Modeling stochastic and spatial heterogeneity in a human airway tree to determine variation in respiratory system resistance

Del Leary
Swati A Bhatawadekar
Grace Parraga
Geoffrey N Maksym

Follow this and additional works at: https://ir.lib.uwo.ca/biophysicspub

Citation of this paper:
Leary, Del; Bhatawadekar, Swati A; Parraga, Grace; and Maksym, Geoffrey N, "Modeling stochastic and spatial heterogeneity in a human airway tree to determine variation in respiratory system resistance" (2012). Medical Biophysics Publications. 116.
https://ir.lib.uwo.ca/biophysicspub/116
Modeling stochastic and spatial heterogeneity in a human airway tree to determine variation in respiratory system resistance

Del Leary,¹ Swati A. Bhatawadekar,² Grace Parraga,³,⁴,⁵ and Geoffrey N. Maksym¹,²

¹Department of Physics and ²School of Biomedical Engineering, Dalhousie University, Halifax; ³Imaging Research Laboratories, Roberts Research Institute, London; and ⁴Department of Medical Biophysics and ⁵Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Canada

Submitted 25 May 2011; accepted in final form 6 October 2011

Asthma is a variable disease, with symptoms that are intermittent and variable in magnitude (25). Changes in airway bronchoconstriction are cardinal features of asthma, varying over multiple time scales from months to minutes (10). Most commonly, variation in airway function has been evaluated using changes in peak expired flow or variation in airway resistance (Raw), both of which have been associated with airway diameter alterations (2, 13).

On the time scale of minutes, variation in respiratory system resistance (Rrs) can be monitored using the forced oscillation technique (FOT), and it is consistently reported that Rrs varies continuously (9, 22). The magnitude of the variation is related to changes that affect airway diameter and are thought to be affected by the activity of the airway smooth muscle. Indeed, bronchoconstriction via methacholine increases the SD in Rrs (SDRrs) (9, 22), and bronchodilation via albuterol decreases SDRrs (17). In a similar fashion, unloading and narrowing of the airways in the supine position increase SDRrs (22). The fluctuations in Rrs are also higher in asthma in both children and adults (8, 9, 17, 22). However, SDRrs is also highly correlated with Rs, indicating that like Rs, SDRrs depends on airway diameter; but, why these may be so tightly coupled is not well understood (9). Moreover, it is not established how heterogeneity of ventilation, recognized to occur in asthma, would affect Rs, measured at the airway opening (6, 24).

Animal studies suggest that airway obstruction is heterogeneous (3), modeling studies predict heterogeneous airway narrowing (31), and imaging of ventilation in asthma has also identified marked spatial heterogeneity in regional lung ventilation (14, 24). Furthermore, heterogeneity in ventilation from hyperpolarized helium-3 (3He) imaging is quantitatively higher in asthma (30) and has been associated with changes in lung mechanics by forced oscillation in dogs (14) and in normal and asthmatic subjects (4, 28). These studies imply dramatic differences in regional airway narrowing, which occur within the lung. It has been argued that in airway obstruction, many airways may be changing diameter together continuously, both randomly and by changes in activation and airway loading, which leads to the reported continuous variation in Rrs, measured by forced oscillation (22). However, it is yet unclear how alterations in airway diameter in a multibranch lung can lead to the observed variation of Rrs.

Here, we examined how stochastic changes in airway diameter within a geometrically accurate airway tree may explain the statistical distribution of Rrs, described via Rrs and SDRrs. We developed a multibranch airway model to characterize how statistical variation in airway diameters could alter both the mean Raw (Raw) as well as its SD (SDRaw), exploring the effects of airway narrowing or mean airway diameter and altered variation amongst airway diameters via the SD of airway diameters. We also explored the effect of interaction amongst airway diameters, via correlated and uncorrelated airway diameter variation, and the effects of large-scale heterogeneity via the introduction of large ventilation abnormalities—or defects. Predictions of Raw and its SD were then compared with previously reported FOT data obtained from healthy and asthmatic subjects.

http://www.jap.org 8750-7587/12 Copyright © 2012 the American Physiological Society

Downloaded from journals.physiology.org/journal/jappl at Univ Western Ontario (129.100.044.207) on March 4, 2020.
METHODS

Multibranched airway tree. The lung model developed here was based on an anatomically correct, three-dimensional human airway geometry, as previously described and provided by Merryn Tawhai (The University of Auckland, New Zealand) (26), up to the 12th generation governing 3,915 airways. The airway tree model was generated by using a subject-specific host volume derived from x-ray multidetector computed tomography (CT) imaging (27). Beyond the eighth generation, a volume-filling algorithm (27) was used to generate the remaining airway tree, maintaining daughter diameter ratios consistent with established morphometry (12). The airway tree was terminated at the 12th generation, similar to Venegas et al. (31), which represented airway diameters ~1 mm in size. This end point was chosen as a compromise between computational feasibility and realistic impedance predictions. Since the Tawhai model is at total lung capacity (TLC), we reduced the airway diameters to 0.7 of the Tawhai values, which assumed a homogenous volume change with a ratio of functional residual capacity (FRC) to TLC of 0.3. This serves as a reference point only, as airway diameters were altered over a wide range, as described below.

The impedance of the airway tree for a given realization of airway diameter distribution was calculated using a lumped element approach, where the impedance of the airways was summed following the branching patterns using well-known series and parallel network impedance relations. Raw for each branch was approximated using Pouselle’s law given by

\[R = \frac{128\eta L}{\pi d^4} \]

where \(\eta \) is the dynamic viscosity of humid air at 37°C, \(L \) is the length, and \(d \) is the diameter of the airway.

Each terminal airway was prescribed an elastance \(E \) to act functionally as the peripheral airway wall compliance distal to the 12th generation in our model, and alveoli were calculated from the product of the number of terminal airways and normal elastance of the lung (29). This neglects any contribution to the impedance from gas compression or central or intermediate airway wall compliance, but these are both much smaller than the contribution from the peripheral airways and alveoli. The impedance for a terminal airway was defined as

\[Z = R + i\omega L \]

and airway impedance for a nonterminal airway was calculated as

\[Z = R + i\omega L \]

where \(L \) is the inertance calculated as \(\rho_{air}L/(\pi d^4) \), with \(\rho_{air} \) the air density, \(L \) the length of a branch, and \(r \) its radius; \(E \) is the elastance; and \(\omega \) is the angular FOT frequency. This resulted in a resonant frequency near 6 Hz, which is normal in humans. The airway impedance of the entire airway tree could then be calculated numerically and separated further into real (resistance) and imaginary (reactance) parts.

Simulations. In a multibranch airway tree, the magnitude of variation of Raw at the airway opening is affected by the magnitude of variation at the level of the airway diameter and as will be demonstrated, the degree to which airways behave similarly and the presence of ventilation defects. Each simulation consisted of at least 2,000 repeated realizations of the model with each airway diameter varied, according to a prescribed distribution with a set mean and SD relative to the initial airway diameter from the Tawhai model, as described in more detail below. From each realization, we computed a Raw value, and from all of the realizations for a given simulation, we obtained a probability distribution for Raw. To explore the effect of the magnitude of variation in diameters, we first considered how increasing the amount of diameter variation throughout the lung would affect the total respiratory resistance. This would occur if airway smooth muscle activity contributed to increasing variability of airway diameters, as had been previously postulated, for example (22). While we did not include periodic contributions to variations in airway diameter, such as during lung volume changes associated with breathing, we also examined all simulations at different mean airway diameters, representing changes in average airway constriction or changes in lung volume, which would occur with breathing. Furthermore, we investigated how interactions between airways affected the distribution of Raw, which we describe as an incoherent or coherent variation, depending on whether parent- and daughter-connected airways vary independently or vary together. Finally, we investigated how different sizes of ventilation defects affected the distribution of Raw. Each of these simulations is described below.

Variation of the airway diameters. Variation in airway diameters throughout the airway tree model leads to total variation in resistance of the lung. The variation in airway diameters was controlled by setting a prescribed mean and SD relative to the initial diameters set by the initial airway geometry given in the Tawhai model.

\[d_i = d_{base,i} \cdot N(A_d, \sigma_d) \]

where \(d_i \) is the diameter of a particular airway for a given realization of the model, \(d_{base,i} \) is the diameter of a particular airway from the Tawhai model, and \(N(A_d, \sigma_d) \) is a random number from a modified Gaussian distribution with relative airway diameter \(\mu_d \) and relative airway diameter SD \(\sigma_d \). For the different simulations, \(\sigma_d \) was either held constant while airway diameter was changed (fixed variation model), altered at different fixed mean diameters (fixed mean model), or adjusted in proportion to the mean airway diameter (fixed slope; slope\(_d\) model). Airway diameters were changed below their FRC baseline by altering the mean of the relative airway diameter distributions as

\[\mu_d = 1 - \frac{\xi}{100} \]

with \(\xi = 2.5, 5, 7.5, 12.5, 17.5, 22.5, \) and 27.5%. Variation was changed by altering the SD of airway diameters \(\sigma_d \) as

\[\sigma_d = \lambda \mu_d \]

with \(\lambda = 0.08, 0.12, 0.16, \) and 0.2.

The constant slope\(_d\) model (Fig. 1A) was evaluated, as the results could be compared with the analytical solution in a single airway model by Lall et al. (17). An illustration of how the diameter distribution was altered for the fixed mean model and the fixed slope\(_d\) model is shown in Fig. 1B. As mentioned previously, this process was repeated for the entire airway tree for a minimum of 2,000 Raw calculations of different airway diameters, randomly chosen within the specified distribution to compute the statistical mean (Raw) and SD (SDRaw) of the entire model (Fig. 1D).

The diameters of all airways were randomly chosen from a modified Gaussian distribution to prevent extremely low values of airway diameter as follows: we limited the maximum narrowing for generations zero to four to be no less than 50% of their baseline diameter, representing the effect of cartilage-limiting airway narrowing, and any airway from generations five to 12 was limited to narrowing by 90%, i.e. to 10% of its baseline diameter value. These limits were invoked infrequently, typically occurring <1.2% of the time at 27.5% mean constriction, with SD equal to 10% of the mean diameter. Also, diameters were restricted from exceeding twice the constricted mean.

Airway diameter variation and regional coherency. To investigate the possibility that airways in a localized region may vary similarly,
as might be a result of physical attachment or local similarity in activation or mechanical properties, we introduced a variable, φ, which could control the degree of spatial coherent variation in connected airways in a gradual and regional manner, thus generating regional heterogeneity. The diameter of the daughter airway, for example, d_{i+1}, was then determined either independently or in relation to the parent airway d_i according to

$$d_{i+1} = \varphi d_i \left(\frac{d_{\text{base},i+1}}{d_{\text{base},i}} \right) + (1 - \varphi) d_{\text{base},i+1} \cdot N_{i+1} \left(\mu_d, \sigma_d \right)$$ (7)

The coherence parameter, φ, is bound between zero and one. For $\varphi = 0$, d_{i+1} is independent from its parent airway and would vary with no coherent change in diameter, relative to its parent airway. For $\varphi = 1$, d_{i+1} is fully, coherently varying with its parent airway and thus all other airways throughout the lung. At $\varphi = 0.6$, the parent is 60% coherent with its daughter and 36% with its granddaughter, with decreasing coherence for further generations distant to the parent. Thus larger values of φ increase the degree of regional spatial coherency (Fig. 1B).

Comparing gas distribution abnormalities. Studies using hyperpolarized 3He MRI have identified spatial and temporal heterogeneity in airway function. These are specific to obstructive lung diseases, such as asthma, or can be produced in healthy subjects with induced bronchoconstriction. Focal ventilation defects, where there is a 3He signal void in anatomical regions related to airways narrowing, can be visualized and quantified (7, 23). Such ventilation defects can be significantly large compared with the volume of the lung and spatially and temporally persistent (6). To explore the effect of such apparent ventilation defects and more specifically, the airway narrowing, which we hypothesize is the determinant of such functional abnormalities, we modeled a single ventilation defect at different airway generations to explore the effect of defect size on Raw and SDRaw. In our model, we assumed that ventilation defects were generated by constricting a single airway at a given generation to 10% of its initial baseline value (Fig. 1C). While the etiology of 3He MRI ventilation defects is yet unclear, we made the assumption that in asthma, defects are related to airway narrowing.

Single airway model. To help validate the multibranch model and to investigate the role of the transformation of the nonlinear transformation between airway diameter and Raw, we compared our predicted Raw from the multibranch airway model with totally coherent variation with a single airway model with varying airway diameter distributions. The single airway radius was derived from the arithmetic mean of all of the airways in the multibranch lung model, and the length was then altered to achieve the same baseline resistance as the multibranch model.

Comparison with recorded distribution of airway impedance. We compared model-predicted distributions of Raw with R_{rs}, obtained from asthmatic and normal subjects, as reported previously (22). The study from which these data were obtained was approved by the Ethics Review Board of the Montreal Chest Research Institute, McGill University (Quebec, Canada), and subjects gave written, informed consent. The six healthy subjects (five men and one woman) had no history of pulmonary disease and were not hyper-responsive by methacholine challenge, and asthmatic subjects were identified by the pulmonologist in charge of the clinic and had 1-s forced expiratory volume (FEV$_1$) measurements that varied between 64% and 92% of predicted, taken prior to being tested. The MEOT data from this study are from 6 Hz pressure oscillations—digitized at 256 Hz over 15 min of normal breathing, providing up to 5,400 values, excepting artifacts from coughs, swallows, or glottal closures, which were removed as described (22). The average of the mean resistances from the normal patients was 1.86 (SD 2.60) cmH$_2$O·l$^{-1}$·s$^{-1}$ and from the asthmatic patients was 5.20 (SD 3.35) cmH$_2$O·l$^{-1}$·s$^{-1}$.

RESULTS

Increasing airway diameter. When the relative average airway diameter was changed, but the SDs of airway diameters kept constant, Raw increased as expected. However, the SDRaw also increased, as seen by the increase in the width of the distribution of Raw, despite no change in airway diameter variation (Fig. 2A).

Increasing airway diameter variation. Similarly, when the SD of airway diameters σ_d was increased, while keeping the mean diameters μ_d fixed, SDRaw increased as expected; however, Raw also increased, despite no change in the μ_d (Fig. 2B). In both cases, Raw and SDRaw increased proportionately, but

![Diagram](https://example.com/diagram1.png)

Fig. 1. A: the diameters of airways (μ and σ) are varied at each iterative step by adjusting the diameter to a prescribed distribution, maintaining either a fixed mean, fixed SD (not shown), or fixed slope. B: diameters of adjacent airways could vary at various levels of coherent variation (φ). Shown here are examples of either fully incoherent or fully coherent variation between mother and daughter airways. C: the multibranch airway tree consists of 12 generations for airway resistance (Raw) predictions, with the colors here representing the airway generation number. The resistance (D) for the entire airway tree is calculated at each iterative step.
when σ_d was increased at a fixed average diameter, the slope of SD_{Raw} vs. Raw was greatest (Fig. 2C).

Imposing gas distribution abnormalities or ventilation defects. By closing different airways within each chosen generation—simulating regional gas distribution differences or ventilation defects—we created multiple simulations for single defects of different sizes within a generation (i.e., occluding four different airways at the third generation) and across generations (generations four to two). We observed that Raw increased as expected and was dependent on defect size, with larger defects causing a larger change in Raw (Fig. 3). The addition of ventilation defects resulted in an increase in SD_{Raw}; however, this effect was modest compared with the effect of increasing Raw, particularly when compared with the model with increasing diameter variation alone (Fig. 3).

Coherent variation in airway diameter. When the amount of coherency in airway variation between connected airways was increased from 0 to 100% with 10% intervals, the SD_{Raw} increased substantially, and Raw remained largely unchanged, as shown in Fig. 3. Up until φ began to exceed 0.6, there was little effect on SD_{Raw}, but the effect on SD_{Raw} increased greatly for larger φ. The common crossing point in Figs. 2C and 3 is the baseline condition, common to all simulations, with incoherent diameter fluctuations σ_d at 10% of the diameter mean and without defects.

Combining with airway diameter narrowing. The above effects on the airway model were also tested at different airway diameters decreasing from FRC (Fig. 4A). Over the same range in average airway diameters, a larger σ_d led to a shift to both higher Raw and SD_{Raw}, but SD_{Raw} was more strongly affected, (Fig. 4B) as indicated by the higher SD_{Raw} vs. Raw slope ($slope_{SD}$), which increased approximately twofold (Fig. 4F).

We also tested how the coherency of variation of the airway diameter at different constrictions would affect the probability distribution of Raw by comparing two extremes: the fully incoherent, where airways vary with no relationships to each other, and the coherent extreme, where all of the airways vary in unison. Comparing the results of these two extremes of incoherent and coherent variation, we found that the $slope_{SD}$ was greater for a coherently varying airway tree by a factor of six, as can be seen when comparing Fig. 4A with C and F, respectively. While airways that vary totally in unison are inconceivable if driven actively by the smooth muscle, it is a reasonable approximation to breathing. Furthermore, the $\varphi = 1$ case is the simplification of the multibranch lung to a single airway, and the case matching our single airway model provides further validation of the model (Fig. 4E).

The effects of adding a large defect can be seen in Fig. 4D, via obstruction in a second generation airway. The defect causes both the Raw and SD_{Raw} to increase and maintains a nearly constant $slope_{SD}$.

FOT data from patients. Data collected from asthmatic and normal patients by Que et al. (22) were analyzed by comparing the average histograms from each group, which were significantly different, as reported previously. Average Rrs from the asthmatic patients (Fig. 4H) were right shifted, with a more broad distribution and increases in SD_{Rrs} compared with normal patients (Fig. 4G).

DISCUSSION

Here, we used a statistical distribution approach to explore the sensitivity of Raw to several factors that can influence Raw levels and its variation, which may be presented in a multibranch airway tree, including dependence on diameter mean and variation, regional coherency of variation, and the presence of ventilation defects. We demonstrated that Gaussian variation in airway diameter could produce distributions in Raw, similar to that reported for Rrs in vivo. The presence of large ventilation defects and any decrease in average airway diameter increased both Raw as well as its variation and predicted a robust relationship between SD_{Raw} and Raw, which mimicked the relationship between SD_{Rrs} and Rrs in vivo. The most potent influence on SD_{Raw} was coherency in diameter

Fig. 2. Probability distributions of Raw for increasing (A) mean diameter, while fixing the variability in diameter constant, and (B) the variability in diameter at a fixed mean (μ_d). C: comparison of the respective variation in Raw as described by the SD (SD_{Raw}) vs. mean Raw (Raw) for these simulations.

Fig. 3. This figure shows the dependence of SD_{Raw} on Raw for increasing coherent variation, increasing diameter variability, and increasing defect size. Figure shows increasing airway diameter SD from 8% to 20% in 2% steps (+), increasing airway variation coherency from 0% (incoherent) to 100% in 10% steps (□), and increasing the ventilation defect size from 4th generation airway to the 2nd generation (○).
variation between parent and daughter airways, but this was required to match FOT R_{rs} distributions.

Variation in lung function is a well-established feature of asthma over both long and short time scales. At long time scales, variation in peak expired flow is higher in asthma and is thought to arise from complex interactions between fluctuations in environmental stimuli and inflammatory status, amongst other factors (25). Interestingly, the variation in peak expired flow has been shown to exhibit temporal correlations that can be used to predict the likelihood of future declines in lung function, as measured by FEV$_1$ (10). Variation at a shorter time scale is observed as fluctuations in airway impedance or resistance, which are increased in asthma, and the fluctuations are thought to arise from changes in the activity of the airway smooth muscle. While variation at long and short time scales both involves changes in airway function and thus diameter, it is not clear if it shares underlying mechanisms, although at both time scales it is increased in asthma. In our model, the distributions of airway diameter and thus the R_{aw} distributions are independent of any time scale and could be used to examine either behavior. Here, we used the model to investigate variation over short time scales in frequency distributions of respiratory impedance, for which there is ample available data.

We showed that increasing the variation of airway diameters throughout the airway tree not only increased SD_{Raw} but also R_{aw}. We have shown that the importance of variation in narrowing and coherency in variation at an anatomical level can alter the dependence between SD_{Raw} and Raw, whereas

Fig. 4. Resistance histograms at various levels of mean airway constriction and different model effects (B–E). A: histograms are generated with the initial conditions of airway diameter ($\sigma_d = 0.1 \mu_m$ and $\varphi = 0$, with no defects. B: σ_d is doubled; C: the coherency is set at its maximum of $\varphi = 1$; and D: a large defect is added at the 2nd generation airway. The total coherent scenario (C) is very similar to the single airway model (E). F: the dependence of SD_{Raw} on Raw for the different simulations. These simulated distributions can be compared with forced oscillation technique respiratory system resistance distributions from Que et al. (22), comparing normal subjects (G) with asthma subjects (H). Gray lines are the distribution from an individual, and bold lines indicate the mean for the group.
the effect of ventilation defects plays a negligible role. While we demonstrated several factors arising from the multibranching airway tree, which influence this dependence, the single airway model showed that this can arise solely from the transformation of the random diameter distribution via the inverse fourth-power law dependence of resistance on diameter $R_{aw} \propto 1/d^4$. The strongly nonlinear geometric dependence of R_{aw} on airway diameter strongly skews the original diameter distribution, producing long tails to high R_{aw} values. When the diameter distribution of a single airway is widened through increasing σ_d, average R_{aw} must increase, as the effects on R_{aw} with decreasing diameter are much greater than with increasing diameter. Similarly, in a multibranch lung, airways that narrowed had a stronger effect on total lung resistance than those that dilate and would similarly skew the distribution, increasing both R_{aw} and SDR_{aw}. This was true even while the SD of airway diameter σ_d was increased, and mean diameter μ_d was constant, increasing SDR_{aw} and modestly increasing R_{aw} (Fig. 2C). We found, importantly, that SDR_{aw} was consistently dependent on R_{aw}. This occurred whether σ_d was increased with no change in μ_d or when μ_d was decreased with no change in σ_d, although when σ_d was unchanged, the slope was lower as expected (Fig. 2C). Similarly, when σ_d was increased in proportion to μ_d, such that they were increased together, keeping the slope δ_{aw} of airway diameters constant, SDR_{aw} and R_{aw} also increased linearly (Fig. 3). There exists an analytical solution for this particular case in the single airway model, helping to validate the model presented (17). The fact that a linear relationship is predicted in each case arises from the choice of variable, which was independently varied in each case, and does not mean that a linear relationship between SDR_{aw} and R_{aw} is inevitable, as changing both μ_d and σ_d arbitrarily can produce any point bound by the top and bottom curves (see Fig. 2). However, the linear relationship well matches baseline R_{rs} and SDR_{rs} data across subjects in asthma and health and for some subjects, pre- and postbronchodilator changes in R_{rs} and SDR_{rs} within individual children with asthma (17). Thus it is possible that the conditions for linear dependence, may explain the reported linear dependence of SDR_{rs} on R_{rs} in normal and asthmatic subjects, as we discuss further below. Furthermore, we explored several factors that may influence this dependence, which arise within a multibranch lung.

Regional coherent variation. In obstructive disease, the lungs tend to have regions that are poorly ventilated, often described as ventilation defects, observed using hyperpolarized 3He MRI, PET, or CT, whereas other regions can be hyperventilated, thought to arise as the lung compensates to maintain an equal tidal volume. One mechanism thought to explain the development of regions of poor ventilation or “patchy” ventilation in asthma is the mechanism of bistability of airway diameters in the lung. This bistability intrinsically arises from the softening and dilating behavior of airway smooth muscle exposed to oscillations in loading, such as breathing, in combination with parenchymal tethering and bifurcating airways, as developed by Anafi and Wilson (1) in their model of a single terminal unit embedded in parenchyma and developed further in a multibranch lung model by Winkler and coworkers (31, 32), who demonstrated that the formation of regions of poor and well-ventilated regions in the lung grew as airway narrowing migrated serially up and down connected airways. This occurred as fluctuations afforded airways by parenchymal tethering were decreased by a local loss of ventilation. With less ventilation to a particular region of the lung, oscillations that act to relax airway smooth muscle decrease, allowing local spreading of airway narrowing, providing one explanation for why airway diameter variation could behave dependently and coherently. Of course, more directly, parent and daughter airways are mechanically connected and share local fluctuations in parenchymal tethering and thus would be expected to change diameters somewhat coherently. Here, we simulated the effects of this interdependence of airway diameter up and down the airway tree by using a coherency parameter φ, which controlled the similarity in dilation or contraction between parent airways and their daughters. We found that increasing coherency while the distribution of variation amongst airway diameters was unchanged led to patchiness in airway narrowing but also led to an increase in SDR_{aw} with almost no change in R_{aw}. This was readily apparent with large φ (>0.6; Fig. 3). The patchiness in airway narrowing that we observed is reminiscent of the patchy ventilation reported by Winkler and coworkers (31, 32) in their models and subjects (see Supplemental Video). That coherency of airway diameter variation had perhaps the most potent effect on SDR_{aw} relative to R_{aw} implies that any mechanism leading to interdependence and regional airway narrowing tends to increase the slope of the SDR_{rs} vs. R_{rs} relationship, compared with simply random fluctuations in airway diameter within the airway tree.

As described above, SDR_{rs} is proportional to R_{rs} across subjects with asthma and healthy controls, and in fact, all subjects appear to fall on a single relationship. Diba et al. (9) reported that SDR_{rs} was highly correlated with R_{rs} with a regression coefficient of $r = 0.81$ from 102 nonasthmatics, and $r = 0.91$ from 38 asthmatics with apparently the same dependence, with a slope of 0.35 estimated from their data. Que et al. (22) also reported SDR_{rs} and R_{rs} data from asthma and control subjects, and when we compute the slope here, it well matches the data of Diba et al. (9) with a slope of 0.31, similar y-intercept, and $r = 0.67$ (Fig. 5A). Indeed, the fact that two studies reporting SDR_{rs} and R_{rs} from two different countries can have nearly the same slope is noteworthy, given that the range in R_{rs} amongst subjects was from 1 to 7 cmH$_2$O·l$^{-1}$·s$^{-1}$ and that asthmatic subjects in Que et al. (22) had a much higher resistance of 4.90 (SD 1.06) cmH$_2$O·l$^{-1}$·s$^{-1}$ compared with the controls with R_{rs} of 1.80 (SD 1.06) cmH$_2$O·l$^{-1}$·s$^{-1}$. In both studies, subjects with asthma had higher R_{rs} but also, higher SDR_{rs} in proportion, such that the presence of asthma is represented by a shift up the line rather than any change above or below the line. This is surprising, as it likely limits the number of mechanisms for how fluctuations in airway diameter may lead to fluctuations in R_{rs}. For example, explaining the increased SDR_{rs} in asthma via increased coherency of ventilation alone is not likely, as this should lead to greater changes in SDR_{rs} than R_{rs}.

As an exercise to compare our model with these measured data, we generated results, with a similar slope at $\varphi = 0.88$ and σ_d as a constant fraction of the mean diameter at 0.11 μ_d (Fig. 5A). Whereas other parameter choices in models could nearly match the data, this model was perhaps the most reasonable compared with constant μ_d or σ_d models, which are unlikely. Although Fig. 5A shows the SDR_{rs} vs. R_{rs} relationship from Diba et al. (9), together with this multibranch model prediction,
we do not imply that these parameters correspond precisely to the actual variation of airway diameters within the lung. One reason is that we limited the contribution to variation in Raw to arise solely from airway diameter fluctuations, whereas other factors will contribute to the total airway variation in Raw in a recording, such as breathing and transducer noise. However, the fact that tuning a simple coherency parameter and using a fixed $slope_d$ model predicts the same observed relationship as in FOT measurements between $SDRaw$ and Raw is remarkable.

Defects. As mentioned, ventilation defects have been identified using hyperpolarized MRI and other techniques. They are commonly defined in MRI as a focal signal void within a region of the lung. Ventilation abnormalities are hallmark findings in obstructive airway-related lung diseases, such as asthma (6, 16) and chronic obstructive pulmonary disease (COPD) (20, 21), and can vary in volume and number, and importantly, these are absent in healthy, young never-smokers. We found that adding a large defect increased both Raw and $SDRaw$ but maintained a similar $slope_R$ (Fig. 5B). The increase in Raw from a defect was expected, due to the loss in parallel Raw pathways, but the reason for the slight increase in $SDRaw$ is less clear. A plausible mechanism is that because a defect removes some airways from contributing to Raw, it also removes the ability of those airways to compensate for other airways in the unaffected portion of the lung. That is, the number of available configurations or states for the set of airway diameters within the lung was reduced, leading to an increased sensitivity of $SDRaw$ to airway diameter variation. Indeed, with no defects, we would expect the overall variation in $SDRaw$ to be its lowest, as there are a maximum number of airways varying, able to compensate for changes in each other. This predicts that stable defects, consistent with persistent defects observed in asthma (24), may contribute to increased variation in Raw, and larger or more numerous defects have a greater effect. However, while the increase in $SDRaw$ could be reversed if either hyperventilation in nondefective regions or an increase in FRC were sufficient to increase mean airway diameter the increase in $SDRaw$ from an imposed defect is consistent with $SDRrs$ changes in Rrs observed with asthma (9, 17, 22).

Limitations. This model examined the effects of varying airway diameters on Raw and $SDRaw$, including some multi-branch factors, such as coherency and ventilation defects. We did not seek to predict the temporal behavior of Raw here, concentrating only on parameters of the amplitude distribution, specifically Raw and its variation computed by $SDRaw$. Thus this model explicitly excluded temporal features of airway narrowing and does not track changes in Raw from excitation-contraction and load-dependent airway narrowing, as well as viscoelastic behavior or redistribution of ventilation via the pendelluft effect (19). The model was instead an examination of the potential effects on the statistical distribution of Raw of heterogeneity in airway narrowing, including changes in diameter fluctuation distributions and the presence of large-scale ventilation defects. This resulted in a computationally feasible examination of Raw and its distribution properties. However, it is possible that temporal dynamics may have an effect on the shapes of the distribution function for Raw and could thus alter the particular slopes that we determined between $SDRaw$ and Raw, for example. However, it is unlikely that temporal dynamics would greatly affect the roles of the mean airway diameter, SD of airway diameter, coherency, or presence of defects. Furthermore, temporal dynamics were apparently not needed to predict the established distribution profile for Rrs or reported correlation of $SDRrs$ on Rrs.

As we did not have temporal dynamics, we also did not have breathing explicitly included in our model. However, if breathing is considered to be a homogenous effect, increasing and decreasing airway diameters, this condition is like that of the 100% coherently varying lung with airways varying in concert, for which we also explored, altering mean airway diameter and its SD. Other contributions to $SDRaw$ obtained in vivo could include artificial glottis closures, intermittent leaks, or events, such as coughs or swallows. Whereas obvious artifacts were removed by Diba et al. (9) and Que et al. (22), it is possible that some artifacts were undetected, contributing to increased $SDRaw$ than would be predicted for a given parameter set in our model.

Similar to other models, we neglected any contribution to lung impedance from gas compression or airway elastance, as lung elastance is dominated by the highly compliant lung tissue (15, 16). Elastance was then assigned to the terminal airspaces for which we also explored, altering mean airway diameter and its SD. Other contributions to $SDRaw$ obtained in vivo could include artificial glottis closures, intermittent leaks, or events, such as coughs or swallows. Whereas obvious artifacts were removed by Diba et al. (9) and Que et al. (22), it is possible that some artifacts were undetected, contributing to increased $SDRaw$ than would be predicted for a given parameter set in our model.

Physiological interpretation of constant $slope_R$. Why $SDRrs$ is proportional to Rrs, giving nearly a constant $slope_R$ of ~ 0.35 across all subjects, with or without asthma, is an interesting question. This implies that factors with a strong influence on the slope of $SDRrs$ to Rrs are unlikely to vary substantially across individuals. Since coherency of ventilation had a potent effect in our model, whatever coherency in diameter motions
that may be present in vivo between daughter and parent airways is unlikely to change much amongst individuals. Yet, why the ratio of $SDRp$s to Rsps should be so apparently consistent amongst individuals and be ~ 0.35 is unclear. We have shown in our model that changes in mean airway diameter, such as would occur with lung growth, airway constriction, dilatation, or body size, do not affect the slope Rsp, and the effect can arise from a lung modeled as a single airway, which suggests that a dominant mechanism is from the inverse fourth-power law dependence of Raw on the diameter and thus is geometrical in origin, as suggested by Lall et al. (17).

The single airway or branching tree model did not include other sources of resistance, such as turbulent or transitional flow, which would occur in the glottis and upper airways. This could be better described using Wormesley flow rather than Poiseuille flow, but this is complicated, especially if interactions with breathing are considered. Louis and Isabey (18) indicated that this begins to affect Rsp, estimated by FOT, in humans at 7 Hz for breathing >0.5 l/s, which indicates that this may be a small factor, and we may underestimate lung resistance and could affect the slope Rsp in our model. Either transitional or turbulent flow does not have any appreciable effect, as the model could produce similar linear $SDRaw$ vs. Raw to that in vivo, or other factors may contribute to the fixed slope Rsp in vivo. However, deviations from this relationship in vivo have been reported with bronchodilator administration. Lall et al. (17) found that changes in $SDRp$s with bronchodilator exceeded decreases in Rsp in a subset of children with asthma, and $SDRp$s and Rsps were not proportional in this group (17). This means that in some children, the additional variation in Rsp at baseline might have been attributable to additional abnormal fluctuations in airway diameter, possibly reflective of asthma control (11). If a consistent slope Rsp arises largely from geometrical factors, then it is possible that at extreme lung volumes, slope Rsp may be altered, but this has not been examined, and there was little change in the proportionality of $SDRaw$ to $Rssp$ with upright and supine positions (9).

We observed that a large defect could substantially increase Raw and $SDRaw$, shifting the values rightward and upward but with no change in the slope of $SDRaw$ to Raw (Fig. 5B). The fact that adding a defect led to an increase in Raw is intuitive, but that it has a similar effect on its variation is not. This prediction is potentially useful, as defects are known to increase in both volume and number in asthmatic (5, 7) as well as COPD (20, 21) patients and are thought to be largely persistent over time scales of hours to weeks (25).

In summary, we observed several conditions that predicted a linear relationship between Raw and $SDRaw$, similar to established data. Likely, $SDRaw$ and Raw together depend on airway diameter as described above, and both scale with homogeneous changes in airway dimensions, on average, as might occur with bronchoconstrictors and bronchodilators. The model predicted that airways must exhibit some localized coherency in airway diameter changes to exhibit regional ventilation heterogeneity and to approximate the reported slope of $SDRp$s on Rsps. These findings establish possible mechanisms for the relationship between $SDRp$s on Rsps. An increase in the $SDRaw$ with an increase in defect size was also predicted, possibly representing an emergent phenomenon of the model arising from a reduced number of available configurations within the airway tree and thus increasing sensitivity of Raw to fluctuations amongst airway diameters. Thus $SDRaw$ can be altered by several possible mechanisms independent of Raw, yet the many mechanisms that act to constrain $SDRaw$ and Raw support that this is likely a robust relationship that cannot be easily altered.

ACKNOWLEDGMENTS

The authors thank M. Tawhai for the generous provision of the airway dimension data.

GRANTS

This work was supported by a Natural Sciences and Engineering Research Council of Canada Strategic Operating Grant in partnership with an Atlantic Innovation Fund award from the Atlantic Canada Opportunities Agency. D. Leary is supported by the Canadian Thoracic Society studentship.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: D.L., S.A.B., and G.N.M. conception and design of research; D.L. performed experiments; D.L. analyzed data; D.L., S.A.B., G.P., and G.N.M. interpreted results of experiments; D.L. prepared figures; D.L. drafted manuscript; D.L., G.P., and G.N.M. edited and revised manuscript; D.L., S.A.B., G.P., and G.N.M. approved final version of manuscript.

REFERENCES

