BS.  

Consider the data arise from 𝐹 independent families, each family consists of 𝑛𝑓 

members. Let 𝑓𝑖 be the subject 𝑖, 𝑖 = 1,… , 𝑛𝑓, of the family 𝑓, 𝑓 = 1,… , 𝐹. We denote by 

𝑇𝑓𝑖
𝑂 and 𝐶𝑓𝑖 the time to the first event time and the censoring time, respectively, and by 

𝛿𝑓𝑖 = 1,… , 𝐽 be the type of first event among 𝐽 competing events and 𝛿𝑓𝑖 = 0 if censored. 

Define 𝑇𝑓𝑖 = min(𝑇𝑓𝑖
𝑂 𝐶𝑓𝑖). Let 𝑍𝑓𝑗  denote the unobserved frailty shared within the family 

𝑓 for event 𝑗, 𝑗 = 1,… , 𝐽, which is a family-specific random effect assigned for each 

event, and 𝑿𝑓𝑖,𝑗 denote the vector of covariate for individual 𝑖 in family 𝑓. Conditional on 

𝑿𝑓𝑖,𝑗 and 𝑍𝑓𝑗, the cause-specific hazard function for event 𝑗 for individual 𝑖 in family 𝑓 is 

defined as  
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ℎ𝑓𝑖,𝑗 (𝑡|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗) = lim
Δ𝑡 →0

𝑃 (𝑡 ≤  𝑇𝑓𝑖 < 𝑡 + Δ𝑡, 𝛿𝑓𝑖 = 𝑗| 𝑇𝑓𝑖 ≥ 𝑡, 𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗)

Δ𝑡
 

= ℎ0,𝑗(𝑡)𝑍𝑓𝑗exp{𝜷𝑗
𝑇𝑿𝑓𝑖,𝑗}                                                           (3.1) 

where ℎ0,𝑗(𝑡) is the baseline hazard function for event 𝑗 and 𝜷𝒋 is the vector of 

coefficients which corresponds to event 𝑗. The corresponding cause-specific cumulative 

hazard function is written as  

𝐻𝑓𝑖,𝑗 (𝑡|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗) = ∫ ℎ𝑓𝑖,𝑗 (𝑢|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗)
𝑡

0

𝑑𝑢 

= 𝐻0,𝑗(𝑡)𝑍𝑓𝑗exp{𝜷𝑗
𝑇𝑿𝑓𝑖,𝑗} 

where 𝐻0,𝑗(𝑡) is the baseline cumulative hazard function for event 𝑗. 

 Then, the overall survival function conditional on the covariates and frailty is 

obtained using the cause-specific hazards for all 𝐽 events as 

𝑆𝑓𝑖(𝑡|𝑿𝑓𝑖,𝑗, 𝑍𝑓1 , … , 𝑍𝑓𝐽) = exp {−∑ 𝐻0,𝑗(𝑡)𝑍𝑓𝑗exp{𝜷𝑗
𝑇𝑿𝑓𝑖,𝑗}

𝐽

𝑗=1
}               (3.2) 

where the frailties 𝑍𝑓𝑗  for event 𝑗 are assumed to be independent across families, but the 

frailties between events are assumed to be correlated within families. We present the 

details of formulating the correlated frailties and the dependencies induced by the frailties 

are described in Section 3.2.  

 For the covariates, 𝑿𝑓𝑖,𝑗, they could be either a TIC, 𝑊𝑓𝑖, or a binary TDC, 

𝑋𝑓𝑖,𝑗(𝑡, 𝑡𝑥). We further assume that 𝑋𝑓𝑖,𝑗(𝑡, 𝑡𝑥) = 0 at 𝑡 ≤ 𝑡𝑥 and 1 at 𝑡 > 𝑡𝑥 where 𝑡𝑥 is 

the time that change in value of TDC occurred. Then, we propose to use the B-spline for 

flexible modelling of the TDE of TDC denoted by 𝑔(𝑡, 𝑋𝑓𝑖,𝑗(𝑡, 𝑡𝑥)), as follows, 

𝑔(𝑡, 𝑋𝑓𝑖,𝑗(𝑡, 𝑡𝑥)) = {

0                                                  if 𝑡 ≤ 𝑡𝑥                

∑ 𝛽𝑗,𝑘𝐵𝑘,𝐷(𝑡 − 𝑡𝑥)
𝐾+𝐷

𝑘=0
          if 𝑡 > 𝑡𝑥                 
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which gives a smoothing curve with spline basis 𝐵𝑘,𝐷(𝑡 − 𝑡𝑥), 𝑘 = 0,… , 𝐾 + 𝐷, where 𝐾 

represents the number of interior knots, 𝐷 is the degree of basis function, and 𝐵0,𝐷(𝑥) is 

referred to as the intercept. Then, given the cause-specific familial frailty 𝑍𝑓𝑗 , the 𝑗th 

cause-specific hazard function and cumulative hazard function with TDE of TDC and 

TIC are expressed as  

ℎ𝑓𝑖,𝑗 (𝑡|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗) = ℎ0,𝑗(𝑡)𝑍𝑓𝑗exp{𝛾𝑗𝑊𝑓𝑖 + 𝑔(𝑡, 𝑋𝑓𝑖,𝑗(𝑡, 𝑡𝑥))} 

and 

𝐻𝑓𝑖,𝑗 (𝑡|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗) = ∫ ℎ0,𝑗(𝑢)𝑍𝑓𝑗exp{𝛾𝑗𝑊𝑓𝑖 + 𝑔(𝑢, 𝑋𝑓𝑖,𝑗(𝑢, 𝑡𝑥))}
𝑡

0

𝑑𝑢 

where 𝑊𝑓𝑖 is the TIC and 𝛾𝑗 is the corresponding cause-specific coefficient of event 𝑗. 

Then, the cause-specific hazard and cumulative hazard with the BS can be obtained as 

ℎ𝑓𝑖,𝑗 (𝑡|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗) = {

ℎ0,𝑗(𝑡)𝑍𝑓𝑗exp{𝛾𝑗𝑊𝑓𝑖}                                                         if 𝑡 ≤ 𝑡𝑥      

ℎ0,𝑗(𝑡)𝑍𝑓𝑗exp {𝛾𝑗𝑊𝑓𝑖 +∑ 𝛽𝑗,𝑘𝐵𝑘,𝐷(𝑡 − 𝑡𝑥)
𝐾+𝐷

𝑘=0
}        if 𝑡 > 𝑡𝑥      

 

and  

𝐻𝑓𝑖,𝑗 (𝑡|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗) =

{
 
 

 
 
𝐻0,𝑗(𝑡)𝑍𝑓𝑗exp{𝛾𝑗𝑊𝑓𝑖}                                                                         if 𝑡 ≤ 𝑡𝑥

[∫ ℎ0,𝑗(𝑢)𝑍𝑓𝑗exp{𝛾𝑗𝑊𝑓𝑖}
𝑡𝑥

0

𝑑𝑢 +                                                                     

 ∫ ℎ0,𝑗(𝑢)𝑍𝑓𝑗exp {𝛾𝑗𝑊𝑓𝑖 +∑ 𝛽𝑗,𝑘𝐵𝑘,𝐷(𝑢 − 𝑡𝑥)
𝐾+𝐷

𝑘=0
}

𝑡

𝑡𝑥

𝑑𝑢]         if 𝑡 > 𝑡𝑥

 

where the BS function provides a smooth approximation of the effect of TDC over time 

for 𝑡 > 𝑡𝑥. Then, the corresponding survival function can be obtained by following 

Equation (3.2). 
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3.2 Dependence induced by frailties 

In the frailty competing risk model, a family-specific random effect, 𝑍𝑓𝑗 , is assigned to 

each competing event and shared within families, thus inducing dependence among event 

times of specific event within families. In addition, we allow the frailties for different 

events to be correlated. To describe the correlation between frailties for different events, 

each frailty variable, 𝑍𝑓𝑗 , for event 𝑗 in cluster 𝑓 is constructed as the sum of two 

independent random variables: 𝑌𝑓0 and 𝑌𝑓𝑗, where 𝑌𝑓0 represents the common frailty and 

𝑌𝑓𝑗 represents an event-specific frailty that shared by members in the same cluster. The 

common frailty 𝑌𝑓0is shared regardless of events, allowing frailties for different events in 

the same cluster to be correlated.  

In particular, the cause-specific frailties within family 𝑓 are defined as 

𝑍𝑓𝑗 =
𝑘0

𝑘0 + 𝑘𝑗
𝑌𝑓0 + 𝑌𝑓𝑗 

where 𝑌𝑓0 and 𝑌𝑓𝑗 are gamma distributed random variables with 𝑌𝑓0~Gamma (𝑘0,
1

𝑘0
) and 

𝑌𝑓𝑗~Gamma (𝑘𝑗 ,
1

𝑘0+𝑘𝑗
), for 𝑘0 and 𝑘𝑗 > 0. This results in following frailty distribution 

𝑍𝑓𝑗~Gamma(𝑘0 + 𝑘𝑗 ,
1

𝑘0 + 𝑘𝑗
) 

with mean of 1 and variance 
1

𝑘0+𝑘𝑗
. The variance of 𝑍𝑓𝑗 indexes the between-cluster 

variability for event j, thus provides the level of within-cluster dependence or correlation. 

Since larger the variance leads to stronger within-cluster dependence, smaller 𝑘0 + 𝑘𝑗  

indicates the stronger within-cluster dependence. Furthermore, the association between 

any two times of event 𝑗 within families can be expressed by Kendall’s tau (Hougaard, 

2000, Munda et al., 2012), such as  

𝜏𝑗 =
1

1 + 2(𝑘0 + 𝑘𝑗)
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where the value of 𝜏𝑗 close to 1 indicate higher dependence of event 𝑗 within a family. 

The covariance and correlation between the frailties of two events, 𝑍𝑓𝑗 and 𝑍𝑓𝑗′, 

𝑗 ≠ 𝑗′, in family 𝑓 are given by  

cov (𝑍𝑓𝑗 , 𝑍𝑓𝑗′) =
𝑘0

(𝑘0 + 𝑘𝑗)(𝑘0 + 𝑘𝑗′)
 

and 

𝜌 =
𝑘0

√(𝑘0 + 𝑘𝑗)(𝑘0 + 𝑘𝑗′)
 

where the value of 𝜌 is between 0 and 1 as 𝑘0, 𝑘𝑗  and 𝑘𝑗′ are larger than 0. Furthermore, 

𝑘0 = 0 corresponds to the independent frailty variables for the competing events.  

 

3.3 Likelihood construction with ascertainment 
correction 

Based on the cause-specific hazard model conditional on the covariates and familial 

frailties, the conditional likelihood for family 𝑓 can be written as 

𝐿𝑓
𝐶(𝜽) =∏∏ℎ𝑓𝑖,𝑗 (𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗)

I(𝛿𝑓𝑖
=𝑗)

𝐽

𝑗=1

𝑛𝑓

𝑖=1

𝑆𝑓𝑖(𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗, 𝒁𝒇) 

where 𝒁𝒇 = (𝑍𝑓1 , … , 𝑍𝑓𝐽) and 𝜽 is a vector of parameters involved in the model, consisting 

of the baseline parameters and a vector of parameters related to regression coefficients of 

TIC and TDC, and frailty parameters related to the frailty distribution. 

Since the frailties are unobserved, we obtain the marginal likelihood for family 𝑓 

by integrating out the frailties over their distributions (Choi et al., 2021), such as  
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𝐿𝑓(𝜽) =∏∫ ⋯∫ {∏ℎ𝑓𝑖,𝑗 (𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗 , 𝑍𝑓𝑗)
I(𝛿𝑓𝑖

=𝑗)
𝐽

𝑗=1

}

∞

0

∞

0

𝑛𝑓

𝑖=1

𝑆𝑓𝑖(𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗 , 𝒁𝒇)𝑔𝑧(𝑍𝑓1 , … , 𝑍𝑓𝐽)𝑑𝑍𝑓1 …𝑑𝑍𝑓1 . 

By plugging the cause-specific hazard and survival functions in Equations (3.1) and (3.2), 

respectively, into the marginal likelihood for family f, we can first rewrite the marginal 

likelihood by taking out the terms that do not involve the frailty variables from the 

integrals to solve the integrals by using the Laplace transformations as follows:  

𝐿𝑓(𝜽) =∏∫ ⋯∫ {∏ℎ𝑓𝑖,𝑗 (𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗, 𝑌𝑓0 , 𝑌𝑓𝑗)
I(𝛿𝑓𝑖

=𝑗)
𝐽

𝑗=1

}

∞

0

∞

0

𝑛𝑓

𝑖=1

𝑆𝑓𝑖(𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗, 𝒀𝒇) × 

                 𝑔0(𝑌𝑓0)…𝑔𝐽(𝑌𝑓𝐽)𝑑𝑌𝑓0 …𝑑𝑌𝑓𝐽 

=∏∫ ⋯∫∏{(
𝑤0
𝑤𝑗
𝑌𝑓0 + 𝑌𝑓𝑗)ℎ𝑓𝑖,𝑗(𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗)}

I(𝛿𝑓𝑖
=𝑗)𝐽

𝑗=1

∞

0

∞

0

𝑛𝑓

𝑖=1

× 

                  exp {−∑(
𝑤0
𝑤𝑗
𝑌𝑓0 + 𝑌𝑓𝑗)𝐻𝑓,𝑗

̇

𝐽

𝑗=1

}𝑔0(𝑌𝑓0)…𝑔𝐽(𝑌𝑓𝐽)𝑑𝑌𝑓0 …𝑑𝑌𝑓𝐽 

= {∏∏ℎ𝑓𝑖,𝑗(𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗)
I(𝛿𝑓𝑖

=𝑗)

𝐽

𝑗=1

𝑛𝑓

𝑖=1

}∫ ⋯∫∏(
𝑤0
𝑤𝑗
𝑌𝑓0 + 𝑌𝑓𝑗)

𝑑𝑓𝑗

×

𝐽

𝑗=1

∞

0

∞

0

 

                  exp {−𝑌𝑓0 (∑
𝑤0
𝑤𝑗

𝐽

𝑗=1

�̇�𝑓,𝑗) −∑(𝑌𝑓𝑗�̇�𝑓,𝑗)

𝐽

𝑗=1

}𝑔0(𝑌𝑓0)…𝑔𝐽(𝑌𝑓𝐽)𝑑𝑌𝑓0 …𝑑𝑌𝑓𝐽 

(3.3) 

where 𝒀𝒇 = (𝑌𝑓0 , … , 𝑌𝑓𝐽), 𝑑𝑓𝑗 = ∑ 𝐼(𝛿𝑓𝑖 = 𝑗)
𝑛𝑓
𝑖=1

 is the number of event 𝑗 experienced in 

family f and �̇�𝑓,𝑗 = ∑ 𝐻𝑓𝑖,𝑗 (𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗)
𝑛𝑓
𝑖=1

 for simplicity. 

The Laplace transform 𝜙𝑗(∙) and their 𝑑th derivative 𝜙𝑗(∙)
(𝑑) for the frailty 

distribution can be employed in Equation (3.3), where the Laplace transform of the 

frailties and their 𝑑th derivative have the following forms 
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𝜙𝑗(𝑠) = ∫ 𝑒−𝑠𝑧𝑔𝑗(𝑧)𝑑𝑧
∞

0

 

𝜙𝑗(𝑠)
(𝑑) = (−1)𝑑∫ 𝑧𝑑𝑒−𝑠𝑧𝑔𝑗(𝑧)𝑑𝑧

∞

0

 

where 𝑔𝑗(𝑧) is the density function of the random variable 𝑌𝑓𝑗. Given that 𝑤0 = 𝑘0, 𝑤𝑗 =

𝑘0 + 𝑘𝑗 , 𝑗 = 1,… , 𝐽, we assume that each random variable 𝑌𝑓𝑗 for event 𝑗 follows a 

gamma distribution with shape 𝑘𝑗 and scale 
1

𝑤𝑗
. Then, the closed form expressions of the 

Laplace transform 𝜙𝑗(∙) and their 𝑑th derivative 𝜙𝑗(∙)
𝑑 can be expressed as  

𝜙𝑗(𝑠) = (1 +
𝑠

𝑤𝑗
)

−𝑘𝑗

                                                             (3.4) 

𝜙𝑗(𝑠)
(𝑑) = (−1)𝑑

Γ(𝑘𝑗 + 𝑑)

Γ(𝑘𝑗)𝑤𝑗
𝑑
(1 +

𝑠

𝑤𝑗
)

−𝑘𝑗−𝑑

                                (3.5) 

 In addition, the product of the binomials can be expressed as a form of summations by 

using binomial theorem such as 

∏(
𝑤0
𝑤𝑗
𝑌𝑓0 + 𝑌𝑓𝑗)

𝑑𝑓𝑗

= ∑ ⋯∑ (
𝑑𝑓1
𝑏1
) (
𝑤0
𝑤1
𝑌𝑓0)

𝑏1

𝑌
𝑓1

𝑑𝑓1−𝑏1⋯(
𝑑𝑓𝐽
𝑏𝐽
)(
𝑤0
𝑤𝐽
𝑌𝑓0)

𝑏𝐽

𝑌
𝑓𝐽

𝑑𝑓𝐽−𝑏𝐽

𝑑𝑓𝐽

𝑏𝐽=0

𝑑𝑓1

𝑏1=0

𝐽

𝑗=1

 

          = ∑ ⋯ ∑ 𝑌𝑓0
𝐵 {∏(

𝑑𝑓𝑗
𝑏𝑗
)(
𝑤0
𝑤𝑗
)

𝑏𝑗
𝐽

𝑗=1

𝑌
𝑓𝑗

𝑑𝑓𝑗−𝑏𝑗}

𝑑𝑓𝐽

𝑏𝐽=0

𝑑𝑓1

𝑏1=0

 

where 𝐵 = ∑ 𝑏𝑗
𝐽
𝑗=1 .  
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Then, with the binomial theorem and Laplace transform, the Equation (3.3) can be further 

expressed as 

𝐿𝑓(𝜽) = {∏∏ℎ𝑓𝑖,𝑗(𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗)
I(𝛿𝑓𝑖

=𝑗)

𝐽

𝑗=1

𝑛𝑓

𝑖=1

}∫ 𝑌𝑓0
𝐵exp {−𝑌𝑓0 (∑

𝑤0
𝑤𝑗
�̇�𝑓,𝑗

𝐽

𝑗=1

)}

∞

0

𝑔0(𝑌𝑓0) × 

                  [∑ ⋯ ∑ {∏∫ (
𝑑𝑓𝑗
𝑏𝑗
)(
𝑤0
𝑤𝑗
)

𝑏𝑗
∞

0

𝐽

𝑗=1

𝑌
𝑓𝑗

𝑑𝑓𝑗
−𝑏𝑗
exp {−𝑌𝑓𝑗�̇�𝑓,𝑗} 𝑔𝑗 (𝑌𝑓𝑗)𝑑𝑌𝑓𝑗}

𝑑𝑓𝐽

𝑏𝐽=0

𝑑𝑓1

𝑏1=0

] 

= {∏∏ℎ𝑓𝑖,𝑗(𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗)
I(𝛿𝑓𝑖

=𝑗)

𝐽

𝑗=1

𝑛𝑓

𝑖=1

} (−1)𝐵𝜙0
(𝐵) (∑

𝑤0
𝑤𝑗
�̇�𝑓,𝑗

𝐽

𝑗=1

) × 

                 [∑ ⋯ ∑ {∏(
𝑑𝑓𝑗
𝑏𝑗
)(
𝑤0
𝑤𝑗
)

𝑏𝑗

(−1)
𝑑𝑓𝑗−𝑏𝑗𝜙

𝑗

(𝑑𝑓𝑗−𝑏𝑗)
𝐽

𝑗=1

(�̇�𝑓,𝑗)}

𝑑𝑓𝐽

𝑏𝐽=0

𝑑𝑓1

𝑏1=0

] 

= {∏∏ℎ𝑓𝑖,𝑗(𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗)
I(𝛿𝑓𝑖

=𝑗)

𝐽

𝑗=1

𝑛𝑓

𝑖=1

}
Γ(𝑤0 + 𝐵)

Γ(𝑤0)𝑤0
𝐵 (1 +∑

�̇�𝑓,𝑗
𝑤𝑗

𝐽

𝑗=1

)

−𝑤0−𝐵

× 

                  [∑ ⋯∑ {∏(
𝑑𝑓𝑗
𝑏𝑗
)(
𝑤0
𝑤𝑗
)

𝑏𝑗
𝐽

𝑗=1

Γ (𝑘𝑗 + 𝑑𝑓𝑗 − 𝑏𝑗)

Γ(𝑘𝑗)𝑤𝑗
𝑑𝑓𝑗

−𝑏𝑗
(1 +

�̇�𝑓,𝑗
𝑤𝑗
)

−𝑘𝑗−𝑑𝑓𝑗
+𝑏𝑗

}

𝑑𝑓𝐽

𝑏𝐽=0

𝑑𝑓1

𝑏1=0

] 

= {∏∏ℎ𝑓𝑖,𝑗(𝑡𝑓𝑖|𝑿𝑓𝑖,𝑗)
I(𝛿𝑓𝑖

=𝑗)

𝐽

𝑗=1

𝑛𝑓

𝑖=1

}
Γ(𝑤0 + 𝐵)

Γ(𝑤0)
(1 +∑

�̇�𝑓,𝑗

𝑤𝑗

𝐽

𝑗=1

)

−𝑘0−𝐵

× 

                 [∑ ⋯ ∑ {∏(
𝑑𝑓𝑗
𝑏𝑗
)
Γ (𝑘𝑗 + 𝑑𝑓𝑗 − 𝑏𝑗)

Γ(𝑘𝑗)𝑤𝑗
𝑑𝑓𝑗

(1 +
�̇�𝑓,𝑗

𝑤𝑗
)

−𝑘𝑗−𝑑𝑓𝑗+𝑏𝑗
𝐽

𝑗=1

}

𝑑𝑓𝐽

𝑏𝐽=0

𝑑𝑓1

𝑏1=0

] 

(3.6) 

For the data obtained based on the affected probands, an ascertainment corrected 

likelihood approach should be used to adjust for ascertainment bias (Choi et al., 2021). 

This correction is done by weighting the 𝐿𝑓(𝜽) by the inverse probability of a proband 

being ascertained before age at examination 𝑎𝑓𝑝, which is 𝐴𝑓(𝜽) = 𝑃(𝑇𝑓𝑝 < 𝑎𝑓𝑝|𝑿𝑓𝑝,𝑗). 
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Using the Laplace transform of the frailty distribution, the ascertainment probability for 

family 𝑓 can be written as follows 

𝐴𝑓(𝜽) = 1 − 𝑆𝑓𝑝 (𝑎𝑓𝑝|𝑿𝑓𝑝,𝑗) 

= 1 −∫⋯∫exp{−∑𝑍𝑓𝑗𝐻𝑓𝑝,𝑗 (𝑎𝑓𝑝|𝑿𝑓𝑝,𝑗)

𝐽

𝑗=1

}𝑔𝑧(𝑍𝑓1 , … , 𝑍𝑓𝐽)𝑑𝑍𝑓1 …𝑑𝑍𝑓𝐽 

= 1 −∫⋯∫exp{−∑(
𝑤0
𝑤𝑗
𝑌𝑓0 + 𝑌𝑓𝑗)𝐻𝑓𝑝,𝑗 (𝑎𝑓𝑝|𝑿𝑓𝑝,𝑗)

𝐽

𝑗=1

} × 

                  𝑔0(𝑌𝑓0)…𝑔𝐽(𝑌𝑓𝐽)𝑑𝑌𝑓0 …𝑑𝑌𝑓𝐽 

= 1 −∫⋯∫exp{−𝑌𝑓0 (∑
𝑤0
𝑤𝑗
𝐻𝑓𝑝,𝑗 (𝑎𝑓𝑝|𝑿𝑓𝑝,𝑗)

𝐽

𝑗=1

) − 

                   ∑𝑌𝑓𝑗𝐻𝑓𝑝,𝑗 (𝑎𝑓𝑝|𝑿𝑓𝑝,𝑗)

𝐽

𝑗=1

}𝑔0(𝑌𝑓0)…𝑔𝐽(𝑌𝑓𝐽)𝑑𝑌𝑓0 …𝑑𝑌𝑓𝐽 

= 1 − {1 +∑
𝐻𝑓𝑝,𝑗 (𝑎𝑓𝑝|𝑿𝑓𝑝,𝑗)

𝑤𝑗

𝐽

𝑗=1

 }

−𝑘0

 ∏{1 +
𝐻𝑓𝑝,𝑗 (𝑎𝑓𝑝|𝑿𝑓𝑝,𝑗)

𝑤𝑗
}

−𝑘𝑗𝐽

𝑗=1

 

(3.7) 

Then, putting Equations (3.5) and (3.6) together, the general form of ascertainment 

corrected likelihood for 𝐹 families can be obtained by dividing each family’s likelihood 

contribution by its ascertainment probability, which can be expressed as  

𝐿(𝜽) =∏
𝐿𝑓(𝜽)

𝐴𝑓(𝜽)

𝐹

𝑓=1

 

The regression coefficients of the cause-specific hazard model can be obtained by 

maximizing the corresponding ascertainment corrected log-likelihood given by  
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ℓ(𝜽) = log𝐿(𝜽) = ∑ log𝐿𝑓(𝜽) −∑log𝐴𝑓(𝜽)                       (3.8)

𝐹

𝑓=1

𝐹

𝑓=1

 

 

3.4 Cause-specific penetrance function with time-
dependent covariates/coefficients 

Conditional on the frailties 𝒁𝒇 and the covariates 𝑿𝑓𝑖,𝑗, the 𝑗th conditional cause-specific 

cumulative incidence, also called penetrance, for subject 𝑖 in family 𝑓 is defined as 

𝐹𝑓𝑖,𝑗(𝑡|𝑿𝑓𝑖,𝑗, 𝒁𝒇) = 𝑃(𝑇𝑓𝑖 ≤ 𝑡, 𝛿𝑓𝑖 = 𝑗|𝑿𝑓𝑖,𝑗, 𝒁𝒇) 

= ∫ ℎ𝑓𝑖,𝑗 (𝑢|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗)
𝑡

0

𝑆𝑓𝑖(𝑢|𝑿𝑓𝑖,𝑗, 𝒁𝒇)𝑑𝑢 

= ∫ ℎ𝑓𝑖,𝑗 (𝑢|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗)
𝑡

0

exp {−∑ 𝐻𝑓𝑖,𝑗 (𝑡|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗)
𝐽

𝑗=1
} 𝑑𝑢. 

Since the family-specific frailties 𝑍𝑓𝑗  are unobservable, the marginal cause-specific 

penetrance function for event 𝑗 can be obtained by integrating out the distribution of 

frailties 𝑍𝑓𝑗 using the Laplace transform as follows:  

𝐹𝑓𝑖,𝑗(𝑡|𝑿𝑓𝑖,𝑗) = ∫ ⋯∫ ∫ℎ𝑓𝑖,𝑗 (𝑢|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗) 𝑆𝑓𝑖(𝑢|𝑿𝑓𝑖,𝑗, 𝒁𝒇)𝑔𝑧 (𝑍𝑓1 , … , 𝑍𝑓𝐽) 𝑑𝑢𝑑𝑍𝑓1 …𝑑𝑍𝑓1

𝑡

0

∞

0

∞

0

 

= ∫∫ ⋯∫ (
𝑤0
𝑤𝑗
𝑌𝑓0 + 𝑌𝑓𝑗)ℎ𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗) ×

∞

0

∞

0

𝑡

0

 

                          exp {−∑ (
𝑤0
𝑤𝑗
𝑌𝑓0 + 𝑌𝑓𝑗)𝐻𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)

𝐽

𝑗=1
}𝑔0(𝑌𝑓0)…𝑔𝐽(𝑌𝑓𝐽)𝑑𝑌𝑓0 …𝑑𝑌𝑓𝐽𝑑𝑢 

= ∫ℎ𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)∏∫ 𝑒−𝑌𝑓𝑙𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖)
∞

0𝑙≠𝑗

𝑡

0

𝑔𝑙(𝑌𝑓𝑙)𝑑𝑌𝑓𝑙 × 

                         [
𝑤0
𝑤𝑗
∫ 𝑌𝑓0𝑒

−∑
𝑤0
𝑤𝑙
𝑌𝑓0𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝐽
𝑙=1 𝑔0(𝑌𝑓0)𝑑𝑌𝑓0∫ 𝑒

−𝑌𝑓𝑗𝐻𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)𝑔𝑗 (𝑌𝑓𝑗) 𝑑𝑌𝑓𝑗

∞

0

∞

0
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                          +∫ 𝑒
−∑

𝑤0
𝑤𝑙
𝑌𝑓0𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝐽
𝑙=1 𝑔0(𝑌𝑓0)𝑑𝑌𝑓0∫ 𝑌𝑓𝑗𝑒

−𝑌𝑓𝑗𝐻𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)𝑔𝑗 (𝑌𝑓𝑗) 𝑑𝑌𝑓𝑗

∞

0

∞

0

] 𝑑𝑢 

= ∫ℎ𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)∏𝜙𝑙{𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)}

𝑙≠𝑗

×

𝑡

0

 

                          [
𝑤0
𝑤𝑗
(−1)𝜙0

(1)
{∑

𝑤0
𝑤𝑙
𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝐽

𝑙=1
} 𝜙𝑗{𝐻𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)}

+ 𝜙0 {∑
𝑤0
𝑤𝑙
𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝐽

𝑙=1
} (−1)𝜙𝑗

(1)
{𝐻𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)}] 𝑑𝑢 

= ∫ℎ𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)∏{1 +
𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑙
}

𝑙≠𝑗

−𝑘𝑙𝑡

0

× 

                          [
𝑤0
𝑤𝑗
{1 +∑

𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑙

𝐽

𝑙=1
}

−𝑘0−1

{1 +
𝐻𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑗
}

−𝑘𝑗

+ {1 +∑
𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑙

𝐽

𝑙=1
}

−𝑘0
𝑘𝑗
𝑤𝑗
{1 +

𝐻𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑗
}

−𝑘𝑗−1

] 𝑑𝑢 

= ∫ℎ𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)∏{1 +
𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑙
}

𝑙≠𝑗

−𝑘𝑙𝑡

0

{1 +
𝐻𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑗
}

−𝑘𝑗

× 

                          {1 +∑
𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑙

𝐽

𝑙=1
}

−𝑘0

× 

                          [
𝑘0
𝑤𝑗
{1 +∑

𝐻𝑓𝑖,𝑙(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑙

𝐽

𝑙=1
}

−1

+
𝑘𝑗
𝑤𝑗
{1 +

𝐻𝑓𝑖,𝑗(𝑢|𝑿𝑓𝑖,𝑗)

𝑤𝑗
}

−1

] 𝑑𝑢 

(3.9) 

where the Laplace transform of the frailty distribution and its 𝑑th derivative are applied 

as shown in Equations (3.4) and (3.5) 

We further incorporate TDC and TDE into the cause-specific penetrance function, 

which is based on the correlated frailty competing risk model presented in Equation (3.8). 

For simplicity, omitting the terms related to TIC, the marginal cause-specific penetrance 

function for is  
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𝐹𝑓𝑖,𝑗(𝑡|𝑋𝑓𝑖,𝑗(𝑡, 𝑡𝑥)) = ∫ℎ𝑓𝑖,𝑗(𝑢|𝑋𝑓𝑖,𝑗(𝑢, 𝑡𝑥))∏{1+
𝐻𝑓𝑖,𝑙(𝑢|𝑋𝑓𝑖,𝑗(𝑢, 𝑡𝑥))

𝑤𝑙
}

−𝑘𝑙

𝑙≠𝑗

𝑡

0

× 

                                 {1 +
𝐻𝑓𝑖,𝑗(𝑢|𝑋𝑓𝑖,𝑗(𝑢, 𝑡𝑥))

𝑤𝑗
}

−𝑘𝑗

 {1 +∑
𝐻𝑓𝑖,𝑙(𝑢|𝑋𝑓𝑖,𝑗(𝑢, 𝑡𝑥))

𝑤𝑙

𝐽

𝑙=1
}

−𝑘0

× 

                                 [
𝑤0
𝑤𝑗
{1 +∑

𝐻𝑓𝑖,𝑙(𝑢|𝑋𝑓𝑖,𝑗(𝑢, 𝑡𝑥))

𝑤𝑙

𝐽

𝑙=1
}

−1

+
𝑘𝑗

𝑤𝑗
{1 +

𝐻𝑓𝑖,𝑗(𝑢|𝑋𝑓𝑖,𝑗(𝑢, 𝑡𝑥))

𝑤𝑗
}

−1

]𝑑𝑢 

For 𝑡 ≤ 𝑡𝑥, we assume that 𝑋𝑓𝑖,𝑗(𝑢, 𝑡𝑥) = 0, where 𝑡𝑥 is the time that change in 

value of TDC. Then, the penetrance function can be obtained without considering the 

TDE of TDC such as 

𝐹𝑓𝑖𝑗(𝑡|𝑋𝑓𝑖,𝑗(𝑡, 𝑡𝑥)) = ∫ ℎ0,𝑗(𝑢)∏{1 +
𝐻0,𝑙(𝑢)

𝑤𝑙
}

−𝑘𝑙

𝑙≠𝑗

𝑡

0

× 

                                      {1 +
𝐻0,𝑗(𝑢)

𝑤𝑗
}

−𝑘𝑗

 {1 +∑
𝐻0,𝑙(𝑢)

𝑤𝑙

𝐽

𝑙=1
}

−𝑘0

× 

                                      [
𝑤0
𝑤𝑗
{1 +∑

𝐻0,𝑙(𝑢)

𝑤𝑙

𝐽

𝑙=1
}

−1

+
𝑘𝑗

𝑤𝑗
{1 +

𝐻0,𝑗(𝑢)

𝑤𝑗
}

−1

] 𝑑𝑢 

where ℎ0,𝑗(𝑢) and 𝐻0,𝑗(𝑢) are the baseline hazard function and cumulative baseline hazard 

function, respectively. 

In contrast, if 𝑡 > 𝑡𝑥, we have 𝑋𝑓𝑖,𝑗(𝑢, 𝑡𝑥) = 1. Then, the penetrance at time 𝑡 can 

be decomposed into the sum of two functions, where one without TDC/TDE (𝑡 ≤ 𝑡𝑥) and 

the other with TDC/TDE (𝑡 > 𝑡𝑥) that the change in the effect of TDC is described by 

using the BS model. Then, the penetrance at time 𝑡 with 𝑡 > 𝑡𝑥 is expressed as 

𝐹𝑓𝑖𝑗 (𝑡|𝑿𝑓𝑖,𝑗, 𝑍𝑓𝑗) = ∫ ℎ0,𝑗(𝑢)∏{1 +
𝐻0,𝑙(𝑢)

𝑤𝑙
}

−𝑘𝑙

𝑙≠𝑗

𝑡𝑥

0

× 

                                    {1 +
𝐻0,𝑗(𝑢)

𝑤𝑗
}

−𝑘𝑗

 {1 +∑
𝐻0,𝑙(𝑢)

𝑤𝑙

𝐽

𝑙=1
}

−𝑘0

× 

                                    [
𝑤0
𝑤𝑗
{1 +∑

𝐻0,𝑙(𝑢)

𝑤𝑙

𝐽

𝑙=1
}

−1

+
𝑘𝑗

𝑤𝑗
{1 +

𝐻0,𝑗(𝑢)

𝑤𝑗
}

−1

] 𝑑𝑢 + 
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                                  ∫ ℎ0,𝑗(𝑢)exp {∑ 𝛽𝑗,𝑘𝐵𝑘,𝐷(𝑢 − 𝑡𝑥)
𝐾+𝐷

𝑘=0
} 𝑑𝑢

𝑡

𝑡𝑥

× 

                                  ∏{1 +
𝐻0,𝑙(𝑡𝑥)+ ∫ ℎ0,𝑙(𝑠)exp{∑ 𝛽𝑙,𝑘𝐵𝑘,𝐷(𝑠 − 𝑡𝑥)

𝐾+𝐷
𝑘=0 }

𝑢

𝑡𝑥
𝑑𝑠

𝑤𝑙
} ×

𝑙≠𝑗

 

                                   {1 +
𝐻0,𝑗(𝑡𝑥)+ ∫ ℎ0,𝑗(𝑠)exp{∑ 𝛽𝑗,𝑘𝐵𝑘,𝐷(𝑠 − 𝑡𝑥)

𝐾+𝐷
𝑘=0 }

𝑢

𝑡𝑥
𝑑𝑠

𝑤𝑗
}

−𝑘𝑗

× 

                                   {1 +∑
𝐻0,𝑙(𝑡𝑥)+ ∫ ℎ0,𝑙(𝑠)exp{∑ 𝛽𝑙,𝑘𝐵𝑘,𝐷(𝑠 − 𝑡𝑥)

𝐾+𝐷
𝑘=0 }

𝑢

𝑡𝑥
𝑑𝑠

𝑤𝑙

𝐽

𝑙=1
}

−𝑘0

× 

                                   

[
𝑤0
𝑤𝑗
{1 +∑

𝐻0,𝑙(𝑡𝑥)+ ∫ ℎ0,𝑙(𝑠)exp{∑ 𝛽𝑙,𝑘𝐵𝑘,𝐷(𝑠 − 𝑡𝑥)
𝐾+𝐷
𝑘=0 }

𝑢

𝑡𝑥
𝑑𝑠

𝑤𝑙

𝐽

𝑙=1
}

−1

+

𝑘𝑗
𝑤𝑗
{1 +

𝐻0,𝑗(𝑡𝑥)+ ∫ ℎ0,𝑗(𝑠)exp{∑ 𝛽𝑗,𝑘𝐵𝑘,𝐷(𝑠 − 𝑡𝑥)
𝐾+𝐷
𝑘=0 }

𝑢

𝑡𝑥
𝑑𝑠

𝑤𝑗
}

−1

] 𝑑𝑢        

 

where 𝛽𝑗,𝑘, 𝑘 = 0,… , 𝐾 + 𝐷, are the regression coefficients for BS basis for event 𝑗.  

 

3.5 Variance estimation of regression coefficients 

Consider the vector of the parameters 𝜽 consisting of parameters for baseline hazard 

functions, regression coefficients, parameters for TDEs, and frailty parameters. Let �̂� be 

maximum likelihood estimates of the parameters 𝜽. Then, the variance-covariance matrix 

of �̂� is obtained using a robust sandwich variance estimator such as  

Var(�̂�) = 𝐼𝑜(𝜽)
−1𝐽(𝜽)𝐼𝑜(𝜽)

−1 

where 𝐼𝑜(𝜽) is the observed information matrix consisting of the second derivative of the 

log-likelihood function from Equation (3.6), and 𝐽(𝜽) is an expected information matrix. 

These can be obtained as 

𝐼𝑜(�̂�) = −
𝜕2ℓ𝐶(𝜽)

𝜕𝜽𝑇𝜕𝜽
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𝐽(�̂�) =∑𝑈𝑓
𝑇(𝜽)𝑈𝑓(𝜽)

𝑓

 

𝑈𝑓(�̂�) =
𝜕log𝐿𝑓(𝜽)

𝜕𝜽
−
𝜕log𝐴𝑓(𝜽)

𝜕𝜽
 

where 𝐿𝑓(𝜽) is the likelihood of family 𝑓 from Equation (3.5), 𝐴𝑓(𝜽) is the ascertainment 

probability for family 𝑓 from Equation (3.6), and ℓ𝐶(𝜽) is the ascertainment corrected 

log-likelihood from Equation (3.7). 

Therefore, the robust variance estimates of the estimated parameters �̂� can be 

obtained by evaluating 𝐼𝑜(�̂�), 𝐽(�̂�) and �̂�. Then, the robust variance of the cause-specific 

penetrance function, Var (𝐹𝑗(𝑡|�̂�)), is obtained by using Delta method, such as 

Var (𝐹𝑗(𝑡|�̂�)) = 𝐷𝜽
𝑇(𝑡)Var(�̂�)𝐷𝜽(𝑡) 

where 𝐷𝜽(𝑡) is the vector of partial derivatives of 𝐹𝑗(𝑡|�̂�) with respect to each parameter. 
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Chapter 4 Simulation study 

 

The results in Chapter 3 are derived under the assumption of large samples. We thus 

conduct simulation studies in the chapter based on the correlated frailty competing risk 

model with a binary TDC. We evaluate the performance of different TDE functions (PE, 

CO, BS) of TDC in terms of the parameter estimates, penetrance estimates and AIC 

under different settings. Detailed objectives of this simulation study are provided in 

Section 4.1. Section 4.2 describes the simulation design, which includes 12 different 

simulation scenarios that are considered. The values of the parameters used in the 

simulation are presented in Section 4.3. In Section 4.4, the data generation process is 

described. The simulation evaluation criteria are provided in Section 4.5. Finally, the 

simulation results are summarized in Section 4.6. 

 

4.1 Objectives 

Our simulation study aims to evaluate our proposed modelling of the time-dependent 

effect of a binary time-dependent covariate using the BS and compare its performance 

with other parametric models (PE, CO) under different scenarios in terms of bias and 

precision of the parameter estimates in the correlated competing risks model, and the 

penetrance estimates of developing the event of interest with different intervention time 

points.  

The two main objectives of the simulation study are: 

1. To evaluate the performance of the correlated competing risks model with TDC 

using the BS model in terms of parameter estimates and penetrance estimates. 

2. To evaluate the impact of misspecified TDE functions (PE, CO, BS) in the 

correlated frailty competing risk model on the following:  

i. Precision of the TDE function estimates at different time points 
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ii. Bias and precision of model parameter estimates and penetrance 

estimates 

iii. Goodness of fit of the model 

 

4.2 Simulation setting 

The simulation study is designed to evaluate the performance of the proposed time-

dependent effect model in the correlated frailty competing risks with a binary TDC 

introduced in Chapter 3 under the different settings depending on the shape of TDE, 

strength of correlation between competing events, and size of mutation effect.  

We consider two shapes of TDE, where the first shape is a decreasing curve that 

exponentially decays over time converges to a certain value, and the second shape is a 

right-skewed curve that drastically increases right at the beginning and slowly decreases 

over time. The CO and BS models are used to depict those shapes. The effect staying 

above 0 indicates a positive effect, which dramatically increases the penetrance of the 

event of interest. In contrast, the negative TDEs only take values below 0, which 

gradually increase the penetrance of the event of interest. Then, we have a total of 

2 × 2 = 4 different shapes of TDEs, denoted by CO+, CO-, BS+, BS-, arising from the 

CO and BS models, each with positive and negative TDE. These four shapes of TDE 

used in the simulations are graphically presented in Figure 4.1.  

In addition, we examine how the strength of correlation (low and high) between 

competing events and the size of the mutation effect (low and high) would affect the 

performance of the proposed model in terms of parameter and penetrance estimation. A 

total of 12 simulation scenarios are considered, as presented in Table 4.1. The scenarios 

can be broken down into four groups by the shape of TDE: first three scenarios generated 

from the BS+, next three scenarios from the BS-, following three from the CO+, and last 

three from the CO-. Within each group, the first two scenarios are designed to evaluate 

the effect of correlation between competing events when the mutation effect is fixed, and 
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the last two scenarios are to evaluate the effect of mutation effect when the correlation is 

fixed. 

For the first objective, we evaluate the performance of our proposed model based 

on the BS in terms of parameter and penetrance estimates. We use the first 6 scenarios in 

which the data are generated from the BS models with different mutation effects and 

correlations between two competing events. For each scenario, the BS model is applied to 

fit the data and estimate the parameters in the model. Then, the penetrances at time 70 

with intervention occurred at age 30, 40, 50 and 70 (no intervention) by plugging in the 

estimated parameters. The accuracy and precisions of those estimates are further 

evaluated via bias and coverage percentage of the confidence interval. 

Figure 4.1: Two shapes of time-dependent effects under the Cox and Oakes (left panel) 

and B-spline (right panel) models. The intervention time is 30, and the black line indicates 

no effect before the intervention. The red and blue lines represent the time-dependent 

effects following the intervention time, with the red lines representing positive effects and 

the blue lines representing negative effects. 
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Table 4.1: Simulation study scenarios 

Scenario TDE Model TDE Mutation effect Correlation between 

competing events 

1 B-spline Positive 𝛾1𝑔 = 1.50   𝜌 = 0.14  

2 B-spline Positive 𝛾1𝑔 = 1.50  𝜌 = 0.51  

3 B-spline Positive 𝛾1𝑔 = 2.25  𝜌 = 0.51 

4 B-spline Negative 𝛾1𝑔 = 1.50   𝜌 = 0.14  

5 B-spline Negative 𝛾1𝑔 = 1.50  𝜌 = 0.51  

6 B-spline Negative 𝛾1𝑔 = 2.25  𝜌 = 0.51 

7 Cox and Oakes Positive 𝛾1𝑔 = 1.50   𝜌 = 0.14  

8 Cox and Oakes Positive 𝛾1𝑔 = 1.50  𝜌 = 0.51  

9 Cox and Oakes Positive 𝛾1𝑔 = 2.25  𝜌 = 0.51 

10 Cox and Oakes Negative 𝛾1𝑔 = 1.50   𝜌 = 0.14  

11 Cox and Oakes Negative 𝛾1𝑔 = 1.50  𝜌 = 0.51  

12 Cox and Oakes Negative 𝛾1𝑔 = 2.25  𝜌 = 0.51 

For the second objective,  we evaluate the impact of different TDE models (PE, CO, 

BS) under different scenarios (see Table 4.1) by applying the PE, CO, two BS models to 

each scenario. The two BS models are denoted as BS2 and BS3 with degrees of 3, 

boundary knots (0, 55) and having 2 interior knots and 3 interior knots, respectively, 

where the interior knots are obtained from the data based on 33% and 66% and 25%, 

50% and 75% quantiles of the time difference between the surgery time and the last 

observed time, respectively. We first (1) assess the precision of the TDE function 

𝑔(𝑡, 𝑋(𝑡, 𝑡𝑠)) estimates at different time points after an intervention under all scenarios 1-

12, then (2) assess the bias and precision of parameter estimates and penetrance estimates 

under BS+,BS-, CO+, CO- when 𝜌 = 0.51 and 𝛾 = 2.25, finally (3) compare the 

goodness of fit of the models via AICs. 

For each scenario, 500 simulation replications are conducted, each with 500 families 

consisting of three generations of family members, for an average of 5835 individuals. 

The simulations of clustered correlated competing risk data with TDC are carried out by 
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modifying the simfam function from the R package FamEvent (Choi et al., 2021). The 

detailed data generation procedures are described in Section 4.4. Data generation and 

analyses were performed using R version 4.0.4 (R Core Team, 2021).  

 

4.3 Selection of parameter values 

For each simulation, the datasets are generated with two competing events based on the 

cause-specific hazard models with the true parameters obtained by fitting our model to 

the real data, presented in Tables 4.2 and 4.3, to mimic the data used in the application. 

For simplicity, the model includes one binary TDC and one binary TIC, representing 

intervention status and mutation status, respectively, defined as: 

1. 𝑋(𝑡, 𝑡𝑠): Intervention status is considered as a binary TDC, such that the 

intervention status change at the time 𝑡𝑠 that intervention occurred, i.e., 

𝑋(𝑡, 𝑡𝑠) = 𝐼(𝑡 > 𝑡𝑠). Only the cause-specific hazard model for event 1 is affected 

by this variable. 

2. 𝐺: mutation status is TIC, which takes value 1 for mutation carriers and 0 for 

non-carriers. The cause-specific hazard models for both events are affected by 

this variable.  

Then, the cause-specific hazard functions for event 1 and event 2 are expressed as 

follows: 

ℎ𝑓,1(𝑡|𝑋(𝑡, 𝑡𝑠), 𝐺, 𝑍𝑓1) = ℎ01(𝑡)𝑍𝑓1exp{𝛾1𝑔𝐺 + 𝑔(𝑡, 𝑋(𝑡, 𝑡𝑠))} 

ℎ𝑓,2(𝑡|𝐺, 𝑍𝑓2) = ℎ02(𝑡)𝑍𝑓2exp{𝛾2𝑔𝐺} 

where ℎ01(𝑡) = 𝜆1𝜌1(𝜆1𝑡)
𝜌1−1 and ℎ02(𝑡) = 𝜆2𝜌2(𝜆2𝑡)

𝜌2−1 are Weibull baseline hazard 

functions, 𝑍𝑓1 and 𝑍𝑓2 are event specific frailties, 𝛾1𝑔 and 𝛾2𝑔 are the effect of mutation 

status for event 1 and 2, respectively. The correlated frailties are constructed by each 
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event-specific frailty 𝑍𝑓𝑗 =
𝑘0

𝑘0+𝑘𝑗
𝑌𝑓0 + 𝑌𝑓𝑗, where 𝑌𝑓0 and 𝑌𝑓𝑗 are independently generated 

from gamma distributions.  

 For the TDE, the following 𝑔(𝑡, 𝑋(𝑡, 𝑡𝑠)) functions for PE, CO and BS models 

are considered:  

𝑔(𝑡, 𝑋(𝑡, 𝑡𝑠)) =

{
 
 

 
 
0                                                          if 𝑡 ≤ 𝑡𝑠 (PE, CO, BS) 

𝛽𝑠                                                         if 𝑡 > 𝑡𝑠 (PE)               

𝛽𝑠𝑒
−𝜂(𝑡−𝑡𝑠) + 𝜂0                               if 𝑡 > 𝑡𝑠 (CO)               

∑ 𝛽𝑠,𝑘𝐵𝑘,𝐷(𝑡 − 𝑡𝑠)
𝐾+𝐷

𝑘=0
                   if 𝑡 > 𝑡𝑠 (BS)                

 

The numbers of parameters involved in TDE are different across the models. For 

the PE model, only one parameter, which is 𝛽𝑠, is involved in TDE, whereas the 

parameters involved in the CO model are {𝛽𝑠, 𝜂, 𝜂0} and the number of parameters in the 

BS model depend on the polynomial degree 𝐷 and the number of interior knots 𝐾, where 

the total number of parameters is 𝐾 + 𝐷 + 1 including the intercept. In addition, the BS 

model is constrained to be linear beyond the boundary knots (𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥). 

The parameters used in the simulations are specified as: 

1. Baseline hazard functions follow Weibull distributions with scale parameter: 𝜆1 

and shape parameter 𝜌1 for event 1, with 𝜆2 and 𝜌2 for event 2. Their values are 

set as log(𝜆1) = −4.83, log (𝜌1) = 0.83, log (𝜆2) = −4.50, log (𝜌2) = 1.07. 

2. Mutation effects are described by regression coefficient: 𝛾1𝑔 and 𝛾2𝑔 of gene 

mutation status for event 1 and event 2, respectively. The value of 𝛾1𝑔 is 

considered as 1.5 and 2.25 and that for 𝛾2𝑔 is set as 0.5. 

3. Time-dependent effect of an intervention is described by 𝛽𝑠, 𝜂 and 𝜂0 for CO 

model, and 𝛽𝑠,𝑘, 𝑘 = 0, … , 𝐾 + 𝐷 for BS model. Referring to the shape in Figure 

4.1, the true values of these parameters for CO are set as 𝛽𝑠 = 2, log(𝜂) = −0.79 

and 𝜂0 = 0.4 for positive effect, and 𝛽𝑠 = −2, log(𝜂) = −0.79 and 𝜂0 = −0.4 

for negative effect. For BS model, a degree of 3 and 2 interior knots at time 
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points 7.5 and 12.5 years with boundary knots at 0 and 55 years are considered. 

The true parameters related to the positive TDE are set as 𝛽𝑠,0 = 0.012, 𝛽𝑠,1 =

1.024, 𝛽𝑠,2 = 1.231, 𝛽𝑠,3 = 0.338, 𝛽𝑠,4 = 0.231, and 𝛽𝑠,5 = 0.212. Similarly, the 

values of the parameters related to negative TDE are considered as 𝛽𝑠,0 =

−0.012, 𝛽𝑠,1 = −1.024, 𝛽𝑠,2 = −1.231, 𝛽𝑠,3 = −0.338, 𝛽𝑠,4 = −0.231, and 

𝛽𝑠,5 = −0.212.  

4. Frailty parameters: 𝑘0, 𝑘1 and 𝑘2. The value of log(𝑘0) is considered to be -1.5 or 

0.4, while the values of log(𝑘1) and log(𝑘2) are to be 0.4 and 0.6, respectively. 

These parameters influence the familial dependence and correlation between two 

competing events. With log(𝑘1) = 0.4 and log(𝑘2) = 0.6,  log(𝑘0) = −1.5 and 

0.4 corresponds to 𝜏 = 0.12 and 0.47, and 𝜌 = 0.14 and 0.51.  

 

4.4 Data generation 

The family data are generated through three steps.  

1. The family structure is constructed by selecting the number of siblings for each 

generation in the family and their current age, similar to the real data, while 

generating other variables, such as mutation status, proband, intervention time, 

and frailties for each event type.  

2. The event times and event status are generated.  

3. Ascertainment condition for the family is applied to mimic the population-based 

design of the family studies.  
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The detailed data generation procedures for each step are as follows: 

Step 1: Family structure 

1. We generate the family structure for each dataset consisting of three generations 

of family members with two fixed members for the first generation, two to five 

for the second generation, and zero to two in the third generation.  

2. The current age of the proband, 𝑎𝑓𝑝, is generated by using the normal distribution 

with a mean of 55 and a standard deviation (SD) of 5. The current ages of other 

family members in the second generation 𝑎𝑓𝑖 , 𝑖 = 1,… , 𝑛𝑓 , are generated from a 

normal distribution with mean 55 and SD 2.5. The current ages of the first 

generation are generated with the mean of 𝑎𝑓𝑝 + 20 and SD of 2.5. The current 

ages third generation are generated with the mean age subtracted by 20 years 

from the minimum age of their parents and SD of 2.5. 

3. For TDC status, we generate the intervention times, 𝑡𝑠,𝑓𝑖, for all individuals from 

a normal distribution with a mean of 47.5 minus the minimum age of all 

individuals, which is 16, and SD of 2.5. Only those with current age larger than 𝑡𝑠 

undergo the intervention. 

4. Two family-specific frailties, 𝑍𝑓1 and 𝑍𝑓2, for two competing events are generated 

from three independent random variables, 𝑌𝑓0~Gamma (𝑘0,
1

𝑘0
) and 

𝑌𝑓𝑗~Gamma (𝑘𝑗 ,
1

𝑘0+𝑘𝑗
). Then 𝑍𝑓𝑗  are constructed as 𝑍𝑓𝑗 = (

𝑘0

𝑘0+𝑘𝑗
) 𝑌𝑓0 + 𝑌𝑓𝑗, 𝑗 =

1 for event 1 and 2 for event 2,  

5. For the mutation status, we first generate the proband’s mutation status, 𝐺𝑓𝑝, 

under a dominant model with mutation allele frequency of 0.0021, conditional on 

their current age, event status, TDC time and frailties. Then, we generate the 

mutation status of the rest of the family members conditional on the proband’s 

mutation status. 
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Step 2: Event time and event status 

1. We generate the age of onset, 𝑡𝑓𝑖, by setting the survival function 

𝑃(𝑇𝑓𝑖 > 𝑡𝑓𝑖|𝐺𝑓𝑖 , 𝑍𝑓1 , 𝑍𝑓2 , 𝑡𝑠,𝑓𝑖) = 𝑢𝑓𝑖, where 𝑢𝑓𝑖~𝑈[0,1] is generated from the 

uniform distribution, and solve for 𝑡𝑓𝑖 from the equation. We assume the 

minimum age of onset is 16. 

2. The event status among two competing events is determined by comparing the 

age of onset with the current age. If the age of onset is smaller than the current 

age, then the event status of a family member is selected by using a Bernoulli 

distribution with a probability of event 1 as 
ℎ1(𝑡|𝑋(𝑡, 𝑡𝑠), 𝐺, 𝑍1)

ℎ1(𝑡|𝑋(𝑡, 𝑡𝑠), 𝐺, 𝑍1)+ℎ2(𝑡|𝐺, 𝑍2)
. Those 

with the current age larger than the age of onset are considered as censored.  

 

Step 3: Ascertainment condition 

1. To mimic the family-based study that families are recruited through affected 

individuals, called probands, we generate the families until the proband being 

affected (the proband’s current age, 𝑎𝑓𝑝, larger than age of onset, 𝑡𝑓𝑝) and keep 

such family with affected proband into study. 

 

4.5 Evaluation criteria 

We evaluate via 500 simulations the performance of the parameter and penetrance 

estimators, the precision of the TDE functions (PE, CO, BS) at different time points, and 

compare the goodness of fit of models with different TDE functions. The parameter 

estimator is evaluated by bias (average estimate minus true parameter value), Empirical 

Standard Error (ESE), Average Standard Error (ASE) and Empirical Coverage 

Percentage (ECP). Similarly, the penetrance estimators are evaluated by Percentage Bias 

(PBIAS), ASE, ESE and ECP. In addition, the precision of the TDE functions (PE, CO, 
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BS) is measured by the Mean Squared Error (MSE) at different time points, and the 

goodness of fit of the model is measured by the AIC. 

In the following, we describe how the evaluation criteria are obtained in our 

simulations. 

The bias measures accuracy of the parameter estimator. It is obtained as the 

difference between the average parameter estimate over the 𝐵 = 500 simulations, �̂� =

∑ �̂�𝐵
𝑖=1 𝑖

/𝐵, and the true value, 𝛽, as bias = �̂� − 𝛽. Instead of relying on the difference, 

the percentage bias is used for the penetrance estimator, which is estimated as PBIAS =

(�̂� − 𝛽) 𝛽⁄ × 100.  

The accuracy of an estimator from simulations can be obtained from the ESE, 

obtained by the sample standard deviation of estimates from all simulations, and it can be 

expressed as ESE = √{1 (𝐵 − 1)⁄ }∑ (�̂�𝑖 − �̂�)
2

𝐵
𝑖=1 . The average of the standard errors is 

obtained from all simulations as ASE = ∑ 𝑆𝐸(�̂�𝑖)
𝐵
𝑖=1 /𝐵. If the ASE is correctly 

estimated, it should be closed to the ESE (Burton et al., 2006). 

The ECP is the percentage of times the 95% confidence interval, �̂�𝑖 ±

1.96 × 𝑆𝐸(�̂�𝑖), include the true value, 𝛽, for 𝑖 = 1,… , 𝐵. The ECP should be close to 

95%, where 5% of confidence intervals do not contain the true value. Over-coverage 

occurs when the coverage percentages are above 95%, which suggests that the results are 

too conservative since simulations would accept the null hypothesis that is actually false. 

This leads to a loss of power with too many type II errors. In contrast, the under-coverage 

occurs when the coverage percentages are lower than 95%, which is not acceptable 

according to Burton et al. (2006). One possible criterion of the acceptability of the 

coverage is that the acceptability of the coverage, that can be obtained as 𝑆𝐸(𝑝) =

√𝑝(1 − 𝑝)/𝐵, where 𝑝 is the nominal coverage percentage (Burton et al., 2006). With 

𝐵 = 500 simulations, the acceptable range for the ECP with 95% confidence is between 

93.1% and 96.9%. 
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The MSE evaluates the precision of the TDE functions. Given 𝑔(𝑡, 𝑋(𝑡, 𝑡𝑠)) and 

�̂�(𝑡, 𝑋(𝑡, 𝑡𝑠)) are the true and estimated TDE of TDC for a specific time point 𝑡 − 𝑡𝑠, 

where 𝑡 is the observed time and 𝑡𝑠 is the time that change in intervention status occurs, 

the MSE is calculated as MSE = ∑ {�̂� (𝑡, 𝑋𝑓𝑖(𝑡, 𝑡𝑠)) − 𝑔 (𝑡, 𝑋𝑓𝑖(𝑡, 𝑡𝑠))}
𝐵
𝑖=1

2

𝐵⁄ , which is 

the sum of squared bias and variance at time 𝑡. 

The AIC allows the comparisons between the competing risks models with 

different TDE functions by explaining how well the model fits the data and is obtained as 

AIC = −2log(𝐿) + 2 × 𝑣, where 𝐿 denotes the likelihood value of the fitted model and 𝑣 

is the number of parameters involved in the model. We obtain the AICs from each 

simulation and report the average AIC over the 𝐵 simulations, that is AIC̅̅ ̅̅ ̅ =

∑ AIC𝑖
𝐵
𝑖=1 /𝐵, where AIC𝑖 is the AIC obtained from simulation 𝑖 and the best performed 

model would have the smallest value of AIC.  

 

4.6 Simulation results 

We first summarize the simulation results of our evaluation of the performance of the 

parameter and penetrance estimators of the BS models with the positive and negative 

effects of TDE in Tables 4.2 and 4.3. Then the results for the impact of misspecified TDE 

functions on parameter and penetrance estimates are summarized in Tables 4.4 to 4.7 and 

Tables 4.8 to 4.11, respectively. The bias and precision of the corresponding penetrance 

estimators are graphically visualized in Figures 4.2 to 4.4. Tables 4.12 and 4.13 present 

the precision of the TDE functions (PE, CO, BS) at different time points after 

intervention (5, 10, 15, 20 years) under the misspecified TDE function. The performance 

of the correlated competing risks models with different TDE functions in terms of the 

average AIC is summarized in Table 4.14.  
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4.6.1 Correlated competing risk model with B-spline function 

Table 4.2 summarizes the results of the simulation studies for the parameter estimates 

under the true BS model with bias, ESE, ASE and ECP, which corresponds to the first six 

scenarios presented in Table 4.1. Regardless of the sign of TDE, the biases of the 

parameter estimates related to the baseline hazard function, mutation status and frailties 

for two events are negligible. However, since there are not many treated individuals with 

time after intervention larger than 30, two parameter estimates 𝛽𝑠,4 and 𝛽𝑠,5 related to the 

BS model are biased. As the B-spline is a linear combination of the basis functions with 

its effects, such biases would affect the accuracy of estimate for the hazard function and 

thus bias the penetrance estimates. The ASEs and ESEs of the parameter estimates for the 

baseline and mutation status for two events agree with each other for all the simulation 

scenarios. However, the ASEs of the frailty parameters and parameters related to the 

TDE tend to be larger than corresponding ESEs. As a result, the ECPs higher than the 

nominal 95% and are not mostly within the acceptable range between 93.1% and 96.9%, 

indicating that the confidence intervals are conservative. Based on six different scenarios, 

the confidence interval for the parameters related to frailties (𝑘0, 𝑘1, 𝑘2) and TDE 

functions (𝛽𝑠,0, 𝛽𝑠,1, 𝛽𝑠,2, 𝛽𝑠,3, 𝛽𝑠,4, 𝛽𝑠,5) are ranged from 92.6% to 99.0% and 93.6% to 

99.8%, respectively. 

 The simulation results of the penetrance estimates at time 70 with intervention 

occurred at age 30, 40, 50 and 70 (no intervention) under the cubic BS model with two 

interior knots (7.5, 12.5), boundary knots (0, 55), and positive/negative effects are 

presented in Table 4.3. The biases of the penetrance estimates with the BS model are 

mostly negligible, with PBIAS less than 3.4%. The ASEs and ESEs of the penetrance 

estimates for mutation noncarrier for the BS models mostly agreed well except with low 

event correlation. However, the ASEs of the penetrance estimates for mutation carriers 

are higher than the ESEs, and the ASEs increased as the event correlation decreased. In 

addition, most of the ASEs and ESEs of penetrance estimates for mutation carriers are 

larger than the ASEs and ESEs obtained for mutation noncarriers. This caused the ECPs 

to be above 95% nominal level, indicating the confidence intervals are conservative. 

Since the acceptable range of the ECP is between 93.1% and 96.9%, about 43.8% of the 
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results for the mutation carriers obtained the ECPs greater than 96.9%. This leads to a 

loss of power which produces a large number of errors of omission.   

Table 4.2: Accuracy and precision of parameter estimates from the correlated frailty 

competing risks model with time-dependent effect modelled with cubic B-spline with 2 

interior knots (7.5, 12.5) under BS+ and BS- scenarios with different correlations 

between competing events (𝜌 = 0.14 and 0.51) and different mutation effects (𝛾1𝑔 = 1.5 

and 2.25) based on 500 simulations each with 500 families. 

BS Positive time-dependent effects (BS+) 

 
  True 

  value 

𝜌 = 0.14, 𝛾1𝑔 = 1.5   True 

  value 

𝜌 = 0.51, 𝛾1𝑔 = 1.5   True 

  value 

𝜌 = 0.51, 𝛾1𝑔 = 2.25 

Bias ESE ASE ECP Bias ESE ASE ECP Bias ESE ASE ECP 

log(𝜆1)   -4.83 -0.02 0.04 0.08 98.8   -4.83 -0.02 0.04 0.08 99.0   -4.83 -0.01 0.04 0.06 99.2 

log(𝜌1)   0.83 -0.01 0.03 0.04 98.0   0.83 -0.01 0.03 0.05 98.4   0.83 -0.00 0.02 0.03 98.6 

log(𝜆2)   -4.50 0.00 0.03 0.04 97.2   -4.50 0.00 0.03 0.03 96.6   -4.50 -0.00 0.03 0.04 97.8 

log(𝜌2)   1.07 0.00 0.03 0.04 96.6   1.07 0.00 0.03 0.04 96.2   1.07 -0.01 0.03 0.04 96.8 

𝛾1𝑔   1.5 0.00 0.07 0.07 96.0   1.5 0.00 0.06 0.08 96.2   2.25 0.01 0.07 0.07 96.4 

𝛾2𝑔   0.50 0.00 0.08 0.11 96.8   0.50 0.00 0.08 0.11 96.2   0.50 0.00 0.10 0.10 95.4 

log(𝑘0)   0.40 -0.08 0.62 1.85 92.6   0.40 0.01 0.31 0.51 97.0   0.40 0.00 0.34 0.45 96.8 

log(𝑘1)   0.60 0.02 0.20 0.49 98.2   0.60 -0.03 0.43 0.56 97.2   0.60 -0.05 0.43 0.55 96.8 

log(𝑘2)   0.10 0.02 0.25 0.60 96.0   0.10 -0.02 0.55 3.26 98.2   0.10 -0.02 0.57 0.77 98.4 

𝛽𝑠,0   0.01 0.07 0.19 0.25 95.0   0.01 -0.01 0.19 0.38 97.4   0.01 -0.02 0.17 0.20 97.0 

𝛽𝑠,1   1.02 0.01 0.16 0.27 96.8   1.02 0.03 0.16 0.31 97.4   1.02 0.02 0.16 0.22 97.4 

𝛽𝑠,2   1.23 0.02 0.13 0.24 98.0   1.23 0.01 0.12 0.29 98.4   1.23 -0.01 0.13 0.20 98.0 

𝛽𝑠,3   0.34 0.07 0.36 0.78 97.4   0.34 0.07 0.30 1.03 98.6   0.34 0.08 0.34 0.68 98.8 

𝛽𝑠,4   0.23 -0.11 0.82 2.50 97.6   0.23 0.08 0.72 3.27 99.2   0.23 -0.11 0.87 2.24 99.0 

𝛽𝑠,5   0.21 0.34 1.28 6.55 98.8   0.21 0.29 1.11 8.84 99.8   0.21 0.19 1.41 6.60 99.8 

BS Negative time-dependent effects (BS-) 

 
  True 

  value 

𝜌 = 0.14, 𝛾1𝑔 = 1.5   True 

  value 

𝜌 = 0.51, 𝛾1𝑔 = 1.5   True 

  value 

𝜌 = 0.51, 𝛾1𝑔 = 2.25 

Bias ESE ASE ECP Bias ESE ASE ECP Bias ESE ASE ECP 

log(𝜆1)   -4.83 -0.01 0.05 0.07 97.2   -4.83 -0.01 0.05 0.07 98.8   -4.83 -0.01 0.05 0.06 97.4 

log(𝜌1)   0.83 -0.01 0.03 0.04 96.0   0.83 -0.01 0.03 0.04 98.2   0.83 -0.01 0.02 0.03 96.4 

log(𝜆2)   -4.50 0.00 0.03 0.04 96.0   -4.50 0.00 0.03 0.03 94.4   -4.50 0.00 0.03 0.03 95.8 

log(𝜌2)   1.07 0.00 0.03 0.03 96.6   1.07 0.00 0.03 0.03 94.8   1.07 0.00 0.03 0.03 97.0 

𝛾1𝑔   1.5 0.01 0.08 0.09 96.2   1.5 0.00 0.08 0.09 97.6   2.25 0.01 0.07 0.09 97.8 

𝛾2𝑔   0.50 0.00 0.08 0.09 96.4   0.50 0.00 0.08 0.08 96.4   0.50 0.01 0.08 0.09 95.8 

log(𝑘0)   0.40 -0.15 0.58 2.34 94.6   0.40 0.04 0.34 0.48 96.8   0.40 0.02 0.36 0.48 96.8 

log(𝑘1)   0.60 0.07 0.24 0.39 96.8   0.60 0.04 0.49 0.64 99.0   0.60 -0.01 0.48 0.82 97.0 

log(𝑘2)   0.10 0.03 0.21 0.39 96.4   0.10 -0.11 0.80 1.17 95.4   0.10 -0.06 0.67 0.95 97.0 

𝛽𝑠,0   -0.01 0.03 0.27 0.29 93.6   -0.01 -0.04 0.24 0.31 97.6   -0.01 -0.06 0.23 0.30 95.4 

𝛽𝑠,1   -1.02 -0.02 0.36 0.46 96.0   -1.02 0.04 0.33 0.56 96.4   -1.02 0.04 0.30 0.47 95.8 

𝛽𝑠,2   -1.23 0.00 0.26 0.41 97.6   -1.23 0.00 0.26 0.59 98.6   -1.23 -0.01 0.22 0.43 99.0 

𝛽𝑠,3   -0.34 0.07 0.53 1.11 98.2   -0.34 0.09 0.45 1.77 98.8   -0.34 0.07 0.43 1.27 99.4 

𝛽𝑠,4   -0.23 -0.10 0.92 2.90 99.6   -0.23 -0.08 0.84 4.88 99.6   -0.23 -0.07 0.93 3.60 99.2 

𝛽𝑠,5 -0.21 0.20 1.36 6.88 99.8   -0.21 0.28 1.40 11.05 99.8   -0.21 0.20 1.48 8.79 99.4 

For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and estimated 95% 

coverage percentage (ECP) are obtained from 500 simulations each with 500 families. 𝜆𝑗 and 𝜌𝑗 are the baseline hazard 

parameters for event 𝑗 = 1 and 2; 𝛾1𝑔 and 𝛾2𝑔 are the regression coefficients of the time-invariant covariate for event 1 and 

2, respectively; 𝑘0, 𝑘1 and 𝑘2 are the frailty parameters; 𝛽𝑠,𝑘 , 𝑘 = 0, … , 𝐾 + 𝐷, describes the TDE, where 𝐾 is the number of 

interior knots and 𝐷 is the degree of the B-spline basis function; The permanent exposure (PE), Cox and Oakes (CO) and B-

spline (BS) are the TDE functions. 
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Table 4.3: Empirical penetrance estimates at time 70 from the correlated frailty 

competing risks model with time-dependent effect (TDE) modelled with cubic B-spline 

with 2 interior knots (7.5, 12.5) under BS+ and BS- scenarios with different correlations 

between competing events (𝜌 = 0.14 and 0.51) and different mutation effects (𝛾1𝑔 = 1.5 

and 2.25). 

 

 

BS Positive time-dependent effects (BS+) 

 
True 

value 

𝜌 = 0.14, 𝛾1𝑔 = 1.5  True 

value 

𝜌 = 0.51, 𝛾1𝑔 = 1.5  True 

value 

𝜌 = 0.51, 𝛾1𝑔 = 2.25 

PBIAS ESE ASE ECP  PBIAS ESE ASE ECP  PBIAS ESE ASE ECP 

Mutation status 𝐺 = 0                 

𝐹1(70|𝑡𝑠 = ∞)  0.119 -1.15 0.008 0.014 98.0  0.119 -1.41 0.008 0.013 97.8  0.119 -0.76 0.008 0.010 98.2 

𝐹1(70|𝑡𝑠=30)   0.200 2.07 0.018 0.026 98.8  0.202 1.65 0.017 0.027 98.0  0.202 1.37 0.019 0.026 97.0 

𝐹1(70|𝑡𝑠=40) 0.213 1.07 0.013 0.018 97.4  0.215 0.63 0.013 0.016 96.0  0.215 0.62 0.013 0.014 97.2 

𝐹1(70|𝑡𝑠=50) 0.209 0.68 0.012 0.019 96.8  0.211 0.14 0.012 0.016 96.8  0.211 0.19 0.011 0.012 96.0 

Mutation status 𝐺 = 1                 

𝐹1(70|𝑡𝑠 = ∞)  0.380 -0.67 0.019 0.033 97.6  0.390 -0.89 0.018 0.029 98.4  0.612 -0.13 0.021 0.024 97.4 

𝐹1(70|𝑡𝑠=30)   0.547 1.33 0.029 0.045 97.2  0.569 1.05 0.026 0.045 98.4  0.783 0.47 0.022 0.033 98.2 

𝐹1(70|𝑡𝑠=40)   0.561 0.81 0.022 0.033 95.6  0.584 0.49 0.020 0.026 97.0  0.788 0.30 0.016 0.019 97.2 

𝐹1(70|𝑡𝑠=50)  0.546 0.55 0.020 0.033 96.8  0.567 0.17 0.019 0.026 96.8  0.768 0.17 0.016 0.017 96.2 

BS Negative time-dependent effects (BS-) 

 True 

value 

𝜌 = 0.14, 𝛾1𝑔 = 1.5  True 

value 

𝜌 = 0.51, 𝛾1𝑔 = 1.5  True 

value 

𝜌 = 0.51, 𝛾1𝑔 = 2.25 

PBIAS ESE ASE ECP  PBIAS ESE ASE ECP  PBIAS ESE ASE ECP 

Mutation status 𝐺 = 0                 

𝐹1(70|𝑡𝑠 = ∞)  0.119 -0.26 0.010 0.013 97.8  0.119 -1.05 0.010 0.012 97.8  0.119 -0.57 0.009 0.011 97.4 

𝐹1(70|𝑡𝑠=30)   0.074 2.84 0.011 0.014 98.2  0.074 3.37 0.011 0.015 98.6  0.074 2.53 0.009 0.015 97.6 

𝐹1(70|𝑡𝑠=40) 0.072 1.50 0.006 0.008 96.8  0.072 1.31 0.007 0.008 96.6  0.072 0.93 0.006 0.007 98.4 

𝐹1(70|𝑡𝑠=50) 0.079 0.80 0.006 0.008 97.4  0.079 0.13 0.006 0.008 97.2  0.079 0.10 0.006 0.007 97.0 

Mutation status 𝐺 = 1                 

𝐹1(70|𝑡𝑠 = ∞)  0.380 0.38 0.022 0.030 96.6  0.390 -0.52 0.021 0.027 98.4  0.612 0.25 0.024 0.028 95.8 

𝐹1(70|𝑡𝑠=30)   0.260 2.62 0.028 0.038 97.6  0.263 2.73 0.028 0.040 97.8  0.454 1.95 0.034 0.054 98.2 

𝐹1(70|𝑡𝑠=40) 0.25 1.75 0.016 0.021 97.0  0.260 1.26 0.016 0.020 96.8  0.452 1.25 0.021 0.027 96.2 

𝐹1(70|𝑡𝑠=50)  0.280 1.21 0.016 0.021 97.4  0.285 0.34 0.015 0.020 98.0  0.487 0.74 0.021 0.024 96.0 

ESE represents empirical standard error, ASE average standard error, ECP empirical coverage percentage 

𝐹1(70|𝑡𝑠 = ∞) denotes the cause-specific penetrance by age 70 for event 1 without intervention. 
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4.6.2 Impact of misspecified time-dependent effect functions 

We evaluate the impact of different TDE models (PE, CO, BS) under the CO and BS 

models, high correlation between competing events, high mutation effect and 

positive/negative TDE, which correspond to scenarios 3, 6, 9, and 12. Section 4.6.2.1 

summarizes the precision of TDE function estimates at different time points after an 

intervention. Section 4.6.2.2 evaluates the bias and precision of parameter estimates 

under different settings. Section 4.6.2.3 assesses the penetrance estimates under different 

settings. Section 4.6.2.3 compares the goodness of fit of the models through average 

AICs. 

 

4.6.2.1 Precision of the time-dependent effect function 

Tables 4.4 and 4.5 summarize the changes in the MSE of the TDE functions (PE, CO, 

BS) across the different time points after intervention (5, 10, 15, 20 years) under 

misspecified TDE functions. Under the CO+, the CO model has the smallest MSEs, 

followed by the BS models and PE model as expected. However, the PE model 

sometimes yields the smallest MSEs of the TDE at 5 years after the intervention with the 

dataset generated under the CO-. Although the MSEs of the BS models are larger than 

those of the CO models, they are close to the MSEs of the CO model, which shows how 

flexible the BS model is. With datasets generated under both BS+ and BS-, the BS 

models provide the smallest MSEs as expected, while the MSEs of PE and CO models 

are similar. However, the MSEs of the BS models got larger as the time after intervention 

increased, and eventually, the MSEs of the PE or CO models became smaller than those 

of the BS models. 
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Table 4.4: Mean Squared Error (MSE) of the time-dependent effect (TDE) functions at  

5, 10, 15 and 20 years after intervention under CO+ and CO- scenarios based on 500 

simulations each with 500 families. 

  CO Positive TDE (CO+)  CO Negative TDE (CO-) 

𝑡∗ PE CO BS2 BS3  PE CO BS2 BS3 

𝜌 = 0.14 5 0.306 0.006 0.007 0.017  0.008 0.012 0.017 0.017 

𝛾1𝑔 = 1.5  10 0.542 0.005 0.009 0.011  0.048 0.008 0.015 0.016 

 15 0.570 0.006 0.012 0.010  0.056 0.009 0.014 0.015 

 20 0.573 0.006 0.013 0.015  0.056 0.009 0.018 0.021 

𝜌 = 0.51 5 0.237 0.006 0.007 0.010  0.010 0.012 0.017 0.017 

𝛾1𝑔 = 1.5 10 0.447 0.006 0.008 0.014  0.053 0.009 0.016 0.017 

 15 0.473 0.007 0.013 0.014  0.062 0.010 0.015 0.018 

 20 0.475 0.007 0.015 0.016  0.063 0.010 0.018 0.020 

𝜌 = 0.51 5 0.308 0.006 0.007 0.010  0.009 0.009 0.014 0.015 

𝛾1𝑔 = 2.25 10 0.544 0.005 0.008 0.015  0.058 0.006 0.012 0.015 

 15 0.573 0.006 0.012 0.011  0.067 0.006 0.011 0.013 

 20 0.576 0.006 0.015 0.015  0.068 0.007 0.013 0.015 

PE stands for the permanent exposure model, CO for the Cox and Oakes model, BS2 for cubic 

B-spline with 2 interior knots, BS3 for cubic B-spline with 3 interior knots. 𝜌 is the correlation 

between two competing events; 𝛾1𝑔 is the regression coefficient for the time-invariant covariate 

for event 1. 𝑡∗represents the time since the intervention. 
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Table 4.5: Mean Squared Error (MSE) of the time-dependent effect (TDE) functions at 

5, 10, 15 and 20 years after intervention under BS+ and BS- scenarios based on 500 

simulations each with 500 families. 

  BS Positive TDE (BS+)  BS Negative TDE (BS-) 

𝑡∗ PE CO TBS2 BS2 BS3  PE CO TBS2 BS2 BS3 

𝜌 = 0.14 5 0.153 0.149 0.026 0.027 0.023  0.255 0.224 0.043 0.046 0.062 

𝛾1𝑔 = 1.5  10 0.153 0.158 0.028 0.027 0.032  0.253 0.227 0.056 0.057 0.056 

 15 0.153 0.167 0.131 0.134 0.130  0.253 0.236 0.184 0.183 0.169 

 20 0.153 0.177 0.295 0.292 0.288  0.253 0.248 0.368 0.371 0.392 

𝜌 = 0.51 5 0.156 0.156 0.026 0.026 0.023  0.249 0.230 0.050 0.051 0.062 

𝛾1𝑔 = 1.5 10 0.156 0.164 0.028 0.028 0.032  0.247 0.236 0.056 0.055 0.059 

 15 0.156 0.174 0.134 0.134 0.129  0.247 0.246 0.190 0.193 0.186 

 20 0.156 0.184 0.293 0.293 0.284  0.247 0.257 0.378 0.386 0.393 

𝜌 = 0.51 5 0.179 0.180 0.029 0.028 0.025  0.234 0.207 0.045 0.044 0.055 

𝛾1𝑔 = 2.25 10 0.179 0.177 0.033 0.031 0.036  0.232 0.214 0.050 0.050 0.054 

 15 0.179 0.175 0.139 0.139 0.131  0.232 0.224 0.176 0.174 0.170 

 20 0.179 0.174 0.302 0.299 0.289  0.232 0.235 0.358 0.357 0.369 

The permanent exposure (PE) and Cox and Oakes (CO) are the TDE functions; The two cubic B-

spline (BS) models, BS2 and BS3, have 2 interior knots and 3 interior knots, respectively, and 

TBS2 denotes the true BS model with a degree of 3 and 2 interior knots. 𝜌 is the correlation 

between the frailties of two competing events 𝑗; 𝛾1𝑔 is the regression coefficient for the time-

invariant covariate for event 1. 𝑡∗represents the time since the intervention. 
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4.6.2.2 Estimates of Model parameters 

Tables 4.6 and 4.7 summarize the parameter estimates related to the baseline hazard 

functions, mutation status and frailties obtained by fitting the misspecified TDE models 

to each dataset generated under the CO+ and CO-, corresponding to scenarios 9 and 12 in 

Table 4.1, respectively. For all scenarios, the ASEs and ESEs of the baseline hazard 

function and mutation status parameters agree with each other, but the ASEs of the 

frailties are larger than the ESEs. Under the CO model, the ECPs for the CO and BS 

models are close to or above the acceptable upper range of 96.9%, leading to loss of 

power by including the estimates in the confidence interval that are not supposed to be. 

For the PE model under the CO+, the model obtained the bad ECPs below 90% most 

time. However, in the PE model under the CO-, the ECPs were close to 95% on average. 

All the TDE functions except the PE model under the CO+ worked well in terms of 

parameter bias, which biases are negligible. Under scenario 9, where the true model is 

CO+, the PE model obtained biased parameter estimates leading to the ECPs of the 

parameters being below 95%. 

Similarly, Tables 4.8 and 4.9 are the results obtained under the BS+ and BS- with 

the same settings corresponding to scenarios 3 and 6. In contrast to the dataset generated 

under the CO+ and CO-, all the TDE functions under the BS+ and BS- performed well in 

terms of bias and ECP, where the biases are negligible, and the ECPs were above 95% 

most times. Under the negative TDE, the ECPs tended to be close to 95% compared to 

the ECPs under the positive TDE. Hence, in terms of bias and precision of such 

parameters, the parameters related to baseline hazards, TIC, and frailties are accurately 

estimated for the CO and BS models, even under misspecification work relatively well. 

However, fitting the PE model that assumes the constant TDE led to biased parameter 

estimates. 

Few convergence issues occurred while fitting the CO model to data generated 

under both CO and BS models. For each simulation, the parameter estimates are obtained 

by maximizing the log-likelihood function using the optim function in R with Nelder and 

Mead method (Nelder and Mead, 1965). The CO model did not converge 2.4% and 1.6% 

of times of the total simulations under the CO model and BS model, respectively. These 



 

50 

 

issues were caused due to the degeneration of the Nelder-Mead simplex. The PE and BS 

model did not have any convergence issues for all the simulation scenarios. 12 out of 

1500 simulations did not converge for the CO model with data under the positive CO 

model. Similarly, 7 out of 1500 simulations did not converge for the CO model fitting 

data under the positive BS model. In contrast, only 1 out of 1500 simulations did not 

converge for data under the negative BS model. 

Table 4.6: Empirical parameter estimates from misspecified TDE models under CO+ 

scenario with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based on 500 simulations each with 500 families. 

CO Positive time-dependent effects (CO+) with 𝜌 = 0.51, 𝛾1𝑔 = 2.25 

 True Model (CO) Misspecified Model (PE) 

True value Bias ESE ASE ECP  Bias ESE ASE ECP 

log(𝜆1) -4.83 0.01 0.04 0.06 97.8  -0.19 0.07 0.06 15.0 

log(𝜌1) 0.83 0.00 0.02 0.03 98.6  -0.07 0.03 0.03 31.6 

log(𝜆2) -4.50 0.00 0.03 0.03 98.4  -0.00 0.04 0.04 94.6 

log(𝜌2) 1.07 0.01 0.03 0.04 97.8  0.01 0.04 0.04 93.2 

𝛾1𝑔 2.25 0.01 0.06 0.07 97.8  0.16 0.09 0.08 49.4 

𝛾2𝑔 0.50 0.01 0.09 0.10 96.5  0.01 0.11 0.12 92.4 

log(𝑘0) 0.40 0.01 0.31 0.42 97.2  -0.19 0.33 0.61 94.6 

log(𝑘1) 0.60 -0.01 0.38 0.53 97.4  -0.58 0.53 0.59 80.8 

log(𝑘2) 0.10 0.01 0.50 0.69 98.4  0.18 0.48 0.70 96.4 

𝛽𝑠 2.00 -0.03 0.09 0.13 98.2  - - - - 

log(𝜂) -0.79 0.10 0.18 0.27 99.6  - - - - 

𝜂0 0.40 0.00 0.08 0.13 99.2  - - - - 

 Misspecified Model (BS2) Misspecified Model (BS3) 

 True value Bias ESE ASE ECP  Bias ESE ASE ECP 

log(𝜆1) -4.83 0.01 0.04 0.06 97.8  0.01 0.04 0.06 98.0 

log(𝜌1) 0.83 0.00 0.03 0.03 98.0  0.00 0.03 0.03 97.8 

log(𝜆2) -4.50 -0.00 0.03 0.04 96.4  -0.00 0.03 0.04 95.8 

log(𝜌2) 1.07 -0.00 0.03 0.04 96.4  -0.00 0.03 0.04 97.2 

𝛾1𝑔 2.25 0.00 0.07 0.07 95.8  0.00 0.07 0.07 96.6 

𝛾2𝑔 0.50 0.00 0.10 0.10 95.2  0.00 0.10 0.10 95.8 

log(𝑘0) 0.40 0.00 0.37 0.47 95.6  0.01 0.37 0.49 96.0 

log(𝑘1) 0.60 -0.02 0.43 0.55 95.8  -0.04 0.43 0.82 95.8 

log(𝑘2) 0.10 -0.08 0.67 0.74 96.8  -0.07 0.69 0.88 96.2 

ESE represents empirical standard error, ASE average standard error, ECP estimated coverage percentage. 

𝜆𝑗 and 𝜌𝑗 are the baseline hazard parameters for event 𝑗 = 1 and 2; 𝛾1𝑔 and 𝛾2𝑔 are the regression 

coefficients of the time-invariant covariate for event 1 and 2, respectively; 𝑘0, 𝑘1 and 𝑘2 are the frailty 

parameters.PE stands for permanent exposure model, CO for Cox and Oakes model, BS2 for cubic B-spline 

with 2 interior knots and BS3 for cubic spline with 3 interior knots. 
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Table 4.7: Empirical parameter estimates from misspecified TDE models under CO- 

scenario with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based on 500 simulations each with 500 families. 

CO Negative time-dependent effects (CO-) with 𝜌 = 0.51, 𝛾1𝑔 = 2.25 

 True Model (CO) Misspecified Model (PE) 

True value Bias ESE ASE ECP  Bias ESE ASE ECP 

log(𝜆1) -4.83 -0.01 0.04 0.06 98.8  0.02 0.05 0.06 93.0 

log(𝜌1) 0.83 -0.00 0.02 0.03 98.8  0.01 0.03 0.03 94.2 

log(𝜆2) -4.50 0.00 0.03 0.03 97.4  0.00 0.03 0.03 97.4 

log(𝜌2) 1.07 -0.00 0.03 0.03 95.6  -0.00 0.03 0.03 95.8 

𝛾1𝑔 2.25 0.01 0.07 0.09 96.8  0.00 0.08 0.09 96.6 

𝛾2𝑔 0.50 0.00 0.08 0.09 97.4  0.02 0.09 0.10 96.4 

log(𝑘0) 0.40 0.02 0.30 0.41 98.6  0.00 0.43 0.61 96.6 

log(𝑘1) 0.60 0.04 0.39 0.55 98.8  0.10 0.49 0.72 96.2 

log(𝑘2) 0.10 0.05 0.51 0.74 96.4  0.05 0.59 0.99 96.6 

𝛽𝑠 -2.00 -0.02 0.44 0.69 97.6  - - - - 

log(𝜂) -0.79 0.01 0.29 0.48 96.0  - - - - 

𝜂0 -0.40 0.00 0.08 0.14 99.0  - - - - 

 Misspecified Model (BS2) Misspecified Model (BS3) 

 True value Bias ESE ASE ECP  Bias ESE ASE ECP 

log(𝜆1) -4.83 -0.01 0.04 0.06 98.2  -0.01 0.04 0.07 98.8 

log(𝜌1) 0.83 -0.01 0.02 0.03 98.6  -0.01 0.02 0.04 98.6 

log(𝜆2) -4.50 -0.00 0.03 0.03 97.2  -0.00 0.03 0.03 97.8 

log(𝜌2) 1.07 -0.00 0.03 0.03 94.0  -0.00 0.03 0.03 94.6 

𝛾1𝑔 2.25 0.00 0.08 0.09 96.4  0.00 0.08 0.09 96.6 

𝛾2𝑔 0.50 0.00 0.09 0.09 95.8  0.00 0.09 0.10 95.8 

log(𝑘0) 0.40 0.01 0.35 0.41 97.4  0.02 0.33 0.51 97.2 

log(𝑘1) 0.60 -0.02 0.49 0.54 97.0  -0.03 0.49 0.64 98.4 

log(𝑘2) 0.10 -0.05 0.63 0.84 96.8  -0.07 0.76 2.40 95.8 

ESE represents empirical standard error, ASE average standard error, ECP estimated coverage percentage. 

𝜆𝑗 and 𝜌𝑗 are the baseline hazard parameters for event 𝑗 = 1 and 2; 𝛾1𝑔 and 𝛾2𝑔 are the regression 

coefficients of the time-invariant covariate for event 1 and 2, respectively; 𝑘0, 𝑘1 and 𝑘2 are the frailty 

parameters.PE stands for permanent exposure model, CO for Cox and Oakes model, BS2 for cubic B-spline 

with 2 interior knots and BS3 for cubic spline with 3 interior knots. 
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Table 4.8: Empirical parameter estimates from misspecified TDE models under BS+ 

scenario with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based on 500 simulations each with 500 families. 

BS Positive time-dependent effects (BS+) with 𝜌 = 0.51, 𝛾1𝑔 = 2.25 

 True Model (TBS2) Misspecified Model (PE) Misspecified Model (CO) 

True value Bias ESE ASE ECP  Bias ESE ASE ECP  Bias ESE ASE ECP 

log(𝜆1) -4.83 -0.01 0.04 0.06 99.2  0.02 0.05 0.04 96.2  0.02 0.04 0.06 96.0 

log(𝜌1) 0.83 -0.00 0.02 0.03 98.6  0.01 0.03 0.02 96.4  0.01 0.02 0.04 96.4 

log(𝜆2) -4.50 -0.00 0.03 0.04 97.8  -0.01 0.04 0.03 98.0  -0.01 0.03 0.04 96.8 

log(𝜌2) 1.07 -0.01 0.03 0.04 96.8  -0.01 0.04 0.03 97.0  -0.01 0.03 0.04 96.4 

𝛾1𝑔 2.25 0.01 0.07 0.07 96.4  -0.02 0.07 0.06 95.6  -0.02 0.06 0.08 96.4 

𝛾2𝑔 0.50 0.00 0.10 0.10 95.4  -0.01 0.11 0.09 95.2  -0.01 0.09 0.11 95.4 

log(𝑘0) 0.40 0.00 0.34 0.45 96.8  0.01 0.57 0.29 97.0  0.04 0.29 0.59 95.4 

log(𝑘1) 0.60 -0.05 0.43 0.55 96.8  0.01 0.56 0.32 98.0  -0.05 0.32 0.67 97.6 

log(𝑘2) 0.10 -0.02 0.57 0.77 98.4  -0.01 1.21 0.33 99.6  -0.10 0.33 1.13 98.0 

𝛽𝑠,0 0.01 -0.02 0.17 0.20 97.0  - - - -  - - - - 

𝛽𝑠,1 1.02 0.02 0.16 0.22 97.4  - - - -  - - - - 

𝛽𝑠,2 1.23 -0.01 0.13 0.20 98.0  - - - -  - - - - 

𝛽𝑠,3 0.34 0.08 0.34 0.68 98.8  - - - -  - - - - 

𝛽𝑠,4 0.23 -0.11 0.87 2.24 99.0  - - - -  - - - - 

𝛽𝑠,5 0.21 0.19 1.41 6.60 99.8  - - - -  - - - - 

 Misspecified Model (BS2) Misspecified Model (BS3)      

 True value Bias ESE ASE ECP  Bias ESE ASE ECP  

log(𝜆1) -4.83 -0.01 0.04 0.06 99.0  -0.01 0.04 0.07 99.2      

log(𝜌1) 0.83 -0.00 0.02 0.03 98.8  -0.01 0.02 0.04 98.6      

log(𝜆2) -4.50 -0.00 0.03 0.04 97.4  -0.00 0.03 0.04 97.4      

log(𝜌2) 1.07 -0.01 0.03 0.04 96.8  -0.00 0.03 0.04 97.8      

𝛾1𝑔 2.25 0.01 0.06 0.07 97.0  0.01 0.06 0.07 97.8      

𝛾2𝑔 0.50 0.00 0.09 0.10 95.0  0.00 0.10 0.10 94.4      

log(𝑘0) 0.40 0.00 0.34 0.42 97.2  0.00 0.35 0.51 95.2      

log(𝑘1) 0.60 -0.05 0.45 0.55 96.2  -0.05 0.45 0.56 97.4      

log(𝑘2) 0.10 -0.02 0.58 0.77 98.4  -0.02 0.56 0.76 98.0      

ESE represents empirical standard error, ASE average standard error, ECP estimated coverage percentage. 

𝜆𝑗 and 𝜌𝑗 are the baseline hazard parameters for event 𝑗 = 1 and 2; 𝛾1𝑔 and 𝛾2𝑔 are the regression 

coefficients of the time-invariant covariate for event 1 and 2, respectively; 𝑘0, 𝑘1 and 𝑘2 are the frailty 

parameters.PE stands for permanent exposure model, CO for Cox and Oakes model, TBS2 for true cubic B-

spline with 2 interior knots, BS2 for cubic B-spline with 2 interior knots and BS3 for cubic spline with 3 

interior knots. 
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Table 4.9: Empirical parameter estimates from misspecified TDE models under BS- 

scenario with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based on 500 simulations each with 500 families. 

BS Negative time-dependent effects (BS-) with 𝜌 = 0.51, 𝛾1𝑔 = 2.25 

 True Model (TBS2) Misspecified Model (PE) Misspecified Model (CO) 

True value Bias ESE ASE ECP  Bias ESE ASE ECP  Bias ESE ASE ECP 

log(𝜆1) -4.83 -0.01 0.05 0.06 97.4  -0.01 0.06 0.05 97.8  0.00 0.05 0.07 96.6 

log(𝜌1) 0.83 -0.01 0.02 0.03 96.4  0.00 0.03 0.03 96.6  0.00 0.03 0.03 96.4 

log(𝜆2) -4.50 0.00 0.03 0.03 95.8  0.00 0.04 0.03 96.0  0.00 0.03 0.03 95.8 

log(𝜌2) 1.07 0.00 0.03 0.03 97.0  0.00 0.03 0.03 97.8  0.00 0.03 0.03 95.8 

𝛾1𝑔 2.25 0.01 0.07 0.09 97.8  0.02 0.09 0.08 96.4  0.02 0.08 0.09 94.8 

𝛾2𝑔 0.50 0.01 0.08 0.09 95.8  0.03 0.11 0.08 97.6  0.02 0.09 0.10 96.4 

log(𝑘0) 0.40 0.02 0.36 0.48 96.8  0.02 0.69 0.38 96.6  0.00 0.42 0.54 95.8 

log(𝑘1) 0.60 -0.01 0.48 0.82 97.0  0.09 0.73 0.41 97.8  0.01 0.61 0.84 96.4 

log(𝑘2) 0.10 -0.06 0.67 0.95 97.0  0.06 1.36 0.53 98.8  -0.02 0.74 0.95 96.2 

𝛽𝑠,0 -0.01 -0.06 0.23 0.30 95.4  - - - -  - - - - 

𝛽𝑠,1 -1.02 0.04 0.30 0.47 95.8  - - - -  - - - - 

𝛽𝑠,2 -1.23 -0.01 0.22 0.43 99.0  - - - -  - - - - 

𝛽𝑠,3 -0.34 0.07 0.43 1.27 99.4  - - - -  - - - - 

𝛽𝑠,4 -0.23 -0.07 0.93 3.60 99.2  - - - -  - - - - 

𝛽𝑠,5 -0.21 0.20 1.48 8.79 99.4  - - - -  - - - - 

 Misspecified Model (BS2) Misspecified Model (BS3)      

 True value Bias ESE ASE ECP  Bias ESE ASE ECP  

log(𝜆1) -4.83 -0.01 0.05 0.06 98.0  -0.01 0.05 0.06 98.4      

log(𝜌1) 0.83 -0.01 0.02 0.03 97.4  -0.01 0.02 0.03 98.0      

log(𝜆2) -4.50 0.00 0.03 0.03 95.8  0.00 0.03 0.03 96.4      

log(𝜌2) 1.07 0.00 0.03 0.03 96.8  0.00 0.03 0.03 96.6      

𝛾1𝑔 2.25 0.01 0.08 0.09 97.2  0.01 0.08 0.09 96.4      

𝛾2𝑔 0.50 0.01 0.08 0.09 96.8  0.01 0.08 0.10 96.8      

log(𝑘0) 0.40 0.02 0.35 0.41 96.2  0.02 0.36 0.57 96.2      

log(𝑘1) 0.60 -0.01 0.51 0.58 97.6  -0.02 0.52 0.65 97.4      

log(𝑘2) 0.10 -0.05 0.64 0.93 97.0  -0.06 0.69 1.15 96.8      

ESE represents empirical standard error, ASE average standard error, ECP estimated coverage percentage. 

𝜆𝑗 and 𝜌𝑗 are the baseline hazard parameters for event 𝑗 = 1 and 2; 𝛾1𝑔 and 𝛾2𝑔 are the regression 

coefficients of the time-invariant covariate for event 1 and 2, respectively; 𝑘0, 𝑘1 and 𝑘2 are the frailty 

parameters.PE stands for permanent exposure model, CO for Cox and Oakes model, TBS2 for true cubic B-

spline with 2 interior knots, BS2 for cubic B-spline with 2 interior knots and BS3 for cubic spline with 3 

interior knots. 
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4.6.2.3 Cause-specific penetrance 

The robustness of the TDE function is evaluated under the misspecified TDE functions 

with high frailty correlation and large mutation effect. Tables 4.10 and 4.11 summarize 

the results under the CO+ and CO- and Tables 4.12 and 4.13 under the BS+ and BS-, 

respectively. Under the CO+, both the CO and BS models worked well in terms of the 

PBIAS and ECPs, where the PBIASs are negligible. In addition, since the ASEs tend to 

be larger than the ESEs, the corresponding confidence intervals are conservative, leading 

the ECPs to be higher than 95%. However, most ECPs lie within the acceptable range 

from 93.1% to 96.9%. In addition, there are some minor differences between the ESEs 

and ASEs of the CO and BS models for mutation non-carriers than for mutation carriers. 

In contrast, the PE model yields biased penetrance estimates, where the PBIASs of the PE 

model ranged from -21.1 to 37.83%. Still, the ESEs and ASEs of the PE model agree 

with each other leading to the ECPs below 90%, which indicates that the penetrance 

estimates of the PE model are biased. The results were similar to the CO-, but the PE 

model yields less biased parameter estimates, where the PBIASs of the PE model ranged 

from -14.19 to 3.54%. Under the CO+, the average ratio between the ASEs of the 

mutation carriers and non-carriers under all models equals 1.87. Similarly, such average 

ratios under all models are 2.57, 1.71 and 2.76 under the CO-, BS+ and BS-, respectively. 

Similarly, under both the BS+ and BS-, only the BS models worked well in terms 

of the PBIAS, whereas the PBIAs of the PE and CO models were not close to zero. 

Although the ASEs were also larger than the ESEs for all the TDE models, the ECPs of 

the BS models lay within the acceptable range most time, but the ECPs of the PE and CO 

models were not close to 0.95. As the CO+ and CO-, there were larger differences 

between the ASEs and ESEs for mutation carriers than the non-carriers.  

Figures 4.2 to 4.5 visualize the bias and precision of the penetrance estimates at 

time 70. Four different intervention times occurred at age 30, 40, 50 and without 

intervention under the true model and misspecified models based on 500 simulations for 

each TDE model. Each small circle indicates the bias of the penetrance estimates at time 

70 with different intervention times, and the error bars are mean penetrance estimates 

± 1.96 × ASE. The black, green-, blue-, red- and magenta-coloured lines represent the 
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PE, CO, BS2, BS3 and true BS model with 2 interior knots, respectively. The results 

corresponding to mutation non-carriers are presented on the left side of the figures and 

that of mutation carriers on the right side. Regardless of the level of TDE, all the graphs 

provide similar results, which demonstrate that the biases of the BS models were close to 

zero under both true and misspecified TDE models. However, the PE and CO models 

were not robust to the misspecified TDE models. The figures also demonstrate that 

mutation carriers have wider 95% confidence intervals (CI) than mutation non-carriers 

because they have larger ASEs than non-carriers.  

 

4.6.2.4 AIC 

To illustrate the efficiency of the BS model, the average AICs are compared for the 

correlated frailty competing risk models with different TDE functions in Table 4.14. With 

datasets generated under the CO model, the CO model obtained the smallest AIC, which 

indicates that the CO model is the best fit for the data. However, with low correlation and 

low mutation effect, the BS models obtained the smallest average AIC even though the 

CO model is the true model. In contrast, with datasets generated under the cubic BS 

model with two interior knots, the BS models provided the smallest average AIC. 

Although other BS models provided the smallest AIC, this demonstrates the flexibility of 

the BS model with a different number of interior knots and degrees and robustness to the 

misspecified TDE model. 
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Table 4.10: Empirical penetrance estimates at time 70 for mutation carriers and non-

carriers with different intervention times from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions when data generated under 

the CO model with a positive TDE, high correlation between competing events (𝜌 =

0.51) and high mutation effect (𝛾1𝑔 = 2.25); Results are based on 500 simulations, each 

with 500 families. 

Data generated from CO positive TDE (CO+) with 𝜌 = 0.51, 𝛾1𝑔 = 2.25 

 True Model (CO) Misspecified Model (PE) 

True value PBIAS ESE ASE ECP  PBIAS ESE ASE ECP 

Mutation status 𝐺 = 0          

𝐹1(70|𝑡𝑠 = ∞)  0.119 1.86 0.007 0.010 99.0  -21.10 0.009 0.008 18.8 

𝐹1(70|𝑡𝑠=30)   0.180 1.16 0.011 0.014 98.0  37.83 0.015 0.014 0.6 

𝐹1(70|𝑡𝑠=40) 0.184 0.61 0.010 0.012 97.2  24.30 0.014 0.013 8.6 

𝐹1(70|𝑡𝑠=50) 0.183 0.07 0.009 0.010 96.7  7.15 0.012 0.012 77.0 

Mutation status 𝐺 = 1          

𝐹1(70|𝑡𝑠 = ∞)  0.612 0.24 0.018 0.024 97.6  -7.01 0.025 0.025 55.02 

𝐹1(70|𝑡𝑠=30)   0.746 0.57 0.018 0.027 99.0  12.47 0.018 0.017 1.6 

𝐹1(70|𝑡𝑠=40)   0.748 0.38 0.016 0.020 98.6  8.37 0.018 0.018 9.6 

𝐹1(70|𝑡𝑠=50)  0.736 0.25 0.015 0.017 98.2  3.61 0.018 0.018 63.4 

 Misspecified Model (BS2) Misspecified Model (BS3) 

 True value PBIAS ESE ASE ECP  PBIAS ESE ASE ECP 

Mutation status 𝐺 = 0          

𝐹1(70|𝑡𝑠 = ∞)  0.119 1.65 0.008 0.011 97.8  1.33 0.008 0.010 98.0 

𝐹1(70|𝑡𝑠=30)   0.180 1.82 0.019 0.027 98.2  1.29 0.020 0.026 97.0 

𝐹1(70|𝑡𝑠=40) 0.184 0.20 0.011 0.013 96.4  0.22 0.011 0.012 96.4 

𝐹1(70|𝑡𝑠=50) 0.183 0.13 0.010 0.012 96.6  -0.04 0.010 0.011 96.8 

Mutation status 𝐺 = 1          

𝐹1(70|𝑡𝑠 = ∞)  0.612 1.01 0.020 0.025 97.2  0.83 0.021 0.005 95.6 

𝐹1(70|𝑡𝑠=30)   0.746 0.52 0.028 0.039 97.8  0.29 0.028 0.038 97.4 

𝐹1(70|𝑡𝑠=40)   0.748 0.20 0.017 0.021 97.6  0.15 0.017 0.020 98.0 

𝐹1(70|𝑡𝑠=50)  0.736 0.25 0.016 0.019 97.0  0.12 0.016 0.018 96.8 

For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and 

estimated 95% coverage percentage(ECP) are obtained from 500 simulations each with 500 families. 

𝐹1(70|𝑡𝑠 = ∞) denotes the cause-specific penetrance for event 1 without intervention. 
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Table 4.11: Empirical penetrance estimates at time 70 for mutation carriers and non-

carriers with different intervention times from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions when data generated under 

the CO model with a negative TDE, high correlation between competing events (𝜌 =

0.51) and high mutation effect (𝛾1𝑔 = 2.25); Results are based on 500 simulations, each 

with 500 families. 

Data generated from CO negative TDE (CO-) with 𝜌 = 0.51, 𝛾1𝑔 = 2.25 

 True Model (CO) Misspecified Model (PE) 

True value PBIAS ESE ASE ECP  PBIAS ESE ASE ECP 

Mutation status 𝐺 = 0         

𝐹1(70|𝑡𝑠 = ∞)  0.119 -0.36 0.008 0.011 97.6  3.54 0.010 0.011 94.8 

𝐹1(70|𝑡𝑠=30)   0.082 -0.11 0.006 0.009 97.2  -14.19 0.006 0.006 53.6 

𝐹1(70|𝑡𝑠=40) 0.085 -0.18 0.006 0.008 97.4  -8.85 0.006 0.006 78.8 

𝐹1(70|𝑡𝑠=50) 0.091 -0.27 0.006 0.007 97.2  -2.04 0.006 0.007 95.8 

Mutation status 𝐺 = 1         

𝐹1(70|𝑡𝑠 = ∞)  0.612 0.30 0.020 0.027 98.2  2.20 0.023 0.026 93.6 

𝐹1(70|𝑡𝑠=30)   0.489 0.43 0.022 0.029 97.4  -9.06 0.022 0.022 48.6 

𝐹1(70|𝑡𝑠=40)   0.502 0.42 0.020 0.024 97.4  -4.89 0.020 0.021 79.4 

𝐹1(70|𝑡𝑠=50)  0.527 0.39 0.018 0.021 96.6  -0.39 0.019 0.021 95.4 

 Misspecified Model (BS2) Misspecified Model (BS3) 

 True value PBIAS ESE ASE ECP  PBIAS ESE ASE ECP 

Mutation status 𝐺 = 0         

𝐹1(70|𝑡𝑠 = ∞)  0.119 -0.67 0.009 0.011 97.2  -0.84 0.009 0.013 96.6 

𝐹1(70|𝑡𝑠=30)   0.082 1.87 0.009 0.015 98.6  2.32 0.009 0.015 99.0 

𝐹1(70|𝑡𝑠=40) 0.085 0.71 0.006 0.008 96.8  0.78 0.006 0.009 98.2 

𝐹1(70|𝑡𝑠=50) 0.091 0.04 0.007 0.008 96.8  0.04 0.007 0.009 97.6 

Mutation status 𝐺 = 1         

𝐹1(70|𝑡𝑠 = ∞)  0.612 -0.41 0.023 0.027 97.0  -0.49 0.024 0.033 97.0 

𝐹1(70|𝑡𝑠=30)   0.489 0.86 0.030 0.050 98.6  1.12 0.031 0.051 98.8 

𝐹1(70|𝑡𝑠=40)   0.502 0.33 0.021 0.025 97.8  0.38 0.021 0.028 97.2 

𝐹1(70|𝑡𝑠=50)  0.527 -0.05 0.021 0.023 96.4  -0.06 0.021 0.027 96.8 

For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and estimated 

95% coverage percentage (ECP) are obtained from 500 simulations each with 500 families. 𝐹1(70|𝑡𝑠 = ∞) 
denotes the cause-specific penetrance for event 1 without intervention. 
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Table 4.12: Empirical penetrance estimates at time 70 for mutation carriers and non-

carriers with different intervention times from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions when data generated under 

the BS model with a positive TDE, high correlation between competing events (𝜌 =

0.51) and high mutation effect (𝛾1𝑔 = 2.25); Results are based on 500 simulations, each 

with 500 families. 

BS Positive time-dependent effects (BS+) with 𝜌 = 0.51, 𝛾1𝑔 = 2.25 

 True Model (TBS2) Misspecified Model (PE) Misspecified Model (CO) 

True value PBIAS ESE ASE ECP  PBIAS ESE ASE ECP  PBIAS ESE ASE ECP 

Mutation status 𝐺 = 0              

𝐹1(70|𝑡𝑠 = ∞)  0.119 -0.76 0.008 0.010 98.2  3.02 0.007 0.009 97.4  2.49 0.008 0.011 97.8 

𝐹1(70|𝑡𝑠=30)   0.202 1.37 0.019 0.026 97.0  20.58 0.012 0.014 10.2  21.87 0.019 0.024 27.3 

𝐹1(70|𝑡𝑠=40) 0.215 0.62 0.013 0.014 97.2  6.77 0.011 0.013 80.6  7.22 0.013 0.016 83.0 

𝐹1(70|𝑡𝑠=50) 0.211 0.19 0.011 0.012 96.0  -2.92 0.010 0.012 94.8  -3.06 0.010 0.011 92.8 

Mutation status 𝐺 = 1              

𝐹1(70|𝑡𝑠 = ∞)  0.612 -0.13 0.021 0.024 97.4  0.80 0.019 0.024 97.2  0.56 0.022 0.026 95.8 

𝐹1(70|𝑡𝑠=30)   0.783 0.47 0.022 0.033 98.2  4.71 0.014 0.019 38.4  4.93 0.018 0.027 49.9 

𝐹1(70|𝑡𝑠=40)   0.788 0.30 0.016 0.019 97.2  1.20 0.014 0.018 93.0  1.29 0.016 0.021 92.2 

𝐹1(70|𝑡𝑠=50)  0.768 0.17 0.016 0.017 96.2  -1.18 0.014 0.019 96.4  -1.22 0.016 0.018 95.4 

 Misspecified Model (BS2) Misspecified Model (BS3)      

 True value PBIAS ESE ASE ECP  PBIAS ESE ASE ECP  

Mutation status 𝐺 = 0              

𝐹1(70|𝑡𝑠 = ∞)  0.119 -0.81 0.008 0.010 98.0  -1.11 0.007 0.011 98.0      

𝐹1(70|𝑡𝑠=30)   0.202 1.59 0.018 0.029 98.4  1.40 0.018 0.031 98.0      

𝐹1(70|𝑡𝑠=40) 0.215 0.73 0.012 0.016 97.6  0.75 0.012 0.015 98.0      

𝐹1(70|𝑡𝑠=50) 0.211 0.22 0.011 0.014 95.4  0.26 0.011 0.014 98.0      

Mutation status 𝐺 = 1              

𝐹1(70|𝑡𝑠 = ∞)  0.612 -0.17 0.021 0.024 97.6  -0.33 0.020 0.027 97.6      

𝐹1(70|𝑡𝑠=30)   0.783 0.54 0.022 0.037 98.8  0.48 0.022 0.038 99.2      

𝐹1(70|𝑡𝑠=40)   0.788 0.33 0.016 0.020 96.6  0.32 0.016 0.021 96.4      

𝐹1(70|𝑡𝑠=50)  0.768 0.17 0.016 0.018 95.8  0.16 0.015 0.019 96.6      

For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and estimated 95% 

coverage percentage (ECP) are obtained from 500 simulations each with 500 families. 𝐹1(70|𝑡𝑠 = ∞) denotes the cause-

specific penetrance for event 1 without intervention. 

 

 



 

59 

 

Table 4.13: Empirical penetrance estimates at time 70 for mutation carriers and non-

carriers with different intervention times from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions when data generated under 

the BS model with a negative TDE, high correlation between competing events (𝜌 =

0.51) and high mutation effect (𝛾1𝑔 = 2.25); Results are based on 500 simulations, each 

with 500 families. 

BS Negative time-dependent effects (BS-) with 𝜌 = 0.51, 𝛾1𝑔 = 2.25 

 True Model (TBS2) Misspecified Model (PE) Misspecified Model (CO) 

True value PBIAS ESE ASE ECP  PBIAS ESE ASE ECP  PBIAS ESE ASE ECP 

Mutation status 𝐺 = 0              

𝐹1(70|𝑡𝑠 = ∞)  0.119 -0.57 0.009 0.011 97.4  -0.29 0.009 0.011 98.0  0.51 0.010 0.012 96.6 

𝐹1(70|𝑡𝑠=30)   0.074 2.53 0.009 0.015 97.6  -16.72 0.005 0.006 40.0  -15.49 0.007 0.012 60.8 

𝐹1(70|𝑡𝑠=40) 0.072 0.93 0.006 0.007 98.4  -3.58 0.005 0.006 93.6  -3.28 0.006 0.008 94.2 

𝐹1(70|𝑡𝑠=50) 0.079 0.10 0.006 0.007 97.0  3.69 0.006 0.007 96.4  3.64 0.006 0.007 94.4 

Mutation status 𝐺 = 1              

𝐹1(70|𝑡𝑠 = ∞)  0.612 0.25 0.024 0.028 95.8  1.10 0.021 0.028 97.2  1.02 0.025 0.031 95.4 

𝐹1(70|𝑡𝑠=30)   0.454 1.95 0.034 0.054 98.2  -9.51 0.021 0.022 48.0  -9.22 0.027 0.048 64.2 

𝐹1(70|𝑡𝑠=40)   0.452 1.25 0.021 0.027 96.2  -0.41 0.019 0.021 97.0  -0.81 0.021 0.028 96.0 

𝐹1(70|𝑡𝑠=50)  0.487 0.74 0.021 0.024 96.0  3.78 0.018 0.022 88.8  3.21 0.020 0.023 88.6 

 Misspecified Model (BS2) Misspecified Model (BS3)      

 True value PBIAS ESE ASE ECP  PBIAS ESE ASE ECP  

Mutation status 𝐺 = 0              

𝐹1(70|𝑡𝑠 = ∞)  0.119 -0.48 0.009 0.011 97.4  -0.44 0.009 0.012 97.0      

𝐹1(70|𝑡𝑠=30)   0.074 2.84 0.009 0.014 98.2  2.34 0.010 0.016 97.6      

𝐹1(70|𝑡𝑠=40) 0.072 0.92 0.006 0.007 98.4  1.17 0.006 0.007 97.8      

𝐹1(70|𝑡𝑠=50) 0.079 0.12 0.006 0.007 97.0  0.25 0.006 0.007 96.8      

Mutation status 𝐺 = 1              

𝐹1(70|𝑡𝑠 = ∞)  0.612 0.33 0.024 0.027 96.4  0.18 0.025 0.030 97.0      

𝐹1(70|𝑡𝑠=30)   0.454 2.19 0.033 0.052 98.4  1.67 0.036 0.057 98.8      

𝐹1(70|𝑡𝑠=40)   0.452 1.28 0.021 0.023 96.0  1.23 0.022 0.025 95.4      

𝐹1(70|𝑡𝑠=50)  0.487 0.80 0.020 0.022 94.6  0.67 0.021 0.024 93.4      

For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and estimated 95% 

coverage percentage (ECP) are obtained from 500 simulations each with 500 families. 𝐹1(70|𝑡𝑠 = ∞) denotes the cause-

specific penetrance for event 1 without intervention. 
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Figure 4.2: Bias and 95% confidence interval of the bias for penetrance estimations at 

time 70 for mutation carriers and non-carriers with different intervention times (30, 40, 

50, and 70 (no intervention)) estimated from the correlated frailty competing risks models 

with different time-dependent effect (TDE) functions. Data generated under the CO model 

with a positive TDE, a high correlation between competing events (𝜌 = 0.51) a high 

mutation (𝛾1𝑔 = 2.25). Results are based on 500 simulations each with 500 families. 
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Figure 4.3: Bias and 95% confidence interval of the bias for penetrance estimations at 

time 70 for mutation carriers and non-carriers with different intervention times (30, 40, 

50, and 70 (no intervention)) estimated from the correlated frailty competing risks models 

with different time-dependent effect (TDE) functions. Data generated under the CO 

model with a negative TDE, a high correlation between competing events (𝜌 = 0.51) a 

high mutation (𝛾1𝑔 = 2.25). Results are based on 500 simulations each with 500 families. 
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Figure 4.4: Bias and 95% confidence interval of the bias for penetrance estimations at 

time 70 for mutation carriers and non-carriers with different intervention times (30, 40, 

50, and 70 (no intervention))  estimated from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions under the BS model with 2 

interior knots and a positive TDE, a high correlation between competing events (𝜌 =

0.51) a high mutation (𝛾1𝑔 = 2.25) based on 500 simulations each with 500 families. 
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Figure 4.5: Bias and 95% confidence interval of the bias for penetrance estimations at 

time 70 for mutation carriers and non-carriers with different intervention times (30, 40, 

50, and 70 (no intervention))  estimated from the correlated frailty competing risks 

models with different time-dependent effect (TDE) functions under the BS model with 2 

interior knots and a negative TDE, a high correlation between competing events (𝜌 =

0.51) a high mutation (𝛾1𝑔 = 2.25) based on 500 simulations each with 500 families. 
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Table 4.14: Average AIC values from the correlated frailty competing risks model with 

misspecified TDE model under different scenarios with 𝜌 = 0.51 and 𝛾1𝑔 = 2.25 based 

on 500 simulations each with 500 families. 

Scenario True model PE CO TBS2 BS2 BS3 

1 BS+ 19819.51 19821.89 19775.07 19774.86 19775.95 

2 BS+ 19711.88 19714.49 19664.12 19664.11 19665.17 

3 BS+ 20241.20 20242.68 20189.73 20189.73 20190.57 

4 BS- 17458.92 17649.96 17444.05 17444.12 17444.95 

5 BS- 17228.54 17437.10 17216.83 17216.63 17217.67 

6 BS- 18260.01 18434.24 18244.73 18244.68 18245.52 

7 CO+ 19614.22 19389.31 - 19340.98 19339.18 

8 CO+ 19472.86 19224.00 - 19230.01 19229.91 

9 CO+ 20021.06 19754.66 - 19758.18 19756.87 

10 CO- 17677.15 17649.96 - 17653.38 17654.31 

11 CO- 17463.88 17437.10 - 17440.69 17441.81 

12 CO- 18467.09 18434.24 - 18437.90 18438.86 

For each scenario, the AICs are obtained from 500 simulations each with 500 families. The 

permanent exposure (PE) and Cox and Oakes (CO) are the TDE functions; The two cubic B-

spline (BS) models, BS2 and BS3, have 2 interior knots and 3 interior knots, respectively, and 

TBS32 denotes the true BS model with a degree of 3 and 2 interior knots. 𝜌 is the correlation 

between the frailties of two competing events 𝑗; 𝛾1𝑔 is the regression coefficient for the time-

invariant covariate for event 1. 

 

. 
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Chapter 5 Model performance 

 

For survival analysis, several measures of quantifying the predictive ability of risk 

prediction models have been proposed, which are often classified as discrimination and 

calibration. In this chapter, we focus on the C-index and Brier score applied particularly 

for clustered survival data in competing risks settings to evaluate the predictive ability of 

the proposed model with time-dependent covariates. Based on exemplified data, we 

illustrate their use. This chapter is divided into two sections. Section 5.1 describes the 

concordance index quantifies discrimination under various settings while introducing a 

new approach that accounts for simultaneously clustered competing risk data with 

TDC/TDE. In section 5.2, the Brier score is described to assess the calibration of our 

proposed model. 

 

5.1 Discrimination 

5.1.1 C-index for survival data 

Concordance, or c-index, is commonly used to quantify the relationship between two 

variables. Two subjects are called concordant if both values of one subject are larger (or 

smaller) than the corresponding values of the other subject. This index has commonly 

been used to quantify model performance, referred to as discrimination, where 

observations are the standard while model predictions are regarded as test value 

(Steyerberg et al., 2010). In the case of binary outcomes, the C-index is equivalent to the 

area under the receiver operating characteristic curve (AUC) (Bamber, 1975; Hanley and 

McNeil, 1982). For survival data, Harrell et al. (1982) proposed the C-index with the 

ranks of observed data as the standard and computed the concordance of the predicted 

survival times with the observed data. Kang et al. (2015) has proposed an inference 

method for survival data that has been implemented in SAS proc phreg. 
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Harrell’s C-index quantifies the probability that of two randomly selected 

subjects, the one with a lower survival time will experience the event first (Harrell et al., 

1982). Considering a pair of subjects (𝑖, 𝑗) randomly selected from the data with the 

observed survival times (𝑇𝑖, 𝑇𝑗) and event indicators (𝛿𝑖, 𝛿𝑗) and predicted survival times 

(�̂�𝑖, �̂�𝑗), Harrell’s C-index is defined as 

𝐶𝐻 = 𝑃(�̂�𝑖 < �̂�𝑗|𝑇𝑖 < 𝑇𝑗) 

which can be interpreted as the proportion of the number of concordant pairs over the 

number of comparable pairs.  

A pair is called comparable if and only if it is known which subject has the event 

first. For example, two subjects are considered as a comparable pair if the subject with a 

shorter observed survival time experiences the event regardless of the event status of the 

subject with a longer observed time (𝑇𝑖 < 𝑇𝑗 , 𝛿𝑖 = 1). Even if their observed survival 

times are the same, they are considered comparable once their event statuses are different 

(𝑇𝑖 = 𝑇𝑗 , 𝛿𝑖 ≠ 𝛿𝑗). However, some pairs are not comparable if neither of the subjects 

experiences the event during the follow-up time regardless of their observed survival 

times (𝛿𝑖 = 𝛿𝑗 = 0), the subject with a shorter observed survival time is censored (𝑇𝑖 <

𝑇𝑗 , 𝛿𝑖 = 0), or both have the event at the same time (𝑇𝑖 = 𝑇𝑗 , 𝛿𝑖 = 𝛿𝑗 = 1) because it is 

impossible to determine which one experiences the event first.  

Among the comparable pairs, if the predicted survival time is longer (shorter) for 

the pair member with later (earlier) survival time, the pair is referred to as concordant 

(discordant).  

It is known that a one-to-one correspondence holds between the predicted survival 

time, �̂�𝑖, and predicted survival probability, �̂�𝑖(𝑡|𝑥𝑖), for any 𝑡 > 0, when a proportional 

hazard model is used. That is, a comparison of the predicted survival times of any pair is 

equivalent to a comparison of their predicted survival probabilities for any 𝑡 > 0 (Pencina 

and D’Agostino, 2004). Furthermore, comparing their predicted survival probabilities 
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under the proportional hazard model can be reduced to comparing their risk scores or 

linear predictors, �̂�𝑇𝑋, implying the following comparisons are equivalent:  

�̂�𝑖 < �̂�𝑗 ⇔ �̂�𝑖(𝑡|𝑋𝑖) <  �̂�𝑗(𝑡|𝑋𝑗) ⇔ �̂�𝑇𝑋𝑖 > �̂�𝑇𝑋𝑗 

Thus, Harrell’s C-index can be expressed in terms of the predicted survival probabilities 

or predicted risk scores as   

𝐶𝐻 = 𝑃(�̂�𝑖 < �̂�𝑗|𝑇𝑖 < 𝑇𝑗) = 𝑃(�̂�𝑖(𝑡|𝑋𝑖) <  �̂�𝑗(𝑡|𝑋𝑗)|𝑇𝑖 < 𝑇𝑗) = 𝑃(�̂�
𝑇𝑋𝑖 > �̂�𝑇𝑋𝑗|𝑇𝑖 < 𝑇𝑗). 

As a comparison measure, the C-index can take a value between 0.5 and 1. In general, the 

C-index of 0.5 corresponds to prediction no better than chance, 0.5 to 0.7 is considered as 

poor discrimination, 0.7 to 0.8 indicates considered acceptable, 0.8 to 0.9 is considered 

excellent, and 1 indicates perfect prediction (Hosmer et al., 2013). Thus, a value close to 

0.5 represents the poor predictive performance of the model, and a value close to 1 

represents good performance. 

For the data with 𝑛 individuals, consider 𝑡𝑖 and 𝑡𝑗 as the observed survival times 

of subjects 𝑖 and 𝑗. The event indicator 𝛿𝑖 equals 1 if the subject experiences the event 

and 0 otherwise. Then, by using all comparable pairs from the data, Harrell’s C-index can 

be calculated by 

�̂�𝐻 =
∑ ∑ 𝑄𝑖𝑗{𝐼(𝑡𝑖 < 𝑡𝑗) + 𝐼(𝑡𝑖 = 𝑡𝑗 , 𝛿𝑗 = 0)}𝛿𝑖

𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1

∑ ∑ {𝐼(𝑡𝑖 < 𝑡𝑗) + 𝐼(𝑡𝑖 = 𝑡𝑗 , 𝛿𝑗 = 0)}𝛿𝑖
𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1

 

where {𝐼(𝑡𝑖 < 𝑡𝑗) + 𝐼(𝑡𝑖 = 𝑡𝑗 , 𝛿𝑗 = 0)}𝛿𝑖 indicates if a pair is comparable or not. In 

addition, 𝑄𝑖𝑗 = 𝐼{(�̂�
𝑇𝑋𝑖 > �̂�

𝑇𝑋𝑗) + 0.5𝐼(�̂�
𝑇𝑋𝑖 = �̂�

𝑇𝑋𝑗)} indicates the order of the 

predicted risk scores, which takes a value 0, 0.5, or 1, such that 

𝑄𝑖𝑗 = {

1          �̂�𝑇𝑋𝑖 > �̂�𝑇𝑋𝑗 (𝑖th risk score is larger than 𝑗th risk score),   

0.5       �̂�𝑇𝑋𝑖 = �̂�𝑇𝑋𝑗 (tied risk scores),                                                    

0         �̂�𝑇𝑋𝑖 < �̂�𝑇𝑋𝑗 (𝑖th risk score is smaller than 𝑗th risk score).
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Although Harrell’s C-index is widely used, it excludes the pairs that are not 

comparable due to the censoring resulting in dependence on the censoring distribution 

(Schmid and Potapov, 2012). As a result, Harrell’s C-index is upwardly biased when the 

amount of censoring is large. To address this limitation, Uno et al. (2011) proposed use of 

inverse probability of censoring weight (IPCW) applied to each pair of subjects to 

remove the censoring dependence in Harrell’s C-index, where the weight is based on the 

inverse of the probability that two subjects are not censored at the lower observed time 𝑡𝑖. 

The censoring probability can be estimated from the Kaplan-Meier estimator of the 

censoring distribution. Furthermore, the censoring time is often shorter than that of the 

true failure time in survival data, resulting in few available data. Then, the estimation of 

the survival function with a large time would be unstable due to the small number of risk 

set at the tail of the survival curve. To address this problem, the discriminative ability of a 

model at a certain time interval can be used instead of evaluating the global prediction 

accuracy. Uno’s C-index assesses the model performance accounting for censoring 

within the time interval (0, ). Since the truncation time 𝜈 influences the interpretation of 

Uno’s C-index, multiple truncation time points can be evaluated to compare 

discrimination ability. 

Uno’s C-index conditional on the time interval (0, 𝜈) is defined as  

𝐶𝑈(𝜈) = 𝑃(�̂�𝑇𝑋𝑖 > �̂�
𝑇𝑋𝑗|𝑇𝑖 < 𝑇𝑗 , 𝑇𝑖 < 𝜈) 

where 𝜈 represents the truncation time for 𝑖th subject. The major difference between 

Harrell’s C-index and Uno’s C-index is how they order the survival times in the presence 

of censoring. Uno’s C-index is the truncated version of Harrell’s C-index accounting for 

censoring with a condition, where the shortest observed time of a pair of subjects should 

be less than a prespecified time point 𝜈.  

 With �̂�𝐶(𝑡−), the censoring distribution estimated by the Kaplan Meier estimator 

at time 𝑡 −, which is the time point just before 𝑡, Uno’s C-index can be obtained by 

applying the inverse probability of censoring weights into the Harrell’s C-index as  
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�̂�𝑈(𝜈) =
∑ ∑ {�̂�𝐶(𝑡𝑖−)}

−2
𝑄𝑖𝑗{𝐼(𝑡𝑖 < 𝑡𝑗) + 𝐼(𝑡𝑖 = 𝑡𝑗 , 𝛿𝑗 = 0)}𝐼(𝑡𝑖 < 𝜈)𝛿𝑖

𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1

∑ ∑ {�̂�𝐶(𝑡𝑖−)}
−2
{𝐼(𝑡𝑖 < 𝑡𝑗) + 𝐼(𝑡𝑖 = 𝑡𝑗 , 𝛿𝑗 = 0)}𝐼(𝑡𝑖 < 𝜈)𝛿𝑖

𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1

 

where 𝐼(𝑡𝑖 < 𝜈) is the indicator of the truncation. 

 

5.1.2 Time-dependent C-index  

Generally, the C-index in survival analysis only depends on the ordering of the 

predictions while assuming a one-to-one correspondence between the predicted survival 

probability and observed survival time. In other words, the orderings of the predicted 

survival times and observed times are assumed to be the same. However, the one-to-one 

relationship may not be plausible when TDC or TDE is involved in the model, where the 

ordering of the survival probabilities may change over time. Since Harrell’s C-index is 

based on the one-to-one assumption, using the original Harrell’s C-index is not plausible 

once TDC or TDE is involved. To overcome this limitation, Antolini et al. (2005) 

extended the standard C-index by using the predicted survival probabilities at the 

minimum observed time from the pairs of two subjects instead of the risk scores. Such a 

measure is referred to as the time-dependent C-index, where each pair of two subjects 

uses the different observed times to estimate the survival probabilities. In other words, all 

possible pairs of two subjects use different time points to estimate the predicted survival 

probabilities. Then, the time-dependent C-index is defined as 

𝐶𝑡𝑑 = 𝑃(�̂�𝑖(𝑇𝑖|𝑥𝑖) <  �̂�𝑗(𝑇𝑖|𝑥𝑗)|𝑇𝑖 < 𝑇𝑗) 

which is based on the property that the predicted survival probability at the time, when 

𝑖th subject experience the event, would be greater for the 𝑗th subject than the 𝑖th subject. 

The time-dependent C-index has the benefit of providing a single value measuring the 

model performance instead of the function of time 𝑡 and is equivalent to Harrel’s C-index 

if the proportional hazard assumption holds, where the orders of the survival probabilities 

stay constant. 
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5.1.3 C-index in competing risk setting 

In a non-competing risk setting, the risk set includes the subjects who experience the 

event or subjects who are censored until the event or censoring time. However, in the 

presence of the competing risks, the risk set can be defined in two different ways. The 

first definition of risk set treats individuals who experience the event of interest or are 

censored are at risk until the event or the censoring time while censoring individuals who 

experience the competing risk events (Wolbers et al., 2014). Alternatively, since 

competing risks can potentially influence the occurrence of the event of interest, the 

second definition of the risk set further retains those who have failed from the competing 

events at any time instead of censoring them (Wolbers et al., 2009).  

The use of these definitions depends on the purpose of the study (Wolbers et al., 

2014). The first definition was motivated by a situation where a specific treatment affects 

all the events, including the event of interest and the competing events. Then, it might be 

less suitable if the main goal is to assess the effect of treatment on a specific event. For 

example, suppose smoking status affects lung cancer and bowel cancer simultaneously. 

In this case, the amount of the effect of smoking on two subjects, one experiencing lung 

cancer and the other experiencing bowel cancer, would not be comparable. In contrast, 

when a specific treatment reduces the risk of an event of interest but does not affect the 

competing events, the subjects experiencing competing events can be at risk all time. 

This study is based on the second definition as our interest lies in the effect of surgery on 

breast cancer, which does not affect competing events that are ovarian cancer or death 

caused by other reasons.  

 Harrell’s C-index for competing risks data, which is presented by Wolbers et al. 

(2009), is based on the penetrance 𝐹𝑖,𝑘(𝑡|𝑥𝑖) for the event of interest 𝑘 instead of the 

survival probability. Let 𝛿𝑖 be the event type for individual i where 𝛿𝑖 = 1 for the event 

of interest, 2 for any competing risks and 0 if censored. Harrell’s C-index for event 1 

based on the second definition is defined as   

𝐶𝐻,1 = 𝑃(𝐹𝑖,1(𝑡|𝑥𝑖) > 𝐹𝑗,1(𝑡|𝑥𝑗)|(𝑇𝑖 < 𝑇𝑗  𝑜𝑟 𝛿𝑗 = 2), 𝛿𝑖 = 1) for any 𝑡 > 0 
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where the rank of two penetrances for event 1 is not subjected to time. 

Wolbers et al. (2014) further adapted Uno’s C-index to competing risks setting by 

applying IPCW to each pair of subjects to remove the censoring dependency. Then, 

Uno’s C-index for competing risks is defined as 

𝐶𝑈,1(𝜈) = 𝑃(𝐹𝑖,1(𝜈|𝑥𝑖) > 𝐹𝑗,1(𝜈|𝑥𝑗)|(𝑇𝑖 < 𝑇𝑗  𝑜𝑟 𝛿𝑗 = 2), 𝛿𝑖 = 1, 𝑇𝑖 < 𝜈)  

where 𝜈 represents the truncation time for 𝑖th subject. 

Suppose we have two weights 𝑊𝑖𝑗1 = {�̂�𝐶(𝑡𝑖 −)}
−2

 and 𝑊𝑖𝑗2 =

{�̂�𝐶(𝑡𝑖 −)�̂�𝐶(𝑡𝑗 −)}
−1

. We also define 𝐴𝑖𝑗 = 𝐼(𝑡𝑖 < 𝑡𝑗) + 𝐼(𝑡𝑖 = 𝑡𝑗 , 𝛿𝑗 = 0)  and 𝐵𝑖𝑗 =

𝐼(𝑡𝑖 ≥ 𝑡𝑗 , 𝛿𝑗 = 2), where Bij indicates that the subjects with competing risks stay in risk 

set for all time. Harrell’s C-index and Uno’s C-index for event 1 at time 𝜈 accounting for 

competing risks are obtained as 

�̂�𝐻,1 =
∑ ∑ 𝑄𝑖𝑗1(𝜈){𝐴𝑖𝑗 + 𝐵𝑖𝑗} 𝐼(𝛿𝑖 = 1)𝑛

𝑗≠𝑖,𝑗=1
𝑛
𝑖=1

∑ ∑ {𝐴𝑖𝑗 + 𝐵𝑖𝑗} 𝐼(𝛿𝑖 = 1)
𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1

 for any 𝜈 > 0 

and 

�̂�𝑈,1(𝜈) =
∑ ∑ 𝑄𝑖𝑗1(𝜈){𝑊𝑖𝑗1𝐴𝑖𝑗 + 𝑊𝑖𝑗2𝐵𝑖𝑗}𝐼(𝑡𝑖 < 𝜈, 𝛿𝑖 = 1)𝑛

𝑗≠𝑖,𝑗=1
𝑛
𝑖=1

∑ ∑ {𝑊𝑖𝑗1𝐴𝑖𝑗 + 𝑊𝑖𝑗2𝐵𝑖𝑗}
𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1 𝐼(𝑡𝑖 < 𝜈, 𝛿𝑖 = 1)

 

where 𝑄𝑖𝑗1(𝜈) = 𝐼{�̂�𝑖,1(𝜈|𝑥𝑖) > �̂�𝑗,1(𝜈|𝑥𝑗)} + 0.5𝐼{�̂�𝑖,1(𝜈|𝑥𝑖) = �̂�𝑗,1(𝜈|𝑥𝑗)} takes a value 

1 if concordance, 0 if discordance, or 0.5 if tied.  

 

5.1.4 Time-dependent Uno’s C-index for clustered competing 
risk 

As presented in previous sections, several authors introduced various types of 

concordance measures to account for TDE/TDC (Antolini et al., 2005) and competing 

risk (Wolbers et al., 2009; Wolbers et al., 2014). Building on their work, we propose an 
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extended C-index to evaluate the discriminative ability of our proposed model, which 

includes time-dependent covariates having time-dependent effects in the analysis of 

clustered competing risk data. We proposed time-dependent Uno’s C-index (TDUC) that 

extends Uno’s approach to the case of time-dependent C-index while accounting for the 

presence of competing risks. 

 Consider the data arise from 𝐹 independent families, each family consist of 𝑛𝑓 

members. Let 𝑓𝑖 be the subject 𝑖, 𝑖 = 1,… , 𝑛𝑓, of the family 𝑓, 𝑓 = 1,… , 𝐹. To consider 

pairs consisting of individuals from different families, we denote by 𝑔𝑗 the subject 𝑗, 𝑗 =

1, … , 𝑛𝑔, of the family 𝑔, where 𝑔 = 1,… , 𝐹. Let 𝛿𝑓𝑖 be the event type for individual 𝑖 in 

cluster 𝑓 where 𝛿𝑓𝑖 = 1 for the event of interest, 2 for any competing risks and 0 if 

censored. The marginal cause-specific penetrance function for event 1, 𝐹𝑓𝑖,1 (𝑡𝑓𝑖|𝑥𝑓𝑖), is 

used as the frailties are not observed. Conditional on the time interval (0, 𝜈), the TDUC is 

defined as  

𝐶𝑡𝑑,𝑈,1(𝜈) = 𝑃 (𝐹𝑓𝑖,1(𝑡𝑓𝑖|𝑿𝑓𝑖) > 𝐹𝑔𝑗,1(𝑡𝑓𝑖|𝑿𝑔𝑗)|(𝑇𝑓𝑖 < 𝑇𝑔𝑗  𝑜𝑟 𝛿𝑔𝑗 = 2), 𝛿𝑓𝑖 = 1, 𝑇𝑓𝑖 < 𝜈) 

where 𝑓 and 𝑔 can be the same (𝑓 = 𝑔) or different families (𝑓 ≠ 𝑔). 

Given that �̂�𝐶(𝑡), which is the Kaplan Meier estimator of the censoring 

distribution at time 𝑡, we have two weights 𝑊𝑓𝑖1 = {�̂�𝐶(𝑡𝑓𝑖 −)}
−2

 and 𝑊𝑓𝑖𝑔𝑗2 =

{�̂�𝐶(𝑡𝑓𝑖 −)�̂�𝐶 (𝑡𝑔𝑗 −)}
−1

, where 𝑡𝑓𝑖 − is the time point just before 𝑡𝑓𝑖. We also define 

𝐴𝑓𝑖𝑔𝑗 = 𝐼(𝑡𝑓𝑖 < 𝑡𝑔𝑗) + 𝐼(𝑡𝑓𝑖 = 𝑡𝑔𝑗  𝛿𝑔𝑗 = 0), where 𝐴𝑓𝑖𝑔𝑗 identifies the pairs that the first 

subject experiences the event first, and 𝐵𝑓𝑖𝑔𝑗 = 𝐼(𝑡𝑓𝑖 ≥ 𝑡𝑔𝑗 , 𝛿𝑔𝑗 = 2), where 𝐵𝑓𝑖𝑓𝑗 

indicates that the subjects with competing risks stay in risk set for all time. Given the 

penetrance 𝐹𝑓𝑖1(𝑡|𝑿𝑓𝑖)  for the event of interest 1, the TDUC with TDC/TDE for clustered 

competing risk data can be obtained as 

�̂�𝑡𝑑,𝑈,1(𝜈) =
∑ ∑ [∑ ∑ 𝑄𝑓𝑖𝑔𝑗1

{𝑊𝑓𝑖1
𝐴𝑓𝑖𝑔𝑗 +𝑊𝑓𝑖𝑔𝑗2

𝐵𝑓𝑖𝑔𝑗} 𝐼 (𝑡𝑓𝑖 < 𝜈, 𝛿𝑓𝑖 = 1)
𝑛𝑔
𝑗≠𝑖,𝑗=1

𝑛𝑓
𝑖=1

]𝐹
𝑔=1

𝐹
𝑓=1

∑ ∑ [∑ ∑ {𝑊𝑓𝑖1
𝐴𝑓𝑖𝑔𝑗 +𝑊𝑓𝑖𝑔𝑗2

𝐵𝑓𝑖𝑔𝑗} 𝐼 (𝑡𝑓𝑖 < 𝜈,𝛿𝑓𝑖 = 1)
𝑛𝑔
𝑗≠𝑖,𝑗=1

𝑛𝑓
𝑖=1

]𝐹
𝑔=1

𝐹
𝑓=1
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where 𝑄𝑓𝑖𝑔𝑗1 = 𝐼 {�̂�𝑓𝑖1 (𝑡𝑓𝑖|𝑿𝑓𝑖) > �̂�𝑔𝑗1 (𝑡𝑓𝑖|𝑿𝑔𝑗)} + 0.5𝐼 {�̂�𝑓𝑖1 (𝑡𝑓𝑖|𝑿𝑓𝑖) = �̂�𝑔𝑗1 (𝑡𝑓𝑖|𝑿𝑔𝑗)} 

indicates the order of predicted penetrances according to the shorter observed time among 

two subjects, and pairs with tied predicted penetrances are counted as 0.5.  

 

5.1.5 C-index and Kendall’s Tau 

Alternatively, the proposed TDUC can be estimated using the inference of Kendall’s tau, 

which measures the association between two variables by quantifying the difference 

between concordance and discordance. Given 𝑡𝑚 = min (𝑡𝑓𝑖 , 𝑡𝑔𝑗), we introduce two 

indicator functions for a pair of two subjects (𝑓𝑖, 𝑔𝑗), 𝑖 ≠ 𝑗 for 𝑓 = 𝑔 or 𝑓 ≠ 𝑔, that 

accounts for competing risks such as 

𝑠𝑖𝑔𝑛 (�̂�𝑓𝑖,1(𝑡𝑚|𝑿𝑓𝑖), �̂�𝑔𝑗,1 (𝑡𝑚|𝑿𝑔𝑗)) = 𝐼 {�̂�𝑓𝑖,1(𝑡𝑚|𝑿𝑓𝑖) > �̂�𝑔𝑗,1 (𝑡𝑚|𝑿𝑔𝑗)} 

                                                                                       − 𝐼 {�̂�𝑓𝑖,1(𝑡𝑚|𝑿𝑓𝑖) < �̂�𝑔𝑗,1 (𝑡𝑚|𝑿𝑔𝑗)} 

(5.1) 

𝑐𝑠𝑖𝑔𝑛 (𝑡𝑓𝑖 , 𝛿𝑓𝑖 , 𝑡𝑔𝑗 , 𝛿𝑔𝑗 , 𝜈) = 𝑐𝑠1 (𝑡𝑓𝑖 , 𝛿𝑓𝑖 , 𝑡𝑔𝑗 , 𝛿𝑔𝑗 , 𝜈) − 𝑐𝑠2 (𝑡𝑓𝑖 , 𝛿𝑓𝑖 , 𝑡𝑔𝑗 , 𝛿𝑔𝑗 , 𝜈) 

(5.2) 

where  

𝑐𝑠1 (𝑡𝑓𝑖 ,𝛿𝑓𝑖 , 𝑡𝑔𝑗 , 𝛿𝑔𝑗 , 𝜈) = {𝐼 (𝑡𝑓𝑖 ≤ 𝑡𝑔𝑗) +  𝐼 (𝑡𝑓𝑖 > 𝑡𝑔𝑗 ,𝛿𝑔𝑗 = 2)} 𝐼(𝛿𝑓𝑖 = 1)𝐼{𝑡𝑓𝑖 < 𝜈} 

𝑐𝑠2 (𝑡𝑓𝑖 ,𝛿𝑓𝑖 , 𝑡𝑔𝑗 , 𝛿𝑔𝑗 , 𝜈) =  {𝐼 (𝑡𝑓𝑖 ≥ 𝑡𝑔𝑗) +  𝐼 (𝑡𝑓𝑖 < 𝑡𝑔𝑗 , 𝛿𝑓𝑖 = 2)} 𝐼 (𝛿𝑔𝑗 = 1) 𝐼 {𝑡𝑔𝑗 < 𝜈} 

and 𝑠𝑖𝑔𝑛 and 𝑐𝑠𝑖𝑔𝑛 functions take value in {−1, 0, 1}. Given that one with a shorter 

observed time is less than 𝜈, Equation (5.2) represents the order of two observed survival 

times with censoring indicators, which equals 1 if subject i has a shorter observed 

survival time or subject j experiences a competing event while having a shorter survival 
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time, -1 if subject j has a shorter observed survival time or 𝑖th subject experiences a 

competing event while having a shorter survival time, and 0 if two subjects are not 

comparable. Also, Equation (5.1) is the order of two predicted penetrances for event 1, 

where it has a value of 1 if subject i has a higher predicted penetrance, -1 if subject j has 

a higher predicted penetrance, and 0 if two predicted penetrance the same. 

Since we consider the subjects with any competing events to stay at risk all time, 

we introduce two different weights, 𝑊𝑓𝑖𝑔𝑗1
∗ = [�̂�𝐶(𝑡𝑚 −)]

−2
 and 𝑊𝑓𝑖𝑔𝑗2

∗ =

{�̂�𝐶(𝑡𝑓𝑖 −)�̂�𝐶 (𝑡𝑔𝑗 −)}
−1

, to remove the censoring dependency, where 𝑡𝑚 =

min (𝑡𝑓𝑖 , 𝑡𝑔𝑗) and 𝑊𝑓𝑖𝑔𝑗1
∗  and 𝑊𝑓𝑖𝑔𝑗2

∗  correspond to the weights for the pairs without and 

with competing events, respectively. We also define 𝐴𝑓𝑖𝑔𝑗
∗ = {𝐼 (𝑡𝑓𝑖 > 𝑡𝑔𝑗 , 𝛿𝑔𝑗 = 1) +

𝐼 (𝑡𝑓𝑖 < 𝑡𝑔𝑗 , 𝛿𝑓𝑖 = 1)}, where 𝐴𝑓𝑖𝑔𝑗
∗  represents the order of two observed survival times 

with censoring distribution that is the condition used for 𝑊𝑓𝑖𝑔𝑗1
∗ . Similarly, we introduce 

𝐵𝑓𝑖𝑔𝑗
∗ = {𝐼 (𝑡𝑓𝑖 ≤ 𝑡𝑔𝑗 , 𝛿𝑓𝑖 = 2, 𝛿𝑔𝑗 = 1) + 𝐼 (𝑡𝑓𝑖 ≥ 𝑡𝑔𝑗 , 𝛿𝑓𝑖 = 1, 𝛿𝑔𝑗 = 2)}, where 𝐵𝑓𝑖𝑔𝑗

∗  is 

the order of two observed survival times involving competing events that is the condition 

used for  𝑊𝑓𝑖𝑔𝑗2
∗ . The subject with the competing event has a shorter observed time than 

the one with the event of interest, as comparable pairs. These two weights are used to 

obtain the unified weight such as  

𝑊𝐶𝑓𝑖𝑔𝑗1
∗ = 𝑊𝑓𝑖𝑔𝑗1

∗ 𝐴𝑓𝑖𝑔𝑗
∗ +𝑊𝑓𝑖𝑔𝑗2

∗ 𝐵𝑓𝑖𝑔𝑗
∗ . 

Then, Kendall’s tau for event 1 can be obtained by using following formulas 

𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(𝜈) = 𝑠𝑖𝑔𝑛 (�̂�𝑓𝑖,1(𝑡𝑚|𝑿𝑓𝑖), �̂�𝑔𝑗,1 (𝑡𝑚|𝑿𝑔𝑗)) 𝑐𝑠𝑖𝑔𝑛 (𝑡𝑓𝑖 , 𝐷𝑓𝑖 , 𝑡𝑔𝑗 , 𝐷𝑔𝑗 , 𝜈)𝑊𝐶𝑓𝑖𝑔𝑗1
∗  

𝑑𝑓𝑖𝑔𝑗𝑐1(𝜈) = 𝑐𝑠𝑖𝑔𝑛 (𝑡𝑓𝑖 , 𝐷𝑓𝑖 , 𝑡𝑔𝑗 , 𝐷𝑔𝑗 , 𝜈)
2

𝑊𝐶𝑓𝑖𝑔𝑗1
∗  

where 𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(𝜈) identifies the concordant as 1 and discordant pair as -1, inversely 

weighted by censoring distribution. Similarly, 𝑑𝑓𝑖𝑔𝑗𝑐1(𝜈) indicates the comparable pair, 
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while accounting for censoring. Then, the time-dependent Kendall’s tau for clustered 

competing risk data as  

�̂�𝑡𝑑,𝑈,1(𝜈) =
∑ ∑ {∑ ∑ 𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(𝜈)

𝑛𝑔
𝑗≠𝑖,𝑗=1

𝑛𝑓
𝑖=1

}𝐹
𝑔=1

𝐹
𝑓=1

∑ ∑ {∑ ∑ 𝑑𝑓𝑖𝑔𝑗𝑐1(𝜈)
𝑛𝑔
𝑗≠𝑖,𝑗=1

𝑛𝑓
𝑖=1

}𝐹
𝑔=1

𝐹
𝑓=1

=
𝑑𝑐𝑠1(𝜈)

𝑑𝑐1(𝜈)
               (5.3) 

where 𝑑𝑐𝑠1(𝜈) = ∑ ∑ {∑ ∑ 𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(𝜈)
𝑛𝑔
𝑗≠𝑖,𝑗=1

𝑛𝑓
𝑖=1

}𝐹
𝑔=1

𝐹
𝑓=1 {𝑛(𝑛 − 1)}⁄  is the difference 

between the weighted proportions of concordant pairs and the discordant pairs, 𝑑𝑐1(𝜈) =

∑ ∑ {∑ ∑ 𝑑𝑓𝑖𝑔𝑗𝑐1(𝜈)
𝑛𝑔
𝑗≠𝑖,𝑗=1

𝑛𝑓
𝑖=1

}𝐹
𝑔=1

𝐹
𝑓=1 {𝑛(𝑛 − 1)}⁄  is the total weighted proportion of the 

comparable pairs across all families, and 𝑛 = ∑ 𝑛𝑓
𝐹
𝑓=1  represents the total number of 

subjects across all families. Thus, the TDCU is obtained using the Kendall’s tau as 

�̂�𝑡𝑑,𝑈,1(𝜈) = 0.5(�̂�𝑡𝑑,𝑈,1(𝜈) + 1) = 0.5 (
𝑑𝑐𝑠1(𝜈)

𝑑𝑐1(𝜈)
 + 1).                       (5.4) 

 

5.1.6 Variance of C-index  

To obtain the variance of the TDUC, the methodology proposed by Cliff and Charlin 

(1991) and Kang et al. (2015) can be adapted to our proposed C-index, where the Delta 

method was used to approximate the variance of Kendall’s tau, and Kang et al. (2015) 

used the linear relationship between Harrell’s C-index and Kendall’s tau to estimate the 

variance of the C-index. Then, the variance of TDUC for event 1 is obtained as 

Var (𝐶𝑡𝑑,𝑈,1(𝜈)) = Var (
1

2
{𝜏𝑡𝑑,𝑈,1(𝜈) + 1}) =

1

4
Var (𝜏𝑡𝑑,𝑈,1(𝜈)) =

1

4
Var (

𝑑𝑐𝑠1(𝜈)

𝑑𝑐1(𝜈)
). 

Then, the variance of Kendall’s tau can be approximated by using the Delta method such 

as 

Var (𝜏𝑡𝑑,𝑈,1(𝜈)) = Var (
𝑑𝑐𝑠1(𝜈)

𝑑𝑐1(𝜈)
) 
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= (
1

𝑑𝑐1(𝜈)

−𝑑𝑐𝑠1(𝜈)

𝑑𝑐1(𝜈)
2
) [

Var(𝑑𝑐𝑠1(𝜈)) Cov(𝑑𝑐1(𝜈), 𝑑𝑐𝑠1(𝜈))

Cov(𝑑𝑐1(𝜈), 𝑑𝑐𝑠1(𝜈)) Var(𝑑𝑐1(𝜈))
] 

                                   (
1

𝑑𝑐1(𝜈)

−𝑑𝑐𝑠1(𝜈)

𝑑𝑐1(𝜈)
2
)
𝑇

 

=

[
 
 
 
 
Var(𝑑𝑐𝑠1(𝜈))

𝑑𝑐1(𝜈)
−
𝑑𝑐𝑠1(𝜈)Cov(𝑑𝑐1(𝜈), 𝑑𝑐𝑠1(𝜈))

𝑑𝑐1(𝜈)
2

Cov(𝑑𝑐1(𝜈), 𝑑𝑐𝑠1(𝜈))

𝑑𝑐1(𝜈)
−
𝑑𝑐𝑠1(𝜈)Var(𝑑𝑐1(𝜈))

𝑑𝑐1(𝜈)
2 ]

 
 
 
 
𝑇

(
1

𝑑𝑐1(𝜈)

−𝑑𝑐𝑠1(𝜈)

𝑑𝑐1(𝜈)
2
)
𝑇

 

  =
Var(𝑑𝑐𝑠1(𝜈))

𝑑𝑐1(𝜈)
2

−
2𝑑𝑐𝑠1(𝜈)Cov(𝑑𝑐1(𝜈), 𝑑𝑐𝑠1(𝜈))

𝑑𝑐1(𝜈)
3

+
𝑑𝑐𝑠1(𝜈)

2Var(𝑑𝑐1(𝜈))

𝑑𝑐1(𝜈)
4

. 

(5.5) 

To estimate the variances and covariances in Equation (5.5), we employ variance 

estimators for Kendall’s tau proposed by Cliff and Charlin (1991),  

Var̂(𝑑𝑐𝑠1(𝜈)) =
2

𝑛(𝑛 − 1)
Var̂ (𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(𝜈)) +

4(𝑛 − 2)

𝑛(𝑛 − 1)
Var̂ (𝑑𝑓𝑖𝑐𝑠1(𝜈))        

Var̂(𝑑𝑐1(𝜈)) =
2

𝑛(𝑛 − 1)
Var̂ (𝑑𝑓𝑖𝑔𝑗𝑐1(𝜈)) +

4(𝑛 − 2)

𝑛(𝑛 − 1)
Var̂ (𝑑𝑓𝑖𝑐1(𝜈))        

and 

COV̂(𝑑𝑐1(𝜈), 𝑑𝑐𝑠1(𝜈)) =
2

𝑛(𝑛 − 1)
COV̂ (𝑑𝑓𝑖𝑔𝑗𝑐1(𝜈), 𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(𝜈)) 

+
4(𝑛 − 2)

𝑛(𝑛 − 1)
COV̂ (𝑑𝑓𝑖𝑐1(𝜈), 𝑑𝑓𝑖𝑐𝑠1(𝜈))                          

where 𝑛 = ∑ 𝑛𝑓
𝐹
𝑓=1  is the total number of individuals across all families, 𝑑𝑓𝑖𝑐𝑠1(𝜈) =

∑ ∑ 𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(𝜈)/(𝑛 − 1)
𝑛𝑔
𝑗=1

𝐹
𝑔=1  and 𝑑𝑓𝑖𝑐1(𝜈) = ∑ ∑ 𝑑𝑓𝑖𝑔𝑗𝑐1(𝜈)/(𝑛 − 1)

𝑛𝑔
𝑗=1

𝐹
𝑔=1 . 

Substitution of sample variance and covariance provides consistent estimators. 

As proposed by Zou et al (2022), the variance and covariance estimators can be 

further simplified by ignoring the first term when sample size is not very small 
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Var̂(𝑑𝑐𝑠1(𝜈)) ≈
4

𝑛
Var̂ (𝑑𝑓𝑖𝑐𝑠1(𝜈))                                          (5.6) 

Var̂(𝑑𝑐1(𝜈)) ≈
4

𝑛
Var̂ (𝑑𝑓𝑖𝑐1(𝜈))                                          (5.7) 

and 

COV̂(𝑑𝑐1(𝜈), 𝑑𝑐𝑠1(𝜈)) ≈
4

𝑛
COV̂ (𝑑𝑓𝑖𝑐1(𝜈), 𝑑𝑓𝑖𝑐𝑠1(𝜈))                      (5.8) 

where the variance and covariance terms are estimated by the sample variance and 

covariance, respectively. Zou et al. (2022) demonstrated that these simple variance and 

covariance estimators performed well even with small to moderate sample size (n > 30). 

Note that unbiased estimators for the variance and covariance of 𝑑𝑐𝑠1(𝜈) and 𝑑𝑐1(𝜈) were 

also proposed by Cliff and Charlin (1991) and Kang et al. (2015). Although they are 

unbiased and widely implemented, they have a drawback that they sometimes provide a 

negative value for the variance of Kendall’s tau.   

 To account for clustering, the variance and covariance terms in Equations (5.6) to 

(5.8) are estimated by the cluster mean variance and covariance weighted by cluster sizes 

respectively, such as 

Var̂ (𝑑𝑓𝑖𝑐𝑠1(𝜈)) =
∑ 𝑛𝑓{𝑑𝑓𝑐𝑠1(𝜈) − 𝑑𝑐𝑠1(𝜈)}

2𝐹
𝑓=1

𝑛(𝐹 − 1)
                          (5.9) 

Var̂ (𝑑𝑓𝑖𝑐1(𝜈)) =
∑ 𝑛𝑓{𝑑𝑓𝑐1(𝜈) − 𝑑𝑐1(𝜈)}

2𝐹
𝑓=1

𝑛(𝐹 − 1)
                          (5.10) 

and 

COV̂ (𝑑𝑓𝑖𝑐1(𝜈), 𝑑𝑓𝑖𝑐𝑠1(𝜈)) =
∑ ∑ 𝑛𝑓{𝑑𝑓𝑐𝑠1(𝜈) − 𝑑𝑐𝑠1(𝜈)}{𝑑𝑓𝑐1(𝜈) − 𝑑𝑐1(𝜈)}

𝐹
𝑔=1

𝐹
𝑓=1

𝑛(𝐹 − 1)
 

(5.11) 
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where 𝑑𝑓𝑐𝑠1(𝜈) = ∑ 𝑑𝑓𝑖𝑐𝑠1(𝜈)/𝑛𝑓
𝑛𝑓
𝑖=1

 and 𝑑𝑓𝑐1(𝜈) = ∑ 𝑑𝑓𝑖𝑐1(𝜈)/𝑛𝑓
𝑛𝑓
𝑖=1

 are the cluster-

specific averages of 𝑑𝑓𝑖𝑐𝑠1(𝜈) and 𝑑𝑓𝑖𝑐1(𝜈), respectively. 

 

5.1.7 Illustration of time-dependent C-index and its variance 
calculation for clustered competing risk 

We present the calculation of TDUC and its variance for clustered competing risk via 

Kendall’s tau calculation using a small exemplary survival data provided in Table 5.1. 

Consider a dataset of (𝑡, 𝛿, 𝑥) consists of 2 different families consists of 3 and 4 subjects. 

We ordered them by observed time for each family and obtained their penetrance �̂�1(𝑡|𝑥) 

for event of interest, denote 1. Since the penetrances for two subjects at the shortest 

observed time among a pair of two subjects are used to compare, a binary covariate 𝑥 is 

used to reduce the number of pairs with tied penetrances. Furthermore, the inverse of the 

Kaplan-Meier estimator of the censoring distribution at each observed time �̂�𝐶(𝑡−)
−1 is 

obtained by using all subjects instead of estimating it for each family. We further set a 

time point of 50 as the truncation time. 

 

Table 5.1: Exemplary data of 2 families to compute time-dependent Uno’s C-index 

Family (𝒇𝒊) 𝐭 𝛅 x �̂�𝟏(𝒕|𝒙 = 𝟎) �̂�𝟏(𝒕|𝒙 = 𝟏) �̂�𝑪(𝒕 −)
−𝟏 

11 23 0 1 0.59 0.55 1 

12 37 1 0 0.71 0.66 1.09 

13 63 2 1 0.46 0.39 2.36 

21 41 1 0 0.67 0.61 1.21 

22 49 2 0 0.51 0.45 1.41 

23 60 0 1 0.73 0.67 1.77 

24 69 1 1 0.55 0.52 7.07 
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Based on the given data, we present how to get TDUC and its variance. 

Step 1: Determine the weighted proportion of comparable pairs using observed time 

accounting for censoring via csign function. 

We create all possible pairs of the observed data by tabulating them regarding rows as 𝑓𝑖 

and columns as 𝑔𝑗 where 𝑓𝑖 indicates 𝑖th subjects in 𝑓 family and 𝑔𝑗 indicates 𝑗th 

subjects in g family. Table 5.2 (a) presents csign function that ranks the observed times 

with the time truncation at time 50, and Table 5.2 (b) illustrates the weights applied to 

each pair of subjects to remove the censoring dependence using 𝑊𝐶𝑓𝑖𝑔𝑗1
∗ , where 

𝑊𝐶𝑓𝑖𝑔𝑗1
∗ = 𝑊𝑓𝑖𝑔𝑗1,1

∗ +𝑊𝑓𝑖𝑔𝑗2,1
∗ . In addition, Table 5.2 (c) identifies the comparable pairs 

accounting for censoring using 𝑑𝑓𝑖𝑔𝑗𝑐1(50) = 𝑐𝑠𝑖𝑔𝑛 (𝑡𝑓𝑖 , 𝐷𝑓𝑖 , 𝑡𝑔𝑗 , 𝐷𝑔𝑗 , 50)
2

𝑊𝐶𝑓𝑖𝑔𝑗1
∗ . By 

aggregating the table by row, the most right column in Table 5.2 (c) is obtained to 

estimate the weighted proportion of comparable pairs for each individual 𝑑𝑓𝑖𝑐1(50) =

∑ ∑ 𝑑𝑓𝑖𝑔𝑗𝑐1(𝜈)/(𝑛 − 1)
𝑛𝑔
𝑗=1

𝐹
𝑔=1 , i.e., the weighted number of comparable pairs divided by 

the total number of pairs, (𝑛 − 1),  for each individual can get. Then, by averaging them 

over all individuals, we compute the average weighted proportion of comparable pairs by 

50 years as 𝑑𝑐1(50) = 0.56, indicating that out of 42 possible pairs, 56% of them are 

comparable, accounting for censoring.  

Table 5.2: Computing the weighted number of comparable pairs accounting for 

censoring. 

(a) csign (𝑡𝑓𝑖 , 𝛿𝑓𝑖 , 𝑡𝑓𝑗 , 𝛿𝑓𝑗 , 50) 

 𝒕𝒈𝒋 23 37 41 49 60 63 69 

𝒕𝒇𝒊 𝜹 0 1 1 2 0 2 1 

23 0 - 0 0 0 0 0 0 

37 1 0 - 1 1 1 1 1 

41 1 0 -1 - 1 1 1 1 

49 2 0 -1 -1 - 0 0 0 

60 0 0 -1 -1 0 - 0 0 

63 2 0 -1 -1 0 0 - 0 

69 1 0 -1 -1 0 0 0 - 
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(b) 𝑊𝐶𝑓𝑖𝑔𝑗1
∗  

𝑾𝑪𝒇𝒊𝒈𝒋𝟏
∗  𝒕𝒈𝒋 23 37 41 49 60 63 69 

𝒕𝒇𝒊 𝜹 0 1 1 2 0 2 1 

23 0 - 0 0 0 0 0 0 

37 1 0 - 1.19 1.19 1.19 1.19 1.19 

41 1 0 1.19 - 1.46 1.46 1.46 1.46 

49 2 0 1.19 1.46 - 0 0 9.97 

60 0 0 1.19 1.46 0 - 0 0 

63 2 0 1.19 1.46 0 0 - 16.69 

69 1 0 1.19 1.46 9.97 0 16.69 - 

 

(c) 𝑑𝑓𝑖𝑔𝑗𝑐1(50) = 𝑐𝑠𝑖𝑔𝑛 (𝑡𝑓𝑖 , 𝐷𝑓𝑖 , 𝑡𝑔𝑗 , 𝐷𝑔𝑗 , 50)
2

𝑊𝐶𝑓𝑖𝑔𝑗1
∗  

 𝒕𝒈𝒋 23 37 41 49 60 63 69 𝑑𝑓𝑖𝑐1(50) 

𝒕𝒇𝒊 𝜹 0 1 1 2 0 2 1 

23 0 - 0 0 0 0 0 0 0/6 = 0 

37 1 0 - 1.19 1.19 1.19 1.19 1.19 5.95/6 = 0.99 

41 1 0 1.19 - 1.46 1.46 1.46 1.46 7.03/6 = 1.17 

49 2 0 1.19 1.46 - 0 0 0 2.65/6 = 0.44 

60 0 0 1.19 1.46 0 - 0 0 2.65/6 = 0.44 

63 2 0 1.19 1.46 0 0 - 0 2.65/6 = 0.44 

69 1 0 1.19 1.46 0 0 0 - 2.65/6 = 0.44 

      𝑑𝑐1(50) = 23.58 42⁄ = 0.56  

 

Step 2: Estimate the variances of 𝑑𝑓𝑖𝑐,1(50) and 𝑑𝑐1(50) 

By using the values of 𝑑𝑓𝑖𝑐1(50) and 𝑑𝑐1(50) in Table 5.11 (c), we first estimate the 

family specific average of 𝑑𝑓𝑖𝑐,1(50) for family 1 and family 2 as follows: 

𝑑1𝑐1(50) =∑
𝑑1𝑖𝑐1(50)

𝑛1
=
0 + 0.99 + 0.44

3
= 0.48

𝑛1

𝑖=1
 

and 

𝑑2𝑐1(50) =∑
𝑑2𝑖𝑐1(50)

𝑛2
=
1.17 + 0.44 + 0.44 + 0.44

4
= 0.63

𝑛2

𝑖=1
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By using the family specific average of 𝑑𝑓𝑖𝑐,1(50), the variance of family-specific 

averages across families is obtained using Equation (5.10) as 

Var̂ (𝑑𝑓𝑖𝑐1(50)) =
∑ 𝑛𝑓{𝑑𝑓𝑐1(50) − 𝑑𝑐1(50)}

2𝐹
𝑓=1

𝑛(𝐹 − 1)
 

=
3 × (0.48 − 0.56)2 + 4 × (0.63 − 0.56)2

7(2 − 1)
= 0.0055 

Then, the variance for 𝑑𝑐1(50) is obtained using Equation (5.7) as 

Var̂(𝑑𝑐1(50)) =
4

7
× Var̂ (𝑑𝑓𝑖𝑐1(50)) =

4

7
× 0.0055 = 0.0030 

 

Step 3: Obtain the penetrances for two subjects at the lower observed time among two 

subjects instead of using each subject’s observed time. Table 5.3 presents the estimation 

of the penetrances at minimum time of a pair of two subjects for a subject with larger 

observed time. 

 

Table 5.3: Estimating the penetrances at minimum time of a pair of two subjects for a 

subject with larger observed time. 

  𝒕𝒈𝒋 23 37 41 49 60 63 69 

  𝒙𝒈𝒋 1 0 0 0 1 1 1 

𝒕𝒇𝒊 𝒙𝒇𝒊 �̂�𝟏(𝒕𝒇𝒊|𝒙𝒇𝒊) �̂�𝟏(𝐦𝐢𝐧 (𝒕𝒇𝒊 , 𝒕𝒈𝒋)|𝒙𝒈𝒋) 

23 1 0.55 - 0.59 0.59 0.59 0.55 0.55 0.55 
37 0 0.71 0.55 - 0.71 0.71 0.66 0.66 0.66 
41 0 0.67 0.55 0.71 - 0.67 0.61 0.61 0.61 
49 0 0.51 0.55 0.71 0.67 - 0.45 0.45 0.45 
60 1 0.67 0.55 0.71 0.67 0.45 - 0.67 0.67 
63 1 0.39 0.55 0.71 0.67 0.45 0.67 - 0.39 
69 1 0.52 0.55 0.71 0.67 0.45 0.67 0.39 - 

 



 

82 

 

Step 4: Determine the weighted proportion of concordant and discordant pairs accounting 

for censoring. 

The orders of the predicted penetrance are determined by using sign function as shown in 

Table 5.4 (a). Table 5.4 (b) identifies the difference between the weighted number of 

concordant pairs and the weighted number of discordant pairs accounting for censoring 

using  

𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(50) = 𝑠𝑖𝑔𝑛 (�̂�𝑓𝑖,1(𝑡𝑚|𝑿𝑓𝑖 , 𝑍𝑓1), �̂�𝑔𝑗,1 (𝑡𝑚|𝑿𝑔𝑗 , 𝑍𝑔1)) 𝑐𝑠𝑖𝑔𝑛 (𝑡𝑓𝑖 , 𝐷𝑓𝑖 , 𝑡𝑔𝑗 , 𝐷𝑔𝑗 , 50)𝑊𝐶𝑓𝑖𝑔𝑗1
∗  

where 𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(50) > 0 for concordant pair, 𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(50) < 0  for discordant pair, and 

𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(50) = 0  for non-comparable pair. By aggregating the table by row, the most 

right column in Table 5.4 (b) is obtained to estimate the proportion of the difference 

between the weighted number of concordant pairs and the weighted number of discordant 

pairs for each individual 𝑑𝑓𝑖𝑐𝑠1(𝜈) = ∑ ∑ 𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(𝜈)/(𝑛 − 1)
𝑛𝑔
𝑗=1

𝐹
𝑔=1 , i.e., the difference 

between the weighted number of concordant pairs and the weighted number of discordant 

pairs divided by the total number of pairs, (𝑛 − 1), for each individual can get. The value 

of 𝑑𝑓𝑖𝑐𝑠1(𝜈) above 0 indicates that most pairs are concordant, whereas below 0 indicates 

that most pairs are discordant. Then, by averaging them over all individuals, we compute 

the average proportion of the difference between the weighted number of concordant 

pairs and the weighted number of discordant pairs by 50 years as 𝑑𝑐𝑠1(50) = 0.38.  

Table 5.4: Determining the order of penetrances 

(a) 𝑠𝑖𝑔𝑛 (�̂�𝑓𝑖,1 (min (𝑡𝑓𝑖 , 𝑡𝑔𝑗)|𝑋𝑓𝑖 , 𝑍𝑓1) , �̂�𝑔𝑗,1 (min (𝑡𝑓𝑖 , 𝑡𝑔𝑗)|𝑋𝑔𝑗 , 𝑍𝑓1)) 

 𝐭𝐠𝐣 23 37 41 49 60 63 69  

𝐭𝐟𝐢 𝒙 1 0 0 0 1 1 1  

23 1 - -1 -1 -1 0 0 0  

37 0 1 - 0 0 1 1 1  

41 0 1 0 - 0 1 1 1  

49 0 1 0 0 - 1 1 1  

60 1 0 -1 -1 -1 - 0 0  

63 1 0 -1 -1 -1 0 - 0  

69 1 0 -1 -1 -1 0 0 -  
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(𝑏)𝑑𝑓𝑖𝑔𝑗𝑐𝑠1(50) = 𝑠𝑖𝑔𝑛 (�̂�𝑓𝑖,1(𝑡𝑚|𝑿𝑓𝑖 , 𝑍𝑓1), �̂�𝑔𝑗,1 (𝑡𝑚|𝑿𝑔𝑗 , 𝑍𝑔1)) 𝑐𝑠𝑖𝑔𝑛 (𝑡𝑓𝑖 , 𝐷𝑓𝑖 , 𝑡𝑔𝑗 , 𝐷𝑔𝑗 , 50)𝑊𝐶𝑓𝑖𝑔𝑗1
∗  

𝒇𝒊 11 12 21 22 23 13 24 𝑑𝑓𝑖𝑐𝑠,1(50) 

11 - 0 0 0 0 0 0 0/6 = 0 

12 0 - 0 0 1.19 1.19 1.19 3.57/6 = 0.60  

21 0 0 - 0 1.46 1.46 1.46 4.38/6 = 0.73 

22 0 0 0 - 0 0 0 0/6 = 0 

23 0 1.19 1.46 0 - 0 0 2.65/6 = 0.44 

13 0 1.19 1.46 0 0 - 0 2.65/6 = 0.44 

24 0 1.19 1.46 0 0 0 - 2.65/6 = 0.44 

     𝑑𝑐𝑠1(50) = 15.90/42 = 0.38  

 

Step 5: Estimate the variances of 𝑑𝑓𝑖𝑐𝑠,1(50) and 𝑑𝑐𝑠1(50) 

By using the values of 𝑑𝑓𝑖𝑐𝑠1(50) and 𝑑𝑐𝑠1(50) in Table 5.11 (c), we estimate the family 

specific average of 𝑑𝑓𝑖𝑐𝑠,1(50) for family 1 and family 2 as follow: 

𝑑1𝑐𝑠1(50) =∑
𝑑1𝑖𝑐𝑠1(50)

𝑛1
=
0 + 0.60 + 0.44

3
= 0.34

𝑛1

𝑖=1
 

and 

𝑑2𝑐𝑠1(50) =∑
𝑑2𝑖𝑐𝑠1(50)

𝑛2
=
0.73 + 0 + 0.44 + 0.44

4
= 0.40

𝑛2

𝑖=1
 

By using the family specific average of 𝑑𝑓𝑖𝑐,1(50), the variance of family-specific 

averages across families is obtained using Equation (5.9) as 

Var̂ (𝑑𝑓𝑖𝑐𝑠1(50)) =
∑ 𝑛𝑓{𝑑𝑓𝑐𝑠1(50) − 𝑑𝑐𝑠1(50)}

2𝐹
𝑓=1

𝑛(𝐹 − 1)
 

=
3 × (0.34 − 0.38)2 + 4 × (0.40 − 0.38)2

7(2 − 1)
= 0.0009 

Then, variance for 𝑑𝑐𝑠1(50) is obtained using Equation (5.6) as 
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Var̂(𝑑𝑐𝑠1(50)) =
4

7
× Var̂ (𝑑𝑓𝑖𝑐𝑠1(50)) =

4

7
× 0.0009 = 0.0005 

 

Step 6: Estimate the covariance between 𝑑𝑓𝑖𝑐1(50) and 𝑑𝑓𝑖𝑐𝑠1(50) and between 𝑑𝑐1(50) 

and 𝑑𝑐𝑠1(50) 

By using the family specific average of 𝑑𝑓𝑖𝑐,1(50) and 𝑑𝑓𝑖𝑐𝑠,1(50), the covariance 

between family specific averages across families is obtained using Equation (5.11) as 

COV̂ (𝑑𝑓𝑖𝑐1(50), 𝑑𝑓𝑖𝑐𝑠1(50)) =
∑ ∑ 𝑛𝑓{𝑑𝑓𝑐𝑠1(50) − 𝑑𝑐𝑠1(50)}{𝑑𝑓𝑐1(50) − 𝑑𝑐1(50)}

𝐹
𝑔=1

𝐹
𝑓=1

𝑛(𝐹 − 1)
 

                                 =
3 × (0.48 − 0.56)(0.34 − 0.38) + 4 × (0.63 − 0.56)(0.40 − 0.38)

7(2 − 1)
 

                                 = 0.0022. 

Then, the covariance between 𝑑𝑐1(50) and 𝑑𝑐𝑠1(50) is obtained using Equation (5.8) as 

COV̂(𝑑𝑐1(50), 𝑑𝑐𝑠1(50)) =
4

7
× COV̂ (𝑑𝑓𝑖𝑐1(50), 𝑑𝑓𝑖𝑐𝑠1(50)) =

4

7
× 0.0022 = 0.0012. 

 

Step 7: Compute the time-dependent Kendall’s tau and its variance 

As shown in Equation (5.3), the time-dependent Kendall’s tau is obtained as  

�̂�𝑡𝑑,𝑈,1(50) =
𝑑𝑐𝑠1(50)

𝑑𝑐1(50)
=
0.38

0.56
= 0.68 

and the corresponding variance is estimated using Equation (5.5) such as 

Var̂ (𝜏𝑡𝑑,𝑈,1(50)) =
Var̂(𝑑𝑐𝑠1(50))

𝑑𝑐1(50)2
−
2𝑑𝑐𝑠1(50)COV̂(𝑑𝑐1(50), 𝑑𝑐𝑠1(50))

𝑑𝑐1(50)3
+ 

                                     
 𝑑𝑐𝑠1(50)

2Var̂(𝑑𝑐1(50))

𝑑𝑐1(50)4
 



 

85 

 

=
0.0005

0.562
−
2 × 0.38 × 0.0012

0.563
+
0.382 × 0.0030

0.564
= 0.0008. 

 

Step 8: Determine the time-dependent C-index and its variance 

By using the linear relationship between Kendall’s tau and the C-index as shown in 

Equation (5.4), the overall TDUC is estimated as 

�̂�𝑡𝑑,𝑈,1(50) = 0.5(�̂�𝑡𝑑,𝑈,1(50)  + 1) = 0.5 (
0.38

0.56
 + 1) = 0.5 × 1.68 = 0.84. 

Similarly, the variance of overall TDUC is estimated as 

Var̂ (𝐶𝑡𝑑,𝑈,1(50)) = Var̂ (
1

2
{𝜏𝑡𝑑,𝑈,1(50) + 1}) =

1

4
Var̂ (𝜏𝑡𝑑,𝑈,1(50)) =

1

4
× 0.0008 = 0.0002. 

Furthermore, the 95% confidence interval of the time-dependent C-index can be obtained 

as 

�̂�𝑡𝑑,𝑈,1(50) ± 1.96 × √Var̂ (𝐶𝑡𝑑,𝑈,1(50)) = 0.84 ± 1.96 × √0.0002 = (0.81, 0.86) 

where the lower bound is 0.81 and upper bound is 0.86. We further presented the 

illustration of estimating the TDUC with its variance using R in Appendix B 

 

5.2 Calibration 

5.2.1 Brier score and integrated Brier score 

Alternatively, calibration quantifies how close the predicted probabilities or the predicted 

risks of an event are to the observed event rates given the duration of time (Harrell et al., 

1996; Steyerberg et al., 2010). For example, if we predict a 10% failure probability, 

approximately 10 out of 100 subjects should have a disease. It can be quantified using the 

Brier score, which evaluates the accuracy of the survival model at a specific time point. 
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The Brier score was proposed by Brier (1950) and was extended by Graf et al. (1999) to 

survival data. Gerds and Schumacher (2006) further introduced the consistent version of 

the Brier score, which uses the IPCW to account for the loss of information due to 

censoring. With survival data, the Brier score can be used to evaluate the accuracy of a 

survival model at a given time 𝑡. Mathematically, it is calculated as the difference 

between the predicted event probabilities and the true event status at a certain prediction 

time point 𝑡. It ranges from 0 to 0.25, where a value closer to 0 indicates better overall 

performance, whereas the model that performs no better than a chance has a value of 

0.25. The Brier score evaluated at time 𝑡 is defined as 

𝐵𝑆(𝑡) = E[𝐼(𝑇 > 𝑡) − 𝑆(𝑡|𝑿)]2 

=
1

𝑁
∑ {𝐼(𝑇𝑖 > 𝑡) − 𝑆𝑖(𝑡|𝑿𝒊)}

2
𝑁

𝑖=1
 

where 𝑆𝑖(𝑡|𝑿𝒊) is the survival probability for individual 𝑖 at time 𝑡 conditional on the 

covariate vector 𝑿. Schoop et al. (2011) extended the Brier score to the framework of 

competing risks and introduced the consistent Brier score estimator. They considered two 

competing events and computed the Brier score by using the penetrance of a specific 

event instead of the survival probability.  

 The Brier score only provides a snapshot of the predictive ability of a model at a 

specific time point 𝑡. Hence, it is difficult to evaluate the model at all available times. The 

integrated Brier score (IBS) can be used to remedy this problem by providing an overall 

measure of model performance within a time interval [0, 𝑡]. The IBS over the interval 

[0, 𝑡] is defined as 

𝐼𝐵𝑆(𝑡) =
1

𝑡
∫𝐵𝑆(𝑠)𝑑𝑠

𝑡

0

 

where the IBS provides an average Brier score across a time interval. 
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5.2.2 Time-dependent Brier score for competing risk data 

Conditional on a vector of covariates 𝑿, the Brier score for event 𝑗 at time point 𝑡 in the 

presence of competing risks is defined as 

𝐵𝑆𝑗(𝑡) = 𝐸{𝐼(𝑇 < 𝑡, 𝛿 = 𝑗) − 𝐹𝑗(𝑡|𝑿)}
2
. 

Then, the consistent estimator of 𝐵𝑆𝑗(𝑡) was proposed by Schoop et al. (2011) to remove 

dependence on the censoring distribution by applying an IPCW. Then, the Brier score for 

event 𝑗 at time 𝑡 can be estimated as 

𝐼𝐵�̂�𝑗(𝑡) =
1

𝑛
∑ ∑ {𝐼(𝑡𝑓𝑖 ≤ 𝑡, 𝛿𝑓𝑖 = 𝑗) − 𝐹𝑓𝑖𝑗 (𝑡|𝑿𝑓𝑖 , 𝑍𝑓𝑗)}

2

𝑤(𝑡𝑓𝑖 , 𝑡, 𝛿𝑓𝑖)
𝑛𝑓

𝑖=1

𝐹

𝑓=1
 

where  

𝑤(𝑡𝑓𝑖 , 𝑡, 𝛿𝑓𝑖) =
𝐼(𝑡𝑓𝑖 ≤ 𝑡, 𝛿𝑓𝑖 ≠ 0)

�̂�𝑐(𝑡𝑓𝑖−)
+
𝐼(𝑡𝑓𝑖 > 𝑡)

�̂�𝑐(𝑡)
 

�̂�𝑐(𝑡) represents Kaplan-Meier estimator of the censoring distribution and 𝑡𝑓𝑖 − is a time 

point just before 𝑡𝑓𝑖. 

 Then, the IBS for event 𝑗 over the interval [0, 𝑡] can be estimated as 

𝐼𝐵�̂�𝑗(𝑡) =
1

𝑡
∫𝐵�̂�𝑗(𝑠)𝑑𝑠.

𝑡

0
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Chapter 6 Application to Hereditary 
Breast and Ovarian Cancer Family 

 

This chapter describes the analysis of the HBOC family data. Our main objective is to 

evaluate the efficiency of using the B-spline compared to two parametric models, the 

permanent exposure and the Cox and Oakes models, in the context of estimating the 

time-dependent effect of RRSO within the cause-specific correlated frailty competing 

risks model. Section 6.1 presents a descriptive analysis of the BRCA 1 mutation positive 

family data. Section 6.2 describes the specification of the fitted model. In Section 6.3, the 

risk of breast cancer is estimated under three different time-dependent effect models with 

time-dependent covariates, and penetrance by age 70 is estimated with for various 

screening and surgery times. Section 6.4 summarizes the evaluation of the performance 

of models with different time-dependent effect functions. Section 6.5 provides a 

summary of the results.  

 

6.1 HBOC family data 

Hereditary breast-ovarian cancer syndrome is an inherited condition characterized by 

mutations in tumour suppressor genes, BRCA 1 and BRCA 2 genes, causing a significant 

increase in the risk of breast cancer and ovarian cancer (Petrucelli et al., 2022). Mutation 

carriers tend to develop either BC, OC or both of them earlier in life as well. The BRCA 

1 mutation carrier family data used in this thesis was obtained from the Breast Cancer 

Family Registries, which recruited families from six participating sites in the United 

States, Canada and Australia (John et al., 2004). The HBOC is a population-based dataset 

featuring families at high risk of BC or OC based on family history or genetic mutation 

such as those in the BRCA1 genes. The BCFR dataset includes a three-generation 

pedigree involving the proband, the initial family member who entered the study, and 

second-degree relatives. Variables considered include study entry time for probands, the 

ages at the event (BC, OC, and death), mutation status in BRCA 1 genes, and preventive 
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interventions statuses such as mammographic screening, risk-reducing mastectomy, and 

risk-reducing salpingo-oophorectomy.  

As shown in Table 6.1, the data used in this study consisted of 498 BRCA1 

mutation carrier families recruited through BCFR consisting of 2650 women. Of the 2650 

women, 924 (34.9%) experienced BC as the first event, 182 (6.9%) women experienced 

OC as the first event, and 958 (36.2%) women died before developing either BC or OC. 

Women who did not experience any event prior to the last observed times are considered 

censored.  

A small portion of women underwent prophylactic surgeries. 166 (6.2%) women 

underwent RRSO, and 64 (2.4%) women underwent RRM. We assumed that those who 

underwent RRM would not experience BC, and those who underwent RRSO would not 

experience OC. More women opted for screening rather than surgery: 360 (13.6%) 

women had one screening, 101 (3.8%) had two screenings, and 108 (4.1%) had three 

screenings. 

Table 6.2 summarizes the time distribution for three different MS, the times 

between screenings, and RRSO. The mean age at RRSO and first MS are 44.4 and 40.6 

years, respectively, and the mean time between BC and RRSO is 11.3 years. In addition, 

the mean times between consecutive screening times are presented, where the mean time 

between first and second screenings and second and third screenings are 9.2 and 6.2 

years, respectively. 
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Table 6.1: Characteristics of BRCA 1 mutation carrier families. 

  

 

 

 

 

 Breast cancer Ovarian cancer Death Censored Total 

Number of individuals 

N (%)  924 (34.9%) 182 (6.9%) 958 (36.2%) 586 (22.1%) 2650 

Age at event diagnosis 

Mean  44.2  53.0  70.5  50.9  55.8  

Min, Max 21, 86 28, 89 18.5, 102.5 18.1, 95 18.1, 102.5 

BRCA 1 mutation status 

Carrier 705 (76.3%) 91 (50%) 87 (9.1%) 240 (41.0%) 1123 (42.4%) 

Non-carrier 219 (23.7%) 91 (50%) 871 (90.9%) 346 (59.0%) 1527 (57.6%) 

Number of screenings 

0 722 (78.1%) 158 (86.8%) 944 (98.5%) 257 (43.9%) 2081 (78.5%) 

1 160 (17.3%) 19 (10.4%) 7 (0.7%) 174 (29.7%) 360 (13.6%) 

2 31 (3.4%) 4 (2.2%) 3 (0.3%) 63 (10.8%) 101 (3.8%) 

3 11 (1.2%) 1 (0.5%) 4 (0.4%) 92 (15.7%) 108 (4.1%) 

Type of surgery 

None 896 (97.0%) 181 (99.5%) 946 (98.8%) 441 (75.3%) 2464 (93.0%) 

RRSO 28 (3.0%) 0 (0.0%) 9 (0.9%) 129 (22.0%) 166 (6.2%) 

RRM 0 (0.0%) 1 (0.6%) 3 (0.3%) 60 (10.2%) 64 (2.4%) 

RRSO for risk-reducing salpingo-oophorectomy and RRM for risk-reducing mastectomy 
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Table 6.2: Characteristics of the times of mammography screening (MS) and risk-

reducing salpingo oophorectomy (RRSO) for BRCA 1 mutation carrier families. 

 Mean Standard deviation 

RRSO  44.4 9.1 

First MS  40.6 12.4 

BC - RRSO 11.3 8.4 

Time between two screenings 

MS1 – MS2  9.2 7.5 

MS2 – MS3 6.2 4.2 

RRSO for risk-reducing salpingo-oophorectomy 

MS1, MS2 and MS3 for the first, second and third mammographic 

screenings 

BC stands for breast cancer 

 

6.2 Model specification  

The cause-specific correlated frailty competing risks model with different functions for 

time-dependent effects of binary time-dependent covariates discussed in Chapter 3 is 

fitted to the HBOC data. The model includes one binary time-invariant covariate and four 

time-dependent covariates, presenting mutation status, the three screening statuses and 

RRSO status. Formally,  

1. 𝐺: mutation status, a binary time-invariant covariate taking the value 1 for 

mutation carriers and 0 for non-carriers. The cause-specific hazard models for all 

events, BC, OR, and death, are affected by this variable.  

2. 𝑋(𝑡, 𝑡𝑆𝑘): The three screening statuses are considered as binary TDCs, wherein 

the 𝑘th screening status change at the time 𝑡𝑠𝑘  of the 𝑘th screening occurrence, 

i.e., 𝑋(𝑡, 𝑡𝑆𝑘) = 𝐼(𝑡𝑆𝑘 ≤ 𝑡 < 𝑡𝑆𝑘+1) for 𝑘 = 1,2,3, 𝑡𝑆1 < 𝑡𝑆2 < 𝑡𝑆3 and 𝑋(𝑡, 𝑡𝑆3) =

1 for 𝑡 > 𝑡𝑆3. 
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3. 𝑋(𝑡, 𝑡𝑟): RRSO status is considered as a binary TDC, wherein the RRSO status 

change at the time 𝑡𝑟 of RRSO occurrence, i.e., 𝑋(𝑡, 𝑡𝑟) = 𝐼(𝑡 > 𝑡𝑟).  

Then, the cause-specific hazard functions for breast cancer, ovarian cancer and death are 

expressed respectively as  

ℎ𝑓,1 (𝑡|𝐺, 𝑍𝑓1 , 𝑿(𝒕, 𝒕𝒔), 𝑋(𝑡, 𝑡𝑟)) = ℎ01(𝑡)𝑍𝑓1exp {𝛾1𝑔𝐺 + 𝑔𝑠1 (𝑡, 𝑋(𝑡, 𝑡𝑆1)) + 

                                                              𝑔𝑠2 (𝑡, 𝑋(𝑡, 𝑡𝑆2)) + 𝑔𝑠3 (𝑡, 𝑋(𝑡, 𝑡𝑆3)) + 𝑔𝑟(𝑡, 𝑋(𝑡, 𝑡𝑟))} 

ℎ𝑓,2(𝑡|𝐺, 𝑍𝑓2) = ℎ02(𝑡)𝑍𝑓2exp{𝛾2𝑔𝐺} 

ℎ𝑓,3(𝑡|𝐺) = ℎ03(𝑡)exp{𝛾3𝑔𝐺} 

where 𝑿(𝒕, 𝒕𝒔) = {𝑋(𝑡, 𝑡𝑆1), 𝑋(𝑡, 𝑡𝑆2), 𝑋(𝑡, 𝑡𝑆3)} is the vector of TDCs for screenings, 

ℎ0𝑗(𝑡) = 𝜆𝑗𝜌𝑗(𝜆𝑗𝑡)
𝜌𝑗−1

, 𝑗 = 1,2,3 are Weibull baseline hazard functions and 𝛾𝑗𝑔 are the 

effect of mutation status for event 𝑗. Similary, 𝑍𝑓1 and 𝑍𝑓2 are event specific frailties for 

breast cancer and ovarian cancer. Since the correlation between breast cancer and death 

and between ovarian cancer and death are close to 0, and the frailty parameter for death is 

not significant, only the frailty parameters for breast cancer and ovarian cancer are 

considered (Choi et al., 2021). 

 We considered three different functions for the effect of RRSO 

𝑔𝑟(𝑡, 𝑋(𝑡, 𝑡𝑟)) =

{
 
 

 
 
0                                                         if 𝑡 ≤ 𝑡𝑠 (PE, CO, BS) 

𝛽𝑟                                                       if 𝑡 > 𝑡𝑠 (PE)               

𝛽𝑟𝑒
−𝜂(𝑡−𝑡𝑟) + 𝜂0                             if 𝑡 > 𝑡𝑠 (CO)               

∑ 𝛽𝑟,𝑘𝐵𝑘,𝐷(𝑡 − 𝑡𝑟)
𝐾+𝐷

𝑘=0
                 if 𝑡 > 𝑡𝑠 (BS)                

 

where only one parameter, 𝛽𝑟, is involved as a TDE for the PE model. The parameters 

involved in the CO model are {𝛽𝑟, 𝜂, 𝜂0} and the number of parameters involved in the 

BS model depends on the polynomial degree 𝐷 and the number of interior knots 𝐾. The 

BS model features a total of parameters is 𝐾 + 𝐷 + 1 parameters including the intercept. 

In this study, to provide a smooth curve of the effect of RRSO, the B-spline model is 

constructed with a degree of 2, boundary knots (0, 57) and 2 interior knots (5.74, 12.76), 
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where the two interior knots represent the 33rd and 66th quantile of the time difference 

between RRSO event time and end of follow-up, and the second boundary knot 𝑡 = 57 

represents the maximum time difference between end of follow-up and RRSO event time. 

In contrast to the effect of RRSO, Choi et al. (2021) demonstrated that the effects 

of the three screenings under the CO model are significant based on the likelihood ratio 

test comparing a model with the screenings and to one with no screenings. Thus, the CO 

model is used for the effect of three different screenings, where the first, second, and 

third screening effects are defined as  

𝑔𝑆1 (𝑡, 𝑋(𝑡, 𝑡𝑆1)) = {
0                                                if 𝑡 ≤ 𝑡𝑆1  or 𝑡 > 𝑡𝑆2        

𝛽𝑆1𝑒
−𝜂𝑆1(𝑡−𝑡𝑆1) + 𝜂0𝑆1          if 𝑡𝑆1 < 𝑡 ≤ 𝑡𝑆2                

 

𝑔𝑆2 (𝑡, 𝑋(𝑡, 𝑡𝑆2)) = {
0                                                if 𝑡 ≤ 𝑡𝑆2  or 𝑡 > 𝑡𝑆3        

𝛽𝑆2𝑒
−𝜂𝑆2(𝑡−𝑡𝑆2) + 𝜂0𝑆2          if 𝑡𝑆2 < 𝑡 ≤ 𝑡𝑆3                

 

and 

𝑔𝑆3 (𝑡, 𝑋(𝑡, 𝑡𝑆3)) = {
0                                                   if 𝑡 ≤ 𝑡𝑆3                           

𝛽𝑆3𝑒
−𝜂𝑆3(𝑡−𝑡𝑆3) + 𝜂0𝑆3             if 𝑡𝑆3 < 𝑡                          

 

where the effects of screenings exponentially decay over time at a rate of 𝜂𝑆𝑘  before 

eventually converging to a certain value 𝜂0𝑆𝑘 for 𝑘 = 1,2,3. 

 

6.3 Analysis of risk of breast cancer 

The hazard ratio (HR), also known as the relative risk, is obtained via the exponential 

transformation of the modelled risk scores. The log relative risk of BRCA mutation 

status, mammographic screenings and RRSO on the events of breast cancer, ovarian 

cancer and death, along with their corresponding robust standard errors (SE) and 𝑝-

values, were estimated using three different time-dependent effects models (PE, CO, BS). 

The results from the three models are summarized in Table 6.3, wherein similar patterns 

for the parameter estimates related to the baseline hazard function, mutation status and 
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first screening for the PE, CO and BS models were found. However, differing patterns 

appeared in the parameter estimates related to frailties, second and third screenings, and 

RRSO obtained under the PE, CO and BS models. Nevertheless, all models provided 

evidence that all covariates are significantly associated with the risk of developing breast 

cancer except for the frailties.  

To better illustrate the time-dependent effects of screenings and RRSO over time 

associated with breast cancer, Figure 6.1 displays the hazard ratio measuring the time-

dependent effect of three different screenings for the BS models, assuming the CO model 

for screening effects. The HRs of the first and third screenings are above 1, whereas the 

HR of the second screening converges to a value below 1. Similarly, Figure 6.2 presents 

the hazard ratio of RRSO on breast cancer for the PE, CO and BS models, respectively. 

Although different effects of RRSO are obtained across the models, all of them obtained 

a negative association between RRSO and risk of developing breast cancer in BRCA 1. 

The PE model has a constant effect of RRSO on breast cancer, whereas such an effect 

varies over time for the CO and BS models. The HR of RRSO for both CO and BS 

models drastically increases, but the HR for the CO model eventually converges to a 

particular value. In contrast, the HR for the BS model fluctuates over time as it provides a 

smooth curve of the effect of RRSO. 

To identify the best fitting model, we used the AIC, where the lowest AIC 

indicates the best fit of the model to data. According to AIC, the BS model (AIC = 

19076.954) fits the data better than the PE (AIC = 19080.393) and CO (AIC = 

19077.433) models, although the AIC difference between BS and CO models is quite 

small. Then, we describe the results of the parameter and penetrance estimators based on 

the BS model chosen as the best fitting model. 
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Table 6.3: Parameter estimates and AICs based on the correlated competing risks models 

with frailties; the Cox and Oakes model is assumed for mammography screening (MS) 

and permanent exposure, Cox and Oakes and B-spline are used for risk-reducing 

salpingo-oophorectomy (RRSO). 

  Permanent Exposure  Cox and Oakes  B-Spline 

Parameter  EST SE 𝑝-value  EST SE 𝑝-value   EST SE 𝑝-value 

log (𝜆1)   -4.678 0.038 < 0.001  -4.692 0.039 < 0.001   -4.680 0.038 < 0.001 

log (𝜌1)  0.972 0.029 < 0.001  0.960 0.029 < 0.001   0.955 0.028 < 0.001 

log (𝜆2)   -4.825 0.047 < 0.001  -4.782 0.043 < 0.001   -4.804 0.044 < 0.001 

log (𝜌2)  1.189 0.044 < 0.001  1.208 0.043 < 0.001   1.212 0.043 < 0.001 

log (𝜆3)   -4.178 0.008 < 0.001  -4.176 0.008 < 0.001   -4.179 0.008 < 0.001 

log (𝜌3)  1.436 0.034 < 0.001  1.435 0.034 < 0.001   1.445 0.034 < 0.001 

Mutation Status            

𝛾1𝑔   2.262 0.127 < 0.001  2.254 0.126 < 0.001   2.190 0.124 < 0.001 

𝛾2𝑔  1.594 0.231 < 0.001  1.484 0.230 < 0.001   1.614 0.229 < 0.001 

𝛾3𝑔  -0.329 0.138 0.017  -0.355 0.139 0.011   -0.357 0.142 0.012 

Frailties              

log (𝑘0)   0.380 0.361 0.293  0.426 0.401 0.289   0.711 0.450 0.114 

log (𝑘1)  0.670 0.387 0.083  0.633 0.412 0.124   0.217 0.793 0.785 

log (𝑘2)  -0.605 0.724 0.402  -0.038 0.788 0.962   0.298 0.712 0.676 

First MS on Breast Cancer           

βS1   3.572 0.252 < 0.001  3.437 0.256 < 0.001   3.351 0.266 < 0.001 

log (𝜂𝑆1)   1.553 0.245 < 0.001  1.544 0.238 < 0.001   1.439 0.246 < 0.001 

𝜂𝑜𝑆1    0.306 0.145 0.034  0.357 0.141 0.011   0.343 0.143 0.016 

Second MS on Breast Cancer           

βS2   3.873 0.424 < 0.001  3.967 0.455 < 0.001   4.153 0.512 < 0.001 

log (𝜂𝑆2)  1.030 0.365 0.005  0.869 0.368 0.018   0.789 0.402 0.049 

𝜂𝑜𝑆2   -0.272 0.367 0.458  -0.434 0.412 0.292   -0.601 0.507 0.235 

Third MS on Breast Cancer           

βS3   4.142 0.699 < 0.001  3.949 0.972 < 0.001   3.712 0.808 < 0.001 

log (𝜂𝑆3)  2.305 0.759 0.002  1.548 1.239 0.211   2.084 0.730 0.004 

𝜂𝑜𝑆3   0.114 0.363 0.754  -0.378 0.597 0.526   0.028 0.390 0.943 

RRSO on Breast Cancer           

βr  -0.605 0.203 0.003  -1.787 0.714 0.012  βr,0 -2.513 1.012 0.013 

log (ηr)  - - -  -0.187 0.451 0.678  βr,1 0.482 0.632 0.446 

ηor  - - -  -0.411 0.236 0.081  βr,2 -0.987 0.451 0.029 

          βr,3 0.688 2.100 0.743 

          βr,4 -6.121 8.019 0.445 

-loglik  9518.196  9514.717   9512.477 

AIC  19080.393  19077.433   19076.954 

SE represents robust standard error. 𝜆𝑗 and 𝜌𝑗 represent the parameters related to the baseline hazard 

function and 𝛾𝑗 are the mutation status parameters for 𝑗th event. 𝛽𝑠𝑘, 𝜂𝑠𝑘 and 𝜂0𝑠𝑘 represent the parameters 

related to the 𝑘th screening. 𝑘0, 𝑘1 and 𝑘2 are the frailty parameters. -loglik is the negative log-likelihood 

value for the fitted model and AIC represents the Akaike information criterion. 
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6.3.1  Genetic effect 

The genetic effects were estimated similarly across different models. We describe the 

results based on the BS model chosen as a best fit of the model. On the risk of developing 

breast cancer in the presence of competing risks, adjusting for the RRSO and three MSs 

as TDCs in the model, the effects of mutation status on all events were found to be 

significant with the log relative risks of 𝛾1𝑔 = 2.190 (95% CI between 1.948 and 2.433; 

𝑝 < 0.001), 𝛾2𝑔 = 1.613 (95% CI between 1.164 and 2.063; 𝑝 < 0.001), and 𝛾3𝑔 =

−0.357 (95% CI between -0.635 and -0.078; 𝑝 = 0.012) for BC, OC and death, 

respectively. These results indicate that being a mutation carrier increases the cause-

specific hazard of developing BC and OC by 8.93 and 5.02, respectively, whereas it 

decreases the risk of death by 0.7 compared to non-mutation carriers.  

 

6.3.2 Screening effect 

Up to three screenings were considered and each screening as TDC. We assumed the CO 

model for the effects of the screenings as it was found to be the best model for screenings 

from the previous study (Choi et al., 2021). The effects of the first, second and third 

screenings on breast cancer were significant across all models. Also, the shapes of the 

changes in the HRs for the screenings are similar for all the models, where the time-

dependent effects of the screenings can be assessed by estimating the HR given by 

𝑔𝑆𝑘 (𝑡, 𝑋(𝑡, 𝑡𝑆𝑘)) , 𝑘 = 1,2,3. Figure 6.1 presents the time-dependent HRs of each 

screening estimated on a continuous scale from 0.5 to 10 years under the best fitting 

model (BS model). As shown in Figure 6.1, the HRs of the screenings are reduced over 

time from HR = 2.117 (95% CI between 1.756 and 2.479) to HR = 1.409 (95% CI 

between 1.118 and 1.701), from HR = 2.183 (95% CI between 1.422 and 2.944) to HR = 

0.548 (95% CI between -0.490, 1.586), and from HR = 1.100 (95% CI between 0.247 and 

1.952) to HR = 1.029 (95% CI between 0.260 and 1.797), respectively, from 0.5 to 10 

years after screenings. The HRs of the first and third screenings exponentially decayed 

but stayed above 1, which indicates that having a first or third screening increase the risk 

of developing BC. In contrast, the HR of the second screening decayed to below 1, 



 

97 

 

indicating that having a second screening eventually decreases the risk of developing BC. 

The results also demonstrate that the most changes in the HR occurred in the second 

screening among three screenings, whereas the HR of the third screening did not vary a 

lot over time. 

 

6.3.3 RRSO effect 

In opposition to the screenings, the time-dependent effect of RRSO was modelled under 

three structures (PE, CO, BS) that is given by 𝑔𝑟(𝑡, 𝑋(𝑡, 𝑡𝑟)), where the effect of RRSO 

stays constant for PE and exponentially decays to a certain value for CO. In contrast, the 

BS model is obtained as a linear combination of the BS basis function and their 

coefficients, leading to the effect providing a smooth curve that fluctuates over time 

while having a peak and trough. By fitting the models, the results under all models 

showed a negative association between RRSO and breast cancer risks. We present the 

effect of RRSO in terms of HR changes over time graphically in Figure 6.2 and its point 

and interval estimates from 0.5 to 20 years after surgery in Appendix A Table A.1.  

 Since there is a negative association between RRSO and breast cancer risks for all 

models, having RRSO reduces the risk of developing breast cancer. Then, although each 

model obtained the different shapes of the HR of RRSO over time, the values of HR for 

all models stay below 1. As shown in Figure 6.2, the HR of RRSO for the PE model stays 

constant as the effect of RRSO stays constant. For the CO model, the HR of RRSO 

depicts the shape of a logarithmic growth curve, where the HR has a period of rapid 

increase and is followed by a period where the growth slows. In contrast to the PE and 

CO models, the HR of RRSO for the BS model fluctuates over time, where the HR 

drastically increases for the first five years. Once it reaches the peak, the HR radically 

decreases, but it slowly increases over time.  
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Figure 6.1: Hazard ratios (black) and their 95% confidence intervals (red) measuring the 

time-dependent effect of mammography screenings (MSs) on breast cancer, assuming 

Cox and Oakes model for the effects of MSs and B-spline model for the effects of risk-

reducing salpingo-oophorectomy (RRSO) in BRCA 1 mutation families. 

Figure 6.2: Hazard ratios and their 95% confidence intervals measuring the time-

dependent effect of risk-reducing salpingo-oophorectomy on breast cancer under 

different time-dependent effect models (B-spline (red), Cox and Oakes (blue), permanent 

exposure (black)) for BRCA 1 mutation families. 
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Since the effect of RRSO is negatively associated with the risk of developing 

breast cancer, the large effect of RRSO is equivalent to the low breast cancer risks. Under 

the BS model, the effect of RRSO reduces from time 0.5 to 4.75 years, leading to 

increasing the risk of developing breast cancer that is HR = 0.206 (95% CI between -

0.122 and 0.534) to HR = 0.942 (95% CI between 0.183 and 1.701), which is a trough of 

the effect of RRSO and a peak of HR of RRSO on breast cancer. Then, the effect of 

RRSO increases and reaches a trough at 11.25 years, indicating that the HR of RRSO to 

be decreased, that is HR = 0.446 (95% CI between 0.141 and 1.189). Again, the effect of 

RRSO decreases from 11.25 to 20 years, which increases the HR of RRSO to 0.603 (95% 

CI between 0.017 and 1.189). Then, the results demonstrate that RRSO increases the 

cause-specific hazard of developing breast cancer right after RRSO, eventually 

decreasing it. Furthermore, RRSO is highly significant based on the likelihood ratio test 

obtained by comparing a model with RRSO and without RRSO, where the 𝑝 value equals 

0.001. 

 

6.3.4 Dependence between competing events 

As described in Section 3.2, the shared frailties within families for each competing event 

depict dependences between events or within families for each event. The estimates of 

frailty parameters 𝑘0, 𝑘1 and 𝑘2 obtained using the BS model are 2.037 (95% CI between 

0.242 and 3.831), 1.242 (95% CI between -0.689 and 3.173) and 1.346 (95% CI between 

-0.532 and 3.225). Then, the estimated correlation between breast cancer and ovarian 

cancer is obtained as 

𝜌 =
𝑘0

√(𝑘0 + 𝑘1)(𝑘0 + 𝑘2)
=

2.037

√(2.037 + 1.242)(2.037 + 1.346)
= 0.612 

with 95% confidence interval between 0.218 and 0.874, indicating that the frailties of two 

events are not independent. In other words, there is a significant correlation between two 

events, breast cancer and ovarian cancer. 
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In addition, the variance of each frailty is obtained as 1 (𝑘0 + 𝑘1)⁄ =

1 (2.037 + 1.242) = 0.305⁄  for BC and 1 (𝑘0 + 𝑘2)⁄ =

1 (2.037 + 1.346) = 0.296⁄  for OC. The corresponding measures of familial correlation, 

Kendall’s tau, are estimated as 

𝜏1 =
1

1 + 2 × (𝑘0 + 𝑘1)
=

1

1 + 2 × (2.037 + 1.242)
= 0.132 

for BC with 95% confidence interval between 0.063 and 0.175 and 

𝜏2 =
1

1 + 2 × (𝑘0 + 𝑘1)
=

1

1 + 2 × (2.037 + 1.346)
= 0.129 

for OC with 95% confidence interval between 0.057 and 0.243. Both values of 0.132 and 

0.129 indicate the low within familial correlation for breast cancer and ovarian cancer, 

respectively. Although the estimates of frailty parameters 𝑘0, 𝑘1 and 𝑘2 under the BS 

model are different from those under other models, the estimated measures of familial 

correlation are similar for all models. However, the PE model has the largest value of the 

estimated correlation between breast cancer and ovarian cancer, followed by the CO and 

BS models. 

 

6.3.5 Penetrance estimation 

Figure 6.3 presents breast cancer penetrance for a mutated woman with RRSO at 

different time points (30, 40, 50) and no MS while assuming the BS model for the effect 

of RRSO. The green, red, and blue lines represent a woman with RRSO at age 30, 40 and 

50 years, respectively. The plot demonstrates that having RRSO earlier is beneficial to 

reduce breast cancer risks. To better illustrate the effect of RRSO and screenings on the 

cumulative risk of breast cancer among women with BRCA 1 mutations, Figures A.1 to 

A.3 in Appendix A display the breast cancer penetrance estimates with different 

screening and RRSO times. Figure A.1 shows the breast cancer penetrance given the 

screenings with no RRSO, and Figure A.2 shows the breast cancer penetrance given 
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RRSO without screenings. Figure A.3 presents the breast cancer penetrance given one to 

three screenings with RRSO. 

 

 

 

 

 

 

 

We also present the penetrance estimates at age 70 from the correlated frailty 

competing risks model with different screening and RRSO times in Table 6.4. Denoting 

RRSO time by 𝑡𝑟 and the 𝑘th screening time by 𝑡𝑆𝑘 , we consider 𝑡𝑠1 = 35, 𝑡𝑠2 = 37 and 

𝑡𝑠3 = 39 as the first, second, and third screening times close to the mean ages from the 

data and three different RRSO times, 𝑡𝑟 = 30, 40, 50 years, to evaluate the effect of 

RRSO. The following eight different breast cancer penetrances by age 70, denoted as 𝑃1 

to 𝑃8, for mutation/non-mutation carriers are estimated:    

1. 𝑃1 = penetrance with no MS and no RRSO; 

2. 𝑃2 = penetrance with MS at ages 35, 37 and 39, no RRSO; 

Figure 6.3: Breast cancer penetrance estimations for mutation carriers with risk-reducing 

salpingo-oophorectomy (RRSO). The black line represents a woman who did not have 

RRSO, the green line a woman who had RRSO at age 30 years, the red line a woman 

who had RRSO at age 40 years, and the blue line a woman who had RRSO at age 50 

years. 
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3. 𝑃3 = penetrance with RRSO at age 30, no screening; 

4. 𝑃4 = penetrance with RRSO at age 40, no screening; 

5. 𝑃5 = penetrance with RRSO at age 50, no screening;  

6. 𝑃6 = penetrance with RRSO at age 40; MS at age 35;  

7. 𝑃7 = penetrance with RRSO at age 40; MS at ages 35 and 37; 

8. 𝑃8 = penetrance with RRSO at age 40; MS at ages 35, 37 and 39.  

The penetrance estimates are obtained under each PE, CO and BS model. The results 

demonstrate that RRSO reduces the penetrance of BC for all three models, which 

indicates that having RRSO earlier is more beneficial. In contrast, having all three 

screenings increases the penetrance for both the PE and BS models, whereas it lowers the 

penetrance for the CO model. Similarly, having both RRSO and screenings lowers the 

penetrance of BC for both PE and BS models, whereas having only one screening with 

RRSO vaguely increases the penetrance for the CO model. Although all models obtain 

different penetrance estimates, changes in the trends of the penetrance estimates are 

similar except for the penetrances involving the screenings, where the changes in the 

penetrance for the CO model are in the opposite direction of the PE and BS models. 

Under the BS model, the penetrance at age 70 with no screenings nor RRSO is estimated 

at 0.125 (95% CI between 0.107 and 0.143) and 0.599 (95% CI between 0.555 and 0.643) 

for non-mutation carriers and mutation carriers, respectively. Since three consecutive 

screenings occurred at age 35, 37 and 39, the penetrances at age 70 for non-mutation 

carriers and mutation carriers are estimated at around 0.142 (95% CI between 0.061 and 

0.223)/0.644 (95% CI between 0.474 and 0.815), respectively. The results show that 

having multiple screenings increases the penetrance.   

For women with RRSO at 30 years, the breast cancer penetrance is 0.062 (95% CI 

between 0.023 and 0.101)/0.417 (95% CI between 0.233 and 0.602), while the breast 

cancer penetrance for women with RRSO at 50 years is 0.093 (95% CI between 0.067 

and 0.119)/0.528 (95% CI between 0.447 and 0.609) for non-mutation carriers and 
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mutation carriers, respectively. Although there is not much change in the penetrance of 

the non-carriers, having RRSO earlier is beneficial to reduce the risk of breast cancer.  

Similarly, the breast cancer penetrance at 70 years with RRSO at 40 years and the 

first screening at 35 years is 0.113 (95% CI between 0.062 and 0.164)/0.603 (95% CI 

between 0.465 and 0.740) while the penetrance with the same conditions and the second 

screening at time 37 is 0.066 (95% CI between 0.029 and 0.103)/0.429 (95% CI between 

0.266 and 0.592) for non-mutation/mutation carriers, respectively. In contrast, with a 

third screening at 39 years, the penetrance increases to 0.099 (95% CI between 0.042 and 

0.155)/0.556 (95% CI between 0.374 and 0.738) for non-mutation/mutation carriers, 

respectively. Since the hazard ratio of RRSO under the BS model is less than 1 as shown 

in Figure 6.2, the effect of RRSO has a negative association with the cause-specific 

hazard of breast cancer. However, since both hazard ratios of the first and third 

screenings are above 1, it turns out that the effects of RRSO and screenings do not affect 

the penetrance in the same ways. 
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Table 6.4: Penetrance estimates at age 70 from the correlated frailty competing risks 

model with time-dependent effects (TDE) of mammographic screenings (MS) and risk-

reducing salpingo-oophorectomy (RRSO); Cox and Oakes model is assumed for MS; The 

permanent exposure, Cox and Oakes and B-spline models are considered for RRSO. 

 

 Permanent Exposure Cox and Oakes B-Spline 

 Estimate 95% CI  Estimate 95% CI  Estimate 95% CI  

Mutation status 𝑮 = 𝟎     

No MS and RRSO     

𝑃1 0.121 (0.104, 0.139)  0.120 (0.102, 0.137)  0.125 (0.107, 0.143)  

No RRSO     

𝑃2 0.147 (0.066, 0.228)  0.105 (0.035, 0.175)  0.142 (0.061, 0.223)  

No MS        

𝑃3 0.073 (0.043, 0.103)  0.085 (0.047, 0.122)  0.062 (0.023, 0.101)  

𝑃4 0.078 (0.051, 0.106)  0.088 (0.055, 0.120)  0.082 (0.047, 0.117)  

𝑃5 0.089 (0.066, 0.111)  0.094 (0.069, 0.119)  0.093 (0.067, 0.119)  

Both MS and RRSO       

𝑃6 0.106 (0.067, 0.145)  0.122 (0.075, 0.170)  0.113 (0.062, 0.164)  

𝑃7 0.076 (0.037, 0.114)  0.075 (0.035, 0.116)  0.066 (0.029, 0.103)  

𝑃8 0.100 (0.048, 0.153)  0.082 (0.032, 0.132)  0.099 (0.042, 0.155)  

Mutation status 𝑮 = 𝟏     

No screenings and surgery     

𝑃1 0.611 (0.568, 0.654)  0.608 (0.565, 0.652)  0.599 (0.555, 0.643)  

No RRSO     

𝑃2 0.674 (0.515, 0.833)  0.572 (0.368, 0.777)  0.644 (0.474, 0.815)  

No MS       

𝑃3 0.489 (0.366, 0.613)  0.537 (0.399, 0.675)  0.417 (0.233, 0.602)  

𝑃4 0.507 (0.404, 0.609)  0.541 (0.429, 0.654)  0.497 (0.366, 0.629)  

𝑃5 0.535 (0.463, 0.607)  0.552 (0.476, 0.629)  0.528 (0.447, 0.609)  

Both MS and RRSO      

𝑃6 0.603 (0.493, 0.712)  0.649 (0.534, 0.764)  0.603 (0.465, 0.740)  

𝑃7 0.493 (0.339, 0.647)  0.491 (0.326, 0.655)  0.429 (0.266, 0.592)  

𝑃8 0.584 (0.422, 0.746)  0.517 (0.326, 0.709)  0.556 (0.374, 0.738)  

𝑃1 = 𝐹1(70|𝑡𝑟 = ∞, 𝑡𝑠1=∞, 𝑡𝑠2 = ∞, 𝑡𝑠3=∞); 𝑃2 = 𝐹1(70|𝑡𝑟 = ∞, 𝑡𝑠1=35, 𝑡𝑠2 = 37, 𝑡𝑠3=39); 

𝑃3 = 𝐹1(70|𝑡𝑟 = 30, 𝑡𝑠1=∞, 𝑡𝑠2 = ∞, 𝑡𝑠3=∞); 𝑃4 = 𝐹1(70|𝑡𝑟 = 40, 𝑡𝑠1=∞, 𝑡𝑠2 = ∞, 𝑡𝑠3=∞); 

𝑃5 = 𝐹1(70|𝑡𝑟 = 50, 𝑡𝑠1 = ∞, 𝑡𝑠2 = ∞, 𝑡𝑠3 = ∞); 𝑃6 = 𝐹1(70|𝑡𝑟 = 40, 𝑡𝑠1=35, 𝑡𝑠2 = ∞, 𝑡𝑠3=∞); 

𝑃7 = 𝐹1(70|𝑡𝑟 = 40, 𝑡𝑠1=35, 𝑡𝑠2 = 37, 𝑡𝑠3=∞); 𝑃7 = 𝐹1(70|𝑡𝑟 = 40, 𝑡𝑠1=35, 𝑡𝑠2 = 37, 𝑡𝑠3=39) 

CI stands for the confidence interval; 𝑡𝑟 represents the age of RRSO and 𝑡𝑠𝑘 the age of the 𝑘th MS. 
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6.4 Performance measures 

To examine the efficiency of the BS model, its model performance is compared with the 

PE and CO models via the TDUC, Brier score and IBS at various time points (55, 70, 85, 

100 years). Since only 166 among 2650 individuals underwent RRSO, it caused all the 

models to have similar predictive abilities by obtaining the same values of the penetrance 

across all the models for those who did not undergo RRSO. To discern the effect of 

RRSO on the risk of breast cancer, we have only used 166 individuals who underwent 

RRSO to compute the performance measures. The results of TDUC, Brier score and IBS 

at different time points are presented in Tables 6.6 and 6.7.  

 

6.4.1 Time-dependent Uno’s C-index  

The C-index is used to evaluate the discrimination ability of the models, where it can be 

seen as a proportion of the concordant pairs over the comparable pairs. Table 6.5 presents 

the number of the concordant, discordant and comparable pairs for all TDE models 

among those who underwent RRSO at different time points. All models obtained similar 

numbers of concordant and discordant pairs across time, which caused the models to have 

similar values of TDUC over time, as shown in Table 6.6. Nevertheless, the BS model 

has the largest number of concordant pairs with the smallest number of discordant pairs. 

Table 6.6 presents the point estimates and their 95% confidence intervals at 

various truncation time points (55, 70, 85, 100 years) under the PE, CO and BS models. 

The truncation time of 100 years allows all comparable pairs to be included as the 

maximum observed time among 166 individuals is less than 100 years. The results in 

Table 6.6 show that the values of the TDUC increased with the larger truncation time 

points for all models. At most time points except time 55, the BS model provided the 

largest TDUC values ranged from 0.564 to 0.574, while the PE model provided the 

smallest TDUC values ranged from 0.524 to 0.555 regardless of the time points. 

Although these values indicate that the BS model has better prediction discrimination 

ability than the other model, TDUC values are similar across different models, indicating 

that the prediction discrimination abilities of these three models are indistinguishable. 
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Furthermore, the TDUC values for all models are greater than 0.5, but lower than 0.6, 

indicating a poor performance in terms of discrimination. 

 

Table 6.5: Total number of the concordant, discordant and comparable pairs at different 

truncation times (55, 70, 85, 100) for different time-dependent effect models among 166 

individuals underwent RRSO for different time-dependent effect models. 

 Comparable 

pairs 

Concordant pairs Discordant Pairs 

Time PE CO BS PE CO BS 

55 4070 2112 2230 2224 1948 1830 1836 

70 5358 2876 2996 3000 2466 2346 2342 

85 5452 2964 3084 3088 2472 2352 2348 

100 5452 2964 3084 3088 2472 2352 2348 

PE stands for permanent exposure model, CO for Cox and Oakes model, and BS for B-

spline model 

 

Table 6.6: Time-dependent Uno’s C-index at different time points (55, 70, 85, 100 years) 

among 166 individuals underwent RRSO. 

 Permanent Exposure  Cox and Oakes  B-Spline 

Time EST 95% CI  EST 95% CI  EST 95% CI 

55 0.524 (0.514, 0.533)  0.549 (0.541, 0.558)  0.547 (0.539, 0.556) 

70 0.544 (0.536, 0.552)  0.563 (0.556, 0.571)  0.564 (0.556, 0.572) 

85 0.555 (0.547, 0.563)  0.573 (0.566, 0.581)  0.574 (0.567, 0.582) 

100 0.555 (0.547, 0.563)  0.573 (0.566, 0.581)  0.574 (0.567, 0.582) 

EST stands for estimate, SE stands for the standard error and CI denotes the 

confidence interval. 
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6.4.2 Time-dependent Brier score 

Alternatively, we examined the calibrations of different TDE models (PE, CO, BS 

models) via the Brier score and IBS over different time points. The changes of the Brier 

score and IBS values over time are graphically displayed in Figure 6.4, and the points 

estimates and 95% CIs at selected time points of 55, 70, 85 and 100 are presented in 

Table 6.7.  

The Brier score is a cross-sectional measure that provides a snapshot of the 

predictive ability of a model at a specific time point, while the IBS gives an overall 

measure of model performance during a time interval (0, 𝑡). Considering the Brier score 

and IBS as time-dependent prediction error and cumulative prediction error, respectively, 

smaller values indicate better performance in prediction. 

As shown in Figure 6.4, the Brier scores and IBS are almost identical until age 60 

across different models, and the CO model provides the smallest Brier score and IBS 

most of the time. We notice that although the CO model provides the smallest Brier score 

at time 55, the BS model provides the smallest IBS at time 55 (1.392, 95% CI=1.064, 

1.675), and the CO model provides the smallest IBS afterwards, indicating that the BS 

model predicts better providing smallest prediction errors better until 55 then the CO 

model predicts better afterwards. It appears that the BS model does not predict well at 

later time points as the prediction of the BS model would be unstable with not enough 

data points available at later time points.  
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Table 6.7: Brier score and integrated Brier score (IBS) for 166 individuals who 

underwent RRSO at different truncation times (55, 70, 85, 100). 

 Permanent Exposure  Cox and Oakes  B-Spline 

Time EST 95% CI  EST 95% CI  EST 95% CI 

Brier score    

𝐵𝑆1(55) 0.114 (0.097, 0.131)  0.111 (0.096, 0.128)  0.112 (0.096, 0.128) 

𝐵𝑆1(70) 0.082 (0.063, 0.103)  0.079 (0.061, 0.102)  0.085 (0.065, 0.105) 

𝐵𝑆1(85) 0.047 (0.033, 0.070)  0.044 (0.030, 0.070)  0.056 (0.039, 0.071) 

𝐵𝑆1(100) 0.043 (0.030, 0.069)  0.041 (0.027, 0.069)  0.056 (0.038, 0.071) 

Integrated Brier score     

𝐼𝐵𝑆1(55) 1.421 (1.073, 1.692)  1.397 (1.068, 1.674)  1.392 (1.064, 1.675) 

𝐼𝐵𝑆1(70) 2.983 (2.335, 3.559)  2.912 (2.309, 3.516)  2.956 (2.326, 3.543) 

𝐼𝐵𝑆1(85) 3.864 (2.983, 4.759)  3.751 (2.922, 4.711)  3.939 (3.036, 4.777) 

𝐼𝐵𝑆1(100) 4.528 (3.443, 5.794)  4.376 (3.341, 5.746)  4.774 (3.605, 5.840) 

𝐵𝑆1(𝑡) is the Brier score at time 𝑡 for breast cancer, denoted as 1. 

𝐼𝐵𝑆1(𝑡) is the integrated Brier score within a time interval (0, 𝑡) for breast cancer, 

denoted as 1. 

 

 

 

 

 

 

 

 

Figure 6.4: Time-dependent Brier score (left panel) and integrated Brier score (right 

panel) estimated from 16 to 100 years based on different time-dependent models 

(Permanent Exposure (green), Cox and Oakes (blue), and B-spline (red)). 
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6.5 Summary 

We have analyzed the HBOC family data focusing on estimating the time-dependent 

effect of RRSO on breast cancer risks in the presence of competing events such as 

ovarian cancer and death. The time-dependent effect of RRSO was modelled 

parametrically using the PE and CO models and flexibly using the B-splines within the 

correlated frailty competing risks model.  

Our study demonstrated that there is a significant negative association between 

RRSO and the risk of developing breast cancer in the presence of competing events as the 

hazard ratios of RRSO were estimated below 1 all the time under all TDE models. 

Especially the BS model enabled us to flexibly model the effect of RRSO over time, 

whose negative effect became weakened and provided a significant negative association 

after RRSO.  

As the BS model provides flexible modelling of time-dependent effect, our data 

analysis shows the BS model fits the data well, providing the smallest AIC. In addition, 

we have further compared the model performance in terms of prediction ability based on 

discrimination (TDUC) and calibration (Brier score, IBS) at different time points. In 

terms of the TDUC, which assesses how well each model can distinguish between those 

and those without breast cancer, the BS model provided the highest discrimination 

overall. In terms of calibration, which quantifies how close the predicted probabilities or 

the predicted risks of outcomes are to the observed values, the CO model provided a 

better predictive ability with respect to calibration in general, even though the BS model 

performed slightly better before age 55. However, the three models we considered in our 

application appear to perform similarly, and their predictive performances were rather 

poor as their C-indexes were close to 0.5. Although there is no clearly better model in our 

study, the choice of the model often depends on the purpose of the study, and different 

measures can be used, where the TDUC can be used for finding a better discrimination 

model while the Brier score or IBS for finding a better calibration model. 
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Chapter 7 Discussion 

 

7.1 Summary 

This thesis aimed to incorporate B-splines to better capture the time-dependent effect of a 

binary time-dependent covariate in the correlated frailty competing risk model proposed 

by Choi et al. (2021). The performance of the BS model was evaluated via a simulation 

study, and the impact of misspecification of the TDE model was also examined. The 

simulation results demonstrate that the BS model leads to the unbiased parameter and 

penetrance estimates regardless of the size of the mutation effect or the strength of 

correlation between competing events when the data were generated under the CO or BS 

models, highlighting the flexibility of the BS model and its robustness to the misspecified 

TDE model.  

We also extended Uno’s C-index to account for both competing risks and 

TDC/TDE simultaneously. The time-dependent Uno’s C-index was derived to evaluate 

the discriminative ability of models, which is applicable to TDC/TDE in the analysis of 

clustered competing risk data, and the variance of TDUC was derived to account for the 

clustering effect. The TDUC estimates the probability that the penetrance for randomly 

selected subject i is greater than the penetrance for randomly selected subject j if subject i 

experiences the event earlier than randomly selected subject 𝑗 at the time for subject i 

experiences the event. The main difference of the proposed C-index to the conventional 

C-index is that the penetrance estimates of two subjects are compared at minimum 

observed times for two subjects. In contrast, the conventional C-index compares 

penetrance estimates obtained at each subject’s observed time, while assuming the rank 

of two penetrance estimates to be constant. However, once TDC/TDE is incorporated, the 

rank of two penetrance estimates may change over time. Finally, we used the linear 

relationship between Kendall’s tau and the C-index in combination with the Delta method 

to estimate the variance of our proposed C-index. 
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We analyzed HBOC family data recruited through BCFR to assess the time-

dependent effect of risk-reducing salpingo-oophorectomy on the risk of developing breast 

cancer in the presence of ovarian cancer or death as the first event. Using a data subset of 

individuals who underwent RRSO, we compared the prediction ability of the correlated 

frailty competing risks model with different TDE models (PE, CO, BS) with respect to 

discrimination (TDUC) and calibration (Brier score). According to TDUC, the BS model 

obtained the highest discrimination, followed by the CO and PE models. Model 

performance with respect to calibration was assessed using the Brier score. The BS model 

obtained the smallest prediction errors with short time intervals, whereas the CO model 

obtained the smallest prediction errors with large time intervals. Since the measures of 

discrimination and calibration can quantify different prediction abilities, the choice of the 

model is subject to the purpose of the study. 

 

7.2 Limitation and further work 

This thesis has several possible limitations. First, we have considered MSs and RRSO as 

external binary TDCs. Kalbfleisch and Prentice (2002) classified TDCs into two different 

categories: external or internal covariates. An external covariate is external to the subject, 

meaning that it is not dependent on the survival of the subject, but it may influence the 

occurrence of the failure at time 𝑡. In other words, the occurrence of the external 

covariate is not affected by the subject’s event status. The measure of air pollution on the 

frequency of asthma is the example of the external covariate, where such measure is not 

affected by the occurrence of asthma. In contrast, an internal covariate is dependent on 

the current event status of the individuals in the study, where the internal covariate 

requires the survival of the subject for its existence. For example, when a subject’s blood 

pressure is measured over time, the measure of blood pressure is no longer available once 

the individual dies. Then, the measure of blood pressure ensures that the subject has not 

experienced the event, indicating the survival probability of death is 1. Thus, the effect of 

internal covariate may not be correctly estimated as its value varies based on the time of 

the failure. The hazard function and corresponding survival function can only be defined 
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up to the time of survival, but no further. We assume MSs and RRSO as the external 

covariates to address the problem of the interval covariate since the status of the 

screenings and RRSO are not directly related to breast cancer risks. 

 In this thesis, we have selected the location of the interior knots based on the 

quantiles of the difference between the subjects’ last observed times and RRSO times to 

ensure an approximately equal number of events in each interval. Also, only a small 

number of degrees (2, 3) were considered to compare the efficiency of the model. 

However, the equidistance knot arrangement is not necessarily an optimal choice. Instead 

of using the quantile, the proper locations and number of knots can be selected by 

comparing the AIC for models with varying knot numbers or using generalized cross-

validation (GCV) (Nan et al., 2005). The optimal interior knots can be selected by 

choosing a model that minimizes the AIC. Alternatively, the GCV can be used, where the 

placement of the knots can be chosen to minimize the GCV function. However, both AIC 

and GCV methods require intensive mathematical computations. Similarly, different 

degrees of the BS basis function can be used to provide a more flexible estimation of the 

effect of RRSO. However, there is a trade-off between roughness and smoothness in 

choosing the number of interior knots and degrees. The small number of knots and 

degrees leads to overly smooth, but it may be biased. In contrast, using a high number of 

knots and degrees conversely leads to unbiased estimates but increases the variability in 

the fit, resulting in overfitting. 

Both simulation results and data application results demonstrated the flexibility of 

the BS model. The BS model obtained unbiased penetrance estimates in the simulation 

and obtained the smallest AIC and largest TDUC in the application, indicating that the 

BS model is the best-performing model. However, there are several limitations in the 

data. In contrast to the effect of RRSO, we only considered the CO model as TDEs of 

three different screenings because Choi et al. (2021) demonstrated that the effects of the 

three screenings under the CO model are significant. Under this model, the effect of 

screenings is exponentially decaying over time and eventually converges to a certain 

value. However, the effects of MSs could also be modelled considering the BS, which 

can flexibly estimate the effect of screenings. However, once the BS model is used, the 
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choice of the number of interior knots and degrees would be the problem. It may increase 

the variability of the coefficients related to the BS as more parameters are used for the 

screenings and RRSO. 

Second, although the primary event of interest is the first occurrence of BC in our 

analysis, subjects may experience one of OC or death from other causes, where the 

occurrence of one event precludes the occurrence of other events. Hence, we proposed a 

model while considering those three events as competing risks. However, successive BC 

after the first BC can be the main interest in the competing risk analysis. Individuals in 

the study may experience several events, such as developing OC before experiencing BC, 

dying after the first BC, etc. However, our model does not allow the successive BCs after 

the first BC. Once we consider the successive events, the effects of RRSO or screenings 

might be different depending on the number of experienced BC. Also, such effects might 

differ between individuals who experienced other events first. Furthermore, we have 

assumed that the screenings and RRSO only affect the BC risks. However, those 

interventions might also alter the probability of experiencing other events. Then, a joint 

nested frailty model can be used for the recurrent events while considering the screenings 

and RRSO as TDC. The joint frailty model accounts for the dependence between 

successive within a subject. The nested frailties can be used to model the clustered data 

by including two nested random effects. 

Moreover, although we have extended the standard C-index to account for time-

dependent effects of time-dependent covariates within clustered competing risk model, 

the proposed measure has not been evaluated. The proposed C-index referred to as time-

dependent Uno’s C-index has potential limitations. First, the TDUC will tend to 0.5 when 

a small number of variables is used to model. By definition of the C-index, subject pairs 

with tied penetrance estimates are counted as 0.5, but they are not counted as comparable 

when both subjects experience the event. Since the proposed C-index uses the penetrance 

estimates at the minimum time between two subjects’ observed times, using a small 

number of variables leads to many tied pairs. To further evaluate the proposed C-index, a 

simulation study could be conducted. The interest lies in how the number of variables and 

number/size of families, which may affect the frailty parameters, affect the C-index in the 
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analysis of clustered competing risk. Furthermore, another limitation is that the proposed 

C-index evaluates the prediction ability of a model with TDE/TDC but does not directly 

evaluate the time-dependent effect of a TDC. Since the difference between the penetrance 

estimates across different models might be caused by the other parameters involved in the 

models, other variables might affect the proposed C-index. Thus, to evaluate only the 

effect of TDC/TDE, a new measure would be needed. In addition, since only 166 (6%) 

individuals underwent RRSO among 2650 individuals, only those individuals are used to 

evaluate the prediction accuracy to discern the effect of RRSO. Also, among 166 

individuals, only 28 subjects experienced breast cancer, which may cause all models to 

obtain similar values of the TDUC. By definition of the C-index, subjects with shorter 

observed time must experience the event to compare the pairs of two subjects. Then, 

there might be a small number of concordant and comparable pairs. Those pairs might 

have similar penetrance estimates and have similar TDUC across different models. 
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Appendix A: Additional plots and 
tables 

 

 

 

 

 

 

Figure A.1: Penetrance estimates for breast cancer with respect to one to three 

mammographic screenings (MS) at age 35 with the consecutive screening gap times of 2 

years among those who had no risk-reducing salpingo-oophorectomy in the BRCA 1 

families. 



 

116 

 

  

 

 

 

 

 

 

 

Figure A.2: Penetrance estimates for breast cancer with risk-reducing salpingo- 

oophorectomy (RRSO). The left most plot presents the penetrance with RRSO at age 30. 

To the right, they describe penetrance estimates with RRSO at age 40 and 50. 
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Figure A.3: Penetrance estimates for breast cancer with respect to one to three 

mammographic screenings (MS) at age 35 with the consecutive screening gap times of 2 

years and risk-reducing salpingo-oophorectomy (RRSO) at age 40. 
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Table A.1: Hazard ratios and their 95% confidence intervals measuring the time-

dependent effect of risk-reducing salpingo-oophorectomy (RRSO) on breast cancer under 

different time-dependent effect models (B-spline, Cox and Oakes, Permanent Exposure) 

for BRCA 1 mutation families. 

Years after 

RRSO 

Permanent Exposure   Cox and Oakes  B-spline 

Estimate 95% CI   Estimate 95% CI  Estimate 95% CI 

0.5 0.546 (0.127, 0.965)   0.204 (-0.060, 0.467)  0.133 (-0.194, 0.460) 

1 0.546 (0.127, 0.965)   0.304 (0.041, 0.568)  0.206 (-0.122, 0.534) 

2 0.546 (0.127, 0.965)   0.472 (0.186, 0.758)  0.419 (0.071, 0.767) 

3 0.546 (0.127, 0.965)   0.572 (0.289, 0.854)  0.683 (0.195, 1.172) 

4 0.546 (0.127, 0.965)   0.622 (0.341, 0.902)  0.892 (0.183, 1.601) 

5 0.546 (0.127, 0.965)   0.645 (0.362, 0.927)  0.933 (0.194, 1.672) 

6 0.546 (0.127, 0.965)   0.655 (0.368, 0.942)  0.789 (0.254, 1.323) 

7 0.546 (0.127, 0.965)   0.660 (0.368, 0.951)  0.647 (0.240, 1.053) 

8 0.546 (0.127, 0.965)   0.660 (0.366, 0.958)  0.553 (0.196, 0.911) 

9 0.546 (0.127, 0.965)   0.662 (0.363, 0.962)  0.494 (0.159, 0.828) 

10 0.546 (0.127, 0.965)   0.662 (0.361, 0.965)  0.460 (0.140, 0.779) 

11 0.546 (0.127, 0.965)   0.663 (0.359, 0.967)  0.446 (0.139, 0.753) 

12 0.546 (0.127, 0.965)   0.663 (0.357, 0.969)  0.451 (0.152, 0.751) 

13 0.546 (0.127, 0.965)   0.663 (0.356, 0.970)  0.476 (0.170, 0.782) 

14 0.546 (0.127, 0.965)   0.663 (0.355, 0.971)  0.505 (0.171, 0.839) 

15 0.546 (0.127, 0.965)   0.663 (0.355, 0.971)  0.531 (0.154, 0.909) 

16 0.546 (0.127, 0.965)   0.663 (0.354, 0.972)  0.554 (0.126, 0.983) 

17 0.546 (0.127, 0.965)   0.663 (0.354, 0.972)  0.573 (0.093, 1.054) 

18 0.546 (0.127, 0.965)   0.663 (0.354, 0.972)  0.588 (0.061, 1.115) 

19 0.546 (0.127, 0.965)   0.663 (0.354, 0.973)  0.598 (0.035, 1.161) 

20 0.546 (0.127, 0.965)   0.663 (0.354, 0.973)  0.603 (0.017, 1.189) 

 CI stands for confidence interval and RRSO stands for risk-reducing salpingo-

oophorectomy 
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Appendix B: R codes for the 
illustration of the time-dependent C-

index and its variance calculation 

 

## The exemplified data used in Chapter 5 

data <- data.frame(famID = c(1,1,1,2,2,2,2), 

                   i = c(1,2,3,4,5,6,7), 

                   time = c(23,37,63,41,49,60,69), 

                   status = c(0,1,2,1,2,0,1), 

                   x = c(1,0,1,0,0,1,1), 

                   F_0 = c(0.59, 0.71, 0.46, 0.67, 0.51, 0.73, 0.55), 

                   F_1 = c(0.55, 0.66, 0.39, 0.61, 0.45, 0.67, 0.52), 

                   KM = c(1.00, 0.92, 0.42, 0.83, 0.71, 0.56, 0.14)) 

> data 

  famID i time status x  F_0  F_1   KM 

1     1 1   23      0 1 0.59 0.55 1.00 

2     1 2   37      1 0 0.71 0.66 0.92 

3     1 3   63      2 1 0.46 0.39 0.42 

4     2 4   41      1 0 0.67 0.61 0.83 

5     2 5   49      2 0 0.51 0.45 0.71 

6     2 6   60      0 1 0.73 0.67 0.56 

7     2 7   69      1 1 0.55 0.52 0.14 

 

## ex_data function provides all combinations of the original data with 

## penetrance estimates. pen_i and pen_j correspond to �̂�𝟏(𝒕𝒇𝒊|𝒙𝒇𝒊) and  

## �̂�𝟏(𝒕𝒈𝒋|𝒙𝒈𝒋), respectively, and KM_i and KM_j are the Kaplan Meier  

## estimates for censoring. 

 

expand_data <- ex_data(data) 

 

> expand_data 

i j time famID_i t_i status_i pen_i KM_i famID_j t_j status_j pen_j KM_j 

1 2   23       1  23        0  0.55 1.00       1  37        1  0.59 0.92 

1 3   23       1  23        0  0.55 1.00       1  63        2  0.55 0.42 

1 4   23       1  23        0  0.55 1.00       2  41        1  0.59 0.83 

1 5   23       1  23        0  0.55 1.00       2  49        2  0.59 0.71 

1 6   23       1  23        0  0.55 1.00       2  60        0  0.55 0.56 

1 7   23       1  23        0  0.55 1.00       2  69        1  0.55 0.14 

2 1   23       1  37        1  0.59 0.92       1  23        0  0.55 1.00 

2 3   37       1  37        1  0.71 0.92       1  63        2  0.66 0.42 

2 4   37       1  37        1  0.71 0.92       2  41        1  0.71 0.83 

2 5   37       1  37        1  0.71 0.92       2  49        2  0.71 0.71 

2 6   37       1  37        1  0.71 0.92       2  60        0  0.66 0.56 

2 7   37       1  37        1  0.71 0.92       2  69        1  0.66 0.14 

3 1   23       1  63        2  0.55 0.42       1  23        0  0.55 1.00 
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3 2   37       1  63        2  0.66 0.42       1  37        1  0.71 0.92 

3 4   41       1  63        2  0.61 0.42       2  41        1  0.67 0.83 

3 5   49       1  63        2  0.45 0.42       2  49        2  0.51 0.71 

3 6   60       1  63        2  0.67 0.42       2  60        0  0.67 0.56 

3 7   63       1  63        2  0.39 0.42       2  69        1  0.39 0.14 

4 1   23       2  41        1  0.59 0.83       1  23        0  0.55 1.00 

4 2   37       2  41        1  0.71 0.83       1  37        1  0.71 0.92 

4 3   41       2  41        1  0.67 0.83       1  63        2  0.61 0.42 

4 5   41       2  41        1  0.67 0.83       2  49        2  0.67 0.71 

4 6   41       2  41        1  0.67 0.83       2  60        0  0.61 0.56 

4 7   41       2  41        1  0.67 0.83       2  69        1  0.61 0.14 

5 1   23       2  49        2  0.59 0.71       1  23        0  0.55 1.00 

5 2   37       2  49        2  0.71 0.71       1  37        1  0.71 0.92 

5 3   49       2  49        2  0.51 0.71       1  63        2  0.45 0.42 

5 4   41       2  49        2  0.67 0.71       2  41        1  0.67 0.83 

5 6   49       2  49        2  0.51 0.71       2  60        0  0.45 0.56 

5 7   49       2  49        2  0.51 0.71       2  69        1  0.45 0.14 

6 1   23       2  60        0  0.55 0.56       1  23        0  0.55 1.00 

6 2   37       2  60        0  0.66 0.56       1  37        1  0.71 0.92 

6 3   60       2  60        0  0.67 0.56       1  63        2  0.67 0.42 

6 4   41       2  60        0  0.61 0.56       2  41        1  0.67 0.83 

6 5   49       2  60        0  0.45 0.56       2  49        2  0.51 0.71 

6 7   60       2  60        0  0.67 0.56       2  69        1  0.67 0.14 

7 1   23       2  69        1  0.55 0.14       1  23        0  0.55 1.00 

7 2   37       2  69        1  0.66 0.14       1  37        1  0.71 0.92 

7 3   63       2  69        1  0.39 0.14       1  63        2  0.39 0.42 

7 4   41       2  69        1  0.61 0.14       2  41        1  0.67 0.83 

7 5   49       2  69        1  0.45 0.14       2  49        2  0.51 0.71 

7 6   60       2  69        1  0.67 0.14       2  60        0  0.67 0.56 

 

## Then, the time-dependent Uno’s C-index is obtained as 

td_C_50 <- comp_time_C_index_fun(expand_data, 16, 50) 

> td_C_50 

$U_C 

[1] 0.8372327              ## TDUC with truncation time 50 

 

$var_U_C 

[1] 0.0001857506           ## Variance of the TDUC 

 

$CI 

[1] 0.8105198 0.8639456    ## 95% confidence interval for the TDUC 

 

## TDUC = 0.8372327 with its variance of 0.0001857506 and 95%  

## confidence interval (0.8105198, 0.8639456) 
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######  R codes for related functions  

####  Expand dataset (generate all combinations of 2 subjects i and j) 

ex_data <- function(data){ 

n <- nrow(data)       ## total number of individuals 

  i <- rep(1:n, each=n) ## all combinations for ith subject 

   j <- rep(1:n, n)      ## all combinations for jth subject 

   

      dat <- data[, c("famID", "time", "status", "x", "F_0", "F_1",  

"KM")] 

   ex_data <- cbind(i, j, dat[i, ], dat[j, ]) 

      names(ex_data) <- c("i", "j", paste0(c("famID", "t", "status",   

  "x", "F_0", "F_1", "KM"), "_i"),  

                      paste0(c("famID", "t", "status", "x", "F_0",  

"F_1", "KM"), "_j"))  

      ex_data$time <- pmin(ex_data$t_i, ex_data$t_j) 

   row.names(ex_data) <- 1:nrow(ex_data) 

   

pen_i <-  with(ex_data, ifelse(time == t_i & x_i == 0, F_0_i,  

                                 ifelse(time == t_i & x_i == 1, F_1_i, 

                                        ifelse(time == t_j & x_i==0, 

F_0_j, F_1_j)))) 

   pen_j <-  with(ex_data, ifelse(time == t_i & x_j == 0, F_0_i,  

                                 ifelse(time == t_i & x_j == 1, F_1_i, 

                                        ifelse(time == t_j & x_j==0, 

F_0_j, F_1_j))))  

    

ex_data$pen_i <- pen_i 

   ex_data$pen_j <- pen_j 

   

raw_ex_data <- ex_data[, c("i", "j", "time", "famID_i", "t_i",  

"status_i", "pen_i", "KM_i", famID_j", 

"t_j", "status_j", "pen_j", "KM_j")] 

   return(raw_ex_data) 

} 

 

 

####  Time-dependent Uno's C-index with truncation time 

comp_time_C_index_fun <- function(data, trunc_time) {  

n <- length(unique(data$i))           ## number of individuals 

   n_fam <- length(unique(data$famID_i)) ## number of families 

## each family size 

   n_f <- table(data[!duplicated(data$KM_i),]$famID_i)  

   famID <- data[!duplicated(data$KM_i),]$famID_i   

 

  # IPCW of the Kaplan Meier estimate of the censoring 

 distribution 

   km_t_i1 <- data$KM_i 

   km_t_i2 <- data$KM_j   
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# Penetrance 

   pen_i <- data$pen_i   ## Penetrance estimates for subject i  

   pen_j <- data$pen_j   ## Penetrance estimates for subject j 

 

   # Subject indicator for all possible combination of pairs 

   famID_i <- data$famID_i 

   famID_j <- data$famID_j 

   subject_i <- data$i   

 

   # Denoting competing risk by 2 

   status_i <- data$status_i 

   status_j <- data$status_j 

   t_i <- data$t_i            ## observed time for subject i 

   t_j <- data$t_j            ## observed time for subject j 

 

   # Weights 

   km1_1 <- (km_t_i1)^(-2) 

   km1_2 <- (km_t_i2)^(-2) 

   km2 <- (km_t_i1 * km_t_i2)^(-1) 

   

   ## sign and csign functions 

   # sign functions  

   sign <- (pen_i > pen_j) - (pen_i < pen_j) 

   

   # csign function (with weights and truncation time) 

csign <- ((t_i <= t_j) * km1_1 + (t_i > t_j) * (status_j == 2) * 

km2) * (status_i == 1) * (t_i <     trunc_time) - ((t_i >= 

t_j) * km1_2 + (t_i < t_j) * (status_i == 2) * km2) * 

(status_j == 1) * (t_j < trunc_time) 

   

  # Difference between the concordant and discordant pairs 

   d_cs <- sign * csign 

   # Comparable pairs 

   d_c <- abs(csign) 

 

  # Time-dependent Uno's C-index 

U_C <- 0.5*(sum(d_cs)/sum(d_c) + 1) 

 

   ## Variance estimation 

   var_U_C <- sample_var_C_index(d_c, d_cs, subject_i, famID, n_f,  

n_fam, n) 

   ci <- U_C + c(-1, 1) * 1.96 * sqrt(var_U_C) 

   return(list(U_C = U_C, var_U_C = var_U_C, CI = ci)) 

} 

 

 

####  Variance estimation for C-index using sample variance 

sample_var_C_index <- function(d_ijxx, d_ijxy, subject1, famID, n_f, 

n_fam, n) { 
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   # n_f = each cluster size; n_fam = total number of families 

   # n = total number of individuals across all families 

   # Mean of individual i in family f 

## weighted proportion of comparable pairs for each individual 

      d_fixx <- aggregate(d_ijxx ~ subject1, FUN = mean)[,2]  

 

      ## difference btw the weighted number of concordant and  

 ## discordant pairs for each individual  

      d_fixy <- aggregate(d_ijxy ~ subject1, FUN = mean)[,2]  

   

# Mean of each family 

## weighted proportion of comparable pairs for each family 

      d_fxx <- aggregate(d_fixx ~ famID, FUN = mean)[,2]    

 

## difference btw the weighted number of concordant and  

## discordant pairs for each family 

      d_fxy <- aggregate(d_fixy ~ famID, FUN = mean)[,2]   

  

# Mean of all individuals 

## average weighted proportion of comparable pairs 

   d_xx <- sum(d_ijxx)/(n * (n-1))    

 

## average difference btw the weighted number of concordant and 

## discordant pairs 

d_xy <- sum(d_ijxy)/(n * (n-1))    

 

# Variance 

   var_fixx <- sum(n_f * (d_fxx - d_xx)^2)/(n * (n_fam - 1)) 

   var_fixy <- sum(n_f * (d_fxy - d_xy)^2)/(n * (n_fam - 1)) 

   cov_fi <- sum(n_f * (d_fxx - d_xx) * (d_fxy - d_xy))/(n * (n_fam  

- 1)) 

   

  var_d_xx <- 4/n * var_fixx 

  var_d_xy <- 4/n * var_fixy 

   cov_d_xx_d_xy <- 4/n * cov_fi 

   

   output <- ifelse(d_xx == 0, 0, t(c(1/d_xx, -d_xy/d_xx^2)) %*% 

                      matrix(c(var_d_xy, cov_d_xx_d_xy, cov_d_xx_d_xy, 

var_d_xx), nrow = 2, ncol = 2) %*% 

                      c(1/d_xx, -d_xy/d_xx^2)/4) 

   return(output) 

} 
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