
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

2-2-2011 12:00 AM

Architecture Supporting Computational Trust Formation Architecture Supporting Computational Trust Formation

Chern Har Yew, University of Western Ontario

Supervisor: Hanan Lutfiyya, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Computer Science

© Chern Har Yew 2011

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Systems Architecture Commons

Recommended Citation Recommended Citation
Yew, Chern Har, "Architecture Supporting Computational Trust Formation" (2011). Electronic Thesis and
Dissertation Repository. 86.
https://ir.lib.uwo.ca/etd/86

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Fetd%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/86?utm_source=ir.lib.uwo.ca%2Fetd%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

.ARCHITECTURE SUPPORTING COMPUTATIONAL TRUST
FORMATION

(Spine title: Architecture Supporting Computational Trust Formation)

(Thesis format: Monograph)

by

Chern Har Yew

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Chern Har Yew 2011

ii

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor

Dr. Hanan Lutfiyya

Supervisory Committee

Dr.

Dr.

Examiners

Dr. Michael Bauer

Dr. Robert Mercer

Dr. Victoria Rubin

Dr. Ferhat Khendek

The thesis by

Chern Har Yew

entitled:

ARCHITECTURE SUPPORTING COMPUTATIONAL TRUST
FORMATION

is accepted in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

______________________ _______________________________
 Date Chair of the Thesis Examination Board

iii

Abstract

Trust is a concept that has been used in computing to support better decision making. For

example, trust can be used in access control. Trust can also be used to support service

selection. Although certain elements of trust such as reputation has gained widespread

acceptance, a general model of trust has so far not seen widespread usage. This is due to

the challenges of implementing a general trust model. In this thesis, a middleware based

approach is proposed to address the implementation challenges.

 The thesis proposes a general trust model known as computational trust.

Computational trust is based on research in social psychology. An individual’s

computational trust is formed with the support of the proposed computational trust

architecture. The architecture consists of a middleware and middleware clients. The

middleware can be viewed as a representation of the individual that shares its knowledge

with all the middleware clients. Each application uses its own middleware client to form

computational trust for its decision making needs. Computational trust formation can be

adapted to changing circumstances. The thesis also proposed algorithms for

computational trust formation. Experiments, evaluations and scenarios are also presented

to demonstrate the feasibility of the middleware based approach to computational trust

formation.

Keywords

trust, experience, recommendation, reputation, signal, belief, architecture, middleware

iv

Acknowledgments

I wish to express my sincere gratitude towards my supervisor, Dr. Hanan Lutfiyya. Her

guidance, encouragement and friendship are instrumental in my completion of this work.

Other professors that have helped me along the way include Dr. Michael Bauer and Dr.

Mark Perry. As for fellow distributed systems research group colleagues, special thanks

needs to be directed towards Brad Simmons (graduated), Raphael Mafita Bahati

(graduated), Gaston Keller and Zainab Aljazzaf.

v

Table of Contents

CERTIFICATE OF EXAMINATION ... ii

Abstract .. iii

Acknowledgments.. iv

Table of Contents .. v

List of Tables ... xi

List of Figures .. xiii

List of Appendices ... xviii

Chapter 1 ... 1

1 Introduction .. 1

1.1 Current Use of Trust in Computing .. 1

1.2 Computational Trust ... 3

1.2.1 Foundational Research .. 3

1.2.2 Definition .. 4

1.2.3 Properties .. 6

1.2.4 Conceptual Model ... 9

1.2.5 Trust Formation .. 12

1.3 Application of Computational Trust ... 13

1.3.1 Movie Selection Scenario ... 13

1.3.2 Web Service Selection Scenario ... 14

1.4 Challenges to Computational Trust .. 17

1.5 Contributions of Thesis ... 18

1.6 Thesis Organization .. 19

1.7 Summary ... 20

Chapter 2 ... 21

vi

2 Trust Primer ... 21

2.1 Preconditions for Trust ... 21

2.2 Concepts Related to Trust ... 21

2.2.1 Untrust, Distrust and Mistrust ... 22

2.2.2 Trustworthiness ... 22

2.2.3 Contract ... 23

2.2.4 Confidence .. 23

2.3 Privacy .. 24

2.4 Risk ... 25

2.5 Decision Making ... 26

2.6 Summary ... 26

Chapter 3 ... 27

3 Literature Review ... 27

3.1 Survey of Trust and Reputation .. 27

3.1.1 The World Wide Web (WWW) .. 27

3.1.2 Peer-to-Peer (P2P) Networks .. 30

3.1.3 Virtual Communities ... 34

3.1.4 Pervasive Computing Environments... 38

3.2 Middleware Support for Computational Trust Formation 39

3.3 Survey of Trust Middleware ... 40

3.4 Summary ... 41

Chapter 4 ... 42

4 Computational Trust Architecture.. 42

4.1 Assumptions .. 42

4.1.1 Identity and Type .. 42

vii

4.1.2 Computational Trust Formation .. 43

4.1.3 Evidence .. 44

4.1.4 Belief ... 45

4.1.5 Emotional Trust Formation ... 47

4.1.6 Factors Influencing Computational Trust Formation 48

4.1.7 Privacy .. 50

4.1.8 Architecture Deployment .. 50

4.1.9 Summary ... 50

4.2 Overview of Architecture ... 51

4.3 Information Flow of Architecture ... 52

4.4 Summary ... 53

Chapter 5 ... 54

5 SCOUT ... 54

5.1 SCOUT Design ... 54

5.2 Evidence Gathering Service .. 55

5.2.1 Evidence Gatherer ... 57

5.2.2 Evidence Handler .. 57

5.2.3 Evidence Source Assessor .. 58

5.2.4 Evidence Gathering Manager ... 59

5.3 Belief Formation Service .. 63

5.3.1 Belief Engine .. 64

5.3.2 Belief Formation Manager .. 65

5.4 Emotional Trust Service ... 68

5.5 Summary ... 69

Chapter 6 ... 71

viii

6 Trust Calculator .. 71

6.1 Trust Calculator Design .. 71

6.2 Trust Calculation Plan... 72

6.3 Trust Calculator .. 77

6.4 Summary ... 79

Chapter 7 ... 81

7 Algorithms ... 81

7.1 Belief Formation ... 81

7.1.1 Experience... 82

7.1.2 Recommendation .. 84

7.1.3 Reputation ... 85

7.1.4 Signal .. 86

7.1.5 Summary ... 86

7.2 Evidence Source Assessment .. 87

7.2.1 Evidence Assessment .. 87

7.2.2 Evidence Source Trust Assessment .. 89

7.2.3 Summary ... 90

7.3 Summary ... 91

Chapter 8 ... 92

8 Implementation .. 92

8.1 SCOUT ... 92

8.2 Trust Calculator .. 93

8.2.1 Trust Calculation Planner ... 94

8.2.2 Trust Calculation Engine .. 95

8.3 Summary ... 96

ix

Chapter 9 ... 97

9 Experiments.. 97

9.1 Goals ... 97

9.2 Assumptions .. 98

9.3 Metrics .. 99

9.4 Experimental Testbed ... 99

9.4.1 Overview ... 100

9.4.2 Web Services .. 100

9.4.3 Evidence Sources .. 102

9.4.4 Web Service Selection Strategies ... 103

9.5 Experiments Based on Experience.. 107

9.5.1 Static Web Services .. 108

9.5.2 Fluctuating Web Services ... 110

9.5.3 Dynamic Web Services ... 112

9.5.4 Fluctuating-Dynamic Web Services ... 114

9.6 Experiments Based on Recommendation ... 116

9.6.1 Similar Recommenders ... 118

9.6.2 Dissimilar Recommenders .. 122

9.7 Experiments Based on Experience, Recommendation 127

9.8 Conclusions and Discussions .. 131

9.9 Summary ... 132

Chapter 10 ... 134

10 Scenarios .. 134

10.1 Movie Scenario ... 134

10.1.1 Overview ... 134

x

10.1.2 Implementation ... 138

10.2 Web Service Scenario ... 138

10.2.1 Overview ... 138

10.2.2 Implementation ... 159

10.3 Summary ... 160

Chapter 11 ... 161

11 Evaluation .. 161

11.1 Evaluation of SCOUT ... 161

11.1.1 Evolution ... 161

11.1.2 Computational Trust Properties .. 162

11.1.3 Computational Trust Challenges... 163

11.2 Evaluation of Trust Calculator .. 164

11.2.1 Evolution ... 164

11.2.2 Computational Trust Properties .. 165

11.2.3 Computational Trust Challenges... 165

11.3 Summary ... 166

Chapter 12 ... 167

12 Conclusions and Future Directions .. 167

12.1 Conclusions ... 167

12.2 Future Work .. 169

References ... 172

Appendices .. 186

Curriculum Vitae .. 189

xi

List of Tables

Table 1: Trust Types and Computational Trust Formation .. 49

Table 2: Assumptions of Computational Trust Architecture .. 50

Table 3: Algorithms for Belief, Aggregate Belief and Trust Calculation......................... 53

Table 4: Example Aggregate Belief Filters .. 67

Table 5: Web Services (Experiments) .. 99

Table 6: Legend of Figure 39 .. 107

Table 7: Result Summary (Static Web Services, Average:) 108

Table 8: Result Summary (Static Web Services, Average:) 109

Table 9: Result Summary (Fluctuating Web Services, Average:) 110

Table 10: Result Summary (Fluctuating Web Services: ,

Average:) .. 111

Table 11: Result Summary (Fluctuating Web Services: ,

Average:) .. 111

Table 12: Result Summary (Fluctuating Web Services, Average:) 112

Table 13: Result Summary (Fluctuating Web Services, Weighted Average:)

... 112

Table 14: Result Summary (Dynamic Web Services, Average:) 113

Table 15: Result Summary (Dynamic Web Services: , Average:

) .. 113

Table 16: Result Summary (Dynamic Web Services, Average:) 114

xii

Table 17: Result Summary (Dynamic Web Services, Weighted Average:) . 114

Table 18: Result Summary (FD Web Services, Average:) 115

Table 19: Result Summary (FD Web Services, Average:) 116

Table 20: Result Summary (FD Web Services, Weighted Average:) 116

Table 21: Similar Recommenders (Experiments) ... 118

Table 22: Dissimilar Recommenders (Experiments) .. 123

Table 23: Syntax of SCOUT Policies ... 186

xiii

List of Figures

Figure 1: Relationships among Trust Dimensions .. 11

Figure 2: Computational Trust Formation .. 13

Figure 3: Cognitive Trust Formation (Movie) .. 14

Figure 4: Cognitive Trust Formation (Web Service) .. 15

Figure 5: From Distrust to Trust [86] ... 22

Figure 6: eBay’s Feedback Forum .. 28

Figure 7: Computational Trust Formation (Architecture) .. 43

Figure 8: Cognitive Trust Formation from Aggregate Beliefs (Web Service) 47

Figure 9: Hierarchy of Trustee Type and Identity .. 48

Figure 10: Computational Trust Architecture ... 52

Figure 11: Information Flow of Architecture ... 53

Figure 12: Evidence Gathering Service .. 56

Figure 13: EG-Policies (Identity).. 60

Figure 14: EG-Policy (Properties) .. 61

Figure 15: EG-Policy (Evidence Source Trust) .. 61

Figure 16: EG-Policy (Broadcast Strategy) .. 62

Figure 17: EG-Policy (Evidence Source Trust Strategy) .. 62

Figure 18: EA-Policy .. 63

xiv

Figure 19: Belief Formation Service... 64

Figure 20: BF-Policy... 66

Figure 21: AF-Policy .. 67

Figure 22: Emotional Trust Service .. 68

Figure 23: ET-Policies .. 69

Figure 24: Structure of TcPlan .. 72

Figure 25: TcPlan (Movie).. 73

Figure 26: Tree of TcPlan (Movie) ... 73

Figure 27: TcTemplate (Movie) .. 74

Figure 28: TcPlan (Web Service) ... 76

Figure 29: Tree of TcPlan (Web Service) ... 77

Figure 30: Trust Calculator ... 77

Figure 31: Trust Calculator’s Execution ... 79

Figure 32: Experience Weights ... 83

Figure 33: Evidence Assessments ... 88

Figure 34: SCOUT Implementation.. 92

Figure 35: Factors-TcPlan Mapping (Movie) ... 94

Figure 36: Factors-TcPlan Policy (Movie) ... 95

Figure 37: Experimental Testbed’s Algorithm ... 100

Figure 38: Exploration Ratios ... 105

xv

Figure 39: Exploration Probabilities ... 106

Figure 40: Mean Experience (Similar Recommenders, Average:) 119

Figure 41: Percentage of Positive Experiences (Similar Recommenders, Average:

) .. 120

Figure 42: Mean Experience (Similar Recommenders, ,

) ... 121

Figure 43: Percentage of Positive Experiences (Similar Recommenders,

 ,) .. 121

Figure 44: Mean Experience (Similar Recommenders, ,)

... 122

Figure 45: Percentage of Positive Experiences (Similar Recommenders,

 ,) .. 122

Figure 46: Mean Experience (Dissimilar Recommenders, Average:) 124

Figure 47: Percentage of Positive Experiences (Dissimilar Recommenders, Average:

) .. 124

Figure 48: Mean Experience (Dissimilar Recommenders, ,

) ... 125

Figure 49: Percentage of Positive Experiences (Dissimilar Recommenders,

 ,) .. 126

Figure 50: Mean Experience (Dissimilar Recommenders, ,)

... 126

Figure 51: Percentage of Positive Experiences (Dissimilar Recommenders,

 ,).. 127

xvi

Figure 52: Mean Experience (Trustor and Similar Recommenders, Average:

 ,) ... 129

Figure 53: Percentage of Positive Experiences (Trustor and Similar Recommenders,

Average: ,) ... 129

Figure 54: Mean Experience (Trustor and Dissimilar Recommenders, Average:

 ,) ... 130

Figure 55: Percentage of Positive Experiences (Trustor and Dissimilar Recommenders,

Average: ,) ... 131

Figure 56: BF-Policy (Movie) .. 136

Figure 57: EG-Policy (Movie) .. 137

Figure 58: Computational Trust Formation (Movie) .. 138

Figure 59: Factors-TcPlan Mappings (Web Service Selection) 140

Figure 60: TcPlan (Web Service Selection) .. 142

Figure 61: Tree of TcPlan (Web Service Selection) ... 143

Figure 62: BF-Policy (Competence Belief) .. 144

Figure 63: EG-Policy (Qualification Belief)... 145

Figure 64: BF-Policies (Accessibility Belief) ... 147

Figure 65: EG-Policies (Availability Belief) .. 148

Figure 66: Computational Trust Formation (Web Service Selection) 149

Figure 67: Factors-TcPlan Mappings (Web Service Negotiation) 151

Figure 68: TcPlan (Web Service Negotiation) .. 152

xvii

Figure 69: Tree of TcPlan (Web Service Negotiation) ... 153

Figure 70: BF-Policies (Dependability Belief) ... 154

Figure 71: Computational Trust Formation (Web Service Negotiation) 155

Figure 72: Web Service Management Policies ... 156

Figure 73: AF-Policies (Web Service) .. 158

Figure 74: EA-Policy (Web Service) .. 159

Figure 75: Web Service Discovery, Selection and Negotiation Web Service 160

Figure 76: Web Service Management Web Service ... 160

Figure 77: Trust Coordination Plan .. 165

Figure 78: Syntax of Aggregate Belief Filter ... 188

Figure 79: Syntax of Emotional Trust Filter ... 188

xviii

List of Appendices

Appendix A: Syntax of SCOUT Policies.. 186

Appendix B: Syntax of Subscription Filters ... 188

1

Chapter 1

1 Introduction

Decision making is about trying to make the best possible selection from a set of

available choices. Decisions in real life are often made through satisficing (i.e., trying to

make a good enough selection) as opposed to aiming for the optimal solution [119]. This

is due to the fact that human beings are cognitive misers [42] that take advantage of

mental shortcuts (cognitive heuristics) when faced with complex decisions. Note that the

taking of these mental shortcuts is usually not out of laziness but due to the limited

capacity of human beings to process uncertainty and incomplete information [42]. As a

result, when faced with complex decisions, trust is often used as a mental shortcut for

complexity reduction. This is by eliminating choices that are not trusted from

consideration. Trust can be thought of as an alternative to rational prediction [75].

This chapter is organized as follow. The chapter starts with a discussion of the

current use of trust in computing. This is followed by an introduction to computational

trust. Two scenarios are provided as illustration of the use of computational trust in

computing. The chapter ends with a discussion of the challenges to calculating

computational trust and how this thesis contributes towards addressing these challenges.

1.1 Current Use of Trust in Computing

In computing, trust has its roots in computer security. Authentication and authorization

are concepts commonly associated with trust [50]. In this thesis, this type of trust is

known as access trust. The goal of access trust is to restrict access so as to protect

computing resources from harm. One could think of an authorized user as a user that is

trusted by the computing resource owner. The more a user is trusted, the more likely it

would be afforded more rights.

A common form of access trust is identity-based trust. Trust is determined from

the identity of the user (e.g. username and password). A weakness of identity-based trust

is its assumption that identity is a trust predictor. This may be a valid assumption in

2

closed environments such as a corporate LAN where all the LAN participants have been

vetted (i.e., being hired by human resources) beforehand. This is not a valid assumption

in open environments such as the Internet. On the Internet, most of the users are strangers

to each other. Knowing the identity of the stranger (if it is even available) is not sufficient

in determining how much the stranger can be trusted.

In [16], the authors proposed that trust should be resolved without the use of

identity. The paper introduced the term trust management as “a unified approach to

specifying and interpreting security policies, credentials and relationships that allow

direct authorization of security-critical actions” [16]. This view of trust is sometimes

known as rule-based trust or policy-based trust. Several well-known trust management

systems include PolicyMaker [16], KeyNote [15] and REFEREE [28]. In a trust

management system, rules or policies are used to define the conditions in which rights are

to be granted. This is usually based on the presence of digital certificates (credentials).

An example is to only grant access to university computing resources if the user has a

certificate proving that the user is a student of the university. More recently, this view of

trust has been used to provide security for web services through WS-Security [97] and

WS-Trust [96].

In [50] and [40], the authors identified a number of weaknesses to trust

management. The weaknesses include:

 A trust management system is a binary yes/no system where a user is either

trusted or not trusted. Trust in everyday social life however is much more

complex. For example, John may trust both Alice and Bob but between the two,

John may trust Alice more than Bob. Such trust dynamics are not represented in

trust management systems.

 In trust management, certificate issuers are unconditionally trusted. If a university

issues a certificate stating that a user is a student, it is automatically assumed that

this is indeed the case. This is an unrealistic assumption. There may be a conflict

of interest or factors such as money or even carelessness that could result in the

publishing of inaccurate certificates.

3

 Trust is not static and may change over time. For example, good experiences from

using a service may increase trust in the service while bad experiences do the

opposite. Instead of updating trust immediately based on a trustee’s change in

behavior, a trust management system needs to wait for certificates to make any

trust changes. As a result, the trust management system is completely dependent

on the pace at which certificate issues updates and distributes certificates.

To address the weaknesses of trust management, a more general model of trust is needed.

In this thesis, this general model of trust is known as computational trust.

1.2 Computational Trust

The first part of this section covers the research that forms the foundation of

computational trust. Next, a definition for computational trust is proposed. This is

followed by discussion on the properties of computational trust and the different

dimensions of computational trust. Finally, computational trust formation is explained.

1.2.1 Foundational Research

Many different disciplines have studied the concept of trust. In biology, research has

shown that the hormone Oxytocin [70] when administered can increase trust among

humans. In [17], the author examined trust as seen in social psychology, philosophy,

economics, contract law and market research. The author discovered that different

disciplines tend to view trust differently. For example, social psychology tends to focus

on trust as the fulfillment of expectations. In philosophy, trust is viewed as non-rational.

In economics, trust is viewed as rational. In contract law, the focus is on trust as a

complement to legal contracts. Finally in market research, the focus is on the role that

trust plays in relationship based marketing.

Of the different disciplines, this thesis has adopted the view of trust in social

psychology. Basically, trust can be divided into four areas of research [27]. Individual

trust treats trust as a personality trait. Interpersonal trust is concerned with trust as it

4

relates to a trustor and a trustee. A trustor refers to a subject
1
 that trusts others. A trustee

is an entity
2
 that is being trusted. Relational trust believes that trust is an emergent

property of a relationship as opposed to a directed behavior. Societal trust is concerned

with the role that trust plays in the proper functioning of society. Trust is often credited as

the social capital that makes cooperation in a society possible [92].

Of the four research areas, the focus of this thesis is on interpersonal trust. As a

real life example, consider the case of a buyer (trustor) trying to buy a car from a used car

salesperson (trustee). There is no way for the buyer to know whether or not the

salesperson has the buyer’s best interest in mind. The salesperson could be trying to sell

the buyer a lemon. The uncertainty and lack of complete information makes the car

buying decision challenging. Trust can be used to aid in the buyer’s decision making. A

buyer can choose to only buy cars from a trusted used car salesperson. In a computing

context, the example could be the buying of a car from a used car website.

Many real life decisions have computing equivalents. Thus interpersonal trust can

be used in computing to aid the trustor in its decision making. In this thesis,

computational trust is built on the research in interpersonal trust. This should allow

computational trust to be used in not just computer security but also in general decision

making such as web service selection.

1.2.2 Definition

Trust is a concept that is easily recognizable but surprisingly difficult to define. Many

different definitions of trust have been proposed to address the different facets of trust.

For example, the American Heritage Dictionary defines trust as “firm reliance on the

integrity, ability, or character of a person or thing” [132]. Grandison and Sloman define

trust as “the quantified belief by a trustor with respect to the competence, honesty,

1
 A subject could be a person, a group of people (e.g. organization) or a representative of a person (e.g.

software agent).

2
 An entity could refer to both animate (e.g. person) and inanimate (e.g. movie) object.

5

security and dependability of a trustee within a specified context” [51]. Note that in both

definitions, trust is defined through the listing of the characteristics of a trustee.

A different approach to defining trust is provided by Deutsch in [35]:

 An individual is confronted with an ambiguous path, a path that can lead to an

event perceived to be beneficial (Va
+
) or to an event perceived to be harmful

(Va
−
);

 He perceives that the occurrence of Va
+
 or Va

−
 is contingent on the behavior of

another person;

 He perceives the strength of Va
−
 to be greater than the strength of Va

+

 If he chooses to take an ambiguous path with such properties, the individual is

said to have made a trusting choice; if he chooses not to take the path, he has

made a distrustful choice;

In this definition, there is no listing of characteristics. This is also the case in [44] where

Gambetta defines trust as “a particular level of the subjective probability with which an

agent assesses that another agent or group of agents will perform a particular action, both

before he can monitor such action (or independently of his capacity ever to be able to

monitor it) and in a context in which it affects his own action”.

 The definition of computational trust in this thesis is based on the definition

proposed by Gambetta in [44]. The concept of roles as discussed in [24] is also

incorporated into the trust definition. We define computational trust as follows:

Computational trust is a particular level of subjective assessment of

whether a trustee will exhibit characteristics consistent with the role

of the trustee, both before the trustor can monitor such characteristics

(or independent of the trustor’s capacity ever to be able to monitor it)

and in a context in which it affects the trustor’s own behavior.

6

When compared to the definition presented in [44], the term “probability” has been

replaced with the term “assessment” to highlight the fact that trust can be calculated in

ways other than probability theory. As the term “agent” has a different meaning in social

science than in computer science, the more general terms “trustor” and “trustee” are used

instead to avoid confusion. Also, a trustee can be an inanimate object. So “taking action”

may not always be possible for certain trustees. The term “action” therefore has been

replaced with the term “exhibit characteristics”. As for decision making, there are roles in

which both the trustor and the trustee must play. For example the decision of buying

services from a trustee. In this example, the trustor plays the role of a buyer while the

trustee plays the role of a seller. Whether the trustor trusts the trustee or not is dependent

on what the trustor believes to be the role of a “good seller”. If a trustee conforms to the

role as defined by the trustor, then the trustor can be said to trust the trustee.

1.2.3 Properties

Trust can be characterized by a number of basic properties [1], [52]. These properties are

also applicable to computational trust and are briefly described in this section.

1.2.3.1 Quantifiable and Comparable

There are many different ways in which trust can be represented. For example in [2], trust

is represented as a binary value of trust or mistrust. Although a binary representation is

easy to understand, it also has the weakness of lack of expressiveness. A simple way to

provide more expressiveness is to represent trust as multi-valued. In [1] for example, four

different trust degrees are defined. These are “Very Trustworthy”, “Trustworthy”,

“Untrustworthy” and “Very Untrustworthy”. It is also possible to represent trust as a

continuous variable as opposed to a discrete variable. Common representations include

representing trust as a value between zero and one (often seen in cases when trust is

treated as a probability) or between negative one and one. Although representing trust as

a real number allows for fine-grained distinction, such a representation can make it

difficult to discern the meaning behind the calculated trust value. For example, given two

trust values 0.73 and 0.74, what is the cause for the trust differences? Is it a rounding

7

error or is there something fundamentally different about trust in the two trustees? A

continuous representation makes discerning trust differences more challenging.

A trustor may feel uncertain about the result of its trust calculation. Some

researchers choose to represent this uncertainty as separate from trust. Often times, this is

known as reliability ([110], [59]) or confidence ([54], [128], [135]) in the calculated

trust. Other researchers choose to integrate uncertainty into trust such as in [23] where

trust is represented not as one value but as a range of possible trust values. Here, the

larger the range, the less certain the trustor is with regards to the calculated trust value.

1.2.3.2 Subjective

Different trustors may have different views on whether a trustee can be trusted. The

differences in trust are caused by the following two factors:

 Incomplete information. A trustor may not have access to the complete history of

a trustee. Trust is often calculated based on available information. Different

trustors may not have access to the same information.

 Subjectiveness of trustor. Different trustors may interpret the same information

differently. For example, a more forgiving trustor may be willing to accept some

failures from a trustee while a less forgiving trustor may not. Different trustors

may also have different views on how much uncertainty is acceptable. Emotions

like love and friendship could influence trust calculation as well. Finally, different

trustors may view the role of a trustee differently. For example, a trustor may

value security more than ease of use while this may not be the case for a different

trustor. These differences in expectations may influence the level of trust that a

trustor has for a trustee.

1.2.3.3 Multidimensional

A trustor may trust a trustee in one dimension but not in a different dimension. For

example, a trustor may trust a dentist with his dental health but not trust the dentist’s

stock picks. A trustor may trust Amazon’s EC2 Compute Cloud [8] but not trust its

8

Mechanical Turk service [9]. A trustor may trust a trustee with transactions that are less

than a hundred dollars but not in cases when the transaction is worth a million dollars.

Even the environment can play a role in a trustor’s trust in a trustee. For example, an

environment in which malicious sellers are actively being identified and banned can

increase trust in all the sellers in the environment. The associations of a trustee for

example, the fact that a trustee is acting on behalf of the government may have an impact

on trust as well.

It is possible for trust in one dimension to influence trust in a different dimension.

As an example, consider the case of general trust and specific trust [107]. An example of

general trust is trust in Amazon [7]. An example of specific trust is trust in one of the

services provided by Amazon. If Amazon decided to launch a new service, knowing

nothing about the new service, the trustor’s trust in Amazon may influence the trustor’s

initial trust in the new service.

1.2.3.4 Dynamic

A trustor’s level of trust in a trustee may change over time. This change may be caused

by the presence of new information or the retirement of old information that are no longer

relevant. It could also be caused by the lack of new information on a trustee. With no new

information, a trustee’s behavior could have changed without the trustor knowing

anything about it. This increases the trustor’s uncertainty with regards to the calculated

trust value. It is important for computational trust to be regularly reevaluated so that it

can keep up with the dynamic nature of trust.

1.2.3.5 Reflexive, Non-Symmetrical and Non-Transitive

Trust is reflexive as a trustor always trusts itself. Though the level of trust a trustor has

for itself may change over time (as trust is dynamic). Since trust is also multidimensional,

there is more than one type of self-trust. For example, a trustor that does not trust itself to

fix the water leak would hire a plumber to do the job. A trustor that does not trust itself to

calculate trust would have to depend on others to calculate trust for it (trust delegation).

9

In general, trust is non-symmetrical. This means that knowing the level of trust a

trustor A has for a trustee B does not help in determining B’s level of trust in A. This

non-symmetrical property follows from the property of trust being subjective. Therefore,

a trust relationship between A and B can be represented as two one-way trusts.

In general, trust is non-transitive. However, under certain semantic constraints, it

is possible for trust to be transitive. According to [64], transitivity requires that “the last

edge in the path represents functional trust and that all other edges in the path represent

referral trust, where the functional and the referral trust edges all have the same trust

purpose”. The term “trust purpose” is used to refer to why the calculated trust is needed.

Suppose the trustor has a trust purpose for finding a good car mechanic. Referral trust

would be the trust in a trustee to be able to recommend a good car mechanic. Functional

trust would be the trust in a trustee as being a good car mechanic. If A trusts B to

recommend a good car mechanic and B recommends C, then through transitivity, A can

trust C to be a good car mechanic. A different example of trust transitivity can be found

in a public-key infrastructure (PKI). In PKI, trust transitivity is established through the

existence of a chain of certificates (known as a certification path).

In general, trust is weakened or diluted by transitivity [64]. As such, in a chain of

A, B and C, A’s trust in C cannot be greater than B’s functional trust in C.

1.2.4 Conceptual Model

A conceptual model is used to show the “relationships between factors that are believed

to impact or lead to a target condition” [93]. A conceptual model should be

implementation independent. The conceptual model of computational trust is based on

the work of Lewis and Weigert [75]. The model views trust as consisting of three

dimensions: cognitive trust, emotional trust and behavioral trust. For the rest of this

section, each of the dimensions is described followed by a discussion of the relationships

between the dimensions.

10

1.2.4.1 Cognitive Trust

Cognitive trust is trust based on reasoning. It is knowledge-driven [61] though the

information that cognitive trust is based on can be unreliable and incomplete. Given the

available information, a cognitive leap is needed to arrive at a trustor’s cognitive trust in a

trustee [75]. As predicting the future is often impossible, the cognitive leap though based

on knowledge is still a leap of faith. Different trustors may have different comfort levels

about how much information it needs before it is willing to make a cognitive trust

prediction. This is one of the reasons for why trust is subjective.

1.2.4.2 Emotional Trust

Emotional trust or affective
3
 trust is trust based on feelings and affective bonds. It is non-

cognitive and often cannot be justified by the available information. Examples of

emotional trust includes trust based on faith, love, friendship, family, common values etc.

It is also present in public trust such as trust in doctors, judges, politicians, etc. Due to the

presence of emotion, a trustor would feel hurt or betrayed when the trustor realizes that

the trustee should not have been trusted. This is seen when relationship ends or when

someone who is highly respected such as a judge is caught in a scandal.

1.2.4.3 Behavioral Trust

Behavioral trust is trust as expressed through a trustor’s behavior. Experiments such as

Prisoner’s Dilemma (PD) games [10] can be used to investigate this type of trust. In a PD

game, a player can choose to either cooperate or defect. A player who chooses to

cooperate can be viewed as having behavior trust in the opposing player while a player

who chooses to defect is signaling the opposite. A strict behavioral interpretation of trust

can be misleading as trust is not the only factor that could influence a trustor’s behavior

[75]. For example, a trustor may decide to take action not due to trust but due to pressure

3
 In psychology, the term “affect” refers to feeling or emotion [4].

11

from its superior. An interpretation of this action as trust would lead to the drawing of the

wrong conclusion.

1.2.4.4 Trust Relationships

Cognitive trust, emotional trust and behavioral trust are related to each other [75]. The

web of relationships is graphically illustrated in Figure 1. To develop emotional trust, a

cognitive base needs to be present as it is hard to develop emotions towards complete

strangers. When reasoning about whether to trust, a trustor’s emotions may influence how

the available information are interpreted [72]. A trustor’s behavior can be influenced by

its cognitive trust and emotional trust. Behavioral trust exhibited by others may influence

a trustor’s cognitive trust and emotional trust.

Figure 1: Relationships among Trust Dimensions

In [75], it was pointed out that trust in real life can be decomposed into cognitive

trust and emotional trust. For example, ideological trust can be viewed as trust with high

cognition and emotion. Faith is trust with high emotion but with a lack of cognition. For

mundane everyday decisions such as the route to drive to work or what to have for lunch,

trust typically consists of low cognition and low emotion. A more detailed list of

examples can be found in [75].

12

1.2.5 Trust Formation

The conceptual model introduced in Section 1.2.4 forms the basis for computational trust

formation. Cognitive trust can be viewed as a function of a trustor’s beliefs in a trustee

[25]. Belief can be defined as the “degree of conviction of the truth of something

especially based on a consideration or examination of the evidence” [12]. Evidence is any

information that can be used in the formation of belief value. An evidence creator is also

known as the evidence source. There are many different types of evidence. The most

common are the trustor’s experience with a trustee, recommendation, reputation and

signal. Experience with a trustee is the knowledge that the trustor gained after interacting

with the trustee. Recommendation is experience that a trustor shares with others. For

example, when a movie critic writes a review for a movie, the review is the critic’s movie

recommendation. Reputation is the consensus assessment of a trustee by members of a

social network [94]. An example reputation is the Tomatometer of Rotten Tomatoes

[106] that is used to keep track of the reputation of movies among movie reviewers. In

the example, Rotten Tomatoes is the reputation system. The movie reviewers are

members of Rotten Tomatoes’ social network. Signal is information that a trustee

volunteered to the trustor. For example, by volunteering information showing that the

trustee has just passed an inspection (information that a trustor may not be aware), this

increases the trustor’s beliefs in a trustee.

The formation of emotional trust is based on the trustor’s emotions towards the

trustee. Behavior trust formation is based on the behaviors exhibited towards the trustee.

A graphical illustration of computational trust formation is shown in Figure 2. As

computational trust is subjective, it is the responsibility of the trustor to determine how

the trust dimensions are to be combined to form computational trust. It is also the

responsibility of the trustor to determine how the different trust dimensions influence

each other.

13

Figure 2: Computational Trust Formation

1.3 Application of Computational Trust

To demonstrate how computational trust can be used in computing, two scenarios are

introduced in this section. The scenarios are movie selection and web service selection.

The scenarios are used throughout this thesis to highlight different aspects of

computational trust.

1.3.1 Movie Selection Scenario

In the movie scenario, the movie selector (trustor) is interested in selecting a movie

(trustee) to watch based on the movie’s quality. Reading a movie’s description does not

help in making quality determination. A movie description is typically advertisement

from the movie studios. Advertisements can be assumed to be biased towards the movie.

To obtain evidence on a movie’s quality, a movie selector could obtain reputation values

from movie review sites such as Rotten Tomatoes, IMDb (The Internet Movie Database)

[60], Metacritic [91], etc. Due to differences in the underlying social network and

differences in the reputation calculation algorithm used, different reputation systems may

produce different reputation values. For example, the movie “Zombieland” as of October

6, 2010 has a score of 89% on Rotten Tomatoes, a 7.8 on IMDb and a 73 on Metacritic.

The differences in reputation values could also be due to the reputation system being

malicious or biased. As a result, this thesis has adopted the view that a trustor should

have access to as many evidence sources as possible. This is to provide the trustor with

the flexibility of selecting the evidence sources for evidence gathering.

14

An example cognitive trust calculation is shown in Figure 3. In the figure, the

movie selector chooses to only contact Rotten Tomatoes and IMDb for the reputation of

“Zombieland”. Basically, quality belief is calculated by averaging the normalized

reputations. As for cognitive trust, it is calculated by being assigned the same value as the

quality belief.

Figure 3: Cognitive Trust Formation (Movie)

In terms of emotional trust, the movie selector may enjoy horror films. Such

emotion could influence whether the movie is emotionally trusted. With respect to

behavior trust, the movie selector’s observations that a lot of his friends have seen

“Zombieland” and liked it can cause the movie to be behaviorally trusted. These different

trust dimensions are combined based on the movie selector’s subjective views to form the

selector’s computational trust in a movie.

1.3.2 Web Service Selection Scenario

Typically web service selection starts with web service discovery. The return value of

discovery is a set of web service instances * + that satisfies the

consumer’s functional requirements. As for the consumer’s non-functional requirements,

let * + denote the set of metrics representing the non-functional

aspects. Associated with each web service instance is an offer

 *() () (())+ where is the value that service

promises for metric . Many web service selection strategies focus on selecting a web

service instance based on offers. Such approaches are often risky. A web service may not

keep its promise to provide the agreed upon offer. This could be due to the service having

15

exaggerated or lied about its capabilities (intentional) or the service being overloaded

(unintentional). Trust can be used to assess the validity of an offer. Figure 4 graphically

depicts an example of how cognitive trust in a web service is calculated based on beliefs:

qualification, timeliness, accuracy and coverage.

Figure 4: Cognitive Trust Formation (Web Service)

In terms of the qualification of the web service, this could be deduced from the

qualification signals (certificates) issued by neutral third parties (certificate providers)

that has validated the web service’s qualification. As for the timeliness of the web

service, i.e., whether computation required can complete on time or not, this belief is

formed through the weighted average of the consumer’s past experiences with the service

and the service’s reputation. The results produced by a web service could be evaluated by

the consumer in terms of accuracy and coverage. The results are accurate if they are

correct. The results have good coverage if the breadth of the solutions provided meets the

trustor’s expectations. As both accuracy and coverage cannot be obtained through

monitoring, they are obtained by querying the consumer after service invocation.

Accuracy belief and coverage belief are based on applying weighted average on the

consumer’s past experiences with the service and the service’s reputation. Finally,

cognitive trust is calculated from the four calculated beliefs. In this case, if a web service

is believed to be qualified and the values calculated for timeliness belief, accuracy belief

and coverage belief are all greater than zero, then cognitive trust is assigned a positive

value of 1. Otherwise, cognitive trust is assigned the negative value of -1.

16

In the case of timeliness belief, accuracy belief and coverage belief, the beliefs are

formed from evidence of multiple types. This is to account for the fact that evidence of

different types has different properties. Between experience, recommendation and

reputation, experience is considered the most important as it is created by the trustor [63].

It is assumed that the trustor is always non-malicious towards itself
4
. A trustor also

always has its own best interest in mind. This may not be the case with recommendation

created by recommender and reputation created by reputation system. Recommendation

and reputation however can be used to guide the trustor in terms of which trustee to

invoke to gain experience. Moreover, the number of past experiences that a trustor has

with a trustee could be very low if the trustor had very few interactions with the trustee.

The number may be too few to be representative of the trustee’s behavior. In this case,

recommendations and reputation may be valued more. Between recommendation and

reputation, recommendation is usually valued more than reputation. With

recommendation, the trustor determines the recommenders to be contacted. This is based

on the assumption that the trustor is familiar with the behavior of the recommenders.

Without familiarity, a trustor has to depend on reputation. With reputation, its calculation

is often opaque to the trustor. This means that the trustor may not be able to determine the

effectiveness of the gathered reputation. As for signals, third-party signals are valued

more than signals generated by the trustee. This is due to the fact that a signal created by

the trustee about itself can be self-serving.

As different evidence types have strengths and weaknesses, this thesis has

adopted the view that having access to multiple evidence types is desirable in belief

calculation. This is similar to views found in existing work such as [59] and [110]. For

each evidence type, multiple evidence sources should be accessible. In the case of web

services, reputation systems may include [78], [87] and [140].

In terms of emotional trust, this could be influenced by the branding of a web

service. In fact, the use of branding to create an affective bond between a consumer and a

4
 This does not mean that the trustor cannot act maliciously towards others.

17

brand (e.g. through shared values such as caring about the environment) is known as

emotional branding [47]. With respect to behavior trust, a consumer is more likely to

behaviorally trust a web service that is popular and used by many. The different trust

dimensions are combined based on the consumer’s subjective views to form the

consumer’s computational trust in a web service.

1.4 Challenges to Computational Trust

The idea of applying a general model of trust to computing was first proposed by Marsh

[84] in 1994. Since then, certain elements of trust such as reputation has gained

widespread acceptance (e.g. eBay [38] and Amazon). However, the concept of a general

trust model has so far failed to gain traction. We believe that this is due to the inherently

difficulty in implementing a general trust model. For computational trust, the challenges

are as follows:

 Lack of standards for discovering and accessing evidence. This means that it is up

to the application developer to implement all needed evidence discovery and

evidence gathering protocols. This is inefficient as applications may implement

the same protocols leading to code duplication. Also, if the trustor has preferences

towards a certain set of evidence sources, this would need to be configured for

each application individually. Moreover, if the trustor would like to use the

evidence provided by an evidence source, it is not always possible as the

protocols needed may not be supported by an application.

 Lack of standards for representing evidence. Evidence can be represented as a

rating. A rating is the result of evidence evaluation where the result is represented

as a position on a scale [101]. Ratings can come in different forms. For example,

ratings used by Rotten Tomatoes are in the form of 0 to 100 percent. Ratings used

by IMDb are in the form of 1 to 10. There are other forms of evidence

representations as well. For example as a X.509 certificate or in the form of a text

review. Some evidence may even be encrypted to ensure security and privacy.

The lack of a standard evidence representation makes it challenging for an

application to be able to understand what the different evidence are representing.

18

 Evidence Filtering. Not all the gathered evidence should be used in belief

calculation. Evidence may be fabricated by malicious evidence sources to

intentionally mislead the trustor. Evidence may be biased by the views of

evidence sources. For example, a movie reviewer (evidence source) that is biased

against horror films may give a horror film a worse rating than what a regular

moviegoer would considered to be fair.

According to [63], there are currently two main approaches to evidence

filtering. One approach is to simply exclude or give low weight to evidence that

are outliers. This is based on the assumption that in any environment, the majority

of the evidence are non-biased and non-malicious. In [137] for example, a beta

distribution is computed of the evidence. Any evidence that is less than the 1%

quantile or greater than the 99% quantile are filtered out. A different approach is

for the trustor to identity those evidence sources that can be trusted to provide the

trustor with quality evidence. When evidence is needed, only those trusted

evidence sources would be contacted for evidence gathering. An example can be

found in [30] where evidence source trust depends on whether the evidence

source agrees with the trustor.

 Computational Trust is subjective and multidimensional. There are many different

ways in which computational trust in a trustee can be calculated. Factors such as

the trustor’s emotion (e.g. feeling pessimistic), the trustor’s preferences (e.g.

valuing accuracy over coverage), the decision the trustor is trying to make (e.g.

movie selection or web service selection), the importance of the decision, etc.

could all have an influence on computational trust calculation.

1.5 Contributions of Thesis

Listed below are the contributions of this thesis:

 A general trust model known as computational trust. The model is based on work

by Lewis and Weigert [75]. As a result, unlike most work on trust in computing,

computational trust has a social psychological underpinning. The model is also

different from other work in that it considers trust dimensions and treats evidence

19

based trust (cognitive trust and behavioral trust) and non-evidence-based trust

(emotional trust) differently. When implementing the computational trust model,

a number of adaptations have been made to Lewis and Weigert’s model including

the merging of cognitive and behavioral trust, deriving emotions from the

trustor’s knowledge of the trustee and the simplification of the relationships

among the trust dimensions

 An architecture for supporting computational trust formation. The architecture

consists of a middleware known as SCOUT (Services supporting COmpUtation of

Trust). SCOUT consists of a set of web services that can be used by Trust

Calculators for computational trust calculation. The calculated computational trust

can be used to support decision making. The computational trust architecture is

designed to address the challenges outlined in Section 1.4.

 Algorithms for computational trust formation.

 Experiments, evaluations and scenarios demonstrating the feasibility of the

proposed architecture in supporting computational trust formation.

1.6 Thesis Organization

The remaining chapters of this thesis are organized as follows. Chapter 2 provides more

background on trust. Chapter 3 reviews the trust literature. Chapter 4 provides a high

level overview of the computational trust architecture. The components of the

architecture are introduced in Chapter 5 and Chapter 6. The algorithms implemented in

the architecture are described in Chapter 7. Our prototype implementation is described in

Chapter 8. Experiments using the prototype are described in Chapter 9. The prototype is

applied to two different scenarios in Chapter 10. We evaluated the architecture with

respect to our stated goals in Chapter 11. Finally, the thesis ends with conclusions and

future works in Chapter 12.

20

1.7 Summary

Trust is a concept has been investigated by many different disciplines including

computing. There are a number of weaknesses to the current computing approach to trust.

This could be addressed through the adoption of a more general trust model. In this

thesis, the trust model is known as computational trust. It is based on research on

interpersonal trust in the field of social psychology. A definition for computational trust

is provided along with discussion of its properties, conceptual model, formation and

application. The rest of this thesis focuses on addressing the challenges to calculating

computational trust.

21

Chapter 2

2 Trust Primer

The focus of this chapter is on providing more background on trust. As computational

trust is a type of trust, the discussions in this chapter also apply to computational trust.

This chapter is divided into five sections. The first section describes the preconditions for

trust. Next, several concepts that are related to trust are introduced and explained. This is

followed by a discussion of the role that privacy plays in trust calculation. The fourth

section of this chapter covers the relationship between trust and risk. The last section

discusses how trust can be used in decision making.

2.1 Preconditions for Trust

Trust is not always needed for decision making. In [69], the authors identified three

preconditions for trust. The preconditions are dependence, uncertainty and vulnerability.

Dependence is about having to rely on others to fulfill a specific need. Uncertainty occurs

when one is not one hundred percent certain about the outcome of a decision. As for

vulnerability, it is the cost for making of a wrong decision. Uncertainty and vulnerability

together are commonly known as risk [69]. There would be no need for trust if a decision

poses no risk to the trustor [82].

In the movie selection scenario, the selector depends on the movie being of high

quality. Without actually seeing the movie, there is always uncertainty about the actual

movie quality. Finally, making the wrong movie selection could result in wasted money

and time. As the scenario satisfied all three preconditions, trust can be used in the

scenario to facilitate movie selection. Similar arguments can also be made for the web

service selection scenario.

2.2 Concepts Related to Trust

In this section, several concepts are introduced with the goal of clarifying how these

concepts are related to trust.

22

2.2.1 Untrust, Distrust and Mistrust

In [86], the authors introduced the concepts: untrust, distrust and mistrust. Mistrust is

used to describe trust that turns out to be misplaced. Distrust is the negative form of trust

where the trustee is believed to be actively working against the trustor. Finally, untrust is

when there is trust in a trustee but not enough to overcome the perceived risk. A

graphical illustration of the different concepts is shown in Figure 5. In the figure, the

cooperation threshold is used to represent the perceived risk associated with a decision.

Figure 5: From Distrust to Trust [86]

In movie selection and web service selection, a selection is only made if trust in a

movie or a web service is above the cooperation threshold. Distrust occurs if a movie is

believed to be of low quality or if a web service is believed to be incompetent or

malicious. Untrust occurs if trust exists but just not enough for a selection to be made. As

for mistrust, this occurs after a selection when the trustor discovers that it should not have

selected the movie or web service.

2.2.2 Trustworthiness

Trust and trustworthiness should not be used interchangeably [31], [45]. Trust is

associated with the trustor and could influence the behavior of a trustor. Trustworthiness

is a characteristic of the trustee. A trustee is perceived to be trustworthy. A trustor is more

likely to trust a trustee that exhibits the characteristic of trustworthiness [122].

23

In movie selection, a movie directed by a competent director is perceived to be

trustworthy. Whether a selector would trust such a movie is a completely separate

question. A web service could behave in a trustworthy manner by trying its best to satisfy

all consumer requests. Whether the displayed trustworthiness is enough for a consumer to

trust the web service is subjective and consumer dependent.

2.2.3 Contract

A trustor and a trustee may decide to enter into a contract. By doing so, the trustor and

trustee are delegating the responsibility for contract enforcement to some agreed upon

authority. An authority could be the legal system or an impartial mediator. It is the

authority’s responsibility to assess whether there is any contract violation and if so to

impose punishment. The introduction of a contract does not mean that there is no need for

trust [25]. Trust in the authority to be able to enforce signed contracts underlies the entire

rationale for contracts. A trustor also needs to trust that that the trustee would be deterred

by the punishment. Otherwise, the trustee could choose to accept the punishment and

violate the contract at will.

Contracts are not always available for all decision making. For example, there is

usually no contract for movie watching. Contracts are more commonly associated with

web services. A web service could offer a standardized contract to all its consumers. A

web service could also choose to negotiate with each of its consumers to offer customized

contracts to suit each of the consumer’s needs.

2.2.4 Confidence

A trustor trusts a trustee to complete the assigned job. A trustor is confident that the

trustee can complete the assigned job. In the previous examples, trust and confidence are

used interchangeably. Different researchers have offered different views on how to

distinguish between the two concepts. According to Luhmann in [82], confidence is the

expectation of not being disappointed. For example, a trustor is confident that the light

would turn on with the flip of a switch. Luhmann argues that trust also involves

expectation except it presupposes a situation of risk. With trust, a trustor is given a choice

while this is not the case with confidence. For example, whom a trustor should buy a used

24

car from is a trusting decision. This is not the view in [31] where trust is defined as “an

attitude of confident expectation…”. In this definition, confidence is considered a part of

trust which seems to contradict the view of Luhmann [86].

In [118], the authors argued that trust is only relevant in risky situations where

familiarity with the trustee is low. Moreover, trust can only applied to a trustee that is a

person or a person-like entity. Confidence on the other hand is based on a high level of

familiarity and can be applied to just about anything. Carole Smith in [121] proposed an

alternate view where trust is seen as a moral exercise of free will. With trust, there is

uncertainty about the possible outcomes and a lack of objective information. With

confidence, there is an explicitly established outcome where information is collected in

an objective and scientific manner. For example, holding public servants accountable

through performance reviews can increase public confidence in a public institution. The

focus on performance measurements however can have a negative effect instilling

distrust between employees and managers.

There is a distinct lack of agreement among different researchers on how to

distinguish between trust and confidence. As the disagreement is mainly a naming issue

(i.e., when should trust be used and when should confidence be used to describe a

situation), we do not see how introducing the concept of confidence could benefit

decision making. As a result, we ignore confidence and focus on trust exclusively in this

thesis. Note that in some computer science literature, the term confidence is sometimes

used to refer to confidence in the calculated trust. This specific usage of the term is

unrelated to the discussion in this subsection and therefore the usage is acceptable.

2.3 Privacy

It is up to an evidence source to determine whether evidence should be disclosed to a

trustor. Without evidence, cognitive trust cannot be calculated. Yet when evidence is

disclosed, privacy may be lost. It is difficult to recover from privacy loss. As an example,

consider a trustee’s identity. Identity is needed for trust calculation. For maximum

privacy, a trustee could choose anonymity. However, it is almost impossible to calculate

trust if a trustor does not know who the trustee is. As a result, trustees are often provided

25

with lesser privacy through pseudonymity. Even with pseudonymity, it can be difficult to

hold a trustee accountable for its bad behavior if the trustee can change its pseudonym at

will. So for pseudonymity to work, it needs to be difficult for a trustee to acquire more

than one pseudonym.

In the field of trust negotiation [13], disclosure policies are used to implement

conditional evidence disclosure. The goal is to provide privacy protection by only

revealing evidence on an as needed basis. However as pointed out by Danah Boyd in

[18], privacy is more than just control over evidence disclosure. It is also about providing

the user with control over how its evidence is being distributed. There is a difference

between making private evidence publicly accessible and having that evidence being

widely publicized without the user’s consent [18].

2.4 Risk

Trust is a concept that is inherently linked to risk [22], [65]. Risk involves uncertainty

and vulnerability. In [73], risk is defined as the likelihood and severity of an accident. In

[88], the authors argued that risk should consider more than just the accidents or negative

outcomes. If a decision involves the possibility of both positive and negative outcomes,

the aggregate level of risk (i.e., risks from all possible outcomes of a decision) should be

different than if there is only the possibility of negative outcomes. This view of risk is the

one that is adopted in this thesis. Risk is also considered to have the following properties:

quantifiable, subjective, multidimensional and dynamic.

 In [25], the authors argued that there are two types of risk. The first is the risk of

failure. This is the gain the trustor could have had had it not make the wrong decision.

The second is the risk of wasted effort. This is the investment of the trustor that had gone

to waste. Example investments could be time or money. As for how trust and risk are

related to each other, [45] proposed three possibilities:

 Mediating relationship. In this relationship, trust does not have a direct impact on

decision making. Instead, trust is used to reduce the riskiness of a decision. It is

risk that is responsible for determining whether a decision should proceed.

26

 Moderating relationship. In this relationship, risk is responsible for moderating

the effect of trust on decision making. Basically when risk is high, trust has an

influence on decision making. When risk is low, trust is considered irrelevant to

decision making.

 Threshold model. In this relationship, trust and risk are both independently

formed. A trustor would only implement a decision if its level of trust surpasses

its threshold of risk.

Of the three relationships, the mediating relationship is reported as having the widest

acceptance among ecommerce researchers [45]. As for the threshold model, although it is

widely used in computing, surprisingly it has no ecommerce research underpinning [45].

2.5 Decision Making

There are many factors that could influence a trustor’s decision making. Several example

factors include company policies, the cost of each decision choices, trust in a trustee,

loyalty to a trustee, etc. During decision making, a trustor may prefer a certain trustee but

is held back by its lack of trust in the trustee. An example of this could be whether to use

an unknown web service that is being offered at a great price point. If more trust is

needed, one possible solution could be to demand more accountability from the trustee.

An example could be to demand heavier punishment for contract violation. A different

approach to solve this problem could be to simply reduce the risk associated with the

decision. For example by buying insurance, a trustor could hedge against possible

negative outcome thereby reducing the need for high level of trust in the trustee.

2.6 Summary

For trust to be useful in decision making, there needs to be dependence, uncertainty and

vulnerability associated with the decision. The chapter introduced several concepts

related to trust including untrust, distrust, mistrust, trustworthiness, contract and

confidence. The concepts are explained and distinguished from trust. The role that

privacy and risk plays in trust is also explained. Finally, the chapter ends with a

discussion of trust’s influence on decision making.

27

Chapter 3

3 Literature Review

The focus of this chapter is to distinguish our work from others in the trust literature. This

chapter is divided into three sections. The first section is a survey of work on trust and

reputation. Next, arguments for a middleware approach to computational trust formation

are presented. The arguments are based on insights gained from the literature survey.

Finally, the last part of this chapter covers work on trust middleware. None of the work

on trust middleware covers all the elements that we have identified as critical to

supporting computational trust formation.

3.1 Survey of Trust and Reputation

The literature survey on trust and reputation covers four different areas of computing.

These are the World Wide Web, peer-to-peer environments, virtual communities (e.g.

agent societies, grid computing, business networks, etc.) and pervasive environments

(e.g. mobile and wearable computing, context-aware computing, etc.). In each area, we

describe in detail how trust and reputation is used. Note that the survey is not intended to

be complete. Instead, the focus is on presenting representative works in each of the

computing areas. As there is no commonly accepted definitions for trust and reputation,

footnotes are used to point out differences in definitions whenever necessary.

3.1.1 The World Wide Web (WWW)

There are many different uses for trust and reputation on the World Wide Web. For

example, trust and reputation can be used to promote e-commerce. Such uses could be

found in Amazon [7], Best Buy [14], [26], eBay [38], Epinions [39] and [83]. Trust and

reputation can also be used for identifying quality information. Examples of such use

include Advogato [3], PageRank [19], IMDb [60], Metacritic [91], Rotten Tomatoes

[106], Slashdot [120], Stack Overflow [126] and Web of Trust [135]. In the field of

Semantic Web, trust and reputation are used to determine how much an information

source should be trusted [48] [104]. For the rest of this subsection, three works on the

WWW are described in detail.

28

3.1.1.1 eBay

In eBay [38], a reputation system (feedback forum) is responsible for calculating the

reputation of each eBay member. After each transaction, a buyer and seller are allowed to

rate each other by leaving feedback. A feedback consists of both a rating (positive,

neutral or negative) and a short comment. If a member is a buyer, it can also leave

detailed ratings (scale of one to five stars) on the seller. The ratings are on criteria such as

communication and shipping time. The reputation of a member is calculated as the

difference between the positive and negative ratings left by eBay members (eBay’s social

network). To capture a member’s recent behavior, the ratings from the last one, six and

twelve months are summarized and presented as shown in Figure 6.

Figure 6: eBay’s Feedback Forum

Although there is a number of weaknesses to eBay’s reputation system such as its

counter intuitiveness (member with higher reputation is not always better on eBay) and

disproportionately positive feedbacks [102], the feedback forum has been shown to be

effective in encouraging transactions [102]. In fact, an analysis done by [81] on the

auctioning of collectible one-cent coins found that a seller’s reputation have a statistically

significant impact on the coin auction prices.

3.1.1.2 Web of Trust

Web of Trust (WOT) [135] is a browser add-on that is designed to promote safe

browsing. WOT uses user ratings and carefully selected information sources (e.g. listings

of phishing sites) to calculate the reputation of websites. A reputation in WOT is based

on assessments of four different components: trustworthiness, vendor reliability, privacy

and child safety. WOT also calculates its confidence in the calculated reputation.

29

Confidence is based on the amount of evidence and the quality of the evidence sources. A

WOT user can also leave comments on a site. A comment could belong to one of

seventeen categories: good site, entertaining, spam, useless, etc. In WOT, the reputation

of a web subdomain actually contributes to the reputation of the parent web domain.

The reputations calculated by WOT are displayed as coloured icons next to search

results and links in emails. For example, a website with excellent reputation is assigned a

green icon while a site with poor reputation is assigned a red icon. A website could also

obtain a WOT Trust Seal as proof of its trustworthiness. The seal can be obtained for a

monthly fee. As of writing, WOT has rated over 28 million sites with over 10 million

add-on downloads.

3.1.1.3 Object Scoring by Chen and Singh

In [26], it is proposed that the reputation of a rater (member of a social network) should

be structured as a tree. The reputation tree has the rater’s reputation as the root with each

of its children being the reputation of the rater in different knowledge domains (subject

areas). To build a reputation tree, the first step is to perform comment evaluation. A

comment refers to the numeric rating giving to an object (product or service) along with

the associated text review. After comment evaluation, the reputation of a rater in a

specific knowledge domain can be calculated. This is based on all the evaluations in the

specific knowledge domain. Finally, the reputation of a rater can be calculated based on

the rater’s reputation in different knowledge domains.

The score of an object is calculated as the weighted average of the object’s

received ratings. The weight of a rating is assigned based on the rater’s reputation. If a

rater’s reputation in a specific knowledge domain is unavailable, the solution is to move

up the reputation tree and use the rater’s more general reputation instead. As for

confidence in the object score, this is calculated based on the total number of received

ratings, reputation of raters and degree of consistency among the ratings. During

experimentation, the authors compared their work with Epinions [39] and discovered that

raters with high reputation actually correspond well to those good raters selected by the

site manager and users of Epinions.

30

3.1.2 Peer-to-Peer (P2P) Networks

Trust and reputation are used in P2P networks to improve resource selection. They also

encourage cooperation by ensuring that good peers are rewarded while bad peers are

punished. Some works in P2P include [2], [20], [32], [54], [55], [56], [68], [71], [76],

[77], [90], [116], [123], [127], [130], [133], [134], [139] and [143]. In this subsection, six

of those works are described in greater detail.

3.1.2.1 XREP

XREP [32] is a reputation
5
 sharing protocol that is designed for Gnutella-like systems. In

XREP, each servent
6
 and each resource is assumed to have a unique identity. The XREP

protocol consists of five phases: resource searching, resource selection and vote
7
 polling,

vote evaluation, best servent check (confirm resource digest is valid from best servent)

and resource downloading (with a confirmed resource digest, one could download

resource from any servent). Votes take only two values: 1 for positive opinion and 0 for

negative opinion.

A distinguishing feature of XREP is that it not only calculates the reputation
8
 of

servents but also the reputation of resources as well. By considering both types of

reputation, this allows XREP to solve the cold-start problem, i.e., the problem of the lack

of reputation on newcomers. For a new resource, XREP proposes that the resource can

establish its reputation through the reputation of the servent. As for a new servent, it can

gain reputation by offering access to reputable resources.

5
 Due to differences in definitions, “reputation” actually corresponds to “recommendation” in this thesis.

One could also think of XREP as a protocol for how recommendations can be exchanged in Gnutella-like

systems.

6
 A servent is a node in a P2P network. It is both a trustee and an evidence source.

7
 A “vote” is basically a recommendation represented as a rating.

8
 Due to differences in definitions, “reputation” as used in this paragraph actually corresponds to “trust” in

this thesis.

31

3.1.2.2 Bayesian Reputation System by Buchegger and Le Boudec

In [20], a reputation rating
9
 is defined as the opinion formed by node about node ’s

behavior in a P2P system. A reputation rating is updated based on a node’s first-hand

observation (experience) and first-hand observations shared by other nodes

(recommendations). In the former case, a modified Bayesian approach is used to update

the reputation rating. The modifications proposed in [20] include giving past evidence

less weight and to forget old observations through decay over time. In the latter case, the

reputation rating is updated by taking the received observations into account. As nodes

may provide false reports, [20] proposes to only update the reputation rating if the

reporter
10

 is considered trustworthy or if the reported observations is similar to the node’s

own observations. The trustworthiness of a reporter (trust rating
11

) is calculated using the

same modified Bayesian approach based on observation similarity.

[20] also proposed to classify the different P2P nodes based on the expected value

of their beta distribution. For example, if a node is willing to tolerate at most 25%

misbehavior, then a node will be classified as normal if its expected value is less than or

equal to 0.25. Otherwise, node will be classified as misbehaving. The same approach

can also be used to classify the trustworthiness of reporters.

3.1.2.3 Fuzzy Trust by Griffiths, Chao and Younas

In [54], fuzzy logic is proposed as a way to calculate trust in P2P systems. The idea is for

a trustor to keep track of its experiences interacting with other member peers in the

dimensions of success, cost, quality and timeliness. Trust is then calculated from

experiences using fuzzy inference rules. The input fuzzy term is experience which could

have the value of negative big, negative medium, negative small, zero, positive small,

positive medium and positive big. The output fuzzy term is trust which could have the

9
 Due to differences in definitions, “reputation rating” actually corresponds to “trust” in this thesis.

10
 A “reporter” is basically a recommender in this thesis.

11
 Unlike in [20], this thesis does not distinguish between trust in nodes and trust in reporters. So, “trust

rating” actually corresponds to “trust” in this thesis.

32

value of high distrust, distrust, undistrust, untrust, trust and high trust. Confidence is also

calculated for each experience dimension to ensure that there are sufficient experiences

available to perform trust calculation. If the calculated confidence is below a certain

threshold, then a default experience value (chosen based on the trustor’s trusting

disposition) is used as oppose to the trustor’s actual experiences. The paper also points

out that sometimes selecting a peer based solely on trust may not be enough. So,

additional fuzzy inference rules could be introduced that combines trust with other

decision factors (e.g. advertised cost).

3.1.2.4 DCRC and CORC

In P2P networks like Gnutella, cooperation among peers is essential to the searching and

downloading of content. It is therefore important for there to be incentives to encourage

cooperation among peers. In [55], the authors proposed a reputation based incentive that

is tied to a peer’s level of participation in the system. The paper proposed two different

ways to calculate the reputation score
12

 of a peer. These are the debit-credit reputation

computation (DCRC) scheme and the credit-only reputation computation (CORC)

scheme.

With DCRC, a peer does not calculate its own reputation score. Instead, this is

outsourced to a reputation computation agent (RCA). A peer presents its actions within

the P2P network to the RCA and in return gets back its new reputation score. There are

three types of credits that can be claimed by a peer. These are the Query-Response Credit

(QRC) for proof of having responded to a query message, the Upload Credit (UC) for

proof of having served content to a peer and the Sharing Credit (SC) for proof of having

been online and for having contents that could be shared with others. As for debits, the

only type of debit supported is the Download Debit (DD) for proof of content download.

Together, the debits and credits are used to compute a peer’s reputation score.

12
 A “reputation score” is basically reputation that is calculated using either DCRC or CORC scheme.

33

CORC is functionally similar to DCRC with the only difference being that it does

not support DD. There is incentive in CORC for a peer to stop contributing to the P2P

network as soon as it has obtained a good reputation score. To prevent this from

happening, the RCA time-stamps the calculated reputation score for expiration. Both

DCRC and CORC have their respective strengths and weaknesses. A detailed comparison

of the two reputation computation schemes is available in [55].

3.1.2.5 Anomaly Detection by Stakhanova, et al.

In a P2P network, trust can be used to determine whether a peer should accept or send

traffic to a different peer. In [127], trust is calculated based on four types of actions:

resource search, resource upload, resource download and traffic extensiveness. Each time

an action is taken, it can be classified as good (successful outcome) or bad (fail outcome).

The classification is based on anomaly detection. The idea is for the creation of a peer

profile that establishes a peer’s typical behavior in the P2P network. Periodically, a peer’s

online session data is analyzed using a one-class support vector machine (SVM) for any

deviation from the peer profile. Once an anomaly is discovered, Chebyshev’s rule is used

to determine the impact the anomaly has on an action.

The trust score
13

 of a peer is calculated as the percentage of bad actions during a

given time period. In [127], the authors proposed to reject all traffic from peers with trust

score that is greater than the distrust threshold. Traffic from peers with trust score that is

lower than the full trust threshold is always accepted. If a peer’s trust score is between the

two thresholds, then only part of the peer’s traffic is accepted.

3.1.2.6 PET and M-CUBE

PET [77] is a trust model that is designed to encourage cooperation in P2P resource

sharing. The trust model consists of a reputation model and a risk model. Reputation
14

 in

13
 Due to differences in definitions, “trust score” actually corresponds to the inverse of “trust” in this

thesis.

14
 Due to differences in definitions, “reputation” in the paper actually corresponds to “trust” in this thesis.

34

PET represents the accumulative assessment of a peer’s long-term behavior. Interaction-

derived information (experience) and recommendations are used in reputation

calculation. Risk
15

 in PET represents a peer’s short-term behavior. Risk is calculated

using interaction-derived information and is normalized to the worst case scenario. When

calculating trust, weights are assigned to both reputation and risk. The paper recommends

risk be assigned a high weight especially in dynamic systems.

M-CUBE (Multiple Currency based Economic Model) [76] is a decentralized

trading scheme that utilizes the trust calculated by PET to enforce cooperative resource

sharing. The idea is for each peer to issue its own currency and to set its own price for the

offered resources. If a peer needs the resource offered by a different peer, the first step is

to obtain the currency of the other peer. This can be done through a currency exchange

protocol where initially the currency ratio is set to one to one. The currency ratio will

self-adjust over time. This is to force a less trusted peer to pay more than a trusted peer.

Once currency has been obtained, the peer could now use the currency to acquire the

shared resource. If a peer refuses to share its resources, its trustworthiness will decrease

making currency exchange more expensive over time. When the trustworthiness of a peer

drops below a certain threshold, the peer would get banned from the P2P community.

3.1.3 Virtual Communities

A virtual community is in many ways similar to a real life community [1]. The role that

trust and reputation plays in a physical community therefore are applicable to virtual

communities as well. Some work on virtual communities includes the following:

 Agent societies: [24], [25], [53], [59], [84], [100], [110], [111], [114], [142] and

[144]

 Grid computing: [11], [79], [98], [129] and [136]

15
 The paper’s definition of “risk” is different from the definition in this thesis. In fact, their definition is

really just a different way to calculate trust.

35

 Web services: [5], [78], [87], [115] and [144]

 Others: [1], [108] and [147]

In this subsection, six representative works are described in detail.

3.1.3.1 Regret

The Regret system [110] assumes that the reputation
16

 of an agent is based on three

dimensions: individual dimension, social dimension and ontological dimension. The

individual dimension is concerned with direct interaction (experience). Sociograms

(graphs representing social relations) are used to calculate reputation in the social

dimension. In Regret, it is assumed that each agent has its own sociograms. These

sociograms represent an agent’s view of the competition, cooperation and trade within

the agent society. Regret supports three types of social reputations: witness reputation,

neighborhood reputation and system reputation. The ontological dimension is concerned

with the creation of complex reputation. An example complex reputation could be an

agent’s reputation as a swindler that could be based on the agent’s reputation to

overcharge and its reputation for providing poor quality products.

Implementation wise, Regret is designed to be modular [109]. This means that an

agent can pick and choose the types of reputation to be used in reputation calculation. For

example, if one does not have any experiences with an agent, it could choose to calculate

the agent’s reputation based solely on social reputations. After some interactions with the

agent, there is now enough experiences so that any future reputation calculation will

include both individual and social dimensions.

3.1.3.2 FIRE

FIRE [59] is a trust and reputation model that is designed for open multi-agent systems

(MAS). Specifically, trust in FIRE is calculated based on interaction trust, role-based

trust, witness reputation and certified reputation. Interaction trust is calculated based on

16
 Due to differences in definitions, “reputation” in the paper actually corresponds to “trust” in this thesis.

36

the direct experiences of an agent. Role-based trust uses rules to determine how much an

agent can be trusted. Witness reputation is calculated by employing a referral based

approach. Certified reputation is calculated based on certified references. By taking into

account a variety of information, this means that even if some information sources are

unavailable, trust can still be calculated. FIRE assumes that all agents are honest when

exchanging information. The possibility of there being disinformation is considered to be

future work.

3.1.3.3 Grid Computing by Azzedin and Maheswaran

In a grid computing system, trust [11] can be used to encourage resource sharing among

grid domains (GDs). Associated with each GD are two virtual domains: the resource

domain (RD) and the client domain (CD). It is assumed that a trust agent exists in each

GD and is responsible for calculating the GD’s trust in the other domains. As for the

resources and clients within a GD, they automatically inherit the trust attributes of their

RD and CD. Trust in a domain is calculated based on direct trust (experiences) and

reputation (recommendations from other domains). For domain-to-domain resource

sharing to occur, it is required for both GDs to have enough trust in each other (

).

3.1.3.4 Service Selection by Ali, Ludwig and Rana

A framework for web services discovery and selection is proposed in [5]. A trust

relationship in [5] consists of three phases: unknown, volatile and mature. A trust

relationship starts in the unknown phase. After some interactions, the relationship enters

the volatile phase. After developing a deeper understanding of a web service, the

relationship enters the more stable mature phase. A trust policy is used to capture a user’s

trust disposition. A policy can also be used to specify the conditions for transitioning

from one trust phase to another.

Trust in [5] is calculated using QoE (Quality of Experience) and QoC (Quality of

Compliance). QoE is concerned with how the service delivered is when compared to the

user’s expectations. QoC is concerned with whether the service delivered met the agreed

37

upon quality of service (QoS). As for trust calculation, it is based on Fuzzy Cognitive

Maps (FCM). The paper proposed to only trust a web service if the subjective expected

utility to trust is greater than the subjective expected utility to distrust.

3.1.3.5 The TuBE Trust Management System

The TuBE trust management system [108] is responsible for facilitating inter-enterprise

collaborations. The Guard component of TuBE intercepts SOAP messages from

collaborating partners and passes the messages on to the trust decision maker. The

decision maker needs to decide whether a SOAP message should be allowed to proceed

or not. To make a trust decision, the decision maker passes information on the trustee

along the action that the trustee would like to take on to the data processing component.

In return, the decision maker receives a risk analysis and a constraint set. The constraint

set represents the acceptable risk given the current situation. By determining whether the

risk estimates can fit within the risk constraints, a decision is made on whether the SOAP

message should be blocked or not.

The data processing component of TuBE consists of four subcomponents. These

are risk, importance, reputation
17

 and context evaluators. Experience data used by the

reputation evaluator comes from the reputation management component. Reputation in

TuBE is calculated using locally monitored experiences and experiences reported by

other peers in the reputation network
18

.

3.1.3.6 Information Trustworthiness by Zuo and Panda

In [147], the authors presented a model for evaluating trust in information in a virtual

organization (VO). The model is based on the concept of objects where an object is a

piece of information on a topic or issue (e.g. unemployment rate). Different subjects may

have different views. This could result in the creation of multiple object versions. Since

17
 Due to differences in definitions, “reputation” in this paper actually corresponds to “trust” in this thesis.

18
 This is basically recommendations from other peers.

38

new information can be created from existing information, it is possible to create a

compound object version from object versions as well. How a compound object version

is created can be represented using a version dependency tree.

There are many different ways to calculate trust in an object version. For

example, trust can be calculated by multiplying the owner’s trust in the object version

and the trust the evaluator (trustor) places on the owner. If the calculated trust is not

enough to satisfy the needs of the evaluator, the principle of object trust combination can

be used to increase the evaluator’s trust in the object version. The idea here is that if two

object versions are similar but are created through different approaches (have dissimilar

version dependency trees), then the average of the two object versions should be more

trustworthy than the individual object versions. For example, if two subjects through

completely different approaches arrived at the same conclusion with regards to the

unemployment rate, then the “multiple-proofs” should increase the level of trust in the

unemployment rate.

3.1.4 Pervasive Computing Environments

Works on trust and reputation in pervasive computing environments include [22], [23],

[52], [80] and [112]. In this subsection, the discussion focuses on two such works.

3.1.4.1 The SECURE Project

The SECURE project [22] is concerned with trust-based security in pervasive computing

environments. Trust and risk are viewed as having a mediating relationship in SECURE

where risk is seen as dependent on trust and an outcome’s intrinsic cost. SECURE also

supports trust delegation where a trustor’s trust in a trustee is just a reference to the trust

calculated by someone else.

When an interaction request is made to the SECURE framework, it is the

responsibility of the request analyzer to decide on whether the request is to be allowed or

denied. The request analyzer makes its decision based on information provided by the

entity recognition component, trust calculator and risk evaluator. The entity recognition

component is responsible for recognizing new or previously encountered entities. The

39

trust calculator performs trust calculation based on information it obtained from the trust

lifecycle management component. The trust lifecycle management component is

responsible for the formation and evolution of trust based on information stored in the

evidence store. The risk analyzer uses the information provided by the risk configuration

component to calculate the potential risk of the interaction request. The risk configuration

component updates risk information based on the data stored in the evidence store. The

evidence store holds all the trust and risk-related data. This includes the experiences of

the trustor that can be obtained through monitoring and recommendations that are

obtained through recommendation gathering.

3.1.4.2 Trust-Based Admission Control by Grey et al.

In [52], a trust framework is used to enable access control in collaborative ad hoc

applications (e.g. blackjack game). To gain admission to an ad hoc application, the user

first needs to specify the member role (e.g. dealer) it is interested in joining as. At the

global level, an application manager will ask each existing member to vote on the

admission. Based on the voting results, the application manager will either accept or

reject the admission request. At the local level, each member uses its own trust-based

policies to determine whether or not to support the admission. As for trust, it is calculated

by the Trust Formation System based on a user’s past interactions (experiences).

3.2 Middleware Support for Computational Trust Formation

There are many applications for trust in computing. Depending on the application, trust

may be calculated differently. For example in P2P, trust is used to encourage cooperation.

Cooperation however is rarely an issue with web services. With web services the main

concern is whether the demanded QoS would be provided. Due to differences in concern,

trust calculation is different between P2P and web services. As a concrete example,

comparisons could be made between [55] and [5]. In [55] (Section 3.1.2.4), the authors

use trust to measure a peer’s level of participation in the network. Trust calculation

therefore involves a peer’s level of upload, download, resources shared and response rate

to queries. In [5] (Section 3.1.3.4), trust in a web service is calculated using the trustor’s

quality of experience and the web service’s quality of compliance.

40

Although there are many different ways to calculate trust, there are still some

commonalities shared across the different trust calculation approaches. These

commonalities can be abstracted into a middleware. Applications that need trust

calculated therefore can leverage the services provided by the middleware in its trust

calculation. Specifically, this thesis has identified three different areas of computational

trust calculation that can benefit from middleware support. The areas are evidence

gathering, belief calculation and emotional trust calculation.

To calculate cognitive trust, an application needs access to quality evidence. As

for how evidence are to be collected and how evidence quality is to be determined, this is

an issue that can be delegated to a middleware. Belief calculation can also be delegated to

the middleware. This is based on the view that a trustor’s beliefs about a trustee should be

consistent across different applications. Cognitive trust calculation has therefore been

simplified to a problem of selecting the relevant beliefs and determining how the beliefs

are to be combined to form cognitive trust. In terms of emotional trust, emotions are

associated with the trustor. It therefore makes sense for the middleware to keep track of

the trustor’s emotional trust so that it maintains consistent across different applications.

3.3 Survey of Trust Middleware

In this section, a literature survey is provided on trust middleware. As far as we know,

there is only one paper on trust middleware. It is the Personalized Trust Framework

(PTF) by Huynh in [58]. Note that Huynh’s paper does not cover all the issues discussed

in this thesis. Specifically, the paper does not presuppose the existence of a conceptual

model nor concern itself with evidence gathering. PTF only addresses the challenge of

trust being subjective and multidimensional. A description of PTF is provided below.

The Personalized Trust Framework (PTF) [58] is concerned with how a user’s

trust evaluation process can be captured and replicated by computers. The way PTF

works is for a document and its meta-data to be submitted to the Trust Manager. A

document in PTF refers to any piece of information that needs to be evaluated. As for

meta-data, this covers information such as document type, context type, originator, etc.

The Trust Manager matches the meta-data with the user’s trust profile (preferences) to

41

determine the trust model to be used in trust calculation. An implementation of the trust

model, i.e., a trust engine is then initialized to perform trust calculation. If a specific trust

representation is required by the user, a converter could also be instantiated to perform

the necessary trust transformation before the calculated trust value is returned to the user.

Auditing is also supported by PTF. This allows a user to examine how trust is calculated.

Implementation wise, an ontology has been developed and forms the basic

building blocks of PTF. It is also the language that is used to write the trust profiles. A

trust profile contains the rules that are used for trust engine selection. It also contains

information on the concepts to be used in trust calculation. Rules in PTF are executed by

the Jena Rule Engine [103]. Both trust engines and converters can be written using Jena

rules or implemented as Java classes.

3.4 Summary

Trust and reputation are used differently in different areas of computing. In the literature

survey, the focus is on four areas: WWW, P2P networks, virtual communities and

pervasive computing environments. Based on insights gained from the literature survey, a

case is made for a middleware based approach for supporting computational trust

formation. PTF as a trust middleware does not address all of the identified trust

challenges.

42

Chapter 4

4 Computational Trust Architecture

The focus of this chapter is to provide a high level overview of the computational trust

architecture. The individual components of the architecture are described in detail in the

next two chapters. The rest of this chapter is divided into three sections. The first section

describes the assumptions made when designing the computational trust architecture.

Next, an overview of the architecture is provided. The final section of this chapter

describes how information flows through the architecture.

4.1 Assumptions

The computational trust architecture is designed with the following assumptions in mind.

4.1.1 Identity and Type

Trustors, trustees and evidence sources all need to have unique identities. As explained in

Section 2.3, identities needs to be verifiable and long lived. How this can be achieved is

outside the scope of this thesis. Some possible references to learn more about identity

includes X.509 [57], PGP [146] and Sybil attack [36], [74]. It is assumed in this thesis

that any identity used in the proposed architecture has already been verified and can be

trusted. If this is not the case, identity can be treated as evidence. Belief in a trustee’s

identity therefore forms the basis for computational trust formation.

 Trustors, trustees and evidence sources also need to be categorizable into their

respective types. For example, a trustee could be a movie in the fantasy genre. A trustee

could be a web service providing cloud computing. It is assumed that an ontology and

taxonomy is in place for performing the categorization. How this can be achieved is

outside the scope of this thesis. Some possible references include UDDI [29] and

RosettaNet [105].

43

4.1.2 Computational Trust Formation

Computational trust formation is introduced in Section 1.2.5. The computational trust

architecture currently only supports a limited form of computational trust formation.

More support has been identified as future work. Basically, the architecture makes a

number of formation assumptions. The assumptions are the following:

 The relationship between cognitive trust and emotional trust is not explicitly

supported by the architecture. Capturing the impact that a trustor’s emotions have

on its beliefs in a trustee is a difficult problem. So is the capturing of how beliefs

can impact a trustor’s emotions. Further compounding the problem is the fact that

the relationship is circular where emotions can influence beliefs which again can

influence emotions. As a result, this relationship is currently not explicitly

supported by the architecture. Instead, any changes in cognitive trust and

emotional trust due to their relationship would necessitate the trustor making

manual adjustments to cognitive trust and emotional trust.

 Behavior trust is not explicitly represented in the architecture. If a trustor

observes other trustors’ behaviors towards a trustee, such behavioral knowledge

can be treated as evidence. The evidence can be used in cognitive trust

calculation, thereby removing the need to explicitly represent behavior trust.

Figure 7 shows the resulting computational trust formation where computational trust is

calculated from cognitive trust and emotional trust.

Figure 7: Computational Trust Formation (Architecture)

44

4.1.3 Evidence

There are many different types of evidence. The computational trust architecture

currently supports four different evidence types:

 Experience. Experience is the knowledge that the trustor gained about the trustee.

There are two ways that a trustor can gain experience with a trustee. One is to

directly interact with the trustee. Another is to directly observe the trustee

interacting with another trustor. In the first approach, monitoring is used to record

the trustee’s behaviors during an interaction. Besides monitoring, a trustor could

also be asked for its view on a completed interaction. In the second approach, if a

trustee is aware of the presence of observers, it may behave differently (e.g.

perform better) than when it is not being observed. Therefore when calculating

belief from experience, it is important to take into account the means used in

experience gathering.

 Recommendation. When a trustor shares its experience with others, the shared

experience is known as recommendation. All gathered recommendations should

be filtered. This is to avoid using recommendations from biased or malicious

recommenders in belief calculation.

An endorsement is a type of recommendation. When a movie advertises

that it is recommended by movie critics, this can be seen as the critics endorsing a

movie. With recommendation, the burden is on the trustor to discover the

available recommendations. With endorsement, the burden is shifted to the

trustee. It is the responsibility of the trustee to provide the trustor with all of its

endorsements. As an endorsement could be neutral or negative, it is in the

trustee’s interest to throw away these non-positive endorsements. Therefore,

endorsements are often biased towards the trustee. This can be seen in movie

advertisements where all mentioned reviews are positive. Due to the inherent bias,

care should be taken when using endorsements in belief calculation.

45

 Reputation. Reputation is the consensus assessment of a trustee by members of a

social network. All gathered reputations should be filtered. This is to avoid using

reputations from biased or malicious reputation systems in belief calculation.

 Signal. In economics, signaling [124] is used by a party to provide information

about itself. The provided information can be used by the interacting parties to

overcome the challenge of information asymmetry. In decision making, a trustee

could send signals to the trustor explaining why it should be believed.

4.1.4 Belief

There are many different types of beliefs. To better organize the different beliefs, the

computational trust architecture aggregates beliefs into aggregate belief. An aggregate

belief is calculated from its constituent beliefs. The computational trust architecture hides

the mappings from beliefs to aggregate belief from the applications that need

computational trust calculated. By only exposing aggregate beliefs, this makes it easier

for an application to specify the aggregate beliefs needed for cognitive trust calculation.

The computational trust architecture currently supports eight different aggregate beliefs:

 Accessibility belief. This is belief in a trustee as being reachable when needed.

Example constituent beliefs include availability belief, latency belief, etc.

 Competence belief. This is belief in a trustee as being qualified for what is

expected of the trustee. Example constituent beliefs include qualification belief,

popularity belief (i.e., inferring competence from the trustee being popular), etc.

 Dependability belief. This is belief in a trustee as being reliable and has the

trustor’s best interest in mind. A dependable trustee is one who would not betray

the trustor. An example betrayal could be the violation of a signed service level

agreement (SLA). Example constituent beliefs include compliance belief (i.e.,

level of compliance with SLA), popularity belief, etc.

 Identity belief. This is belief in a trustee as being who it says it is. Example

constituent beliefs include personal knowledge belief (i.e., having knowledge that

46

only the trustee would know such as password), behavioral belief (i.e., behaving

in a way that is similar to the trustee), etc.

 Performance belief. This is belief in a trustee as being able to carry out what is

expected of the trustee. Example constituent beliefs include timeliness belief,

response time belief, etc. Competence belief and performance belief are not the

same. Competence is concern with capability. For example, having graduated

from the Computer Science program is proof of competence. Performance is

concern with usage of the capability. For example, being able to apply what is

learned in the program to solve computing problems is proof of performance. A

competent trustee could choose to perform well or to perform poorly. An

incompetent trustee however by definition cannot perform well.

 Privacy belief. This is belief in a trustee as being in compliance with the trustor’s

policies with respect to the trustor’s information. Example constituent beliefs

include information retention belief, information sharing belief, etc.

 Quality belief. This is belief in the excellence of a trustee. Quality belief is used in

cases when the trustee is an inanimate object. It is used in place of performance

belief. For example, a trustor forms its belief in the quality of a novel. It does not

form its belief in the performance of a novel. Example constituent beliefs include

accuracy belief, bias belief (i.e., is the trustee bias?), etc.

 Security belief. This is belief in a trustee as being able to protect the interest of the

trustor from harm. Example constituent beliefs include auditability belief,

integrity belief (includes data and transactional integrity), etc.

There are many possible mappings from belief to aggregate belief. For example, a

positive mapping would be availability belief that has a positive influence on the

aggregate belief accessibility. A negative mapping would be bias belief that has a

negative influence on the aggregate belief quality. A belief could also be a constituent

belief in multiple aggregate beliefs. For example, popularity belief has a positive

influence on both competence and dependability beliefs.

47

In terms of the scenarios, in movie selection, quality belief is already an aggregate

belief; therefore cognitive trust formation remains the same as in Figure 3 of Section

1.3.1. As for web service selection, the cognitive trust formation needs to be updated with

the incorporation of aggregate beliefs. The resulting cognitive trust formation is shown in

Figure 8. In the figure, competence belief, performance belief and quality belief are

accessible to the consumer. How these aggregate beliefs are formed (from constituent

beliefs or from evidence directly) is hidden from the consumer.

Figure 8: Cognitive Trust Formation from Aggregate Beliefs (Web Service)

4.1.5 Emotional Trust Formation

The computational trust architecture does not support the formation of emotional trust

from the trustor’s emotions directly. This is due to the difficulty in monitoring the

trustor’s emotions. Instead, emotional trust is formed through the recognition of the

trustee. For example, based on the trustee’s type and identity, the trustor may be

predisposed to emotionally trust or distrust the trustee. An example is shown in Figure 9

where trustee types and identities are organized into a hierarchy. Each node in the

hierarchy is assigned an emotional trust value. If there is no emotional trust value set for

a trustee, the emotional trust value of its closest parent is used instead. For example, there

is no emotional trust value set for the horror film “Zombieland” in Figure 9. Therefore,

the trustor’s emotional trust value in horror movies is used as an approximation.

48

Another example is to create a hierarchy based on the trustee’s relationship with

the trustor. Example relationships could include family, friend, acquaintance and

stranger. Multiple hierarchies can be used together to form the trustor’s emotional trust in

a trustee. An example of the use of multiple hierarchies is for emotional trust to be

formed based on the sum of the emotional trust from each hierarchy. Another example is

for emotional trust to be based on the maximum emotional trust value obtained from all

the hierarchy.

Figure 9: Hierarchy of Trustee Type and Identity

4.1.6 Factors Influencing Computational Trust Formation

There are many factors that influence computational trust formation. The computational

trust architecture grouped the factors into decision, trustor and trustee.

4.1.6.1 Decision Factors

Decision factors are factors associated with a decision. An example is decision type

where the trustor calculates computational trust differently for movie selection and web

service selection. Another example is the importance of a decision where more evidence

may be demanded if a decision is important. Table 1 shows an example of how trust

types can influence computational trust formation. Other example decision factors

include decision cost, decision environment, etc.

Trustee

Movie

Comedy Horror

Alien

Web
Service

Amazon

EC2 Compute
Cloud

Mechanical
Turk

HP IBM

49

Table 1: Trust Types and Computational Trust Formation

Types of Trust Computational Trust Formation

Faith

Emotion

Cognition and Emotion

Cognition

Rational

4.1.6.2 Trustor Factors

Trustor factors are factors associated with the trustor. A change in a trustor factor may

influence computational trust formation of many decisions. Trustor factors include:

 Trust Disposition. A trustor could be an optimist, a realist or a pessimist in its

trust disposition [85]. An optimist may demand less evidence in belief calculation

while the opposite is the case for a pessimist. A realist’s evidence demands falls

somewhere in between an optimist and a pessimist.

 Trust Preference. A trustor`s trust preferences could influence the algorithms used

for computational trust calculation (e.g. Bayesian vs. average). It could also

influence how evidence are gathered (e.g. prefer one evidence source over

another) and how beliefs in a trustee are formed (e.g. Bayesian vs. average).

 Culture. The culture upbringing of a trustor could influence computational trust

formation. For example, the presence of credit card symbols had been shown to

have a bigger impact on trust in Latin American and Brazil than in the US [131].

Basically, different cultures may interpret the same evidence (a credit card signal

in this case) differently. Moreover, different cultures may instill in a trustor

different norms and values. For example, business relationships in Japan are more

personal than in more “legalistic” cultures such as the US [17]. Trustors living in

cultures with a high degree of power inequality (high power distance) or cultures

that are less tolerant of change (high uncertainty avoidance) have been shown to

have a higher use of evidence from personal sources (e.g. friends) and a lower use

of evidence from impersonal sources (e.g. Consumer Reports) [34].

50

4.1.6.3 Trustee Factors

Trustee factors are factors associated with the trustee. An example is the identity of the

trustee where computational trust is calculated differently depending on whether the

trustor recognizes the trustee. If a trustee is recognizable, it can be calculated using

emotion. Otherwise, it is calculated using cognition. Other trustee factors include trustee

type, trustee’s relationship with the trustor, etc.

4.1.7 Privacy

As explained in Section 2.3, privacy plays an important role in computational trust

formation. Due to the complexity of the issues involved, privacy is considered outside the

scope of this thesis. Some possible references to learn more about privacy includes [13],

[18], [49] and [113]. This is an important area that should be addressed in future work.

4.1.8 Architecture Deployment

Computational trust is subjective as detailed in Section 1.2.3.2. To accommodate the

trustor’s subjective views, it is assumed that each trustor has its own computational trust

architecture deployment.

4.1.9 Summary

A summary of all the discussed assumptions is shown in Table 2.

Table 2: Assumptions of Computational Trust Architecture

 Assumptions

Identity and Type Identity is unique and long lived

 Identity has already been verified through means outside
the scope of this thesis

 Every trustor, trustee and evidence source has a type
property whose assignment is outside the scope of this
thesis

Computational trust formation Computational trust is calculated from cognitive trust and
emotional trust

 Behavioral trust is treated as a form of cognitive trust

 The relationship between cognitive trust and emotional
trust is not represented in the proposed architecture

Evidence Evidence types: Experience, recommendation, reputation
and signal

51

Belief Aggregate belief is calculated from constituent beliefs

 Aggregate beliefs: Accessibility, competence, dependability
identity, performance, privacy, quality and security

Emotional trust formation Emotional trust is calculated from properties of a trustee

 The properties can be organized into a hierarchy

Factors influencing
computational trust formation

 Decision factors

 Trustor factors: Disposition, preference and culture

 Trustee factors

Privacy Outside the scope of this thesis

Architecture deployment Each trustor deploys its own architecture

4.2 Overview of Architecture

A graphical illustration of the computational trust architecture is shown in Figure 10. The

architecture consists of three components: SCOUT (Services supporting COmpUtation of

Trust), Evidence Repository and Trust Calculator. SCOUT is a middleware that provides

three different web services: Evidence Gathering Service (EGS), Belief Formation

Service (BFS) and Emotional Trust Service (ETS). EGS is responsible for the discovery

and gathering of evidence. Any gathered evidence is normalized (i.e., mapped to standard

evidence representation) before being stored in the Evidence Repository. The Evidence

Repository is the storage for all the gathered evidence. BFS uses the evidence stored in

the Evidence Repository for belief and aggregate belief calculation. ETS is responsible

for calculating the trustor’s emotional trust in a trustee. An application could contact EGS

directly for evidence gathering. It could also contact BFS or ETS to obtain the trustor’s

aggregate belief or emotional trust. An application could also subscribe to BFS or ETS to

be informed of any changes to the trustor’s aggregate belief or emotional trust.

The Trust Calculator is a client that can be used to access the SCOUT services. It

calculates computational trust based on the belief values and emotional trust values

calculated by SCOUT. An application could either query or subscribe to the

computational trust calculated by the Trust Calculator.

52

Figure 10: Computational Trust Architecture

4.3 Information Flow of Architecture

The computational trust architecture can be viewed from the perspective of the flow of

information. Such a perspective is graphically illustrated in Figure 11. In the figure,

computational trust formation is described as a three step process. The process starts with

a request for a computational trust calculation. This results in evidence gathering.

Evidence may be found locally. For example by parsing the log file of the trustor’s

interaction with a trustee. Evidence may also be found in the open environments. For

example by requesting reputation from an Internet-based reputation system. In both

cases, the gathered evidence are normalized before being stored in an Evidence

Repository. The next step is the calculation of the trustor’s beliefs and aggregate beliefs

in a trustee based on the stored evidence. Finally, the last step is to perform the trust

calculation. This involves the calculation of cognitive trust from aggregate beliefs and

emotional trust from the trustor’s knowledge about the trustee. Computational trust is

calculated from cognitive and emotional trust. There are many different algorithms that

can be used in belief, aggregate belief and trust calculations. The different algorithms

used in the literature are summarized in Table 3.

53

Figure 11: Information Flow of Architecture

Table 3: Algorithms for Belief, Aggregate Belief and Trust Calculation

Categories Examples

Arithmetic Summation: [38], [55]...

 Average: [7], [14]…

 Weighted average: [11], [39], [91], [135]...

 Others: [23], [53], [71], [84]…

Probability Theory Bayesian approach: [20], [43], [62], [80]…

 Belief theory: [64], [142]…

 Others: [2], [114]…

Fuzzy Logic [5], [41], [54], [145]…

Others [59], [68], [110], [117]…

4.4 Summary

The computational trust architecture consists of a SCOUT middleware, an Evidence

Repository and Trust Calculators that are used by applications to perform computational

trust calculation. When designing the architecture, a number of assumptions were made.

The assumptions include identity, computational trust formation, evidence, belief,

emotional trust formation, factors influencing computational trust formation, privacy and

architecture deployment. To provide a different perspective on how the computational

trust architecture operates, the chapter also describes how information flows through the

architecture. The information flow helps illustrates how information changes as it passes

through the computational trust architecture.

54

Chapter 5

5 SCOUT

The focus of this chapter is on introducing the SCOUT middleware. This chapter is

divided into four sections. The first section provides a high level overview of the

middleware design. The next three sections focuses on the introduction of each of the

SCOUT services in detail.

5.1 SCOUT Design

SCOUT is designed with the following properties in mind:

 Modularity. SCOUT is designed to support evidence gathering, belief calculation

and emotional trust calculation. To achieve modularity, all three functionalities

are implemented as web services that can operate independently of each other.

 Extensibility. There are many algorithms and protocols that can be used to

implement the different SCOUT functionalities. To achieve extensibility, a plug-

in approach has been adopted for cases when there is no best way to implement a

specific functionality.

 Adaptability. Computational trust is subjective and multidimensional. The

SCOUT services therefore should be adaptable to meet the needs of

computational trust formation. To achieve this, a policy based approach has been

adopted. A policy refers to “a rule that defines a choice in the behavior of a

system” [33]. Policies are used in SCOUT to determine how each service

responds to the trustor’s queries or subscriptions. For example, a policy could

specify that a specific algorithm is always to be used in calculating quality belief

in movies as this is the trustor’s preferences. Another example could be that if a

decision is important, this may entail the gathering of more evidence, the

consideration of more evidence types and the use of a higher threshold for

evidence filtering. All these requirements can be presented as policies for

important decisions. As every trustor is different, policies are selected as it is

55

challenging to program for adaptability ahead of time. Moreover, a trustor may

change over time. Policies allow for any change to be captured without requiring

the coding and compilation of the SCOUT services.

5.2 Evidence Gathering Service

The Evidence Gathering Service (EGS) is responsible for gathering the evidence needed

for belief calculation. A graphical illustration of EGS is shown in Figure 12. In the figure,

the Evidence Gathering Manager is responsible for processing any request for evidence

gathering. This is accomplished through the exposed gatherEvidence method that has as

input the following three parameters:

 Trustee. Information about the trustee can be represented as attribute-value pairs.

There are two attribute-value pairs that must be present for each trustee: the

trustee’s identity and the trustee’s type. For example, the online retailer Amazon

has an identity of “www.amazon.com” and type of “OnlineRetailer”. Amazon’s

EC2 Service has an identity of “aws.amazon.com/ec2/” and type of

“WebService/ComputeCloud”. In this case, since EC2 is both a web service and a

compute cloud, both are specified with the more general type specified first and

the types separated by a slash. Other attributes could include the trustee’s

relationship with the trustor, signals that the trustee is willing to provide, etc.

 Belief. Evidence could be gathered for aggregate belief calculation or belief

calculation. As aggregate belief is just a special type of belief, EGS does not

differentiate between aggregate belief and belief. Instead, both are treated the

same when it comes to evidence gathering.

 Hints. This is an optional parameter that is represented as attribute-value pairs. It

is used to provide hints to EGS with regards to how evidence gathering should be

changed. Some example hints may include the importance of decision, the

evidence types to be used, etc.

The input parameters are used in policies to determine how evidence are to be gathered.

This may involve the invocation of one or more Evidence Gatherers for evidence

56

discovery and gathering. The gathered evidence are then handed over to the Evidence

Handler for processing. After processing, the last step is for the evidence to be stored in

the Evidence Repository.

As for evidence filtering, EGS has adopted the trust-based approach (see evidence

filtering bullet point in Section 1.4 for a review). This is due to the fact that the outlier-

approach depends on the gathered evidence exhibiting certain statistical properties [63].

The assumption that outliers should be filtered out is not always a valid assumption. A

trustor may have views that are more similar to the outliers than the majority of evidence.

In the trust-based approach, trust is used for identifying and avoiding of distrusted

evidence sources. To calculate evidence source trust, EGS first needs to identify whether

an evidence source can provide evidence of high quality. Feedbacks provided by

evidence gathering requesters can be used for assessing the quality of evidence.

Feedbacks can be provided to EGS by calling the provideFeedback method of the

Evidence Gathering Manager. This method takes two input parameters: trustee and belief

feedbacks. The two input parameters are used in policies to determine the Evidence

Source Assessor to be invoked for assessing evidence quality and for calculating

evidence source trust. The calculated evidence source trust can be taken into account

during evidence gathering. For the rest of this section, each of the components of EGS is

described in detail.

Figure 12: Evidence Gathering Service

57

5.2.1 Evidence Gatherer

There is currently no standard for evidence discovery and evidence gathering. As a result,

to gather evidence from multiple evidence sources, different discovery and gathering

protocols have to be implemented. Moreover, not all evidence sources provide evidence

in formats that are machine friendly. For example Rotten Tomatoes does not provide an

API for accessing the reputation of movies. The only way to access a movie’s reputation

is to access the movie page and parse the html file to extract the movie’s reputation. This

in turn makes evidence gathering challenging.

In EGS, each Evidence Gatherer is responsible for one evidence discovery and

gathering protocol. An Evidence Gatherer may be responsible for a single evidence

source (e.g. IMDb) or multiple evidence sources (e.g. locating reputation systems through

a registry). Evidence Gatherers are implemented as plug-ins to EGS. This allows an

Evidence Gatherer to be implemented by a third party (e.g. the evidence source) and used

in multiple SCOUT deployments. This in turn reduces the burden on application

developers as they no longer have to write and support different evidence discovery and

gathering protocols.

Finally, all Evidence Gatherers deployed in EGS are registered with a registry.

The registry is used by the Evidence Gathering Manager (Section 5.2.4) to discover the

available Evidence Gatherers for evidence gathering.

5.2.2 Evidence Handler

In EGS, Evidence Handler is responsible for mapping the gathered evidence to a standard

representation. For example, all evidence could be mapped to an interval of [-1, 1] where

1 is the best and -1 is the worst. By having a single standard evidence representation, this

simplifies evidence interpretation. No longer would an evidence user have to worry about

what a piece of evidence is representing.

Besides evidence mapping, the Evidence Handler is also responsible for the

metadata needed for evidence interpretation. The following metadata are supported by the

Evidence Handler: timestamp of evidence creation, timestamp of evidence gathered,

58

identity of evidence source, identity of trustee and belief. The metadata could be provided

by the evidence source (e.g. timestamp of evidence creation), generated by the Evidence

Handler itself (e.g. timestamp of evidence gathered) or obtained from the Evidence

Gatherer (e.g. identity of evidence source, identity of trustee and belief). The mapped

evidence along with their metadata are stored into the Evidence Repository by the

Evidence Handler.

Evidence Handlers are implemented as plug-ins to EGS. This allows EGS to be

extended to support new evidence representations. As with Evidence Gatherers, all

deployed Evidence Handlers are registered with a registry. The registry is used by the

Evidence Gatherers to discover the available Evidence Handlers. The selection of an

Evidence Handler is based on evidence type and evidence representation.

5.2.3 Evidence Source Assessor

There are many ways in which an evidence source can be assessed. For example,

evidence source trust
19

 in [30] is represented as a triplet: (servent_id, num_agree,

num_disagree). For each servent
20

, the trustor records the number of times the servent’s

recommendations agrees or disagrees with the trustor’s feedback. In a recommendation
21

,

a servent either votes for or against another servent as a content provider. After a

successful download, any servent that voted for the content provider would have its

num_agree increase by one. Those servents that voted against the content provider would

have their num_disagree increase by one. If a download failed, any servent that voted for

the content provider would have its num_disagree increase by one. Those servents that

voted against the content provider would have their num_agree increase by one. Based on

the calculated evidence source trust (i.e., num_agree vs. num_disagree), a decision can

now be made on whether to contact a servent for recommendation. Other evidence source

19
 Known as “credibility” in [30].

20
 A servent is a node in a P2P network. It is both a trustee and an evidence source.

21
 Known as “vote” in [30].

59

assessment algorithms include [1], [11], [80] and [142]. In this thesis, an evidence source

assessment algorithm is introduced in Section 7.2.

In EGS, each Evidence Source Assessor is responsible for implementing its own

evidence source assessment algorithm. The Evidence Source Assessors are implemented

as plug-ins. This allows EGS to be easily extended to support new evidence source

assessment algorithms. The Evidence Source Assessors are also provided with access to a

scheduler. The scheduler can be used to schedule when trust in an evidence source is to

be reevaluated. This is to provide an evidence source with enough time to prove its

trustworthiness as oppose to having evidence source trust calculated after every feedback.

As with Evidence Gatherers, all deployed Evidence Source Assessors are registered with

a registry. The registry is used by the Evidence Gathering Manager (Section 5.2.4) to

discover the available Evidence Source Assessors.

5.2.4 Evidence Gathering Manager

The Evidence Gathering Manager (EGM) employs policies to determine how evidence is

to be gathered and how evidence sources are to be assessed. It is the responsibility of the

trustor to deploy the needed policies. Policies are in the form of if condition then action

and are the focus for the rest of this section.

5.2.4.1 Evidence Gathering Policy

The Evidence Gathering Manager uses evidence gathering policies (EG-Policies) to

determine how the evidence needed for belief calculation is to be gathered. The syntax

for EG-Policies is discussed in Appendix A. An EG-Policy may state that specific

evidence gatherers are to be used for evidence gathering. An example is shown in Figure

13. In the figure, “Trustee”, “Belief” and “Hint” are obtained through the gatherEvidence

method. If it is hinted at that the decision is of low importance, evidence gatherers with

identity of “EG1” (lines 1-7) and “EG2” (lines 9-16) are invoked for evidence gathering.

For decision of high importance, “EG1” (lines 1-7) and “EG3” (lines 18-25) are invoked

instead. A possible reason for the EG-Policies in Figure 13 is that some evidence sources

may be more costly than others. A trustor may only be willing to use the costlier evidence

sources (i.e., invoking “EG3”) if it is hinted at that the decision is of high importance.

60

1 when

2 trustee: Trustee(type == "WebService/Type1")

3 belief: Belief(type == "Timeliness")

4 then

5 gatherer = Registry.lookup("EG1");

6 gatherer.gatherEvidence(trustee, belief);

7 end

8

9 when

10 trustee: Trustee(type == "WebService/Type1")

11 belief: Belief(type == "Timeliness")

12 Hint(name == "Importance" && value == "Low")

13 then

14 gatherer = Registry.lookup("EG2");

15 gatherer.gatherEvidence(trustee, belief);

16 end

17

18 when

19 trustee: Trustee(type == "WebService/Type1")

20 belief: Belief(type == "Timeliness")

21 Hint(name == "Importance" && value == "High")

22 then

23 gatherer = Registry.lookup("EG3");

24 gatherer.gatherEvidence(trustee, belief);

25 end

Figure 13: EG-Policies (Identity)

It is not always the case that a trustor would know in advance which evidence

sources should be contacted for evidence gathering. In such cases, the better approach is

to let EGM handle the Evidence Gatherers to be invoked. Such an example is shown in

Figure 14. In the figure, the registry is used to look up all the Evidence Gatherers with

properties that satisfy the trustor’s evidence gathering requirements (line 8). Since no

evidence type is specified, the policy assumes that reputation is to be gathered. A

different approach would be to throw an exception if evidence type is not specified. After

the Evidence Gatherers are found, they are invoked for evidence gathering. An advantage

of this property-based approach is that if a new evidence gatherer is deployed, the

evidence gatherer would be included in evidence gathering if it has the necessary

properties. This is not the case with the identity-based approach where the EG-Policies

need to be updated before the new Evidence Gatherer can be used in evidence gathering.

61

1 when

2 trustee: Trustee(type == "WebService/Type1")

3 belief: Belief(type == "Timeliness")

4 then

5 properties = ["TrusteeType" : trustee.getType(),

6 "Belief" : belief.getType(),

7 "EvidenceType" : "Reputation"];

8 gatherers = Registry.lookup(properties);

9

10 for (gatherer: gatherers)

11 gatherer.gatherEvidence(trustee, belief);

12 end

Figure 14: EG-Policy (Properties)

1 when

2 trustee: Trustee(type == "WebService/Type1")
3 belief: Belief(type == "Timeliness")

4 then

5 properties = ["TrusteeType" : trustee.getType(),

6 "Belief" : belief.getType(),

7 "EvidenceType" : "Reputation"];

8 gatherers = Registry.lookup(properties);

9

10 sortByEvidenceourceTrust(gatherers);

11

12 for (int i=0; i<3; i++) {

13 gatherer = gatherers.get(i);

14

15 if (gatherer.getEvidenceourceTrust() > 0)

16 gatherer.gatherEvidence(trustee, belief);

17 else

18 break;

19 }

20 end

Figure 15: EG-Policy (Evidence Source Trust)

A weakness of the EG-Policies presented in Figure 13 and Figure 14 is that the

policies do not take evidence source trust into account during evidence gathering. The

policies implicitly assume that that all the evidence sources can be trusted. This is often

not a valid assumption. The use of evidence source trust in evidence gathering is

demonstrated in Figure 15. In the figure, it is assumed that each Evidence Gatherer has

access to a single evidence source. As such, the Evidence Gatherers can be sorted based

on evidence source trust (line 10). After sorting, the three Evidence Gatherers that have

62

access to the most trusted evidence sources are invoked for evidence gathering. The

invocation is under the condition that an Evidence Gatherer may be skipped if the

corresponding evidence source trust is less than or equal to zero.

As seen in Figure 15, the EG-Policy turns out to be rather complex. This is not

considering the case of an Evidence Gatherer having access to multiple evidence sources.

To simplify the use of evidence source trust in an EG-Policy, an abstraction known as

strategy has been implemented. A strategy is an encapsulation of all the steps that need to

be taken to perform evidence gathering. EGM currently supports two strategies: the

broadcast strategy and the evidence source trust strategy. The broadcast strategy involves

the invocation of all matched Evidence Gatherers in evidence gathering. An example is

shown in Figure 16. The example is functionally the same as the EG-Policy shown in

Figure 14. The evidence source trust strategy performs evidence gathering based on

evidence source trust. An example is shown in Figure 17. The example is functionally the

same as the EG-Policy shown in Figure 15. The only difference is that the example

actually works with Evidence Gatherers that have access to multiple evidence sources.

1 when

2 trustee: Trustee(type == "WebService/Type1")

3 belief: Belief(type == "Timeliness")

4 then

5 strategy = new BroadcastStrategy();

6 strategy.set("EvidenceType", "Reputation");

7 strategy.execute(trustee, belief);

8 end

Figure 16: EG-Policy (Broadcast Strategy)

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 belief: Belief(type == "Timeliness")

4 then

5 strategy = new EvidenceourceTrustStrategy();

6 strategy.set("EvidenceType", "Reputation");

7 strategy.set("NumOfEvidence", 3);

8 strategy.set("EvidenceourceTrustThreshold", 0);

9 strategy.execute(trustee, belief);

10 end

Figure 17: EG-Policy (Evidence Source Trust Strategy)

63

5.2.4.2 Evidence Source Assessment Policy

The Evidence Gathering Manager uses evidence source assessment policies (EA-

Policies) to determine the Evidence Source Assessor that is responsible for processing the

incoming feedback. The syntax for EA-Policies is discussed in Appendix A. An example

EA-Policy is shown in Figure 18. In the figure, an Evidence Source Assessor is selected

based on its identity “EA1”. Next, the assessor is configured using the set method (lines

6-7). For example, an “EvidenceWindow” of 60 restricts assessment to evidence that

have been created in the last 60 minutes. If creation timestamp is unavailable, the

timestamp associated with evidence gathering is used instead. There is no point in

assessing outdated evidence. After the completion of configuration, the assessor is

invoked to calculate evidence source trust. Depending on the evidence source assessment

algorithm implemented, an Evidence Source Assessor may choose to not calculate

evidence source trust right away. Instead, a scheduler can be used by the assessor to

schedule evidence source trust to be calculated periodically.

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 feedback: BeliefFeedback(type == "Timeliness")

4 then

5 assessor = Registry.lookup("EA1");

6 assessor.set("EvidenceWindow", 60);

7 …

8 assessor.assessEvidenceource(trustee, feedback);

9 end

Figure 18: EA-Policy

5.3 Belief Formation Service

The Belief Formation Service (BFS) is responsible for calculating the trustor’s aggregate

beliefs from the available evidence. A graphical illustration of BFS is shown in Figure

19. In the figure, the Belief Formation Manager is responsible for processing any request

for the trustor’s aggregate belief. This is accomplished through the exposed

getAggregateBelief method that has as input three parameters: trustee, aggregate belief

and hints. These input parameters are used in policies to determine how aggregate belief

64

is to be calculated. This may involve the invocation of one or more Belief Engines to

perform belief calculation.

 A trustor can also subscribe to the aggregate beliefs calculated by BFS. This is

accomplished through subscribeAggregateBelief method exposed by the Belief

Formation Manager. The method has the same input parameters as getAggregateBelief.

The return value of the method is a unique identifier: subscriptionId. The subscriptionId

identifier is used in the unsubscribeAggregateBelief method to unsubscribe from an

existing subscription. Aggregate belief subscription is the responsibility of the

Subscription Manager.

BFS also exposes a provideFeedback method that has as input three parameters:

trustee, aggregate belief feedbacks and hints. The input parameters are used in policies to

determine how an aggregate belief feedback can be mapped to constituent belief

feedbacks. The provideFeedback method of EGS is then invoked with the trustee and

belief feedbacks. For the rest of this section, each of the components of BFS is described

in detail.

Figure 19: Belief Formation Service

5.3.1 Belief Engine

There are many ways to calculate a trustor’s belief in a trustee (Table 3 of Section 4.3). In

BFS, belief calculation is the responsibility of the Belief Engines. Basically, each Belief

Engine is responsible for implementing its own belief formation algorithm. Evidence

65

needed for belief calculation can be retrieved from the Evidence Repository. If the

evidence available in the repository are not enough for belief calculation to proceed, EGS

could be invoked to perform additional evidence gathering.

Belief Engines are implemented as plug-ins to BFS. This allows BFS to be

extended to support new belief formation algorithms. All Belief Engines deployed in BFS

are registered with a registry. The registry is used by the Belief Formation Manager

(Section 5.3.2) to discover the available Belief Engines for belief calculation.

5.3.2 Belief Formation Manager

The Belief Formation Manager (BFM) employs policies to determine how aggregate

belief in a trustee is calculated and how feedback to aggregate belief is mapped to

feedback to constituent beliefs. It is the responsibility of the trustor to deploy the needed

policies. The rest of this section is divided into three parts. The first part introduces the

belief formation policies. The second part describes aggregate belief subscription. The

last part introduces the aggregate belief feedback policies.

5.3.2.1 Belief Formation Policy

The Belief Formation Manager uses belief formation policies (BF-Policies) to determine

how beliefs and aggregate beliefs are to be calculated. The syntax for BF-Policies is

discussed in Appendix A. An example BF-Policy is shown in Figure 20. In the figure,

“Trustee”, “AggregateBelief” and “Hint” are obtained through either the

getAggregateBelief method or subscribeAggregateBelief method. The trustor’s

performance belief in a web service is calculated based on the trustor’s experiences. To

calculate performance belief, its constituent belief timeliness needs to be calculated (see

Figure 8 in Section 4.1.4 for reference). To calculate timeliness belief, a Belief Engine

identified as “BE1” is selected (line 6). The belief formation algorithm implemented by

the Belief Engine is then configured (lines 7-8) based on the trustor’s preferences. The

configuration step is optional as a trustor may be satisfied with the defaults of the Belief

Engine. Documentation associated with the Belief Engine should detail the defaults of the

belief formation algorithm along with what can and cannot be configured. The last step is

to invoke the Belief Engine (line 9) to calculate timeliness belief. The calculated belief

66

value is returned as the belief value of aggregate belief performance. If an aggregate

belief has multiple constituent beliefs, the constituent beliefs can all be calculated by

different Belief Engines. The constituent beliefs can also be calculated by the same Belief

Engine invoked multiple times.

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 aggBelief: AggregateBelief(type == "Performance")

4 hint: Hint(name == "EvidenceType" && value == "Experience")

5 then

6 beliefEngine = Registry.lookup("BE1");

7 beliefEngine.set("ExperienceWindow", 30);

8 ...

9 beliefEngine.calculateBelief(trustee, new Belief("Timeliness"));

10 end

Figure 20: BF-Policy

A different example could be to employ different formation algorithms based on

the trustor’s trust disposition. A pessimistic trustor could invoke multiple Belief Engines

and take the minimum of the calculated beliefs as its belief in the trustee. For an

optimistic trustor, the maximum belief value could be selected. For a realistic trustor, its

belief in a trustee could be based on the average of the beliefs calculated by the Belief

Engines.

5.3.2.2 Aggregate Belief Subscription

Upon invocation of the subscribeAggregateBelief method, the EGM creates a new

subscription and adds it to the Subscription Manager. Periodically (as defined by the

trustor), the Subscription Manager examines each of its subscriptions to determine

whether it is time for an aggregate belief to be reevaluated. If so, the aggregate belief is

calculated based on the deployed BF-Policies and returned to the subscriber. When a

subscription is no longer needed by the subscriber (i.e., invocation of

unsubscribeAggregateBelief method), EGM deletes the subscription from the

Subscription Manager. As a subscriber may not be interested in all the changes in the

calculated aggregated belief, the Subscription Manager supports the registration of a filter

to filter out those aggregate belief changes the trustor is not interested in knowing. The

67

syntax for aggregate belief filter is discussed in Appendix A. An aggregate belief filter

could be specified as a hint with the name of “AggregateBeliefFilter”. Several example

types of filters supported by the Subscription Manager are shown in Table 4.

Table 4: Example Aggregate Belief Filters

Aggregate Belief Filter Description

aggBelief.belief < 0 Only notify subscriber if aggregate belief has
dropped below zero

aggBelief.belief != lastAggBelief.belief Only notify subscriber if aggregate belief has
changed from last published aggregate belief

Math.abs(aggBelief.belief –
lastAggBelief.belief) > 0.2

Only notify subscriber if the change in aggregate
belief from the last published aggregate belief is
greater than 0.2

5.3.2.3 Aggregate Belief Feedback Policy

The Belief Formation Manager uses aggregate belief feedback policies (AF-Policies) to

determine how feedback to aggregate belief is mapped to feedback to beliefs. The syntax

for AF-Policies is discussed in Appendix A. An example AF-Policy is shown in Figure

21. In the figure, feedback to aggregate belief performance is mapped to feedback to

timeliness belief. Since there is only one constituent belief, timeliness belief is simply

assigned the timestamp and feedback of performance belief. As EGS expects a list of

belief feedbacks as input, the square brackets ([]) are used to create a list. The

provideFeedback method of EGS is then invoked with the belief feedbacks (line 8).

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 aggFeedback: AggregateBeliefFeedback(type == "Performance")

4 then

5 feedback = new BeliefFeedback("Timeliness",

6 aggFeedback.getTimestamp(),

7 aggFeedback.getFeedback());

8 EGS.provideFeedback(trustee, [feedback]);

9 end

Figure 21: AF-Policy

If an aggregate belief is formed from multiple constituent beliefs, then more

complex mappings are needed. For example, a quality belief feedback of 1.0 can be

68

mapped to feedback of 1.0 to accuracy belief and coverage belief. A quality belief

feedback of 0.5 can be mapped to feedback of 0.75 for accuracy belief but feedback of

0.25 for coverage belief. The mappings are based on the idea of assigning meaning to the

provided aggregate belief feedback. The mappings can be defined as different AF-

Policies. For example, there is an AF-Policy for when quality belief feedback is 1.0 and

another for when quality belief feedback is 0.5.

5.4 Emotional Trust Service

The Emotional Trust Service (ETS) is responsible for calculating the trustor’s emotional

trust in a trustee. A graphical illustration of ETS is shown in Figure 22. In the figure, the

Emotional Trust Manager (ETM) is responsible for processing any request for the

trustor’s emotional trust. This is accomplished through the exposed getEmotionalTrust

method that has as input one parameter: trustee. The input parameter is used in policies to

determine the trustor’s emotional trust in the trustee. For emotional trust subscription,

ETM exposes two methods: subscribeEmotionalTrust and unsubscribeEmotionalTrust.

Both methods function in the exact same way as in the case of BFS. The syntax for

emotional trust filter is discussed in Appendix A.

Figure 22: Emotional Trust Service

Emotional trust formation is based on the establishment of a hierarchy (Section

4.1.5). The hierarchy can be constructed using emotional trust policies (ET-Policies). The

syntax for ET-Policies is discussed in Appendix A. An example of ET-Policies is shown

in Figure 23. In the figure, a hierarchy has been established for horror movies. By using

69

“salience”, the trustor can prioritize which policy should fire when there are multiple

conditional matches. For example, if the trustee is the horror movie “Zombieland”, then

the first three policies (lines 1-6, 8-13 and 15-20) in Figure 23 could fire. This is due to

the fact that the first policy (lines 1-6) matches any trustee; the second policy (lines 8-13)

matches any trustee that is of type movie while the third policy (lines 15-20) matches any

trustee that is of type horror movie. As only one policy can fire, the policy with the

highest “salience” would fire, thereby returning the emotional trust value of 0.8. ETS

currently only supports one hierarchy. Support for multiple hierarchies will be part of our

future work.

1 salience 0

2 when

3 trustee: Trustee()

4 then

5 0

6 end

7

8 salience 10

9 when

10 trustee: Trustee(type matches "Movie.*")

11 then

12 0.5

13 end

14

15 salience 20

16 when

17 trustee: Trustee(type matches "Movie/Horror.*")

18 then

19 0.8

20 end

21

22 salience 30

23 when

24 trustee: Trustee(type matches "Movie/Horror.*" && id == "Alien")

25 then

26 1.0

27 end

Figure 23: ET-Policies

5.5 Summary

SCOUT is a middleware designed to support computational trust formation. SCOUT

currently consists of three services: Evidence Gathering Service (EGS), Belief Formation

70

Service (BFS) and Emotional Trust Service (ETS). EGS is responsible for evidence

gathering. BFS is responsible for aggregate belief formation. ETS is responsible for

emotional trust formation. All three services are designed with modularity, extensibility

and adaptability in mind.

71

Chapter 6

6 Trust Calculator

The focus of this chapter is on introducing the Trust Calculator. This chapter is divided

into three sections. The first section provides a high level overview of the Trust

Calculator design. The second section explains how computational trust calculation can

be described using a trust calculation plan. The final section of this chapter covers the

Trust Calculator. The Trust Calculator calculates computational trust based on the

supplied trust calculation plan.

6.1 Trust Calculator Design

The Trust Calculator is designed with the following properties in mind:

 Adaptability. There are many factors that could influence computational trust

calculation (see Section 4.1.6 for reference). To capture the different ways to

calculate computational trust, the Trust Calculator uses trust calculation plans

(TcPlans). A TcPlan is basically a description of how computational trust is to be

calculated. The Trust Calculator associates with each set of factors a TcPlan and

switches TcPlans as the factors change.

 Ease of Use. A TcPlan provides a high level abstraction of how computational

trust calculation is implemented. By separating the design of computational trust

formation from its implementation, even non-developers such as domain experts

can participate in determining how computational trust is formed.

 Reusability. Different TcPlans may share similar computational trust formation

algorithms. To achieve reusability, these algorithms are implemented as nodes

that can be referenced in TcPlans. The nodes can also be packaged into libraries.

A library can either be home grown or obtained from third parties. By leveraging

the libraries when implementing computational trust calculation, a developer

could save on development time and effort by not having to implement all the

algorithms from scratch.

72

6.2 Trust Calculation Plan

Trust calculation is a form of inductive reasoning [1]. The reasoning can be modeled as

the invocation of a tree. Computational trust calculation therefore is represented as a tree

in a TcPlan. The structure of a TcPlan is shown in Figure 24. A TcPlan is divided into

two segments: nodeDefinition and trustCalculation. In nodeDefinition (lines 3-5), the

nodes of the tree (i.e., the algorithms needed for computational trust calculation) are

defined. The trustCalculation segment (lines 6-9) consists of two parts. The trigger part

(line 7) specifies when computational trust calculation is to take place. If no trigger is

specified, the assumption is for computational trust calculation to take place now. The

tree part (line 8) specifies the aggregate beliefs and emotional trust to be obtained from

SCOUT. It also specifies the tree’s construction (i.e., how the nodes are to be applied to

aggregate beliefs and emotional trust to form computational trust).

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tcplan>

3 <nodeDefinition>

4 …

5 </nodeDefinition>

6 <trustCalculation>

7 <trigger> … </trigger>

8 <tree> … </tree>

9 </trustCalculation>

10 </tcplan>

Figure 24: Structure of TcPlan

An example TcPlan is shown in Figure 25. In the figure, computational trust is

calculated for movie selection. Four nodes are defined in the nodeDefinition segment

(lines 3-14). Each node is given an identifier through node id that is referenced in tree

construction. The class attribute specifies the implementation of a node.

“AggregateBeliefQuery” (lines 4-6) and “EmoTrustQuery” (line 7) are used to query

SCOUT for aggregate belief and emotional trust respectively. In the case of

“AggregateBeliefQuery”, any non-“aggregateBelief” parameter would be treated as hints

to the getAggregateBelief method of BFS (Figure 28 shows some possible hints).

“AggregateBeliefToTrust” (line 8) maps the trustor’s aggregate belief to cognitive trust.

“WeightedAvg” (lines 9-13) weights all of its inputs based on the “weights” parameter.

73

In the tree part of the trustCalculation segment (lines 15-22), an XML element with child

elements represents a node with child nodes. Based on the elements, a tree can be

constructed. The tree is graphically represented in Figure 26. In the figure, nodes that

interact with the SCOUT middleware are represented as squares. All other nodes are

represented as circles.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tcplan>

3 <nodeDefinition>

4 <node id="qualityBelief" class="AggregateBeliefQuery">

5 <parameter name="aggregateBelief" type="string">Quality</parameter>

6 </node>

7 <node id="emoTrust" class="EmoTrustQuery"/>

8 <node id="cognitiveTrust" class="AggregateBeliefToTrust"/>

9 <node id="computationalTrust" class="WeightedAvg">

10 <parameters name="weights" type="double">

11 <parameter>0.7</parameter><parameter>0.3</parameter>

12 </parameters>

13 </node>

14 </nodeDefinition>

15 <trustCalculation>

16 <tree>

17 <computationalTrust>

18 <cognitiveTrust><qualityBelief/></cognitiveTrust>

19 <emoTrust/>

20 </computationalTrust>

21 </tree>

22 </trustCalculation>

23 </tcplan>

Figure 25: TcPlan (Movie)

Figure 26: Tree of TcPlan (Movie)

74

In Figure 25, computational trust is calculated with cognitive trust being assigned

a weight of 0.7 and emotional trust being assigned a weight of 0.3. Different movie

selectors may have different views on the appropriate weight to assign to cognitive trust

and emotional trust. As a result, when constructing a TcPlan, it is not always possible to

fill in the weights a priori. A Trust Calculation Template (TcTemplate) is used to allow

portions of the TcPlan to be filled in when appropriate. An example TcTemplate is shown

in Figure 27. Figure 27 is basically Figure 25 with the weights replaced by variables. The

variables are identified by being surrounded by curly brackets (lines 8-9). Also,

comments “BEGIN: TcTemplate” (line 2) and “END: TcTemplate” (line 15) are included

to identify the TcPlan as a TcTemplate. By assigning values to the variables, the

parameterization allows for the creation of a TcPlan from a TcTemplate. Variables in a

TcTemplate are commonly associated with information that are subjective (e.g. weights)

or decision dependent (e.g. decision importance). This information cannot be known until

the application is configured or during decision making.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!-- BEGIN: TcTemplate -->

3 <tcplan>

4 <nodeDefinition>

5 …

6 <node id="computationalTrust" class="WeightedAvg">

7 <parameters name="weights" type="double">

8 <parameter>{COG _WEIGHT}</parameter>

9 <parameter>{EMO_WEIGHT}</parameter>

10 </parameters>

11 </node>

12 </nodeDefinition>

13 …

14 </tcplan>

15 <!-- END: TcTemplate -->

Figure 27: TcTemplate (Movie)

A different TcPlan example is shown in Figure 28. In the figure, computational

trust is subscribed and used in web service selection. A “timer” of class “Timer” is

defined in the nodeDefinition segment (lines 4-7). The “timer” is set to trigger

computational trust calculation immediately with zero delay (line 5). After which,

calculation is set to trigger every 60 minutes (line 6). Besides triggering calculation by

75

time, the Trust Calculator also supports triggering through SCOUT subscription. For

example, by subscribing to emotional trust or aggregate belief, a TcPlan could trigger

computational trust calculations only if there has been a change in the emotional trust or

aggregate belief obtained from SCOUT.

In the figure, cognitive trust is calculated from competence belief, performance

belief and quality belief. The “expression” parameter of the “cognitiveTrust” node (lines

30-32) is associated with conditions for “aBelief1”, “aBelief2” and “aBelief3”. The

numbering used on “aBelief” refers to the order of the elements in the tree part of

trustCalculation segment (lines 44-46). Therefore, “aBelief1” refers to aggregate belief

competence; “aBelief2” refers to aggregate belief performance, “aBelief3” refers to

aggregate belief quality. All three conditions need to be evaluated to “True” for the

cognitive trust value to be set to 1 (i.e., cognitively trusted). Otherwise, cognitive trust

value is set to -1 (i.e., cognitively distrusted). As the conditions are all “AND” together,

the “cognitiveTrust” node can short circuit the evaluation process if one of the conditions

is evaluated to false. Aggregate beliefs are obtained from SCOUT through

“AggregateBeliefQuery”. Hints are provided to BFS in terms of “importance” (lines 10,

18, 26) and “evidenceType” (lines 14-17, 22-25).

In terms of computational trust formation, the “cause” parameter of the

“computationalTrust” node (line 35) is used to determine the calculated computational

trust value. If the value obtained from the node’s left child (i.e., “emoTrust”) has a value

that is greater than zero (trust > 0), then computational trust is assigned the value of the

node’s right child (i.e., “cognitiveTrust”). Otherwise, the returned computational trust

value is -1 (i.e., distrusted). Since emotional trust is evaluated first, the

“computationalTrust” node does not need to invoke the “cognitiveTrust” node if

emotional trust is not greater than zero. This is another demonstration of how

computational trust formation can be short circuited. The tree constructed from the

TcPlan is graphically represented in Figure 29.

76

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tcplan>

3 <nodeDefinition>

4 <node id="timer" class="Timer">

5 <parameter name="delay" type="integer">0</parameter>

6 <parameter name="period" type="integer">60</parameter>

7 </node>

8 <node id="competenceBelief" class="AggregateBeliefQuery">

9 <parameter name="aggregateBelief" type="string">Competence</parameter>

10 <parameter name="importance" type="string">High</parameter>

11 </node>

12 <node id="performanceBelief" class="AggregateBeliefQuery">

13 <parameter name="aggregateBelief" type="string">Performance</parameter>

14 <parameters name="evidenceType" type="string">

15 <parameter>Experience</parameter>

16 <parameter>Reputation</parameter>

17 </parameters>

18 <parameter name="importance" type="string">High</parameter>

19 </node>

20 <node id="qualityBelief" class="AggregateBeliefQuery">

21 <parameter name="aggregateBelief" type="string">Quality</parameter>

22 <parameters name="evidenceType" type="string">

23 <parameter>Experience</parameter>

24 <parameter>Reputation</parameter>

25 </parameters>

26 <parameter name="importance" type="string">High</parameter>

27 </node>

28 <node id="emoTrust" class="EmoTrustQuery"/>

29 <node id="cognitiveTrust" class="ConditionalTrust">

30 <parameter name="expression" type="string">

31 aBelief1 == 1 && aBelief2 > 0 && aBelief3 > 0

32 </parameter>

33 </node>

34 <node id="computationalTrust" class="CausalTrust">

35 <parameter name="cause" type="string">trust > 0</parameter>

36 </node>

37 </nodeDefinition>

38 <trustCalculation>

39 <trigger><timer/></trigger>

40 <tree>

41 <computationalTrust>

42 <emoTrust/>

43 <cognitiveTrust>

44 <competenceBelief/>

45 <performanceBelief/>

46 <qualityBelief/>

47 </cognitiveTrust>

48 </computationalTrust>

49 </tree>

50 </trustCalculation>

51 </tcplan>

Figure 28: TcPlan (Web Service)

77

Figure 29: Tree of TcPlan (Web Service)

6.3 Trust Calculator

A Trust Calculator is responsible for computational trust formation. Each application has

its own Trust Calculator that can be customized to satisfy the application’s computational

trust needs. A graphical illustration of a Trust Calculator is shown in Figure 30. The Trust

Calculator consists of two components: the Trust Calculation Planner (TcPlanner) and the

Trust Calculation Engine (TcEngine). The TcPlanner is responsible for TcPlan selection

based on existing factors. The TcEngine is responsible for the execution of the selected

TcPlan.

Figure 30: Trust Calculator

78

The calculateTrust method of the Trust Calculator has as input two parameters:

trustee and decision factors. The parameter trustee consists of trustee factors. An

application factors parameter has also been defined and can be supplied to the Trust

Calculator through the setApplicationFactors method. Unlike trustee and decision

factors, application factors are not discarded after computational trust formation. As a

result, application factors can be reused across decisions. Trustor factors are application

factors since they generally do not change across decisions. Trustee factors and decision

factors can also be application factors. An example is decision type where an application

that only makes one type of decision can specify decision type as an application factor

thereby no longer needing to provide decision type for every calculateTrust method

invocation. All three factor types are represented as attribute-value pairs. The TcPlanner

treats all the factors as the same during TcPlan selection. If there is any attribute conflict

(e.g. decision type being provided through both decision factors and application factors),

application factors are overwritten by trustee and decision factors.

The TcPlanner uses the factors to determine the TcPlan to be selected for

execution. For example, a decision factor could be importance. There may be different

TcPlans associated with different levels of importance. Thus there may be a TcPlan

associated with a decision of high importance and another TcPlan associated with a

decision of low importance. The factors could also influence the hints to be passed to

BFS. For example, a TcPlan corresponding to a decision of high importance may cause a

hint to be passed to BFS that reflects the importance of the decision.

If the selected TcPlan is a TcTemplate, the variables in the TcTemplate need to be

parameterized by the TcPlanner. It is the responsibility of the application developer to

define the mapping from factors to TcPlans (see Section 8.2.1 for examples). After

TcPlan selection, the next step is for the TcEngine to execute the TcPlan. This is by

instantiating a calculation tree from the TcPlan. By invoking the tree, the TcEngine

executes computational trust formation. The final step is for the Trust Calculator to return

the calculated computational trust to the application. The entire process is graphically

illustrated in Figure 31.

79

The subscribeTrust method of the Trust Calculator has as input three parameters:

trustee, decision factors and trust listener. The trust listener is notified of any calculated

computational trust value. The return value of the method is a unique identifier:

subscriptionId. The subscriptionId identifier is used in the unsubscribeTrust method to

unsubscribe from an existing subscription. For a subscription to succeed, the

corresponding TcPlan needs to have a trigger defined. There is no reason for

computational trust subscription if a TcPlan only needs to be invoked once. The

TcEngine automatically ignores any trigger definition in the case of calculateTrust. As a

result, the same TcPlan can be used for both computational trust query and subscription.

Figure 31: Trust Calculator’s Execution

Although in most cases having access to computational trust is enough for making

trust-based decisions. There are exceptions when an application may be interested in how

computational trust is formed. For example, if the computational trusts calculated for two

trustees are the same, examining the underlying calculations may help determine which

of the two trustees should be selected. To provide this information to the application, the

TcEngine logs the output of each of the nodes in the TcPlan. The log is then returned to

the application as part of the calculated computational trust.

6.4 Summary

The Trust Calculator is responsible for computational trust calculation. It consists of two

components: the Trust Calculation Planner (TcPlanner) and the Trust Calculation Engine

(TcEngine). The TcPlanner takes the trustee, decision factors and application factors into

80

account when performing TcPlan selection. A TcPlan is basically a description of how

computational trust is to be calculated. The selected TcPlan is passed to the TcEngine for

execution. The calculated computational trust value is returned to the requesting

application. In this thesis, it is assumed that each application has its own Trust Calculator.

The Trust Calculator is designed with adaptability, ease of use and reusability in mind.

81

Chapter 7

7 Algorithms

The focus of this chapter is on introducing the algorithms used in the computational trust

architecture. This chapter is divided into two sections. The first section discusses an

approach for calculating belief from evidence. The second section explains how evidence

source trust can be calculated.

7.1 Belief Formation

There are many ways to calculate belief from evidence (see Table 3 in Section 4.3 for a

summary of the algorithms used in the literature). A belief formation algorithm is

introduced in this section. The algorithm is applicable to both belief and aggregate belief.

The equations used in belief formation are as follows:

 (1)

 (2)

In equation (1), is belief calculated from the trustor’s experiences. The values

of , and are calculated from recommendations, reputations

and signals respectively. Since different evidence types have different properties, these

properties need to be taken into account when evaluating beliefs calculated from the

evidence types. Therefore, a trustor’s belief in a trustee is calculated as the weighted

average of beliefs calculated from different evidence types. A possible weight assignment

is .

In equation (2), the reliability of is calculated. In this thesis, reliability is

an evaluation of the quality of the underlying evidence used in belief calculation. Like

belief, reliability is calculated as weighted average of reliabilities calculated from the

evidence types. The calculated and can be used in cognitive trust

calculation.

82

If there is no evidence of a specific type, its weights in equations (1) and (2) can

be set to zero. The equations can be used in a BF-Policy where and

are the values returned by the Belief Formation Service (BFS). Alternatively, the

equations can be a node in the Trust Calculator. The return values of BFS are then

 , , and . Both approaches are viable as demonstrated

in Section 10.2.1.1. The calculation of , , and are

the responsibility of the Belief Engines. The algorithms used are the focus of the rest of

this section.

7.1.1 Experience

The equations used for calculating belief from experiences are as follows:

∑

∑

 (
 ()

)

(3)

 {

 ()

 ()

(4)

Equation (3) is based on the equations proposed in Regret [110] and FIRE [59]. Belief is

calculated as the weighted average of the trustor’s experiences. Each experience is

assigned a weight of that is based on the age of the experience. Newer experiences are

assigned greater weights since these experiences are more likely to reflect the trustee’s

current behavior. In weight calculation, () is the time difference between the

current time and the creation time of the experience. The recency scaling factor or λ

determines how much () influences . The relationship between () and

for different values of are shown in Figure 32. As seen in the figure, decreases as

 () increases. As increases, the rate of decrease of slows down. For

 , when (

) but for , when

 () and for , when () . Increases in

values of reduces the calculated belief’s sensitivity to changes in the trustee’s

behaviors. As anomalies do happen, it may be desirable to not punish a trustee too

severely for a single misbehavior.

83

Figure 32: Experience Weights

In equation (4), the reliability of is calculated based on two factors. The

first factor is the age of the experiences. If belief is calculated from old experiences, the

calculated belief may be unreliable. As in equation (3) already takes into account the

age of an experience, a simple solution is to sum all the weights as an approximation of

the age of the experiences [59]. The problem with this approach is that the summed

weight is influenced by not just but also the number of experiences. Having more old

experiences does not imply higher reliability. To address this problem, only the weight of

the newest experience is used as an approximation of the age of the experiences. The

newest experience is assigned the maximum weight and is represented in equation (4) as

 . This is a reasonable approximation as the newest experience is also the experience

that has the most influence on the calculated .

The second factor that influences reliability is the number of experiences used in

belief calculation. As explained in [110], experiences are needed for the trustor to

become familiar with the trustee. As familiarity with the trustee increases, so should

reliability in the calculated belief. However, once familiarity is established having more

experiences should have no impact on belief reliability. Therefore, is used to

represent the number of experiences used in belief calculation. The value of

 represents the number of experiences needed to establish familiarity. In

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

wi

Δt(expi)

λ=7.213 λ=14.427 λ=28.854

84

equation (4), if familiarity is established, the factor is assigned the value of one.

Otherwise, the factor is represented as the ratio of and .

Finally, is calculated as the weighted average of experience age

and experience count factors. The assignment of the weight is based on the trustor’s

preferences. Old experience that are no longer relevant can be filtered out using an

experience window (). For example, a one year experience window implies

that all experiences that are older than one year are to be filtered out and cannot be used

in belief formation.

7.1.2 Recommendation

The equations used for calculating belief from recommendations are as follows:

∑

∑

(5)

 {

∑ ()

∑
 .

 /

∑ ()

∑

(6)

In equation (5), belief is calculated as the weighted average of the gathered

recommendations. Each recommendation is assigned a weight based on the trustor’s

level of trust in the recommendation’s recommender () [20], [22], [26]. This is so

that more trusted recommenders have a larger influence on than less trusted

recommenders.

In equation (6), the reliability of is calculated based on two factors. The

first factor is the trustor’s level of trust in the recommenders. The more recommendations

are gathered from trusted recommenders, the higher should be the reliability of the

calculated belief. This factor is calculated by applying weighted average to recommender

trust. The weights () used are the same as those in equation (5). The second factor

is the number of recommendations used in belief calculation. As a recommender is not

the trustor, even the most trusted recommender could on occasion deviate from the

trustor. Therefore having recommendations from more than one recommender is

85

desirable and can help increase the reliability of the calculated belief. The calculation of

this factor is similar to the calculation of the experience count factor in Section 7.1.1.

Finally, is calculated by subtracting the inverse of recommendation

count factor from the recommender trust factor. As the recommendation count factor

decreases, this should negatively impact . The magnitude of the impact

could be adjusted using the weight which is based on the trustor’s preferences.

7.1.3 Reputation

The equations used for calculating belief from reputations are as follows:

∑

∑

 {

(7)

 {

∑ ()

∑
 (

)

∑ ()

∑

(8)

In equation (7), belief is calculated as the weighted average of the gathered reputations.

Each reputation is assigned a weight that is calculated based on two factors. The

first factor is the trustor’s level of trust in the reputation’s reputation system (). A

reputation should be given more weight if it is created by a more trusted reputation

system. The second factor is the number of feedbacks used by the reputation system in its

reputation calculation. If a reputation is calculated from very few feedbacks, it is less

reliable and should be given less weight. The number of feedbacks used in reputation

calculation is a metric that can readily be found in web-based reputation systems. For

example, Amazon provides information on the number of reviews available for each of

its products. The same information is also found at Best Buy, eBay, Rotten Tomatoes,

IMDb, etc. The calculation of this factor is based on the same approach used for

calculating experience count factor and recommendation count factor. Finally, is

calculated as the product of reputation system trust factor and feedback count factor.

86

In equation (8), the reliability of is calculated using the same approach

used for calculating in Section 7.1.2. The value of is

calculated by subtracting the inverse of reputation count factor from the weight factor.

7.1.4 Signal

A signal can be mapped to a numeric domain. An example signal is an Extended

Verification (EV) certificate [21] that is used as confirmation of a website’s identity. The

signal could be mapped to the domain of -1, 0 and 1. If a trustee does not have an EV

certificate, this could be mapped to 0. If the EV certificate failed to be validated, this

could be mapped to -1. Otherwise, the mapping would be to 1. After mapping, the signals

can now be used in belief formation. The equations used for calculating belief from

signals are as follows:

∑

∑

(9)

 {

∑ ()

∑
 (

)

∑ ()

∑

(10)

In equation (9), belief is calculated as the weighted average of the supplied signals. The

calculation uses the same approach used for calculating in Section 7.1.2. In

equation (10), the reliability of is calculated using the same approach used for

calculating in Section 7.1.2. The value of is calculated by

subtracting the inverse of signal count factor from the signaler trust factor.

7.1.5 Summary

Several algorithms have been proposed for belief formation. For belief formation from

experiences, the recency scaling factor λ is used to influence the weight assigned to each

experience. As λ increases, the calculated belief becomes less sensitive to the age of the

experiences. The weight is used to determine whether age of experiences or amount

of experiences (influenced by subjective) should be the main determinant

87

for belief reliability. For trustees that change behaviors frequently, smaller λ and larger

 is preferable. The opposite would be the case for trustees that seldom change.

 As for belief formation from recommendations, recommender trust can be used

to weigh each of the gathered recommendation. The subjective weight is used to

determine the influence that the amount of recommendations (influenced by subjective

) have on belief reliability. The same concept is also applicable to belief

formation from reputations. The only difference is that reputation is weighted by not

just reputation system trust but also by the number of feedbacks used in reputation

calculation. Finally, belief formation from signals is calculated using the same approach

as that for recommendations. The beliefs calculated from different evidence types can

be aggregated using weighted average with the weight assignments dependent on the

properties of evidence types.

7.2 Evidence Source Assessment

There are many ways to calculate evidence source trust as discussed in Section 5.2.3. An

evidence source assessment algorithm is introduced in this section. The algorithm can be

viewed as consisting of two stages: evidence assessment and evidence source trust

assessment. Both stages are described in detail in the rest of this section.

7.2.1 Evidence Assessment

There are many ways to perform evidence assessment. In [127], Chebyshev’s rule [89] is

used. In [6], [67] and [115], assessment is based on compliance level. The compliance

level approach has been adopted in this section. The approach calls for the evaluation of

the gathered evidence with respect to some evidence quality standard. The standard used

in this section is the trustor’s feedback. A trustor provides feedback to the Evidence

Gathering Service (EGS) after it has interacted with the trustee. To be in compliance

therefore means that the gathered evidence should be similar to the trustor’s feedback.

The equation used to perform evidence assessment is as follows:

88

 | |

(11)

In equation (11), has an interval of [-1, 1]. Any calculated

that is less than -1 is mapped to -1 instead. Similarity is represented as the absolute

difference between the feedback and the evidence . If the absolute difference is

zero, then the evidence is assigned the maximum assessment of one. Increases in the

absolute difference should have a negative impact on the calculated assessment. The level

of impact can be adjusted through . The relationships between | |

and for different values are shown in Figure 33. In the figure,

as increases, the rate of decrease of slows down. Changes in

 therefore can be used to adjust how sensitive EGS should be to evidence

noncompliance.

Figure 33: Evidence Assessments

Using equation (11), a single feedback can be can be used to assess the qualities

of multiple evidence. However, not all gathered evidence should be considered in

evidence assessment. As a trustee’s behavior may change over time, it is unreasonable to

expect old evidence to be in compliance with the trustor’s feedback. Therefore, an

evidence window () has been defined that can be used to limit the evidence

considered during evidence assessment. As an example, an evidence window of 60

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

a
ss

es
sm

en
t i

j

|fdki-evj|

similarity=0.2 similarity=0.3 similarity=0.4

89

minutes would limit the evidence to those that have creation timestamp (or gathered

timestamp if creation timestamp is unavailable) that is within the past hour of the

feedback’s creation.

An evidence could have multiple assessments as it could be within the

of multiple feedbacks. If so, these assessments need to be aggregated to form the trustor’s

overall assessment of the evidence. The equation used for calculating overall evidence

assessment is as follows:

∑

∑

 () ()

(12)

In equation (12), the overall assessment is calculated as the weighted average of the

individual assessments. Each assessment is assigned a weight based on the

difference between feedback creation time and evidence creation time (or evidence

gathered time if evidence creation time is unavailable). The time difference is represented

as the difference in evidence age (()) and feedback age (()). The resulting

difference is normalized using . The inverse of which is the weight assigned to

an assessment. If an evidence is created or gathered close to when the trustor interacts

with the trustee (i.e., when feedback is created), it is more likely to be correct than an

older evidence. As a result, the assessment of this evidence should be given more weight

than assessment of older evidence that has a higher likelihood of being wrong.

7.2.2 Evidence Source Trust Assessment

Evidence source trust can be viewed as a form of computational trust. As a result,

evidence source trust can be calculated from cognitive trust and emotional trust. In terms

of cognitive trust, the overall evidence assessments calculated using equation (12) in

Section 7.2.1 can be viewed as the trustor’s experiences with the evidence sources.

Equations (3) and (4) in Section 7.1.1 therefore can be used to calculate the trustor’s

quality belief in the evidence provided by an evidence source. With belief calculated, the

last step is the calculation of cognitive trust. The equation for cognitive trust calculation

is as follows:

90

 ()
(13)

In equation (13), cognitive trust in an evidence source is calculated as the difference

between belief and the inverse of reliability. As belief reliability decreases, this should

have a negative effect on the calculated cognitive trust. The magnitude of the effect can

be adjusted through . For example if , the calculated cognitive

trust would be solely based on the calculated belief.

In terms of emotional trust, it can be calculated based on the trustor’s recognition

of the evidence source. As for computational trust, its calculation is as follows:

 ()
(14)

In equation (14), computational trust is calculated as the weighted average of cognitive

trust and emotional trust. The assignment of the weight is based on the trustor’s

preferences. Some possible values are shown in Table 1 of Section 4.1.6.1.

7.2.3 Summary

An algorithm for calculating evidence source trust is proposed in this section. The

algorithm assesses the gathered evidence by comparing the evidence to the trustor’s

feedback. If the evidence is similar to the trustor’s feedback, a positive assessment would

be assigned to the evidence. Otherwise a negative assessment would be assigned.

Similarity’s influence on the calculated assessment can be adjusted through .

For an optimistic trustor, the value assigned to could be larger than that for a

pessimistic trustor that views any dissimilarity from feedback with suspicion. The

window is used to limit the evidence to be considered during assessment. The

value for could be based on the rate at which the trustees change behaviors.

As evidence can be reused, they may be multiple feedbacks for each piece of evidence.

An equation therefore has been proposed on how evidence assessment can take into

account multiple feedbacks.

91

Finally, the assessments are treated as experiences from evidence gathering. This

in turn allows for the calculation of cognitive trust with subjective weight

being used to determine the influence that belief reliability has on cognitive trust. As for

the calculation of computational trust in an evidence source, the subjective weight to be

placed on cognitive trust and emotional trust is determined by .

7.3 Summary

Two algorithms have been proposed in this chapter. The first algorithm is used to

calculate belief from evidence of different types. The second algorithm calculates

evidence source trust in two stages: evidence assessment and evidence source trust

assessment.

92

Chapter 8

8 Implementation

The focus of this chapter is on describing the implementation of the computational trust

architecture. This chapter is divided into two sections. The first section introduces the

prototype implementation of SCOUT. The second section introduces the prototype

implementation of the Trust Calculator.

8.1 SCOUT

SCOUT (Figure 34) is a web application that is implemented in Java EE 5. The

implementation is deployed on GlassFish [46], an open source application server.

SCOUT consists of three services: Evidence Gathering Service (EGS), Belief Formation

Service (BFS) and Emotional Trust Service (ETS). EGS consists of Evidence Gathering

Manager (EGM), Policy Engine, Evidence Gatherers, Evidence Handlers, Evidence

Source Assessors and Job Scheduler. BFS consists of Belief Formation Manager (BFM),

Subscription Manager, Policy Engine and Belief Engines. ETS consists of Emotional

Trust Manager (ETM), Subscription Manager and Policy Engine. Implementation wise,

the SCOUT services shared a number of SCOUT components.

Figure 34: SCOUT Implementation

93

EGM, BFM and ETM are implemented as EJBs (Enterprise Java Beans) with web

service frontends. All three managers depend on the Policy Engine for interacting with

the deployed plug-ins (Evidence Gatherers, Evidence Source Assessors and Belief

Engines). The Policy Engine is an EJB that uses the Drools rule engine [37] for policy

processing. The policies are stored in a Policy Repository. It is the responsibility of the

managers to retrieve and deploy the policies to the Policy Engine. As for the different

plug-ins, they are all implemented as EJBs with communication with the Policy Engine

being based on JMS (Java Message Service). With JMS, messages are delivered by

specifying the destination of a message (as oppose to communicating using an EJB

reference) which in our implementation is based on identities of the plug-ins and the

Policy Engine.

The Subscription Manager is implemented as an EJB. It uses the Timer Service

offered by Glassfish to perform periodic subscriptions re-evaluation. As for the

specification and processing of aggregate belief filters and emotional trust filters, these

are based on the MVEL expression language [95]. The filtered aggregate beliefs and

emotional trusts are stored in a JMS message queue. A subscriber can retrieve its

subscribed information using its subscriptionId.

The Job Scheduler is implemented as a Servlet. It is based on the open source job

scheduling service Quartz [99]. The Job Scheduler is used by the Evidence Source

Assessors to trigger periodic evidence source trust calculation. It is also used to perform

Evidence Repository maintenance. As an example, evidence stored in the Evidence

Repository are periodically examined. If the evidence is outdated, they are removed from

the Evidence Repository.

8.2 Trust Calculator

The Trust Calculator is implemented as a Java SE 6 library. The implementation of the

Trust Calculation Planner (TcPlanner) and the Trust Calculation Engine (TcEngine) is

described in the rest of this section.

94

8.2.1 Trust Calculation Planner

The TcPlanner is implemented as a Java interface. It consists of a single method

formulateTcPlan that has as input a single parameter factors. The return value of the

method is the formulated TcPlan. An application developer could implement its own

TcPlanner based on the TcPlanner interface. An application developer could also use one

of the two implementations included in the Trust Calculator library for TcPlan selection.

The first TcPlanner implementation in the library is the XMLTcPlanner. The

planner reads an XML document that describes the mappings from factors to TcPlan. An

example document is shown in Figure 35. In the figure, if the decision type is movie

selection (line 5), then the TcTemplate named “MovieTrust” is retrieved and

parameterized with the supplied parameters (lines 7-13). The parameterization is based

on the Jtpl template engine [66]. If the mapping is to a TcPlan, then the “tctemplate” tag

is replaced by the “tcplan” tag. XMLTcPlanner offers a simple way to perform factors to

TcPlan mapping. If more complex mappings are needed, the PolicyTcPlanner in the

library can be used instead. The PolicyTcPlanner performs TcPlan selection based on

policies. The implementation uses the Drools rule engine [37] for policy processing. An

example policy is shown in Figure 36. The example is the same as Figure 35 except the

mapping is in policy form.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <mappings>

3 <mapping>

4 <factors>

5 <factor name="DecisionType">MovieSelection</factor>

6 </factors>

7 <tctemplate>

8 <name>MovieTrust</name>

9 <parameters>

10 <parameter name="COG_WEIGHT">0.7</parameter>

11 <parameter name="EMO_WEIGHT">0.3</parameter>

12 </parameters>

13 </tctemplate>

14 </mapping>

15 </mappings>

Figure 35: Factors-TcPlan Mapping (Movie)

95

1 when
2 Factor(name=="DecisionType" && value == "MovieSelection")

3 then

4 template = new TcTemplate("MovieTrust");

5 template.set("COG_WEIGHT", 0.7);

6 template.set("EMO_WEIGHT", 0.7);

7 template.parse();

8 end

Figure 36: Factors-TcPlan Policy (Movie)

8.2.2 Trust Calculation Engine

The TcEngine performs computational trust calculation by parsing the TcPlan supplied

by the TcPlanner. First the nodes defined in the nodeDefinition segment of the TcPlan are

parsed and instantiated. The nodes all belong to one of three types: belief-belief, belief-

trust and trust-trust. A belief-belief node takes aggregate belief as input and produces

aggregate belief as output. An example belief-belief node is the AggregateBeliefQuery

node that retrieves aggregate belief from SCOUT. A belief-trust node takes aggregate

belief as input and produces trust as output. An example belief-trust node is the

AggregateBeliefToTrust node that calculates cognitive trust from aggregate belief. A

trust-trust node takes trust as input and produces trust as output. An example trust-trust

node is EmoTrustQuery node that retrieves trust from SCOUT. If a node needed for

computational trust calculation is not available in the Trust Calculator library, an

application developer can choose to implement the node by extending one of the three

basic node types.

With the nodes instantiated, the next step is to consult the tree part of the

trustCalculation segment. For each element and its children, the corresponding nodes are

retrieved and their parent-children relationships established. By performing breadth-first

traversal, a tree can be constructed. The last step is to invoke the root node of the tree to

perform computational trust calculation. It is the responsibility of each parent node to

determine which of its child nodes should be invoked to continue the calculation.

As for computational trust subscription, besides the creation of a calculation tree,

a tree also needs to be created for triggering the computational trust calculation. This

96

involves the parsing of the trigger part of the trustCalculation segment. The approach

taken is exactly the same as for calculation tree creation. After both trees are created, the

next step is for the TcEngine to invoke all the leaf nodes of the trigger tree. Associated

with each trigger node are conditions that have to be satisfied before its parent node can

be triggered. This would continue on until the root node of the tree has been triggered.

This causes the invocation of the root node of the calculation tree to perform

computational trust calculation. If a node needed for triggering computational trust

calculation is not available in the Trust Calculator library, an application developer can

choose to implement the node by extending the basic trigger node type.

8.3 Summary

SCOUT is implemented as a web application. The components of SCOUT are shared by

all three SCOUT services. As an example, the Policy Engine is shared by all three

SCOUT managers. The managers interact with the SCOUT plug-ins through the

deployed SCOUT policies. As for the Trust Calculator, it is implemented as a library that

can be used to perform computational trust calculation. In terms of the TcPlanner, two

implementations have been showcased. In terms of the TcEngine, the focus is on how a

TcPlan can be parsed and instantiated for computational trust query and subscription.

97

Chapter 9

9 Experiments

The focus of this chapter is on presenting the experimental results. This chapter is divided

into eight sections. The first section discusses the goals of the experiments. The second

section examines the assumptions made in the experiments. Next, the metrics for

measuring the effectiveness of computational trust are introduced. This is followed by an

introduction to the experimental testbed. In section five, the experiments based on

experiences are explained. Next, the experiments based on recommendations are

discussed. This is followed by discussion of experiments based on both experiences and

recommendations. The last section of this chapter examines the conclusions that could be

drawn from the experiments.

9.1 Goals

The experiments in this chapter are designed to show the following:

 Evidence source type and behavior plays a key role in computational trust

formation. An evidence source could be of type: trustor, recommender, reputation

system or signal provider. An evidence source could behave in an honest or

malicious manner. The experiments are designed to evaluate how the

effectiveness of computational trust changes with changes in the availability of

evidence source type and evidence source behavior.

 Effectiveness of different computational trust formation algorithms. Specifically,

the averaging of evidence is used as a base case. The comparison is between the

use of a window to discard old evidence (on page 84 of Section 7.1.1)

and the use of weighted average (equation (3) of Section 7.1.1 including varying

recency scaling factor or λ) to give newer evidence more weight. The goal is to

investigate which approach is more effective. Thresholds (e.g.) are

not considered in the experiments. We consider the varying of belief reliability to

be part of future work.

98

9.2 Assumptions

The experiments in this chapter are designed with the following assumptions in mind:

 Computational trust is evaluated in a web service selection scenario. There are

many different approaches to evaluate computational trust. In this chapter,

computational trust is evaluated based on its effectiveness in supporting web

service selection.

 Computational trust formation. Emotional trust evaluation is considered future

work. Instead, the focus of the experiments is on cognitive trust. Basically,

cognitive trust and computational trust are treated as the same in the experiments.

As for cognitive trust formation, it is assumed that cognitive trust is formed from

the aggregate belief performance and that the aggregate belief is formed from

either experiences or recommendations. For simplicity sake, it is assumed that the

calculated belief reliability has no influence on cognitive trust. These

assumptions are setup to limit the number of variables in the experiments. The

assumptions should be reduced or even eliminated in future work. Also, it is

assumed that experience, recommendation, aggregate belief, cognitive trust,

computational trust and feedback are all in the interval of [-1, 1].

 Most web services provide average usage experiences. The web services are

configured as in Table 5 where most of the web services (40%) provides usage

experiences of 0 while few of the web services (10%) provides extremely high

(0.8) or extremely low (-0.8) usage experiences. The setup is chosen as it is a

reflection of the belief that extreme usage experiences are rare while average

usage experiences are common in everyday life. This is just one possible web

services setup. Other setups such as when extremes are more common than

average or when all usage experiences are equally likely are part of future work.

It is expected that different setups may lead to different experimental outcomes.

99

Table 5: Web Services (Experiments)

Number of Web Services Usage experience

1 0.8

2 0.4

4 0

2 -0.4

1 -0.8

 Most evidence sources are honest. It is assumed that most evidence sources

would not change its evidence just to mislead the trustor. The setup is chosen the

belief that most honesty is more prevalent in everyday life. Other setups such as

most evidence sources being dishonest are considered future work. It is expected

that different setups may lead to different experimental outcomes.

9.3 Metrics

The effectiveness of computational trust is evaluated using the following two metrics

 Mean experience (). After a web service is selected, the trustor could invoke

the web service to gain experience. The mean experience is calculated by

averaging all of the gained experiences. This is to evaluate the effectiveness of

computational trust in terms of its contribution to the trustor’s overall experiences.

 Percentage of positive experiences (). A trustor should avoid invoking web

services that provide below average usage experiences (i.e.,). The

percentage of the trustor’s experiences that are greater than or equal to zero can be

used to evaluate the effectiveness of computational trust in terms of its ability to

minimize the trustor’s negative experiences.

9.4 Experimental Testbed

The experiments in this chapter are conducted using an experimental testbed that is

described in this section. This is followed by a discussion of the different factors that can

be configured in the testbed.

100

9.4.1 Overview

The experimental testbed was developed using the Java programming language. It

implements the algorithm presented in Figure 37. In the setup phase (lines 1-4), the web

services, evidence sources and selector are configured. The selector implements an

algorithm for performing web service selection. A timer is also initialized to keep track of

time in the testbed.

With the completion of the setup phase, the testbed could begin web service

selections (lines 6-19). For all of the experiments in this chapter, repeatCount is set to

100 (line 6) and selectionCount is set to 50 (line 7). The testbed therefore performs 50

web service selections. Afterwards, and are calculated. This process is

repeated 100 times in order to reduce the impact that randomness has on the experiments.

After 100 experimental runs, the calculated and are averaged to form the

and of an experiment.

1 configure web_services
2 configure evidence_sources

3 configure selector

4 initialize timer

5

6 for i = 1 to repeatCount

7 for j = 1 to selectionCount

8 web_service = selector.select(web_services)

9 experience = web_service.invoke()

10

11 EGS.provideFeedback(web_service, experience)

12 Evidence_Repository.store(web_serivce, experience)

13

14 increment timer

15 end

16

17 reset selector, timer

18 cleanup Evidence_Respository

19 end

Figure 37: Experimental Testbed’s Algorithm

9.4.2 Web Services

The testbed can be configured with four different types of web services:

101

 Static web service. A static web service always provides its default usage

experience to the trustor. For example, a web service with always

provide experience of when invoked.

 Fluctuating web service. A fluctuating web service provides its default usage

experience to the trustor. Occasionally, the web service may provide usage

experience that deviates from the default. The fluctuation is usually temporary

and lasts for a short period of time. An example of a fluctuating web service is an

online retailer whose performance fluctuates during boxing week sales due to its

servers being overloaded. The fluctuation of a web service is represented using

two parameters. The parameter represents the likelihood of fluctuation.

The parameter represents the maximum duration of fluctuation.

Duration is measured in time units generated by the testbed’s timer. The

magnitude and duration of the fluctuation is randomly generated with a uniform

distribution. For example, a web service with , and

 has a 10% chance of fluctuation. During fluctuation, is

assigned a randomly generated value. This represents the magnitude of the

change. The duration of the fluctuation is randomly generated to be less than or

equal to . By the end of the duration, is reset. In the example,

 is reset to 0.4.

 Dynamic web service. A dynamic web service is a static web service whose

default usage experience changes over time. For example, the installation of new

servers may permanently improve the usage experience of the trustor. As a web

service’s popularity increases, the increased traffic may permanently deteriorate

the usage experience of the trustor. The dynamisms of a web service is

represented by the parameter. The parameter shows the likelihood of a

default usage experience change. For each change, a new default usage

experience is randomly generated with a uniform distribution. The web service’s

usage experience is then updated by 0.1 every time unit to move towards the new

default usage experience. For example, a web service with and

102

 has a 4% chance of dynamism. During dynamism, a new default

usage experience is generated. Assume that the generated value is 0.7. For the

next three time units, the usage experience provided by the web service becomes

0.5, 0.6 and 0.7 respectively. After arriving at 0.7 (i.e., the new default usage

experience), the usage experience remains at 0.7 until the next dynamism.

 Fluctuating-Dynamic (FD) web service. A FD web service has the properties of

both fluctuating web service and dynamic web service. The usage experience

provided by a FD web service is represented using three parameters: ,

 and . For example, a web service with ,

 , and has a 4% chance of dynamism.

During dynamism, the web service’s usage experience is updated as in the case of

a dynamic web service. Otherwise, it needs to be determined whether there is the

10% chance of fluctuation. During fluctuation, the web service’s usage experience

is updated as in the case of a fluctuating web service. Otherwise, the usage

experience provided by the web service would remain the same at . For

simplicity sake, it is assumed that a FD web service cannot be both fluctuating

and dynamic at the same time.

9.4.3 Evidence Sources

The testbed can be configured with four different types of evidence sources:

 Trustor. The trustor provides its experiences with a web service to be used in

performance belief formation.

 Honest recommender. An honest recommender provides its own experiences as

recommendation to be used in performance belief formation. As a recommender

may have different experiences than the trustor, the parameter is used

to represent the difference between the trustor’s usage experience and

recommendation. The value of is randomly generated with a uniform

distribution within a specified range. For example if , -,

103

then any recommendation provided by the honest recommender would deviate by

at most 0.1 from the trustor’s usage experience.

 Malicious recommender. The goal of a malicious recommender is to mislead the

trustor. Therefore, recommendation provided by a malicious recommender is the

inverse of the trustor’s usage experience. For example, if the trustor’s usage

experience is 0.5, then the recommendation provided would be -0.5.

 Oscillating recommender. An oscillating recommender changes its

recommendation from honest to malicious and vice versa at regular intervals. The

interval is determined by the parameter. For example with

 , the oscillating recommender would provide honest

recommendations for 5 time units. The recommender would then switch to

providing malicious recommendations for 5 time units. The transition between

honest to malicious and vice versa would continue to occur every 5 time units.

9.4.4 Web Service Selection Strategies

There are many different ways to perform web service selection. The simplest strategy is

the random strategy where a web service is selected at random. Web services could also

be selected based on computational trust. An example is to always select the web service

that is most trusted. This strategy is known as the max-trust strategy. An assumption

inherent in this strategy is that computational trust can be calculated for each of the web

services. If the trustor only has access to its own experiences, then it is possible that

computational trust cannot be calculated for those web services that the trustor does not

have experiences with. When faced with this challenge, exploration may be needed.

Exploration and several other terms are defined as follows:

 Unknown web service: If a web service has never been invoked by the trustor, the

web service is unknown to the trustor. Therefore, computational trust cannot be

calculated for the web service.

104

 Known web service: If a web service is known to the trustor, then the trustor has

experience with the web service. Therefore, computational trust can be calculated

for the web service.

 Exploration: Exploration is the random selection of an unknown web service for

invocation. Exploration allows the trustor to gain experience with an unknown

web service thereby the transitioning the unknown to a known web service.

 Exploitation: Exploitation utilizes the max-trust strategy to select from the known

web services.

Web service selection between unknown and known web services can be viewed as a

tradeoff between exploration and exploitation. By choosing exploration, a trustor could

determine whether an unknown web service could be trusted. By choosing exploitation,

the trustor could take advantage of the calculated computational trust for known web

services. There are different heuristics for determining when to explore and when to

exploit. The testbed supports two strategies: ε-greedy exploration strategy and Boltzmann

exploration strategy. Both strategies are introduced in the rest of this section.

9.4.4.1 ε-greedy Exploration Strategy

The ε-greedy exploration strategy uses the calculated exploration ratio to determine when

to explore and when to exploit. By generating a random number between 0 and 1, the

random number could be compared to the exploration ratio. If the random number is less

than the exploration ratio, selection is based on exploration. Otherwise, the selection is

based on exploitation. The equation for calculating exploration ratio is the following:

 ()
 (15)

In equation (15), time is a determinant for the value of the exploration ratio. When

 , the . As the time unit value increases, the exploration

ratio decreases. The strategy is based on the observation that at , the web

services are all unknown, therefore the trustor should explore. As the time unit value

increases and as more and more web services become known, the strategy should

105

transition to mainly exploitation. The parameter determines how much

influences . The relationship between and

for different values of are shown in Figure 38. In the figure, higher values of

speeds up the rate at which decreases over .

Figure 38: Exploration Ratios

9.4.4.2 Boltzmann Exploration Strategy

The Boltzmann exploration strategy uses the calculated exploration probability to

determine when to explore and when to exploit. By generating a random number between

0 and 1, the random number could be compared to the exploration probability. If the

random number is less than the exploration probability, selection is based on exploration.

Otherwise, the selection is based on exploitation. The equations used for calculating

exploration probability are the following:

(

)

(

)

(

)

(16)

 {

 ()

(17)

In equation (16), exploration probability is influenced by two factors: the experience the

trustor would gain from exploration () and the experience the trustor would

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

ex
p

lo
ra

ti
o
n

R
a
ti

o

time

dr = 0.00 dr = 0.25 dr = 0.50 dr = 0.75 dr = 1.00

106

gain from exploitation (). The is estimated by averaging all

of the trustor’s past experiences from exploration. The is estimated from

the computational trust calculated for the most trusted web service. If the calculated

 , then the strategy prefers exploration. If the calculated

 , then the strategy prefers exploitation. If the calculated

 , then the strategy has no preference.

The influence that and have on exploration

probability is determined by the parameter. Temperature is calculated

using equation (17) and is updated after every time unit value increment. The calculated

temperature decreases as the time unit value increases. The rate of decrease is determined

by the parameter . The parameter determines the minimum value of

temperature. As is used as a divisor in equation (16), . The

relationship between and for different values of

 , , and are shown in Figure 39. The legend of the

figure is shown in Table 6.

Figure 39: Exploration Probabilities

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

ex
p

lo
ra

ti
o
n

P
ro

b
a
b

il
it

y

time

Series1 Series2 Series3 Series4 Series5 Series6 Series7

107

Table 6: Legend of Figure 39

Series1 0.00 -0.40 0.25 0.01

Series2 0.00 0.00 0.25 / 0.90 0.01 / 0.25

Series3 0.00 0.40 0.25 0.01

Series4 0.00 -0.40 0.90 0.01

Series5 0.00 0.40 0.90 0.01

Series6 0.00 -0.40 0.25 0.25

Series7 0.00 0.40 0.25 0.25

In Figure 39, if as is the case with Series2, then

exploration and exploitation are equally likely () since

both would return a usage experience of 0. As increases, this slows down the rate of

change of as shown in Series4 and Series5. Higher values of

 results in a smaller range of values for as shown in

Series6 and Series7.

9.5 Experiments Based on Experience

In this section, the testbed is configured with the trustor as the only evidence source. In

each of the subsections, the experiments conducted are based on a different web service

type. The web service selection strategies are configured as follows:

 Random strategy

 ε-greedy exploration strategy

o

 Boltzmann exploration strategy

o

o

o

108

The max-trust strategy is not used in the experiments as computational trust cannot be

calculated for unknown web services. The computational trust formation algorithms are

configured as follows:

 Average

o

 Average

o

 Weighted average

o

9.5.1 Static Web Services

All the experiments in this subsection are based on static web services. The section is

divided into two parts. The first part describes the averaging of all the trustor’s usage

experiences. The second part explores the filtering of usage experiences using experience

window and the assignment of weights based on usage experience age.

9.5.1.1 Average

Table 7 shows a summary of the experimental results from web service selection. As a

web service selection strategy could have numerous configurations, the table only shows

the minimum and maximum values for all configurations of a strategy. The columns in

the table show the values for the minimum mean experience, the maximum mean

experience, the minimum percentage of positive experiences and the maximum

percentage of positive experiences.

Table 7: Result Summary (Static Web Services, Average:)

Random -0.007 -0.007 69.26% 69.26%

ε-greedy 0.399 0.640 94.00% 97.26%

Boltzmann 0.223 0.722 94.00% 99.34%

109

The experimental results show that the random strategy performs significantly

worse than the ε-greedy exploration strategy and the Boltzmann exploration strategy.

This demonstrates the effectiveness of computational trust calculated from experiences.

Between ε-greedy and Boltzmann, the experimental results are not as clear cut. Both

strategies produce a high percentage of positive experiences. As for mean experience, ε-

greedy has the better value while Boltzmann has the better value. This is

due to the fact that Boltzmann is a more complicated strategy that when configured

properly could be better than ε-greedy (i.e.,) but when misconfigured could be

worse than ε-greedy (i.e.,). As an example, a good configuration is when

 , and . With this configuration, exploration

could continue until the web service with is found. After that, only

exploitation could take place which leads to of Boltzmann. An example of a bad

configuration is when , and . With this

configuration, as long there is a web service to exploit, exploitation would be conducted.

As a result, after the first exploration, all that would happen is the exploitation of the first

explored web service. This is undesirable and would lead to of Boltzmann.

9.5.1.2 Experience Window and Weights

When experience window is applied to computational trust formation, a decrease in

window size has been shown to have a negative impact on web service selection. An

example is shown in Table 8. With all of its old experiences discarded, a known web

service may be treated as an unknown web service. This means that the known web

service may be selected during exploration. As a web service’s usage experiences never

changes, exploring a web service that has already been explored would only lead to

worse usage experiences.

Table 8: Result Summary (Static Web Services, Average:)

ε-greedy -0.006 0.464 69.36% 97.20%

Boltzmann 0.223 0.699 81.20% 99.34%

110

Weights when applied to computational trust formation should have no effect on

the experimental results. This is due the fact that usage experiences from a web service

never changes. Therefore, the observations made in Section 9.5.1.1 are applicable to

weighted average.

9.5.2 Fluctuating Web Services

All the experiments in this subsection are based on fluctuating web services. Unless

otherwise specified, the web services are assumed to have and

 . This is a pessimistic assumption as it assumes a 10% chance of service

fluctuation. The section is divided into two parts. The first part describes the averaging of

all the trustor’s usage experiences. The second part explores the filtering of usage

experiences using experience window and the assignment of weights based on usage

experience age.

9.5.2.1 Average

Table 9 shows a summary of the experimental results from web service selection. The

results demonstrated that computational trust calculated from experiences is effective in

improving the selection of fluctuating web services. However when compared to Table 7,

the values for the metrics are lower. This is due to the fact that the usage experiences

obtained during fluctuation are not representative of the web service’s default usage

experience. As a result, if a fluctuation is in the positive direction, this may cause the

trustor to overestimate a web service. If a fluctuation is in the negative direction, this may

cause the trustor to avoid a web service that should have been selected for invocation.

Table 9: Result Summary (Fluctuating Web Services, Average:)

Random -0.014 -0.014 66.54% 66.54%

ε-greedy 0.361 0.514 88.72% 91.20%

Boltzmann 0.284 0.567 88.42% 92.84%

To examine how changes to and influences web service

selection, two additional experiments have been conducted. Representative results are

111

seen in Table 10 and Table 11. Table 10 shows the experimental results when there is an

increase in . Table 11 shows the experimental results when there is an increase in

 . In both cases, the experimental results are lower than those in Table 9. This

is due to the fact that an increase in would cause more fluctuation while an

increase in would cause longer fluctuation.

Table 10: Result Summary (Fluctuating Web Services:

 , Average:)

Random -0.002 -0.002 65.38% 65.38%

ε-greedy 0.311 0.402 84.60% 86.44%

Boltzmann 0.254 0.455 83.82% 88.14%

Table 11: Result Summary (Fluctuating Web Services:

 , Average:)

Random -0.009 -0.009 65.78% 65.78%

ε-greedy 0.313 0.433 86.32% 89.08%

Boltzmann 0.220 0.480 86.38% 91.08%

9.5.2.2 Experience Window and Weights

When experience window is applied to computational trust formation, a decrease in

window size has been shown to have a negative impact on web service selection. An

example is shown in Table 12. In the table, the values of the different metrics all are

lower than in Table 9 with the only exception being the of Boltzmann. In this

particular case, the value in Table 9 is due to a bad configuration which led to a lack of

exploration. With a smaller experience window, the calculated computational trust

becomes more sensitive to fluctuation which in turn led to more exploration. The increase

in exploration led to improvement in . As for the reasoning for the negative

impact on web service selection, this is due to the fact that fluctuations are rare and that

the exploration of already explored web services in general is not worth the risk.

112

Table 12: Result Summary (Fluctuating Web Services, Average:)

ε-greedy 0.002 0.367 67.80% 90.80%

Boltzmann 0.310 0.464 81.82% 92.18%

When weights are applied to computational trust formation, this has been shown

to have a negative impact on mean experience but a positive impact on the percentage of

positive experiences. An example is shown in Table 13. By incorporating weights,

computational trust becomes more sensitive to usage experience changes. The increase in

sensitivity may cause more mistrusting during fluctuation which in turn causes the drop

in values of the metric. However, fluctuation could last for more than one time unit.

If the fluctuation produces a negative usage experience, the increase sensitivity could

cause the trustor to switch to a different web service. The trustor therefore would not

have to experience the rest of the negative usage experiences. This in turn improves the

values of the metric.

Table 13: Result Summary (Fluctuating Web Services, Weighted Average:

)

ε-greedy 0.284 0.407 89.40% 91.46%

Boltzmann 0.235 0.403 89.24% 93.02%

9.5.3 Dynamic Web Services

All the experiments in this subsection are based on dynamic web services. Unless

otherwise specified, the web services are assumed to have . The is

chosen to be less than as it is assumed that dynamic behavior changes occur less

frequently than fluctuations. The section is divided into two parts. The first part describes

the averaging of all the trustor’s usage experiences. The second part explores the filtering

of usage experiences using experience window and the assignment of weights based on

usage experience age.

113

9.5.3.1 Average

Table 14 shows a summary of the experimental results from web service selection. The

results demonstrated that computational trust calculated from experiences is effective in

improving the selection of dynamic web services. However when compared to Table 7,

the values for the metrics are lower. This is due to the fact that changes in a web service’s

default usage experience could cause the calculated computational trust to be outdated by

the time of web service selection.

Table 14: Result Summary (Dynamic Web Services, Average:)

Random -0.018 -0.018 58.00% 58.00%

ε-greedy 0.318 0.416 85.54% 87.36%

Boltzmann 0.234 0.493 84.62% 90.60%

To examine how changes to influences web service selection, an

experiment is conducted with increased to 0.08. The experimental results are

shown in Table 15. The results show that the increase in dynamism could have negative

impact on web service selection.

Table 15: Result Summary (Dynamic Web Services: , Average:

)

Random 0.005 0.005 56.98% 56.98%

ε-greedy 0.267 0.336 80.80% 82.32%

Boltzmann 0.212 0.404 77.94% 86.00%

9.5.3.2 Experience Window and Weights

When experience window is applied to computational trust formation, a decrease in

window size has been shown to have a positive impact on web service selection. An

example is shown in Table 16. In the table, the values of the different metrics all

performed better than Table 14 with the exceptions being and of ε-

114

greedy. In this particular case, the parameter of ε-greedy is set to 0, therefore

preference would always be given to exploration. With , this means that

there is always unknown web services to explore (due to discarding of old experiences).

As a result, the strategy would always explore and never exploit leading to lower

experimental results. As for the reasoning for the positive impact on web service

selection, this is due to the fact that a web service’s default usage experience may change

over time. As a result, it is worthwhile to re-explore web services to see if anything has

changed from the last exploration.

Table 16: Result Summary (Dynamic Web Services, Average:)

ε-greedy -0.007 0.422 58.72% 92.74%

Boltzmann 0.295 0.532 86.28% 95.54%

When weights are applied to computational trust formation, this has been shown

to have a positive impact on both mean experience and percentage of positive

experiences. An example is shown in Table 17. By incorporating weights, computational

trust becomes more sensitive to usage experience changes. The increase in sensitivity

allows the trustor to more quickly switch web services when faced with dynamism.

Table 17: Result Summary (Dynamic Web Services, Weighted Average:)

ε-greedy 0.380 0.463 91.72% 94.74%

Boltzmann 0.317 0.547 91.64% 96.42%

9.5.4 Fluctuating-Dynamic Web Services

All the experiments in this subsection are based on FD web services. Unless otherwise

specified, the web services are assumed to have , and

 . This assumption is based on the parameter assumptions in Section 9.5.2

and Section 0. The section is divided into two parts. The first part describes the averaging

of all the trustor’s usage experiences. The second part explores the filtering of usage

115

experiences using experience window and the assignment of weights based on usage

experience age.

9.5.4.1 Average

Table 18 shows a summary of the experimental results from web service selection. The

results demonstrated that computational trust calculated from experiences is effective in

improving the selection of FD web services. However when compared to Table 7, the

values for the metrics are lower. This is due to the fact that fluctuation and dynamism

both can negatively impact web service selection.

Table 18: Result Summary (FD Web Services, Average:)

Random -0.009 -0.009 58.40% 58.40%

ε-greedy 0.250 0.345 80.86% 81.96%

Boltzmann 0.211 0.397 79.48% 85.52%

9.5.4.2 Experience Window and Weights

When experience window is applied to computational trust formation, a decrease in

window size has been shown to have a positive impact on web service selection. An

example is shown in Table 19. In the table, the values of the different metrics all

performed better than Table 18 with the exceptions being and of ε-

greedy and of Boltzmann. In the case of ε-greedy, the reasoning is the same as

in Section 0. In the case of Boltzmann, the bad configuration causes the strategy to

perform too much exploration and not enough exploitation (21 explorations and 29

exploitations). As for the reasoning for the positive impact on web service selection, this

is due to the fact that exploration of already explored web services is worthwhile. This is

the case with dynamism as shown in Section 0. Although the impact is negative with

fluctuation, the negative impact is not big enough to overcome the positive impact of

avoiding dynamism.

116

Table 19: Result Summary (FD Web Services, Average:)

ε-greedy -0.004 0.350 59.04% 86..44%

Boltzmann 0.277 0.411 77.34% 88.44%

When weights are applied to computational trust formation, this has been shown

to have a positive impact on both mean experience and percentage of positive

experiences. An example is shown in Table 20. By incorporating weights, computational

trust becomes more sensitive to usage experience changes. The increase in sensitivity

allows the trustor to more quickly switch web services when faced with dynamism.

Although this may lead to unnecessary switches in the case of fluctuation (it is better to

wait out the fluctuation that switch web services), the negative impact is not big enough

to overcome the positive impact of avoiding dynamism.

Table 20: Result Summary (FD Web Services, Weighted Average:)

ε-greedy 0.288 0.373 86.10% 87.94%

Boltzmann 0.294 0.414 85.52% 89.20%

9.6 Experiments Based on Recommendation

In this section, the testbed is configured with recommender as the only type of evidence

source. In each of the subsections, the recommenders are configured differently. The

testbed is also configured with static web services. There is no need to experiment with

fluctuating, dynamic or fluctuating-dynamic web services. This is due to the fact that

recommendation is calculated based on deviation from the trustor’s usage experience. As

usage experience changes with different web service type, the change would also be

reflected in the recommendations. As a result, any observations made concerning a static

web service should be applicable to the other web service types as well. This is a

weakness of our recommendation definition that should be addressed in future work. In

terms of web service selection, only the max-trust strategy is evaluated. This is due to the

fact that recommendations are available for each of the web services.

117

In terms of computational trust formation, it is based on equation (5) of Section

7.1.2. The formation is configured as follows:

 Evidence source assessment (Section 7.2)

o Evidence assessment

o Evidence source trust assessment

 Cognitive trust formation

 Average

o

 Average

o

 Weighted average

o

In equation (5), recommender trust is used as weights for each of the gathered

recommendations. As a trustor may not have evidence source trust in all of the

recommenders, exploration of recommenders (similar to exploration of web services) is

needed. For each recommendation gathering, recommendations are gathered from both

unknown recommenders and known recommenders. For example, if

and , 1 unknown recommender and 2 known recommenders are

contacted for recommendation gathering. The recommendations gathered from unknown

recommenders are not used in performance belief formation. The recommendations

however are used in evidence source assessment. This in turn allows evidence source

118

trust to be calculated for unknown recommenders without their recommendations

influencing computational trust formation.

As for the formation of evidence source trust, since it is a form of computational

trust, it is assumed to be based solely on cognitive trust without considering belief

reliability. For simplicity sake, it is assumed that recommendations would be gathered at

every time unit. Moreover, the feedback provided would only be used to assess the

recommendation gathered in the previous time unit. The calculated recommendation

assessments are used in evidence source trust formation. The formation is based on either

average, average with experience window or weighted average.

9.6.1 Similar Recommenders

The recommenders in this subsection are configured as in Table 21. In the table, there are

four different variations of honest recommenders. The variations are based on either

disposition or magnitude. A recommender could either be more optimistic (

, -) or more pessimistic (, -) than the trustor. The magnitude of

deviation could be either 0.1 (, -) or 0.2 (

, -). As in the experiments configuration (Section 0), this

means that there would be no negative assessment for any recommendation obtained

from honest recommenders. These honest recommenders can be thought of as being

“similar” to the trustor. In terms of the “bad” recommenders, 2 malicious and 2

oscillating recommenders (minority of recommenders) have been configured.

Table 21: Similar Recommenders (Experiments)

Number of Recommenders Recommender Type

3 Honest (, -)

3 Honest (, -)

2 Honest (, -)

2 Honest (, -)

2 Malicious

1 Oscillating ()

1 Oscillating ()

119

As for the rest of this subsection, it is divided into two parts. The first part

describes the calculation of evidence source trust through the averaging of all the

recommendation assessments. The second part explores the filtering of recommendation

assessments using experience window and the assignment of weights based on

recommendation age.

9.6.1.1 Average

The relationship between and for different values of are

shown in Figure 40. The relationship between and for different

values of are shown in Figure 41. By comparing the experimental results of

the max-trust strategy with the experimental results of the random strategy (Table 7 of

Section 9.5.1.1), the results demonstrated that computational trust calculated from

recommendations (similar recommenders) is effective in improving the selection of static

web services.

Figure 40: Mean Experience (Similar Recommenders, Average:)

The figures also suggest that an increase in exploitation has a positive effect on

mean experience and percentage of positive experiences. This is due to the fact that most

recommenders are honest and similar to the trustor. An increase in exploitation allows the

gathered honest recommendations to overwhelm the recommendations provided by the

0.660

0.680

0.700

0.720

0.740

0.760

0.780

0.800

0.820

1 2 3 4 5 6

exp

exploitation

exploration = 0 exploration = 1 exploration = 2
exploration = 3 exploration = 14

120

“bad” recommenders. The only exception in the figures is when . In

this case, the overwhelm scenario is impossible when a “good” recommendation and a

“bad” recommendation cancel each other out. As for exploration, the figures suggested

that exploration is always preferable over no exploration. However, the impact of

increase in exploration is small. This is due to the fact that most recommenders are honest

and similar to the trustor. Therefore, similar recommenders can be easily located even

with .

Figure 41: Percentage of Positive Experiences (Similar Recommenders, Average:

)

9.6.1.2 Experience Window and Weights

When experience window is applied to evidence source trust assessment, a decrease in

window size has been shown to have a negative impact on web service selection. The

negative impact only applies to small number of exploitations. This is due to the fact that

the positive impact of exploitation is able to overwhelm the negative impact of smaller

experience window. An example is shown in Figure 42 and Figure 43. The negative

impact of experience window is due to the fact that for the majority of recommenders,

there is no need to reevaluate evidence source trust.

92.00

94.00

96.00

98.00

100.00

102.00

1 2 3 4 5 6

+exp

exploitation

exploration = 0 exploration = 1 exploration = 2
exploration = 3 exploration = 14

121

Figure 42: Mean Experience (Similar Recommenders, ,

)

Figure 43: Percentage of Positive Experiences (Similar Recommenders,

 ,)

When weights are applied to evidence source trust assessment, this has been

shown to have a positive impact on both mean experience and percentage of positive

experiences. The positive impact only applies to web service selection with small number

of exploitation. This is due to the fact that the positive impact of exploitation is able to

overwhelm the positive impact of weighted average. An example is shown in Figure 44

and Figure 45. By incorporating weights, evidence source trust becomes more sensitive to

assessment changes. The increase in sensitivity allows the trustor to more quickly filter

out oscillating recommenders.

0.500

0.600

0.700

0.800

0.900

1 2 3 4 5 6

exp

exploitation

Average Average (window_exp = 5)

80.00

85.00

90.00

95.00

100.00

105.00

1 2 3 4 5 6

+exp

exploitation

Average Average (window_exp = 5)

122

Figure 44: Mean Experience (Similar Recommenders, ,

)

Figure 45: Percentage of Positive Experiences (Similar Recommenders,

 ,)

9.6.2 Dissimilar Recommenders

The recommenders in this subsection are configured as in Table 22. In the table, four new

variations of honest recommender have been introduced. All four variations have

 that are greater than . This means that the recommendations

gathered from these recommenders could potentially be assessed negatively. These

honest recommenders can be thought of as being “dissimilar” to the trustor. Moreover,

there are more dissimilar recommenders than similar recommenders.

0.660
0.680
0.700
0.720
0.740
0.760
0.780
0.800
0.820

1 2 3 4 5 6

exp

exploitation

Average Weighted Average (λ = 1.443)

92.00

94.00

96.00

98.00

100.00

102.00

1 2 3 4 5 6

+exp

exploitation

Average Weighted Average (λ = 1.443)

123

Table 22: Dissimilar Recommenders (Experiments)

Number of Recommenders Recommender Type

1 Honest (, -)

1 Honest (, -)

1 Honest (, -)

3 Honest (, -)

2 Honest (, -)

1 Honest (, -)

1 Honest (, -)

2 Malicious

1 Oscillating ()

1 Oscillating ()

9.6.2.1 Average

The relationship between and for different values of are

shown in Figure 46. The relationship between and for different

values of are shown in Figure 47. By comparing the experimental results of

the max-trust strategy with the experimental results of the random strategy (Table 7 of

Section 9.5.1.1), the results demonstrated that the computational trust calculated from

recommendations (dissimilar recommenders) is effective in improving the selection of

static web services. When the results are compared to Figure 40 and Figure 41 however,

the introduction of dissimilar recommenders is shown to have a negative impact on web

service selection.

Figure 46 suggests that an increase in exploitation has a mixed effect on mean

experience. This is due to the fact that a dissimilar recommender has the potential for

leading or misleading the trustor. As a result, an increase in exploitation could potentially

improve or deteriorate mean experience. Figure 46 suggests that an increase in

exploitation has a positive effect on percentage of positive experiences. This is due to the

fact that the recommendations provided by dissimilar recommenders generally are of the

same sign as that of a web service’s usage experience. For example, if a web service has

 , for recommendation to be negative (i.e., of different sign), a dissimilar

124

recommender needs to have . As deviation is randomly generated, this

is going to rarely occur when compared to the case of the recommendation remaining

positive. The same reasoning could also apply to and to lesser extents

 and . As a result, even when recommendations from

dissimilar recommenders dominate, the calculated computational trust is still likely to

result in the selection of a web service with positive usage experience.

Figure 46: Mean Experience (Dissimilar Recommenders, Average:

)

Figure 47: Percentage of Positive Experiences (Dissimilar Recommenders, Average:

)

0.400

0.450

0.500

0.550

0.600

0.650

0.700

0.750

0.800

1 2 3 4 5 6

exp

exploitation

exploration = 0 exploration = 1 exploration = 2

exploration = 3 exploration = 14

75.00
77.00
79.00
81.00
83.00
85.00
87.00
89.00
91.00
93.00
95.00
97.00
99.00

101.00

1 2 3 4 5 6

+exp

exploitation

exploration = 0 exploration = 1 exploration = 2

exploration = 3 exploration = 14

125

Figure 46 and Figure 47 suggest that an increase in exploration has a mixed effect

on mean experience and percentage of positive experiences. Given that dissimilar

recommenders are the majority and that they could either lead or mislead the trustor,

more exploration therefore could either improve or deteriorate web service selection.

9.6.2.2 Experience Window and Weights

When experience window is applied to evidence source trust assessment, a decrease in

window size has been shown to have a negative impact on web service selection. The

negative impact only applies to web service selection with small number of exploitations.

This is due to the fact that the mixed impact of exploitation is able to overwhelm the

negative impact of smaller experience window. An example is shown in Figure 48 and

Figure 49. The negative impact of experience window is due to the fact that for the

majority of recommenders (similar, dissimilar and malicious recommenders), there is no

need to reevaluate evidence source trust.

Figure 48: Mean Experience (Dissimilar Recommenders, ,

)

0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800

1 2 3 4 5 6

exp

exploitation

Average Average (window_exp = 5)

126

Figure 49: Percentage of Positive Experiences (Dissimilar Recommenders,

 ,)

When weights are applied to evidence source trust assessment, this has been

shown to have a positive impact on both mean experience and percentage of positive

experiences. The positive impact only applies to web service selection with a small

number of exploitations. This is due to the fact that the mixed impact of exploitation is

able to overwhelm the positive impact of weighted average. An example is shown in

Figure 50 and Figure 51. By incorporating weights, evidence source trust becomes more

sensitive to assessment changes. The increase in sensitivity allows the trustor to more

quickly filter out dissimilar recommenders and oscillating recommenders.

Figure 50: Mean Experience (Dissimilar Recommenders, ,

)

70.00
73.00
76.00
79.00
82.00
85.00
88.00
91.00
94.00
97.00

100.00
103.00

1 2 3 4 5 6

+exp

exploitation

Average Average (window_exp = 5)

0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800

1 2 3 4 5 6

exp

exploitation

Average Weighted Average (λ = 1.443)

127

Figure 51: Percentage of Positive Experiences (Dissimilar Recommenders,

 ,)

9.7 Experiments Based on Experience, Recommendation

In this section, the testbed is configured with two types of evidence sources: trustor and

recommender. In each of the subsections, the evidence sources are configured differently.

The testbed is also configured with static web services. As the experiments are designed

to evaluate whether experience and recommendation complement each other in

computational trust formation, any observations made concerning static web services

should be applicable to the other web service types as well. In terms of web service

selection, only the max-trust strategy is evaluated. This is due to the fact that exploration

is not needed due to the existence of recommendations.

Computational trust formation is based on applying weighted average to

experience-based performance belief and recommendation-based performance belief.

Experience-based performance belief is assigned a weight of 0.7. Recommendation-based

performance belief is assigned a weight of 0.3. The weight assignment is based on the

observation that the trustor would always have its own best interest in mind while that

may not be the case with recommenders. If the trustor does not have experiences with a

web service, computational trust formation would be based solely on recommendation-

based performance belief. In terms of belief formation, experience-based performance

belief is based on the averaging of all the trustor’s usage experiences. As for

70.00
73.00
76.00
79.00
82.00
85.00
88.00
91.00
94.00
97.00

100.00
103.00

1 2 3 4 5 6

+exp

exploitation

Average Weighted Average (λ = 1.443)

128

recommendation-based belief, evidence source trust formation is based on the averaging

of all the calculated recommendation assessments. The experimental results obtained

from evidence averaging should be applicable to cases of experience window and

weighted average.

9.7.1.1 Trustor and Similar Recommenders

An example of the relationship between and for experience,

recommendation and experience and recommendation are shown in Figure 52. An

example of the relationship between and for experience,

recommendation and experience and recommendation are shown in Figure 53.

In the figures, experience is based on and of Boltzmann in

Table 7 of Section 9.5.1.1. This is the best experimental results based on experience.

Recommendation is based on Figure 40 and Figure 41 with . The

experimental results in the figures demonstrated that in most cases computational trust

calculated from experiences and recommendations (similar recommenders) can improve

on the experimental results of computational trust calculated from either experiences or

recommendations (similar recommenders) in the selection of static web service. The only

exception is when in Figure 53. In this case, if the recommender is an

oscillating recommender, it could cause the trustor to try out web services with negative

usage experiences.

As for the reasoning for the improvement over experience-based computational

trust, this is due to the fact that exploration is no longer random but instead is directed by

the calculated recommendation-based performance belief. The improvement over

recommendation-based computational trust is due to the fact that experience-based

performance belief is given more weight and in some cases can help mitigate when

recommendation-based performance belief is dominated by misleading

recommendations.

129

Figure 52: Mean Experience (Trustor and Similar Recommenders, Average:

 ,)

Figure 53: Percentage of Positive Experiences (Trustor and Similar Recommenders,

Average: ,)

9.7.1.2 Trustor and Dissimilar Recommenders

An example of the relationship between and for experience,

recommendation and experience and recommendation are shown in Figure 54. In the

figure, the experimental results demonstrated that for small number of exploitation,

computational trust calculated from experiences and recommendations (dissimilar

recommenders) can improve on the experimental results of computational trust calculated

0.660

0.680

0.700

0.720

0.740

0.760

0.780

0.800

0.820

1 2 3 4 5 6

exp

exploitation

experience recommendation experience and recommendation

92.000

94.000

96.000

98.000

100.000

102.000

1 2 3 4 5 6

+exp

exploitation

experience recommendation experience and recommendation

130

from either experiences or recommendations (dissimilar recommenders) in the selection

of static web service. However, as exploitation increases, recommendation-based

performance belief starts to coalesce around a single web service. Since the web service

could be the recommendation of dissimilar recommenders, the mean experience ends up

being lower than when computational trust is calculated from experiences.

Figure 54: Mean Experience (Trustor and Dissimilar Recommenders, Average:

 ,)

An example of the relationship between and for experience,

recommendation and experience and recommendation are shown in Figure 55. In the

figure, the experimental results demonstrated that in most cases computational trust

calculated from experiences and recommendations (dissimilar recommenders) can

improve on the experimental results of computational trust calculated from either

experiences or recommendations (dissimilar recommenders) in the selection of static web

service. The only exception is when . In this case, if the recommender

is an oscillating recommender, it could cause the trustor to try out web services with

negative usage experiences. As the recommendations provided by recommenders are

usually of the same sign as that of the recommended web service’s usage experience,

experience-based computational trust is improved upon due to the trustor seldom having

to invoke web service with negative usage experience. As for recommendation-based

computational trust, it is improved upon due to the mitigating effect of experience-based

0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850

1 2 3 4 5 6

exp

exploitation

experience recommendation experience and recommendation

131

performance belief on recommendation-based performance belief that is dominated by

misleading recommendations.

Figure 55: Percentage of Positive Experiences (Trustor and Dissimilar

Recommenders, Average: ,)

9.8 Conclusions and Discussions

The experiments have demonstrated the following:

 Evidence source type and behavior plays a key role in computational trust

formation. With only access to experiences, the trustor has to depend on

exploration during web service selection. Too much exploration or too much

exploitation is both undesirable. The optimal amount of exploration and

exploitation is dependent on the available web services. With only access to

recommendations, the trustor’s performance in web service selection is dependent

on the composition of the recommenders. If most of the recommenders are similar

to the trustor, recommender exploration and exploitation is desirable. This is not

the case when most of the recommenders are dissimilar to the trustor. Although

experience and recommendation when used together in most cases can improve

web service selection. However, performing exploration based solely on

recommendations as in Section 9.7 may not be the best possible solution. Some

randomness may be needed to prevent the trustor from being misled by

75.000

78.000

81.000

84.000

87.000

90.000

93.000

96.000

99.000

102.000

1 2 3 4 5 6

+exp

exploitation

experience recommendation experience and recommendation

132

recommendations and end up only exploiting a single web service. As evidence

plays an important role in computational trust formation, middleware support for

evidence gathering is provided in the computational trust architecture in the form

of the Evidence Gathering Service.

 Effectiveness of different computational trust formation algorithms. The

experiments showed that weighted average is a relatively effective approach to

computational trust formation. Weighted average works well with web services

that are static, dynamic and fluctuating-dynamic. During evidence source trust

formation, weighted average is also an improvement over average. The only case

for which weighted average does not work well is with fluctuating web services.

Since fluctuating web services only fluctuate for a small amount of time, the best

strategy is to wait out the fluctuation as opposed to switching to a different web

service. There is a tradeoff between switching web services too early in cases of

fluctuation vs. switching web services too late in cases of dynamism. This is an

area that requires further investigation.

As for experience window, the experiments showed that it can improve

web service selection in cases of dynamic and fluctuating-dynamic web services.

However, experience window when applied to average also performs worse in all

the other cases. Therefore, experience window should not be used for short term

evidence filtering. Instead, experience window should be in long term filtering to

limit the amount of evidence to be considered during belief formation. Identifying

the appropriate window to use is an area that requires further investigation.

9.9 Summary

The experiments in this chapter are designed with two goals in mind. The first goal is to

evaluate the role that evidence source availability plays in computational trust formation.

The second goal is to investigate how different computational trust formation algorithms

performed. Both goals are examined through a series of experiments. The experiments

are conducted using an experimental testbed. Factors including web services, evidence

sources and web service selection strategies are varied during the experiments. The

133

experimental results have demonstrated the importance of evidence source availability to

the quality of the formed computational trust. The results have also demonstrated that

weighted average is a relatively better algorithm than average and average with

experience window.

134

Chapter 10

10 Scenarios

The focus of this chapter is to demonstrate the ability of the computational trust

architecture (SCOUT and Trust Calculator) to support computational trust formation in

different scenarios. This chapter is divided into two sections. The first section describes a

movie scenario. The second section describes a web service scenario.

10.1 Movie Scenario

The first part of this section provides a general overview of the movie scenario. The

scenario’s implementation is described in the second part of this section.

10.1.1 Overview

In the movie scenario, the movie selector uses an application to view the available

movies and to rank the movies based on computational trust. Before ranking, the

application first needs to instantiate the Trust Calculator. The instantiated Trust

Calculator can be configured by calling the setApplicationFactors method (Section 6.3)

with the following input parameters:

 application factors

o name = “DecisionType”, value = “MovieSelection”

The method invocation informs the Trust Calculator that it is calculating computational

trust for movie selection. Although “DecisionType” is a decision factor, it is passed to the

Trust Calculator as an application factor. This is due to the fact that “DecisionType” does

not change across decisions. There is no point in passing “DecisionType” for every

computational trust formation. To calculate computational trust in a movie, the

application calls the calculateTrust method (Section 6.3) of the Trust Calculator. An

example invocation could have the following input parameters:

 trustee

o id = “Zombieland”

135

o type = “Movie/Horror”

 decision factors = null

The invocation would cause the Trust Calculator to invoke the TcPlanner.

The XMLTcPlanner uses the mappings in Figure 35 of Section 8.2.1 to select the

TcPlan needed for computational trust calculation. The TcPlanner retrieves the

TcTemplate named “MovieSelection” in Figure 27 of Section 6.2. The TcPlanner then

parameterizes the TcTemplate with the parameters in the mappings. The resulting TcPlan

is shown in Figure 25 of Section 6.2. The tree constructed from the TcPlan is graphically

represented in Figure 26 of Section 6.2. Computational trust is calculated as the weighted

average of cognitive trust and emotional trust. Cognitive trust is calculated based on the

selector’s quality belief. The formed TcPlan is returned to the Trust Calculator.

After TcPlan formation, the Trust Calculator invokes the TcEngine to execute the

TcPlan. The selector’s quality belief in a movie can be obtained by calling the

getAggregateBelief method of BFS with the following input parameters:

 trustee

o id = “Zombieland”

o type = “Movie/Horror”

 aggregate belief

o type = “Quality”

 hints = null

The BF-Policy responsible for calculating quality belief in a movie is shown in Figure 56.

In the figure, the Belief Engine identified as “SCOUT-Reputation” is selected to perform

belief calculation (line 5). “SCOUT-Reputation” implements the belief formation

algorithm described in Section 7.1.3. The configuration of the Belief Engine (lines 6-8) is

mapped to the algorithm as follows:

 FeedbackThreshold →

136

 ReputationCountWeight →

 ReputationThreshold →

The configuration values are determined by the movie selector during BF-Policy creation.

All SCOUT policies need to be created before computational trust calculation. The last

step in the BF-Policy is to invoke the Belief Engine to perform belief calculation.

1 when
2 trustee: Trustee(type matches "Movie.*")

3 aggBelief: AggregateBelief(type == "Quality")

4 then

5 beliefEngine = Registry.lookup("SCOUT-Reputation");

6 beliefEngine.set("FeedbackThreshold", 10);

7 beliefEngine.set("ReputationCountWeight", 0.3);

8 beliefEngine.set("ReputationThreshold", 2);

9

10 belief = new Belief(aggBelief.getType());

11 beliefEngine.calculateBelief(trustee, belief);

12 end

Figure 56: BF-Policy (Movie)

 The Belief Engine calculates the selector’s quality belief in a movie based on the

reputations stored in the Evidence Repository. To maximize belief reliability, if the

number of reputations available is less than the “ReputationThreshold” in Figure 56, the

Belief Engine invokes the gatherEvidence method of EGS with the following input

parameters to gather more reputation values:

 trustee

o id = “Zombieland”

o type = “Movie/Horror”

 belief

o type = “Quality”

 hints

o name = “EvidenceType”, value = “Reputation”

137

The EG-Policy responsible for the gathering of quality reputations of a movie is shown in

Figure 57. In the figure, the “BroadcastStrategy” is invoked. This means that all Evidence

Gatherers that can gather movie’s quality reputations are invoked to perform reputation

gathering. The gathered reputations are mapped to the interval of [-1, 1] by the Evidence

Handlers. The mapped reputations are stored in the Evidence Repository to be used in

belief calculation.

1 when
2 trustee: Trustee(type matches "Movie.*")

3 belief: Belief(type == "Quality")

4 hint: Hint(name == "EvidenceType" && value == "Reputation")

5 then

6 strategy = new BroadcastStrategy();

7 strategy.set("EvidenceType", hint.getValue());

8 strategy.execute(trustee, belief);

9 end

Figure 57: EG-Policy (Movie)

 The calculated quality belief is returned to the Trust Calculator. The TcEngine

then maps the quality belief to the selector’s cognitive trust in the movie. Emotional trust

is obtained by calling the getEmotionalTrust method of ETS with the following

parameter:

 trustee

o id = “Zombieland”

o type = “Movie/Horror”

The ET-Policies responsible for emotional trust of movies are shown in Figure 23 of

Section 5.4. After emotional trust is obtained, it is returned to the Trust Calculator. The

TcEngine then calculates computational trust by applying weighted average to the

calculated cognitive trust and emotional trust. The last step is for the calculated

computational trust to be returned to the application to be used in movie ranking. The

computational trust formation process is graphically illustrated in Figure 58. The highest

ranked movie (i.e., most trusted movie) is then selected by the movie selector.

138

Figure 58: Computational Trust Formation (Movie)

10.1.2 Implementation

The movie ranking application was developed using the Java programming language.

Reputations needed for quality belief calculation are obtained from Rotten Tomatoes and

IMDb. For simplicity sake, the reputations are looked up and stored in a database. The

reputations are stored in the same format as the original website. When EGS needs to

perform reputation gathering, it accesses the database to obtain a movie’s reputation. An

Evidence Gatherer and Handler pair has been implemented for accessing the reputations

calculated by Rotten Tomatoes. A different Evidence Gatherer and Handler pair is used

to access the reputations calculated by IMDb.

10.2 Web Service Scenario

The first part of this section provides a general overview of the web service scenario. The

scenario’s implementation is described in the second part of this section.

10.2.1 Overview

The web service scenario described in this subsection is a more complex version of the

scenario described in Section 1.3.2. The scenario consists of three decisions: web service

selection, negotiation and management. Each decision along how its associated

computational trust is calculated is introduced in the rest of this subsection.

139

10.2.1.1 Web Service Selection

A web service discovery, selection and negotiation web service (DSN) has been

implemented. An application could invoke the findWebService method of DSN to obtain

a web service. The method has as input three parameters: web service type, web service

classifications and web service importance. An example invocation could have the

following input parameters:

 web service type = “Type1”

 web service classifications = [“Consumer”, “Enterprise”]

 web service importance = “Low”

Basically, the invocation would cause DSN to find a web service of “Type1”. The web

service could be a consumer level web service or an enterprise level web service. The

invocation is of low importance to the trustor. The importance level is used to determine

computational trust formation.

 After web service discovery based on web service type and web service

classifications, the next step for DSN is to calculate computational trust for each of the

discovered web services. After the instantiation of the Trust Calculator, it is configured

by calling the setApplicationFactors method with the following input parameters:

 application factors

o name = “DecisionType”, value = “WebServiceSelection”

The method invocation informs the Trust Calculator that it is calculating computational

trust for web service selection. To calculate computational trust in a web service, the

DSN calls the calculateTrust method of the Trust Calculator. An example invocation

could have the following input parameters:

 trustee

o id = “www.webservice.com”

o type = “WebService/Type1”

140

 decision factors

o name = “Importance”, value = “Low”

Information about the trustee is obtained during web service discovery. As for decision

factors, the decision’s importance is obtained from web service importance supplied to

the findWebService method. The invocation would cause the Trust Calculator to invoke

the TcPlanner.

The XMLTcPlanner uses the mappings in Figure 59 to select the TcPlan needed

for computational trust calculation. In the figure, there are two possible TcPlans. There is

a TcPlan for “Importance” is “Low” and another for “Importance” is “High”. In the case

of low importance (lines 3-12), the TcPlan “WS-SelectionTrust-Low” is returned to the

Trust Calculator. In the case of high importance (lines 13-22), the TcPlan “WS-

SelectionTrust-High” is returned to the Trust Calculator.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <mappings>

3 <mapping>

4 <factors>

5 <factor name="DecisionType">WebServiceSelection</factor>

6 <factor name="Type">WebService/Type1</factor>

7 <factor name="Importance">Low</factor>

8 </factors>

9 <tcplan>

10 <name>WS-SelectionTrust-Low</name>

11 </tcplan>

12 </mapping>

13 <mapping>

14 <factors>

15 <factor name="DecisionType">WebServiceSelection</factor>

16 <factor name="Type">WebService/Type1</factor>

17 <factor name="Importance">High</factor>

18 </factors>

19 <tcplan>

20 <name> WS-SelectionTrust-High</name>

21 </tcplan>

22 </mapping>

23 …

24 </mappings>

Figure 59: Factors-TcPlan Mappings (Web Service Selection)

141

The “WS-SelectionTrust-Low” TcPlan is shown in Figure 60. In the figure,

computational trust is based solely on the calculated cognitive trust. Since emotional trust

is not considered, the calculated computational trust can be viewed as “rational”. As both

cognitive trust and computational trust have the same values, the TcPlan can be

simplified by returning the calculated cognitive trust to DSN (lines 39-47).

In the figure, cognitive trust calculation is the responsibility of the

“cognitiveTrust” node (line 35). Cognitive trust is calculated from the aggregate belief

value of “aggregateBelief”. The “aggregateBelief” node (lines 30-34) has a “cause”

parameter (aBelief > 0 && reliability > 0.5) that when evaluated to true based on the

aggregate belief value of its left child (i.e., “competenceBelief”) would return the

aggregate belief value of its right child (“avgAggregateBelief”). Otherwise, it would

return and (i.e., disbelief). This aggregate belief value

would be mapped by the “cognitiveTrust” node to (i.e., distrust). The

“avgAggregateBelief” node (lines 24-29) calculates aggregate belief by averaging the

calculated accessibility belief and competence belief. Competence, accessibility and

performance beliefs are all obtained from SCOUT (lines 4-7, 8-15, 16-23). All three

nodes have a parameter “importance” that is set to “Low” (lines 6, 14, 22) since the

TcPlan is selected when a decision is of low importance. Accessibility belief and

performance belief are also calculated based on experience and reputation (lines 10-13,

18-21). The parameters “importance” and “evidenceType” are hints to the

getAggregateBelief method of BFS since any non-“aggregateBelief” parameter of

“AggregateBeliefQuery” is treated as hints. The tree constructed from this TcPlan is

graphically represented in Figure 61. As for “WS-SelectionTrust-High”, its difference

from “WS-SelectionTrust-Low” is that its “importance” parameter is set to “High”. Also,

recommendations are used in accessibility belief and performance belief calculation.

142

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tcplan>

3 <nodeDefinition>

4 <node id="competenceBelief" class="AggregateBeliefQuery">

5 <parameter name="aggregateBelief" type="string">Competence</parameter>

6 <parameter name="importance" type="string">Low</parameter>

7 </node>

8 <node id="accessibilityBelief" class="AggregateBeliefQuery">

9 <parameter name="aggregateBelief" type="string">Accessibility</parameter>

10 <parameters name="evidenceType" type="string">

11 <parameter>Experience</parameter>

12 <parameter>Reputation</parameter>

13 </parameters>

14 <parameter name="importance" type="string">Low</parameter>

15 </node>

16 <node id="performanceBelief" class="AggregateBeliefQuery">

17 <parameter name="aggregateBelief" type="string">Performance</parameter>

18 <parameters name="evidenceType" type="string">

19 <parameter>Experience</parameter>

20 <parameter>Reputation</parameter>

21 </parameters>

22 <parameter name="importance" type="string">Low</parameter>

23 </node>

24 <node id="avgAggregateBelief" class="AggregateBeliefWeightedAvg">

25 <parameters name="weights" type="double">

26 <parameter>0.5</parameter>

27 <parameter>0.5</parameter>

28 </parameters>

29 </node>

30 <node id="aggregateBelief" class="CausalAggregateBelief">

31 <parameter name="cause" type="string">

32 aBelief > 0 && reliability > 0.5

33 </parameter>

34 </node>

35 <node id="cognitiveTrust" class="AggregateBeliefToTrust"/>

36 </nodeDefinition>

37 <trustCalculation>

38 <tree>

39 <cognitiveTrust>

40 <aggregateBelief>

41 <competenceBelief/>

42 <avgAggregateBelief>

43 <accessibilityBelief/>

44 <performanceBelief/>

45 </avgAggregateBelief>

46 </aggregateBelief>

47 </cognitiveTrust>

48 </tree>

49 </trustCalculation>

50 </tcplan>

Figure 60: TcPlan (Web Service Selection)

143

Figure 61: Tree of TcPlan (Web Service Selection)

 After TcPlan formation, the Trust Calculator invokes the TcEngine to execute the

TcPlan. The consumer’s competence belief in a web service is obtained by calling the

getAggregateBelief method of BFS with the following input parameters:

 trustee

o id = “www.webservice.com”

o type = “WebService/Type1”

 aggregate belief

o type = “Competence”

 hints

o name = “Importance”, value = “Low”

The BF-Policy responsible for calculating competence belief in a web service is shown in

Figure 62. In the figure, importance is not considered in belief calculation. The aggregate

belief competence is calculated from qualification belief. Qualification belief is

calculated from qualification signals (implemented as certificates). The Belief Engine

identified as “SCOUT-Signal” is selected for belief calculation (line 5). “SCOUT-Signal”

144

implements the belief formation algorithm described in Section 7.1.4. The configuration

of the Belief Engine (lines 6-7) is mapped to the algorithm as follows:

 SignalCountWeight →

 SignalThreshold →

The last step in the BF-Policy is to invoke the Belief Engine to perform belief calculation.

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 aggBelief: AggregateBelief(type == "Competence")

4 then

5 beliefEngine = Registry.lookup("SCOUT-Signal");

6 beliefEngine.set("SignalCountWeight", 0);

7 beliefEngine.set("SignalThreshold", 1);

8

9 beliefEngine.calculateBelief(trustee, new Belief("Qualification"));

10 end

Figure 62: BF-Policy (Competence Belief)

 To maximize belief reliability, if the number of signals available in the Evidence

Repository is less than the “SignalThreshold” in Figure 62 (i.e., if there are no signals),

the Belief Engine invokes the gatherEvidence method of EGS with the following input

parameters to gather more signals:

 trustee

o id = “www.webservice.com”

o type = “WebService/Type1”

 belief

o type = “Qualification”

 hints

o name = “EvidenceType”, value = “Signal”

The EG-Policy responsible for the gathering of qualification signals of a web service is

shown in Figure 63. In the figure, the Evidence Gatherer identified as

145

“QualificationGatherer” is invoked to perform qualification signals gathering (lines 6-7).

The gathered signals are mapped to the interval of [-1, 1] by the Evidence Handler. The

mapped signals are stored in the Evidence Repository to be used in belief calculation.

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 belief: Belief(type == "Qualification")

4 Hint(name == "EvidenceType" && value == "Signal")

5 then

6 gatherer = Registry.lookup("QualificationGatherer");

7 gatherer.gatherEvidence(trustee, belief);

8 end

Figure 63: EG-Policy (Qualification Belief)

 Accessibility belief is obtained by calling the getAggregateBelief method of BFS

with the following input parameters:

 trustee

o id = “www.webservice.com”

o type = “WebService/Type1”

 aggregate belief

o type = “Accessibility”

 hints

o name = “EvidenceType”, value = “Experience, Reputation”

o name = “Importance”, value = “Low”

The BF-Policies needed for belief calculation are shown in Figure 64. In the figure, there

is a BF-Policy for low importance (lines 1-36) and a BF-Policy for high importance (lines

38-45). In the case of low importance, the aggregate belief accessibility is calculated as

the weighted average of the availability beliefs. Since the “EvidenceType” hint is set to

“Experience” and “Reputation”, “SCOUT-Experience” (lines 11-17) and “SCOUT-

Reputation” (lines 27-33) are configured and invoked to calculate availability belief

based on experience and reputation. “SCOUT-Experience”, “SCOUT-Recommendation”

and “SCOUT-Reputation” implements the belief formation algorithm described in

146

Section 7.1.1, Section 7.1.2 and Section 7.1.3. The availability beliefs are all assigned

different weights (lines 16, 24, 32). The calculated accessibility belief is returned to the

Trust Calculator. In the case of high importance, the belief calculation is similar to that of

low importance. The difference is that the Belief Engines are configured differently. For

example, “RecommendationThreshold” (line 21) is set to 3 for low importance but it is

set to 6 for high importance. This is so that for high importance, more recommendations

are taken into account during availability belief formation.

 In the case of experience, the gatherEvidence method of EGS is always invoked

to gather all of the consumer’s latest experiences. The input parameters are as follows:

 trustee

o id = “www.webservice.com”

o type = “WebService/Type1”

 belief

o type = “Availability”

 hints

o name = “EvidenceType”, value = “Experience”

The EG-Policy responsible for the gathering of availability experiences of a web service

is shown in Figure 65 (lines 1-9). In the figure, the experiences are gathered using the

broadcast strategy. The gathered experiences are mapped to the interval of [-1, 1] by the

Evidence Handler. The mapped experiences are stored in the Evidence Repository to be

used in belief calculation.

147

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 aggBelief: AggregateBelief(type == "Accessibility")

4 hint: Hint(name == "EvidenceType")

5 Hint(name == "Importance" && value == "Low")

6 then

7 belief = new Belief("Availability");

8 evidenceTypes = hint.getValue();

9 aggBeliefCalculator = new WeightedAvg();

10

11 if (evidenceTypes.contains("Experience")) {

12 beliefEngine = Registry.lookup("SCOUT-Experience");

13 beliefEngine.set("ExperienceWindow", 30);

14 …

15 expBelief = beliefEngine.calculateBelief(trustee, belief);

16 aggBeliefCalculator.setBelief(0.5, expBelief);

17 }

18

19 if (evidenceTypes.contains("Recommendation")) {

20 beliefEngine = Registry.lookup("SCOUT-Recommendation");

21 beliefEngine.set("RecommendationThreshold", 3);

22 …

23 recBelief = beliefEngine.calculateBelief(trustee, belief);

24 aggBeliefCalculator.setBelief(0.3, recBelief);

25 }

26

27 if (evidenceTypes.contains("Reputation")) {

28 beliefEngine = Registry.lookup("SCOUT-Reputation");

29 beliefEngine.set("FeedbackThreshold", 10);

30 …

31 repBelief = beliefEngine.calculateBelief(trustee, belief);

32 aggBeliefCalculator.setBelief(0.2, repBelief);

33 }

34

35 aggBeliefCalculator.calculateAggBelief();

36 end

37

38 when

39 trustee: Trustee(type == "WebService/Type1")

40 aggBelief: AggregateBelief(type == "Accessibility")

41 hint: Hint(name == "EvidenceType")

42 Hint(name == "Importance" && value == "High")

43 then

44 …

45 end

Figure 64: BF-Policies (Accessibility Belief)

148

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 belief: Belief(type == "Availability")

4 hint: Hint(name == "EvidenceType" && value == "Experience")

5 then

6 strategy = new BroadcastStrategy();

7 strategy.set("EvidenceType", hint.getValue());

8 strategy.execute(trustee, belief);

9 end

10

11 when

12 trustee: Trustee(type == "WebService/Type1")

13 belief: Belief(type == "Availability")

14 hint1: Hint(name == "EvidenceType" && value == "Recommendation")

15 hint2: Hint(name == "NumOfEvidence")

16 then

17 strategy = new EvidenceourceTrustStrategy();

18 strategy.set("EvidenceType", hint1.getValue());

19 strategy.set("NumOfEvidence", hint2.getValue());

20 strategy.set("EvidenceourceTrustThreshold", 0);

21

22 strategy.execute(trustee, belief);

23 end

24

25 when

26 trustee: Trustee(type == "WebService/Type1")

27 belief: Belief(type == "Availability")

28 hint1: Hint(name == "EvidenceType" && value == "Reputation")

29 hint2: Hint(name == "NumOfEvidence")

30 then

31 strategy = new EvidenceourceTrustStrategy();

32 strategy.set("EvidenceType", hint1.getValue());

33 strategy.set("NumOfEvidence", hint2.getValue());

34 strategy.set("EvidenceourceTrustThreshold", 0);

35

36 strategy.execute(trustee, belief);

37 end

Figure 65: EG-Policies (Availability Belief)

 In the case of recommendation, the gatherEvidence method of EGS is invoked if

the number of recommendations available in the Evidence Repository is less than the

“RecommendationThreshold” in Figure 64. This is to maximize belief reliability. The

input parameters to the gatherEvidence method are as follows:

 trustee

o id = “www.webservice.com”

o type = “WebService/Type1”

149

 belief

o type = “Availability”

 hints

o name = “EvidenceType”, value = “Recommendation”

o name = “NumOfEvidence”, value = “3”

The hint “NumOfEvidence” is used to inform EGS of the number of recommendations to

be gathered. The EG-Policy responsible for the gathering of availability

recommendations of a web service is shown in Figure 65 (lines 11-23). In the figure, the

recommendations are gathered using the evidence source trust strategy. The gathered

recommendations are mapped to the interval of [-1, 1] by the Evidence Handler. The

mapped recommendations are stored in the Evidence Repository to be used in belief

calculation. In the case of reputation, it is gathered using the same approach as that for

recommendation. Its EG-Policy is shown in Figure 65 (lines 25-37).

The evidence gathering and belief formation of performance belief uses the same

approach as that for accessibility belief. Basically, aggregate belief performance is

calculated as the weighted average of timeliness beliefs. The calculated performance

belief is returned to the Trust Calculator. After TcPlan execution, the calculated

computational trust is returned to DSN. The computational trust formation process is

graphically illustrated in Figure 66.

Figure 66: Computational Trust Formation (Web Service Selection)

150

For each discovered web service, the utility to be gained from invoking the web

service is calculated as follows:

 ()
(18)

In equation (18), is the utility that the web service consumer would

gain if the web service meets the consumer’s expectations. A consumer based its

expectation on the web service’s classification. For example, a consumer may have

higher expectation for an enterprise level web service than a consumer level web service.

The different expectations result in different utility gained from web service invocation.

If the consumer’s computational trust in web service is calculated to be -1, then zero

utility would be gained from invoking the web service. If the computational trust is

calculated as 0, then the web service is expected to meet the consumer’s expectations.

Higher computational trust should lead to higher utility. After utility is calculated, the

next step is filter the candidate web services based on utility. This is by selecting all the

web services with where is a threshold

determined by the web service consumer.

10.2.1.2 Web Service Negotiation

After DSN has performed utility-based web service selection, the next step is for the

negotiation of contracts with the remaining web services. To determine the terms of

negotiation, computational trust needs to be calculated. The Trust Calculator is

reconfigured by calling the setApplicationFactors method with the following input

parameters:

 application factors

o name = “DecisionType”, value = “WebServiceNegotiation”

The method invocation informs the Trust Calculator that it is calculating computational

trust for web service negotiation. To calculate computational trust in a web service, the

calculateTrust method of the Trust Calculator is invoked with the following parameters:

151

 trustee

o id = “www.webservice.com”

o type = “WebService/Type1”

 decision factors

o name = “Importance”, value = “Low”

The invocation would cause the Trust Calculator to invoke the TcPlanner.

The XMLTcPlanner uses the mappings in Figure 67 to select the TcPlan needed

for computational trust calculation. Figure 59 and Figure 67 together forms the factors-

TcPlan mappings for DSN. In the figure, there are two possible TcPlans. There is a

TcPlan for “Importance” is “Low” and another for “Importance” is “High”. In the case of

low importance (lines 3-12), the TcPlan “WS-NegotiationTrust-Low” is returned to the

Trust Calculator. In the case of high importance (lines 13-22), the TcPlan “WS-

NegotiationTrust-High” is returned to the Trust Calculator.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <mappings>

3 …

4 <mapping>

5 <factors>

6 <factor name="DecisionType">WebServiceNegotiation</factor>

7 <factor name="Type">WebService/Type1</factor>

8 <factor name="Importance">Low</factor>

9 </factors>

10 <tcplan><name>WS-NegotiationTrust-Low</name></tcplan>

11 </mapping>

12 <mapping>

13 <factors>

14 <factor name="DecisionType">WebServiceNegotiation</factor>

15 <factor name="Type">WebService/Type1</factor>

16 <factor name="Importance">High</factor>

17 </factors>

18 <tcplan><name> WS-NegotiationTrust-High</name></tcplan>

19 </mapping>

20 </mappings>

Figure 67: Factors-TcPlan Mappings (Web Service Negotiation)

The “WS-NegotiationTrust-Low” TcPlan is shown in Figure 68. In the figure,

computational trust is based solely on the calculated cognitive trust. Cognitive trust is

152

calculated from the web service consumer’s dependability belief. Dependability belief is

calculated from experience and reputation. The tree constructed from this TcPlan is

graphically represented in Figure 69. Unlike web service selection, weighted average is

applied to aggregate beliefs (line 25) at the Trust Calculator as oppose to at the BFS. This

is just to illustrate a different way that aggregate belief can be calculated. The approach in

this section allows the application to determine the weight on experience-based aggregate

belief and reputation-based aggregate belief. In web service selection, the determination

is left up to the web service consumer. Both approaches are equally viable and are

supported by the computational trust architecture. As for “WS-NegotiationTrust-High”,

its difference from “WS-NegotiationTrust-Low” is that its “importance” parameter is set

to “High”. Also, recommendations are used in dependability belief calculation.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <tcplan>

3 <nodeDefinition>

4 <node id="expBelief" class="AggregateBeliefQuery">

5 <parameter name="aggregateBelief" type="string">Dependability</parameter>

6 <parameter name="evidenceType" type="string">Experience</parameter>

7 <parameter name="importance" type="string">Low</parameter>

8 </node>

9 <node id="repBelief" class="AggregateBeliefQuery">

10 <parameter name="aggregateBelief" type="string">Dependability</parameter>

11 <parameter name="evidenceType" type="string">Reputation</parameter>

12 <parameter name="importance" type="string">Low</parameter>

13 </node>

14 <node id="dependabilityBelief" class="AggregateBeliefWeightedAvg">

15 <parameters name="weights" type="double">

16 <parameter>0.7</parameter>

17 <parameter>0.3</parameter>

18 </parameters>

19 </node>

20 <node id="cognitiveTrust" class="AggregateBeliefToTrust"/>

21 </nodeDefinition>

22 <trustCalculation>

23 <tree>

24 <cognitiveTrust>

25 <dependabilityBelief><expBelief/><repBelief/></dependabilityBelief>

26 </cognitiveTrust>

27 </tree>

28 </trustCalculation>

29 </tcplan>

Figure 68: TcPlan (Web Service Negotiation)

153

Figure 69: Tree of TcPlan (Web Service Negotiation)

 After TcPlan formation, the Trust Calculator invokes the TcEngine to execute the

TcPlan. The web service consumer’s dependability belief in a web service based on

experience is obtained by calling the getAggregateBelief method of BFS with the

following input parameters:

 trustee

o id = “www.webservice.com”

o type = “WebService/Type1”

 aggregate belief

o type = “Dependability”

 hints

o name = “EvidenceType”, value = “Experience”

o name = “Importance”, value = “Low”

The BF-Polices responsible for calculating dependability beliefs in a web service are

shown in Figure 70. There needs to be BF-Policies for belief formation based on

experience (lines 1-20), recommendation (lines 22-38) and reputation (not shown due to

space limitation). For each evidence type, there is a BF-Policy for low importance (lines

1-11, 22-29) and a BF-Policy for high importance (lines 13-20, 31-38). The aggregate

154

belief dependability is calculated from compliance belief. The formation of compliance

belief from experience, recommendation and reputation is based on the Belief Engines

“SCOUT-Experience”, “SCOUT-Recommendation” and “SCOUT-Reputation”.

Basically, the belief formation is similar to the case with web service selection except

with different evidence.

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 aggBelief: AggregateBelief(type == "Dependability")

4 Hint(name == "EvidenceType" && value == "Experience")

5 Hint(name == "Importance" && value == "Low")

6 then

7 beliefEngine = Registry.lookup("SCOUT-Experience");

8 beliefEngine.set("ExperienceWindow", 30);

9 …

10 beliefEngine.calculateBelief(trustee, new Belief("Compliance"));

11 end

12

13 when

14 trustee: Trustee(type == "WebService/Type1")

15 aggBelief: AggregateBelief(type == "Dependability")

16 Hint(name == "EvidenceType" && value == "Experience")

17 Hint(name == "Importance" && value == "High")

18 then

19 …

20 end

21

22 when

23 trustee: Trustee(type == "WebService/Type1")

24 aggBelief: AggregateBelief(type == "Dependability")

25 Hint(name == "EvidenceType" && value == "Recommendation")

26 Hint(name == "Importance" && value == "Low")

27 then

28 …

29 end

30

31 when

32 trustee: Trustee(type == "WebService/Type1")

33 aggBelief: AggregateBelief(type == "Dependability")

34 Hint(name == "EvidenceType" && value == "Recommendation")

35 Hint(name == "Importance" && value == "High")

36 then

37 …

38 end

39

40 …

Figure 70: BF-Policies (Dependability Belief)

155

As for evidence gathering, the approach taken is similar to that of web service

selection. The deployed EG-Policies are similar to those listed in Figure 65 except for the

different evidence that is being gathered.

By obtaining experience-based dependability belief and reputation-based

dependability belief from SCOUT, computational trust can now be calculated. After

TcPlan execution, the calculated computational trust is returned to DSN. The

computational trust formation process is graphically illustrated in Figure 71.

Computational trust could help determine the penalties to be demanded for contract

violation. Basically, the lower the calculated computational trust, the higher should be the

penalties as the web service is believed to be undependability. The actual steps for

contract negotiation are outside the scope of this thesis. Of all the web services where

contract negotiation ends up being successful, DSN would select the web service with the

highest utility to be returned to the application.

Figure 71: Computational Trust Formation (Web Service Negotiation)

10.2.1.3 Web Service Management

A web service management web service (WSM) has been implemented. An application

could invoke the startManagement method of WSM to manage a web service. The

method has as input two parameters: web service and web service importance. An

example invocation could have the following input parameters:

 web service

o id = “www.webservice.com”

156

o type = “WebService/Type1”

 web service importance = “Low”

Information about the web service is obtained from DSN. The return value of

startManagement is a unique identifier: managementId. The managementId identifier is

used in the endManagement method to end an existing web service management.

Upon invocation of startManagement, WSM would instantiate a management

agent (mAgent) to manage the provided web service. The management policies to be

deployed into the mAgent can be selected by taking computational trust into account. For

example, computational trust can be calculated using the TcPlan of Figure 68. For web

services with low computational trust, management policies can be used to keep the web

service consumer inform of changes to the provided QoS. These management policies are

not needed in cases when the web service is computationally trusted.

Computational trust can also be used within a management policy. An example is

shown in Figure 72. In the figure, whenever there is an SLA violation, computational

trust would be calculated (lines 1-6). An email is sent if computational trust has fallen

below zero (lines 8-12). Upon invocation of the endManagement method, the WSM

would look up the corresponding mAgent, stop its execution and destroy the mAgent.

1 when
2 Violation()

3 then

4 trust = trustCalculator.calculateTrust(trustee);

5 insert(new Trust(trustee, trust));

6 end

7

8 when

9 trust: Trust(value < 0)

10 then

11 email("chyew@csd.uwo.ca", "Computational Trust < 0");

12 end

Figure 72: Web Service Management Policies

 With the end of web service invocation, the last step is for the application to

request feedbacks from the web service consumer with regards to the invoked web

157

service. The application would request feedbacks concerning a web service’s

competence, accessibility, performance and dependability. A consumer could choose to

provide feedback to only some of the aggregate beliefs. The obtained feedbacks are

mapped to the interval of [-1, 1]. Next, the provideFeedback method of BFS is invoked.

An example invocation could have the following input parameters:

 trustee

o id = “www.webservice.com”

o type = “WebService/Type1”

 aggregate belief feedbacks

o type = “Accessibility”, timestamp = “2010-10-06 15:10:00”, feedback = 0

o type = “Performance”, timestamp = “2010-10-06 15:10:00”, feedback = 0

 hints

o name = “Importance”, value = “Low”

The AF-Policies responsible for mapping aggregate belief feedbacks to belief feedbacks

are shown in Figure 73. In the figure, importance is not considered since the aggregate

belief to belief mappings are the same irrespective of importance. In the case of feedback

to aggregate belief performance, this would trigger the policy at lines 21-29. The

feedback to performance belief is mapped to feedback to timeliness belief (lines 25-27)

with timeliness belief being assigned the timestamp and feedback of performance belief.

After mapping, the provideFeedback method of EGS is invoked (line 28) with the

timeliness belief feedback.

The EA-Policy responsible for evidence source assessment is shown in Figure 74.

In the figure, the Evidence Source Assessor identified as “SCOUT-Assessor” is selected

to calculate evidence source trust (line 5). “SCOUT-Assessor” implements the evidence

source assessment algorithm described in Section 7.2. It is responsible for all the belief

feedbacks to web service of type one and for all the gathered evidence types. The

assessor is configured (lines 6-7) and finally invoked (line 8) to calculate evidence source

158

trust in recommenders, reputation systems and signal providers. The same approach is

also taken for feedback to aggregate belief accessibility.

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 aggFeedback: AggregateBeliefFeedback(type == "Competence")

4 then

5 feedback = new BeliefFeedback("Qualification",

6 aggFeedback.getTimestamp(),

7 aggFeedback.getFeedback());

8 EGS.provideFeedback(trustee, [feedback]);

9 end

10

11 when

12 trustee: Trustee(type == "WebService/Type1")

13 aggFeedback: AggregateBeliefFeedback(type == "Accessibility")

14 then

15 feedback = new BeliefFeedback("Availability",

16 aggFeedback.getTimestamp(),

17 aggFeedback.getFeedback());

18 EGS.provideFeedback(trustee, [feedback]);

19 end

20

21 when

22 trustee: Trustee(type == "WebService/Type1")

23 aggFeedback: AggregateBeliefFeedback(type == "Performance")

24 then

25 feedback = new BeliefFeedback("Timeliness",

26 aggFeedback.getTimestamp(),

27 aggFeedback.getFeedback());

28 EGS.provideFeedback(trustee, [feedback]);

29 end

30

31 when

32 trustee: Trustee(type == "WebService/Type1")

33 aggFeedback: AggregateBeliefFeedback(type == "Dependability")

34 then

35 feedback = new BeliefFeedback("Compliance",

36 aggFeedback.getTimestamp(),

37 aggFeedback.getFeedback());

38 EGS.provideFeedback(trustee, [feedback]);

39 end

Figure 73: AF-Policies (Web Service)

159

1 when
2 trustee: Trustee(type == "WebService/Type1")

3 feedback: BeliefFeedback()

4 then

5 assessor = Registry.lookup("SCOUT-Assessor");

6 assessor.set("EvidenceWindow", 60);

7 …

8 assessor.assessEvidenceource(trustee, feedback);

9 end

Figure 74: EA-Policy (Web Service)

10.2.2 Implementation

A graphical illustration of DSN is shown in Figure 75. In the figure, DSN consists of

three different types of plug-ins. The WS-Discoverer plug-in is responsible for web

service discovery. An example of which can be used for discovering the web services

stored in a WSO2 Governance Registry [138]. A WS-Selector plug-in is responsible for

web service selection. An example plug-in could implement the algorithm described in

Section 10.2.1.1. A WS-Negotiator plug-in is responsible for web service negotiation. A

stub plug-in is currently used as a substitute for web service negotiation. The plug-ins are

all registered with a registry. The DSN Manager uses the registry to discover the

available plug-ins. It employs policies to coordinate the invocation of different plug-ins.

The policies are deployed to the Drools rule engine [37] within the DSN Manager.

A graphical illustration of WSM is shown in Figure 76. In the figure, the WSM

Manager is responsible for the selection of management policies. It is also responsible for

the instantiation and destruction of mAgents. Each mAgent has its own Drools rule

engine to process management policies. A mAgent may interact with the Monitoring

Service to setup the monitoring of a web service. The Monitoring Service is implemented

as a stub that provides events that trigger the management policies.

160

Figure 75: Web Service Discovery, Selection and Negotiation Web Service

Figure 76: Web Service Management Web Service

10.3 Summary

Two scenarios are presented in this chapter. The scenarios are used to demonstrate how

computational trust can be calculated with the support of the computational trust

architecture. The first scenario is a movie selection scenario where computational trust is

calculated from cognitive trust and emotional trust. The second scenario is a web service

scenario where computational trust is calculated from cognitive trust. The calculated

computational trust is used in web service selection, negotiation and management.

161

Chapter 11

11 Evaluation

The focus of this chapter is on evaluating the design of the computational trust

architecture. This chapter is divided into two sections. The first section covers the

evaluation of SCOUT. The second section covers the evaluation of the Trust Calculator.

11.1 Evaluation of SCOUT

SCOUT is evaluated from three different perspectives. The first perspective examines

SCOUT through its evolution. The second perspective examines how SCOUT supports

the computational trust properties. The last perspective examines how SCOUT addresses

the challenges to computational trust.

11.1.1 Evolution

The design of SCOUT has gone through numerous revisions. Initially, SCOUT consisted

of numerous Trust Manager plug-ins. Each Trust Manager is responsible for its own

evidence gathering and trust calculation. For example, there is a Trust Manager for

calculating trust based on experiences and a Trust Manager for calculating trust based on

recommendations. As trust is subjective, each trustor is responsible for deploying its own

Trust Managers. The weakness of this design is that evidence gathering and trust

calculation are tightly coupled. As a result, a new Trust Manager has to be created for

each evidence discovery and gathering protocol and trust formation algorithm

combination. The design does not encourage code reuse. Moreover, it also introduces

numerous challenges to SCOUT’s maintenance.

To address the coupling weakness, SCOUT was redesigned with Evidence

Gatherers responsible for evidence gathering and Trust Managers responsible for trust

calculation. With this more modular design, evidence gathering and trust formation are

now able to evolve independently of each other though a weakness still remains in that

there is no research that backs up the trust calculation. As a result, the cognitive trust

view from social psychology has been adopted. In cognitive trust formation, cognitive

162

trust is calculated from beliefs and beliefs calculated from evidence. SCOUT in turn was

redesigned to be responsible for belief calculation and evidence gathering. As for

cognitive trust calculation, it is the responsibility of the applications. Basically, SCOUT

is a web service that provides beliefs to the applications.

A weakness of encapsulating both evidence gathering and belief calculation in a

web service is that evidence gathering is not accessible to the applications. Some

applications may already support cognitive trust calculation and could leverage SCOUT

for more evidence. To address this weakness, the SCOUT service was redesigned into

two services: the Evidence Gathering Service (EGS) and Belief Formation Service (BFS).

Later, the Emotional Trust Service (ETS) is added to SCOUT to account for trust

calculation that is not evidence-based. This three service design is the design discussed in

Chapter 4 and graphically illustrated in Figure 10 of Section 0.

As for the adaptation of the SCOUT services to changing computational trust

formation needs, initially the different factors (Section 4.1.6) were implemented as input

parameters that can be configured by the trustor. A weakness of this approach is that

there are many factors. Moreover, different trustors may have different views on when

adaptation is needed along with how adaptation should proceed. The result is a system

that is complex and challenging to configure. With the adoption of policies however, the

entire process can be simplified. All the factors that SCOUT may be interested in are

passed in as hints. The hints are then used in policies for web service adaptation.

Basically, the trustor could start out with simple policies. If the policies are not adequate,

more advanced policies could be created. Adding, updating and removing policies as the

need arises allows for adaptation without having to sacrifice ease of use.

11.1.2 Computational Trust Properties

SCOUT is designed with the computational trust properties listed in Section 1.2.3 in

mind. SCOUT supports computational trust that is quantifiable, comparable, subjective,

multidimensional and dynamic. As for computational trust being reflexive, non-

symmetrical and non-transitive, these are properties that SCOUT supports through the

plug-ins. Example algorithms that have these properties are discussed in Chapter 7.

163

11.1.3 Computational Trust Challenges

The challenges to computational trust are discussed in Section 1.4. The role that SCOUT

plays in addressing these challenges is as follows:

 Lack of standards for discovering and accessing evidence. To address this

challenge, EGS has adopted a plug-in approach to evidence gathering. This allows

EGS to be extended with new evidence discovery and gathering protocols. As

EGS is a middleware service, any changes to evidence gathering (e.g. changes to

EG-Policies or Evidence Gatherers) is transparent to the trustor’s applications and

BFS. Basically, developers no longer have to support a variety of evidence

discovery and gathering protocols. This also cuts down on the amount of code

duplication due to the implementation of the same protocols.

 Lack of standards for representing evidence. To address this challenge, EGS has

adopted a plug-in approach to handle the variety of evidence representations. This

allows EGS to be extended to support new evidence representations. The different

evidence representations are all mapped to a standard representation. With only a

single evidence representation, this simplifies evidence interpretation.

Applications and BFS no longer have to account for the different evidence

representations. This also cuts down on the amount of code duplication.

 Evidence Filtering. To address this challenge, EGS has adopted the trust-based

approach to evidence filtering. The Evidence Source Assessors are implemented

as plug-ins. This allows EGS to be extended to support new evidence source

assessment algorithms. By moving evidence filtering from the application end to

the middleware end, this allows evidence filtering to be conducted transparently

during evidence gathering.

 Computational Trust is subjective and multidimensional. To address this

challenge, the SCOUT services need to support subjectivity and

multidimensionality. Subjectivity is supported through the deployed policies: EG-

Policies, BF-Policies and ET-Policies. The policies allow the trustor to

164

subjectively influence evidence gathering, belief formation and emotional trust

formation. Multidimensionality is supported through policies and aggregate

beliefs. Cognitive trust can be calculated from different combinations of

aggregate beliefs. The formation of aggregate beliefs could be influenced by the

deployed policies.

11.2 Evaluation of Trust Calculator

The Trust Calculator is evaluated from three different perspectives. The first perspective

examines the Trust Calculator through its evolution. The second perspective examines

how the Trust Calculator supports the computational trust properties. The last perspective

examines how the Trust Calculator addresses the challenges to computational trust.

11.2.1 Evolution

The Trust Calculator was originally a component of SCOUT. It was responsible for

aggregating the trusts calculated by the different Trust Managers to form trust in the

trustee. As there are many different ways for trust to be calculated, it is the responsibility

of the application to describe its trust calculation needs to the Trust Calculator. The

description is expressed as a Trust Coordination Plan. An example plan is shown in

Figure 77. In the figure, the Trust Calculator first loads and names all of the components

needed for trust calculation (lines 1-5). For example, the class

“ExperienceManagerProxy” is loaded and given the name “ExpManager”. Next, the

Experience Manager is invoked to calculate trust based on compliance experiences (line

7). The Recommendation Manager is then invoked to calculate trust based on compliance

recommendations (line 8). The calculated trusts are then aggregated using the weighted

average function (line 10). The last step in the Trust Coordination Plan is for the

calculated trust to be returned to the requesting application (line 11).

There are a number of weaknesses to the SCOUT based Trust Calculator. These

weaknesses have been addressed in the Trust Calculator introduced in Chapter 6. For

example, the language for describing trust calculation has been simplified. Instead of a

language that uses dollar sign ($) to denote variables, an at sign (@) to denote

information that needs to be filled in and square brackets ([]) for list creation, trust

165

calculation is structured as a tree that is described in XML. This in turn simplifies the

specification of computational trust formation. Moreover, instead of calculating trust

from other calculated trusts in an ad hoc manner, computational trust formation has a

solid socio-psychological underpinning and is based on cognitive trust and emotional

trust. The final major change is the move of the Trust Calculator from middleware end to

the application end. This is to capture the fact that although the applications share the

same emotional trust and beliefs in a trustee, computational trust formation is still

adaptable to each application’s decision making needs.

1 load {
2 ExpManager: "ExperienceManagerProxy";

3 RecManager: "RecommendationManagerProxy";

4 Math: "AggregationAlgorithms";

5 }

6 {

7 $expTrust = ExpManager.calculateTrust("@Provider", "Compliance");

8 $recTrust = RecManager.calculateTrust(“@Provider”, "Compliance");

9

10 $trust = Math.weightedAvg([$expTrust, $recTrust]);

11 return $trust;

12 }

Figure 77: Trust Coordination Plan

11.2.2 Computational Trust Properties

The Trust Calculator is designed with the computational trust properties listed in Section

1.2.3 in mind. The Trust Calculator supports computational trust that is quantifiable,

comparable, subjective, multidimensional and dynamic. As for computational trust being

reflexive, non-symmetrical and non-transitive, these are properties that are supported

through the computational trust formation algorithms (i.e., nodes).

11.2.3 Computational Trust Challenges

The Trust Calculator addresses the challenge of computational trust being subjective and

multidimensional. The Trust Calculator supports TcTemplates that allows subjective

information concerning computational trust formation to be filled in by the trustor. As for

multidimensionality, this is supported through the Trust Calculation Planner that maps

the different factors that influence computational trust formation to TcPlans.

166

11.3 Summary

The computational trust architecture proposed in Chapter 4 is evaluated in this chapter.

The evaluation is conducted from three different perspectives. The first perspective

focuses on the evolution of the proposed architecture. The second perspective examines

the architecture in terms of its support of the computational trust properties. The final

perspective addresses how the proposed architecture meets the computational trust

challenges.

167

Chapter 12

12 Conclusions and Future Directions

This chapter is divided into two sections. In the first section, the contributions of the

thesis are summarized. In the second section, the focus is on possible future directions

that the computational trust research could take.

12.1 Conclusions

Trust has been shown to play an important role in everyday decision making. In [84],

Marsh showed that trust can also be applied to decision making in computing. In this

thesis, a trust model known as computational trust is introduced. The model is based on

the work of Lewis and Weigert [75]. The computational trust model calls for the

formation of computational trust from cognitive trust and emotional trust. Cognitive trust

is formed from the trustor’s beliefs in a trustee. Belief can be calculated based on the

available evidence. This thesis has identified eight different types of aggregate beliefs

and four different types of evidence. As for emotional trust, it is based on recognition of

the trustee.

The implementation of the computational trust model can be challenging. Four

different challenges have been identified. The challenges are the lack of standards for

discovering and accessing evidence, the lack of standards for representing evidence,

evidence filtering and computational trust being subjective and multidimensional. To

address these challenges, a computational trust architecture is proposed. The architecture

consists of a SCOUT middleware, Evidence Repository and Trust Calculators. The

SCOUT middleware can be thought of as the personification of the trustor. It provides

information about the trustor that is shared by all of the trustor’s applications. As for the

Evidence Repository, it is a storage for all of the available evidence concerning the

trustees. The Trust Calculator is associated with an application. It is responsible for the

formation computational trust that meets the decision making needs of the application.

168

SCOUT consists of three services: Evidence Gathering Service (EGS), Belief

Formation Service (BFS) and Emotional Trust Service (ETS). EGS is responsible for

evidence gathering. The gathered evidence are normalized before being stored in the

Evidence Repository. The evidence stored in the repository are accessible to all of the

trustor’s applications. EGS also calculates evidence source trust for evidence filtering. By

taking into account the trustor’s feedbacks, EGS could learn to avoid evidence from

untrusted or distrusted evidence sources. As for BFS, it is responsible for belief

formation. The evidence needed for belief formation can be retrieved from the Evidence

Repository. If there are not enough evidence, BFS could contact EGS for evidence

gathering. As for ETS, it is responsible for emotional trust formation. Emotional trust is

determined by the trustee’s position in a hierarchy.

A Trust Calculator is responsible for computational trust formation. The

aggregate beliefs and emotional trusts needed for computational trust formation can be

obtained from the SCOUT middleware. A TcPlan can be created to describe the

formation of computational trust. A TcPlan is written in XML. It is structured as a tree

with tree nodes representing operations on aggregate beliefs and trusts. The TcPlanner of

the Trust Calculator is responsible for mapping the factors that could influence

computational trust formation to a TcPlan. If the TcPlan has information missing, it is

known as a TcTemplate. The TcTemplate needs to be parameterized before being used in

computational trust formation. The TcEngine of the Trust Calculator is responsible for

the instantiation and execution of the selected TcPlan. The calculated computational trust

is then returned to the application.

The proposed computational trust architecture has been implemented. Algorithms

have also been developed for belief formation and evidence source assessment.

Experiments have also been conducted to demonstrate the importance of evidence source

availability and how different algorithms impact the performance of computational trust.

The computational trust architecture has been evaluated. Finally, a movie scenario and a

web service scenario are presented. The scenarios are used to demonstrate how the

computational trust architecture can support computational trust formation. In conclusion,

this thesis has introduced a middleware approach to computational trust formation. The

169

approach should help address the challenges of implementing a computational trust

model.

12.2 Future Work

There are a number of areas in the proposed architecture that can be improved with more

work. The areas include:

 Evidence filtering. There are many different ways to perform evidence filtering.

The computational trust architecture currently only supports the formation of

evidence source trust from feedbacks. Other evidence filtering approaches may

include the use of recommendations, reputations and signals to calculate evidence

source trust. Works such as [125] and [141] layer multiple evidence filtering

approaches together to perform evidence filtering. These alternative approaches

should be supported in the computational trust architecture.

 Privacy. As pointed out in Section 2.3, privacy should be taken into account

during evidence gathering and distribution. How a trustor’s privacy concerns

should be expressed and integrated into SCOUT is an area open to future work.

 SCOUT policies. A policy-based approach has been adopted to deal with

computational trust being subjective and multidimensional. One weakness of the

policy-based approach is that the specification of policies could still be too

challenging for a trustor. A possible solution is to have default policies for

different trustee types. For example, there would be default policies for movies

and different types of web services. These policies can be downloaded and

deployed to satisfy common decision making needs. Tools could also be made

available to help in the editing of SCOUT policies. This is an area that requires

more investigation and may involve other research areas such as human-computer

interaction.

 Multidimensionality of trust. Trust in one dimension can influence trust in a

different dimension. For example, cognitive or emotional trust in a movie could

be influenced by cognitive or emotional trust in the movie’s director and actors.

170

The relationship between dimensions is currently not explicitly represented in the

proposed architecture. Whether support is needed for representing the

relationships is an area that requires further exploration.

 Emotional trust. Currently, emotional trust policies are created by the trustor.

More investigations should be conducted on whether it is possible to automate

some of the emotional trust assignments. This could involve access to the trustor’s

social graph or the adoption of research in areas such as context-awareness and

emotional recognition.

 Conceptual model. In Lewis and Weigert’s conceptual model, cognitive,

emotional and behavior trust all influence each other. The influences have been

simplified in the computational trust architecture. It would be interesting to

investigate whether some of the simplifications can be removed to create a more

realistic computational trust model.

 TcPlan. A GUI editor could be created to simplify TcPlan creation. Instead of

passing XML to the TcEngine for parsing, future work could include TcPlan

compilation to ensure faster computational trust calculation.

 Middleware management. The trustor is currently tasked with the management of

the middleware (e.g. configuration the middleware or deploying policies to the

middleware). The development of an agent that stands as a representative of the

trustor in middleware management is an area that requires further investigation.

 Experiments. More experiments should be conducted to better understand

computational trust formation. Specifically, the assumptions made in Chapter 9

should be removed to create more realistic experiments. Metrics such as

computational cost and storage cost of the proposed algorithms should also be

measured. The societal benefit of using computational trust is another metric

worth exploring. Finally, experts in other disciplines such as psychologists and

sociologists may need to be consulted to determine the best way to validate

171

emotional trust, to capture a trustor’s subjective views and to compare

computational trust with the human notion of trust.

 Evaluation. To gain more insight into decision making based on computational

trust, the computational trust architecture could be evaluated using more

scenarios. Example scenarios may include access control and crowdsourcing.

Applicability to more scenarios could help demonstrate the genericity of the

proposed architecture.

 Integration. For computational trust to be widely used, it should be integrated into

the trustor’s everyday workflow. More research needs to be done to examine how

the proposed architecture can be integrated into either a business or consumer

oriented workflow.

172

References

[1] A. Abdul-Rahman and S. Hailes, "Supporting trust in virtual communities," in

Proceedings of the 33rd Annual Hawaii International Conference on System

Sciences, vol. 6, 2000, p. 9.

[2] K. Aberer and Z. Despotovic, "Managing trust in a peer-2-peer information

system," in Proceedings of the 10th International Conference on Information and

Knowledge Management, 2001, pp. 317-324.

[3] Advogato. [Online]. http://www.advogato.org (accessed: February 7, 2010).

[4] affect. Dictionary.com Unabridged. [Online].

http://dictionary.reference.com/browse/affect (accessed: February 3, 2010).

[5] A. Ali, S. Ludwig, and O. Rana, "A cognitive trust-based approach for web

service discovery and selection," in 3rd IEEE European Conference on Web

Services, 2005, pp. 38-49.

[6] A. Ali, O. Rana, and D. Walker, "WS-QoC: Measuring quality of service

compliance," in Proceeding of the 2nd International Conference on Service

Oriented Computing (ICSOC04), New York, 2004, pp. 24-33.

[7] Amazon. [Online]. http://www.amazon.com (accessed: February 7, 2010).

[8] Amazon Elastic Compute Cloud. [Online]. http://aws.amazon.com/ec2 (accessed:

February 7, 2010).

[9] Amazon Mechanical Turk. [Online]. http://aws.amazon.com/mturk (accessed:

February 7, 2010).

[10] R. Axelrod, The evolution of cooperation. New York: Basic Books, 1985.

[11] F. Azzedin and M. Maheswaran, "Evolving and managing trust in grid computing

systems," in IEEE Canadian Conference on Electrical Computer Engineering,

2002, pp. 1424-1429.

http://www.advogato.org/
http://dictionary.reference.com/browse/affect
http://www.amazon.com/
http://aws.amazon.com/ec2
http://aws.amazon.com/mturk

173

[12] belief. Merriam-Webster's Dictionary of Law. [Online].

http://dictionary.reference.com/browse/belief (accessed: February 3, 2010).

[13] E. Bertino, E. Ferrari, and A. Squicciarini, "Trust negotiations: concepts, systems,

and languages," Computing in Science and Engineering, vol. 6, no. 4, pp. 27-34,

2004.

[14] Best Buy. [Online]. http://www.bestbuy.com (accessed: February 7, 2010).

[15] M. Blaze, J. Feigenbaum, and A.D. Keromytis, "KeyNote: Trust management for

public-key infrastructures," Lecture Notes in Computer Science, vol. 1550, pp.

59-63, 1999.

[16] M. Blaze, J. Feigenbaum, and J. Lacy, "Decentralized trust management," in

IEEE Conference on Security and Privacy, Oakland, 1996, pp. 164-173.

[17] K. Blomqvist, "The many faces of trust," Scandinavian Journal of Management,

vol. 13, no. 3, pp. 271–286, 1997.

[18] D. Boyd, "Making sense of privacy and publicity," in South by SouthWest

(SXSW), Austin, 2010.

[19] S. Brin and L. Page, "The anatomy of a large-scale hypertextual web search

engine," Computer networks and ISDN systems, vol. 30, no. 1-7, pp. 107-117,

1998.

[20] S. Buchegger and J. Y. Le Boudec, "A Robust Reputation System for Peer-to-

Peer and Mobile Ad-hoc Networks," in Proceeding of the 2nd Workshop on

Economics of Peer-to-Peer Systems (P2PEcon), Cambridge, 2004, pp. 150-155.

[21] CA/Browser Forum. [Online]. http://www.cabforum.org (accessed: February 7,

2010).

[22] V. Cahill et al., "Using trust for secure collaboration in uncertain environments,"

IEEE Pervasive Computing, vol. 2, no. 3, pp. 52-61, 2003.

[23] L. Capra, "Engineering human trust in mobile system collaborations," ACM

http://dictionary.reference.com/browse/belief
http://www.bestbuy.com/
http://www.cabforum.org/

174

SIGSOFT Software Engineering Notes, vol. 29, no. 6, pp. 116-125, 2004.

[24] J. Carter, E. Bitting, and A. Ghorbani, "Reputation Formalization for an

Information-Sharing Multi-Agent System," Computational Intelligence, vol. 18,

no. 4, pp. 515-534, November 2002.

[25] C. Castelfranchi and R. Falcone, "Principles of trust for MAS: cognitive anatomy,

social importance, and quantification," in ICMAS '98: Proceedings of the 3rd

International Conference on Multi Agent Systems, Paris, 1998, pp. 72-79.

[26] M. Chen and J. Singh, "Computing and using reputations for internet ratings," in

Proceedings of the 3rd ACM conference on Electronic Commerce, New York,

2001, pp. 154-162.

[27] K. Chopra and W. Wallace, "Trust in electronic environments," in Proceedings of

the 36th Annual Hawaii International Conference on System Sciences, 2003, pp.

331-340.

[28] Y. Chu, J. Feigenbaum, B. Lamacchia, P. Resnick, and M. Strauss, "REFEREE:

trust management for Web applications," Computer Networks and ISDN Systems,

vol. 29, no. 8-13, pp. 953-964, 1997.

[29] L. Clement, A. Hately, C. Riegen, and T. Rogers. UDDI Version 3.0.2. [Online].

http://www.uddi.org/pubs/uddi_v3.htm (accessed: February 4, 2011).

[30] F. Cornelli, E. Damiani, S. di Vimercati, S. Paraboschi, and P. Samarati,

"Choosing reputable servents in a P2P network," in Proceedings of the 11
th

International Conference on World Wide Web, New York, 2002, pp. 376-386.

[31] C. Corritore, B. Kracher, and S. Wiedenbeck, "On-line trust: concepts, evolving

themes, a model," International Journal of Human-Computer Studies, vol. 58, no.

6, pp. 737-758, 2003.

[32] E. Damiani, S. Paraboschi, P. Samarati, and F. Violante, "A reputation-based

approach for choosing reliable resources in peer-to-peer networks," in

Proceedings of the 9th ACM Conference on Computer and Communications

http://www.uddi.org/pubs/uddi_v3.htm

175

Security, 2002, pp. 207-216.

[33] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, "The ponder policy

specification language," in Proceedings of the International Workshop on

Policies for Distributed Systems and Networks, 2001, pp. 18–38.

[34] N. Dawar, P. Parker, and L. Price, "A cross-cultural study of interpersonal

information exchange.," Journal of International Business Studies, vol. 27, no. 3,

pp. 497-516, 1996.

[35] M Deutsch, "Cooperation and trust: Some theoretical notes," Nebraska

Symposium on Motivation, pp. 275-319, 1962.

[36] J. Douceur, "The Sybil Attack," in: Proceedings of the 1st International

Workshop on Peer-to-Peer Systems (IPTPS '01), London, 2002, pp. 251-260.

[37] Drools. [Online]. http://www.jboss.org/drools (accessed: May 16, 2010).

[38] eBay. [Online]. http://www.ebay.com (accessed: February 7, 2010).

[39] Epinions. [Online]. http://www.epinions.com (accessed: February 7, 2010).

[40] S Etalle, J den Hartog, and S Marsh, "Trust and punishment," in Proceedings of

the 1st International Conference on Autonomic Computing and Communication

Systems, Rome, 2007, pp. 251-260.

[41] R. Falcone, G. Pezzulo, and C. Castelfranchi, "A fuzzy approach to a belief-based

trust computation," Trust, reputation, and security: theories and practice, pp. 55-

60, 1999.

[42] S. Fiske and S. Taylor, Social Cognition, 2nd ed.: McGraw-Hill Publishing,

1991.

[43] C. Fung, J. Zhang, I. Aib, and R. Boutaba, "Robust and scalable trust

management for collaborative intrusion detection," in IFIP/IEEE International

Symposium on Integrated Network Management, 2009, pp. 33-40.

http://www.jboss.org/drools
http://www.ebay.com/
http://www.epinions.com/

176

[44] D. Gambetta, "Can We Trust Trust?," Trust: Making and Breaking Cooperative

Relations, electronic edition, pp. 213-237, 2000.

[45] D. Gefen, V. Srinivasan Rao, and N. Tractinsky, "The conceptualization of trust,

risk and their relationship in electronic commerce: the need for clarifications," in

Proceedings of the 36th Annual International Conference on System Sciences,

Hawaii, 2003, pp. 192-201.

[46] GlassFish. [Online]. https://glassfish.dev.java.net/ (accessed: May 16, 2010).

[47] M. Gobe, Emotional branding: the new paradigm for connecting brands to

people, 1st ed.: Allworth Press, 2001.

[48] J. Golbeck, B. Parsia, and J. Hendler, "Trust networks on the semantic web,"

Cooperative Information Agents VII, vol. 1, no. 1, pp. 238-249, 2003.

[49] P. Gowder, "Review of The Transparent Society by David Brin, Data Smog by

David Shenk," Harvard Journal of Law & Technology, vol. 2995, no. 2, pp. 513-

532, 1999.

[50] T Grandison and M Sloman, "A survey of trust in internet applications," IEEE

Communications Surveys and Tutorials, vol. 3, no. 4, pp. 2-16, 2000.

[51] T. Grandison and M. Sloman, "Specifying and analysing trust for internet

applications," in Proceedings of the 2nd IFIP Conference on E-Commerce, E-

Business, E-Government (I3E 2002), Lisbon, 2002, pp. 145-157.

[52] E. Gray, C. Jensen, S. Weber, J. Seigneur, and C. Yong, "Towards a framework

for assessing trust-based admission control in collaborative ad hoc applications,"

Department of Computer Science, Trinity College, Dublin, Tech Report 2002.

[53] N. Griffiths, "Task delegation using experience-based multi-dimensional trust,"

in Proceedings of the 4th International Joint Conference on Autonomous Agents

and Multiagent Systems, New York, 2005, pp. 489-496.

[54] N. Griffiths and M. Younas, "Fuzzy trust for peer-to-peer systems," in

https://glassfish.dev.java.net/

177

Proceedings of the 26th IEEE International Conference on Distributed

Computing Systems Workshops, 2006, pp. 73-79.

[55] M. Gupta, P. Judge, and M. Ammar, "A reputation system for peer-to-peer

networks," in Proceedings of the 13th International Workshop on Network and

Operating Systems Support for Digital Audio and Video, 2003, pp. 144-152.

[56] R. Gupta and A. Somani, "Reputation management framework and its use as

currency in large-scale peer-to-peer networks," in Proceedings of the 4th

International Conference on Peer-to-Peer Computing, 2004, pp. 124-132.

[57] R. Housley, W. Polk, W. Ford, and D. Solo, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile," RFC

2002.

[58] T. Huynh, "A personalized framework for trust assessment," in Proceedings of

the 2009 ACM Symposium on Applied Computing, New York, 2009, pp. 1302-

1307.

[59] T. Huynh, N. Jennings, and N. Shadbolt, "An integrated trust and reputation

model for open multi-agent systems," Autonomous Agents and Multi-Agent

Systems, vol. 13, no. 2, pp. 119-154, 2006.

[60] IMDb. [Online]. http://www.imdb.com (accessed: February 7, 2010).

[61] D. Johnson and K. Grayson, "Cognitive and affective trust in service

relationships," Journal of Business Research, vol. 58, no. 4, pp. 500-507, 2005.

[62] A. Jøsang and R. Ismail, "The beta reputation system," in Proceedings of the 15th

Bled Electronic Commerce Conference, 2002, pp. 324-337.

[63] A. Jøsang, R. Ismail, and C. Boyd, "A survey of trust and reputation systems for

online service provision," Decision Support Systems, vol. 43, no. 2, pp. 618-644,

2007.

[64] A. Jøsang and S. Pope, "Semantic constraints for trust transitivity," in

http://www.imdb.com/

178

Proceedings of the 2nd Asia-Pacific Conference on Conceptual Modelling,

Newcastle, 2005, pp. 68-77.

[65] A. Jøsang and S. Presti, "Analyzing the relationship between risk and trust," in

Proceedings of the 2nd International Conference on Trust Management, Oxford,

2004, pp. 135-145.

[66] Jtpl. [Online]. http://jtpl.sourceforge.net/ (accessed: May 16, 2010).

[67] S. Kalepu, S. Krishnaswamy, and S. Loke, "Reputation = f(user ranking,

compliance, verity)," in IEEE International Conference on Web Services, 2004,

pp. 200-207.

[68] S. Kamvar, M. Schlosser, and H. Garcia-Molina, "The eigentrust algorithm for

reputation management in P2P networks," in Proceedings of the 12th

International Conference on World Wide Web, New York, 2003, pp. 640-651.

[69] K. Kelton, K. Fleischmann, and W. Wallace, "Trust in Digital Information,"

Journal of the American Society for Information Science, vol. 59, no. 3, pp. 363-

374, 2008.

[70] M. Kosfeld, M. Heinrichs, P. Zak, U. Fischbacher, and E. Fehr, "Oxytocin

increases trust in humans," Nature, vol. 435, no. 7042, pp. 673-676, 2005.

[71] E. Kotsovinos and A. Williams, "BambooTrust: practical scalable trust

management for global public computing," in Proceedings of the 2006 ACM

Symposium on Applied computing, 2006, pp. 1893-1897.

[72] B. Lahno, "On the emotional character of trust," Ethical Theory and Moral

Practice, vol. 4, no. 2, pp. 171–189, 2001.

[73] N. Leveson, Safeware: system safety and computers. New York: Addison-Wesley

Professional, 1995.

[74] B. Levine, C. Shields, and N. Margolin, "A Survey of Solutions to the Sybil

Attack," University of Massachusetts Amherst, Amherst, Tech Report 2006.

http://jtpl.sourceforge.net/

179

[75] J. Lewis and A. Weigert, "Trust as a social reality," Social Forces, vol. 63, no. 4,

pp. 967 - 985, 1985.

[76] Z. Liang and W. Shi, "Enforcing cooperative resource sharing in untrusted P2P

computing environments," Mobile Networks and Applications, vol. 10, no. 6, pp.

971-983, 2005.

[77] Z. Liang and W. Shi, "PET: A PErsonalized Trust Model with Reputation and

Risk Evaluation for P2P Resource Sharing," in Proceedings of the 38th Annual

Hawaii International Conference on System Sciences, 2005, pp. 201-210.

[78] N. Limam and R. Boutaba, "QoS and reputation-aware service selection," in

IEEE Network Operations and Management Symposium, 2008, pp. 403-410.

[79] C. Lin, V. Varadharajan, Y. Wang, and V. Pruthi, "Enhancing grid security with

trust management," in IEEE International Conference on Services Computing,

2004, pp. 303-310.

[80] J. Liu and V. Issarny, "An incentive compatible reputation mechanism for

ubiquitous computing environments," International Journal of Information

Security, vol. 6, no. 5, pp. 297-311, 2007.

[81] D. Lucking-Reiley, D. Bryan, N.i Prasad, and D. Reeves, "Pennies From Ebay:

the Determinants of Price in Online Auctions," Journal of Industrial Economics,

vol. 55, no. 2, pp. 223-233, 2007.

[82] N. Luhmann, "Familiarity, Confidence, Trust: Problems and Alternatives," in

Trust: Making and breaking cooperative relations.: Basil Blackwell, 2000, pp.

94-107.

[83] D. Manchala, "E-commerce trust metrics and models," IEEE Internet Computing,

vol. 4, no. 2, pp. 36-44, 2000.

[84] S. Marsh, "Formalising trust as a computational concept," University of Stirling,

Department of Computer Science and Mathematics, PhD Thesis 1994.

180

[85] S. Marsh, "Optimism and pessimism in trust," in Proceedings of the Ibero-

American Conference on Artificial Intelligence, 1994.

[86] S. Marsh and M. Dibben, "Trust, untrust, distrust and mistrust - an exploration of

the dark(er) side," in Proceedings of the 3rd iTrust International Conference, vol.

3477, Paris, 2005, pp. 17-33.

[87] E Michael Maximilien and Munindar P Singh, "Conceptual model of web service

reputation," ACM Special Interest Group on Management of Data (SIGMOD)

Record, vol. 31, no. 4, pp. 36-41, 2002.

[88] R. Mayer, J. Davis, and F. Schoorman, "An integrative model of organizational

trust," The Academy of Management Review, vol. 20, no. 3, pp. 709-734, 1995.

[89] J. McClave and F. Dietrich, Statistics, 4th ed., 1988.

[90] L. Mekouar, Y. Iraqi, and R. Boutaba, "Peer-to-peer’s most wanted: malicious

peers," Computer Networks, vol. 50, no. 4, pp. 545-562, 2006.

[91] Metacritic. [Online]. http://www.metacritic.com (accessed: February 7, 2010).

[92] B Misztal, Trust in Modern Societies: The Search for the Bases of Social Order.:

Polity, 1996.

[93] conceptual model. Dictionary.com's 21st Century Lexicon. [Online].

http://dictionary.reference.com/browse/conceptual model (accessed: February 3,

2010).

[94] L. Mui, M. Mohtashemi, and A. Halberstadt, "Notions of reputation in multi-

agents systems: a review," in Proceedings of the 1st International Joint

Conference on Autonomous Agents and Multiagent Systems, New York, 2002,

pp. 280-287.

[95] MVEL. [Online]. http://mvel.codehaus.org/ (accessed: May 16, 2010).

[96] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and H. Granqvist, "WS-Trust

1.3," OASIS Standard, 2007.

http://www.metacritic.com/
http://dictionary.reference.com/browse/conceptual%20model
http://mvel.codehaus.org/

181

[97] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, "Web Services Security:

SOAP Message Security 1.1," OASIS Standard, 2006.

[98] E. Papalilo and B. Freisleben, "Towards a flexible trust model for grid

environments," in Proceedings of the 1st International Conference of Grid

Services Engineering and Management, Erfurt, 2004, pp. 35–65.

[99] Quartz. [Online]. http://www.quartz-scheduler.org/ (accessed: May 16, 2010).

[100] S. Ramchurn, N. Jennings, C. Sierra, and L. Godo, "Devising a trust model for

multi-agent interactions using confidence and reputation," Applied Artificial

Intelligence, vol. 18, no. 9-10, pp. 833-852, 2004.

[101] rating. (2004) The American Heritage® Dictionary of the English Language,

Fourth Edition. [Online]. http://dictionary.reference.com/browse/rating (accessed:

May 25, 2010).

[102] P. Resnick and R. Zeckhauser, "Trust among strangers in Internet transactions:

Empirical analysis of eBay’s reputation system," Advances in Applied

Microeconomics: A Research Annual, vol. 11, pp. 127-157, 2002.

[103] D. Reynolds, "Jena 2 inference support," HP Labs, Technical Report 2007.

[104] M. Richardson, R. Agrawal, and P. Domingos, "Trust management for the

semantic web," in Proceedings of the 2nd International Semantic Web

Conference, 2003, pp. 351-368.

[105] RosettaNet. [Online]. http://www.rosettanet.org (accessed: February 4, 2011).

[106] Rotten Tomatoes. [Online]. http://www.rottentomatoes.com (accessed: February

7, 2010).

[107] J. B. Rotter, "Generalized expectancies for interpersonal trust," American

Psychologist, vol. 26, no. 5, pp. 443-452, 1971.

[108] S. Ruohomaa, L. Viljanen, and L. Kutvonen, "Guarding enterprise collaborations

with trust decisions - the TuBE approach," in Proceedings of the 1st International

http://www.quartz-scheduler.org/
http://dictionary.reference.com/browse/rating
http://www.rosettanet.org/
http://www.rottentomatoes.com/

182

Workshop on Interoperability Solutions to Trust, Security, Policies and QoS for

Enhanced Enterprise Systems, 2006.

[109] J. Sabater, "Evaluating the ReGreT system," Applied Artificial Intelligence, vol.

18, no. 9-10, pp. 797-813, 2004.

[110] J. Sabater and C. Sierra, "Reputation and social network analysis in multi-agent

systems," in Proceedings of the 1st International Joint Conference on

Autonomous Agents and Multiagent Systems, 2002, pp. 475-482.

[111] M. Schillo, P. Funk, and M. Rovatsos, "Using trust for detecting deceitful agents

in artificial societies," Applied Artificial Intelligence, vol. 14, no. 8, pp. 825-848,

2000.

[112] J. Schneider, G. Kortuem, J. Jager, S. Fickas, and Z. Segall, "Disseminating trust

information in wearable communities," Personal Technologies, vol. 4, no. 4, pp.

245-248, 2000.

[113] J. Seigneur and C. Jensen, "Trading privacy for trust," Lecture notes in computer

science, vol. 2995, pp. 93-107, 2004.

[114] S. Sen and N. Sajja, "Robustness of reputation-based trust: boolean case," in

Proceedings of the 1st International Joint Conference on Autonomous Agents and

Multiagent Systems, 2002, pp. 288-293.

[115] W. Sherchan, S. Krishnaswamy, and S. Loke, "Relevant past performance for

selecting web services," in Proceedings of the 5th International Conference on

Quality Software, Melbourne, 2005, pp. 439-445.

[116] R. Sherwood, S. Lee, and B. Bhattacharjee, "Cooperative peer groups in NICE,"

Computer Networks, vol. 50, no. 4, pp. 523-544, 2006.

[117] V. Shmatikov and C. Talcott, "Reputation-based trust management," Journal of

Computer Security, vol. 13, no. 1, pp. 167-190, 2005.

[118] M. Siegrist, H. Gutscher, and T. Earle, "Perception of risk: the influence of

183

general trust, and general confidence," Journal of Risk Research, vol. 8, no. 2, pp.

145-156, 2005.

[119] H. Simon, The Sciences of the Artificial, 3rd ed. Cambridge: The MIT Press,

1996.

[120] Slashdot. [Online]. http://slashdot.org (accessed: February 7, 2010).

[121] C. Smith, "Trust and confidence: possibilities for social work in 'high

modernity'," British Journal of Social Work, vol. 31, no. 2, pp. 287-305, 2001.

[122] R. Solomon and F. Fernando, Building trust in business, politics, relationships,

and life. New York: Oxford University Press, 2001.

[123] S. Song, K. Hwang, R. Zhou, and Y. Kwok, "Trusted P2P transactions with fuzzy

reputation aggregation," IEEE Internet Computing, vol. 9, no. 6, pp. 24-34, 2005.

[124] M. Spence, "Job market signaling," The Quarterly Journal of Economics, vol. 87,

no. 3, pp. 355-374, August 1973.

[125] M. Srivatsa, L. Xiong, and L. Liu, "TrustGuard: countering vulnerabilities in

reputation management for decentralized overlay networks," in Proceedings of

the 14th international conference on World Wide Web, 2005, pp. 431-440.

[126] Stack Overflow. [Online]. http://stackoverflow.com (accessed: February 7, 2010).

[127] N. Stakhanova, S. Basu, J. Wong, and O. Stakhanov, "Trust framework for p2p

networks using peer-profile based anomaly technique," in ICDCS Workshops,

2005, pp. 203-209.

[128] W. Teacy, J. Patel, N. Jennings, and M. Luck, "Travos: trust and reputation in the

context of inaccurate information sources," Autonomous Agents and Multi-Agent

Systems, vol. 12, no. 2, pp. 183-198, 2006.

[129] W. Teacy, J. Patel, N. Jennings, and M. Luck, "Travos: Trust and reputation in

the context of inaccurate information sources," Autonomous Agents and Multi-

Agent Systems, vol. 12, no. 2, pp. 183-198, 2006.

http://slashdot.org/
http://stackoverflow.com/

184

[130] H. Tran, M. Hitchens, V. Varadharajan, and P. Watters, "A trust based access

control framework for P2P file-sharing systems," in Proceedings of the 38th

Annual Hawaii International Conference on System Sciences, 2005, pp. 302-311.

[131] "Trust in the wired americas," Cheskin Research, 2000.

[132] trust, The American Heritage Dictionary of the English Language, Fourth

Edition, 2004, http://dictionary.reference.com/browse/trust. (accessed: February

3, 2010).

[133] K. Walsh and E. Sirer, "Experience with an object reputation system for peer-to-

peer filesharing," in Proceedings of the 3rd Conference on Networked Systems

Design & Implementation, 2006, pp. 1-14.

[134] Y. Wang and J. Vassileva, "Bayesian network trust model in peer-to-peer

networks," in Proceedings of the 2nd International Workshop on Agents and

Peer-to-Peer Computing, Berlin, 2004, pp. 23-34.

[135] Web of Trust (WOT). [Online]. http://www.mywot.com (accessed: May 19,

2010).

[136] J. Weng, C. Miao, and A. Goh, "A robust reputation system for the grid," in

Proceedings of the 6th IEEE International Symposium on Cluster Computing and

the Grid, 2006, pp. 548-551.

[137] A. Whitby, A. Jøsang, and J. Indulska, "Filtering out unfair ratings in bayesian

reputation systems," in Proceedings of the 3rd International Joint Conference on

Autonomous Agenst and Multi Agent Systems, Rome, 2004, pp. 106-117.

[138] WSO2 Governance Registry. [Online]. http://wso2.com/products/governance-

registry (accessed: May 16, 2010).

[139] L. Xiong and L. Liu, "Peertrust: supporting reputation-based trust for peer-to-peer

electronic communities," IEEE transactions on Knowledge and Data

Engineering, vol. 16, no. 7, pp. 843-857, 2004.

http://www.mywot.com/
http://wso2.com/products/governance-registry
http://wso2.com/products/governance-registry

185

[140] Z. Xu, P. Martin, W. Powley, and F. Zulkernine, "Reputation-enhanced qos-based

web services discovery," in IEEE International Conference on Web Services

(ICWS), Salt Lake City, 2007, pp. 249–256.

[141] Y. Yang, Y. Sun, S. Kay, and Q. Yang, "Defending online reputation systems

against collaborative unfair raters through signal modeling and trust," in

Proceedings of the 2009 ACM symposium on Applied Computing, New York,

2009, pp. 1308-1315.

[142] B. Yu and M. Singh, "An evidential model of distributed reputation

management," in Proceedings of the 1st International Joint Conference on

Autonomous Agents and Multiagent Systems, New York, 2002, pp. 294-301.

[143] B. Yu, M. Singh, and K. Sycara, "Developing trust in large-scale peer-to-peer

systems," in IEEE 1st Symposium on Multi-Agent Security, 2004, pp. 1-10.

[144] G. Zacharia, A. Moukas, and P. Maes, "Collaborative reputation mechanisms for

electronic marketplaces," Decision Support Systems, vol. 29, no. 4, pp. 371-388,

2000.

[145] D. Zhu and M. Mutka, "Promoting cooperation among strangers to access internet

services from an ad hoc network," Pervasive and Mobile Computing, vol. 1, no.

2, pp. 213-236, 2005.

[146] P. Zimmermann, The Official PGP User's Guide. Cambridge, USA: MIT Press,

1995.

[147] Y. Zuo and B. Panda, "Information trustworthiness evaluation based on trust

combination," in ACM Symposium on Applied Computing, 2006, pp. 1880-1885.

186

Appendices

Appendix A: Syntax of SCOUT Policies

The syntax for SCOUT policies is shown in Table 23. Everything in bold is a language

keyword. Everything in bold-italic is automatically inserted by the architecture.

Everything in italics can be set by the policy author. Square brackets ([]) are used to

indicate optional elements while braces ({ }) are used to indicate zero or more elements.

 As an example, consider EG-Policy, the computational trust architecture

automatically inserted the package and import statements to ensure that the policies are

placed in the right package and that basic classes are available to the policy author.

Although neglected in the discussion in the thesis, each policy should be assigned a

policy name. Optionally, a priority could be assigned to a policy. The default salience is

set to zero if no priority is assigned. The conditional part (i.e., when part) of EG-Policy

must consist of at least Trustee and Belief. Hint however is optional. It is possible for

there to be one or more Hint. Finally, RHS consists of actions to be taken if a policy is

triggered. Any legal Java statement is acceptable though in some cases libraries may need

to be imported. The same interpretation also applies to EA-Policy, BF-Policy, AF-Policy

and ET-Policy.

Table 23: Syntax of SCOUT Policies

SCOUT Policies Syntax

Evidence Gathering Policy
(EG-Policy)

package ca.uwo.evidence.egPolicies

import ca.uwo.evidence.*

policy policyName

[salience priority]

when

trustee-ref: Trustee(expression)

belief-ref: Belief(expression)

{ hint-ref: Hint(expression) }

then

RHS

end

187

Evidence Source Assessment Policy
(EA-Policy)

package ca.uwo.evidence.eaPolicies

import ca.uwo.evidence.*

policy policyName

 [salience priority]

when
trustee-ref: Trustee(expression)

feedback-ref: BeliefFeedback(expression)

then

RHS

end

Belief Formation Policy
(BF-Policy)

package ca.uwo.belief.bfPolicies

import ca.uwo.belief.*

policy policyName

 [salience priority]

when
trustee-ref: Trustee(expression)

aggBelief-ref: AggregateBelief(expression)

{ hint-ref: Hint(expression) }

then

RHS

end

Aggregate Belief Feedback Policy
(AF-Policy)

package ca.uwo.belief.afPolicies

import ca.uwo.belief.*

policy policyName

 [salience priority]

when
trustee-ref: Trustee(expression)

aggFeedback-ref: AggregateBeliefFeedback(expression)

{ hint-ref: Hint(expression) }

then

RHS

end

Emotional Trust Policy
(ET-Policy)

package ca.uwo.trust.etPolicies

import ca.uwo.trust.*

policy policyName

 [salience priority]

when
trustee-ref: Trustee(expression)

then

RHS

end

188

Appendix B: Syntax of Subscription Filters

There are two types of filters that can be installed in the Subscription Manager: aggregate

belief filter and emotional trust filter. An aggregate belief filter can be used to filter the

aggregate belief calculated by Belief Formation Service. The syntax for specifying an

aggregate belief filter is shown in Figure 78. When evaluated, an aggregate belief filter

should return a Boolean value of “True” or “False”. If “True”, the calculated aggregate

belief is returned to the subscriber. Otherwise, the calculated aggregate belief is filtered

out. In terms of functions, any function in Java that does not require “import” can be used

in an aggregate belief filter. The same also applies to emotional trust filter. Its syntax is

shown in Figure 79.

1 filter: condition (("&&" | "||") condition)*

2 condition: expression | expression operator expression

3 expression: function(expression) | "aggBelief.belief" | "aggBelief.reliability" |

4 "lastAggBelief.belief" | "lastAggBelief.reliability" | integer | double | boolean

5 operator: ">" | ">=" | "<" | "<=" | "==" | "!="

Figure 78: Syntax of Aggregate Belief Filter

1 filter: condition (("&&" | "||") condition)*

2 condition: expression | expression operator expression

3 expression: function(expression) | "emoTrust" | "lastEmoTrust" | integer | double |

4 boolean

5 operator: ">" | ">=" | "<" | "<=" | "==" | "!="

Figure 79: Syntax of Emotional Trust Filter

189

Curriculum Vitae

Name: Chern Har Yew

Post-secondary The University of Western Ontario

Education and London, Ontario, Canada

Degrees: 1998-2002 B.Sc.

The University of Western Ontario

London, Ontario, Canada

2002-2005 M.Sc.

The University of Western Ontario

London, Ontario, Canada

2005-2010 Ph.D.

Honours and International Graduate Student Scholarship (IGSS)

Awards: 2005-2010

Related Work Teaching Assistant

Experience The University of Western Ontario

2002-2008

Instructor

The University of Western Ontario

2005

Publications:

C. Yew, V. Tosic and H. Lutfiyya, “On integrating trust into business-driven

management of web services and their compositions,” in Proceedings of the 3rd

international workshop on Business-driven IT Management (BDIM), Salvador, pp. 102-

104, 2008.

C. Yew and H. Lutfiyya, “Introduction to MAGNATE: Gathering and Analysis of Trust

Evidence”, Proceedings of the 5th international workshop on Business-driven IT

Management (BDIM), Osaka, pp. 165-166, 2010

C. Yew and H. Lutfiyya, “Middleware-Based Approach to Supporting Trust-Based

Service Selection”, in Proceedings of International Symposium on Integrated Network

Management (IM), Dublin, 2011 (to be published)

	Architecture Supporting Computational Trust Formation
	Recommended Citation

	Architecture Supporting Computational Trust Formation

