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ABSTRACT Thin and ultraflat conductive surfaces are of particular interest to use as substrates 

for tip-enhanced spectroscopy applications.  Tip-enhanced spectroscopy exploits the excitation of 

a localized surface plasmon resonance mode at the apex of a metallized atomic force microscope 

tip, confining and enhancing the local electromagnetic field by several orders of magnitude.  This 

allows for nanoscale mapping of the surface with high spatial resolution and surface sensitivity, as 

demonstrated when coupled to local Raman measurements.  In gap-mode tip-enhanced 

spectroscopy, the specimen of interest is deposited onto a flat metallic surface and probed by a 

metallic tip, allowing for further electromagnetic confinement and subsequent enhancement.  We 

investigate here a geometry where a gold tip is used in conjunction with a silver nanoplate, thus 

forming a heterometallic platform for local enhancement.  When irradiated, a plasmon-mediated 

reaction is triggered at the tip-substrate junction due to the enhanced electric field and the transfer 
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of hot electrons from the tip to the nanoplate.  This resulting nanoscale reaction appears to be 

sufficient to ablate the thin silver plates even under weak laser intensity.  Such an approach may 

be further exploited for patterning metallic nanostructures or photoinduced chemical reactions at 

metal surfaces. 

INTRODUCTION 

Localized surface plasmon modes are oscillations of conductive electrons that can be observed 

in nanostructures when using a selected set of wavelengths that match the plasmon resonances. 

These resonances are primarily sensitive to the material and dimensions of the considered 

conductive nanostructure, as well as the optical properties of the impinging electromagnetic field, 

such as energy and polarization.  In isolated and sharp-cornered nanostructures, the excitation of 

plasmon modes generally results in the confinement and enhancement of the local electromagnetic 

field by several orders of magnitude, and is strongly dependent on the opto-geometric experimental 

conditions.  This locally enhanced electromagnetic field is often exploited for improving the 

sensitivity of vibrational spectroscopy measurements, such as in surface-enhanced Raman 

spectroscopy (SERS),1-3 and surface-enhanced infrared absorption.4-6 

Similar to SERS, tip-enhanced Raman spectroscopy (TERS) exploits such localized surface 

plasmon resonance confined at the apex of a sharp metallic atomic force microscope tip.  This 

confined electromagnetic field is enhanced up to several orders of magnitude and enables 

significant intensity increase of local optical processes such as Raman scattering.  TERS offers 

both an enhanced signal and spatial resolution beyond the diffraction limit of light, as well as an 

improved Raman surface sensitivity that can be exploited to probe in situ a variety of surface 

reactions and understand fundamental electron transfer processes.7  
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Further signal enhancement is achieved when the analyte is placed on a metallic substrate, thus 

forming a nanoscale metallic junction.  This mode is referred to as gap-mode TERS, and has been 

used to probe a variety of molecular systems such as small molecules,8-12 nanostructured materials 

and biomaterials.13-21  Ideal metallic substrates for gap-mode TERS in the backscattering 

configuration are both atomically flat, reducing parasitic scattering processes, and thin enough to 

be optically transparent.9, 19, 22-23  For this purpose, previous studies have focused on the use of 

gold nanoplates as substrates, as gold nanoplates exhibit these attributes and are chemically 

stable.9, 12, 17-19, 21-22  Moreover, the use of silver nanoplates together with silver tips has also been 

marginally reported, presumably due to the poor chemical stability of silver.15-16  

Importantly, the plasmon resonance of the coated metallic tip can also be exploited to drive 

chemical reactions at the nanoscale.  Plasmons may decay radiatively, by emission of a photon, or 

non-radiatively, through the production of a highly energetic “hot” electron.24-25  Plasmon-

mediated reactions are those that are triggered by the combination of the locally enhanced electric 

field and the presence of hot electrons that are the result of a plasmon resonance.  The simultaneous 

initiation and tracking of these plasmon-mediated reactions is possible through the use of 

spectroscopic methods such as SERS and TERS. 

The dimerization of 4-aminothiophenol or 4-nitrothiophenol to dimercaptoazobenzene is an 

example of a well investigated plasmon-mediated reaction by SERS.26-30  Other plasmon-mediated 

reactions investigated include polymerization,31-34 demethylation of methylene blue,35 and water 

splitting,36-38 among others.  Hot electron processes have also been investigated for the reduction 

of aqueous silver and platinum ions.39-40  While SERS is effective for monitoring plasmon-

mediated reactions, it lacks the spatial resolution to observe and control the reaction at the 

nanometer level.  In TERS, since the position of the tip is precisely controlled with sub-nanometer 
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resolution, the application of TERS to plasmon-mediated reactions allows for spatially resolved 

surface reactions and characterization of localized reactions.9, 12, 31, 41-42  

In this work, we perform a plasmon-mediated reaction in a gap-mode configuration, with a 

heterometallic junction formed by a gold tip and a silver nanoplate.  To the best of our knowledge 

this is the first time that this configuration of metal selection for the tip (gold) and the substrate 

(silver) is reported.  It is shown that, as a result of the plasmon-mediated reaction, the silver 

nanoplate is locally ablated, as a series of holes appear on the metal surface.  Herein, we 

investigated the possible origin of such plasmon-mediated damage in metallic nanoplates using 

weak irradiance conditions. 

 

RESULTS AND DISCUSSION 

Characterization of Ag Nanoplates 

For gap-mode TERS experiments using an inverted optical microscope, the metallic nanoplate 

should exhibit a high width/thickness aspect ratio with minimal surface roughness.  Large lateral 

dimensions of the nanoplates, on the order of several microns, facilitate their observation under an 

optical microscope, whilst being thin enough for the laser to penetrate through the nanoplate and 

reach the metal tip.  Protocols for the synthesis of gold nanoplates that meet these requirements 

have been well established.43-44  Conversely, the synthetic approaches to preparing silver 

nanoplates often yield smaller nanoplates with side lengths less than 500 nm, making them less 

ideal for gap-mode TERS applications.  In this study, silver nanoplates were synthesized based on 

a seed-mediated method developed by Zhang et al.45  As can be seen in the scanning electron 

microscopy (SEM) image of Figure 1a, the resulting nanoplates of the seed-mediated synthesis are 

large, with a distribution in size ranging between two to six microns in side length.  The prepared 
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silver nanoplates were commonly found to be triangular or truncated triangles, as shown in Figure 

1a.  To determine the thickness of the nanoplates, atomic force microscopy (AFM) scans were 

performed.  The inset of Figure 1a shows a representative AFM image of a silver nanoplate with 

the corresponding cross-section in Figure 1b.  Here the thickness of the nanoplates was found to 

vary from 40 – 60 nm, and that the surface exhibits an RMS roughness on the order of several 

nanometers, compared to about 500 pm for gold nanoplates.9  The as-prepared nanoplates often 

stack (Figure 1a), or have smaller nanostructures, such as multifaceted nanoparticles, on their 

surfaces, but clean, isolated silver plates can be found and used for the TERS experiments.   

 

Figure 1: a) SEM of silver nanoplates, with representative atomic force micrograph inset.  Scale 

bar in inset is 2 µm.  b) Cross-section of nanoplate along white line as indicated in the inset of a).  

Tip-Enhanced Plasmon Drilling of Ag Nanoplates 
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Prior to performing tip-enhanced measurements, the surface of the nanoplate was functionalized 

with a monolayer of 4-mercaptophenylboronic acid (4-MPBA).  Figure 2a shows an AFM scan of 

a functionalized nanoplate with an intrinsically rough surface, but without other particles or plates 

present.  The nanoplates as synthesized do provide SERS activity, as shown in Figure 2b, where 

the SERS spectrum has been multiplied by 10.  This is likely due to the rough surface of the 

nanoplates, as the nanoscale roughness can support hot-spots, even though an irradiation at 632.8 

nm was used, which is generally off-resonance from the plasmon modes observed in silver-based 

materials.  As a linearly polarized laser was used in an axial geometry, the tip was localized slightly 

off-center of the focused laser beam to benefit from the z-component of the tightly focused beam.  

To collect the TERS measurements, the tip was approached to the centre of the triangular nanoplate 

to minimize any effects from the edges of the nanoplates.  To differentiate the TERS and SERS 

contributions, a collection of spectra was collected at increasing tip-sample distances, from 0 nm 

(tip engaged) to 500 nm with varying step sizes, and the results are shown in Figure 2b.  When the 

tip is at the surface of the nanoplate, the electromagnetic enhancement offered by the tip is able to 

locally enhance the Raman spectrum of the 4-MPBA molecules adsorbed on the Ag nanoplate.  As 

the tip is retracted from the surface, the signal decays, but not completely.  Instead, the signal from 

a tip retracted 500 nm above the nanoplate surface is more intense than the reference SERS 

spectrum collected on flat nanoplates without any TERS tip.  To ascertain the origin of this increase 

in signal, a post-TERS AFM scan was performed (Figure 2c).  The scan clearly shows that the 

center of the nanoplate has been “drilled”, with considerable additional roughness having been 

introduced around the ablated area.  This deformation has amplified the SERS effect through an 

increase of the localized roughness, as shown in the AFM topography (Figure 2c).  To determine 

if this effect is facilitated by the presence of an adsorbed molecule, the same process was repeated 
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on a bare nanoplate (Figure 3a).  Once again, after the tip-enhanced measurements were performed, 

deformation of the nanoplate was observed, and as shown in Figure 3b, is sufficiently large to be 

seen optically under a microscope. 

 

Figure 2: a) AFM of silver nanoplate; b) TERS spectra obtained upon increasing the tip-sample 

distance, as indicated, compared to the SERS spectrum multiplied by 10.  Spectra have been offset 

for clarity; c) AFM of silver nanoplate after TERS experiment. 

 

Figure 3: a) Atomic force micrograph of a non-functionalized drilled silver nanoplate, with the 

arrow indicating damage; b) Image of the same nanoplate, with the arrow indicating the same 

point. 



 8

To further investigate the cause of this localized destruction, a TERS experiment was performed 

under optical misalignment, where the tip was placed on the edge of the focused laser focal plane.  

Under such a configuration, little to no electromagnetic enhancement at the tip apex should be 

present.  As depicted in Figure 4a and 4b, selected points for spectral collection were chosen on 

and off the nanoplate.  Under the misaligned conditions, no TERS spectra of the adsorbed molecule 

could be collected (Figure 4c).  As the irradiation time for this experiment was significantly shorter 

than that used in Figure 2, the sample was exposed to the laser for an additional 5 minutes to 

determine if the nanoplate had been damaged by laser-induced heating.  The post-irradiation AFM 

scan (Figure 4d) did not exhibit any damage.  To verify that the nanoplate was not impervious to 

drilling, the tip and laser were realigned to be in an ideal TERS configuration.  Spectra were 

collected on and off the nanoplate (red and blue dots, Figure 4a), and the comparison in Figure 4e 

shows that the system is aligned, as the 4-MPBA signal is seen on, but not off, the nanoplate.  Ten 

further spectra were collected in the centre of the nanoplate, at varying tip-sample distances (Figure 

S1).  Additional single point measurements were collected at other positions on the nanoplate 

(Figure 4b).  After collection of the TERS spectra in the selected areas, a subsequent AFM scan 

was acquired (Figure 4f).  Once again, local damage was observed in the exact position where the 

spectra were collected.  The defects exhibit two critical structural components.  In the region that 

was irradiated over a longer period (barycenter of the triangle), the degree of damage is 

considerably greater than that of the areas where single TERS measurements were performed.  

Furthermore, regardless of the exposure time, the defects adapt a triangular shape, similar to that 

of the AFM tip.  As the positions and relative sizes of the holes can be readily changed based on 

the TERS experiments, this approach could be used to pattern nanostructures through localized 

metal ablation. 
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Figure 4: Atomic force scans of silver nanoplate, showing a) points at which spectra were collected 

on (red) and off (blue) the nanoplate, and b) other points of collection. c) No TERS signal is 

measured off alignment, resulting in d) no damage to the nanoplate.  e) TERS spectrum is measured 

on the nanoplate (red), resulting in f) damage to the nanoplate.  

These observations indicate that under an ideal TERS configuration, the TERS tip can induce 

significant damage on a metallic surface, and can be used to drill triangular holes into the 

nanoplates.  As metallic nanoplates are commonly used in gap-mode TERS measurements, the 

source of this nanoscale surface ablation was further investigated.  Possible causes of this drilling 

are multiple and can presumably be assigned to i) mechanical damage from the tip; ii) plasmonic 

heating; iii) a plasmon-mediated chemical or electrochemical reaction; or iv) some combination of 

these processes.  As mentioned earlier, no hole generation was observed when the laser was not 

focused on the tip.  Since pseudo-TERS measurements were performed (single point and tip-

retraction), it is unlikely that mechanical damage is the cause, despite that triangular shape 

matching that of the metallized AFM tips.  Furthermore, under prolonged irradiation with this 
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configuration, no damage was observed.  This means that laser heating from a far-field focused 

beam alone is insufficient to drive this process, and that the presence of the tip at the focal point 

of the laser is necessary to induce local damage.  The excitation source was set at 632.8 nm, and 

since the plasmon excitation is quite weak at this wavelength, this may exclude thermal effects in 

these experimental conditions.  This does not preclude the possibility of heating due to the 

plasmonic resonance of the tip.  As such, we focus here on the effect of an ideal TERS 

configuration, where the metallized tip is aligned with the laser. 

Heat Generation at the TERS Tip  

Optical confinement of the electric field in small volumes of metal nanoparticles results in 

plasmonic heating.46  This heating been exploited, among other uses, for cancer phototherapy.47-48  

Plasmonic heating can be sufficient to vaporize the surrounding medium,49-50 or under intense 

continuous wave sources,51 or pulsed lasers,52 locally melt the nanoparticle.  Previous studies have 

shown plasmonic heating to adversely affect the SERS spectra, as molecules are desorbed or 

nanoparticles are damaged.53-54  To investigate the heating of the tip, finite-element method (FEM) 

calculations were performed to evaluate the temperature gradient in the vicinity of the tip-

nanoplate assembly.  The geometry and material properties were set to match the experiment, with 

the laser linearly polarized and propagating along the tip axis.  The normalized electric field was 

calculated for a tip-sample separation of 2 nm, as shown in Figure 5a.  The corresponding 

temperature change is reported in Figure 5b.  For a tightly focused Gaussian beam, there is a 

component of the electric field along the tip axis; however, it is difficult to ascertain the exact 

value of this component.  To determine the maximum electric field, and thus the maximum heating 

expected, the case where the laser is polarized along the tip axis with a side illumination geometry 

is also calculated (Figure S2). 
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Figure 5: a) Electric field in the plane of polarization, with 2 nm separation from the silver 

nanoplate; b) Resultant temperature increase. 

This result for the electric field calculation (Figure 5a) is consistent with previous results.23, 55  

The resultant weak temperature increase, limited to about 2 K as shown in Figure 5b, is comparable 

to the work of Balois et al., who have predicted an increase of several degrees under 50 µW plane 

wave side illumination with a gold tip-gold substrate junction.55  Other work from Downes et al. 

predicts a much larger temperature increase, up to T = 360 K in the gold tip-silver substrate 

junction at 533 nm using side illumination;56 in comparison, the reciprocal metal configuration 

(Ag tip and Au substrate) illuminated at 633 nm increases by only 30 K under the same irradiance 

conditions of 1 mW/m2.57  Differences between these results and ours can be attributed to distinct 

excitation wavelengths and geometry.  In the backscattering configuration that we have used for 

our experiment and modelling, it is likely that the metal substrate has decreased the laser intensity 

reaching the tip, leading to limited heating at the tip apex as observed in Figure 5b.  As shown in 

Figure S2, polarization along the tip axis yields a higher temperature increase of T  25 K but, 

to reiterate, the difference between our study and that of Downes et al. is their illumination with 

532 nm compared to our excitation with 632.8 nm, as both calculations were conducted with 
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irrandiances of 1 mW/m2.  The FEM simulations show that the calculated temperatures at the tip-

substrate junction are insufficient to cause drastic damage to the nanoplates. 

Plasmon-Mediated Reactions at a TERS Tip 

To further investigate the role of the tip in the nanoplate drilling, the TERS tip was investigated 

under SEM and energy-dispersive X-ray (EDX) spectroscopy.  SEM images were first obtained 

for a pristine TERS tip (Figure 6a,b).  A tip coated at the same time as the pristine tip was used for 

the TERS experiment.  The tip selected for EDX measurements was minimally used.  In this 

instance, the laser was focused on the nanoplate.  When the tip was raster scanned over the 

nanoplate during the laser-tip alignment, the tip drilled a hole near the middle of the nanoplate 

(Figure S3).  As this tip was not in the focal spot of the laser for only a few seconds, and was in 

motion during this time, plasmon-induced heating was minimized. 

Figure 6c and d show the damage to the tip after the TERS experiment.  As seen in Figure 6d, 

the gold layer is delaminated from the tip, revealing the silicon that constitutes the bulk of the tip.  

There are two distinct sections chosen for EDX measurement, just below and above the tip apex, 

as highlighted in Figure 6d.  In the area above the tip apex, EDX measurements show the expected 

gold and silicon (Figure 6e): this section is the gold layer, ripped away from the tip during 

alignment.  On the lower section, peaks from silver are also seen (Figure 6f).   
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Figure 6: Scanning electron micrographs of a), b) a pristine TERS tip; c) a TERS tip after silver 

nanoplate drilling, with d) areas at which EDX spectra were collected; e), f) corresponding EDX 

spectra. 

Maps showing the distribution of each element of interest were also acquired, correlating to the 

SEM of the damaged tip (Figure 7a).  The gold map, in Figure 7b, shows gold in all undamaged 

areas of the tip, but not the exposed silicon or the area below the tip apex.  Conversely, the silicon 
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map shows the highest signal in the area exposed (Figure 7c), is also present under the undamaged 

layer of gold, but no signal is seen in the area below the tip apex.  The map of silver shows only a 

presence in the area below the tip apex (Figure 7d).  Gold and silicon are also likely present under 

the tip apex, but are shielded by the silver structure. 

 

Figure 7: a) Scanning electron micrograph of a tip after drilling; EDX maps of b) gold; c) silicon; 

d) silver. 

The presence of amorphous silver on the TERS tip suggests silver species are transferred from 

the nanoplate to the tip by a plasmon-mediated reaction.  Such reactions are triggered by the 

combination of the locally enhanced electric field and the presence of hot electrons, highly 

energetic electrons that are the result of non-radiative plasmon decay.  The generation of hot 

electrons has been described for both silver and gold nanostructures.  To further understand the 

relationship between TERS and hot-electron generation, it is necessary to compare our 

configuration to other gap-mode TERS experiments.  
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Typically, gap-mode TERS experiments employ the use of gold nanoplates.  For the resulting 

tip-plate junctions (gold-gold, silver-gold), to the best of our knowledge, no previous studies have 

demonstrated deformation of the nanoplate after TERS measurements to the degree we have shown 

and under modest irradiation conditions.  The use of a silver nanoplate with a gold tip is likely the 

driving force behind our 2D patterning of a metallic surface.  Here, we surmise that two factors 

either individually or in combination, yield the changes to the structure of the nanoplate.  It has 

been shown the citrate can be oxidized by hot holes, which can then reduce Ag+ ions.58  Under 

different conditions, Ag+ can be reduced directly by hot electrons.40  The transfer of the hot 

electrons from the tip to the nanoplate can be aided by the layer of atmospheric water at the tip-

substrate interface, or from the direct contact between the tip and nanoplate during measurement.  

As citrate is used in the synthesis of the nanoplates described in this study, it is possible that even 

after functionalization with 4-MPBA, some citrate remains on the surface.  It is known that coating 

a surface with a thin layer of SiO2 can prevent hot electrons from reaching or escaping the 

surface.59  However, in the case of coating the metal tip with such a layer, we have previously 

shown that this diminishes the EM enhancement and resulting TERS compatibility of the tip.23  As 

the use of silver nanoplates with gap-mode TERS is limited,15-16 it is difficult to ascertain if this is 

effect occurs exclusively with silver nanoplates.  In those described works, a silver tip was used in 

conjunction with the silver plates.  However, we employ the use of a gold tip as opposed to a silver 

tip.  As our conditions use a heterometallic junction, the hot electron generated by the gold tip 

could reduce surface silver species onto the tip, potentially when the tip makes contact with the 

surface.  The triangular geometry of the resulting hole is related to the direction of the hot electron 

coming off of the tetrahedral tip. 
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CONCLUSIONS 

In summary, silver nanoplates were synthesized by a seed-mediated method for use as substrates 

for gap-mode TERS experiments.  During both the alignment process and the collection of TERS 

spectra, nanoscale holes with a triangular shape were ablated in the nanoplate when the tip was 

aligned with the laser.  Using FEM calculations, we investigated the role of plasmon-induced 

heating, and determined that the elevation in temperature at the junction between the tip and 

nanoplate was not enough to account for the surface damage.  EDX measurements of a tip used to 

generate the triangular nanoholes showed the presence of silver on the tip, making the reduction 

of silver species from the nanoplate onto the tip a likely cause of this nanoplate drilling.  Further 

investigations to determine the exact trigger of this process could provide greater insight into 

plasmon-mediated chemical reactions, especially when they can be controlled with nanoscale 

precision.  Additionally, as this study has shown, the nanoscale patterning of 2D materials can 

expand beyond reactions involving the surface species but can be used to prepare metal surfaces 

with 2D patterns.  These patterned metasurfaces would exhibit unique optical properties compared 

to the original nanoplate, such as improved SERS compatibility.  

METHODS 

Silver nanoplate synthesis.  A seed solution was prepared by combining aqueous AgNO3 (0.1 

mM, 25 mL), trisodium citrate (30 mM, 0.3 mL), PVP (MW ~ 29000 g/mol, 3.5 mM, 1.5 mL) and 

H2O2 (30 wt%, 60 µL) under stirring.  An aqueous NaBH4 solution (100 M, 250 µL) was injected, 

and the solution was left to stir for 30 min.  The solution was centrifuged at 11000 rpm for 8 min, 

and the nanoplates were redispersed in deionized water.  This washing step was repeated twice, 

and the seeds were then dispersed in 40 mL of deionized water.  In the seeded growth process, L-

ascorbic acid (0.1 M, 0.375 mL) and trisodium citrate (0.075 M, 0.125 mL) were injected to 10 

mL of the seed solution under stirring.  A solution of AgNO3  (1 mM, 20 mL), citric acid (0.1 M, 
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0.125 mL), and sodium citrate (1.5 mM, 0.1 mL) was prepared.  It was added to the seed solution 

using a syringe pump, at a rate of 0.2 mL/min.  After injection, 20 mL of the reaction solution was 

removed, and the remaining solution was used as seeds for the next growth cycle.  In total, four 

rounds of growth were performed.  Nanoplates were dropcasted onto clean coverslips. 

Self-assembled monolayer preparation.  The nanoplate sample was functionalized with 4-

mercaptophenyl boronic acid (4-MPBA).  4-MPBA was dissolved in hot ethanol to produce a 10-

3 M solution.  The nanoplate sample was immersed in the solution for 24 h.  The sample was then 

rinsed in ethanol, to remove any non-covalently-bonded 4-MPBA, and dried under nitrogen. 

TERS tip preparation.  Commercial AFM tips (NCL-50, NanoWorld) were prepared for TERS 

by electron-beam evaporation.  An adhesion layer of 5 nm of Ti was deposited, followed by 20 nm 

of Au.  The deposition rate was 0.3 – 0.5 Å/s. 

TERS set-up.  The TERS set-up combines a Raman spectrometer (HR LabRam, Horiba) 

connected to an inverted optical microscope (Olympus IX71) with an AFM (NanoWizard II, JPK 

Instruments).  Measurements are performed in transmission mode, such that light is focused from 

below onto the metallized tip and the sample.  A ×100 objective (NA 0.9) (PlanAPO Olympus) 

objective focused the laser on the sample and collected the Raman signal.  The Raman signal is 

detected using a liquid nitrogen-cooled charge-coupled device (Horiba, Symphony), with the 

fundamental laser light removed by a notch filter.  A photodiode is connected to the AFM control 

so that Rayleigh scattering from the TERS tip can be measured to align the tip in the focal point 

of the objective. 

Using an excitation laser of 632.8 nm with an intensity of 1 mW at the sample, the Rayleigh 

scattering from the metallized tip was measured by the photodiode.  After aligning the tip at the 
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centre of the focal point, the tip was frozen in the x- and y-positions.  An AFM scan was obtained 

by sample scanning.  

The TERS signal was collected at points with a 600 gr/mm grating and a spectrometer slit width 

of 200 μm.  Spectra were typically recorded in the 700 – 1800 cm-1 range with a 10 s acquisition 

time per spectrum. 

Finite-element modelling.  COMSOL Multiphysics 5.2 was employed for finite-element 

modelling of the electric field and resulting temperature.  The TERS tip was modelled as an 

inverted Si cone with an angle of 22.5°, with a spherical tip 30 nm in diameter and a 20 nm thick 

Au shell.  The geometry is 2 µm wide, and 600 nm tall.  In air, the tip is positioned above the silver 

nanoplate, which is 50 nm thick.  The geometry is meshed tetrahedrally, with an element size 2 – 

50 nm, with a growth rate of 1.45 and curvature factor of 0.5.  The material properties are 

summarized in Table S1. Where necessary, the relative permeability was set as 1.  Initially, there 

is no electric field and the temperature is 293.15 K.  All boundaries are held at room temperature 

(293.15 K), except the top of the tip, which is thermally insulated.  Perfectly matched layers (PML) 

of 200 nm are set at edges of the geometry, to absorb reflections.  The PML was meshed using a 

swept mesh, with 8 layers.  A scattering boundary condition is applied along the top face of the air 

boundary.  The bottom of the geometry is illuminated by a tightly-focused Gaussian beam at 632.8 

nm, 1 µm spot size and 1 mW of power, to match experimental values.  As the Gaussian beam was 

tightly focused, the longitudinal component of the electric field was set as:60 

𝐸௭ ൌ 𝑖𝑘
𝜕𝐸௫
𝜕𝑥

 

Using the Multiphysics approach, the electric field is calculated using the Wave Optics module, 

and is linked to the Heat Transfer. 
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Tip characterization.  Scanning Electron Microscope (SEM) images of TERS tips were 

obtained using a LEO Zeiss 1540XB (Zeiss, Oberkochen, Germany), fitted with an Oxford 

Instruments x-ray system, allowing for in situ EDX analyses and mapping. 
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