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Abstract

This thesis aims to develop a flexible approach for modelling time-dependent covariate
effects on event risk using B-splines in the presence of correlated competing risks. The
performance of the proposed model was evaluated via simulation in terms of the bias and
precision of the estimation of the parameters and penetrance functions. In addition, we
extended the concordance index to account for time-dependent effects and competing
events simultaneously and demonstrated its inference procedures. We applied our
proposed methods to data rising from the BRCA1 mutation families from the breast
cancer family registry to evaluate the time-dependent effects of mammographic screening
and prophylactic surgery on breast cancer risks, where ovarian cancer and death from
other causes are competing events. Different time-dependent models were evaluated via

time-dependent C-index and Brier scores.

Keywords: family data; correlated frailty model; competing risks, time-dependent
covariate; time-dependent effect; breast and ovarian cancers; B-spline; prediction;

concordance index; Brier score



Summary for Lay Audience

Hereditary breast and ovarian cancer syndrome families have significantly higher lifetime
risks of developing breast and ovarian cancer than the general population. Preventive
interventions such as mammographic screening (MS) and risk-reducing salpingo-
oophorectomy (RRSO) can potentially reduce associated cancer risks. However, since the
statuses and effects of these interventions vary over time and individuals may experience

multiple cancers, the evaluation of these interventions is complicated.

To understand how the interventions affect the risk of developing breast cancer in
the presence of other events, we used a statistical method called the correlated frailty
competing risks model, which is applicable for family data with multiple events. To
flexibly evaluate the effect of interventions, we incorporated a flexible approach, B-
spline, instead of assuming the shape of the effect of RRSO on breast cancer. We further
extended the concordance index, which is a common measure used to describe the
predictive ability of a model to simultaneously account for the multiple events and
changes in the interventions’ statuses. We applied our proposed method to BRCA1
mutation carrier families recruited through the Breast Cancer Family Registry to evaluate
the time-dependent effects of MS and RRSO on breast cancer risks in the presence of
ovarian cancer and death from the other causes as competing events. Then, the predictive
abilities of the models were compared by using the extended concordance index.
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Chapter 1 Introduction

1.1 Motivation

Hereditary breast and ovarian cancer syndrome (HBOC) is an inherited cancer
susceptibility syndrome caused mostly by mutations in BRCA 1 or 2 genes. As a
hereditary condition, family members from HBOC are at high risk of developing breast
cancer (BC) or ovarian cancer (OC). Members in HBOC families have significantly
higher lifetime risks of developing BC and OC than the general population, where HBOC
represents about 5 to 10% of all BCs and 18% of all OCs (Larsen et al., 2014; Ring and
Modesitt, 2018). When mutated, this gene increases the risk of cancer, specifically BC
and OC. The lifetime risk of BC for female carriers of BRCA 1 mutation is estimated to
range from 46% to 87% (Petrucelli et al., 2022; Satagopan et al., 2001; Chen et al.,
2006).

Preventive interventions such as mammographic screening (MS), risk-reducing
mastectomy (RRM) and risk-reducing salpingo-oophorectomy (RRSO) can potentially
limit the risk of associated cancer (Petrucelli et al., 2022). To understand the effect of
interventions, precise estimates of the remaining cancer risk following interventions are
tremendously important to help practitioners effectively treat families with HBOC. In
particular, the occurrence of interventions may vary in time for different individuals, and

their effects could also vary over time.

Motivated by studies to HBOC families, our interest lies in developing statistical
methods for the estimation of time-dependent effects of preventive interventions on the
BC risk in the presence of competing events such as OC or death. Specifically, we aim to
develop a flexible model that can evaluate the time-dependent intervention effect on the
risk of BC. We focus on addressing three statistical challenges arising from modelling
HBOC family data: competing risk, time-dependent covariate (TDC), and time-
dependent effect (TDE).



1.2 Correlated competing risks

Standard survival data often assumes one to experience only one type of event over a
follow-up period. However, such an assumption may not be appropriate as subjects may
experience more than one type of event. For instance, members of HBOC families often
experience multiple cancers such as BC, OC or death from other causes. When the first
event among BC, OC, and death is the event of interest, we need to consider competition
among them. For example, if an individual experiences OC as the first event, the other
events cannot be the first event. More obliviously, if individuals died before developing
BC or OC, they cannot experience BC or OC. Hence, in this sense, the occurrence of a
competing event precludes the occurrence of the other events as the first event, vice

VErsa.

Conventional survival analysis methods, such as the Kaplan-Meier estimates or
Cox proportional hazard model, treat the occurrence of the competing events as censored,
assuming censoring is non-informative. The non-informative censoring assumption
implies that the censoring mechanism is independent of the survival time. In other words,
those who remain in the follow-up and those who are censored have the same future risk
of experiencing an event of interest. However, treating the occurrence of competing risk
as a censoring event would lead to overestimating the risk of the event of interest because
it violates the assumption of non-informative censoring as the competing events would
alter the risk of the event of interest. For example, Berry et al. (2010) showed that
ignoring competing risks overestimated the risk of second hip fracture associated with
age at the time of the first hip fracture in the Framingham Osteoporosis Study. The
hazard ratio of the age at the time of the first hip fracture using the standard Cox model
and competing risk regression were 1.3 and 0.9, respectively, indicating that advancing
age of first hip fracture increases the risk of second hip fracture under the Cox model. In
contrast, the competing risk regression suggested that advancing age lowers the risk of
second hip fracture.

When data arise from clustered/family-based studies under competing risk
settings, individuals with competing events may be correlated within a cluster because of

unobserved cluster effects across individuals. Zhou et al. (2012) referred to such data as
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clustered competing risks. For clustered data, it is common to share the same random
effect within a cluster to account for the potential dependence across the individuals
within clusters and assign the random cluster effects to each cause of failure in the
presence of competing risks. However, in a more complex situation, the competing
events are likely to be related, leading to the potential dependence across causes in
individuals within a cluster. Ignoring the dependence of the competing events by using
independent cluster effects across competing events within each cluster can result in
biased parameter estimates. For instance, Rutten-Budde et al. (2019) demonstrated that
when the frailties are correlated, the independent frailty model generally results in over-
or under-estimating the frailty variance and large root mean square error for a small or
large number of clusters. Thus, the independent assumption of frailties for competing
risks is not appropriate for the clustered competing risk data in the presence of correlation

between the events.

1.3 Time-dependent covariates

Covariates can be classified as time-independent and time-dependent. Time-independent
covariates (TICs) are often measured at the beginning of the study (baseline) or a single
time-point and remain fixed throughout the entire duration of follow-up. Examples
include sex, mutation status, or treatment status assigned at the beginning of the study
that does not change over time. In contrast, some covariates may be repeatedly measured
during the follow-up period and whose values are subject to change over time, referred to
as TDCs. For instance, in the study of the BC risk among HBOC families, the RRSO
status can be seen as a binary TDC, which takes the value of 0 prior to surgery and 1
afterwards. Other examples of TDC include blood pressure, CD4 count, or weights

collected at periodic intervals, whose value would change over time.

It is a common mistake that treats TDC as TIC, which would lead to biased
results. Consider a binary TDC indicating intervention such as RRSO, which would occur
at some time during follow-up. If RRSO is considered as a TIC, classifying those who

ever underwent RRSO as being treated regardless of surgery time, where the time even



before RRSO would be considered as exposure to RRSO, the recorded exposure time for
treated individuals is much longer than their true exposure time. Then, it would result in
exaggerating the benefit of the intervention or conversely underestimating the risk
(Suissa, 2008). Thus, it is essential to incorporate TDCs within models correctly in
analyses. For instance, Beyersmann et al. (2008) studied the effects of nosocomial
pneumonia on length of stay in intensive care units, where the occurrence of nosocomial
infection is the time-dependent covariate with a value of O before infection and 1 after the
infection appears. They demonstrated that the effect of nosocomial pneumonia was -1.02
with a hazard ratio of 0.36 when the infection status was erroneously treated as a TIC. In
contrast, treating nosocomial pneumonia as a TDC correctly yielded an effect estimate of
-0.28 with a hazard ratio of 0.75. The estimated effect of nosocomial pneumonia indicates
a lower length of stay in intensive care units. The results show that the benefit of
nosocomial pneumonia is overestimated if the time-dependent nature of exposure is

ignored.

1.4 Time dependent effect

The Cox proportional hazard model requires the proportionality assumption that the
hazard for those with the risk factor is proportional to the hazard of those without the risk
factor. In other words, the relative hazard of an event or the effect of a given covariate in
the model is assumed to be constant over time. This assumption is referred to as the
proportional hazard (PH) assumption and is vital to the correct use of the Cox PH model.
However, the ratio of hazards may not be constant over time when the effect of the
covariate in the hazard function varies over time (Therneau and Grambsch, 2000). For
example, under the PH assumption, the effect of RRSO on the risk of BC is the same for
those who have recently undergone RRSO and those who underwent RRSO far in the
past. However, this assumption would be violated if the effect of RRSO on BC changed
over the follow-up period. Warwick et al. (2004) studied the time-dependent effect of
some prognostic factors in women on breast carcinomas, such as tumour size, lymph
node status and histologic grade. They showed that the effects of the prognostic factors

differed and diminished over time, yielding a vital role of TDE, especially for long-term
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survival, where the effects of the prognostic factors on the event of interest are more

significant for those who survived longer than those who did not.

It is essential to understand that TDEs may manifest differently, with different
patterns over time. Thus, depending on the nature of variables, different shapes of TDE
trajectories can be considered. Keown-Stoneman et al. (2018) examined the effect of
colon cancer recurrence on death using both a permanent exposure (constant effect)
model and an exponential decay effect model. Although both models demonstrated that
cancer recurrence increases the hazard of death, the AIC and likelihood ratio test
suggested that the exponential decay model is a better fitting model. Thus, understanding
the nature of time-dependent changes in treatment status is crucial to modelling risk
effectively because early and late intervention may have different impacts on the risk of
developing BC.

1.5 Obijectives

To address the abovementioned statistical challenges, this thesis extends the cause-
specific correlated frailty competing risk model proposed by Choi et al. (2021) for more
flexible modelling of time-dependent effects. It also demonstrates time-dependent
performance measures to evaluate the predictive ability of the proposed model that

accounts for clustered, competing events and time-dependent covariates.

This thesis has two primary objectives: (1) to flexibly model time-dependent
covariates within clustered competing risk models; and (2) to evaluate the performance of
the proposed model for time-dependent covariates. To address objective (1), a flexible
approach using B-splines (BS) is implemented to model the time-dependent effects of a
binary time-dependent covariate. Simulation is then to evaluate the performance of the
BS model compared to different parametric functions of the time-dependent effect as
proposed by Choi et al. (2021). In addition, the proposed methods are applied to data on
HBOC families recruited through Breast Cancer Family Registries (BCFR) (John et al.,
2004) to evaluate the effect of RRSO on BC under the different TDE models.



To address objective (2), the performance of the proposed BS model is then
compared to models with different parametric functions of the time-dependent effect by
applying the models to HBOC families. The existing measure of goodness of fit known
as the concordance index, C-index, is adjusted to account for time-dependent effects of
time-dependent covariates within clustered competing risk model and applied to evaluate
the predictive ability of the proposed model. We further provide an estimation of the
variance of the proposed C-index. In addition, other measures of prediction accuracy, the
Akaike information criterion (AIC) and Brier score, are used to further evaluate the

efficiency of the BS model.

1.6 Organization of the thesis

The remainder of the thesis is structured as follows. Chapter 2 presents a literature review
on the correlated frailty model and time-dependent covariates/coefficients. The correlated
competing risks model incorporating both parametric and flexible time-dependent effects
of the time-dependent covariates is presented in Chapter 3. The simulation study
evaluating the proposed model for estimating the parameters and penetrances is
conducted in Chapter 4. Chapter 5 presents the different model performance measures
such as Brier score and C-index and provides formulas of the adjusted C-index with its
variance estimation. In Chapter 6, an application of our proposed model with the
proposed C-index to the data from BRCAL mutation families is presented. Finally, some

discussion and limitations of the research are presented in Chapter 7.



Chapter 2 Literature Review

This chapter reviews the literature on different survival models that account for
competing risks, time-dependent covariates, and time-dependent effects with family-
based or clustered data to address the statistical challenges presented in Chapter 1. We
focus on modelling the correlated frailty competing risk model with time-dependent

covariates.

2.1 Competing risk models

Competing risks frequently occur in survival data, where the presence of other causes
(competing risks) precludes or alters the probability of the occurrence of a specific cause
of failure (event of interest). Conventional survival models assume competing risks as
non-informative censoring results in overestimating the risk of experiencing the event of
interest. Competing risk models are designed to extend conventional survival models by
considering all events to address this problem. There are various methods for modelling
competing risks data in the literature. In particular, the cause-specific hazard and
subdistribution hazard regression models are widely used for analyzing competing risks
data.

The cause-specific hazard approach, proposed by Prentice et al. (1978), models
the instantaneous rate of a specific event in currently event-free subjects. The
corresponding risk set only includes those who have not experienced the specific event.
The effect measure to account for competing risk is the absolute risk of an event of
interest up to time point ¢, known as the cumulative incidence at time ¢. In contrast to the
standard survival models, cause-specific cumulative incidence can be obtained by
modelling hazard functions for each event separately. The cause-specific hazard is
estimated by treating competing events as censored or equivalently fitting a standard Cox

proportional hazard function for each event while treating all other events censored.



Then, the cumulative incidence function is obtained as the integral of the multiplication
between the cause-specific hazard of the event of interest and the overall survival
function. The overall survival function is obtained as the exponential of the sum of the
negative cumulative hazard function for all events. As a result, estimating the cumulative
incidence for a specific event requires all the hazards for all the events. This approach can
be considered as the generalization of the Cox model. Thus, the cause-specific hazards do
not have a direct interpretation with respect to the cause-specific cumulative incidence as
all other hazard functions must be considered.

Covariate effects on cause-specific hazards are, however, directly interpretable.
Still, the effect of a covariate on the cause-specific hazard function of a particular event
may not be the same as the effect of the covariate on the corresponding cumulative
incidence function, leading each cause-specific hazard to have its unique interpretation of
the effect of covariates (Gray, 1988).

Alternatively, Fine and Gray (1999) proposed a subdistribution hazard, which
models the instantaneous rate of an event of interest in event-free subjects or previously
experienced competing events. The subdistribution hazard differs from the cause-specific
hazard by the definition of the risk set. The risk set of the Fine and Gray model consists
of those who have not experienced the event of interest and those who have experienced
the competing events. That is, individuals who experience competing events remain at
risk for the event of interest despite no longer being able to experience it. In contrast to
the cause-specific hazard approach, the cumulative subdistribution hazard only requires
the subdistribution of a specific event as there is a direct link between the effect of
covariates and the cause-specific cumulative incidence under the proportional hazard
assumption. However, the cause-specific hazard approach can provide a better
understanding of the hazard function for a specific event and thus provide a more
straightforward interpretation of the covariate effects on a particular event (Hinchliffe
and Lambert, 2013).

As this thesis aims to evaluate the effect of RRSO on BC alone, Prentice et al.’s

(1978) cause-specific approach is used owing to its straightforward interpretation of the



cause-specific relative risk or cause-specific hazard ratio. The cause-specific hazard
function h;(t) at time t is the instantaneous rate of occurrence of event j in the short time
interval [¢t, t + At] conditional on the subjects surviving until time ¢ or later. The
observed event time in the presence of competing risks is defined as T = min(T?, C),
where T and C denote the time to the event and the censoring time, respectively. Only
the first event time is considered because any event after the first event is not evaluated.
Let § =1, ...,] be the type of the first event among J competing events and § = 0 if
censored. Conditional on a vector of covariates X, the cause-specific hazard for event j is

given by

Pt<T<t+At,§=j|T=tX)
dt

) = fim,
= hy; (t)exp{BJT-X}

where B is the vector of the regression coefficients for j event, and hy;(t) describes the
cause-specific baseline hazard function for event j. The corresponding cause-specific
cumulative hazard function at time t, H;(t|X), is the integral over the cause-specific

hazard from time O to ¢, defined as

0

and the probability of being free from any event up to time t, known as the overall
survival function, is defined as

S(t|X) = exp {— Hj(t|X)}.

j=1
Then, the probability of developing event j by age t in the presence of competing risks is
defined as the cause-specific cumulative incidence function in the following form:

F;(t]1X) =J0 hj(u|X)S(u|X)du=J0hj(u|X) exp{— Hj(u|X)}du

j=1



which represents the age-specific cumulative risk of event j and is also referred to as the
cause-specific penetrance function. The penetrance, i.e., cumulative risk, for event j
depends on the cause-specific hazards for all J types of events, indicating that the risks of
all events affect the probability of the event j occurring by time t. Hence, it is impossible
to obtain the cause-specific penetrance for event j unless cause-specific hazards for all J
events are obtained. Since there is no one-to-one correspondence between cause-specific
penetrance for event j and cause-specific hazard for event j, the positive/negative effect
of a covariate on the cause-specific hazard for a specific event j does not necessarily
indicate the same effect on the cause-specific cumulative incidence of that event (Putter
et al., 2007).

2.2 Frailty model in non-competing risk setting

Clustered failure time data are often encountered when multiple subjects are sampled
from the same family or cluster. A correlation or unobserved random cluster effect
among members of the same family may be induced by the shared common environments
or characteristics such as genes. Ignoring the cluster effect can lead to bias when
estimating the hazard. For example, based on the Cox model with independent failure
time data, a subject with a high risk score is expected to experience the event earlier than
one with a low risk score. However, in clustered data, the subject with low risk score
could have a higher risk of the event earlier due to the large cluster effects. Henderson
and Oman (1999) demonstrated that ignoring the cluster effect in the analysis of clustered
data results in biased coefficient estimates towards zero. Hence, it is necessary to
accommodate the cluster effect correctly to handle clustered data. A natural way of
modelling the dependence of clustered data is by introducing a cluster-specific effect.
Vaupel et al. (1979) first introduced the term frailty to account for the random effects and
association in the survival models by applying the concept of frailty to population
mortality data. The frailty model is an extension of the Cox proportional hazard model,

including an effect for each cluster, called frailty, which acts multiplicatively on the
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baseline hazard function (Hougaard, 1995). The frailty is used in the model to account for

the unobserved cluster effect in the population and is assumed to be constant over time.

Conventional statistical models assume that the observations are statistically
independent of each other. However, this does not hold in many applications, such as
clustered data or recurrent events. To address this, the shared frailty model was
introduced by Clayton (1978) without using the notion of frailty, where frailty is shared
among individuals within a cluster as a means of inducing dependence among them. The
frailty model is helpful in explaining the correlation within clusters. The shared frailty is
a conditional independence model in which survival times are assumed to be independent

given the shared frailty.

The choice of the frailty distribution is essential as it determines the correlation
structure of the data. Two different distributions are commonly assumed for frailty: the
log-normal distribution and gamma distribution (Clayton 1978, Vaupel et al. 1979,
Yashin and lachine 1995, Hougaard 2000, Ripatti and Palmgren 2000, Pankratz et al.
2005). Although the log-normal distribution allows for more flexible modelling of frailty
correlation, the gamma distribution is mathematically convenient. The gamma
distribution provides closed form expression of the log-likelihoods inference of the
conditional likelihood less complicated as frailties may be integrated out. Due to
computational convenience, a common choice for the distribution of frailties is a one-
parameter gamma distribution with shape parameter k and scale parameter 1/k, denoted
Gammal(k, 1/k) (Clayton, 1978).

2.3 Frailty model in competing risk settings

In the shared frailty model, the event times are correlated within families, and the
dependence is induced by single frailty shared within a cluster. However, in the presence
of competing risks, event times of each event type could be correlated within the same
cluster (Zhou et al., 2012). Using one frailty for each cluster acting on all different event

types might not be plausible in a competing risk setting. To handle the correlations
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between competing events, Gorfine and Hsu (2011) extended the competing risk model
proposed by Prentice et al. (1978) to incorporate frailty variables within the cause-
specific hazards model by combining frailty variables multiplicatively while assuming a
proportional hazard frailty model for each event. The flexible dependence structure
among competing events within a cluster is provided by using the multivariate normal
distribution between frailty variables to induce the association between cause-specific
failure times. The survival times are assumed to be conditionally independent with

respect to the frailties. Suppose there are /] competing risk events and Zy; is the

unobserved shared frailty for the jth event in cluster f. Then, the jth cause-specific

hazard function conditional on the jth event frailty in cluster f is defined as
— T
o (6|Xr0 21,) = hoj(exp (BT Xy, + 21,

where h,;(t) is the baseline cause-specific hazard function for event j and B; is the
vector of regression coefficient for event j. Furthermore, suppose Z; = {Z¢, ..., Z¢ ;3 IS

the vector of frailty variables for all / competing events in cluster f. Gorfine and Hsu

(2011) defined the dependence structure of frailty variables as

zp=1{zs,.. 2, } ~ N %)

where N (u, X) is the multivariate normal distribution with J-dimensional mean vector u

and J x J covariance matrix X.

Although the method of Gorfine and Hsu (2011) can easily incorporate the frailty
model in competing risk settings, it requires computationally demanding numerical
integration via the expectation-maximization algorithm for inference on model
parameters. Alternatively, the frailty variables are decomposed into a sum of gamma
components, allowing for derivations of closed form expressions for the log-likelihood,
thereby avoiding computationally demanding integration. Yashin et al. (1995) introduced
a correlated gamma frailty model to analyze the survival data of twins. They decomposed
the frailty variable for twins into two variables where only one variable is shared. Thus,

the frailties of twins are correlated. In competing risk settings, Rueten-Budde et al. (2018)
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used a gamma decomposition to model dependence between the competing events, owing
to its simplicity in construction and estimation and Choi et al. (2021) extended the
correlated gamma frailty model by incorporating TDC using different parametric forms
of TDE.

2.4 Time-dependent covariate model and time-
dependent coefficient model

The Cox proportional hazard model is one of the most widely used models in survival
data modelling (Cox, 1972, Therneau and Grambsch, 2000). However, the Cox model is
dependent on the proportional hazard assumption, which might not hold when covariates
or their effects are time-dependent. For instance, when evaluating the effect of a
treatment on the cancer risks, the treatment status could change during the follow-up
time. This illustrates a binary TDC taking the value 0 before treatment and 1 afterwards.
Crowley and Hu (1977) accommodated a binary time-dependent covariate as a
multiplicative factor in the Cox proportional hazard model to analyze the Stanford heart
transplant data by treating the transplant status as a time-dependent covariate. The Cox
model with a time-dependent covariate has the form such as

h(t|X(8)) = ho(D)exp{BX (1)}

where X (t) is the time-dependent covariate, which takes a value 0 before transplant and 1
afterward, and g is the time-invariant effect of time-dependent covariate X (t) (Crowley
and Hu, 1977, Kalbfleisch and Prentice, 2002).

In a comparable situation, the effect of the time-dependent covariate on the event
may not be constant over time. For instance, the effect of a treatment can be strong
immediately after treatment but becomes weaker over time, which exemplifies the time-
dependent effect, 8 (t). Incorporating the time-dependent effects of covariates into the
Cox PH model, Hastie and Tibshirani (1993) proposed general time-dependent effect
models, and Nan et al. (2005) accommodated the time-dependent effect of time-

dependent covariate as a multiplicative factor in the Cox proportional hazard model as

13



h(t|X (1)) = ho(t)exp{B ()X (1)}

where £(t) is a smoothed function of time that is the time-dependent effect of the time-

dependent covariate, X (t).

2.4.1 Parametric models

To investigate how the effect of a TDC changes over time, Choi et al. (2021) has
implemented different parametric models, such as permanent exposure (PE), exponential
decay and Cox and Oakes (CO), in a correlated frailty model for clustered competing

risks data.

Suppose the binary TDC, X(t,t,), isdefinedasOatt < t, and 1 att > t,, where
t, is the intervention time at which the TDC’s value changed and its time-dependent
effect as g(t, X (¢, t,)). If the effect of the TDC is assumed to be constant after t,., which
can be denoted as g(t,X (¢, tx)) = BX(t,t,), itis referred to as the permanent exposure,
since its effect stays constant over time from the treatment (Keown-Stoneman et al.,
2018). To incorporate the effect decaying over time, Cox and Oakes (1984) formulated
exponentially decaying time-dependent effect in the following form,

0 ift <t
t,X(t,t,)) = Lttt
9(6X(6.6) {n0+ﬁe -t jft > t,

where the effect of the TDC decreases over time with the rate of n, converges to n,, and

this is referred to as the CO model.

2.4.2 Flexible model using B-spline

Although it is easy to describe the effect of TDC in different parametric models, such an
approach requires some clinical knowledge to specify the functional form for effect
behaviour over time. Finding the appropriate function might be challenging, or the
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functional for may even be unknown. In contrast to the parametric approach,
incorporating splines into the Cox model may better represent the time-dependent effect
of TDCs (Sleeper and Harrington, 1990). A spline function is a series of polynomials of
degree D joined smoothly at breakpoints referred to as knots. The B-spline, originally
introduced by De Boor et al. (1998), is one type of spline functions that is widely used
due to its convenient numerical properties. The smoothness of the B-spline function
depends on the number of interior knots and degree, which should be fixed in advance.
Then the construction of the B-spline begins by choosing K interior knots, which
partition the interval [a, b] into several subintervals. The choice of the number and
location of the interior knots is often arbitrary, where too few or too many knots resulting
in under- or overfitting of the data. The interior knots are often selected based on the
quantiles of the data, where the equal number of the observations lie in each interval. In
addition, there are D + 1 augmented knots on each side of the interval [a, b], where we
have appended the lower and upper boundary knots. Such augmented knots are needed
due to the recursive nature of the B-spline. Then, with K interior knots and a polynomial

degree D, there are K + D + 1 piecewise B-splines of degree D.

Given a variable x € [a, b] with K interior knots and degree D, each spline basis

By 4(x) is defined recursively, where k = 0,...,K + D,andd =0, ..., D, as

1 ift, <x<t
B x) = { ) k = . k+1
ko(X) 0, otherwise

and

X —tg Lrd+1 — X

Bya(x) = ———Bya_1(x) + Byi1,a-1(x)
tieva — tk tk+a+1 — L+

where the locations of knots are placedata =ty = - =tp < tpy1 < - <tprg = =

tk+2p41 = b.

The B-spline function of degree D with K interior knots can be expressed as
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K+D

F6) = BiBin®)
k=0

where (3, are the coefficients of the basis functions.

Figure 2.1 illustrates a) linear and b) quadratic B-spline basis functions created
using two interior knots at 3.3 and 6.6 between 0 and 10. Two magenta-coloured vertical
dotted lines indicate two interior knots. The linear B-spline consists of two linear pieces
for each basis function joined at one interior knot, where four linear spline basis functions
are denoted as By 1, By 1, B, 1 and B ;. Similarly, the quadratic B-spline consists of three
quadratic pieces joined at two interior knots, where five quadratic spline basis functions
are denoted as By ,, B 5, B, 2, B3 » and B, ,. The degree of the B-spline controls the

smoothness and size of the curve.
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a) Linear B-spline basis
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Figure 2.1: Basis functions for the linear B-spline (a) and quadratic B-spline (b) using

equally spaced knots at 3.3 and 6.6 between 0 and 10.
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The B-spline model flexibly estimates the effects of TDC using basis functions
Byp(t —ty),k=0,..,K+ D, such as

0 ift <t,

_ K+D
g(t Xt ty)) = BiBip(t—t,) ift>t,
k=0

The B-spline provides a smooth curve as it consists of piecewise polynomials connected
at the interior knots. Thus, once the B-spline is incorporated into the Cox model, the
coefficient of each basis function is not interpretable, but the effect of a covariate should
be interpreted as a combination of B-spline basis functions and their effects (Eilers,
1996).
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Chapter 3 Proposed Statistical
Models

This chapter describes the correlated frailty competing risk model with different
functions for TDEs of binary TDCs for clustered competing risk data. This chapter is
divided into six sections. Section 3.1 describes the competing risk model with TDCs.
Section 3.2 describes the within-cluster correlation between frailties for different events.
Likelihood construction for the cause-specific model to estimate the parameters is shown
in Section 3.3. In Section 3.4, the cause-specific penetrance function with TDCs is
provided. The variance estimation procedures for parameters and cause-specific

penetrance are described in Section 3.5.

3.1 Frailty competing risk model with time-dependent
covariates and coefficients

Following the general framework of the correlated gamma frailty competing risk model
proposed by Choi et al. (2021), we incorporate BS for more flexible modelling of the

time-dependent effect of binary time-dependent covariate using BS.

Consider the data arise from F independent families, each family consists of n,
members. Let f; be the subject i, i = 1, ...,ng, of the family f, f = 1, ..., F. We denote by
Tfoi and Cy, the time to the first event time and the censoring time, respectively, and by
6r, = 1,...,] be the type of first event among J competing events and &5, = 0 if censored.
Define Ty, = min(Tf Cy,). Let Zy; denote the unobserved frailty shared within the family

f foreventj,j =1,...,J, which is a family-specific random effect assigned for each

event, and X, ; denote the vector of covariate for individual i in family f. Conditional on
X, ; and Zg ), the cause-specific hazard function for event j for individual i in family f is

defined as
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P(t< T, <t+At, 8 =j|Tr, = t,Xs, i, Zr,
fi O = 2 L Agyjy 45
by, (t1X5,52p,) = lim ( )
i o “fi) T arso At

= hO,j(t)ZfJexp{ﬁ;Xfl,j} (31)

where h, ;(t) is the baseline hazard function for event j and B; is the vector of

coefficients which corresponds to event j. The corresponding cause-specific cumulative

hazard function is written as

t
Hy, (01X, 21,) = fo hy, (wlXp,j:2y,) du

= Ho ;()Zexp{B] Xy, ;}
where H, ;(t) is the baseline cumulative hazard function for event ;.

Then, the overall survival function conditional on the covariates and frailty is

obtained using the cause-specific hazards for all J events as

J
Sfi(tlei;j’zfl’ 'Zf]) = exp {— zj=1 HOJ(t)ZfJexp{ﬁfol’]}} (32)

where the frailties Zg; for event j are assumed to be independent across families, but the

frailties between events are assumed to be correlated within families. We present the
details of formulating the correlated frailties and the dependencies induced by the frailties

are described in Section 3.2.

For the covariates, X, ;, they could be either a TIC, Wy, or a binary TDC,
Xr, (¢, ty). We further assume that X, ;(¢t,t,) = 0att < t,and 1 att > t, where t, is

the time that change in value of TDC occurred. Then, we propose to use the B-spline for
flexible modelling of the TDE of TDC denoted by g(t, X, (¢, t,)), as follows,

0 ift <t,
t,Xr i(t,ty)) = I \OKHP
g( fl,j( x)) Zk_o BjicBip (t — ty) ift >t,
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which gives a smoothing curve with spline basis By p (t — t,),k = 0, ..., K + D, where K
represents the number of interior knots, D is the degree of basis function, and B, p (x) is

referred to as the intercept. Then, given the cause-specific familial frailty Zg,, the jth

cause-specific hazard function and cumulative hazard function with TDE of TDC and
TIC are expressed as

iy (€170 21;) = ho (27, exply;Wy, + g (& Xy, (6, 6)))

and

t
Hy, (t|XfiJ-,ij) = fo ho (W Z exply; Wy, + g(w, Xy, j(u, t,))} du

where Wy, is the TIC and y; is the corresponding cause-specific coefficient of event j.

Then, the cause-specific hazard and cumulative hazard with the BS can be obtained as

ho i () Zf jexply; W, } ift <t
K+D

heoj \t1Xr0 25, ) = .
( 1) ho,j(t)ijexp {ijfi + Zk—o BjxBip(t — tx)} ift >t,

and

Ho j(0)Zf exply; Wy, } ift <t,

tx
ho ;(WZy, W} du +
s (1802,) = |, "0

K+D

t
\f ho'j(u)ijexp {y]sz + ro Bj,kBk,D (u - tx)} dU] ift > ty
ty =

where the BS function provides a smooth approximation of the effect of TDC over time
for t > t,.. Then, the corresponding survival function can be obtained by following
Equation (3.2).
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3.2 Dependence induced by frailties

In the frailty competing risk model, a family-specific random effect, Zg;, is assigned to

each competing event and shared within families, thus inducing dependence among event
times of specific event within families. In addition, we allow the frailties for different
events to be correlated. To describe the correlation between frailties for different events,

each frailty variable, Zf for event j in cluster f is constructed as the sum of two
independent random variables: Yz, and Y, where Yz represents the common frailty and
Yy represents an event-specific frailty that shared by members in the same cluster. The

common frailty Y is shared regardless of events, allowing frailties for different events in

the same cluster to be correlated.
In particular, the cause-specific frailties within family f are defined as

7, =
11 ko + kj

Yi + ¥y

where Yz and Yy are gamma distributed random variables with Y; ~Gamma (ko,kio) and

Y; ~Gamma (k-
J

]#) for ko and k; > 0. This results in following frailty distribution
o+k;

1
ij~Garnma <k0 + kj, ko—-l-k]>

with mean of 1 and variance P ik . The variance of Zf]. indexes the between-cluster
otk;

variability for event j, thus provides the level of within-cluster dependence or correlation.
Since larger the variance leads to stronger within-cluster dependence, smaller k, + k;
indicates the stronger within-cluster dependence. Furthermore, the association between
any two times of event j within families can be expressed by Kendall’s tau (Hougaard,
2000, Munda et al., 2012), such as

1
T 20k + k)
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where the value of z; close to 1 indicate higher dependence of event j within a family.

The covariance and correlation between the frailties of two events, Z, and Z¢,

j # j',in family f are given by

cov (Z Z ) = o
T2 ) ™ (ko + kj) (ko + kj))

and

JGo + k) (ko + )

p

where the value of p is between 0 and 1 as ko, k; and k;, are larger than 0. Furthermore,

ko, = 0 corresponds to the independent frailty variables for the competing events.

3.3 Likelihood construction with ascertainment
correction

Based on the cause-specific hazard model conditional on the covariates and familial

frailties, the conditional likelihood for family f can be written as
ny o J 1(57,-))
Cioy — i
Ly () = 1_[ 1_[ hro (b X 2r,) S, (b5, Xr0: Zf)
i=1 j=1

where Zy = (Zy,, ..., Z;,) and @ is a vector of parameters involved in the model, consisting

of the baseline parameters and a vector of parameters related to regression coefficients of

TIC and TDC, and frailty parameters related to the frailty distribution.

Since the frailties are unobserved, we obtain the marginal likelihood for family f

by integrating out the frailties over their distributions (Choi et al., 2021), such as
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ng o co

1(57,=1)
Lr(6) = Hf f{n hyo (b X s 2r,) St (b7 X1, 21) 9220 1 21, )2y, .02y,
10 0 =1

i=

By plugging the cause-specific hazard and survival functions in Equations (3.1) and (3.2),
respectively, into the marginal likelihood for family f, we can first rewrite the marginal
likelihood by taking out the terms that do not involve the frailty variables from the

integrals to solve the integrals by using the Laplace transformations as follows:

ng oo 00
Le(0) = h XYY(l;j)S X Y
(6) = fi th| fuir Yoo f,) 7 (X5, Y ) X
i=10 o \=1

90(%) --9)(¥;, )4, ¥,
! WO I(afizj)
l_[ w, 5 Y hyoi(tr | Xr, ) x

w
( °on+ij>Hn 90(%,) -9, (¥, )dYy, ...ax;,

5 fj
nﬂhflj(tfllel]) i f f < Yf0+Yf]> X
0 0

i=1 j=
]
Wo .
exp{ Y, Z 2oy | = 0 (5,8) fao(t) - 0y(1, )%, v,
j=1 j=1

J

j=1

(3.3)
where Y¢ = (Y, ..., ¥ )), dfj = 2?111(% = j) is the number of event j experienced in

family f and I-'If,j = Z?zfl Hy, j (tfi|szJ) for simplicity.

The Laplace transform ¢;(-) and their dth derivative gbj(-)(d) for the frailty

distribution can be employed in Equation (3.3), where the Laplace transform of the

frailties and their dth derivative have the following forms
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b = | e,z
0
B = (-0 [ 2teg iz
0
where g;(z) is the density function of the random variable Y. Given that wy = ko, w; =

ko + kj,j = 1,...,], we assume that each random variable Y, for event j follows a

gamma distribution with shape k; and scale Wi Then, the closed form expressions of the
J

Laplace transform ¢; () and their dth derivative ¢;(-)? can be expressed as

_kj
¢i(s) = <1 + Wi> (3.4)
]
r(kj + d) s\ 9
(D = (—1)d I ) S
¢;(s) (-1 Fig)w? <1+Wj> (3.5)

In addition, the product of the binomials can be expressed as a form of summations by
using binomial theorem such as

J ds. r, 4 ) b,
Wi fo fj - bl Wy fo fi b w fo fy
j=1 J b1=0 b]=0 ] ]
dfl df] ] b;
=SS T dr\ (Wo) " | 40
fo L b] W] fj
by=0 b;=0 j=1

where B = 2§=1 b;.
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Then, with the binomial theorem and Laplace transform, the Equation (3.3) can be further

expressed as

] J

f )
(Sf ] Wqo .
Lf(9)={l_H_[ hyo(tr1Xr,s). f Yiexpy =Yy, ZWJ.HH 90(¥r,) %
=1 0

j=1

dr, 4f; ] o b,
de\ (wo\ "’ dr—b; ,
J — . i
Iz Z 1_” <b] )<W> Yy eXp{ ijHfJ}gJ (ij) ayy
0

]

J J
(8f.=j Wqo .
i {nﬂhfi,f(wxfi.j)(f‘ S 0 ZW(-)H”

]

i=1 j=1 j=1
df1 df] b;
; Wy J df.—bj (dfj_bj) :
—) DY) (A1)
b;=0 b;=0 | j=1 i
{ ny J F( N B) Ji H -wo—B
5f =j Wy f.j
Aot
[ 11 pIATEEE I'(wo)wy — Wj
i=1 j=1 J=1
ds J . - —kj—df +b;
zl: z 1_[< )<W0>b1F(kj+dfj—bj)<1+Hf,j> Ut
— d; —b; :
by=0 by=0\ j= i F(kj)wj i Wi
T (re) | PO+ BY [ A e
_ I 5fi=j Wo f.J
= {1_[ 1_[ by (k1 Xr,) rwy \ 17T 27, *
i=1 j=1 j=1
dfl df] —k] dfj+b]

ZZ 1_[< ) I;(;;‘Z ]b)<1+111:1>

b;=0 b;=0 \ j=1

(3.6)

For the data obtained based on the affected probands, an ascertainment corrected
likelihood approach should be used to adjust for ascertainment bias (Choi et al., 2021).

This correction is done by weighting the L (6) by the inverse probability of a proband

being ascertained before age at examination ar,, which is A;(8) = P(Tfp < afp|Xfp,j).
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Using the Laplace transform of the frailty distribution, the ascertainment probability for

family f can be written as follows
Af(e) =1- Sfp (afp|Xfp'j)

J
= 1_ffexp _ZZfJHfP’] (afplep'j) gZ(Zf1""’Zf])de1 de]
j=1

J

Wo
— 1_ffexp —z W]YJCO-*_Y}J pr,j (afplep'j) X

Jj=1

90(%,) -9, )dY;, ...ax,

J
Wo
=1 —f---fexp Y ZV,—HM (afplep'j) B

j=1
]
z Yf}'pr'j (afplep’j) gO(Y}o) "'g](Y}])deo de]
j=1
] —ko J —kj
P P Z Hy, j (aprXfp.j) 1—[ - Hg ; (afplep,j)
Jj=1 j=1

(3.7)

Then, putting Equations (3.5) and (3.6) together, the general form of ascertainment
corrected likelihood for F families can be obtained by dividing each family’s likelihood

contribution by its ascertainment probability, which can be expressed as

F

v =] |22

BYAC)

The regression coefficients of the cause-specific hazard model can be obtained by

maximizing the corresponding ascertainment corrected log-likelihood given by
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£(6) = 10gL.(8) = ) logly(6) — ) l0gA(6) (3.8)
=1 =1

3.4 Cause-specific penetrance function with time-
dependent covariates/coefficients

Conditional on the frailties Z; and the covariates X, ;, the jth conditional cause-specific

cumulative incidence, also called penetrance, for subject i in family f is defined as
Froj(t1Xr, 5. Zs) = P(Tp, < .67, = j1Xy,j, Zy)
t
= fo g, (wlXr,:2,) Sy, Xy, . Z7)du

t
= fo hy, (w1Xy, 5. Z1,) exp {— z; Hy, (17, ij)} du.

Since the family-specific frailties Z; are unobservable, the marginal cause-specific

penetrance function for event j can be obtained by integrating out the distribution of

frailties Zs; using the Laplace transform as follows:

of
Wo

f f (;} Vi, + ij) hy i (ulXg, ) %

0 0

I (w
exp {—Z , <;0 Y+ ij> Hfirf(uleir]')}go(yfo) - 9)(¥7, )Yy .. Yy, du

Fri(t1Xr ;) =

O\H

by (X, Z1,) S7(ulXp, 203, (Zf,0 0 25, ) dudZy, ..dZ,

o 0\8

j=1

f i) | | f i) g, (1, vy,

l#j o
oo
[Wof
J 0

[oe]

_vJ/ Wo . _ . .
e Zl:lW(lJYfOHfi’l(ulei'])go(Y}O)dY}O f e Yf]-Hfi-J(u|XfiJ)gj (Yf,) dej
0

Y

0
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o]

r J Wo . _ ) )
[ 7B gy Na [ 70, (Yf,-)deJ o
0

£33}

0

t
f hy,j (X, ) 1_[ u{Hy, i (ulXr, 1)}
0
Wo

[ (1)¢’(1){Z —Hfl (“|Xm)}¢J{Hm(u|xm)}

+ ¢0 {Z =1%Hfirl(ulei,j)} (—1)¢}1){Hfirj(u|Xfi,j)}] du

f e, i (ulX;, ,)1_[{ Hflz(u|xfl,)}

l#j

—ko— -k
[ﬂ {1 +Z] Hfi.l(u|Xfi.j)} © {1 +Hfi:j(u|XfiJ)} '
w;j =1 wi Wj

J J

—ko —kj-1
I He (u|Xe, ki He (ulXe, ;
+{1+ § fl»l( | fb])} _]{1+ fl,j( | fl,])} du
=1 w; wW;

j Wi

fhf Xy, ])1_[{1 +Hfll(u|xf”)} { —Hf"’j(ule"'j)}_kj X

W.
l#j

]

I He (ulX, )
{1_'_2 o (ul m)} o

1=1 w;

_1 _1

k J He  (ulX; ; k; He (u|Xs. ;
[_0{1+z fl.l( | fl.J)} +_]{1+ fl,j( | fl,j)} ]du
W; =1 w; W; W

J J

(3.9)

where the Laplace transform of the frailty distribution and its dth derivative are applied

as shown in Equations (3.4) and (3.5)

We further incorporate TDC and TDE into the cause-specific penetrance function,

which is based on the correlated frailty competing risk model presented in Equation (3.8).

For simplicity, omitting the terms related to TIC, the marginal cause-specific penetrance

function for is
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1—[ H o (wlXy, j ( t
Fy, J(t|XflJ(t ty)) = fhflf(upffu(u ty)) { f"l(ul iyt ))}

wi
l#j

i -k
{1+Hfi,j(u|Xfi,j(u' tx))} K {1+Z’ Hy 1 (ulXr, (@, tx))}

w;j =1 wi

[ﬂ{1 + z] ACUNIC t"))}_l + ﬁ{1 | Hr (i tx))}_ll du

Wj =1 w; Wj W]

For t < t,, we assume that X, ;(u, t,) = 0, where t, is the time that change in

value of TDC. Then, the penetrance function can be obtained without considering the
TDE of TDC such as

H
Frj(t1Xp, (6 t) = fho](u)l—[{ oz(u)}

I#j

_kO
Ho ;W)™ ] Hgy(w)
{1 +—wj } {1+Zz=1 W, } X
[@ {1 s Zf Ho,l<u)}‘1 K {1 . Ho,j<u)}‘1] "
W] =1 W W; Wi

] J

where hg () and Hy ;(u) are the baseline hazard function and cumulative baseline hazard

function, respectively.

In contrast, if t > t,, we have X, ;(u,t,) = 1. Then, the penetrance at time ¢ can
be decomposed into the sum of two functions, where one without TDC/TDE (t < t,) and
the other with TDC/TDE (t > t,.) that the change in the effect of TDC is described by

using the BS model. Then, the penetrance at time t with t > t,. is expressed as

H
Ff} thf },Zf J.hoj(u)l_[{ Ol(u)}

l#j

-k

Ho,j(u)}_kj{ J Ho,mu)}
{H_Wj 1y, A
wo {1 s z! Ho,l(u)}‘l W {1 . Ho,j(u)}_l
Wj =1 W W] W;

]

du +
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t K+D
f ho,;j(w)exp {Zk . BjxBip(u — tx)} du x
ty =

{ Ho,(t,) + ftu ho1(s)exp{Xi2s BuiBi,p (s — t:)} ds}
1_[ 1+ > X

l#j Wl
Ho(t) + [, ho ;()exp{SK28 B;Bip (s — t)} ds} !
1+ * X
W;j
_kO

J o Hou(ty) + ftu ho1(s)exp{Xk2s BuiBip (s — ty)} ds
1+ Z X " X

=1 l

l@ {1 . Z} Ho(t) + [, hoa($)exp{Z28 BuiBin (s — t.)} ds}l N

1=1 wp

W.

-1
Ho(t) + [ o ()exp{Sk20 B xBip (s — t.)} ds} ]
+ X du
]

where B, k = 0,...,K + D, are the regression coefficients for BS basis for event j.

3.5 Variance estimation of regression coefficients

Consider the vector of the parameters @ consisting of parameters for baseline hazard
functions, regression coefficients, parameters for TDEs, and frailty parameters. Let 8 be
maximum likelihood estimates of the parameters 8. Then, the variance-covariance matrix

of @ is obtained using a robust sandwich variance estimator such as

Var(8) =1,(6)"1(6)I1,(8)*

where 1,(0) is the observed information matrix consisting of the second derivative of the

log-likelihood function from Equation (3.6), and /(@) is an expected information matrix.
These can be obtained as
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J(®) =) UF(©)U®)
f

_, OlogLs(6) 0dlogAs(0)
U0 =—3 28

where L¢(0) is the likelihood of family f from Equation (3.5), A;(8) is the ascertainment

probability for family f from Equation (3.6), and £-(@) is the ascertainment corrected

log-likelihood from Equation (3.7).

Therefore, the robust variance estimates of the estimated parameters 8 can be

obtained by evaluating 1,(8), /(@) and 8. Then, the robust variance of the cause-specific

penetrance function, Var (Fj (t|§)), is obtained by using Delta method, such as
var (F;(t|9)) = D (t)Var(8)Dg(t)

where Dy (t) is the vector of partial derivatives of F;(t|@) with respect to each parameter.
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Chapter 4 Simulation study

The results in Chapter 3 are derived under the assumption of large samples. We thus
conduct simulation studies in the chapter based on the correlated frailty competing risk
model with a binary TDC. We evaluate the performance of different TDE functions (PE,
CO, BS) of TDC in terms of the parameter estimates, penetrance estimates and AIC
under different settings. Detailed objectives of this simulation study are provided in
Section 4.1. Section 4.2 describes the simulation design, which includes 12 different
simulation scenarios that are considered. The values of the parameters used in the
simulation are presented in Section 4.3. In Section 4.4, the data generation process is
described. The simulation evaluation criteria are provided in Section 4.5. Finally, the

simulation results are summarized in Section 4.6.

4.1 Obijectives

Our simulation study aims to evaluate our proposed modelling of the time-dependent
effect of a binary time-dependent covariate using the BS and compare its performance
with other parametric models (PE, CO) under different scenarios in terms of bias and
precision of the parameter estimates in the correlated competing risks model, and the
penetrance estimates of developing the event of interest with different intervention time

points.
The two main objectives of the simulation study are:

1. To evaluate the performance of the correlated competing risks model with TDC

using the BS model in terms of parameter estimates and penetrance estimates.

2. To evaluate the impact of misspecified TDE functions (PE, CO, BS) in the

correlated frailty competing risk model on the following:

I.  Precision of the TDE function estimates at different time points
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ii.  Bias and precision of model parameter estimates and penetrance

estimates

iii. Goodness of fit of the model

4.2 Simulation setting

The simulation study is designed to evaluate the performance of the proposed time-
dependent effect model in the correlated frailty competing risks with a binary TDC
introduced in Chapter 3 under the different settings depending on the shape of TDE,

strength of correlation between competing events, and size of mutation effect.

We consider two shapes of TDE, where the first shape is a decreasing curve that
exponentially decays over time converges to a certain value, and the second shape is a
right-skewed curve that drastically increases right at the beginning and slowly decreases
over time. The CO and BS models are used to depict those shapes. The effect staying
above 0 indicates a positive effect, which dramatically increases the penetrance of the
event of interest. In contrast, the negative TDEs only take values below 0, which
gradually increase the penetrance of the event of interest. Then, we have a total of
2 X 2 = 4 different shapes of TDEs, denoted by CO+, CO-, BS+, BS-, arising from the
CO and BS models, each with positive and negative TDE. These four shapes of TDE

used in the simulations are graphically presented in Figure 4.1.

In addition, we examine how the strength of correlation (low and high) between
competing events and the size of the mutation effect (low and high) would affect the
performance of the proposed model in terms of parameter and penetrance estimation. A
total of 12 simulation scenarios are considered, as presented in Table 4.1. The scenarios
can be broken down into four groups by the shape of TDE: first three scenarios generated
from the BS+, next three scenarios from the BS-, following three from the CO+, and last
three from the CO-. Within each group, the first two scenarios are designed to evaluate

the effect of correlation between competing events when the mutation effect is fixed, and
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the last two scenarios are to evaluate the effect of mutation effect when the correlation is
fixed.
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Figure 4.1: Two shapes of time-dependent effects under the Cox and Oakes (left panel)
and B-spline (right panel) models. The intervention time is 30, and the black line indicates
no effect before the intervention. The red and blue lines represent the time-dependent
effects following the intervention time, with the red lines representing positive effects and

the blue lines representing negative effects.

For the first objective, we evaluate the performance of our proposed model based
on the BS in terms of parameter and penetrance estimates. We use the first 6 scenarios in
which the data are generated from the BS models with different mutation effects and
correlations between two competing events. For each scenario, the BS model is applied to
fit the data and estimate the parameters in the model. Then, the penetrances at time 70
with intervention occurred at age 30, 40, 50 and 70 (no intervention) by plugging in the
estimated parameters. The accuracy and precisions of those estimates are further

evaluated via bias and coverage percentage of the confidence interval.
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Table 4.1: Simulation study scenarios

Scenario TDE Model TDE Mutation effect Correlation between

competing events

1 B-spline Positive Y1g = 1.50 p =0.14
2 B-spline Positive Y1g = 1.50 p =0.51
3 B-spline Positive Yig = 2.25 p =0.51
4 B-spline Negative Y1g = 1.50 p =0.14
5 B-spline Negative Y1g = 1.50 p =0.51
6 B-spline Negative Y1ig = 2.25 p =0.51
7 Cox and Oakes  Positive Y1g = 1.50 p =0.14
8 Cox and Oakes  Positive Y1g = 1.50 p =0.51
9 Cox and Oakes  Positive Y1ig = 2.25 p =0.51
10 Cox and Oakes  Negative Y1g = 1.50 p =0.14
11 Cox and Oakes  Negative Y1g = 1.50 p =0.51
12 Cox and Oakes  Negative Y1ig = 2.25 p =0.51

For the second objective, we evaluate the impact of different TDE models (PE, CO,
BS) under different scenarios (see Table 4.1) by applying the PE, CO, two BS models to
each scenario. The two BS models are denoted as BS2 and BS3 with degrees of 3,
boundary knots (0,55) and having 2 interior knots and 3 interior knots, respectively,
where the interior knots are obtained from the data based on 33% and 66% and 25%,
50% and 75% quantiles of the time difference between the surgery time and the last
observed time, respectively. We first (1) assess the precision of the TDE function
g(t, X(t,ty)) estimates at different time points after an intervention under all scenarios 1-
12, then (2) assess the bias and precision of parameter estimates and penetrance estimates
under BS+,BS-, CO+, CO- when p = 0.51 and y = 2.25, finally (3) compare the

goodness of fit of the models via AICs.

For each scenario, 500 simulation replications are conducted, each with 500 families
consisting of three generations of family members, for an average of 5835 individuals.

The simulations of clustered correlated competing risk data with TDC are carried out by
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modifying the simfam function from the R package FamEvent (Choi et al., 2021). The
detailed data generation procedures are described in Section 4.4. Data generation and

analyses were performed using R version 4.0.4 (R Core Team, 2021).

4.3 Selection of parameter values

For each simulation, the datasets are generated with two competing events based on the
cause-specific hazard models with the true parameters obtained by fitting our model to
the real data, presented in Tables 4.2 and 4.3, to mimic the data used in the application.
For simplicity, the model includes one binary TDC and one binary TIC, representing

intervention status and mutation status, respectively, defined as:

1. X(t t,): Intervention status is considered as a binary TDC, such that the
intervention status change at the time t, that intervention occurred, i.e.,
X(t tg) = I(t > tg). Only the cause-specific hazard model for event 1 is affected
by this variable.

2. G:mutation status is TIC, which takes value 1 for mutation carriers and 0 for
non-carriers. The cause-specific hazard models for both events are affected by

this variable.

Then, the cause-specific hazard functions for event 1 and event 2 are expressed as

follows:
e (€|X(6,85), G, Zs,) = hoy (D) Zs,exp{y1,G + g(t, X (¢, £5))}

he (|G, Zp,) = hop(£)Zs,exp{y24G}

where hy,(t) = A,p,(A1t)P171 and hy, (t) = A,p,(A,t)P2~1 are Weibull baseline hazard

functions, Z, and Zy, are event specific frailties, y,, and y,, are the effect of mutation

status for event 1 and 2, respectively. The correlated frailties are constructed by each
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event-specific frailty Zp, = Ko Y

Ko+, o + Yy, where Yz and Yy, are independently generated

from gamma distributions.

For the TDE, the following g(t, X (¢, t,)) functions for PE, CO and BS models

are considered:

( 0 ift <t. (PE,CO,BS)
Bs ift > t. (PE)
g(tXx(tt5)) = 4 Bse M) 4 g ift > t; (CO)
K+D
D BasBente — 1) ift > t; (BS)

The numbers of parameters involved in TDE are different across the models. For
the PE model, only one parameter, which is s, is involved in TDE, whereas the
parameters involved in the CO model are {f, 1,10} and the number of parameters in the
BS model depend on the polynomial degree D and the number of interior knots K, where
the total number of parameters is K + D + 1 including the intercept. In addition, the BS

model is constrained to be linear beyond the boundary knots (t,in, tmax)-
The parameters used in the simulations are specified as:

1. Baseline hazard functions follow Weibull distributions with scale parameter: A,
and shape parameter p, for event 1, with A, and p, for event 2. Their values are
set as log(4,) = —4.83,log (p;) = 0.83,log (1,) = —4.50,log (p,) = 1.07.

2. Mutation effects are described by regression coefficient: y, 4 and y, 4 of gene
mutation status for event 1 and event 2, respectively. The value of y,, is

considered as 1.5 and 2.25 and that for y, is set as 0.5.

3. Time-dependent effect of an intervention is described by g, n and n, for CO
model, and s, k = 0, ..., K + D for BS model. Referring to the shape in Figure
4.1, the true values of these parameters for CO are set as S, = 2,log(n) = —0.79
and n, = 0.4 for positive effect, and g, = —2,log(n) = —0.79 and n, = —0.4
for negative effect. For BS model, a degree of 3 and 2 interior knots at time
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points 7.5 and 12.5 years with boundary knots at 0 and 55 years are considered.
The true parameters related to the positive TDE are set as 5o = 0.012, 55, =
1.024, B, = 1.231, B3 = 0.338, 5, = 0.231, and B s = 0.212. Similarly, the
values of the parameters related to negative TDE are considered as fs o =
—0.012, B, = —1.024, B, = —1.231, 855 = —0.338, 5, = —0.231, and

Bss = —0.212.

4. Frailty parameters: k,, k, and k,. The value of log(k,) is considered to be -1.5 or
0.4, while the values of log(k,) and log(k,) are to be 0.4 and 0.6, respectively.
These parameters influence the familial dependence and correlation between two
competing events. With log(k,) = 0.4 and log(k,) = 0.6, log(k,) = —1.5 and
0.4 corresponds to 7 = 0.12 and 0.47, and p = 0.14 and 0.51.

4.4 Data generation

The family data are generated through three steps.

1. The family structure is constructed by selecting the number of siblings for each
generation in the family and their current age, similar to the real data, while
generating other variables, such as mutation status, proband, intervention time,

and frailties for each event type.
2. The event times and event status are generated.

3. Ascertainment condition for the family is applied to mimic the population-based

design of the family studies.
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The detailed data generation procedures for each step are as follows:
Step 1: Family structure

1. We generate the family structure for each dataset consisting of three generations
of family members with two fixed members for the first generation, two to five

for the second generation, and zero to two in the third generation.

2. The current age of the proband, ar,, is generated by using the normal distribution
with a mean of 55 and a standard deviation (SD) of 5. The current ages of other
family members in the second generation a;, i = 1, ..., ny, are generated from a
normal distribution with mean 55 and SD 2.5. The current ages of the first

generation are generated with the mean of ar, +20 and SD of 2.5. The current

ages third generation are generated with the mean age subtracted by 20 years
from the minimum age of their parents and SD of 2.5.

3. For TDC status, we generate the intervention times, tg ¢, for all individuals from
a normal distribution with a mean of 47.5 minus the minimum age of all
individuals, which is 16, and SD of 2.5. Only those with current age larger than ¢,

undergo the intervention.

4. Two family-specific frailties, Z, and Z,, for two competing events are generated

from three independent random variables, Y; ~Gamma (ko,ki) and
0

1 _ ko .
Yy ~Gamma (kj'koTkj)' Then Z;, are constructed as Zy, = (_k0+kj> Yo +Y.)=

1 for event 1 and 2 for event 2,

5. For the mutation status, we first generate the proband’s mutation status, G,

under a dominant model with mutation allele frequency of 0.0021, conditional on
their current age, event status, TDC time and frailties. Then, we generate the
mutation status of the rest of the family members conditional on the proband’s

mutation status.
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Step 2: Event time and event status

1. We generate the age of onset, ¢f,, by setting the survival function
P(Ty, > t7,|Gr, Zs,, Zp, ts r,) = uy,, Where us, ~U[0,1] is generated from the
uniform distribution, and solve for ¢, from the equation. We assume the

minimum age of onset is 16.

2. The event status among two competing events is determined by comparing the
age of onset with the current age. If the age of onset is smaller than the current
age, then the event status of a family member is selected by using a Bernoulli

n(t|X (¢, ts), G, Zy)
n(t|X (t, ts), G, Z1 ) +ha(t]G, Z)

distribution with a probability of event 1 as Those

with the current age larger than the age of onset are considered as censored.

Step 3: Ascertainment condition

1. To mimic the family-based study that families are recruited through affected
individuals, called probands, we generate the families until the proband being

affected (the proband’s current age, ay,, larger than age of onset, tfp) and keep

such family with affected proband into study.

4.5 Evaluation criteria

We evaluate via 500 simulations the performance of the parameter and penetrance
estimators, the precision of the TDE functions (PE, CO, BS) at different time points, and
compare the goodness of fit of models with different TDE functions. The parameter
estimator is evaluated by bias (average estimate minus true parameter value), Empirical
Standard Error (ESE), Average Standard Error (ASE) and Empirical Coverage
Percentage (ECP). Similarly, the penetrance estimators are evaluated by Percentage Bias
(PBIAS), ASE, ESE and ECP. In addition, the precision of the TDE functions (PE, CO,
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BS) is measured by the Mean Squared Error (MSE) at different time points, and the

goodness of fit of the model is measured by the AIC.

In the following, we describe how the evaluation criteria are obtained in our

simulations.
The bias measures accuracy of the parameter estimator. It is obtained as the

difference between the average parameter estimate over the B = 500 simulations, § =

lB:lBi /B, and the true value, S, as bias = E— B. Instead of relying on the difference,

the percentage bias is used for the penetrance estimator, which is estimated as PBIAS =

(E— B)/8B x 100.

The accuracy of an estimator from simulations can be obtained from the ESE,

obtained by the sample standard deviation of estimates from all simulations, and it can be

A~

2
expressed as ESE = \/{1/(3 -Di¥E, ([?l — ﬁ) . The average of the standard errors is

obtained from all simulations as ASE = Y2 | SE(B;) /B. If the ASE is correctly
estimated, it should be closed to the ESE (Burton et al., 2006).

The ECP is the percentage of times the 95% confidence interval, f; +
1.96 x SE(B;), include the true value, 8, for i = 1, ..., B. The ECP should be close to
95%, where 5% of confidence intervals do not contain the true value. Over-coverage
occurs when the coverage percentages are above 95%, which suggests that the results are
too conservative since simulations would accept the null hypothesis that is actually false.
This leads to a loss of power with too many type Il errors. In contrast, the under-coverage
occurs when the coverage percentages are lower than 95%, which is not acceptable
according to Burton et al. (2006). One possible criterion of the acceptability of the

coverage is that the acceptability of the coverage, that can be obtained as SE (p) =
\Jp(1 —p)/B, where p is the nominal coverage percentage (Burton et al., 2006). With

B = 500 simulations, the acceptable range for the ECP with 95% confidence is between
93.1% and 96.9%.
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The MSE evaluates the precision of the TDE functions. Given g(t, X (¢, t5)) and
g(t,X(t, ts)) are the true and estimated TDE of TDC for a specific time point t — ¢,

where t is the observed time and ¢ is the time that change in intervention status occurs,
- 2 - -
the MSE is calculated as MSE = Y7, {g (t, Xy, (¢, ts)) -9 (t, Xy (¢, ts))} /B, which is

the sum of squared bias and variance at time t.

The AIC allows the comparisons between the competing risks models with
different TDE functions by explaining how well the model fits the data and is obtained as
AIC = —2log(L) + 2 x v, where L denotes the likelihood value of the fitted model and v
is the number of parameters involved in the model. We obtain the AICs from each
simulation and report the average AIC over the B simulations, that is AIC =

B | AIC; /B, where AIC; is the AIC obtained from simulation i and the best performed

model would have the smallest value of AIC.

4.6 Simulation results

We first summarize the simulation results of our evaluation of the performance of the
parameter and penetrance estimators of the BS models with the positive and negative
effects of TDE in Tables 4.2 and 4.3. Then the results for the impact of misspecified TDE
functions on parameter and penetrance estimates are summarized in Tables 4.4 to 4.7 and
Tables 4.8 to 4.11, respectively. The bias and precision of the corresponding penetrance
estimators are graphically visualized in Figures 4.2 to 4.4. Tables 4.12 and 4.13 present
the precision of the TDE functions (PE, CO, BS) at different time points after
intervention (5, 10, 15, 20 years) under the misspecified TDE function. The performance
of the correlated competing risks models with different TDE functions in terms of the

average AIC is summarized in Table 4.14.
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4.6.1 Correlated competing risk model with B-spline function

Table 4.2 summarizes the results of the simulation studies for the parameter estimates
under the true BS model with bias, ESE, ASE and ECP, which corresponds to the first six
scenarios presented in Table 4.1. Regardless of the sign of TDE, the biases of the
parameter estimates related to the baseline hazard function, mutation status and frailties
for two events are negligible. However, since there are not many treated individuals with
time after intervention larger than 30, two parameter estimates S , and S 5 related to the
BS model are biased. As the B-spline is a linear combination of the basis functions with
its effects, such biases would affect the accuracy of estimate for the hazard function and
thus bias the penetrance estimates. The ASEs and ESEs of the parameter estimates for the
baseline and mutation status for two events agree with each other for all the simulation
scenarios. However, the ASEs of the frailty parameters and parameters related to the
TDE tend to be larger than corresponding ESEs. As a result, the ECPs higher than the
nominal 95% and are not mostly within the acceptable range between 93.1% and 96.9%,
indicating that the confidence intervals are conservative. Based on six different scenarios,
the confidence interval for the parameters related to frailties (k,, k1, k,) and TDE
functions (85,0, 5,1, Bs,2 Bs,3, Bs,ar Bs,5) are ranged from 92.6% to 99.0% and 93.6% to
99.8%, respectively.

The simulation results of the penetrance estimates at time 70 with intervention
occurred at age 30, 40, 50 and 70 (no intervention) under the cubic BS model with two
interior knots (7.5, 12.5), boundary knots (0, 55), and positive/negative effects are
presented in Table 4.3. The biases of the penetrance estimates with the BS model are
mostly negligible, with PBIAS less than 3.4%. The ASEs and ESEs of the penetrance
estimates for mutation noncarrier for the BS models mostly agreed well except with low
event correlation. However, the ASEs of the penetrance estimates for mutation carriers
are higher than the ESEs, and the ASEs increased as the event correlation decreased. In
addition, most of the ASEs and ESEs of penetrance estimates for mutation carriers are
larger than the ASEs and ESEs obtained for mutation noncarriers. This caused the ECPs
to be above 95% nominal level, indicating the confidence intervals are conservative.
Since the acceptable range of the ECP is between 93.1% and 96.9%, about 43.8% of the
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results for the mutation carriers obtained the ECPs greater than 96.9%. This leads to a

loss of power which produces a large number of errors of omission.

Table 4.2: Accuracy and precision of parameter estimates from the correlated frailty
competing risks model with time-dependent effect modelled with cubic B-spline with 2
interior knots (7.5, 12.5) under BS+ and BS- scenarios with different correlations

between competing events (p = 0.14 and 0.51) and different mutation effects (y,, = 1.5

and 2.25) based on 500 simulations each with 500 families.

BS Positive time-dependent effects (BS+)

True p=014,y,,=15 True p=051y,=15 True p =051y, =225

value Bias ESE ASE ECP value Bias ESE ASE ECP value Bias ESE ASE ECP

log(4,) -4.83 -0.02 0.04 0.08 988 -483 -0.02 004 0.08 99.0 -483 -0.01 0.04 0.06 99.2
log(p;) 0.83 -0.01 0.03 0.04 98.0 0.83 -0.01 0.03 0.05 984 0.83 -0.00 0.02 0.03 0986
log(4,) -450 0.00 0.03 0.04 972 -450 0.00 003 0.03 966 -450 -0.00 0.03 0.04 97.8
log(p,) 1.07 0.00 0.03 0.04 96.6 1.07 0.00 0.03 004 962 1.07 -0.01 0.03 0.04 96.8
Yia 1.5 0.00 0.07 0.07 96.0 15 0.00 0.06 0.08 96.2 225 0.01 0.07 0.07 964
Y24 0.50 0.00 0.08 0.11 96.8 050 0.00 0.08 011 9.2 050 0.00 010 0.10 954
log(k,) 0.40 -0.08 0.62 1.85 92.6 040 0.01 031 051 970 040 0.00 034 045 096.8
log(k,) 060 0.02 0.20 0.49 982 060 -0.03 043 056 972 060 -0.05 043 055 96.8
log(k,) 0.10 0.02 0.25 0.60 96.0 0.10 -0.02 055 3.26 982 010 -0.02 057 0.77 98.4
Bso 0.01 0.07 0.19 0.25 950 0.01 -0.01 019 038 974 0.01 -0.02 017 0.20 97.0
Bs1 1.02 001 0.16 0.27 96.8 1.02 003 0.16 031 974 1.02 0.02 0.16 0.22 974
Bs > 1.23 0.02 0.13 024 98.0 1.23 001 0.12 029 984 1.23 -0.01 0.13 0.20 98.0
Bs 3 0.34 0.07 0.36 078 97.4 034 0.07 030 1.03 986 034 0.08 034 068 9838
Bs.4 0.23 -0.11 0.82 250 976 0.23 0.08 0.72 327 99.2 023 -0.11 087 224 99.0
Bss 021 034 128 6.55 98.8 021 029 111 884 998 021 019 141 6.60 99.8

BS Negative time-dependent effects (BS-)

True p=014,y,, =15 True p=051y,,=15 True p =051y, =225
value Bias ESE ASE ECP value Bias ESE ASE ECP wvalue Bias ESE ASE ECP
log(4,) -4.83 -0.01 0.05 0.07 972 -483 -001 0.05 0.07 988 -483 -0.01 0.05 0.06 97.4
log(p,) 0.83 -0.01 0.03 0.04 96.0 0.83 -0.01 0.03 0.04 98.2 0.83 -0.01 0.02 0.03 964
log(1,) -450 0.00 0.03 0.04 960 -450 0.00 0.03 0.03 944 -450 0.00 0.03 0.03 95.8
log(p,) 1.07 0.00 0.03 0.03 96.6 1.07 0.00 0.03 0.03 948 1.07 0.00 0.03 0.03 97.0
Y1ia 15 0.01 008 0.09 096.2 15 000 0.08 0.09 976 225 0.01 007 0.09 9738
Y2a 0.50 0.00 0.08 0.09 964 050 0.00 0.08 0.08 96.4 050 0.01 0.08 0.09 958
log(k,) 0.40 -0.15 058 234 946 0.40 0.04 034 0.48 96.8 040 0.02 0.36 0.48 96.8
log(k;) 060 0.07 0.24 0.39 96.8 0.60 0.04 049 0.64 99.0 0.60 -0.01 048 0.82 97.0
log(k,) 0.10 0.03 0.21 0.39 96.4 010 -0.11 080 117 954 0.10 -0.06 0.67 0.95 97.0
Bso -0.01 0.03 027 029 936 -0.01 -004 024 031 976 -001 -0.06 0.23 030 954
Bs1 -1.02 -0.02 036 046 960 -1.02 0.04 033 056 964 -1.02 0.04 030 0.47 958
Bs2 -1.23 0.00 026 041 976 -1.23 0.00 026 059 986 -1.23 -0.01 0.22 0.43 99.0
Bs3 -0.34 0.07 053 111 982 -034 0.09 045 177 988 -034 0.07 043 127 994
Bsa -0.23 -0.10 092 290 996 -0.23 -0.08 0.84 488 996 -0.23 -0.07 093 3.60 99.2
Bss -021 020 136 6.88 998 -0.21 0.28 140 11.05 998 -0.21 020 148 8.79 994
For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and estimated 95%
coverage percentage (ECP) are obtained from 500 simulations each with 500 families. A; and p; are the baseline hazard
parameters for event j = 1 and 2; y;, and y,, are the regression coefficients of the time-invariant covariate for event 1 and
2, respectively; ko, k, and k, are the frailty parameters; S,k = 0, ..., K + D, describes the TDE, where K is the number of
interior knots and D is the degree of the B-spline basis function; The permanent exposure (PE), Cox and Oakes (CO) and B-
spline (BS) are the TDE functions.
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Table 4.3: Empirical penetrance estimates at time 70 from the correlated frailty

competing risks model with time-dependent effect (TDE) modelled with cubic B-spline

with 2 interior knots (7.5, 12.5) under BS+ and BS- scenarios with different correlations

between competing events (p = 0.14 and 0.51) and different mutation effects (y,, = 1.5

and 2.25).

BS Positive time-dependent effects (BS+)

True p=014,y,, =15 True p =051y, =15

value PBIAS ESE ASE ECP value PBIAS ESE ASE ECP

True
value

p =051y, =225

PBIAS ESE ASE ECP

Mutation status G = 0

F,(70|ty = ) 0.119 -1.15 0.008 0.014 98.0 0.119 -1.41 0.008 0.013 97.8 0.119 -0.76 0.008 0.010 98.2
F;(70]t,=30) 0.200 2.07 0.018 0.026 98.8 0.202 1.65 0.017 0.027 98.0 0.202 1.37 0.019 0.026 97.0
F,(70|t;=40) 0.213 1.07 0.013 0.018 97.4 0.215 0.63 0.013 0.016 96.0 0.215 0.62 0.013 0.014 97.2
F;(70]t,=50) 0.209 0.68 0.012 0.019 96.8 0.211 0.14 0.012 0.016 96.8 0.211 0.19 0.011 0.012 96.0
Mutation status G = 1
F;(70]ty = o0) 0.380 -0.67 0.019 0.033 97.6 0.390 -0.89 0.018 0.029 98.4 0.612 -0.13 0.021 0.024 97.4
F,(70|t;=30) 0.547 1.33 0.029 0.045 97.2 0.569 1.05 0.026 0.045 98.4 0.783 0.47 0.022 0.033 98.2
F;(70]t;,=40) 0.561 0.81 0.022 0.033 95.6 0584 0.49 0.020 0.026 97.0 0.788 0.30 0.016 0.019 97.2
F,(70]t,=50) 0.546 0.55 0.020 0.033 96.8 0.567 0.17 0.019 0.026 96.8 0.768 0.17 0.016 0.017 96.2
BS Negative time-dependent effects (BS-)
True p =014y, =15 True p =051y, =15 True p =051y, =225
value PBIAS ESE ASE ECP  value PBIAS ESE ASE ECP  value PBIAS ESE ASE ECP

Mutation status G = 0

F (70|t = ) 0.119 -0.26 0.010 0.013 97.8 0.119 -1.05 0.010 0.012 97.8
F;(70]t,=30) 0.074 2.84 0.011 0.014 98.2 0.074 3.37 0.011 0.015 98.6
F;(70|t,=40) 0.072 1.50 0.006 0.008 96.8 0.072 1.31 0.007 0.008 96.6
F;(70|t,=50) 0.079 0.80 0.006 0.008 97.4 0.079 0.13 0.006 0.008 97.2
Mutation status G = 1

Fi (70|t = o) 0.380 0.38 0.022 0.030 96.6 0.390 -0.52 0.021 0.027 98.4
F;(70|t,=30) 0.260 2.62 0.028 0.038 97.6 0.263 2.73 0.028 0.040 97.8
F;(70]t,=40) 0.25 1.75 0.016 0.021 97.0 0.260 1.26 0.016 0.020 96.8
F;(70|t,=50) 0.280 1.21 0.016 0.021 974 0.285 0.34 0.015 0.020 98.0

0.119
0.074
0.072
0.079

0.612
0.454
0.452
0.487

-0.57 0.009
2.53 0.009
0.93 0.006
0.10 0.006

0.25 0.024
1.95 0.034
1.25 0.021
0.74 0.021

0.011
0.015
0.007
0.007

0.028
0.054
0.027
0.024

97.4
97.6
98.4
97.0

95.8
98.2
96.2
96.0

ESE represents empirical standard error, ASE average standard error, ECP empirical coverage percentage

F;(70]t; = o) denotes the cause-specific penetrance by age 70 for event 1 without intervention.
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4.6.2 Impact of misspecified time-dependent effect functions

We evaluate the impact of different TDE models (PE, CO, BS) under the CO and BS
models, high correlation between competing events, high mutation effect and
positive/negative TDE, which correspond to scenarios 3, 6, 9, and 12. Section 4.6.2.1
summarizes the precision of TDE function estimates at different time points after an
intervention. Section 4.6.2.2 evaluates the bias and precision of parameter estimates
under different settings. Section 4.6.2.3 assesses the penetrance estimates under different
settings. Section 4.6.2.3 compares the goodness of fit of the models through average
AlCs.

4.6.2.1 Precision of the time-dependent effect function

Tables 4.4 and 4.5 summarize the changes in the MSE of the TDE functions (PE, CO,
BS) across the different time points after intervention (5, 10, 15, 20 years) under
misspecified TDE functions. Under the CO+, the CO model has the smallest MSEs,
followed by the BS models and PE model as expected. However, the PE model
sometimes yields the smallest MSEs of the TDE at 5 years after the intervention with the
dataset generated under the CO-. Although the MSEs of the BS models are larger than
those of the CO models, they are close to the MSEs of the CO model, which shows how
flexible the BS model is. With datasets generated under both BS+ and BS-, the BS
models provide the smallest MSEs as expected, while the MSEs of PE and CO models
are similar. However, the MSEs of the BS models got larger as the time after intervention
increased, and eventually, the MSEs of the PE or CO models became smaller than those
of the BS models.
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Table 4.4: Mean Squared Error (MSE) of the time-dependent effect (TDE) functions at
5,10, 15 and 20 years after intervention under CO+ and CO- scenarios based on 500

simulations each with 500 families.

CO Positive TDE (CO+) CO Negative TDE (CO-)

t* PE CO BS2 BS3 PE CO BS2 BS3

p=014 5 0306 0.006 0.007 0.017 0.008 0.012 0.017 0.017
Yig=15 10 0.542 0.005 0.009 0.011 0.048 0.008 0.015 0.016
15 0.570 0.006 0.012 0.010 0.056 0.009 0.014 0.015
20 0.573 0.006 0.013 0.015 0.056 0.009 0.018 0.021

p=051 5 0.237 0.006 0.007 0.010 0.010 0.012 0.017 0.017
Yig=15 10 0.447 0.006 0.008 0.014 0.053 0.009 0.016 0.017
15 0473 0.007 0.013 0.014 0.062 0.010 0.015 0.018
20 0475 0.007 0.015 0.016 0.063 0.010 0.018 0.020

p=051 5 0308 0.006 0.007 0.010 0.009 0.009 0.014 0.015
Yig =225 10 0.544 0.005 0.008 0.015 0.058 0.006 0.012 0.015
15 0.573 0.006 0.012 0.011 0.067 0.006 0.011 0.013
20 0.576 0.006 0.015 0.015 0.068 0.007 0.013 0.015

PE stands for the permanent exposure model, CO for the Cox and Oakes model, BS2 for cubic
B-spline with 2 interior knots, BS3 for cubic B-spline with 3 interior knots. p is the correlation
between two competing events; y, 4 is the regression coefficient for the time-invariant covariate

for event 1. t*represents the time since the intervention.
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Table 4.5: Mean Squared Error (MSE) of the time-dependent effect (TDE) functions at

5,10, 15 and 20 years after intervention under BS+ and BS- scenarios based on 500

simulations each with 500 families.

BS Positive TDE (BS+)

BS Negative TDE (BS-)

t* PE CO TBS2 BS2 BS3 PE CO TBS2 BS2 BS3
p=014 5 0.153 0.149 0.026 0.027 0.023 0.255 0.224 0.043 0.046 0.062
Yig =15 10 0.153 0.158 0.028 0.027 0.032 0.253 0.227 0.056 0.057 0.056
15 0.153 0.167 0.131 0.134 0.130 0.253 0.236 0.184 0.183 0.169
20 0.153 0.177 0.295 0.292 0.288 0.253 0.248 0.368 0.371 0.392
p=051 5 0.156 0.156 0.026 0.026 0.023 0.249 0.230 0.050 0.051 0.062
Yig =15 10 0.156 0.164 0.028 0.028 0.032 0.247 0.236 0.056 0.055 0.059
15 0.156 0.174 0.134 0.134 0.129 0.247 0.246 0.190 0.193 0.186
20 0.156 0.184 0.293 0.293 0.284 0.247 0.257 0.378 0.386 0.393
p=051 5 0.179 0.180 0.029 0.028 0.025 0.234 0.207 0.045 0.044 0.055
Yig =225 10 0.179 0.177 0.033 0.031 0.036 0.232 0.214 0.050 0.050 0.054
15 0.179 0.175 0.139 0.139 0.131 0.232 0.224 0.176 0.174 0.170
20 0.179 0.174 0.302 0.299 0.289 0.232 0.235 0.358 0.357 0.369

The permanent exposure (PE) and Cox and Oakes (CO) are the TDE functions; The two cubic B-

spline (BS) models, BS2 and BS3, have 2 interior knots and 3 interior knots, respectively, and

TBS2 denotes the true BS model with a degree of 3 and 2 interior knots. p is the correlation

between the frailties of two competing events j; y, 4 is the regression coefficient for the time-

invariant covariate for event 1. t*represents the time since the intervention.
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4.6.2.2 Estimates of Model parameters

Tables 4.6 and 4.7 summarize the parameter estimates related to the baseline hazard
functions, mutation status and frailties obtained by fitting the misspecified TDE models
to each dataset generated under the CO+ and CO-, corresponding to scenarios 9 and 12 in
Table 4.1, respectively. For all scenarios, the ASEs and ESEs of the baseline hazard
function and mutation status parameters agree with each other, but the ASEs of the
frailties are larger than the ESEs. Under the CO model, the ECPs for the CO and BS
models are close to or above the acceptable upper range of 96.9%, leading to loss of
power by including the estimates in the confidence interval that are not supposed to be.
For the PE model under the CO+, the model obtained the bad ECPs below 90% most
time. However, in the PE model under the CO-, the ECPs were close to 95% on average.
All the TDE functions except the PE model under the CO+ worked well in terms of
parameter bias, which biases are negligible. Under scenario 9, where the true model is
CO+, the PE model obtained biased parameter estimates leading to the ECPs of the

parameters being below 95%.

Similarly, Tables 4.8 and 4.9 are the results obtained under the BS+ and BS- with
the same settings corresponding to scenarios 3 and 6. In contrast to the dataset generated
under the CO+ and CO-, all the TDE functions under the BS+ and BS- performed well in
terms of bias and ECP, where the biases are negligible, and the ECPs were above 95%
most times. Under the negative TDE, the ECPs tended to be close to 95% compared to
the ECPs under the positive TDE. Hence, in terms of bias and precision of such
parameters, the parameters related to baseline hazards, TIC, and frailties are accurately
estimated for the CO and BS models, even under misspecification work relatively well.
However, fitting the PE model that assumes the constant TDE led to biased parameter

estimates.

Few convergence issues occurred while fitting the CO model to data generated
under both CO and BS models. For each simulation, the parameter estimates are obtained
by maximizing the log-likelihood function using the optim function in R with Nelder and
Mead method (Nelder and Mead, 1965). The CO model did not converge 2.4% and 1.6%

of times of the total simulations under the CO model and BS model, respectively. These
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issues were caused due to the degeneration of the Nelder-Mead simplex. The PE and BS
model did not have any convergence issues for all the simulation scenarios. 12 out of
1500 simulations did not converge for the CO model with data under the positive CO
model. Similarly, 7 out of 1500 simulations did not converge for the CO model fitting
data under the positive BS model. In contrast, only 1 out of 1500 simulations did not

converge for data under the negative BS model.

Table 4.6: Empirical parameter estimates from misspecified TDE models under CO+

scenario with p = 0.51 and y; 4, = 2.25 based on 500 simulations each with 500 families.

CO Positive time-dependent effects (CO+) with p = 0.51,y,, = 2.25

True Model (CO) Misspecified Model (PE)
Truevalue Bias ESE ASE ECP Bias ESE ASE ECP
log(4;) -4.83 001 004 0.06 978 -0.19 0.07 0.06 15.0
log(p1) 0.83 0.00 0.02 0.03 986 -0.07 0.03 0.03 31.6
log(4,) -4.50 000 003 0.03 984 -0.00 0.04 0.04 94.6
log(p,) 1.07 001 003 0.04 978 0.01 0.04 0.04 93.2
Y1g 2.25 001 006 0.07 978 0.16 0.09 0.08 49.4
Y2g 0.50 001 009 010 965 0.01 0.11 0.12 92.4
log(koy) 0.40 001 031 042 972 -0.19 0.33 0.61 94.6
log(k;) 0.60 -0.01 038 053 974 -0.58  0.53 0.59 80.8
log(k,) 0.10 001 050 069 984 0.18 0.48 0.70 96.4
Bs 2.00 -0.03 0.09 013 98.2 - - - -
log(n) -0.79 0.10 018 0.27 996 - - - -
Mo 0.40 0.00 0.08 013 99.2 - - - -
Misspecified Model (BS2) Misspecified Model (BS3)
Truevalue Bias ESE ASE ECP Bias ESE ASE ECP
log(4;) -4.83 001 004 0.06 978 0.01 0.04 0.06 98.0
log(p1) 0.83 0.00 0.03 0.03 98.0 0.00 0.03 0.03 978
log(4,) -4.50 -0.00 0.03 004 964 -0.00 0.03 0.04 958
log(p,) 1.07 -0.00 0.03 004 964 -0.00 0.03 0.04 97.2
Y1g 2.25 0.00 0.07 0.07 958 0.00 0.07 0.07 96.6
Y2g 0.50 000 010 010 952 0.00 0.10 0.10 95.8
log(koy) 0.40 0.00 037 047 956 0.01 0.37 0.49 96.0
log(k;) 0.60 -0.02 043 055 9538 -0.04 0.43 0.82 95.8
log(k,) 0.10 -0.08 067 074 96.8 -0.07 0.69 0.88 96.2

ESE represents empirical standard error, ASE average standard error, ECP estimated coverage percentage.
A; and p; are the baseline hazard parameters for event j = 1 and 2; y;4 and y,, are the regression
coefficients of the time-invariant covariate for event 1 and 2, respectively; k,, k, and k. are the frailty
parameters.PE stands for permanent exposure model, CO for Cox and Oakes model, BS2 for cubic B-spline
with 2 interior knots and BS3 for cubic spline with 3 interior knots.
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Table 4.7: Empirical parameter estimates from misspecified TDE models under CO-

scenario with p = 0.51 and y;4, = 2.25 based on 500 simulations each with 500 families.

CO Negative time-dependent effects (CO-) with p = 0.51,y,, = 2.25

True Model (CO) Misspecified Model (PE)
True value Bias ESE ASE ECP Bias ESE ASE ECP
log(1,) -4.83 -0.01 0.04 0.06 98.8 0.02 0.05 0.06 93.0
log(p;) 0.83 -0.00 0.02 0.03 98.8 0.01 0.03 0.03 94.2
log(1,) -4.50 0.00 0.03 0.03 97.4 0.00 0.03 0.03 97.4
log(p,) 1.07 -0.00 0.03 0.03 95.6 -0.00 0.03 0.03 95.8
Yig 2.25 0.01 0.07 0.09 96.8 0.00 0.08 0.09 96.6
Y2g 0.50 0.00 0.08 0.09 97.4 0.02 0.09 0.10 96.4
log(k,) 0.40 002 030 041 98.6 0.00 0.43 0.61 96.6
log(k;) 0.60 0.04 039 055 98.8 0.10 0.49 0.72 96.2
log(k,) 0.10 005 051 0.74 96.4 0.05 0.59 0.99 96.6
Bs -2.00 -0.02 044 069 97.6 - - - -
log(n) -0.79 001 029 048 96.0 - - - -
Mo -0.40 0.00 0.08 0.14 99.0 - - - -
Misspecified Model (BS2) Misspecified Model (BS3)
True value Bias ESE ASE ECP Bias ESE ASE ECP
log(4;) -4.83 -0.01 0.04 0.06 98.2 -0.01 0.04 0.07 98.8
log(p;) 0.83 -0.01 0.02 0.03 98.6 -0.01 0.02 0.04 98.6
log(1,) -4.50 -0.00 0.03 0.03 97.2 -0.00 0.03 0.03 97.8
log(p,) 107 -0.00 0.03 0.03 94.0 -0.00 0.03 0.03 94.6
Y1g 2.25 0.00 0.08 0.09 96.4 0.00 0.08 0.09 96.6
Y2g 0.50 0.00 0.09 0.09 95.8 0.00 0.09 0.10 95.8
log(k,) 0.40 001 035 041 97.4 0.02 0.33 0.51 97.2
log(k;) 0.60 -0.02 049 054 97.0 -0.03 0.49 0.64 98.4
log(k,) 0.10 -0.05 063 084 96.8 -0.07 0.76 2.40 95.8

ESE represents empirical standard error, ASE average standard error, ECP estimated coverage percentage.
A; and p; are the baseline hazard parameters for event j = 1 and 2; y;4 and y,, are the regression
coefficients of the time-invariant covariate for event 1 and 2, respectively; k,, k; and k. are the frailty
parameters.PE stands for permanent exposure model, CO for Cox and Oakes model, BS2 for cubic B-spline
with 2 interior knots and BS3 for cubic spline with 3 interior knots.
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Table 4.8: Empirical parameter estimates from misspecified TDE models under BS+

scenario with p = 0.51 and y,4, = 2.25 based on 500 simulations each with 500 families.

BS Positive time-dependent effects (BS+) with p = 0.51,y,, = 2.25

True Model (TBS2) Misspecified Model (PE) Misspecified Model (CO)

True value Bias ESE ASE ECP Bias ESE ASE ECP Bias ESE ASE ECP

log(l,) -483 -001 0.04 0.06 99.2 002 005 0.04 962 002 004 006 96.0
log(p,) 083 -0.00 0.02 0.03 986 001 003 002 9.4 001 002 004 96.4
log(1,) -450 -0.00 0.03 0.04 97.8  -001 0.04 003 980 -0.01 003 004 9638
log(p,) 1.07 -001 0.03 004 968  -00L 0.04 003 97.0 -0.01 0.03 004 96.4
Vig 225 001 007 007 964 -002 0.07 006 956 -0.02 006 008 96.4
Y2 050 000 010 010 954  -001 011 009 952 -001 009 011 954
log(k,) 040 000 034 045 968 001 057 029 97.0 004 029 059 95.4
log(k,) 060 -005 043 055 96.8 001 056 0.32 980 -0.05 032 067 97.6
log(k,) 010 -002 057 077 984  -001 121 033 996 -0.10 033 113 98.0
Bso 001 -0.02 0.17 020 97.0 - - - - - - -
Bs; 102 002 016 022 97.4 - - - - - -
Bs, 123 001 0.13 020 98.0 - - - - - - -

Bs3 0.34 0.08 0.34 0.68 98.8 - - - - - - - .

Bsa 023 -0.11 087 224 99.0 .- - - - - -
Bss 021 019 141 660 99.8 .- - - - - -

Misspecified Model (BS2) Misspecified Model (BS3)

True value Bias ESE ASE ECP Bias ESE ASE ECP

log(1,) -483 -001 0.04 0.06 990 -0.01 0.04 007 99.2
log(p;) 083 -0.00 0.02 0.03 988  -0.01 0.02 0.04 98.6
log(1,) -450 -0.00 0.03 0.04 974  -0.00 0.03 0.04 97.4
log(p,) 1.07 -001 0.03 004 96.8  -0.00 0.03 0.04 97.8
Vig 225 001 006 0.07 970 001 006 007 97.8
y2g 050 000 009 010 950 000 010 0.10 94.4
log(k,) 040 000 034 042 972 000 035 051 95.2

log(k;) 060 -0.05 045 0.55 96.2 -0.05 0.45 056 974
log(k,) 0.10 -0.02 0.58 0.77 98.4 -0.02 0.56 0.76 98.0

ESE represents empirical standard error, ASE average standard error, ECP estimated coverage percentage.
A; and p; are the baseline hazard parameters for event j = 1 and 2; y;4 and y,, are the regression
coefficients of the time-invariant covariate for event 1 and 2, respectively; k, k, and k, are the frailty
parameters.PE stands for permanent exposure model, CO for Cox and Oakes model, TBS2 for true cubic B-
spline with 2 interior knots, BS2 for cubic B-spline with 2 interior knots and BS3 for cubic spline with 3
interior knots.
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Table 4.9: Empirical parameter estimates from misspecified TDE models under BS-

scenario with p = 0.51 and y;4, = 2.25 based on 500 simulations each with 500 families.

BS Negative time-dependent effects (BS-) with p = 0.51,y,, = 2.25

True Model (TBS2) Misspecified Model (PE) Misspecified Model (CO)

True value Bias ESE ASE ECP Bias ESE ASE ECP Bias ESE ASE ECP

log(1,) -483 -0.01 005 006 974 -001 0.06 0.05 978 000 005 007 96.6
log(p,) 083 -0.01 002 003 964 000 0.03 003 96.6 000 003 003 964
log(1,) -450 0.0 003 003 958 000 0.04 003 960 000 003 003 958
log(p,) 1.07 000 003 003 970 000 0.03 003 978 000 003 003 958
yig 225 001 007 009 978 002 009 008 964 002 008 009 948
V2 050 001 008 009 958 003 011 008 976 002 009 010 96.4
log(k,) 040 002 036 048 968 002 069 038 96.6 0.00 042 054 958
log(k,) 060 -0.01 048 0.82 970 009 0.73 041 978 001 061 084 964
log(k,) 010 -0.06 0.67 095 970 006 1.36 053 988 -0.02 074 0.95 96.2
Bso 001 -0.06 0.23 0.30 954 - L - - -
Bsi  -102 004 030 047 958 - L - - -
B,  -1.23  -0.01 022 0.43 99.0 - L - - -

Bs;  -0.34 007 043 127 99.4 - - - - - - -

Bsa 023 -0.07 0.93 3.60 99.2 - - - - - -
Bss 021 020 148 879 99.4 - - - - - -

Misspecified Model (BS2) Misspecified Model (BS3)

True value Bias ESE ASE ECP Bias ESE ASE ECP

log(l,) 483 -0.01 0.05 0.06 98.0 -0.01 0.05 0.06 98.4
log(p,) 0.83 -0.01 0.02 0.03 97.4  -0.01 0.02 0.03 98.0
log(1,) -450 0.0 0.03 0.03 958  0.00 0.03 0.03 96.4
log(p,) 1.07 000 003 003 968  0.00 0.03 0.03 96.6
yig 225 001 008 009 97.2 001 008 009 96.4
y2g 050 001 008 0.09 968 001 008 0.0 96.8
log(k,) 040 002 035 041 962 002 036 057 96.2

log(k,) 060 -0.01 0.51 058 97.6 -0.02 052 0.65 974
log(k,) 010 -0.05 0.64 0.93 97.0 -0.06 0.69 1.15 96.8

ESE represents empirical standard error, ASE average standard error, ECP estimated coverage percentage.
A; and p; are the baseline hazard parameters for event j = 1 and 2; y;4 and y,, are the regression
coefficients of the time-invariant covariate for event 1 and 2, respectively; k, k, and k, are the frailty
parameters.PE stands for permanent exposure model, CO for Cox and Oakes model, TBS2 for true cubic B-
spline with 2 interior knots, BS2 for cubic B-spline with 2 interior knots and BS3 for cubic spline with 3
interior knots.
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4.6.2.3 Cause-specific penetrance

The robustness of the TDE function is evaluated under the misspecified TDE functions
with high frailty correlation and large mutation effect. Tables 4.10 and 4.11 summarize
the results under the CO+ and CO- and Tables 4.12 and 4.13 under the BS+ and BS-,
respectively. Under the CO+, both the CO and BS models worked well in terms of the
PBIAS and ECPs, where the PBIASs are negligible. In addition, since the ASEs tend to
be larger than the ESEs, the corresponding confidence intervals are conservative, leading
the ECPs to be higher than 95%. However, most ECPs lie within the acceptable range
from 93.1% to 96.9%. In addition, there are some minor differences between the ESEs
and ASEs of the CO and BS models for mutation non-carriers than for mutation carriers.
In contrast, the PE model yields biased penetrance estimates, where the PBIASs of the PE
model ranged from -21.1 to 37.83%. Still, the ESEs and ASEs of the PE model agree
with each other leading to the ECPs below 90%, which indicates that the penetrance
estimates of the PE model are biased. The results were similar to the CO-, but the PE
model yields less biased parameter estimates, where the PBIASs of the PE model ranged
from -14.19 to 3.54%. Under the CO+, the average ratio between the ASEs of the
mutation carriers and non-carriers under all models equals 1.87. Similarly, such average

ratios under all models are 2.57, 1.71 and 2.76 under the CO-, BS+ and BS-, respectively.

Similarly, under both the BS+ and BS-, only the BS models worked well in terms
of the PBIAS, whereas the PBIAs of the PE and CO models were not close to zero.
Although the ASEs were also larger than the ESEs for all the TDE models, the ECPs of
the BS models lay within the acceptable range most time, but the ECPs of the PE and CO
models were not close to 0.95. As the CO+ and CO-, there were larger differences

between the ASEs and ESEs for mutation carriers than the non-carriers.

Figures 4.2 to 4.5 visualize the bias and precision of the penetrance estimates at
time 70. Four different intervention times occurred at age 30, 40, 50 and without
intervention under the true model and misspecified models based on 500 simulations for
each TDE model. Each small circle indicates the bias of the penetrance estimates at time
70 with different intervention times, and the error bars are mean penetrance estimates

+ 1.96 x ASE. The black, green-, blue-, red- and magenta-coloured lines represent the
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PE, CO, BS2, BS3 and true BS model with 2 interior knots, respectively. The results
corresponding to mutation non-carriers are presented on the left side of the figures and
that of mutation carriers on the right side. Regardless of the level of TDE, all the graphs
provide similar results, which demonstrate that the biases of the BS models were close to
zero under both true and misspecified TDE models. However, the PE and CO models
were not robust to the misspecified TDE models. The figures also demonstrate that
mutation carriers have wider 95% confidence intervals (Cl) than mutation non-carriers

because they have larger ASEs than non-carriers.

4.6.2.4 AlIC

To illustrate the efficiency of the BS model, the average AICs are compared for the
correlated frailty competing risk models with different TDE functions in Table 4.14. With
datasets generated under the CO model, the CO model obtained the smallest AIC, which
indicates that the CO model is the best fit for the data. However, with low correlation and
low mutation effect, the BS models obtained the smallest average AIC even though the
CO model is the true model. In contrast, with datasets generated under the cubic BS
model with two interior knots, the BS models provided the smallest average AIC.
Although other BS models provided the smallest AIC, this demonstrates the flexibility of
the BS model with a different number of interior knots and degrees and robustness to the

misspecified TDE model.
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Table 4.10: Empirical penetrance estimates at time 70 for mutation carriers and non-
carriers with different intervention times from the correlated frailty competing risks
models with different time-dependent effect (TDE) functions when data generated under
the CO model with a positive TDE, high correlation between competing events (p =
0.51) and high mutation effect (y;, = 2.25); Results are based on 500 simulations, each

with 500 families.

Data generated from CO positive TDE (CO+) with p = 0.51,y,4 = 2.25

True Model (CO) Misspecified Model (PE)

True value PBIAS ESE ASE ECP PBIAS ESE ASE ECP

Mutation status G = 0

F; (70|t = ) 0.119 1.86 0.007 0.010 99.0 -21.10 0.009 0.008 18.8
F;(70|t,=30) 0.180 1.16 0.011 0.014 98.0 37.83 0.015 0.014 0.6

F;(70|t,=40) 0.184 0.61 0.010 0.012 97.2 2430 0.014 0.013 8.6

F;(70]t,=50) 0.183 0.07 0.009 0.010 96.7 715 0.012 0.012 77.0
Mutation status ¢ = 1

F,(70|ty = ) 0.612 0.24 0.018 0.024 97.6 -7.01 0.025 0.025 55.02
F;(70|t,=30) 0.746 0.57 0.018 0.027 99.0 12.47 0.018 0.017 1.6

F,(70|ty,=40) 0.748 0.38 0.016 0.020 98.6 8.37 0.018 0.018 9.6

F;(70|t,=50) 0.736 0.25 0.015 0.017 98.2 3.61 0.018 0.018 63.4

Misspecified Model (BS2) Misspecified Model (BS3)

True value PBIAS ESE ASE ECP PBIAS ESE ASE ECP

Mutation status G = 0

F,; (70|t = ) 0.119 1.65 0.008 0.011 97.8 1.33 0.008 0.010 98.0
F;(70|t,=30) 0.180 1.82 0.019 0.027 98.2 1.29 0.020 0.026 97.0
F;(70]t,=40) 0.184 0.20 0.011 0.013 96.4 0.22 0.011 0.012 96.4
F;(70]t,=50) 0.183 0.13 0.010 0.012 96.6 -0.04 0.010 0.011 96.8
Mutation status G = 1

F;(70|ty = ) 0.612 1.01 0.020 0.025 97.2 0.83 0.021 0.005 95.6
F,(70]t,=30) 0.746 0.52 0.028 0.039 97.8 0.29 0.028 0.038 97.4
F,(70|ty,=40) 0.748 0.20 0.017 0.021 97.6 0.15 0.017 0.020 98.0
F;(70|t,=50) 0.736 0.25 0.016 0.019 97.0 0.12 0.016 0.018 96.8

For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and
estimated 95% coverage percentage(ECP) are obtained from 500 simulations each with 500 families.
F,(70|t, = o) denotes the cause-specific penetrance for event 1 without intervention.
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Table 4.11: Empirical penetrance estimates at time 70 for mutation carriers and non-
carriers with different intervention times from the correlated frailty competing risks
models with different time-dependent effect (TDE) functions when data generated under
the CO model with a negative TDE, high correlation between competing events (p =

0.51) and high mutation effect (y;, = 2.25); Results are based on 500 simulations, each

with 500 families.

Data generated from CO negative TDE (CO-) with p = 0.51,y,4 = 2.25

True Model (CO) Misspecified Model (PE)

True value PBIAS ESE  ASE  ECP PBIAS ESE ASE ECP

Mutation status G = 0

F, (70|t =) 0.119 -0.36 0.008 0.011 97.6 354 0.010 0.011 9438
F;(70|t,=30) 0.082 -0.11 0.006 0.009 97.2 -14.19 0.006 0.006 53.6
F,(70|t,=40) 0.085 -0.18 0.006 0.008 97.4 -8.85 0.006 0.006 78.8
F,(70|t,=50) 0.091 -0.27 0.006 0.007 97.2 -2.04 0.006 0.007 95.8

Mutation status G = 1
F;(70|ty = o) 0.612 0.30 0.020 0.027 98.2 220 0.023 0.026 93.6
F;(70]t,=30) 0.489 043 0.022 0.029 974 -9.06 0.022 0.022 48.6
F;(70|t,=40)  0.502 042 0.020 0.024 974 -489 0.020 0.021 794
F;(70]t,=50)  0.527 0.39 0.018 0.021 96.6 -0.39 0.019 0.021 954

Misspecified Model (BS2) Misspecified Model (BS3)

True value PBIAS ESE ASE  ECP PBIAS ESE ASE ECP

Mutation status G = 0

F, (70|t =) 0.119 -0.67 0.009 0.011 97.2 -0.84 0.009 0.013 96.6
F;(70]t,=30) 0.082 1.87 0.009 0.015 98.6 232 0.009 0.015 99.0
F;(70|t,=40)  0.085 0.71 0.006 0.008 96.8 0.78 0.006 0.009 98.2
F,(70]t,=50) 0.091 0.04 0.007 0.008 96.8 0.04 0.007 0.009 97.6

Mutation status G = 1

F, (70|t =) 0.612 -0.41 0.023 0.027 97.0 -0.49 0.024 0.033 97.0
F;(70|t,=30)  0.489 0.86 0.030 0.050 98.6 112 0.031 0.051 9838
F;(70]t,=40)  0.502 0.33 0.021 0.025 97.8 0.38 0.021 0.028 97.2
F,(70|t,=50) 0.527  -0.05 0.021 0.023 96.4 -0.06 0.021 0.027 96.8

For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and estimated
95% coverage percentage (ECP) are obtained from 500 simulations each with 500 families. F; (70|t, = o)
denotes the cause-specific penetrance for event 1 without intervention.
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Table 4.12: Empirical penetrance estimates at time 70 for mutation carriers and non-

carriers with different intervention times from the correlated frailty competing risks

models with different time-dependent effect (TDE) functions when data generated under

the BS model with a positive TDE, high correlation between competing events (p =

0.51) and high mutation effect (y;, = 2.25); Results are based on 500 simulations, each

with 500 families.

BS Positive time-dependent effects (BS+) with p = 0.51,y,4 = 2.25

True Model (TBS2)

Misspecified Model (PE)

Misspecified Model (CO)

True value PBIAS ESE ASE ECP PBIAS ESE ASE ECP PBIAS ESE ASE ECP

Mutation status G = 0

F,(70|t, = o) 0.119
F,(70]t;=30)  0.202
F,(70|t;=40)  0.215
F,(70|t,=50)  0.211

Mutation status G = 1

F,(70|t, = ®) 0.612
F,(70|t;=30)  0.783
F,(70|t;=40)  0.788
F,(70|t;=50)  0.768

-0.76
1.37
0.62
0.19

-0.13
0.47
0.30
0.17

0.008 0.010
0.019 0.026
0.013 0.014
0.011 0.012

0.021 0.024
0.022 0.033
0.016 0.019
0.016 0.017

98.2
97.0
97.2
96.0

97.4
98.2
97.2
96.2

3.02

0.007 0.009

20.58 0.012 0.014

6.77
-2.92

0.80
471
1.20
-1.18

0.011 0.013
0.010 0.012

0.019 0.024
0.014 0.019
0.014 0.018
0.014 0.019

97.4
10.2
80.6
94.8

97.2
38.4
93.0
96.4

2.49

0.008 0.011

21.87 0.019 0.024

7.22
-3.06

0.56
4.93
1.29
-1.22

0.013 0.016
0.010 0.011

0.022 0.026
0.018 0.027
0.016 0.021
0.016 0.018

97.8
27.3
83.0
92.8

95.8
49.9
92.2
954

Misspecified Model (BS2)

Misspecified Model (BS3)

True value PBIAS ESE ASE

ECP

PBIAS ESE ASE ECP

Mutation status G = 0

F,(70|t, = ®) 0.119
F,(70|t;=30)  0.202
F,(70|t;=40)  0.215
F,(70|t;=50)  0.211

Mutation status G = 1

F,(70|t, = ®) 0.612
F,(70|t;=30)  0.783
F,(70|t;=40)  0.788
F,(70|t,=50) 0.768

-0.81
1.59
0.73
0.22

-0.17
0.54
0.33
0.17

0.008 0.010
0.018 0.029
0.012 0.016
0.011 0.014

0.021 0.024
0.022 0.037
0.016 0.020
0.016 0.018

98.0
98.4
97.6
95.4

97.6
98.8
96.6
95.8

-1.11
1.40
0.75
0.26

-0.33
0.48
0.32
0.16

0.007 0.011
0.018 0.031
0.012 0.015
0.011 0.014

0.020 0.027
0.022 0.038
0.016 0.021
0.015 0.019

98.0
98.0
98.0
98.0

97.6
99.2
96.4
96.6

For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and estimated 95%
coverage percentage (ECP) are obtained from 500 simulations each with 500 families. F, (70|t, = o) denotes the cause-
specific penetrance for event 1 without intervention.
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Table 4.13: Empirical penetrance estimates at time 70 for mutation carriers and non-
carriers with different intervention times from the correlated frailty competing risks
models with different time-dependent effect (TDE) functions when data generated under
the BS model with a negative TDE, high correlation between competing events (p =
0.51) and high mutation effect (y;, = 2.25); Results are based on 500 simulations, each

with 500 families.

BS Negative time-dependent effects (BS-) with p = 0.51,y,4 = 2.25

True Model (TBS2) Misspecified Model (PE) Misspecified Model (CO)

True value PBIAS ESE ASE ECP PBIAS ESE ASE ECP PBIAS ESE ASE

ECP

Mutation status G = 0

F,(70|ty = ) 0.119 -0.57 0.009 0.011 97.4 -0.29 0.009 0.011 98.0 0.51 0.0100.012
F,(70]t,=30) 0.074 253 0.009 0.015 97.6 -16.72 0.005 0.006 40.0 -15.49 0.007 0.012
F;(70]t,=40) 0.072 0.93 0.006 0.007 98.4 -3.58 0.005 0.006 93.6 -3.28 0.006 0.008
F;(70|tys=50) 0.079 0.10 0.006 0.007 97.0 3.69 0.006 0.007 96.4 3.64 0.006 0.007
Mutation status G = 1

F,(70|ty = ) 0.612 0.25 0.024 0.028 95.8 1.10 0.021 0.028 97.2 1.02 0.025 0.031
F;(70|t,=30) 0.454 1.95 0.034 0.054 98.2 -9.51 0.021 0.022 48.0 -9.22 0.027 0.048
F,(70|ty=40) 0.452 1.25 0.021 0.027 96.2 -0.41 0.019 0.021 97.0 -0.81 0.021 0.028
F,(70]ty,=50) 0.487 0.74 0.0210.024 96.0 3.78 0.018 0.022 88.8 3.21 0.020 0.023

96.6
60.8
94.2
944

954
64.2
96.0
88.6

Misspecified Model (BS2) Misspecified Model (BS3)

True value PBIAS ESE ASE ECP PBIAS ESE ASE ECP

Mutation status G = 0

F; (70|t = ) 0.119 -0.48 0.009 0.011 97.4 -0.44 0.009 0.012 97.0
F,(70]t,=30) 0.074 2.84 0.009 0.014 98.2 2.34 0.010 0.016 97.6
F;(70]t,=40) 0.072 0.92 0.006 0.007 98.4 1.17 0.006 0.007 97.8
F;(70|ts=50) 0.079 0.12 0.006 0.007 97.0 0.25 0.006 0.007 96.8
Mutation status G = 1

F;(70|ty = ) 0.612 0.33 0.024 0.027 96.4 0.18 0.025 0.030 97.0

F,(70|t,=30) 0454  2.19 0.0330.052 984 1.67 0.036 0.057 98.8
F,(70|t,=40) 0452  1.28 0.0210.023 96.0 1.23 0.022 0.025 95.4
F,(70|t,=50) 0487  0.80 0.020 0.022 94.6 0.67 0.021 0.024 93.4

For each scenario, the mean bias, empirical standard error (ESE), average standard error (ASE), and estimated 95%

coverage percentage (ECP) are obtained from 500 simulations each with 500 families. F, (70]|t, = o) denotes the cause-

specific penetrance for event 1 without intervention.
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Figure 4.2: Bias and 95% confidence interval of the bias for penetrance estimations at

time 70 for mutation carriers and non-carriers with different intervention times (30, 40,

50, and 70 (no intervention)) estimated from the correlated frailty competing risks models

with different time-dependent effect (TDE) functions. Data generated under the CO model

with a positive TDE, a high correlation between competing events (p = 0.51) a high

mutation (y,4 = 2.25). Results are based on 500 simulations each with 500 families.
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Figure 4.3: Bias and 95% confidence interval of the bias for penetrance estimations at
time 70 for mutation carriers and non-carriers with different intervention times (30, 40,
50, and 70 (no intervention)) estimated from the correlated frailty competing risks models
with different time-dependent effect (TDE) functions. Data generated under the CO
model with a negative TDE, a high correlation between competing events (p = 0.51) a

high mutation (y;4 = 2.25). Results are based on 500 simulations each with 500 families.
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Figure 4.4: Bias and 95% confidence interval of the bias for penetrance estimations at
time 70 for mutation carriers and non-carriers with different intervention times (30, 40,
50, and 70 (no intervention)) estimated from the correlated frailty competing risks
models with different time-dependent effect (TDE) functions under the BS model with 2
interior knots and a positive TDE, a high correlation between competing events (p =

0.51) a high mutation (y;, = 2.25) based on 500 simulations each with 500 families.
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Figure 4.5: Bias and 95% confidence interval of the bias for penetrance estimations at
time 70 for mutation carriers and non-carriers with different intervention times (30, 40,
50, and 70 (no intervention)) estimated from the correlated frailty competing risks
models with different time-dependent effect (TDE) functions under the BS model with 2
interior knots and a negative TDE, a high correlation between competing events (p =

0.51) a high mutation (y;, = 2.25) based on 500 simulations each with 500 families.
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Table 4.14: Average AIC values from the correlated frailty competing risks model with

misspecified TDE model under different scenarios with p = 0.51 and y,, = 2.25 based

on 500 simulations each with 500 families.

Scenario  True model PE CO TBS2 BS2 BS3
1 BS+ 19819.51 19821.89 19775.07 19774.86 19775.95
2 BS+ 19711.88 1971449 19664.12 19664.11 19665.17
3 BS+ 20241.20 20242.68 20189.73 20189.73 20190.57
4 BS- 17458.92 17649.96 1744405 1744412 17444.95
5 BS- 1722854 17437.10 17216.83 17216.63 17217.67
6 BS- 18260.01 18434.24 18244.73 18244.68 18245.52
7 CO+ 19614.22  19389.31 - 19340.98 19339.18
8 CO+ 19472.86 19224.00 - 19230.01  19229.91
9 CO+ 20021.06  19754.66 - 19758.18 19756.87
10 CO- 17677.15 17649.96 - 17653.38  17654.31
11 CO- 17463.88 17437.10 - 17440.69 1744181
12 CO- 18467.09 18434.24 - 18437.90 18438.86

For each scenario, the AICs are obtained from 500 simulations each with 500 families. The
permanent exposure (PE) and Cox and Oakes (CO) are the TDE functions; The two cubic B-
spline (BS) models, BS2 and BS3, have 2 interior knots and 3 interior knots, respectively, and
TBS32 denotes the true BS model with a degree of 3 and 2 interior knots. p is the correlation
between the frailties of two competing events j; y, 4 is the regression coefficient for the time-
invariant covariate for event 1.
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Chapter 5 Model performance

For survival analysis, several measures of quantifying the predictive ability of risk
prediction models have been proposed, which are often classified as discrimination and
calibration. In this chapter, we focus on the C-index and Brier score applied particularly
for clustered survival data in competing risks settings to evaluate the predictive ability of
the proposed model with time-dependent covariates. Based on exemplified data, we
illustrate their use. This chapter is divided into two sections. Section 5.1 describes the
concordance index quantifies discrimination under various settings while introducing a
new approach that accounts for simultaneously clustered competing risk data with
TDC/TDE. In section 5.2, the Brier score is described to assess the calibration of our

proposed model.

5.1 Discrimination

5.1.1 C-index for survival data

Concordance, or c-index, is commonly used to quantify the relationship between two
variables. Two subjects are called concordant if both values of one subject are larger (or
smaller) than the corresponding values of the other subject. This index has commonly
been used to quantify model performance, referred to as discrimination, where
observations are the standard while model predictions are regarded as test value
(Steyerberg et al., 2010). In the case of binary outcomes, the C-index is equivalent to the
area under the receiver operating characteristic curve (AUC) (Bamber, 1975; Hanley and
McNeil, 1982). For survival data, Harrell et al. (1982) proposed the C-index with the
ranks of observed data as the standard and computed the concordance of the predicted
survival times with the observed data. Kang et al. (2015) has proposed an inference

method for survival data that has been implemented in SAS proc phreg.
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Harrell’s C-index quantifies the probability that of two randomly selected
subjects, the one with a lower survival time will experience the event first (Harrell et al.,
1982). Considering a pair of subjects (i, j) randomly selected from the data with the

observed survival times (T;, T;) and event indicators (§;, ;) and predicted survival times

(T;, T;), Harrell’s C-index is defined as
Ch=P(Ti<T}|T: < T))

which can be interpreted as the proportion of the number of concordant pairs over the

number of comparable pairs.

A pair is called comparable if and only if it is known which subject has the event
first. For example, two subjects are considered as a comparable pair if the subject with a
shorter observed survival time experiences the event regardless of the event status of the
subject with a longer observed time (T; < T;, §; = 1). Even if their observed survival
times are the same, they are considered comparable once their event statuses are different
(T; = T;,6; # ;). However, some pairs are not comparable if neither of the subjects
experiences the event during the follow-up time regardless of their observed survival
times (§; = 6; = 0), the subject with a shorter observed survival time is censored (T; <
T;, 6; = 0), or both have the event at the same time (T; = T}, §; = §; = 1) because it is

impossible to determine which one experiences the event first.

Among the comparable pairs, if the predicted survival time is longer (shorter) for
the pair member with later (earlier) survival time, the pair is referred to as concordant

(discordant).

It is known that a one-to-one correspondence holds between the predicted survival
time, T;, and predicted survival probability, S;(t|x;), for any t > 0, when a proportional
hazard model is used. That is, a comparison of the predicted survival times of any pair is
equivalent to a comparison of their predicted survival probabilities for any t > 0 (Pencina

and D’Agostino, 2004). Furthermore, comparing their predicted survival probabilities
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under the proportional hazard model can be reduced to comparing their risk scores or

linear predictors, ST X, implying the following comparisons are equivalent:
T, < T o Si(tlX) < Si(t]x;) & p7x; > B7X;

Thus, Harrell’s C-index can be expressed in terms of the predicted survival probabilities
or predicted risk scores as

Cy = P(T, <T|T: < T;) = P(Si(t1X) < S;t1X)|Ti < T)) = P(BTX: > BTX|T; < T)).

As a comparison measure, the C-index can take a value between 0.5 and 1. In general, the
C-index of 0.5 corresponds to prediction no better than chance, 0.5 to 0.7 is considered as
poor discrimination, 0.7 to 0.8 indicates considered acceptable, 0.8 to 0.9 is considered
excellent, and 1 indicates perfect prediction (Hosmer et al., 2013). Thus, a value close to
0.5 represents the poor predictive performance of the model, and a value close to 1
represents good performance.

For the data with n individuals, consider ¢; and t; as the observed survival times
of subjects i and j. The event indicator §; equals 1 if the subject experiences the event
and 0 otherwise. Then, by using all comparable pairs from the data, Harrell’s C-index can
be calculated by

A _ n—lz?iij 1Q”{I(t < t) + I(t = ,6] = 0)}61
" Xt < &) +1(t; = t;,6; = 0)}6;

where {I(t; < t;) + I(t; = t;,8; = 0)}8; indicates if a pair is comparable or not. In
addition, Q;; = I{(B7X; > BTX;) + 0.51(B7X; = pTX;)} indicates the order of the

predicted risk scores, which takes a value 0, 0.5, or 1, such that
BTX; > BTX; (ith risk score is larger than jth risk score),

Qi; =40.5  pBTX; = pTX; (tied risk scores),
BTX; < BTX; (ith risk score is smaller than jth risk score).
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Although Harrell’s C-index is widely used, it excludes the pairs that are not
comparable due to the censoring resulting in dependence on the censoring distribution
(Schmid and Potapov, 2012). As a result, Harrell’s C-index is upwardly biased when the
amount of censoring is large. To address this limitation, Uno et al. (2011) proposed use of
inverse probability of censoring weight (IPCW) applied to each pair of subjects to
remove the censoring dependence in Harrell’s C-index, where the weight is based on the
inverse of the probability that two subjects are not censored at the lower observed time ¢;.
The censoring probability can be estimated from the Kaplan-Meier estimator of the
censoring distribution. Furthermore, the censoring time is often shorter than that of the
true failure time in survival data, resulting in few available data. Then, the estimation of
the survival function with a large time would be unstable due to the small number of risk
set at the tail of the survival curve. To address this problem, the discriminative ability of a
model at a certain time interval can be used instead of evaluating the global prediction
accuracy. Uno’s C-index assesses the model performance accounting for censoring
within the time interval (0, v). Since the truncation time v influences the interpretation of
Uno’s C-index, multiple truncation time points can be evaluated to compare

discrimination ability.
Uno’s C-index conditional on the time interval (0,v) is defined as
Cy(v) =P(BTX; > BTX,|T: < T}, T; <v)

where v represents the truncation time for ith subject. The major difference between
Harrell’s C-index and Uno’s C-index is how they order the survival times in the presence
of censoring. Uno’s C-index is the truncated version of Harrell’s C-index accounting for
censoring with a condition, where the shortest observed time of a pair of subjects should

be less than a prespecified time point v.

With G.(t—), the censoring distribution estimated by the Kaplan Meier estimator
at time t —, which is the time point just before t, Uno’s C-index can be obtained by

applying the inverse probability of censoring weights into the Harrell’s C-index as
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S lCe )Y QI < ) + 1(6 = 1,8 = 0)}(t; < V)6,
i1 Xeij={Ge (6D} {I(t <t;) +1(t; = t;, 8 = 0)}I(t; <V)§;

éU v =

where I(t; < v) is the indicator of the truncation.

5.1.2 Time-dependent C-index

Generally, the C-index in survival analysis only depends on the ordering of the
predictions while assuming a one-to-one correspondence between the predicted survival
probability and observed survival time. In other words, the orderings of the predicted
survival times and observed times are assumed to be the same. However, the one-to-one
relationship may not be plausible when TDC or TDE is involved in the model, where the
ordering of the survival probabilities may change over time. Since Harrell’s C-index is
based on the one-to-one assumption, using the original Harrell’s C-index is not plausible
once TDC or TDE is involved. To overcome this limitation, Antolini et al. (2005)
extended the standard C-index by using the predicted survival probabilities at the
minimum observed time from the pairs of two subjects instead of the risk scores. Such a
measure is referred to as the time-dependent C-index, where each pair of two subjects
uses the different observed times to estimate the survival probabilities. In other words, all
possible pairs of two subjects use different time points to estimate the predicted survival

probabilities. Then, the time-dependent C-index is defined as
Ct = P(Sy(Tilx;) < Sj(Tix)|T; < T))

which is based on the property that the predicted survival probability at the time, when
ith subject experience the event, would be greater for the jth subject than the ith subject.
The time-dependent C-index has the benefit of providing a single value measuring the
model performance instead of the function of time t and is equivalent to Harrel’s C-index
if the proportional hazard assumption holds, where the orders of the survival probabilities

stay constant.
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5.1.3 C-index in competing risk setting

In a non-competing risk setting, the risk set includes the subjects who experience the
event or subjects who are censored until the event or censoring time. However, in the
presence of the competing risks, the risk set can be defined in two different ways. The
first definition of risk set treats individuals who experience the event of interest or are
censored are at risk until the event or the censoring time while censoring individuals who
experience the competing risk events (Wolbers et al., 2014). Alternatively, since
competing risks can potentially influence the occurrence of the event of interest, the
second definition of the risk set further retains those who have failed from the competing

events at any time instead of censoring them (Wolbers et al., 2009).

The use of these definitions depends on the purpose of the study (Wolbers et al.,
2014). The first definition was motivated by a situation where a specific treatment affects
all the events, including the event of interest and the competing events. Then, it might be
less suitable if the main goal is to assess the effect of treatment on a specific event. For
example, suppose smoking status affects lung cancer and bowel cancer simultaneously.
In this case, the amount of the effect of smoking on two subjects, one experiencing lung
cancer and the other experiencing bowel cancer, would not be comparable. In contrast,
when a specific treatment reduces the risk of an event of interest but does not affect the
competing events, the subjects experiencing competing events can be at risk all time.
This study is based on the second definition as our interest lies in the effect of surgery on
breast cancer, which does not affect competing events that are ovarian cancer or death

caused by other reasons.

Harrell’s C-index for competing risks data, which is presented by Wolbers et al.
(2009), is based on the penetrance F; , (t|x;) for the event of interest k instead of the
survival probability. Let §; be the event type for individual i where §; = 1 for the event
of interest, 2 for any competing risks and O if censored. Harrell’s C-index for event 1

based on the second definition is defined as

Cuy = P(Fi1(t|x;) > Fj, (t|x)|(T; < Ty or §; = 2),6; = 1) forany ¢t > 0
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where the rank of two penetrances for event 1 is not subjected to time.

Wolbers et al. (2014) further adapted Uno’s C-index to competing risks setting by
applying IPCW to each pair of subjects to remove the censoring dependency. Then,

Uno’s C-index for competing risks is defined as
Cyr(v) = P(Fi1(v|x) > F, V)T <Tjord; =2),6;,=1,T; < v)
where v represents the truncation time for ith subject.

Suppose we have two weights W;;; = {G(¢; —)}_2 and W, =
{GC(ti —)éc(t] —)}_1. We also define AU = I(tl < t]) + I(tl = tj,(g] = 0) and BU =
I(t; = t;, 6; = 2), where B;; indicates that the subjects with competing risks stay in risk

set for all time. Harrell’s C-index and Uno’s C-index for event 1 at time v accounting for

competing risks are obtained as

AL ?:12?::” 1Qij1(V){Aij + Bij} 1(6;=1)
i n (A, + By} (5, = 1)

foranyv >0
]:tl] 1

and

é (V) _ ?=12?¢l'j 1Qij1(v){Wij1Al'j + Wl]ZBL]}I(t <, 8 — 1)
U1 -
i J:tl] 1{“’1]11411 + WUZBU}I(t <v,6 =1)

where Q;;;(v) = I{F; 1 (v|x;) > ﬁj_l(v|xj)} + 0.51{F, 1 (vx;) = Fj,l(lej)} takes a value

1 if concordance, 0 if discordance, or 0.5 if tied.

5.1.4 Time-dependent Uno’s C-index for clustered competing
risk

As presented in previous sections, several authors introduced various types of
concordance measures to account for TDE/TDC (Antolini et al., 2005) and competing

risk (Wolbers et al., 2009; Wolbers et al., 2014). Building on their work, we propose an
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extended C-index to evaluate the discriminative ability of our proposed model, which
includes time-dependent covariates having time-dependent effects in the analysis of
clustered competing risk data. We proposed time-dependent Uno’s C-index (TDUC) that
extends Uno’s approach to the case of time-dependent C-index while accounting for the

presence of competing risks.

Consider the data arise from F independent families, each family consist of n,
members. Let f; be the subject i,i = 1, ..., ng, of the family f, f = 1, ..., F. To consider
pairs consisting of individuals from different families, we denote by g; the subject j,j =
1,...,ng, of the family g, where g = 1, ..., F. Let &¢, be the event type for individual i in
cluster f where &¢, = 1 for the event of interest, 2 for any competing risks and O if

censored. The marginal cause-specific penetrance function for event 1, F¢, , (tfi|xfi)’ S

used as the frailties are not observed. Conditional on the time interval (0,v), the TDUC is

defined as
Ceawa (V) = P (Fp,aty Xp) > Fg 1 (b X, I (Ty, < Ty, o7 8, = 2),87, = 1,Ty, <v)
where f and g can be the same (f = g) or different families (f # g).

Given that G (t), which is the Kaplan Meier estimator of the censoring

distribution at time ¢, we have two weights Wy, = {G¢(t, —)} "~ and Wrg2 =

~ ~ _1 - - - - -
{Gc(tf,- —)GC (tg]. —)} , Where ¢, — is the time point just before t;,. We also define
Afg; = I1(ty, < tg) +1(ty, = tg, 64, = 0), where Afig; identifies the pairs that the first
subject experiences the event first, and By, ;. = I(tr, = ty,, 84, = 2), Where B ¢

indicates that the subjects with competing risks stay in risk set for all time. Given the
penetrance Fy,,(t|X;,) for the event of interest 1, the TDUC with TDC/TDE for clustered

competing risk data can be obtained as

F F LU WL _
Yf=12g=1 [Zi=1 Lizij=1 91 {WfilAfL-yj + WfingBfigj} [ (tfi <v,6f = 1)]

F F oy —
Zle Zg:l [Zi=1 Zj#i,j=1 {WfllAng] + Wflgszflg]} I (tfl < V) 6fl - 1)]

Ctd,U,l(V) =
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where Qf,g.1 =1 {Ffil (tfilei) > T?gjl (tfi|X9]-)} + 0.51 {Ffil (tfilei) = F‘gjl (tfi|ng)}
indicates the order of predicted penetrances according to the shorter observed time among

two subjects, and pairs with tied predicted penetrances are counted as 0.5.

5.1.5 C-index and Kendall’s Tau

Alternatively, the proposed TDUC can be estimated using the inference of Kendall’s tau,
which measures the association between two variables by quantifying the difference

between concordance and discordance. Given t,,, = min (ty,, ty.), we introduce two

indicator functions for a pair of two subjects (ﬁ-,gj), i+jforf=gorf +g,that

accounts for competing risks such as
sign (Fr,a (emlX7.), By (6nXo, ) = H{Fra(emlX) > By (6n]X,,)}
~ 1P (tm|Xp) < Py (6| X))
(5.1)
csign (tr, 8ty 84,v) = c51 (b 0 te, 80, V) = €5 (tr, 8ty 6,0v)
(5.2)
where
es1 (tr 8ty 84,v) = {1 (tr, < tg,) + 1(ty, > tg,8,, = 2)}1(8, = Difty, <v)

es; (trp 07ty 80, v) = {1 (tr, 2 t5,) + 1(ty, < 1,85, = 2)}1(8,, = 1) 1{ty, < v}

and sign and csign functions take value in {—1, 0, 1}. Given that one with a shorter
observed time is less than v, Equation (5.2) represents the order of two observed survival
times with censoring indicators, which equals 1 if subject i has a shorter observed

survival time or subject j experiences a competing event while having a shorter survival
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time, -1 if subject j has a shorter observed survival time or ith subject experiences a
competing event while having a shorter survival time, and 0 if two subjects are not
comparable. Also, Equation (5.1) is the order of two predicted penetrances for event 1,
where it has a value of 1 if subject i has a higher predicted penetrance, -1 if subject j has

a higher predicted penetrance, and 0 if two predicted penetrance the same.

Since we consider the subjects with any competing events to stay at risk all time,

we introduce two different weights, Wy, ; = [Ge(tm —)]_2 and Wy,g » =
~ A~ _1 .

{Gc(tfi —)GC (tg]. —)} , to remove the censoring dependency, where t,, =
min (s, t,,) and Wf*l_g]_1 and Wf*l_g]_2 correspond to the weights for the pairs without and
with competing events, respectively. We also define A}igj = {1 (tfi >ty (ng = 1) +
I (tfi <tg,0 = 1)} where Ag, ;. represents the order of two observed survival times
with censoring distribution that is the condition used for W;igj1- Similarly, we introduce
Big, = {1 (tr, <ty 6, = 2,65, = 1) +1(ty, 2 ty, 8, = 1,6, = 2)}, where B}, is
the order of two observed survival times involving competing events that is the condition

used for Wfig,-z- The subject with the competing event has a shorter observed time than

the one with the event of interest, as comparable pairs. These two weights are used to

obtain the unified weight such as
WC*figjl = Wf*igle;igj + Wf*igsz;igj'
Then, Kendall’s tau for event 1 can be obtained by using following formulas

dfing51(V) = sign (Ffi:l(tmlei)’ ng.l (tm|ng)) csign (tfi’Dfi’ tgj’ ng'v) ngigjl

2
dfigjﬂ(v) = csign (tfi’Dfi’tgj'ng’v) WCfigjl

where dfigjcsl(v) identifies the concordant as 1 and discordant pair as -1, inversely

weighted by censoring distribution. Similarly, dfigjcl(v) indicates the comparable pair,
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while accounting for censoring. Then, the time-dependent Kendall’s tau for clustered

competing risk data as

ng n
Z?:l ZS:l {Zi=1 Zjii,j=1 dfl-gjcsl (V)} _ dcsl (V)
ng

Z;':l Zg=1 {Z:Zl Zj:ti,j=1 dfigjcl (V)} - dCl (V)

(5.3)

ftd,U,1(V) =

where dgg1 (V) = X5 254 {Zzl Z?ﬁ;,-:l dfgjcs1 (v)}/{n(n — 1)} is the difference
between the weighted proportions of concordant pairs and the discordant pairs, d., (v) =

PR {Z?jl Z?ﬁiﬁl dfigjcl(v)}/{n(n — 1)} is the total weighted proportion of the
comparable pairs across all families, and n = Z}’=1 ns represents the total number of

subjects across all families. Thus, the TDCU is obtained using the Kendall’s tau as

A . _ des1 (V)
Coaui(v) =0.5(fqp1(v) +1) =0.5 ( ) + 1). (5.4)

5.1.6 Variance of C-index

To obtain the variance of the TDUC, the methodology proposed by Cliff and Charlin
(1991) and Kang et al. (2015) can be adapted to our proposed C-index, where the Delta
method was used to approximate the variance of Kendall’s tau, and Kang et al. (2015)
used the linear relationship between Harrell’s C-index and Kendall’s tau to estimate the

variance of the C-index. Then, the variance of TDUC for event 1 is obtained as

dest (V)>

Var (Ctd,u,1(V)) = Var (% {teaui() + 1}) = %Var (Tta,ua(l/)) = %Var < .0

Then, the variance of Kendall’s tau can be approximated by using the Delta method such

as

des; (V)
de(v) )

Var (Ttd‘U_l (v)) = Var (
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_( 1 —dcsl(v)>[ Var(des;())  Cov(dey(v), desi (V)
- de1(v)  de(v)? COV(dcl(v)'dcsl(V)) Var(dcl(v))

_ T
(o )

Var(desy (v))  dest 0)Cov(dey (0), desy (W)

— dcl (V) dcl (V)Z ( 1 _dcsl (V))T
COV(dcl (V): dcsl (V)) _ dcsl(v)var(dcl (V)) dcl (V) dcl (V)Z
der (V) de1(v)?
_ Var(dcsl (V)) _ chsl (V)Cov(dcl (V): dcsl (V)) + dcsl (V)Zvar(dcl (V))
B de(v)? de(v)3 de(v)* .

(5.5)

To estimate the variances and covariances in Equation (5.5), we employ variance

estimators for Kendall’s tau proposed by Cliff and Charlin (1991),

— 2 — 4(n—-2)

Var(dcs1 (v)) = mVar (dfigjcsl(v)) + ngll—_SVar (dficsl (v))
— 2 — 4(n—-2)
Var(de; (v)) = 55 Var (dfigjcl(v)> + %Var ()

and

— 2 —
COV(dcl V), dest (V)) = m CoV (dfigjcl ), dfigjcsl (V)>

4(n—-2) ____

+ m Ccov (dficl ), dfi551 (V))

where n = Z]‘Tzl n; is the total number of individuals across all families, df s, (v) =

ZS=1 Z;lﬁl dfigjcsl(v)/(n —1)and dficl v) = Z§=1 Z?ﬁl dfig]-cl v)/(n—1).

Substitution of sample variance and covariance provides consistent estimators.

As proposed by Zou et al (2022), the variance and covariance estimators can be

further simplified by ignoring the first term when sample size is not very small
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— 4 __
Var(d.s,(v)) ~ EVar (dficsl(v)) (5.6)

— 4 __
Var(d.,(v)) » EVar (dficl (v)) (5.7)
and
S 4 ____
COV(der (v), dest (v)) = ~COV (dye1 (v), dy o1 () (5.8)

where the variance and covariance terms are estimated by the sample variance and
covariance, respectively. Zou et al. (2022) demonstrated that these simple variance and
covariance estimators performed well even with small to moderate sample size (n > 30).
Note that unbiased estimators for the variance and covariance of d ., (v) and d, (v) were
also proposed by Cliff and Charlin (1991) and Kang et al. (2015). Although they are
unbiased and widely implemented, they have a drawback that they sometimes provide a

negative value for the variance of Kendall’s tau.

To account for clustering, the variance and covariance terms in Equations (5.6) to
(5.8) are estimated by the cluster mean variance and covariance weighted by cluster sizes

respectively, such as

_ Z?:l nf{dfcsl (V) - dcsl (V)}Z

Var (dfca (v) = oF=D) (5.9)
F _ 2
Var (dra ) = 22 nf{ff;(?l) ) (5.10)

and

F F _ _
cov (dficl ), dfl-csl (V)) = Zf:l Zg:l nf{dfC51 (vzl(Fdiﬂl()V)}{dfCl @)~ dey (V)}

(5.11)
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where dyos; (V) = 12, df.es1 (V) /ny and dpey (v) = 372 df 1 (V) /1y are the cluster-

specific averages of dy .51 (v) and dy ¢4 (v), respectively.

5.1.7 lllustration of time-dependent C-index and its variance
calculation for clustered competing risk
We present the calculation of TDUC and its variance for clustered competing risk via
Kendall’s tau calculation using a small exemplary survival data provided in Table 5.1.
Consider a dataset of (t, §, x) consists of 2 different families consists of 3 and 4 subjects.
We ordered them by observed time for each family and obtained their penetrance F, (t]x)
for event of interest, denote 1. Since the penetrances for two subjects at the shortest
observed time among a pair of two subjects are used to compare, a binary covariate x is
used to reduce the number of pairs with tied penetrances. Furthermore, the inverse of the
Kaplan-Meier estimator of the censoring distribution at each observed time G (t—)~" is
obtained by using all subjects instead of estimating it for each family. We further set a

time point of 50 as the truncation time.

Table 5.1: Exemplary data of 2 families to compute time-dependent Uno’s C-index

Family(f;) t &8 X Fq#x=0) Fitlx=1) G (t—)?

1, 23 0 1 0.59 0.55 1

1, 37 1 0 0.71 0.66 1.09
15 63 2 1 0.46 0.39 2.36
24 41 1 0 0.67 0.61 121
2, 49 2 0 0.51 0.45 141
2, 60 0 1 0.73 0.67 1.77
24 69 1 1 0.55 0.52 7.07
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Based on the given data, we present how to get TDUC and its variance.

Step 1: Determine the weighted proportion of comparable pairs using observed time

accounting for censoring via csign function.

We create all possible pairs of the observed data by tabulating them regarding rows as f;
and columns as g; where f; indicates ith subjects in f family and g; indicates jth

subjects in g family. Table 5.2 (a) presents csign function that ranks the observed times
with the time truncation at time 50, and Table 5.2 (b) illustrates the weights applied to

each pair of subjects to remove the censoring dependence using Wc*figjli where

W(}kfigjl = Wfig,-l,l + Wf*igjz_l. In addition, Table 5.2 (c) identifies the comparable pairs

2
accounting for censoring using dfigjcl(SO) = csign (tfi’Dfi’ tg,» Dg; 50) Wc*figjl. By
aggregating the table by row, the most right column in Table 5.2 (c) is obtained to
estimate the weighted proportion of comparable pairs for each individual df,.;(50) =
Z§=1 Z?ﬁl dfig]-cl(v)/(n — 1), i.e., the weighted number of comparable pairs divided by

the total number of pairs, (n — 1), for each individual can get. Then, by averaging them
over all individuals, we compute the average weighted proportion of comparable pairs by
50 years as d.1(50) = 0.56, indicating that out of 42 possible pairs, 56% of them are

comparable, accounting for censoring.

Table 5.2: Computing the weighted number of comparable pairs accounting for

censoring.

(a) CSign (tfi’ 5fi’ tfj’ (Sfj’ 50)

t, | 23 37 41 49 60 63 69
t,| 6 |0 1 1 2 0 2 1
/0 - 0 0 0 0 0 0
37|10 - 1 1 1 1 1
44/1]0 1 - 1 1 1 1
49|20 -1 -1 - 0 0 0
60/ 0|0 -1 -1 0 - 0 0
3/ 20 -1 -1 0 0 - 0
69| 1[0 -1 -1 0 0 0 -
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figj

tran | te | 28 37 41 49 60 63 69
Ly, o 0 1 1 2 0 2 1
23 0 - 0 0 0 0 0 0
37 1 0 - 1.19 1.19 1.19 1.19 1.19
41 1 0 1.19 - 1.46 1.46 1.46 1.46
49 2 0 1.19 1.46 - 0 0 9.97
60 0 0 1.19 1.46 0 - 0 0
63 2 0 1.19 1.46 0 0 - 16.69
69 1 0 1.19 1.46 9.97 0 16.69 -

2
(©) dfig,-c1(50) = csign (tfi’Dfi’ tg;» Dg;» 50) ngigjl

t, |23 37 41 49 60 63 69 | dfei(50)
t,|6/0 1 1 2 0 2 1
[0[- 0o 0o o0 0 0 0 0/6=0
3710 - 119 119 119 119 119 |5.956=0.99
41| 1|0 119 - 146 146 146 146 |7.03/6=1.17
49| 2|0 119 146 - 0 0 0 |2656=044
60| 0 |0 119 146 0 - 0 0 |2656=044
63| 2 |0 119 146 0 0 - 0 |2656=044
69| 1 [0 119 146 0 0 0 - |2656=044
dc1(50) = 23.58/42 = 0.56

Step 2: Estimate the variances of df,.1(50) and d.;(50)

By using the values of df,.;(50) and d.,(50) in Table 5.11 (c), we first estimate the

family specific average of dy ., (50) for family 1 and family 2 as follows:

nd, (50) 0+ 0.99 + 0.44
d11(50) = E 1150 _ = 048
i=1 nq 3

and

= 0.63

ny dZi 1(50) 1.17+0.44 + 0.44 + 0.44
d201(50) = E < = =
i=1 n; 4
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By using the family specific average of dy . 1(50), the variance of family-specific
averages across families is obtained using Equation (5.10) as

_ B np{dyer (50) — doy (50))

Var (dfic1(50)) = W F—1D

_ 3x(0.48—0.56)% + 4 x (0.63 — 0.56)*
B 72-1)

= 0.0055
Then, the variance for d_,(50) is obtained using Equation (5.7) as

_ 4 4
Var(de: (50)) = = x Var (dr2(50)) = = % 0.0055 = 0.0030

Step 3: Obtain the penetrances for two subjects at the lower observed time among two
subjects instead of using each subject’s observed time. Table 5.3 presents the estimation
of the penetrances at minimum time of a pair of two subjects for a subject with larger

observed time.

Table 5.3: Estimating the penetrances at minimum time of a pair of two subjects for a

subject with larger observed time.

ty, 23 37 41 49 60 63 69

Xg; 1 0 0 0 1 1 1
Ly, Xfi ?1(tfi|xfi) F;(min U t.gj)lxgj)
23 1 0.55 - 0.59 0.59 0.59 0.55 0.55 0.55
37 0 0.71 0.55 - 0.71 0.71 0.66 0.66 0.66
41 0 0.67 0.55 0.71 - 0.67 0.61 0.61 0.61
49 0 0.51 0.55 0.71 0.67 - 0.45 0.45 0.45
60 1 0.67 0.55 0.71 0.67 0.45 - 0.67 0.67
63 1 0.39 0.55 0.71 0.67 0.45 0.67 - 0.39
69 1 0.52 0.55 0.71 0.67 0.45 0.67 0.39 -
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Step 4: Determine the weighted proportion of concordant and discordant pairs accounting

for censoring.

The orders of the predicted penetrance are determined by using sign function as shown in
Table 5.4 (a). Table 5.4 (b) identifies the difference between the weighted number of
concordant pairs and the weighted number of discordant pairs accounting for censoring

using

dfigjfﬂ (50) = sign (Ffi,l (tmlei’zfl)’ ng,1 (tm|ng’Z91)> csign (tfi’ Dy, tgj’ ng' 50) WC*figjl

where dfigjcsl(so) > 0 for concordant pair, dfigjcsl(SO) < 0 for discordant pair, and
dfl.gjcsl(SO) = 0 for non-comparable pair. By aggregating the table by row, the most

right column in Table 5.4 (b) is obtained to estimate the proportion of the difference
between the weighted number of concordant pairs and the weighted number of discordant
pairs for each individual dy s, (v) = 5:12?51 dfigjcsl(v)/(n — 1), i.e., the difference
between the weighted number of concordant pairs and the weighted number of discordant
pairs divided by the total number of pairs, (n — 1), for each individual can get. The value
of dy, 51 (v) above O indicates that most pairs are concordant, whereas below 0 indicates

that most pairs are discordant. Then, by averaging them over all individuals, we compute
the average proportion of the difference between the weighted number of concordant

pairs and the weighted number of discordant pairs by 50 years as d ., (50) = 0.38.

Table 5.4: Determining the order of penetrances

(a) sign (Ffi,l (min (¢, tgj)|xfi,zf1) Fya (min (t;, tgj)|ng,Zf1))

t, |23 37 41 49 60 63 69

8j
te | x|1 0 0 0 1 1 1
231}- -1 -1 -1 0 0 O
gri]of1 - 0 O 1 1 1
417011 0 - 0O 1 1 1
49,071 0 0 - 1 1 1
6010 -1 -1 -1 - 0 O
63|10 -1 -1 -1 0 - O
69,10 -1 -1 -1 0 0O -
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(b)dy,g,c51(50) = sign (ﬁfill(tm|xfi,zf1), Py (tm|xgj,zgl)) csign (tr, Dy, tg, Dy, 50) Wegig

fi L 1 24 2 23 13 24 df.cs,1(50)

1, | - O 0 0 0 0 0 0/6=0

1, |0 - 0 0 119 119 1.19 | 3.57/6 =0.60

2,10 0 - 0 146 146 1.46 | 4.38/6=0.73

2,0 0 0 - 0 0 0 0/6=0

2, 0 119 146 0 - 0 0 | 2.65/6=0.44

1, | 0 119 146 O 0 - 0 | 2.65/6=0.44

2, 0 119 146 0 0 0 - | 2.65/6=0.44
d s, (50) = 15.90/42 = 0.38

Step 5: Estimate the variances of d, s, (50) and d s, (50)

By using the values of dy s, (50) and ds,(50) in Table 5.11 (c), we estimate the family

specific average of d s, (50) for family 1 and family 2 as follow:

" dy51(50) 0+ 0.60 + 0.44
d1c51(50) = g | 1esn00) = 0.34
i=1 nl 3

and

ny d,. 50 0.73+ 0+ 0.44 + 0.44
dZCSl(SO) = Z 21651( ) = =0.40
i=1 n; 4

By using the family specific average of d;, ., (50), the variance of family-specific

averages across families is obtained using Equation (5.9) as

=~ F=1 d cs1 50 _dcsl 50 ’
Var (dy s (50)) = 22 ny{ fn(; _)1) (50))

3% (0.34—0.38)% + 4 x (0.40 — 0.38)?
B 7(2-1)

= 0.0009

Then, variance for d.;; (50) is obtained using Equation (5.6) as
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_ 4 4
Var(des: (50)) = = x Var (dres2(50)) = =% 0.0009 = 0.0005

Step 6: Estimate the covariance between dy 1 (50) and dy s, (50) and between d;(50)
and d ¢, (50)

By using the family specific average of dy,.;(50) and dy . 1(50), the covariance

between family specific averages across families is obtained using Equation (5.11) as

— F_1 F=1 d cs1 50 _dCSI 50 d 1 50 _dcl 50
cov(dfl.cl(SO),dficsl(SO))=Zf_ g=17y{dresa )n(F_(l) Hdser (50) — d,y (50))

_ 3x(0.48—0.56)(0.34 — 0.38) + 4 x (0.63 — 0.56)(0.40 — 0.38)
B 7(2-1)

= 0.0022.

Then, the covariance between d.,(50) and d ., (50) is obtained using Equation (5.8) as

_ 4
X COV (dy,1(50), dy 1 (50) ) = =% 0.0022 = 0.0012.

N s

COV(dc1(50), dgs1(50)) =

Step 7: Compute the time-dependent Kendall’s tau and its variance
As shown in Equation (5.3), the time-dependent Kendall’s tau is obtained as

des:(50)  0.38

4,,(50) 056 068

Trau1(50) =

and the corresponding variance is estimated using Equation (5.5) such as

—~ Var(des; (50) 2d 51 (50)COV(d1(50), desy (50)
Var (Ttd,u,1(50)) = d(cl(SO)Z ) - dc(1(50)3 ) +
dcsl(50)zv/5r(dcl(50))
d¢1(50)*
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_0.0005 2x0.38x0.0012 0.38% x 0.0030

- 0562 0.563 + 0.56 = 0.0008.

Step 8: Determine the time-dependent C-index and its variance

By using the linear relationship between Kendall’s tau and the C-index as shown in

Equation (5.4), the overall TDUC is estimated as

R 0.38
Ctd,U,l(SO) = O'S(ftd,U,l(SO) + 1) == 05 (m + 1) - 05 X 168 = 084‘

Similarly, the variance of overall TDUC is estimated as

_ 1 1 _ 1
Var (Ceq,p,1(50) ) = Var (E {tequ1(50) + 1}) = Var (Tequ1(50)) = 7 % 0.0008 = 0.0002.

Furthermore, the 95% confidence interval of the time-dependent C-index can be obtained

as

Cray1(50) £ 1.96 x \/V’a\r (Ctd,U,l(SO)) = 0.84 + 1.96 x 1/0.0002 = (0.81,0.86)

where the lower bound is 0.81 and upper bound is 0.86. We further presented the

illustration of estimating the TDUC with its variance using R in Appendix B

5.2 Calibration

5.2.1 Brier score and integrated Brier score

Alternatively, calibration quantifies how close the predicted probabilities or the predicted
risks of an event are to the observed event rates given the duration of time (Harrell et al.,
1996; Steyerberg et al., 2010). For example, if we predict a 10% failure probability,
approximately 10 out of 100 subjects should have a disease. It can be quantified using the

Brier score, which evaluates the accuracy of the survival model at a specific time point.
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The Brier score was proposed by Brier (1950) and was extended by Graf et al. (1999) to
survival data. Gerds and Schumacher (2006) further introduced the consistent version of
the Brier score, which uses the IPCW to account for the loss of information due to
censoring. With survival data, the Brier score can be used to evaluate the accuracy of a
survival model at a given time t. Mathematically, it is calculated as the difference
between the predicted event probabilities and the true event status at a certain prediction
time point t. It ranges from 0 to 0.25, where a value closer to 0 indicates better overall
performance, whereas the model that performs no better than a chance has a value of

0.25. The Brier score evaluated at time t is defined as
BS(t) = E[I(T > t) — S(t|X)]?

_ %Zil{”" > 1) — S, (X))

where S;(t|X;) is the survival probability for individual i at time t conditional on the
covariate vector X. Schoop et al. (2011) extended the Brier score to the framework of
competing risks and introduced the consistent Brier score estimator. They considered two
competing events and computed the Brier score by using the penetrance of a specific

event instead of the survival probability.

The Brier score only provides a snapshot of the predictive ability of a model at a
specific time point t. Hence, it is difficult to evaluate the model at all available times. The
integrated Brier score (IBS) can be used to remedy this problem by providing an overall
measure of model performance within a time interval [0, t]. The IBS over the interval
[0, t] is defined as

t

IBS(t) = %f BS(s)ds

0

where the IBS provides an average Brier score across a time interval.
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5.2.2 Time-dependent Brier score for competing risk data

Conditional on a vector of covariates X, the Brier score for event j at time point ¢t in the

presence of competing risks is defined as
BS;(t) = E{I(T < t,8 = j) - F;(t|X)}".

Then, the consistent estimator of BS;(t) was proposed by Schoop et al. (2011) to remove
dependence on the censoring distribution by applying an IPCW. Then, the Brier score for

event j at time t can be estimated as

— 1OF ny _ 2
IBS;(t) = ;Zlezizl{’(tfi < 6,67, =) = Fry (01%7,2p,)} wlty, .67,
where

I(ty, <t,68;, #0) I(ty, >1)
é"\c(tfi_) Gc(t)

W(tfi’ t, 6fi) =

G.(t) represents Kaplan-Meier estimator of the censoring distribution and tr, —isatime
point just before ;..
Then, the IBS for event j over the interval [0, t] can be estimated as
t
- 11

t
0
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Chapter 6  Application to Hereditary
Breast and Ovarian Cancer Family

This chapter describes the analysis of the HBOC family data. Our main objective is to
evaluate the efficiency of using the B-spline compared to two parametric models, the
permanent exposure and the Cox and Oakes models, in the context of estimating the
time-dependent effect of RRSO within the cause-specific correlated frailty competing
risks model. Section 6.1 presents a descriptive analysis of the BRCA 1 mutation positive
family data. Section 6.2 describes the specification of the fitted model. In Section 6.3, the
risk of breast cancer is estimated under three different time-dependent effect models with
time-dependent covariates, and penetrance by age 70 is estimated with for various
screening and surgery times. Section 6.4 summarizes the evaluation of the performance
of models with different time-dependent effect functions. Section 6.5 provides a

summary of the results.

6.1 HBOC family data

Hereditary breast-ovarian cancer syndrome is an inherited condition characterized by
mutations in tumour suppressor genes, BRCA 1 and BRCA 2 genes, causing a significant
increase in the risk of breast cancer and ovarian cancer (Petrucelli et al., 2022). Mutation
carriers tend to develop either BC, OC or both of them earlier in life as well. The BRCA
1 mutation carrier family data used in this thesis was obtained from the Breast Cancer
Family Registries, which recruited families from six participating sites in the United
States, Canada and Australia (John et al., 2004). The HBOC is a population-based dataset
featuring families at high risk of BC or OC based on family history or genetic mutation
such as those in the BRCA1 genes. The BCFR dataset includes a three-generation
pedigree involving the proband, the initial family member who entered the study, and
second-degree relatives. Variables considered include study entry time for probands, the

ages at the event (BC, OC, and death), mutation status in BRCA 1 genes, and preventive
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interventions statuses such as mammaographic screening, risk-reducing mastectomy, and

risk-reducing salpingo-oophorectomy.

As shown in Table 6.1, the data used in this study consisted of 498 BRCAL
mutation carrier families recruited through BCFR consisting of 2650 women. Of the 2650
women, 924 (34.9%) experienced BC as the first event, 182 (6.9%) women experienced
OC as the first event, and 958 (36.2%) women died before developing either BC or OC.
Women who did not experience any event prior to the last observed times are considered

censored.

A small portion of women underwent prophylactic surgeries. 166 (6.2%) women
underwent RRSO, and 64 (2.4%) women underwent RRM. We assumed that those who
underwent RRM would not experience BC, and those who underwent RRSO would not
experience OC. More women opted for screening rather than surgery: 360 (13.6%)
women had one screening, 101 (3.8%) had two screenings, and 108 (4.1%) had three

screenings.

Table 6.2 summarizes the time distribution for three different MS, the times
between screenings, and RRSO. The mean age at RRSO and first MS are 44.4 and 40.6
years, respectively, and the mean time between BC and RRSO is 11.3 years. In addition,
the mean times between consecutive screening times are presented, where the mean time
between first and second screenings and second and third screenings are 9.2 and 6.2

years, respectively.
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Table 6.1: Characteristics of BRCA 1 mutation carrier families.

Breast cancer Ovarian cancer Death Censored Total
Number of individuals
N (%) 924 (34.9%) 182 (6.9%) 958 (36.2%) 586 (22.1%) 2650
Age at event diagnosis
Mean 44.2 53.0 70.5 50.9 55.8
Min, Max 21, 86 28, 89 18.5, 102.5 18.1, 95 18.1, 102.5
BRCA 1 mutation status
Carrier 705 (76.3%) 91 (50%) 87 (9.1%) 240 (41.0%) 1123 (42.4%)
Non-carrier 219 (23.7%) 91 (50%) 871 (90.9%) 346 (59.0%) 1527 (57.6%)

Number of screenings

0 722 (78.1%) 158 (86.8%) 944 (98.5%) 257 (43.9%) 2081 (78.5%)
1 160 (17.3%) 19 (10.4%) 7 (0.7%) 174 (29.7%) 360 (13.6%)
2 31 (3.4%) 4 (2.2%) 3 (0.3%) 63 (10.8%) 101 (3.8%)
3 11 (1.2%) 1 (0.5%) 4 (0.4%) 92 (15.7%) 108 (4.1%)
Type of surgery

None 896 (97.0%) 181 (99.5%) 946 (98.8%) 441 (75.3%) 2464 (93.0%)
RRSO 28 (3.0%) 0 (0.0%) 9 (0.9%) 129 (22.0%) 166 (6.2%)
RRM 0 (0.0%) 1 (0.6%) 3 (0.3%) 60 (10.2%) 64 (2.4%)

RRSO for risk-reducing salpingo-oophorectomy and RRM for risk-reducing mastectomy
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Table 6.2: Characteristics of the times of mammography screening (MS) and risk-

reducing salpingo oophorectomy (RRSO) for BRCA 1 mutation carrier families.

Mean Standard deviation
RRSO 44.4 9.1
First MS 40.6 12.4
BC - RRSO 11.3 8.4
Time between two screenings
MS1 - MS2 9.2 7.5
MS2 — MS3 6.2 4.2

RRSO for risk-reducing salpingo-oophorectomy
MS1, MS2 and MS3 for the first, second and third mammographic
screenings

BC stands for breast cancer

6.2 Model specification

The cause-specific correlated frailty competing risks model with different functions for
time-dependent effects of binary time-dependent covariates discussed in Chapter 3 is
fitted to the HBOC data. The model includes one binary time-invariant covariate and four
time-dependent covariates, presenting mutation status, the three screening statuses and
RRSO status. Formally,

1. G: mutation status, a binary time-invariant covariate taking the value 1 for
mutation carriers and 0 for non-carriers. The cause-specific hazard models for all

events, BC, OR, and death, are affected by this variable.

2. X(t, tsk): The three screening statuses are considered as binary TDCs, wherein
the kth screening status change at the time ¢,, of the kth screening occurrence,
e, X(t,ts,) =1(ts, <t <tg, )fork =123 ts <ts, <ts, and X(t,t5,) =

1fort > tg,.
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3. X(t,t,): RRSO status is considered as a binary TDC, wherein the RRSO status
change at the time t,. of RRSO occurrence, i.e., X(t,t,) = I(t > t,).

Then, the cause-specific hazard functions for breast cancer, ovarian cancer and death are

expressed respectively as

hsq (t|G,Zf1,X(t, ts), X(t, tr)) = ho1(t)Zs,exp {ylgG + g1 (t,X(t, tsl)) +

Js2 (t,X(t, tsz)) + gs3 (t,X(t, tsg)) + g.(t, X(¢, tr))}
hy (th’Zfz) = hoz(t)ZfzeXp{VZQG}
he 5 (t1G) = h03(t)exp{)/3gG}

where X (t,t5) = {X(¢t, ts,), X(t, ts,), X(t, ts,)} is the vector of TDCs for screenings,

ho;(8) = Ap;(A;6)7 ", j = 1,2,3 are Weibull baseline hazard functions and y; are the
effect of mutation status for event j. Similary, Z, and Z, are event specific frailties for
breast cancer and ovarian cancer. Since the correlation between breast cancer and death
and between ovarian cancer and death are close to 0, and the frailty parameter for death is

not significant, only the frailty parameters for breast cancer and ovarian cancer are
considered (Choi et al., 2021).

We considered three different functions for the effect of RRSO

0 ift < t, (PE, CO,BS)
Br ift > t; (PE)
- (6 Xt ) =% Bre ) +pg ift > t, (CO)
K+D
ko ﬁr,kBk,D (t - tr) ift > ts (BS)

where only one parameter, £3,., is involved as a TDE for the PE model. The parameters
involved in the CO model are {f,-, 1,1} and the number of parameters involved in the
BS model depends on the polynomial degree D and the number of interior knots K. The
BS model features a total of parameters is K + D + 1 parameters including the intercept.
In this study, to provide a smooth curve of the effect of RRSO, the B-spline model is
constructed with a degree of 2, boundary knots (0, 57) and 2 interior knots (5.74, 12.76),
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where the two interior knots represent the 33" and 66" quantile of the time difference
between RRSO event time and end of follow-up, and the second boundary knot t = 57

represents the maximum time difference between end of follow-up and RRSO event time.

In contrast to the effect of RRSO, Choi et al. (2021) demonstrated that the effects
of the three screenings under the CO model are significant based on the likelihood ratio
test comparing a model with the screenings and to one with no screenings. Thus, the CO
model is used for the effect of three different screenings, where the first, second, and

third screening effects are defined as

0 ift <ts ort>tg

tX(tt5,)) =
s, ( ( 51) {ﬁ51e—nsl(t—tsl) + Nos, if t51 <t< tSz

0 lftstsz Ort>t53
ﬁsze_nSZ(t_tSZ) + TIOSZ if tSZ <t< t53

gs, (t,X(t, tgz)) = {

and

0 ift <t

Js, (t,X(t, t53)) = {

Bs,e~Ms3(67s3) 4o ifts, <t

where the effects of screenings exponentially decay over time at a rate of ng, before

eventually converging to a certain value n,g, for k = 1,2,3.

6.3 Analysis of risk of breast cancer

The hazard ratio (HR), also known as the relative risk, is obtained via the exponential
transformation of the modelled risk scores. The log relative risk of BRCA mutation
status, mammaographic screenings and RRSO on the events of breast cancer, ovarian
cancer and death, along with their corresponding robust standard errors (SE) and p-
values, were estimated using three different time-dependent effects models (PE, CO, BS).
The results from the three models are summarized in Table 6.3, wherein similar patterns

for the parameter estimates related to the baseline hazard function, mutation status and
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first screening for the PE, CO and BS models were found. However, differing patterns
appeared in the parameter estimates related to frailties, second and third screenings, and
RRSO obtained under the PE, CO and BS models. Nevertheless, all models provided
evidence that all covariates are significantly associated with the risk of developing breast

cancer except for the frailties.

To better illustrate the time-dependent effects of screenings and RRSO over time
associated with breast cancer, Figure 6.1 displays the hazard ratio measuring the time-
dependent effect of three different screenings for the BS models, assuming the CO model
for screening effects. The HRs of the first and third screenings are above 1, whereas the
HR of the second screening converges to a value below 1. Similarly, Figure 6.2 presents
the hazard ratio of RRSO on breast cancer for the PE, CO and BS models, respectively.
Although different effects of RRSO are obtained across the models, all of them obtained
a negative association between RRSO and risk of developing breast cancer in BRCA 1.
The PE model has a constant effect of RRSO on breast cancer, whereas such an effect
varies over time for the CO and BS models. The HR of RRSO for both CO and BS
models drastically increases, but the HR for the CO model eventually converges to a
particular value. In contrast, the HR for the BS model fluctuates over time as it provides a
smooth curve of the effect of RRSO.

To identify the best fitting model, we used the AIC, where the lowest AIC
indicates the best fit of the model to data. According to AIC, the BS model (AIC =
19076.954) fits the data better than the PE (AIC = 19080.393) and CO (AIC =
19077.433) models, although the AIC difference between BS and CO models is quite
small. Then, we describe the results of the parameter and penetrance estimators based on

the BS model chosen as the best fitting model.
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Table 6.3: Parameter estimates and AlICs based on the correlated competing risks models
with frailties; the Cox and Oakes model is assumed for mammography screening (MS)
and permanent exposure, Cox and Oakes and B-spline are used for risk-reducing
salpingo-oophorectomy (RRSO).

Permanent Exposure Cox and Oakes B-Spline
Parameter EST SE  p-value EST SE  p-value EST SE p-value
log (1) -4678 0.038 < 0.001 -4.692 0.039 < 0.001 -4.680 0.038 < 0.001
log (p1) 0972 0.029 < 0.001 0.960 0.029 < 0.001 0.955 0.028 < 0.001
log (4;) -4825 0.047 <0.001 -4782 0.043 < 0.001 -4.804 0.044 < 0.001
log (p3) 1.189 0.044 < 0.001 1.208 0.043 < 0.001 1.212 0.043 < 0.001
log (13) -4.178 0.008 < 0.001 -4.176 0.008 < 0.001 -4.179 0.008 < 0.001
log (p3) 1436 0.034 < 0.001 1435 0.034 < 0.001 1.445 0.034 < 0.001
Mutation Status
Yig 2262 0.127 < 0.001 2.254 0.126 < 0.001 2.190 0.124 < 0.001
Y2g 1.594 0.231 < 0.001 1.484 0.230 < 0.001 1.614 0.229 < 0.001
Y3g -0.329 0.138 0.017 -0.355 0.139 0.011 -0.357 0.142 0.012
Frailties
log (ko) 0.380 0.361 0.293 0.426 0401 0.289 0.711 0.450 0.114
log (k) 0.670 0.387 0.083 0.633 0412 0.124 0.217 0.793 0.785
log (k3) -0.605 0.724 0.402 -0.038 0.788 0.962 0.298 0.712 0.676
First MS on Breast Cancer
Bs, 3572 0.252 < 0.001 3437 0.256 < 0.001 3.351 0.266 < 0.001
log (ns,) 1.553 0.245 < 0.001 1544 0.238 < 0.001 1.439 0.246 < 0.001
Nos, 0.306 0.145 0.034 0.357 0.141 0.011 0.343 0.143 0.016
Second MS on Breast Cancer
Bs, 3.873 0.424 < 0.001 3.967 0.455 < 0.001 4.153 0.512 < 0.001
log (ns,) 1.030 0.365 0.005 0.869 0.368 0.018 0.789 0.402 0.049
Nos, -0.272 0.367 0.458 -0.434 0412 0.292 -0.601 0.507 0.235
Third MS on Breast Cancer
Bs, 4,142 0.699 < 0.001 3.949 0.972 <0.001 3.712 0.808 < 0.001
log (ns,) 2.305 0.759 0.002 1548 1239 0.211 2.084 0.730 0.004
Noss 0.114 0.363 0.754 -0.378 0.597 0.526 0.028 0.390 0.943
RRSO on Breast Cancer
B, -0.605 0.203 0.003 -1.787 0.714  0.012 B.o -2513 1.012 0.013
log (n,) - - - -0.187 0451 0678  B., 0482 0.632 0.446
Nor - - - -0.411 0.236 0.081 B., -0.987 0.451 0.029
B.; 0.688 2100 0.743
B.s -6.121 8.019 0.445
-loglik 9518.196 9514.717 9512.477
AlC 19080.393 19077.433 19076.954

SE represents robust standard error. A; and p; represent the parameters related to the baseline hazard
function and y; are the mutation status parameters for jth event. g, 15, and 1,4, represent the parameters
related to the kth screening. k,, k; and k, are the frailty parameters. -loglik is the negative log-likelihood
value for the fitted model and AIC represents the Akaike information criterion.
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6.3.1 Genetic effect

The genetic effects were estimated similarly across different models. We describe the
results based on the BS model chosen as a best fit of the model. On the risk of developing
breast cancer in the presence of competing risks, adjusting for the RRSO and three MSs
as TDCs in the model, the effects of mutation status on all events were found to be
significant with the log relative risks of ;, = 2.190 (95% CI between 1.948 and 2.433;
p < 0.001), ¥4 = 1.613 (95% ClI between 1.164 and 2.063; p < 0.001), and 73, =
—0.357 (95% CI between -0.635 and -0.078; p = 0.012) for BC, OC and death,
respectively. These results indicate that being a mutation carrier increases the cause-
specific hazard of developing BC and OC by 8.93 and 5.02, respectively, whereas it

decreases the risk of death by 0.7 compared to non-mutation carriers.

6.3.2 Screening effect

Up to three screenings were considered and each screening as TDC. We assumed the CO
model for the effects of the screenings as it was found to be the best model for screenings
from the previous study (Choi et al., 2021). The effects of the first, second and third
screenings on breast cancer were significant across all models. Also, the shapes of the
changes in the HRs for the screenings are similar for all the models, where the time-

dependent effects of the screenings can be assessed by estimating the HR given by
s, (t, X(¢, tsk)) ,k = 1,2,3. Figure 6.1 presents the time-dependent HRs of each

screening estimated on a continuous scale from 0.5 to 10 years under the best fitting
model (BS model). As shown in Figure 6.1, the HRs of the screenings are reduced over
time from HR = 2.117 (95% CI between 1.756 and 2.479) to HR = 1.409 (95% CI
between 1.118 and 1.701), from HR = 2.183 (95% CI between 1.422 and 2.944) to HR =
0.548 (95% CI between -0.490, 1.586), and from HR = 1.100 (95% CI between 0.247 and
1.952) to HR =1.029 (95% CI between 0.260 and 1.797), respectively, from 0.5 to 10
years after screenings. The HRs of the first and third screenings exponentially decayed
but stayed above 1, which indicates that having a first or third screening increase the risk

of developing BC. In contrast, the HR of the second screening decayed to below 1,
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indicating that having a second screening eventually decreases the risk of developing BC.
The results also demonstrate that the most changes in the HR occurred in the second
screening among three screenings, whereas the HR of the third screening did not vary a

lot over time.

6.3.3 RRSO effect

In opposition to the screenings, the time-dependent effect of RRSO was modelled under
three structures (PE, CO, BS) that is given by gr(t,X (¢, tr)), where the effect of RRSO
stays constant for PE and exponentially decays to a certain value for CO. In contrast, the
BS model is obtained as a linear combination of the BS basis function and their
coefficients, leading to the effect providing a smooth curve that fluctuates over time
while having a peak and trough. By fitting the models, the results under all models
showed a negative association between RRSO and breast cancer risks. We present the
effect of RRSO in terms of HR changes over time graphically in Figure 6.2 and its point
and interval estimates from 0.5 to 20 years after surgery in Appendix A Table A.1.

Since there is a negative association between RRSO and breast cancer risks for all
models, having RRSO reduces the risk of developing breast cancer. Then, although each
model obtained the different shapes of the HR of RRSO over time, the values of HR for
all models stay below 1. As shown in Figure 6.2, the HR of RRSO for the PE model stays
constant as the effect of RRSO stays constant. For the CO model, the HR of RRSO
depicts the shape of a logarithmic growth curve, where the HR has a period of rapid
increase and is followed by a period where the growth slows. In contrast to the PE and
CO models, the HR of RRSO for the BS model fluctuates over time, where the HR
drastically increases for the first five years. Once it reaches the peak, the HR radically

decreases, but it slowly increases over time.
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First screening Second screening Third screening
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Hazard ratio

-

2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

— B-spline 95% Confidence interval
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0.0

Figure 6.1: Hazard ratios (black) and their 95% confidence intervals (red) measuring the
time-dependent effect of mammography screenings (MSs) on breast cancer, assuming
Cox and Oakes model for the effects of MSs and B-spline model for the effects of risk-

reducing salpingo-oophorectomy (RRSO) in BRCA 1 mutation families.
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1.0 1.0 1.0
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— Permanent Exposure — Cox and Oakes — B-spline

Figure 6.2: Hazard ratios and their 95% confidence intervals measuring the time-
dependent effect of risk-reducing salpingo-oophorectomy on breast cancer under
different time-dependent effect models (B-spline (red), Cox and Oakes (blue), permanent

exposure (black)) for BRCA 1 mutation families.
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Since the effect of RRSO is negatively associated with the risk of developing
breast cancer, the large effect of RRSO is equivalent to the low breast cancer risks. Under
the BS model, the effect of RRSO reduces from time 0.5 to 4.75 years, leading to
increasing the risk of developing breast cancer that is HR = 0.206 (95% CI between -
0.122 and 0.534) to HR = 0.942 (95% CI between 0.183 and 1.701), which is a trough of
the effect of RRSO and a peak of HR of RRSO on breast cancer. Then, the effect of
RRSO increases and reaches a trough at 11.25 years, indicating that the HR of RRSO to
be decreased, that is HR = 0.446 (95% CI between 0.141 and 1.189). Again, the effect of
RRSO decreases from 11.25 to 20 years, which increases the HR of RRSO to 0.603 (95%
Cl between 0.017 and 1.189). Then, the results demonstrate that RRSO increases the
cause-specific hazard of developing breast cancer right after RRSO, eventually
decreasing it. Furthermore, RRSO is highly significant based on the likelihood ratio test
obtained by comparing a model with RRSO and without RRSO, where the p value equals
0.001.

6.3.4 Dependence between competing events

As described in Section 3.2, the shared frailties within families for each competing event
depict dependences between events or within families for each event. The estimates of
frailty parameters k,, k, and k, obtained using the BS model are 2.037 (95% CI between
0.242 and 3.831), 1.242 (95% CI between -0.689 and 3.173) and 1.346 (95% CI between
-0.532 and 3.225). Then, the estimated correlation between breast cancer and ovarian

cancer is obtained as

ko 2.037

= = 0.612
Vo + k) (ko + ky)  4/(2.037 + 1.242)(2.037 + 1.346)

p =
with 95% confidence interval between 0.218 and 0.874, indicating that the frailties of two

events are not independent. In other words, there is a significant correlation between two

events, breast cancer and ovarian cancer.
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In addition, the variance of each frailty is obtained as 1/(kq, + k1) =
1/(2.037 4+ 1.242) = 0.305 for BC and 1/ (k¢ + k;) =
1/(2.037 + 1.346) = 0.296 for OC. The corresponding measures of familial correlation,

Kendall’s tau, are estimated as

1 1
ST  2x (ko1 hy) 14 2% (2037 +1242) 013
for BC with 95% confidence interval between 0.063 and 0.175 and
1 1
T, =0.129

T1+42x(kot+ky) 1+2x(2.037+ 1.346)

for OC with 95% confidence interval between 0.057 and 0.243. Both values of 0.132 and
0.129 indicate the low within familial correlation for breast cancer and ovarian cancer,
respectively. Although the estimates of frailty parameters k,, k; and k, under the BS
model are different from those under other models, the estimated measures of familial
correlation are similar for all models. However, the PE model has the largest value of the
estimated correlation between breast cancer and ovarian cancer, followed by the CO and
BS models.

6.3.5 Penetrance estimation

Figure 6.3 presents breast cancer penetrance for a mutated woman with RRSO at
different time points (30, 40, 50) and no MS while assuming the BS model for the effect
of RRSO. The green, red, and blue lines represent a woman with RRSO at age 30, 40 and
50 years, respectively. The plot demonstrates that having RRSO earlier is beneficial to
reduce breast cancer risks. To better illustrate the effect of RRSO and screenings on the
cumulative risk of breast cancer among women with BRCA 1 mutations, Figures A.1 to
A.3 in Appendix A display the breast cancer penetrance estimates with different
screening and RRSO times. Figure A.1 shows the breast cancer penetrance given the

screenings with no RRSO, and Figure A.2 shows the breast cancer penetrance given
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RRSO without screenings. Figure A.3 presents the breast cancer penetrance given one to

three screenings with RRSO.

Breast Cancer Risk (B-spline)

1.00 - No RRSO
RRSO at age 30
- RRSO at age 40
- RRSO at age 50
0.75

Penetrance
o
(4]
o

0.25

30 50 70
Age in years

Figure 6.3: Breast cancer penetrance estimations for mutation carriers with risk-reducing
salpingo-oophorectomy (RRSO). The black line represents a woman who did not have
RRSO, the green line a woman who had RRSO at age 30 years, the red line a woman
who had RRSO at age 40 years, and the blue line a woman who had RRSO at age 50

years.

We also present the penetrance estimates at age 70 from the correlated frailty
competing risks model with different screening and RRSO times in Table 6.4. Denoting
RRSO time by ¢, and the kth screening time by tg, , we consider t;; = 35, tg, = 37 and
tys = 39 as the first, second, and third screening times close to the mean ages from the
data and three different RRSO times, t,. = 30,40, 50 years, to evaluate the effect of
RRSO. The following eight different breast cancer penetrances by age 70, denoted as P,

to Pg, for mutation/non-mutation carriers are estimated:
1. P; = penetrance with no MS and no RRSO;

2. P, = penetrance with MS at ages 35, 37 and 39, no RRSO;
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3. P; = penetrance with RRSO at age 30, no screening;

4. P, = penetrance with RRSO at age 40, no screening;

5. Ps; = penetrance with RRSO at age 50, no screening;

6. P, = penetrance with RRSO at age 40; MS at age 35;

7. P, = penetrance with RRSO at age 40; MS at ages 35 and 37,

8. Pg = penetrance with RRSO at age 40; MS at ages 35, 37 and 39.

The penetrance estimates are obtained under each PE, CO and BS model. The results
demonstrate that RRSO reduces the penetrance of BC for all three models, which
indicates that having RRSO earlier is more beneficial. In contrast, having all three
screenings increases the penetrance for both the PE and BS models, whereas it lowers the
penetrance for the CO model. Similarly, having both RRSO and screenings lowers the
penetrance of BC for both PE and BS models, whereas having only one screening with
RRSO vaguely increases the penetrance for the CO model. Although all models obtain
different penetrance estimates, changes in the trends of the penetrance estimates are
similar except for the penetrances involving the screenings, where the changes in the
penetrance for the CO model are in the opposite direction of the PE and BS models.
Under the BS model, the penetrance at age 70 with no screenings nor RRSO is estimated
at 0.125 (95% CI between 0.107 and 0.143) and 0.599 (95% CI between 0.555 and 0.643)
for non-mutation carriers and mutation carriers, respectively. Since three consecutive
screenings occurred at age 35, 37 and 39, the penetrances at age 70 for non-mutation
carriers and mutation carriers are estimated at around 0.142 (95% CI between 0.061 and
0.223)/0.644 (95% CI between 0.474 and 0.815), respectively. The results show that

having multiple screenings increases the penetrance.

For women with RRSO at 30 years, the breast cancer penetrance is 0.062 (95% ClI
between 0.023 and 0.101)/0.417 (95% CI between 0.233 and 0.602), while the breast
cancer penetrance for women with RRSO at 50 years is 0.093 (95% CI between 0.067
and 0.119)/0.528 (95% CI between 0.447 and 0.609) for non-mutation carriers and
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mutation carriers, respectively. Although there is not much change in the penetrance of

the non-carriers, having RRSO earlier is beneficial to reduce the risk of breast cancer.

Similarly, the breast cancer penetrance at 70 years with RRSO at 40 years and the
first screening at 35 years is 0.113 (95% CI between 0.062 and 0.164)/0.603 (95% ClI
between 0.465 and 0.740) while the penetrance with the same conditions and the second
screening at time 37 is 0.066 (95% CI between 0.029 and 0.103)/0.429 (95% CI between
0.266 and 0.592) for non-mutation/mutation carriers, respectively. In contrast, with a
third screening at 39 years, the penetrance increases to 0.099 (95% CI between 0.042 and
0.155)/0.556 (95% CI between 0.374 and 0.738) for non-mutation/mutation carriers,
respectively. Since the hazard ratio of RRSO under the BS model is less than 1 as shown
in Figure 6.2, the effect of RRSO has a negative association with the cause-specific
hazard of breast cancer. However, since both hazard ratios of the first and third
screenings are above 1, it turns out that the effects of RRSO and screenings do not affect

the penetrance in the same ways.
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Table 6.4: Penetrance estimates at age 70 from the correlated frailty competing risks

model with time-dependent effects (TDE) of mammographic screenings (MS) and risk-

reducing salpingo-oophorectomy (RRSO); Cox and Oakes model is assumed for MS; The

permanent exposure, Cox and Oakes and B-spline models are considered for RRSO.

Permanent Exposure Cox and Oakes B-Spline

Estimate 95% ClI Estimate 95% ClI Estimate 95% ClI
Mutation status G = 0
No MS and RRSO
P, 0.121  (0.104, 0.139) 0.120  (0.102, 0.137) 0.125 (0.107, 0.143)
No RRSO
P, 0.147  (0.066, 0.228) 0.105 (0.035,0.175) 0.142 (0.061, 0.223)
No MS
P, 0.073  (0.043,0.103) 0.085  (0.047,0.122) 0.062 (0.023, 0.101)
P, 0.078  (0.051, 0.106) 0.088  (0.055, 0.120) 0.082 (0.047,0.117)
P 0.089  (0.066, 0.111) 0.094  (0.069, 0.119) 0.093 (0.067, 0.119)
Both MS and RRSO
Py 0.106  (0.067,0.145) 0.122  (0.075,0.170) 0.113 (0.062, 0.164)
o 0.076  (0.037,0.114) 0.075  (0.035, 0.116) 0.066 (0.029, 0.103)
Pg 0.100  (0.048, 0.153) 0.082  (0.032,0.132) 0.099 (0.042, 0.155)
Mutation status ¢ = 1
No screenings and surgery
P, 0.611  (0.568, 0.654) 0.608  (0.565, 0.652) 0.599 (0.555, 0.643)
No RRSO
P, 0.674  (0.515, 0.833) 0.572  (0.368, 0.777) 0.644 (0.474, 0.815)
No MS
Py 0.489  (0.366, 0.613) 0.537  (0.399, 0.675) 0.417 (0.233, 0.602)
P, 0.507  (0.404, 0.609) 0.541  (0.429, 0.654) 0.497 (0.366, 0.629)
P 0.535  (0.463, 0.607) 0.552  (0.476, 0.629) 0.528 (0.447, 0.609)
Both MS and RRSO
Py 0.603  (0.493,0.712) 0.649  (0.534,0.764) 0.603 (0.465, 0.740)
P, 0.493  (0.339, 0.647) 0.491  (0.326, 0.655) 0.429 (0.266, 0.592)
Pg 0.584  (0.422,0.746) 0.517  (0.326, 0.709) 0.556 (0.374,0.738)

Py = Fi(70]t, = 00, t;=00, t5; = 0, t3=00); P, = F;(70|t, = o, t;,=35, ts; = 37,t:3=39);

Py = Fy(70]t, = 30, t;;=0, ts; = 0, t3=); P, = F1(70[t, = 40, t51=00, t; = 0, t;3=00);

Ps = F1(70[t, = 50,t5; = 0, t5 = 00, ts3 = ); Pg = F (70|t = 40, t51=35, ts; = 0, t;3=00);
P, = F,(70|t, = 40, t;;=35, ty, = 37, t;z=); P, = F{(70|t, = 40, t;,=35, ts, = 37,t;3=39)
Cl stands for the confidence interval; t, represents the age of RRSO and ¢, the age of the kth MS.
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6.4 Performance measures

To examine the efficiency of the BS model, its model performance is compared with the
PE and CO models via the TDUC, Brier score and IBS at various time points (55, 70, 85,
100 years). Since only 166 among 2650 individuals underwent RRSO, it caused all the
models to have similar predictive abilities by obtaining the same values of the penetrance
across all the models for those who did not undergo RRSO. To discern the effect of
RRSO on the risk of breast cancer, we have only used 166 individuals who underwent
RRSO to compute the performance measures. The results of TDUC, Brier score and IBS

at different time points are presented in Tables 6.6 and 6.7.

6.4.1 Time-dependent Uno’s C-index

The C-index is used to evaluate the discrimination ability of the models, where it can be
seen as a proportion of the concordant pairs over the comparable pairs. Table 6.5 presents
the number of the concordant, discordant and comparable pairs for all TDE models
among those who underwent RRSO at different time points. All models obtained similar
numbers of concordant and discordant pairs across time, which caused the models to have
similar values of TDUC over time, as shown in Table 6.6. Nevertheless, the BS model

has the largest number of concordant pairs with the smallest number of discordant pairs.

Table 6.6 presents the point estimates and their 95% confidence intervals at
various truncation time points (55, 70, 85, 100 years) under the PE, CO and BS models.
The truncation time of 100 years allows all comparable pairs to be included as the
maximum observed time among 166 individuals is less than 100 years. The results in
Table 6.6 show that the values of the TDUC increased with the larger truncation time
points for all models. At most time points except time 55, the BS model provided the
largest TDUC values ranged from 0.564 to 0.574, while the PE model provided the
smallest TDUC values ranged from 0.524 to 0.555 regardless of the time points.
Although these values indicate that the BS model has better prediction discrimination
ability than the other model, TDUC values are similar across different models, indicating

that the prediction discrimination abilities of these three models are indistinguishable.
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Furthermore, the TDUC values for all models are greater than 0.5, but lower than 0.6,

indicating a poor performance in terms of discrimination.

Table 6.5: Total number of the concordant, discordant and comparable pairs at different
truncation times (55, 70, 85, 100) for different time-dependent effect models among 166

individuals underwent RRSO for different time-dependent effect models.

Comparable Concordant pairs Discordant Pairs
Time pairs PE co BS PE co BS
55 4070 2112 2230 2224 1948 1830 1836
70 5358 2876 2996 3000 2466 2346 2342
85 5452 2964 3084 3088 2472 2352 2348
100 5452 2964 3084 3088 2472 2352 2348

PE stands for permanent exposure model, CO for Cox and Oakes model, and BS for B-
spline model

Table 6.6: Time-dependent Uno’s C-index at different time points (55, 70, 85, 100 years)

among 166 individuals underwent RRSO.

Permanent Exposure Cox and Oakes B-Spline
Time EST 95% CI EST 95% CI EST 95% CI
55 0.524 (0.514,0.533) 0.549 (0.541,0.558) 0.547 (0.539, 0.556)
70 0.544 (0.536, 0.552) 0.563 (0.556,0.571) 0.564 (0.556,0.572)
85 0.555 (0.547,0.563) 0.573 (0.566,0.581) 0.574 (0.567, 0.582)
100  0.555 (0.547,0.563) 0.573 (0.566,0.581) 0.574 (0.567,0.582)

EST stands for estimate, SE stands for the standard error and Cl denotes the
confidence interval.
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6.4.2 Time-dependent Brier score

Alternatively, we examined the calibrations of different TDE models (PE, CO, BS
models) via the Brier score and I1BS over different time points. The changes of the Brier
score and IBS values over time are graphically displayed in Figure 6.4, and the points
estimates and 95% Cls at selected time points of 55, 70, 85 and 100 are presented in
Table 6.7.

The Brier score is a cross-sectional measure that provides a snapshot of the
predictive ability of a model at a specific time point, while the IBS gives an overall
measure of model performance during a time interval (0, t). Considering the Brier score
and IBS as time-dependent prediction error and cumulative prediction error, respectively,

smaller values indicate better performance in prediction.

As shown in Figure 6.4, the Brier scores and IBS are almost identical until age 60
across different models, and the CO model provides the smallest Brier score and IBS
most of the time. We notice that although the CO model provides the smallest Brier score
at time 55, the BS model provides the smallest IBS at time 55 (1.392, 95% C1=1.064,
1.675), and the CO model provides the smallest IBS afterwards, indicating that the BS
model predicts better providing smallest prediction errors better until 55 then the CO
model predicts better afterwards. It appears that the BS model does not predict well at
later time points as the prediction of the BS model would be unstable with not enough

data points available at later time points.
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Table 6.7: Brier score and integrated Brier score (IBS) for 166 individuals who

underwent RRSO at different truncation times (55, 70, 85, 100).

Permanent Exposure Cox and Oakes B-Spline
Time EST 95% ClI EST 95% ClI EST 95% ClI

Brier score

BS,(55) 0.114 (0.097,0.131) 0.111 (0.096,0.128) 0.112 (0.096, 0.128)
BS,(70) 0.082 (0.063,0.103) 0.079 (0.061,0.102) 0.085 (0.065, 0.105)
BS,(85) 0.047 (0.033,0.070) 0.044 (0.030,0.070) 0.056 (0.039,0.071)
BS,(100) 0.043 (0.030, 0.069) 0.041 (0.027,0.069) 0.056 (0.038,0.071)
Integrated Brier score

IBS;(55) 1.421 (1.073,1.692) 1.397 (1.068,1.674) 1.392 (1.064, 1.675)
IBS,(70) 2.983 (2.335,3.559) 2.912 (2.309, 3.516) 2.956 (2.326, 3.543)
IBS,(85)  3.864 (2.983,4.759) 3.751 (2.922,4.711) 3.939 (3.036, 4.777)
IBS;(100) 4.528 (3.443,5.794) 4.376 (3.341,5.746) 4.774 (3.605, 5.840)

BS, (t) is the Brier score at time t for breast cancer, denoted as 1.
IBS, (t) is the integrated Brier score within a time interval (0, t) for breast cancer,

denoted as 1.
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Figure 6.4: Time-dependent Brier score (left panel) and integrated Brier score (right

panel) estimated from 16 to 100 years based on different time-dependent models

(Permanent Exposure (green), Cox and Oakes (blue), and B-spline (red)).
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6.5 Summary

We have analyzed the HBOC family data focusing on estimating the time-dependent
effect of RRSO on breast cancer risks in the presence of competing events such as
ovarian cancer and death. The time-dependent effect of RRSO was modelled
parametrically using the PE and CO models and flexibly using the B-splines within the
correlated frailty competing risks model.

Our study demonstrated that there is a significant negative association between
RRSO and the risk of developing breast cancer in the presence of competing events as the
hazard ratios of RRSO were estimated below 1 all the time under all TDE models.
Especially the BS model enabled us to flexibly model the effect of RRSO over time,
whose negative effect became weakened and provided a significant negative association
after RRSO.

As the BS model provides flexible modelling of time-dependent effect, our data
analysis shows the BS model fits the data well, providing the smallest AIC. In addition,
we have further compared the model performance in terms of prediction ability based on
discrimination (TDUC) and calibration (Brier score, IBS) at different time points. In
terms of the TDUC, which assesses how well each model can distinguish between those
and those without breast cancer, the BS model provided the highest discrimination
overall. In terms of calibration, which quantifies how close the predicted probabilities or
the predicted risks of outcomes are to the observed values, the CO model provided a
better predictive ability with respect to calibration in general, even though the BS model
performed slightly better before age 55. However, the three models we considered in our
application appear to perform similarly, and their predictive performances were rather
poor as their C-indexes were close to 0.5. Although there is no clearly better model in our
study, the choice of the model often depends on the purpose of the study, and different
measures can be used, where the TDUC can be used for finding a better discrimination
model while the Brier score or IBS for finding a better calibration model.
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Chapter 7 Discussion

7.1 Summary

This thesis aimed to incorporate B-splines to better capture the time-dependent effect of a
binary time-dependent covariate in the correlated frailty competing risk model proposed
by Choi et al. (2021). The performance of the BS model was evaluated via a simulation
study, and the impact of misspecification of the TDE model was also examined. The
simulation results demonstrate that the BS model leads to the unbiased parameter and
penetrance estimates regardless of the size of the mutation effect or the strength of
correlation between competing events when the data were generated under the CO or BS
models, highlighting the flexibility of the BS model and its robustness to the misspecified
TDE model.

We also extended Uno’s C-index to account for both competing risks and
TDC/TDE simultaneously. The time-dependent Uno’s C-index was derived to evaluate
the discriminative ability of models, which is applicable to TDC/TDE in the analysis of
clustered competing risk data, and the variance of TDUC was derived to account for the
clustering effect. The TDUC estimates the probability that the penetrance for randomly
selected subject i is greater than the penetrance for randomly selected subject j if subject i
experiences the event earlier than randomly selected subject j at the time for subject i
experiences the event. The main difference of the proposed C-index to the conventional
C-index is that the penetrance estimates of two subjects are compared at minimum
observed times for two subjects. In contrast, the conventional C-index compares
penetrance estimates obtained at each subject’s observed time, while assuming the rank
of two penetrance estimates to be constant. However, once TDC/TDE is incorporated, the
rank of two penetrance estimates may change over time. Finally, we used the linear
relationship between Kendall’s tau and the C-index in combination with the Delta method

to estimate the variance of our proposed C-index.
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We analyzed HBOC family data recruited through BCFR to assess the time-
dependent effect of risk-reducing salpingo-oophorectomy on the risk of developing breast
cancer in the presence of ovarian cancer or death as the first event. Using a data subset of
individuals who underwent RRSO, we compared the prediction ability of the correlated
frailty competing risks model with different TDE models (PE, CO, BS) with respect to
discrimination (TDUC) and calibration (Brier score). According to TDUC, the BS model
obtained the highest discrimination, followed by the CO and PE models. Model
performance with respect to calibration was assessed using the Brier score. The BS model
obtained the smallest prediction errors with short time intervals, whereas the CO model
obtained the smallest prediction errors with large time intervals. Since the measures of
discrimination and calibration can quantify different prediction abilities, the choice of the
model is subject to the purpose of the study.

7.2 Limitation and further work

This thesis has several possible limitations. First, we have considered MSs and RRSO as
external binary TDCs. Kalbfleisch and Prentice (2002) classified TDCs into two different
categories: external or internal covariates. An external covariate is external to the subject,
meaning that it is not dependent on the survival of the subject, but it may influence the
occurrence of the failure at time t. In other words, the occurrence of the external
covariate is not affected by the subject’s event status. The measure of air pollution on the
frequency of asthma is the example of the external covariate, where such measure is not
affected by the occurrence of asthma. In contrast, an internal covariate is dependent on
the current event status of the individuals in the study, where the internal covariate
requires the survival of the subject for its existence. For example, when a subject’s blood
pressure is measured over time, the measure of blood pressure is no longer available once
the individual dies. Then, the measure of blood pressure ensures that the subject has not
experienced the event, indicating the survival probability of death is 1. Thus, the effect of
internal covariate may not be correctly estimated as its value varies based on the time of

the failure. The hazard function and corresponding survival function can only be defined
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up to the time of survival, but no further. We assume MSs and RRSO as the external
covariates to address the problem of the interval covariate since the status of the

screenings and RRSO are not directly related to breast cancer risks.

In this thesis, we have selected the location of the interior knots based on the
quantiles of the difference between the subjects’ last observed times and RRSO times to
ensure an approximately equal number of events in each interval. Also, only a small
number of degrees (2, 3) were considered to compare the efficiency of the model.
However, the equidistance knot arrangement is not necessarily an optimal choice. Instead
of using the quantile, the proper locations and number of knots can be selected by
comparing the AIC for models with varying knot numbers or using generalized cross-
validation (GCV) (Nan et al., 2005). The optimal interior knots can be selected by
choosing a model that minimizes the AIC. Alternatively, the GCV can be used, where the
placement of the knots can be chosen to minimize the GCV function. However, both AIC
and GCV methods require intensive mathematical computations. Similarly, different
degrees of the BS basis function can be used to provide a more flexible estimation of the
effect of RRSO. However, there is a trade-off between roughness and smoothness in
choosing the number of interior knots and degrees. The small number of knots and
degrees leads to overly smooth, but it may be biased. In contrast, using a high number of
knots and degrees conversely leads to unbiased estimates but increases the variability in
the fit, resulting in overfitting.

Both simulation results and data application results demonstrated the flexibility of
the BS model. The BS model obtained unbiased penetrance estimates in the simulation
and obtained the smallest AIC and largest TDUC in the application, indicating that the
BS model is the best-performing model. However, there are several limitations in the
data. In contrast to the effect of RRSO, we only considered the CO model as TDEs of
three different screenings because Choi et al. (2021) demonstrated that the effects of the
three screenings under the CO model are significant. Under this model, the effect of
screenings is exponentially decaying over time and eventually converges to a certain
value. However, the effects of MSs could also be modelled considering the BS, which

can flexibly estimate the effect of screenings. However, once the BS model is used, the
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choice of the number of interior knots and degrees would be the problem. It may increase
the variability of the coefficients related to the BS as more parameters are used for the

screenings and RRSO.

Second, although the primary event of interest is the first occurrence of BC in our
analysis, subjects may experience one of OC or death from other causes, where the
occurrence of one event precludes the occurrence of other events. Hence, we proposed a
model while considering those three events as competing risks. However, successive BC
after the first BC can be the main interest in the competing risk analysis. Individuals in
the study may experience several events, such as developing OC before experiencing BC,
dying after the first BC, etc. However, our model does not allow the successive BCs after
the first BC. Once we consider the successive events, the effects of RRSO or screenings
might be different depending on the number of experienced BC. Also, such effects might
differ between individuals who experienced other events first. Furthermore, we have
assumed that the screenings and RRSO only affect the BC risks. However, those
interventions might also alter the probability of experiencing other events. Then, a joint
nested frailty model can be used for the recurrent events while considering the screenings
and RRSO as TDC. The joint frailty model accounts for the dependence between
successive within a subject. The nested frailties can be used to model the clustered data

by including two nested random effects.

Moreover, although we have extended the standard C-index to account for time-
dependent effects of time-dependent covariates within clustered competing risk model,
the proposed measure has not been evaluated. The proposed C-index referred to as time-
dependent Uno’s C-index has potential limitations. First, the TDUC will tend to 0.5 when
a small number of variables is used to model. By definition of the C-index, subject pairs
with tied penetrance estimates are counted as 0.5, but they are not counted as comparable
when both subjects experience the event. Since the proposed C-index uses the penetrance
estimates at the minimum time between two subjects’ observed times, using a small
number of variables leads to many tied pairs. To further evaluate the proposed C-index, a
simulation study could be conducted. The interest lies in how the number of variables and

number/size of families, which may affect the frailty parameters, affect the C-index in the
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analysis of clustered competing risk. Furthermore, another limitation is that the proposed
C-index evaluates the prediction ability of a model with TDE/TDC but does not directly
evaluate the time-dependent effect of a TDC. Since the difference between the penetrance
estimates across different models might be caused by the other parameters involved in the
models, other variables might affect the proposed C-index. Thus, to evaluate only the
effect of TDC/TDE, a new measure would be needed. In addition, since only 166 (6%)
individuals underwent RRSO among 2650 individuals, only those individuals are used to
evaluate the prediction accuracy to discern the effect of RRSO. Also, among 166
individuals, only 28 subjects experienced breast cancer, which may cause all models to
obtain similar values of the TDUC. By definition of the C-index, subjects with shorter
observed time must experience the event to compare the pairs of two subjects. Then,
there might be a small number of concordant and comparable pairs. Those pairs might

have similar penetrance estimates and have similar TDUC across different models.
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Appendix A: Additional plots and
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Figure A.1: Penetrance estimates for breast cancer with respect to one to three
mammographic screenings (MS) at age 35 with the consecutive screening gap times of 2
years among those who had no risk-reducing salpingo-oophorectomy in the BRCA 1

families.
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RRSO at age 30 RRSO at age 40 RRSO at age 50
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Figure A.2: Penetrance estimates for breast cancer with risk-reducing salpingo-
oophorectomy (RRSO). The left most plot presents the penetrance with RRSO at age 30.
To the right, they describe penetrance estimates with RRSO at age 40 and 50.
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Figure A.3: Penetrance estimates for breast cancer with respect to one to three
mammographic screenings (MS) at age 35 with the consecutive screening gap times of 2

years and risk-reducing salpingo-oophorectomy (RRSO) at age 40.
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Table A.1: Hazard ratios and their 95% confidence intervals measuring the time-
dependent effect of risk-reducing salpingo-oophorectomy (RRSO) on breast cancer under
different time-dependent effect models (B-spline, Cox and Oakes, Permanent Exposure)
for BRCA 1 mutation families.

Years after Permanent Exposure Cox and Oakes B-spline
RRSO Estimate  95% CI Estimate 95% ClI Estimate  95% CI
0.5 0.546 (0.127, 0.965) 0.204  (-0.060, 0.467) 0.133 (-0.194, 0.460)

1 0.546 (0.127, 0.965) 0.304  (0.041, 0.568) 0.206 (-0.122, 0.534)
2 0.546 (0.127, 0.965) 0.472  (0.186, 0.758) 0.419 (0.071,0.767)
3 0.546 (0.127, 0.965) 0.572  (0.289, 0.854) 0.683 (0.195,1.172)
4 0.546 (0.127, 0.965) 0.622  (0.341, 0.902) 0.892 (0.183, 1.601)
5 0.546 (0.127, 0.965) 0.645 (0.362, 0.927) 0.933 (0.194, 1.672)
6 0.546 (0.127, 0.965) 0.655  (0.368, 0.942) 0.789 (0.254, 1.323)
7 0.546 (0.127, 0.965) 0.660  (0.368, 0.951) 0.647 (0.240, 1.053)
8 0.546 (0.127, 0.965) 0.660  (0.366, 0.958) 0.553 (0.196, 0.911)
9 0.546 (0.127, 0.965) 0.662  (0.363, 0.962) 0.494 (0.159, 0.828)

10 0546 (0.127,0.965)  0.662  (0.361, 0.965) 0.460 (0.140, 0.779)
11 0546 (0.127,0.965)  0.663  (0.359, 0.967) 0.446 (0.139, 0.753)
12 0546 (0.127,0.965)  0.663 (0.357, 0.969) 0.451 (0.152, 0.751)
13 0546 (0.127,0.965)  0.663  (0.356, 0.970) 0.476 (0.170, 0.782)
14 0546 (0.127,0.965)  0.663  (0.355, 0.971) 0.505 (0.171, 0.839)
15 0546 (0.127,0.965)  0.663  (0.355,0.971) 0.531 (0.154, 0.909)
16 0546 (0.127,0.965)  0.663  (0.354, 0.972) 0.554 (0.126, 0.983)
17 0546 (0.127,0.965)  0.663  (0.354,0.972) 0.573 (0.093, 1.054)
18 0546 (0.127,0.965)  0.663  (0.354, 0.972) 0.588 (0.061, 1.115)
19 0546 (0.127,0.965)  0.663  (0.354, 0.973) 0.598 (0.035, 1.161)
20 0546 (0.127,0.965)  0.663  (0.354,0.973) 0.603 (0.017, 1.189)

Cl stands for confidence interval and RRSO stands for risk-reducing salpingo-
oophorectomy
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Appendix B: R codes for the
illustration of the time-dependent C-
index and its variance calculation

## The exemplified data used in Chapter 5

data <- data.frame(famID = c¢c(1,1,1,2,2,2,2),
i=c¢(1,2,3,4,5,6,7),
time = ¢(23,37,63,41,49,60,69),
status = ¢(0,1,2,1,2,0,1),
Xx =¢(1,0,1,0,0,1,1),

F O0O=+c¢(0.59, 0.71, 0.46, 0.67, 0.51, 0.73, 0.55),
F1=~c¢c(0.55, 0.66, 0.39, 0.61, 0.45, 0.67, 0.52),
KM = ¢(1.00, 0.92, 0.42, 0.83, 0.71, 0.56, 0.14))

> data

famID i time status x F 0 F 1 KM

1 11 23 01 0.59 0.55 1.00

2 12 37 1 0 0.71 0.66 0.92

3 13 63 21 0.46 0.39 0.42

4 2 4 41 1 0 0.67 0.61 0.83

5 25 49 2 0 0.51 0.45 0.71

6 2 6 60 01 0.73 0.67 0.56

7 2 7 69 1 1 0.55 0.52 0.14

## ex data function provides all combinations of the original data with
## penetrance estimates. pen i and pen j correspond to ﬁ1Ufth) and
## FlﬁgAxm), respectively, and KM i and KM j are the Kaplan Meier

## estimates for censoring.

expand data <- ex data(data)

> expand data

i j time famID i t i status i pen i KM i famID j t j status j pen Jj KM j
12 23 1 23 0 0.55 1.00 1 37 1 0.59 0.92
13 23 1 23 0 0.55 1.00 1 63 2 0.55 0.42
14 23 1 23 0 0.55 1.00 2 41 1 0.59 0.83
15 23 1 23 0 0.55 1.00 2 49 2 0.59 0.71
16 23 1 23 0 0.55 1.00 2 60 0 0.55 0.56
17 23 1 23 0 0.55 1.00 2 69 1 0.55 0.14
21 23 1 37 1 0.59 0.92 1 23 0 0.55 1.00
2 3 37 1 37 1 0.71 0.92 1 63 2 0.66 0.42
2 4 37 1 37 1 0.71 0.92 2 41 1 0.71 0.83
25 37 1 37 1 0.71 0.92 2 49 2 0.71 0.71
2 6 37 1 37 1 0.71 0.92 2 60 0 0.66 0.56
2 17 37 1 37 1 0.71 0.92 2 69 1 0.66 0.14
31 23 1 63 2 0.55 0.42 1 23 0 0.55 1.00
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32 37 1 63 2 0.66 0.42 1 37 1 0
3 4 41 1 63 2 0.61 0.42 2 41 1 0O
35 49 1 63 2 0.45 0.42 2 49 2 0
36 60 1 63 2 0.67 0.42 2 60 0 O
37 63 1 63 2 0.39 0.42 2 69 1 O
41 23 2 41 1 0.59 0.83 1 23 0 0
4 2 37 2 41 1 0.71 0.83 1 37 1 0O
4 3 41 2 41 1 0.67 0.83 1 63 2 0
45 41 2 41 1 0.67 0.83 2 49 2 0
4 6 41 2 41 1 0.67 0.83 2 60 0 0
4 7 41 2 41 1 0.67 0.83 2 69 1 0O
51 23 2 49 2 0.59 0.71 1 23 0 0
52 37 2 49 2 0.71 0.71 1 37 1 O
53 49 2 49 2 0.51 0.71 1 63 2 0
5 4 41 2 49 2 0.67 0.71 2 41 1 O
56 49 2 49 2 0.51 0.71 2 60 0 O
5 7 49 2 49 2 0.51 0.71 2 69 1 0
6 1 23 2 60 0 0.55 0.56 1 23 0 O
6 2 37 2 60 0 0.66 0.56 1 37 1 0
6 3 60 2 60 0 0.67 0.56 1 63 2 0
6 4 41 2 60 0 0.61 0.56 2 41 1 O
6 5 49 2 60 0 0.45 0.56 2 49 2 0
6 7 60 2 60 0 0.67 0.56 2 69 1 O
71 23 2 69 1 0.55 0.14 1 23 0 0
72 37 2 69 1 0.66 0.14 1 37 1 O
73 63 2 69 1 0.39 0.14 1 63 2 0
7 4 41 2 69 1 0.61 0.14 2 41 1 O
75 49 2 69 1 0.45 0.14 2 49 2 0
7 6 60 2 69 1 0.67 0.14 2 60 0 0

## Then, the time-dependent Uno’s C-index is obtained as
td C 50 <- comp_time C index fun(expand data, 16, 50)
> td C 50

SU_C

[1] 0.8372327 ## TDUC with truncation time 50
$var U C

[1] 0.0001857506 ## Variance of the TDUC

SCI

[1] 0.8105198 0.8639456 ## 95% confidence interval for the TDUC

## TDUC = 0.8372327 with its variance of 0.0001857506 and 95%
## confidence interval (0.8105198, 0.8639456)
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###### R codes for related functions

#### Expand dataset

(generate all combinations of 2 subjects i and j)

ex data <- function (data) {

n <- nrow(data)

## total number of individuals

i <- rep(l:n, each=n) ## all combinations for ith subject
J <= rep(l:n, n) ## all combinations for jth subject

dat <- data[, c("famID", "time", "status", "x", "F 0", "F 1"

IIKMII ) ]
ex data <- cbind(i, j, dat[i, 1, dat[j, 1)

names (ex data)

<- c("i", "9", pastel(c("famID", "t", "status",

"X", "F_O"’ "F_l "’ "KM") , "_i") ,
pasteO (c("famID", "t", "status", "x", "F 0",
" F_l " , " KM" ) , "_j " ) )

ex dataS$time <- pmin(ex data$t i, ex data$t j)
row.names (ex data) <- l:nrow(ex data)

pen i <- with(ex data, ifelse(time ==t i & x i == 0, F 0 1,

ifelse(time == t i & x 1 ==1, F 1 1,
ifelse(time == t j & x_i==0,
F O 3, F.1.3))))

pen_ j <- with(ex data, ifelse(time ==t i & x j == 0, F 0 1,

ifelse(time == t i & x § == 1, F_ 1 i,
ifelse(time == t j & x_j==0,
F_0_3, F_1_3))))

ex data$pen i <- pen i

ex dataS$pen j <- pen j

raw_ex data <- ex datal[, c("i", "j", "time", "famID i", "t i",

"status i", "pen i", "KM i", famID j",
" t_j " , "Status_j " , "pen_j " , "KM_j ") ]

return (raw_ex data)

#### Time-dependent Uno's C-index with truncation time

comp time C index fun

<- function(data, trunc_time) {

n <- length (unique (data$i)) ## number of individuals
n fam <- length(unique(data$famID 1i)) ## number of families
## each family size

n f <- table(data[!duplicated(data$kKM i), ]$famID i)
famID <- data[!duplicated(data$KM i), ]$famID i

# IPCW of the Kaplan Meier estimate of the censoring
distribution

km t il <- data$KM i

km t i2 <- data$KM j
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# Penetrance
pen i <- data$pen i ## Penetrance estimates for subject 1
pen j <- data$pen j ## Penetrance estimates for subject J

# Subject indicator for all possible combination of pairs
famID i <- data$famID i

famID j <- data$famID j

subject i <- data$i

# Denoting competing risk by 2
status_1i <- data$status i
status_j <- data$status j

t i <- datast i ## observed time for subject i
t j <- datast j ## observed time for subject j
# Weights

kml 1 <- (km t il)"(-2)
kml 2 <- (km_t_i2)"(-2)
km2 <- (km t il * km t i2)"(-1)

## sign and csign functions
# sign functions

sign <- (pen_i > pen j) - (pen_i < pen j)

# csign function (with weights and truncation time)

csign <- ((t_ i <=t j) * kml 1 + (t_ i > t j) * (status j == 2) *
km2) * (status i == 1) * (t_ i < trunc time) - ((t_i >=
t j) * kml 2 + (£t 1 < t j) * (status i == 2) * km2) *
(status_j == 1) * (t_j < trunc_time)

# Difference between the concordant and discordant pairs
d cs <- sign * csign

# Comparable pairs

d ¢ <- abs(csign)

# Time-dependent Uno's C-index
U C <= 0.5%(sum(d_cs)/sum(d _c) + 1)

## Variance estimation

var U C <- sample var C index(d ¢, d cs, subject i, famID, n £,
n_fam, n)

ci <-UC+ c(-1, 1) * 1.96 * sgrt(var U C)

return(list(U C = U C, var U C = var U C, CI = ci))

#### Variance estimation for C-index using sample variance
sample var C index <- function(d ijxx, d ijxy, subjectl, famID, n f,
n fam, n) {
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# n f = each cluster size; n fam = total number of families

# n = total number of individuals across all families

# Mean of individual i in family f

## weighted proportion of comparable pairs for each individual
d fixx <- aggregate(d ijxx ~ subjectl, FUN = mean) [, 2]

## difference btw the weighted number of concordant and
## discordant pairs for each individual
d fixy <- aggregate(d ijxy ~ subjectl, FUN = mean) [, 2]

# Mean of each family
## weighted proportion of comparable pairs for each family
d fxx <- aggregate(d fixx ~ famID, FUN = mean) [, 2]

## difference btw the weighted number of concordant and
## discordant pairs for each family
d fxy <- aggregate(d fixy ~ famID, FUN = mean) [, 2]

# Mean of all individuals
## average weighted proportion of comparable pairs
d xx <- sum(d ijxx)/(n * (n-1))

## average difference btw the weighted number of concordant and
## discordant pairs
d xy <- sum(d _ijxy)/(n * (n-1))

# Variance

var fixx <- sum(n f * (d_fxx - d_xx)AZ)/(n * (n_fam - 1))

var fixy <- sum(n_f * (d fxy - d xy)”*2)/(n * (n_fam - 1))

cov_fi <- sum(n_ f * (d fxx - d xx) * (d fxy - d xy))/(n * (n_fam
- 1))

var d xx <- 4/n * var fixx
var d xy <- 4/n * var fixy
cov_d xx d xy <- 4/n * cov_fi

output <- ifelse(d xx == 0, 0, t(c(l/d xx, -d xy/d xx"2)) %$*%
matrix(c(var d xy, cov_d xx d xy, cov_d xx d xy,
var d xx), nrow = 2, ncol = 2) %*%
c(l/d xx, -d xy/d xx"2)/4)
return (output)
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