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Abstract 

 Otoacoustic emissions (OAEs) are a naturally occurring by-product of the outer 

hair cells in the cochlea of the inner ear.  A sexual dimorphism in OAE production 

favouring females has been reported in both human and non-human species.  The broad 

objective of the present set of studies is to explore how the sexual dimorphism originates 

and the degree to which it reflects the organizational and activational influences of sex 

steroid hormones. 

 Most previous studies of sex differences in OAEs have been based on neonatal, 

infant, or broad adult samples, Study 1 of the present work was done to verify the 

reported sex difference, both in spontaneously produced OAEs (spontaneous OAEs or 

SOAEs) and in OAEs produced in response to acoustic stimuli (click-evoked OAEs or 

CEOAEs), in a sample of non-hearing impaired young adults.  Ear differences in OAE 

production also have been reported, and this study also investigated whether hand 

preference moderates the observed ear asymmetry in OAE production.  Although a robust 

sex difference was documented in the numbers and powers of SOAEs produced, and in 

CEOAE response amplitude, there was no evidence to support a reduced ear asymmetry 

in left-handers.   

 The major theory purporting to explain the sex difference in OAE production 

proposes that prenatal androgen exposure in the male fetus dampens the cochlear 

mechanisms responsible for OAE production and is responsible for the observed sex 

difference in this trait.  In order to test the proposed organizational influence on OAE 

production, the relationship between OAEs and the ratio of the lengths of the 2
nd

 to 4
th

 

digits (the 2D:4D ratio), a marker of individual variations in prenatal androgen exposure, 

was examined in Study 2.  A significant correlation between OAE production and 2D:4D 
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digit-ratios was not found.  Fundamental differences in the prenatal development of these 

characteristics, however, may explain the lack of correlation and do not preclude a 

prenatal hormonal influence on OAE production. 

 Another source of variation that may contribute to the sex difference in OAE 

production is circulating levels of adult steroids.  Evidence supporting this possibility is 

limited.  Studies 3 and 4 provided a novel test of the hypothesized activational influence 

of sex steroids in women and men.  Oral contraceptive use in women, which reliably 

decreases circulating sex steroids, was shown to reduce OAE production compared to 

normally-cycling women.  In Study 4, a negative correlation was found between CEOAE 

response amplitude and circulating testosterone levels in men.  Thus, it appears in men 

that elevations in circulating testosterone diminish OAE production in a manner similar to 

that hypothesized prenatally, whereas the results in women suggest that estradiol may 

influence OAE production in adulthood.  These are the first systematic studies to support 

an activational effect of circulating steroids on OAE production in humans. 

 

Keywords:  otoacoustic emissions, auditory, prenatal, organizational, activational, 

hormones, sex steroids, testosterone, estrogens, sex difference  
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1.1 Introduction 

 

The effects that hormones have on various physical, behavioural, and cognitive 

traits in human and non-human species are deeply rooted in history.  As early as 350 B.C., 

Aristotle reported significant deviations from normal physical development and 

characteristics in adult male birds and humans whose testes were castrated or mutilated 

early in development (Aristotle, 1910).  He also observed that the degree to which the 

physical characteristics in these males were affected, or altered, was dependent on the 

developmental period (i.e., either early development or adulthood) during which the 

endocrine system was disrupted.  Although the physical changes resulting from castration 

were well-known and the practice applied to many different species for multiple purposes 

(e.g., castrating boys to maintain their high voices for opera singing), it was not until the 

19
th

 and 20
th

 centuries that a physiological explanation for this phenomenon was provided 

and the field of behavioural endocrinology emerged.   

Arnold Adolph Berthold‟s observations in the mid-1800s of the effects of 

castration and reimplantation of testis in cockerels on adult development represented the 

first formal study in endocrinology.  Berthold showed that early castration of cockerels 

inhibited their normal male development, but that reimplantation of the testes into their 

abdominal cavity, either their own testes or those from another castrated cockerel, 

produced a normal male rooster (Berthold, 1849).  His observation that the reimplanted 

testes formed vascular connections and functioned normally despite having their nerves 

severed suggested that a blood-borne product (i.e., hormones) can cause changes in 

various physical and behavioural characteristics.  This idea was largely ignored and 
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repudiated in the scientific community until 1959, when Charles Phoenix and his 

colleagues conducted their classical study examining the role of hormones in guinea pig 

mating behaviour (Phoenix, Goy, Gerall, & Young, 1959).  The results of their study not 

only offered support for the idea that hormones can cause changes in the probability that 

specific behaviours will be elicited in the appropriate behavioural or social setting, but 

also emphasized the importance of sex steroids in the manifestation of male-typical and 

female-typical behaviours, as well as their roles at different stages of development.  

Phoenix et al. (1959) observed that administration of testosterone to female guinea pigs 

during an early, critical period in prenatal development resulted in the suppression of 

female-typical mating behaviours in adulthood.  This phenomenon, whereby exposure to 

sex steroids in early development can permanently alter the structural features of the brain 

and its behavioural characteristics in adulthood, is termed an organizational effect of the 

hormones (Arnold & Breedlove, 1985; Phoenix et al., 1959).  In the case of sexual 

differentiation of behaviour, the presence or absence of high levels of testosterone during 

a finite time period during prenatal development (prenatal weeks 8-24 in humans; Forest, 

de Peretti, & Bertrand, 1976) results in the capacity to display male-typical or female-

typical behaviours in adulthood, respectively.  Phoenix et al. (1959) also observed that 

circulating sex steroids in adulthood are responsible for activating these neural substrates 

to produce specific behaviours.  This activational effect of hormones was supported by 

the observation that male guinea pig mating behaviours were elicited in gonadectomised 

female guinea pigs treated with testosterone propionate prenatally only when a critical 

level of testosterone was present in their bloodstream in adulthood.  Further, this 
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activational influence of testosterone was temporary and the effects on behaviour were 

reversible. 

Sexually dimorphic behaviours in many species are believed to be organized 

during early development and are largely attributable to differential exposure of the two 

sexes to sex steroids during prenatal or perinatal differentiation.  In humans, sexual 

differentiation occurs prenatally, and it is the differential exposure to sex steroids, namely 

testosterone derived from the fetal testes, that is responsible for organizing neural and 

peripheral substrates in a male-typical or female-typical manner.  Under normal 

circumstances, males carry an X and Y chromosome, whereas females carry two X 

chromosomes.  During normal human fetal development, the gonads, which are 

bipotential in the embryo, differentiate into testes in the presence of a gene on the Y 

chromosome known as SRY (sex-determining region of the Y chromosome; Berta, 

Hawkins, Sinclair, Taylor, Griffiths, & Goodfellow, 1990).  In the absence of this gene, 

ovaries develop instead.  Since the default sex in humans is female, the presence of the 

testes results in the secretion of both testosterone, which stimulates the development of 

the Wolffian duct system (i.e., male accessory sex organs) and the external genitalia (via 

conversion to dihydrotestosterone through the enzyme 5- reductase), and Mullerian-

inhibiting hormone, which inhibits the development of the Mullerian duct system (i.e., 

female accessory sex organs).  If these two hormones are absent during this early period 

of development, the Mullerian duct system differentiates normally into female internal 

organs (e.g., fallopian tubes, uterus) and the Wolffian duct system regresses.  Ovarian 

hormones are not required for normal female development. 
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In addition to differentiating the external genitalia, the development of testes in 

the male fetus and secretion of active androgenic hormones, specifically testosterone, are 

responsible for further sexual differentiation of neural and peripheral structures around 

prenatal weeks 8 to 24 (Forest, de Peretti, & Bertrand, 1976).  Neural structures in the 

male fetus are masculinized via aromatization to estradiol in many species, but this 

conversion does not seem to be required for masculinisation to occur in humans or other 

primates, where direct actions of testosterone or dihydrotestosterone seem to be the 

dominant route by which sexual differentiation of the brain comes about (Breedlove & 

Hampson, 2002).  As a result, it is this prenatal exposure to testosterone and other 

androgens from the fetal testes and, to a lesser extent, the adrenal glands, which provides 

the foundation for many of the sexually dimorphic physical, behavioural, and cognitive 

traits observed in humans. 

There are numerous species-specific behaviours and traits that exhibit sexual 

dimorphism.  Certain behaviours are under the influence of both organizational and 

activational effects of hormones, such as guinea pig mating behaviour (Phoenix et al., 

1959), whereas other traits appear to be under the influence of one or the other (Goy & 

McEwen, 1980).  Female zebra finches will not sing in adulthood even if injected with 

testosterone, suggesting that the mechanisms responsible for birdsong in this species are 

organized prenatally (Adkins-Regan & Ascenzi, 1987).  Similarly, rough-and-tumble play 

in rhesus monkeys has been shown to be sexually dimorphic from birth and is organized 

by prenatal exposure to either testosterone or dihydrotestosterone (Goy, 1978).  On the 

other hand, the pattern of electrical discharge in electric fish can be modified by 
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differential administration of sex steroids in adulthood, reflecting a purely activational 

basis for this sexually dimorphic characteristic (Bass, 1986). 

Although the data from humans are controversial, a number of sexually dimorphic 

physical characteristics are thought to be organized during early prenatal development, 

including the size of the brain (Swaab & Hofman, 1984) and finger length ratios 

(Manning, Scutt, Wilson, & Lewis-Jones, 1998; Manning, Stewart, Bundred, & Trivers, 

2004).  Men and women also exhibit fundamental differences in performance on various 

cognitive tasks that may be indicative of early hormonal effects, such as visuospatial 

abilities (Hampson, Rovet, & Altman, 1998; Puts, McDaniel, Jordan, & Breedlove, 2008; 

Resnick, Berenbaum, Gottesman, & Bouchard, 1986).  However, studies have also shown 

that fluctuations in the concentration of adult sex steroids can diminish or strengthen the 

magnitude of the observed sex difference and influence performance on spatial cognitive 

tasks (Kimura & Hampson, 1994; Hampson, 2008), emphasizing the importance of 

examining both the organizational and activational effects of hormones on brain and 

behaviour. 

The main objective of this dissertation is to investigate the endocrine 

underpinnings, both organizational and activational, of an auditory trait called otoacoustic 

emissions (OAEs).  Briefly, OAEs are faint sounds produced as a by-product of an 

amplification mechanism in a normally functioning cochlea that can be detected by a low-

noise microphone inserted into the external ear canal (Kemp, 1978; Davis, 1983).  This 

trait is sexually dimorphic in humans (at least in children) and in selected non-human 

species, and it has been hypothesized that the sex difference is mediated by differential 

exposure of males and females to androgens during prenatal development (McFadden & 
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Loehlin, 1995; McFadden, Pasanen, Valero, Roberts, & Lee, 2009; McFadden, Pasanen, 

Weldele, Glickman, & Place, 2006).  However, to date the most definitive evidence in 

support of the proposed prenatal androgen hypothesis has been found in non-human 

species (rhesus monkeys and hyenas), and detailed information regarding the mechanism 

responsible for OAEs, the observed sex difference, and other OAE characteristics in 

humans is still missing.  Furthermore, recent research has raised the possibility that 

circulating sex steroids in adulthood may influence OAE production, although, to date, 

research examining an activational influence of hormones on OAEs is extremely limited. 

It is anticipated that the results of the experiments in this thesis will:  1) validate 

the sex difference in OAE production in normally-hearing young adults that has been 

previously shown to exist in infants and children; 2) provide a further test of the 

organizational hypothesis by examining whether or not a correlation exists between 

individual differences in OAE production and a known marker of individual variation in 

the level of prenatal androgen exposure; and 3) offer novel evidence to test the hypothesis 

of an activational influence of adult sex steroids on OAE production.  Overall, these 

investigations will not only provide valuable insight into the underlying mechanisms and 

hormonal influences involved in this auditory trait, but may also offer further evidence of 

the dynamic modulatory effects that hormones can have on brain and behaviour.   

 

1.2  Otoacoustic Emissions 

The main roles of the auditory system are to deliver acoustic stimuli to receptors 

within the ear, to transduce stimuli from pressure changes (sound waves) into electric 

signals in the cochlea, and to effectively process these electric signals so that information 
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can be derived indicating the qualities of the sound source (Figure 1.1).  Incoming sound 

waves initially are mechanically amplified by the middle ear system (the bony ossicles) 

prior to reaching the inner ear (the cochlea) to account for a mismatch between the low-

impedance air medium in the ear canal and the high-impedance fluid medium in the 

cochlea.  These sound waves reach the cochlea and displace the basilar membrane, 

resulting in the bending of the inner hair cells and transduction of the mechanical sound 

signal into electric signals via neurotransmitter release.  In addition to the single row of 

approximately 3,500 inner hair cells arranged along the length of the Organ of Corti, 

approximately 12,000 outer hair cells are arranged nearby in three (or four) rows (Figure 

1.2).  The outer hair cells function as “active cochlear amplifiers” by providing additional 

energy to low-intensity sounds by increasing the vibration of selected regions of the 

basilar membrane, resulting in sharper tuning and greater frequency sensitivity.  The 

distinct functions of the inner and outer hair cells are supported by the extensive afferent 

and efferent innervations, respectively, of these two types of hair cells.  A natural by-

product emitted by this active cochlear amplification by the outer hair cells is the 

phenomenon of otoacoustic emissions (OAEs; Davis, 1983;). 

OAEs are inaudible to the person emitting them because of their faint nature but 

can be detected in the external auditory canal using a high-sensitivity microphone system 

(Kemp, 1978).  OAEs were proposed to be highly dependent on normal cochlear and 

outer hair cell functioning (Davis, 1983), and numerous studies have offered support for 

both a cochlear origin of OAEs as well as a connection between normal hearing and OAE 

production.  At high intensities, the cochlear amplification mechanism is protectively 

restrained by the outer hair cells to prevent acoustic trauma; Kim et al. (1980) and  
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Figure 1.1.  Schematic representation of the outer, middle, and inner ear components.  

The blue arrow represents the movement of sound from the external world to the cochlea, 

whereas the red arrow represents the opposite flow of OAEs.  Adapted from Principles of 

Neuroscience, Kandel (2000). 

 

 

 

Figure 1.2.  Schematic representation of the cross-section of the Organ of Corti and the 

arrangement of the inner and outer hair cells along the basilar membrane.  Adapted from 

Principles of Neuroscience, Kandel (2000). 
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Lonsbury-Martin et al. (1987) showed in selected animals that excessive acoustic 

stimulation reduced OAE production.  Evans, Wilson, and Borerwe (1981) recorded 

OAEs from guinea pigs administered paralyzing agents that abolished middle-ear muscle 

activity, suggesting that OAEs originate in the inner ear.  Hypoxia has been shown to 

reduce both cochlear functioning and OAE production (Evans et al., 1981; Zwicker & 

Manley, 1981). 

In humans, McFadden & Mishra (1993) observed that individuals producing 

greater than 4 SOAEs had better overall hearing compared to individuals with no 

detectable SOAEs, suggesting a positive relationship between hearing sensitivity and 

OAE production.  OAEs also have been shown to be selectively absent in frequency 

regions where sensorineural hearing loss is greater than 30dB, but present in adjacent 

frequency regions where normal hearing persists (Probst, Lonsbury-Martin, Martin, & 

Coats, 1987).  Further, exposure to ototoxic drugs that resulted in temporary hearing loss, 

such as aspirin or quinine sulphate, partially reduced or completely eliminated the 

detection of OAEs (McFadden & Pasanen, 1994; McFadden & Plattsmier, 1984; Weir, 

Pasanen, & McFadden, 1988).  These studies offer substantial evidence that OAEs do in 

fact originate in the cochlea and are a by-product of the cochlear amplification 

mechanism involving the outer hair cells.  Although OAEs are typically thought of as an 

epiphenomenon as opposed to a characteristic with an evolutionary purpose, OAE 

screening procedures are routinely used in clinical settings by audiologists to test for 

inner ear defects and possible hearing problems in newborn infants. 

Three types of OAEs are commonly produced by normally-functioning cochleas: 

spontaneous, click-evoked, and distortion-product OAEs.  Spontaneous OAE (SOAEs) 
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are emissions that are produced naturally in the ear without any deliberate external 

acoustic stimuli, and are produced by approximately 65% of the normal-hearing 

population (e.g., see Figure 1.3; Penner, Glotzbach, & Huang, 1993).  Click-evoked (or 

transient-evoked) OAEs (CEOAEs), on the other hand, are echo-like waveforms 

produced in the ear in response to presentation of acoustic stimuli, either audible clicks or 

tone-burst stimuli.  Nearly all normal-hearing individuals generate CEOAEs (Penner et 

al., 1993).  Distortion-product OAEs (DPOAEs) are emissions that are produced as a 

product of two simultaneously-presented acoustic frequencies, with the new emissions 

consisting of frequencies that were not present in the eliciting stimuli.  Since the 

measurement of DPOAEs is more traditionally used in animal research compared to 

human research (for review, see Probst, Lonsbury-Martin, & Martin, 1991), only SOAEs 

and CEOAEs are discussed in further detail.   

SOAEs can be detected in preterm neonates as early as 30 weeks (Morlet et al., 

1995), but appear to decrease slightly in prevalence and number throughout infancy and 

childhood (Lamprecht-Dinnessen et al., 1998), as well as into adulthood (Burns, Arehart, 

& Campbell, 1992).  It appears that the SOAE frequencies that are lost with increasing 

age are typically those at higher frequency levels (Burns et al., 1992).  That being said, 

SOAEs are fairly stable throughout life and new SOAEs are highly unlikely to appear 

(Burns, Campbell, & Arehart, 1994).  Researchers have found decreases in CEOAE 

response amplitude with advancing age (Bonfils, Bertrand, & Uziel, 1988; Collet, 

Moulin, Gartner, & Morgan, 1990), and it has been suggested that these decreases may be 

attributable mostly to age-related hearing loss.  A correlation of .76 between the number 

of SOAEs produced and CEOAE response amplitude has been reported (McFadden &  
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Figure 1.3.  An example of a probable SOAE peak in a frequency spectrum from an adult 

male.  Adapted from Handbook of Otoacoustic Emission, Hall (2000). 
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Pasanen, 1999), suggesting that the mechanisms underlying SOAE and CEOAE 

production are likely to be overlapping but not identical (Shera & Guinan, 1999). 

SOAEs are often more pronounced and more frequent in the right ear than the left 

(Bilger, Matthies, Hammel, & DeMorest, 1990; Burns et al. 1992; Talmadge, Long, 

Murphy, & Tubis, 1993).  A right ear advantage in hearing sensitivity has also been found 

in a large-scale audiometric study (Chung, Mason, Gannon, & Willson, 1983).  

Mechanistically, it has been proposed that this ear difference originates from differential 

efferent innervation of the outer hair cells of the cochlea by the medial olivocochlear 

system (McFadden, 1993a).  Specifically, it is proposed that the medial olivocochlear 

efferent system that synapses with the right ear delivers less inhibition to those outer hair 

cells, resulting in greater hearing sensitivity and greater OAE production compared to the 

more highly inhibited left ear.  This inverse relationship between efferent activation and 

OAE production has been supported by studies showing that electrical or mechanical 

stimulation of the medial olivocochlear system reduced or eliminated OAEs in the 

ipsilateral ear (Collet, Kemp, Veuillet, Duclaux, Moulin, & Morgan, 1990; Mountain, 

1980).  However, evidence opposing a right ear advantage in OAE production also exists 

(Collet, Gartner, Veuillet, Moulin, & Morgan, 1993), and the degree to which the 

proposed mechanism fully explains the ear asymmetry in OAE production remains 

unclear (Khalfa & Collet, 1996).  

One of the specific aims of this thesis is to investigate the developmental origins 

of the observed ear difference in OAE production in a population of normally-hearing 

young adults.  In addition to the aforementioned mechanism of differential efferent 

innervation between the ears, several other theories have been proposed to account for ear 
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differences in auditory properties in general, including peripheral lateralization in the 

auditory system (Previc, 1991) as well as the effects of differential androgen exposure on 

the development of lateralized systems (Geschwind & Galaburda, 1985a, 1985b, 1985c; 

Witelson, 1991; Witelson & Nowakowski, 1991; Lauter, 2007).  A preliminary 

association between the medial olivocochlear efferent system and hand preference, a 

visible asymmetry in humans that acts as a marker of departures from standard patterns of 

lateralization, has been reported, albeit in a single study.  Symmetrical activation of the 

medial efferent system was observed in the right and left ears of left-handed individuals, 

whereas greater activation was reported in the right ear of right-handed individuals 

(Khalfa & Collet, 1996; Khalfa, Veuillet, & Collet, 1998), a result consistent with greater 

lateralization of functioning in right-handed individuals and deviations from this pattern 

in non-right-handed individuals (Bryden, 1982).  However, these results are only 

preliminary.  Further investigation into the effects of differences in brain lateralization, as 

evident by differences in the direction and degree of hand preference, on SOAE and 

CEOAE production between the ears will shed greater light on the mechanisms 

responsible for the observed ear difference. 

 

1.3  Organizational Influence on OAE Production 

 Sexual dimorphisms have been reported to exist in OAE production, with females, 

on average, producing greater numbers and strengths of SOAEs and CEOAEs with 

greater response amplitude compared to males (Bilger et al., 1990; Burns et al., 1992; 

Lamprecht-Dinnesen et al., 1998; Penner et al., 1993; Strickland, Burns, & Tubis, 1985).  

In addition, SOAEs have been reported to be more prevalent in females compared to 
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males (75%-85% in females vs. 45%-65% in males; Bilger et al., 1990; Talmadge, Long, 

Murphy, & Tubis, 1993).  The sex difference has been found largely in neonates, infants, 

and children (Burns et al., 1992; Bonfils, Francois, Avan, Londero, Trotoux, & Narcy, 

1992; Strickland et al., 1985), but also has been reported in specific adult populations (for 

review, see Bilger et al., 1990).  The sex difference appears to be robust, although it does 

appear to be most prominent in the first year after birth (Lamprecht-Dinnesen et al., 

1998). 

The prevailing explanation for the sexual dimorphism in OAE production is the 

prenatal androgen hypothesis.  This hypothesis states that higher levels of androgen 

exposure prenatally during the critical window for sexual differentiation masculinizes the 

auditory system, including the cochlear structures integral to OAE production (i.e., outer 

hair cells), resulting in diminished OAE production.  Since the male fetus but not the 

female fetus is exposed to elevated androgens during prenatal development, it would be 

expected that OAE production would be diminished in males compared to females.  

Anatomical studies have shown that the onset of human cochlear functioning and 

maturation of cochlear structures overlaps with the period of elevated prenatal 

testosterone exposure in the developing male fetus (Lavigne-Rebillard & Pujol, 1986; 

Pujol & Lavigne-Rebillard, 1995).  Structural observations of the anatomy of the human 

cochlea have shown that sex differences exist in several cochlear properties (Sato, Sando, 

& Takahashi, 1991), including the number of outer hair cells (Wright, Davis, Bredberry, 

Ulehlova, & Spencer, 1987).  Given that many somatic sex differences are induced 

though the actions of prenatal testosterone, it is reasonable to postulate that differential 
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exposure to testosterone could explain the observed sexual dimorphism in OAE 

production. 

 Investigations of patterns of OAE production in several special populations of 

human and non-human subjects have offered support for the hypothesized prenatal 

masculinisation of OAEs.  Female spotted hyenas (Crocuta crocuta), which are highly 

androgenised during prenatal development, exhibit CEOAE response amplitudes similar 

to those of male hyenas (McFadden, Pasanen, Weldele, Glickman, & Place, 2006).  

Prenatal administration of anti-androgenic drugs to developing male or female spotted 

hyenas resulted in the production of stronger CEOAE response amplitudes in adulthood 

compared to normally-developing hyenas, supporting an inverse relationship between 

prenatal androgen exposure and OAE production.  A study in the domestic sheep showed 

a decrease in CEOAE response amplitude in female sheep who were treated with 

testosterone propionate during prenatal development, again offering evidence that 

exposure to high levels of testosterone prenatally masculinises the cochlear mechanisms 

responsible for OAEs, resulting in diminished OAE production. 

 In humans, support for the prenatal masculinisation of OAEs has been less direct 

and research has been limited by the inability to manipulate prenatal hormones in 

humans.   Females with male co-twins (opposite-sex dizygotic twins) have been shown to 

have masculinised OAEs compared to females with female co-twins (same-sex dizygotic 

twins), monozygotic female twins, and singleton females (McFadden, 1993b; McFadden 

& Loehlin, 1995).  It has been proposed that females with male co-twins are exposed to 

higher-than-normal levels of androgens from the male fetus during prenatal development, 

a developmental occurrence observed in many rodent species (vom Saal, 1989), resulting 
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in partially masculinised OAEs.  However, whether or not appreciable amounts of 

testosterone diffuse from the male to the female co-twin in humans is still empirically 

unconfirmed.  Another study found that homosexual and bisexual females produced 

SOAEs and CEOAEs that were intermediate in number and strength to heterosexual 

females and heterosexual males (McFadden & Pasanen, 1998, 1999).  It was 

hypothesized that homosexual and bisexual females are exposed to elevated levels of 

androgens prenatally, thus resulting in both an altered sexual orientation and slightly 

masculinised OAEs.  Although the evidence in humans alone is less direct, there is 

tentative support for the hypothesis that prenatal exposure to androgens influences SOAE 

and CEOAE production. 

 Consequently, another aim of this thesis is to provide a further test of the 

hypothesized organizational influence on OAE production in humans.  This will be done 

by investigating the correlations between OAE production and an ostensible biological 

marker of prenatal androgen activity, the 2D:4D digit-ratio.  It is known that the outer 

hair cells integral to OAE production develop during the critical period for brain and 

behavioural differentiation in humans (weeks 8-24 of gestation), a period when 

testosterone is elevated in the male fetus (Lavigne-Rebillard & Pujol, 1986; Pujol & 

Lavigne-Rebillard, 1995); however, this alone does not constitute evidence of a prenatal 

hormonal influence on OAE production.  By investigating the relationship between OAEs 

and known marker of individual variation in prenatal androgen exposure, vital 

information can be gathered regarding the prenatal mechanisms that underlie OAE 

production. 
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The ratio of the lengths of the 2
nd

 to 4
th

 digit of the hand (2D:4D ratio) has been 

widely touted as a physiological marker of prenatal androgen exposure and offers the 

possibility of indirectly examining the hypothesized prenatal influence of androgens on 

OAEs.  The 2D:4D digit-ratio exhibits a robust sex difference, with females having a 

higher ratio (closer to 1.0) compared to males (Manning, Scutt, Wilson, Lewis-Jones, 

1998; Manning, Stewart, Bundred, & Trivers, 2004; McIntyre, Cohn, & Ellison, 2006; 

Peters, MacKenzie, & Bryden, 2002).  Females exposed to excessive androgen prenatally, 

through endocrine disorders such as congenital adrenal hyperplasia, or females 

hypothesized to have been exposed to excessive androgen prenatally (i.e., females with a 

male co-twin) have been shown to exhibit male-typical 2D:4D digit-ratios (Brown, Hines, 

Fane, & Breedlove, 2002; Ciumas, Linden Hirschberg, & Savic, 2009; Okten, Kalyoncu, 

& Yaris, 2002; van Anders, Vernon, & Wilbur, 2006; Voracek & Dressler, 2007).  

Conversely, individuals possessing both X and Y chromosomes but who have no prenatal 

androgen exposure due to complete androgen insensitivity syndrome have female-typical 

2D:4D digit-ratios (Berenbaum, Bryk, Nowak, Quigley, & Moffat, 2009).  The sex 

difference in 2D:4D digit-ratios is observed as early as weeks 9-12 of gestation (Malas, 

Dogan, Evcil, & Desdicioglu, 2006), offering a timeline for the prenatal masculinization 

of finger lengths.  Further still, 2D:4D digit-ratios in two-year old children have been 

found to be negatively correlated with their fetal testosterone:estradiol ratio, measured 

from amniotic fluid, supporting a continuum of digit development in relation to the 

concentrations of prenatal testosterone (Lutchmaya, Baron-Cohen, Raggatt, Knickmeyer, 

& Manning, 2004).  It is anticipated that an examination of the relationship between 

SOAE and CEOAE production and 2D:4D digit-ratios in men and women may provide 
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further evidence supporting an organizational hormonal influence on OAE production in 

humans. 

 

1.4  Activational Influences on OAE Production 

 Although previous studies have addressed the potential role that prenatal 

masculinisation of auditory structures (i.e., the outer hair cells) may play in the 

production of OAEs, studies examining influences of circulating adult levels of hormones 

on OAE production are limited and inconsistent at best.  Nearly all the evidence is 

indirect, and provides only circumstantial support for the idea that steroid hormones may 

be involved; no specific links to particular hormones have been identified, nor have 

hormonal measurements even been included in existing studies. 

 A few studies have been conducted examining the potential relationship between 

OAE production and various biological rhythms.  Circadian changes in SOAE 

frequencies have been reported, with minimal decreases in SOAE frequency observed 

throughout the day in certain individuals, but not in others (Bell, 1992; Haggerty, Lusted, 

& Morton, 1993).  It is unclear whether or not these circadian changes, should they prove 

to be reliable, are related to hormone levels; levels of several steroids including cortisol 

and testosterone do show a circadian rhythm in secretion or release (Nelson, 2005).  

Menstrual cycle effects on OAE production have been hypothesized, but not confirmed, 

based on single-case reports, with apparent decreases in SOAE frequencies observed 

around menstruation and increases in SOAE frequency near ovulation (Bell, 1992; 

Haggerty et al., 1993).  For example, a case-study of a 21-year old female showed a 

pattern of cyclic fluctuations in her SOAE frequencies that appeared to approximate the 
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length of her menstrual cycle, as well as greater stability in SOAE frequencies during a 

period of amenorrhea and a period of oral contraceptive (OC) use.  These data must be 

considered primarily speculative, in that endocrine verification of the menstrual cycle was 

not included.  However, it is conceivable that circulating hormones (ovarian, in this case) 

may have an influence on OAE production in adulthood (Penner, 1995).  It should be 

noted that all of these studies focused on the frequencies of the emitted SOAEs, not the 

numbers or amplitudes of the emissions.  A potential effect of OC use on SOAE 

production and CEOAE response amplitude in women has been hypothesized 

(McFadden, 2000), but a significant relationship between OAEs and OC use has not been 

established. 

Seasonal fluctuations in testosterone levels occur in male rhesus monkeys 

(Gordon, Rose, & Bernstein, 1976; McFadden et al., 2006), in the wild and in captivity.  

A recent study has documented parallel changes in their patterns of OAE production 

(McFadden et al., 2006).  Male rhesus monkeys produced lower CEOAE response 

amplitudes during the breeding season (i.e., elevated testosterone levels) compared to the 

non-breeding season (i.e., basal testosterone levels), a pattern that is consistent with the 

hypothesized dampening effects of androgens on OAE production.  A direct link between 

testosterone and the changes in CEOAE amplitude has not been established, however, and 

it must be acknowledged that many biological and environmental variables besides 

testosterone do show a seasonal change.  A study examining the potential effects on 

OAEs of seasonal changes in testosterone in men has not been conducted, but humans too 

show seasonal variation in testosterone levels (Dabbs, 1990; Moffat & Hampson, 2000; 

Svartberg et al., 2003).  In men, the only study to my knowledge examining the effects of 
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circulating levels of steroids on OAE production was a case-study that found that 

estradiol administration (and suppression of androgens) prior to sex-reversal surgery 

resulted in the appearance of SOAEs where there were previously none (McFadden, 

Pasanen, & Callaway, 1998).  

 In light of the minimal focus on the possibility of activational influences of sex 

steroids on OAE production, the final aim of this thesis is to examine the effects that 

circulating adult sex steroids may have on OAE production in men and women.  The 

common use of OCs in the adult female population, which reliably reduce testosterone 

and estrogen levels, offers the opportunity of studying the effects of circulating sex 

steroids on OAE production in women.  As mentioned above, one previous study has 

examined the effects of OC use on SOAE number, overall SOAE power, and CEOAE 

response amplitude but failed to find any significant effects, although slight non-

significant decreases in all parameters were seen in females using OCs compared to 

females not using OCs (ps ~ 0.5-0.7; McFadden, 2000).  Should significant effects of OC 

use be found, it would not only offer potential support for an activational influence of 

adult hormones on OAE production, but would also offer insight into which circulating 

sex steroid, either testosterone or estradiol, is most likely to mediate the observed effects. 

 In men, a study investigating the effects of circulating testosterone on OAE 

production has not yet been conducted.  In light of the seasonal influences on CEOAE 

response amplitudes observed in males of another species (i.e., rhesus monkeys; 

McFadden et al., 2006), such a study would provide a valuable contribution to the 

literature examining postnatal effects on OAE production.  Seasonal elevations in 

testosterone production are most often observed in men during the autumn months and a 
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nadir during the spring (Dabbs, 1990; Moffat & Hampson, 2000; van Anders, Hampson, 

& Watson, 2006).  Thus, obtaining direct measures of circulating testosterone and OAE 

production in men at different times of the year would allow for an investigation of 

potential seasonal hormonal effects on this auditory trait. 

 

1.5  The Current Study 

 In sum, the objective of this thesis is to examine the possibility of prenatal and 

postnatal hormonal influences on OAE production.  Clinical audiometric screening 

guidelines and custom-written OAE software and recording equipment will be used to 

gather data on hearing sensitivity and SOAE and CEOAE production.  Standardized 

methods of discerning hand preference and of measuring finger lengths will be used to 

examine organizational influences on OAE production, whereas bioavailable testosterone 

concentrations, measured in saliva, will be incorporated in the studies investigating the 

possibility of activational influences.  Measuring testosterone in saliva is considered 

superior to blood serum or plasma, because it provides a more accurate picture of the 

amount of hormone that is available to tissue for metabolic purposes (Vittek, 

L‟Hommedieu, Gordon, Rappaport, & Southren, 1985). 

 In the present thesis, four studies will be described.  Study 1 was conducted to 

verify that the sexual dimorphism in OAE production that has previously been reported, 

mostly in young children, can also be identified in normally-hearing adults, and to test the 

hypothesis that left- and right-handed individuals may differ in the degree of asymmetry 

in OAE production between the two ears.  As described in Study 1, handedness itself is 

potentially a marker of differences in prenatal androgen exposure.  Study 2 will 



23 

 

 

investigate the hypothesis of an organizational effect of testosterone on OAE production 

by examining the association between OAEs and a putative marker of prenatal androgen 

exposure, the 2D:4D digit-ratio.  This thesis also will investigate the possibility of an 

activational influence of hormones on OAE production in humans.  Specifically Study 3 

will investigate whether or not the use of OCs in women is associated with differences in 

OAE production compared to women with an unassisted menstrual cycle.  Further, it is 

hypothesized, based on recent work in rhesus monkeys by McFadden et al. (2006), that 

seasonal fluctuations in testosterone production in men will affect CEOAE production, 

with dampened CEOAE response amplitudes observed during periods of elevated 

circulating testosterone, and vice versa (Study 4). 

 It is anticipated that the results of these studies will not only contribute to the 

growing body of literature examining the mechanisms involved in OAE production, but 

will also more globally aid in our understanding of the range of effects that prenatal and 

postnatal hormones have on the brain and body. 
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2.1  Introduction 

Prenatal exposure to testosterone or other androgens from the fetal testes and, to a 

lesser extent, the adrenal glands, results in the masculinisation of many physical, 

cognitive, and behavioural traits.  Prenatal weeks 8 to 24 are believed to be critical to 

brain and behavioural differentiation in humans because of the testosterone surge at that 

time in the male fetus (Forest, de Peretti, & Bertrand, 1976).  Differential prenatal 

exposure to androgens has been proposed to bring about a variety of sexual dimorphisms 

found in humans, including finger lengths (in particular the ratio of the 2
nd

 to 4
th

 digits; 

Manning, Scutt, Wilson, & Lewis-Jones, 1998; Manning, Stewart, Bundred, & Trivers, 

2004; McIntyre, Cohn, & Ellison, 2006), childhood play preferences (Berenbaum & 

Hines, 1992; Collaer & Hines, 1995) and, potentially, spatial reasoning abilities (Resnick, 

Berenbaum, Gottesman, & Bouchard, 1986; Grimshaw, Sitarenios, & Finegan, 1995).  

Studies of the auditory system, which develops and matures during the hypothesized 

critical period for sexual differentiation (Lavigne-Rebillard & Pujol, 1986), have 

identified several physiological properties that are potentially influenced by prenatal 

androgens.  For example, Chung, Mason, Gannon, and Willson (1983) found a small but 

significant sex difference in hearing acuity in humans, with females possessing better 

hearing than males across the frequency spectrum.  Another example of a recently 

discovered sexually dimorphic auditory property, which forms the focus of the current 

study, is otoacoustic emissions (OAEs). 

OAEs are faint sounds that are produced by the cochlea and propagated into the 

external auditory canal (Kemp, 1978).  They are believed to be a natural by-product of a 

cochlear amplification mechanism, involving the outer hair cells of the inner ear, which 
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increases hearing sensitivity to low intensity sounds (Davis, 1983).  OAEs can be 

detected in the external auditory canal using a low-noise microphone and quantified to 

provide information regarding the integrity of the auditory system and hearing sensitivity 

in general.  In support of this origin, a positive correlation between hearing sensitivity and 

the number and strength of OAEs has been found (McFadden & Mishra, 1993).  OAEs 

also have been shown to be absent in selective regions of the frequency spectrum where 

sensorineural hearing loss is greater than 30 dB (Probst, Lonsbury-Martin, Martin, & 

Coats, 1987).  Further support for a common mechanistic origin regulating hearing 

sensitivity and OAEs comes from studies showing that OAEs are partially reduced or 

completely eliminated in subjects exposed to drugs that induce temporary hearing loss 

(McFadden & Plattsmier, 1984). 

Three different types of OAEs have been identified, two of which were examined 

in the present study.  Spontaneous OAEs (SOAEs) are emissions produced in most 

normally-hearing individuals without the deliberate presentation of external acoustic 

stimulation.  Click-evoked OAEs (CEOAEs), on the other hand, are echo-like waveforms 

produced in response to the presentation of acoustic stimuli, either audible clicks or tone-

bursts.  Individual variability in OAE production exists, and a sex difference in OAEs has 

been reported in some studies.  On average, females are reported to produce greater 

numbers and strengths of SOAEs and greater amplitudes of CEOAEs than males.  This 

sexual dimorphism in OAE production has been found in preterm neonates, infants, and 

children (Burns, Arehart, & Campbell, 1992; Morlet et al., 1995; Strickland, Burns, & 

Tubis, 1985), as well as in certain adult populations (for review, see Bilger, Matthies, 

Hammel, & DeMorest, 1990), and appears to be relatively stable over time.  Alterations 
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in OAE production also have been found in several special populations of human or 

nonhuman subjects.  Female dizygotic twins who have male co-twins (opposite-sex 

dizygotic twins) exhibit masculinised OAE patterns compared to females who have 

female co-twins (same-sex dizygotic twins), monozygotic female twins, or singleton 

females, and this has been hypothesized to reflect exposure to higher-than-normal 

testosterone levels by diffusion from the male fetus during gestation (McFadden, 1993a).  

Female spotted hyenas, which are normally highly androgenised during prenatal 

development, exhibit CEOAEs similar to those of male hyenas (McFadden, Pasanen, 

Weldele, Glickman, & Place, 2006), offering further support for an effect of prenatal 

androgens on this auditory trait.  Thus, it has been hypothesized from these studies and 

others that the observed sexual dimorphism in OAE production is a result of differential 

prenatal exposure to androgens between the sexes.  

SOAEs also may be produced differentially between the right and left ears, with 

more pronounced and more frequent SOAEs in the right ear than the left (for review, see 

Bilger et al., 1990; Burns et al., 1992; Talmadge, Long, Murphy, & Tubis, 1993; for 

evidence contrary to a right ear advantage in SOAE production, see Collet, Gartner, 

Veuillet, Moulin, & Morgon, 1993).  Right ear advantages in other auditory properties, 

such as hearing sensitivity (Chung et al., 1983) and the auditory brainstem response 

(Levine, Liederman, & Riley, 1988) also have been observed, though the presence and 

magnitude of right ear superiority is affected by a number of variables (for review, see 

McFadden, 1993b; McFadden, 1998).  It has been proposed that a difference in the 

strength of the efferent influence by the medial olivocochlear system on the outer hair 

cells of the cochlea may be responsible for the observed ear asymmetries (McFadden, 
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1993b).  Specifically, OAEs and hearing sensitivity may be greater in the right ear than 

the left because of less inhibition by the medial olivocochlear efferent system in the right 

ear.  In support of such a mechanism, studies have shown that acoustical stimulation of 

the medial olivocochlear bundle, resulting in greater activation of this efferent inhibitory 

system, resulted in the reduced production of various types of OAEs (Collet, Kemp, 

Veuillet, Duclaux, Moulin, & Morgon, 1990; Puel & Rebillard, 1990).  Support for lower 

inhibition in the right ear, however, has been equivocal (Khalfa & Collet, 1996). This 

theory of a differential efferent influence on the cochlea in the two ears also has been 

used in conjunction with the prenatal androgen hypothesis to help explain the female 

advantage in OAE production and hearing sensitivity. 

An alternative explanation for the observed ear differences in auditory properties 

was proposed by Previc (1991), who viewed peripheral lateralization in the auditory 

system as the foundation for cerebral lateralization at the central level.  According to 

Previc (1991), the origins of cerebral lateralization lie in the asymmetric prenatal 

development of vestibular organs, such as the ear and labyrinth.  His theory claims that a 

right-ear advantage in monoaural sensitivity results from a smaller right craniofacial 

region during embryonic development, resulting in enhanced middle-ear conduction of 

sound.  Other hypotheses have been put forth to account for the direction and degree of 

lateralization observed in various cortical functions, including language, but because they 

focus on lateralization in the forebrain, their applicability to OAEs is indirect.  

Nonetheless, several theories have explicitly proposed that androgen production by the 

male fetus can modify the development of lateralized systems (Geschwind & Galaburda, 

1985a, 1985b, 1985c; Witelson, 1991; Witelson & Nowakowski, 1991; Lauter, 2007).  
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Prenatal androgen exposure is thus hypothesized to be an agent that is not only important 

for sexual differentiation, but also as an effector that can influence lateralized patterns of 

development.   

The handedness of an individual, perhaps the most visible asymmetry in humans, 

has allowed researchers to investigate and provide evidence of a standard pattern of 

lateralization of various cerebral properties, specifically more lateralized functioning in 

right-handed individuals and deviations from this pattern in non-right-handed individuals 

(Bryden, 1982).  Handedness thus acts as a visible marker of departures from the norm in 

lateralized patterns.  A preliminary association between OAE production, handedness, 

and the medial efferent system mediating ear differences has been made.  Greater 

activation in the efferent auditory system has been reported in the right ear compared to 

the left ear of right-handed individuals, with symmetrical activation observed in the two 

ears of left-handed individuals (Khalfa, Veuillet, & Collet, 1998).  Further investigation is 

needed to establish a connection between the theories outlined above and the differential 

production of OAEs present between the right and left ear. 

The purpose of the present study was to investigate sex and ear differences in 

hearing sensitivity, SOAE and CEOAE production in a sample of healthy young adults 

(ages 17-25).  Young adults have been largely overlooked in this area of research but are 

of particular interest because 1) they are at their peak reproductive capacity, a period in 

the lifespan where many sex differences are at their most prominent, and 2) they are not 

yet vulnerable to the effects of degenerative hearing loss that accompanies aging.  Most 

previous studies incorporating this age group have either focused on an excessively broad 

age range (Dallmayr, 1985), special populations (McFadden & Pasanen, 1998, 1999), or 
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clinical groups with identified hearing impairments.  It was hypothesized that sex and ear 

differences in OAEs would be observed, with females and right ears producing greater 

numbers and powers of SOAEs and a greater amplitude of CEOAEs than males and left 

ears.  In addition, the handedness of the participants, both direction and degree, was 

evaluated using a standardized instrument (Crovitz & Zener, 1962) in order to investigate 

whether hand preference is associated with discernible differences in OAE production.  It 

was hypothesized, based on previous research (Khalfa et al., 1998), that right-handed 

individuals would show a right-ear advantage in OAE production, whereas non-right-

handed individuals would exhibit a more symmetrical pattern of OAEs between the right 

and left ears. 

 

2.2  Methods 

2.2.1  Participants 

Male (n = 45) and female (n = 48) volunteers were recruited from the University 

of Western Ontario.  Participants ranged in age from 17 to 25 years, with a mean (SD) 

age of 20.8 (2.6) years for males and 19.9 (2.0) years for females, respectively.  Any 

participant who had a hearing sensitivity worse than 25 dB hearing level at any frequency 

interval during the audiometric screening was excluded from the data analysis, as 

previous research has shown an association between OAE production and inner ear 

integrity as reflected in the hearing threshold (McFadden & Mishra, 1993).  Participants 

thus were required to have a normal audiogram. 
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2.2.2  Equipment 

Audiometric screening was performed using a GSI-17 pure-tone air conduction 

audiometer with Telephonics TDH-39P headphones.  Visual inspection of the external ear 

canal for debris or potential interference with OAE recordings was accomplished using a 

Welch Allyn MacroView 23820 otoscope.  For the OAE recordings, an Etymotic ER-10B 

low-noise microphone system, with an ER-2 earphone with a foam ear-tip attached, was 

used (Figure 2.1).  This microphone system included 2 small diameter silicon tubes that 

protruded approximately 2 mm into the external auditory canal.  The function of one tube 

was to detect OAEs during both the SOAE and CEOAE recordings, whereas the other 

tube served as a delivery conduit for click stimuli during CEOAE recording.  Output from 

the low-noise microphone system passed through an ER10-72 pre-amplifier to a custom 

built low-noise amplifier/filter.  The low-noise amplifier/filter system served two distinct 

functions: to amplify the output signal by 30 dB and to high-pass the output signal above 

400 Hz in order to eliminate any extraneous bodily noises present at or below this 

frequency (e.g., blood flow, swallowing).  The output from the amplifier/filter system was 

then sent to a spectrum analyzer and analog-to-digital converter (National Instruments, 

DAQ AI-16XE-50) and stored digitally on a Macintosh G4 Powerbook (OS 9.2) for later 

analysis (Figure 2.2).  All collection and off-line analysis of the OAE data was 

accomplished using custom-written software in LabVIEW (National Instruments, Austin, 

Texas).  The software programs were provided courtesy of the laboratory of Dr. Dennis 

McFadden (Department of Psychology, The University of Texas at Austin). 
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Figure 2.1.  Photograph of the ER-2 earphone with foam ear-tip attached.  This is 

inserted into the external ear canal and is used for OAE recording. 

 

 

 

 

Figure 2.2.  Photograph of the set-up used to record OAEs in participants. 
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2.2.3  Procedure 

Participants were tested individually in a darkened quiet room.  Audiometric 

screening was done first.  Participants then filled out a demographic questionnaire and the 

Crovitz-Zener Handedness Inventory (Crovitz & Zener, 1962).  Besides basic 

demographics, the questionnaire inquired about present and past experiences that are 

known to either temporarily or permanently alter hearing thresholds and OAE production 

(e.g., prescription drug use, ear damage or surgery; McFadden & Plattsmier, 1984; Probst 

et al., 1987).  The Crovitz-Zener inventory was used to assess direction and degree of 

handedness.  Participants rated which hand they would normally use to perform 14 

common everyday tasks (e.g., “hold a drinking glass when drinking”) using a five-point 

Likert scale (1 = right hand always, 2 = right hand most of the time, 3 = both hands 

equally often, 4 = left hand most of the time, and 5 = left hand always).  A summed score 

was calculated, allowing handedness to be measured along a continuum (degree of right-

handedness or non-right-handedness) and classified dichotomously (right-handed or non-

right-handed) according to a previously established cutpoint (Crovitz & Zener, 1962).  A 

participant was classified as right-handed if his/her cumulative score was less than or 

equal to 30 or non-right-handed if his/her cumulative score was greater than 30 (Crovitz 

& Zener, 1962).   

After completing the questionnaires, participants sat in a reclined sofa chair in 

preparation for OAE recording.  An otoscope was used to examine the external auditory 

canal for debris or blockage that might interfere with the recordings.  The low-noise 

microphone system, with the foam ear-tip attached, was then inserted into the ear to be 

tested first.  The ear-tip was inserted such that the foam was flush with the opening of the 
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ear canal.  A habituation period of approximately 20 minutes ensued, during which the 

participant remained in a reclined position in order to acclimatize to the testing 

environment.  This period and duration of relaxation prior to testing has been shown to be 

important for reliable OAE measurement and is a commonly used practice in OAE 

experiments (Whitehead, 1991; Zurek, 1981).  Once the acclimatization period passed, 

SOAEs and CEOAEs were recorded separately from each ear.  The recording of OAEs 

was counterbalanced within each sex for ear tested first (right or left) and type of OAE 

tested first (SOAE or CEOAE). 

 

2.2.4  Audiometric Screening 

Audiometric screening was done to assess inner ear integrity, to determine that 

participants met the hearing thresholds for inclusion in the study, and to measure hearing 

sensitivity.  Standard clinical audiometric screening guidelines were followed, with 

participants tested for hearing sensitivity at the following frequency intervals, in order: 

1000, 2000, 3000, 4000, 6000, 8000, 250, 500, 750, and 1500 Hz.  The ear tested first 

(right or left) was counterbalanced within each sex.  Pure tones were presented at the 

designated frequencies in 5 dB steps, and participants responded using a button press 

whenever a stimulus was perceived.  Only data from participants with normal hearing 

thresholds of 25 dB or less at each frequency were analyzed (see Participants).   

 

2.2.5  SOAE Recording 

Participants were instructed to remain completely still and quiet during each 

recording interval, and were given notification by the experimenter as to the start and 
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finish of each interval.  Raw SOAE data was obtained by taking four 30-second 

recordings (2 min in total), typically separated by 5 to 20 second rest periods, from each 

ear.  Waveforms extracted from each raw SOAE measurement were digitized with 16-bit 

resolution at a sampling rate of 25 kHz and stored on a Macintosh computer.  Using an 

established automated algorithm used and recommended by other labs (Pasanen & 

McFadden, 2000), the 2 min recordings were scanned offline in 655 ms segments 

(resulting in 16375 points with 75% overlap with other segments) and the quietest 150 

time segments were saved.  Fast-fourier transforms for each of the 150 quietest time 

segments were computed and averaged in the frequency domain to create a singular 

frequency spectrum.  This averaged spectrum was then passed offline to the automated 

computer program designed to detect and analyze SOAEs.  A spectral peak was identified 

as an SOAE if it met all of the following criteria: 1) the peak was 5.0 or more standard 

deviation units above the averaged spectral baseline, 2) the frequency of the peak was 

between 1000 and 9000 Hz (1000 Hz was used as the lower cut-off point to further 

eliminate extraneous noises present in the quiet testing room), and 3) the peak was not 

closer than 0.1 octaves to a stronger peak already accepted as an SOAE.  The magnitude 

of each peak was then converted to sound-pressure level (SPL) units and stored.  Two 

measures were obtained for each ear, the number of SOAEs detected and the total power 

for that ear in SPL. 

 

2.2.6  CEOAE Recording 

Screening for CEAOEs involved three phases: click calibration, determination of 

the noise floor threshold, and click presentation/CEOAE detection.  Rarefaction DC 
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pulses, approximately 100 ms in duration, were generated by the sound output system of 

the laptop at a sampling rate of 44.1 kHz and served as the clicks for the CEAOE 

recordings.  Two distinct click levels were used, 75 peSPL and 69 peSPL.  These click 

levels correspond to the peak amplitude of a 1000 Hz tone at the desired intensities.  Data 

were separately obtained and recorded for both click levels for each participant.  The 

ambient noise within each ear, in the absence of any acoustic stimuli, was sampled to 

establish individual noise thresholds to be used during the recording procedure.  This 

noise threshold was then used during click presentation and CEOAE detection to ensure 

that the ambient noise (e.g., environmental, physiological) did not exceed the established 

level; if it did, a delay in click presentation ensued until the ambient noise decreased to an 

acceptable level.  After presentation of the acoustic clicks for CEOAE recording, a 4 ms 

delay was applied before recording commenced to avoid any acoustical ringing in the 

auditory canal.  After the delay, acoustic activity was recorded for 40 ms, identified as the 

click-response for that stimulus, and analyzed.  Output from the microphone was digitally 

sampled at 48 kHz and synchronized to the click stimulus as recorded directly from the 

sound output of the computer.  Responses to 250 clicks were averaged to obtain a mean 

click-evoked response.  After further eliminating another 2 ms from the averaged 

waveform, a 20.48 ms segment judged to be artefact-free was bandpass filtered at 1.0 to 

8.0 kHz in preparation for final off-line analysis.  The root-mean-square output of the 

filter was converted to SPL and recorded as the click-evoked response for that ear at that 

particular click level.  Thus the amplitude of the evoked response constituted the 

dependent measure. 
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2.3  Results 

2.3.1  Hearing Sensitivity 

A mixed-effects ANOVA, with ear and frequency as the repeated factors and sex 

as the between-subjects factor, was used to investigate differences in hearing sensitivity.  

The 6000 Hz frequency interval had to be excluded because of a technical problem that 

affected the data of a large number of participants at that frequency.  As shown in Figure 

2.3, hearing sensitivity in the right and left ears of both sexes showed the characteristic U-

shaped function that is representative of the audiometric threshold observed in humans 

(Chung et al., 1983). 

In agreement with other literature, a significant sex difference was observed.  

Females showed significantly greater overall hearing sensitivity, or lower audiometric 

thresholds, than males, F(1,90) = 12.79, p = .001; see Figure 2.3.  As expected, the 

threshold differed significantly depending on the frequency tested, F(4,355) = 190.67, p < 

.001.  No overall ear difference in sensitivity was found, F(1,90) = 0.62, p = .434.  The 

two-way interaction between sex and ear, F(1,90) = 0.62, p = .434, and the three-way 

interaction among sex, ear, and frequency, F(6,498) = 0.396, p = .869, were non-

significant.  The interactions between frequency and sex, F(4,499) = 7.07, p < .001, and 

between frequency and ear, F(6,499) = 13.75, p < .001 were found to be significant.  

Since the purpose of the study was to investigate sex and ear differences in hearing 

sensitivity, post-hoc tests were conducted in order to determine which individual 

frequencies in the right and left ear differed between the sexes.  In the right ear, females 

had significantly lower auditory thresholds than males at 3000Hz (p < .05), 4000Hz (p < 

.01), and 8000Hz (p < .05).  In the left ear, females had significantly lower auditory 
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Figure 2.3.  Audiometric thresholds for the right (upper panel) and left (lower panel) ears 

of male and female participants for frequencies between 250 and 8000Hz.  Note the 

omission of the 6000Hz frequency due to a technical problem that affected the data of a 

large number of participants at that frequency.  Error bars represent standard error of the 

means (SEM). 
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thresholds than males at 2000Hz (p < .05), 3000Hz (p < .001), 4000Hz (p < .01), and 

8000Hz (p < .01). 

 

2.3.2  OAEs 

Analyses of the OAE data focused on the following dependent variables:  the 

number and prevalence of SOAEs, total power of the SOAEs produced, and CEOAE 

response amplitudes.  Unless otherwise stated, all SOAE and CEOAE analyses employed 

mixed-effects ANOVA, with sex as a between-subjects factor, and ear (and for CEOAEs, 

dB click level) as a repeated factor.   

 

2.3.3  SOAEs 

Figure 2.4 shows the breakdown of SOAE production for females and males in the 

right and left ears.  Females produced significantly greater numbers of SOAEs compared 

to males, F(1,83) = 6.04, p = .016.  SOAE production was greater in the right ear than the 

left ear, F(1,83) = 11.21, p = .001.  However, the interaction between sex and ear was not 

significant.  Cohen‟s d statistic, calculated as the difference between the sample means 

divided by the sample standard deviation, was used to express the absolute magnitude of 

the effect of sex on SOAE production (Cohen, 1977).  The calculated effect size for the 

sex difference in SOAE production was d = 0.54, indicating a medium effect. 

The prevalence of SOAEs has been found to differ by sex or by ear in some 

studies (e.g., Bilger et al., 1990; Penner & Zhang, 1997).  Accordingly, chi-square 

analyses (
2
) were conducted to determine whether the distribution of SOAEs differed 

between females and males or between the right and left ears in the present study.  A 2x2  
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Figure 2.4.  Number of SOAEs produced by the right and left ears of male and female 

participants.  Error bars represent SEM. 
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chi-square test showed that the distribution of SOAEs did not differ significantly between 

females and males, 
2
 = 1.16, p > .05, with 78.3% of females and 87.2% of males 

showing the presence of at least one detectable SOAE.  A second 2x2 chi-square was 

used to test for a difference in prevalence between the two ears. The distribution of 

SOAEs between the right and left ears did not differ significantly, 
2
 = 3.60, p < .10, with 

74.4% of right ears and 60.9% of left ears showing at least one detectable SOAE.   

Total power of the SOAEs produced in females and males was analyzed using 

one-way ANOVA to determine whether a sex difference was also present with respect to 

the strength of the SOAEs.  For this analysis, a single value was obtained for each 

participant reflecting the total (or overall) power of SOAEs summed across both ears.  

Thus, data used for the power analysis were from participants producing SOAEs in both 

ears, and excluded those participants who did not produce an emission in either one or 

both of their ears.  As shown in Figure 2.5, females produced SOAEs with significantly 

greater power than males, F(1,70) = 5.01, p = .028.  Total power of the SOAEs produced 

in the right and left ears was also analyzed to determine whether an ear difference was 

present.  Mixed-effects ANOVA, with ear as a repeated factor and sex as a between-

subjects factor, showed that the power of the SOAEs produced did not differ significantly 

between the two ears, F(1,70) = 1.87, p = .175. 

 

2.3.4  CEOAEs 

Females were found to produce CEOAEs with significantly greater response 

amplitudes than males, F(1,76) = 13.91, p < .001 (Figure 2.6).  A significant main effect 

of click level also was found, such that CEOAE response amplitude was greater for the 75  
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Figure 2.5.  Total power of SOAEs produced by males and females.  A single value was 

obtained for each participant reflecting the total (or overall) power of SOAEs summed 

across both ears; thus, this graph reflects data from participants who produced SOAEs in 

both ears only.  Error bars represent standard error of the means (SEM). 
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Figure 2.6.  CEOAE response amplitude in the right and left ears of male and female 

participants at two distinct click levels (75dB and 69dB).  Error bars represent standard 

error of the means (SEM). 
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dB click level than for the 69 dB click level, F(1,76) = 746.49, p < .001.  No significant 

main effect of ear was found, F(1,76) = .571, p = .452.  A significant two-way interaction 

between click level and sex, F(1,76) = 14.66, p = .001, indicated that the sex difference 

was slightly larger for the 69 dB than the 75 dB stimuli.  Effect size was calculated using 

Cohen‟s d to quantify the magnitude of the observed difference between females and 

males, across ear and click level, with respect to CEOAE response amplitude.  The 

observed effect size was d = 0.85, indicating a large effect (Cohen, 1977). 

 

2.3.5  Influence of Handedness 

Based on their total scores on the Crovitz-Zener Handedness Inventory (1962) 

participants were divided into the following handedness groups: right-handed females (n 

= 43), non-right-handed females (n = 5), right-handed males (n = 33), and non-right-

handed males (n = 12).  The non-right-handed female group was omitted from further 

analyses because of its small sample size.  To determine whether handedness  

classification affected the magnitude of the ear difference in OAE production, the other 

three groups were entered into ANOVAs which included handedness group and ear (and 

for the CEOAE data, click level) as factors.  The dependent variables analyzed were the 

number of SOAEs produced, SOAE power, and the CEOAE response amplitude.  The 

ANOVAs revealed no significant interaction between ear and handedness on any 

dependent measure [Number of SOAEs:  F(2,77) = 0.34, p = .715;  SOAE power:  

F(2,65) = 0.44, p = .644;  CEOAE response amplitude:  F(2,70) = 0.42, p = .657].  Thus, 

contrary to our hypothesis, there was no evidence that handedness influenced the pattern 

of ear differences. 
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Although the predicted interaction was not found, the non-RH males produced the 

lowest numbers of SOAEs, both in the right ear [M = 1.64, vs. M = 2.11 and M = 3.27 for 

RH males and RH females respectively] and the left [M = 1.00, vs. M = 1.50 and 2.22 

respectively], F(1,77) = 3.35, p = .04.  Given the small number of non-RH, however, this 

difference between the RH and non-RH male groups was not significant by a post-hoc 

test.  To further explore the influence of handedness, Pearson correlations were computed 

between the OAE variables and self-reported variation in strength of handedness as 

revealed by the Crovitz scores.  Among those classified as RH, scores ranged from 

strongly right dominant to scores close to the non-RH range.  Among the RH males, 

higher Crovitz scores, representing weaker right hand preference, were associated with 

lower CEOAE amplitudes, a pattern that was significant in the right ear (75 dB:  r = -

.416, p = .035; 69 dB:  r = -.358, p = .067; Table 2.1).  For non-RH males, a comparable 

correlation of r = -.403 between stronger left hand preference and lower SOAE numbers 

was found but was non-significant. 

 

2.4  Discussion 

The current study provided a comprehensive investigation of sex and ear differences in 

hearing sensitivity and OAEs in a population of healthy young adults with intact hearing.  

A standardized handedness inventory (Crovitz & Zener, 1962) was utilized to assess 

whether a relationship is present between handedness, a conspicuous marker of CNS 

lateralization, and ear asymmetry in OAE production.  The results showed a significant 

sex difference in nearly all auditory measures taken, with females displaying lower 

audiometric thresholds, greater numbers of SOAEs, stronger SOAEs, and CEOAEs 
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Table 2.1.  Correlations between Crovitz-Zener Handedness Scores and OAE Variables 

 SOAEs CEOAEs 

 R 

Number 

L 

Number 

R 

Power 

L 

Power 

R 

75dB 

R 

69dB 

L 

75dB 

L 

69dB 

Females RH -.24 -.16 -.34* -.09 -.11 -.14 -.28* -.12 

Males RH .07 .21 -.05 -.01 -.42** -.36* -.26 -.26 

NRH -.40 -.28 .24 -.32 .08 .05 .28 .17 

 

RH = right-handed; NRH = non-right-handed 

* p < .10, ** p < .05 
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with greater response amplitude than males.  Only SOAE prevalence did not significantly 

differentiate the two sexes.  A right ear advantage in the total number of SOAEs produced 

also was found.  Although we hypothesized, based on data from Khalfa et al. (1998), that 

the production of OAEs between the ears would differ depending on the handedness of 

our participants, this hypothesis was not supported.  Exploratory analyses, however, 

revealed that departures from strong right hand dominance were associated, within our 

sample, with reduced numbers or strengths of OAEs irrespective of ear.  

Sex and ear differences have been found in a number of different auditory 

measures, including the production of greater wave-V amplitude and shorter wave-V 

latency in females compared to males (Mitchell, Phillips, & Trune, 1989); the production 

of larger amplitude and shorter latency auditory brainstem responses in the right ear 

compared to the left ear (Levine et al., 1988); as well as better hearing sensitivity, or 

lower audiometric thresholds, in both females and the right ear (Axelsson et al., 1981; 

Chung et al., 1983; McFadden & Mishra, 1993).  In particular, the sex difference in 

hearing sensitivity, though evident throughout the entire frequency spectrum, has been 

shown to appear maximally at higher frequencies (Chung et al., 1983).  As expected, 

females in the present study exhibited not only greater overall hearing sensitivity, in 

general, compared to males, but these differences also were most pronounced at higher 

frequency levels.  Specifically, frequencies at or above 2000 Hz showed the greatest 

female advantage (approximately 4-5 dB), whereas the sex difference diminished 

significantly or completely disappeared for frequency levels below 2000 Hz.  It should be 

emphasized that the magnitude of the difference in hearing sensitivity between females 

and males represents a sizeable difference, given that the decibel scale is a logarithmic 
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scale.   The difference obtained in the current study is comparable to the large-scale 

audiometric study conducted by Chung et al. (1983) and other studies discussed in the 

review by McFadden (1993b). 

The present study failed to find a significant ear difference in hearing sensitivity, 

either between or within the sexes.  There are previous reports of better hearing 

sensitivity in the right ear compared to the left ear, with the difference being more 

pronounced in males than in females (Chung et al., 1983; Emmerich, Harris, Brown, & 

Springer, 1988).  This reported difference, however, was only on the magnitude of 1-2.5 

dB and was found in a sample substantially larger than ours.  Thus, the lack of an 

observed ear difference in hearing sensitivity in the current study may in fact reflect a true 

property of this auditory trait in the present sample, or may simply be due to the lack of a 

comparably large sample size. 

The current results showed a robust sexual dimorphism in the number and power 

of SOAEs and in CEOAE response amplitude, but not in the prevalence of SOAEs 

produced.  In preterm and full-term neonates (Morlet et al., 1995a, 1995b) as well as 

infants and children (Burns et al., 1992; Strickland et al, 1985), a sex difference in SOAE 

numbers is well-established, with females typically showing greater numbers of SOAEs 

than males, especially in the right ear.  However, the prevalence, numbers, and 

amplitudes of SOAEs have been shown to decrease from neonates to older children 

(Burns, Campbell, & Arehart, 1994; Lamprech-Dinnesen et al., 1998), resulting in a 

decrease in the magnitude of the observed sex difference in SOAE, as well as CEOAE, 

production (Burns, 2009; Kok, van Zanten, & Brocaar, 1993).  In adults, a sex difference 

in SOAE number has been documented (Bilger et al., 1990), though less evidence is 
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available, particularly from young adult samples.  Similarly, support for a sex difference 

in the power of SOAEs produced in an adult population is quite limited (for support, see 

McFadden & Pasanen, 1999), possibly due to the fact that individual SOAEs can vary 

hourly with respect to their amplitudes despite maintaining stable frequencies on the 

auditory spectrum (Dallmayr, 1985).  The current study found a sex difference in both 

SOAE numbers and powers, with females producing greater numbers of SOAEs and 

SOAEs with greater power compared to males.  The values obtained were comparable to 

those previously reported for samples in the age range of that used in the current study 

(Kok et al., 1993).  Our data thus offer further support for a sex difference in SOAE 

production in normally-hearing young adults. 

The current study also found a significant sex difference in CEOAE response 

amplitude. Females produced CEOAEs with greater response amplitude than males at 

both the 75 and 69 dB click levels.  CEOAEs can be elicited in essentially all normally-

hearing ears (Kemp, 1978; Probst, Lonsbury-Martin, & Martin, 1991).  Although a sex 

difference in CEOAE response amplitude has not been well characterized in children, a 

number of studies have shown that CEOAEs are significantly higher in adult females than 

males (McFadden, 1998; McFadden & Pasanen, 1998).  We observed a significant overall 

sex difference in CEOAE response amplitude, as well as a significant interaction between 

click level and sex, whereby the sex difference in response amplitude was slightly greater 

at the 69 dB level compared to the 75 dB level.  More importantly, the current study 

yielded a significant sex difference in response amplitude at both click levels, offering 

both support for a sex difference from our population of young adults as well as 
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reproducibility of the difference at multiple click levels, as has been reported previously 

by other labs (McFadden & Pasanen, 1998). 

Some studies have shown that SOAEs are more prevalent in females than males, 

with approximately 75-85% of females and 45-65% of males exhibiting at least one 

emission (Bilger et al., 1990; Talmadge, Long, Murphy, & Tubis, 1993); however, in 

various infant/children and young adult samples, similar prevalence rates in males and 

females also have been observed (Bonfils et al., 1992; Burns et al., 1992).  Further, it has 

been shown that the sex difference in SOAE prevalence is most evident in the first year 

after birth, and that a decrease occurs throughout infancy and into childhood (Lamprecht-

Dinnesen et al., 1998).  The current study found no significant difference between 

females and males in the prevalence of SOAE production. In fact, in absolute terms, it 

was males not females who showed greater prevalence.  Because SOAE power was 

calculated in our data for participants exhibiting SOAEs in both ears only, a sex 

difference in prevalence rates, should one be present, would have had no effect on our 

measure of SOAE power.  Conversely, the lack of a significant difference in SOAE 

prevalence between the sexes adds strength to our observation of a sexual dimorphism in 

SOAE number.  The fact that females and males did not differ significantly in whether or 

not they produced SOAEs suggests that the female advantage in SOAE number is in fact 

a genuine difference in the rate or numbers of SOAEs produced by individuals, and not 

merely a statistical artefact of a sex difference in prevalence rates. 

The sex difference in OAE production has been identified in infants (Burns et al., 

1994) and preterm neonates (weeks 30-40 of gestational age; Burns et al., 1992; Morlet et 

al., 1995).  Somatic sex differences that are already apparent at birth can be caused by 
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either of two major classes of mechanisms:  either direct effects of genes carried on the X 

or Y chromosome (sex-linked genes) or by the organizational actions of testosterone or its 

metabolites on some type of neutral physiological substrate (Eckel, Arnold, Hampson, 

Becker, Blaustein, & Herman, 2008).  In the case of OAE production, evidence from 

specialized populations offers support for the latter explanation.  Female twins with male 

co-twins produce masculinised OAEs later in life, presumably due to elevated exposure to 

testosterone from the male fetus during prenatal development (McFadden, 1993a; 

McFadden & Loehlin, 1995).  Female hyenas, which are naturally exposed to high 

concentrations of androgens prenatally, produce male-typical OAEs, further 

substantiating the claim for a prenatal hormonal action (McFadden et al., 2006).  The 

prenatal androgen hypothesis proposes that exposure of the male fetus to elevated 

testosterone during the critical window for differentiation dampens the cochlear 

amplifiers (i.e., outer hair cells) responsible for OAE production, thereby decreasing the 

prevalence, frequency, and amplitude of OAEs in males compared to females.  The 

results of the current study are consistent with the possibility of an organizational 

influence, mediated by hormonal differences between the sexes, on the inner ear 

structures responsible for OAE production. 

An overall right ear advantage was observed in the present study in the number of 

SOAEs produced, but not for the power of SOAEs or CEOAE response amplitude.  

Although a right ear advantage in SOAE production has been observed previously (Bilger 

et al., 1990; Burns et al., 1992; Talmadge et al., 1993) and a mechanism mediating this 

ear difference has been proposed (McFadden, 1993b), the robustness of such a difference 

has been questioned in studies that have reported contrary results (Collet et al., 1993).  
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The present study confirmed a right ear advantage in the number of SOAEs produced.  

Failures to find a significant right ear advantage are not surprising, and are to be expected 

if ear effects are under the control of other moderator factors as discussed below (e.g., 

lateralization).  SOAE amplitudes, as noted earlier, do exhibit temporal variability 

(Dallmayr, 1985) and this variability, plus the reduced sample size that was used to 

analyze SOAE power, may have mitigated against finding a significant ear difference in 

the current study.   

A right ear advantage in the number of SOAEs produced was found in the context 

of no significant ear advantage in hearing sensitivity.  Although previous research has 

offered support for an association between hearing sensitivity and OAE production 

(McFadden & Mishra, 1993; McFadden & Plattsmeir, 1984; Probst et al., 1987), this 

relationship has been demonstrated in special populations exhibiting either hearing loss or 

selected production of SOAEs.  Thus, the relationship between hearing sensitivity and 

SOAEs is a global one.  The unencumbered production of OAEs apparently requires an 

intact cochlea, but among normally-hearing ears, an ear difference in sensitivity is not 

necessary in order for a right ear advantage in SOAEs to be expressed.   

It has been hypothesized that ear asymmetries in OAEs may be due to a difference 

in the strength of the efferent influence by the medial olivocochlear system in the two 

ears (McFadden, 1993b).  Khalfa and Collet (1996) experimentally confirmed that 

asymmetrical activation was present, though inhibition was found to be stronger in the 

right ear, not the left ear as anticipated by McFadden (1993b).  In a subsequent study, 

symmetrical activation between the two ears was reported to be present in a group of non-

right-handers (Khalfa et al., 1998).  To our knowledge this finding has not been 
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replicated.  If asymmetry in medial olivocochlear inhibition is the basis for ear differences 

in OAEs (McFadden, 1993b), and if the asymmetry found in right-handers is absent or 

reduced in non-right-handers, then handedness would be expected to affect the ear 

differences observed in OAEs.  The present study is the first direct test of this hypothesis 

(cf., Khalfa et al., 1998).  We predicted that OAEs would be differentially produced 

between the ears depending upon hand preference (i.e., a significant interaction between 

ear and handedness).  The results of the current study showed no significant interactions 

between ear and handedness, either for the number of SOAEs produced, SOAE power, or 

CEOAE response amplitude.  Thus the hypothesis was not supported.   

Several possibilities exist for why a handedness effect was not found.  It has been 

shown that only a minority of left-handed (i.e., non-right-handed) individuals differ from 

right-handed individuals in brain lateralization, at least with respect to language (Bryden, 

1982; Milner, Branch, & Rasmussen, 1966).  If this is true for other lateralized 

differences too, then a much larger sample size may be needed in order to detect a 

difference in the asymmetry of OAEs between non-right-handed and right-handed groups.  

In addition, finding a handedness effect might depend on the sex stratification of the 

sample.  There may be more scope for identifying a handedness difference in females 

because males produce only low levels of SOAEs to begin with.  Thus, a large sample, 

including non-right-handed females, may be needed in order to observe a handedness 

effect on OAE production.  The potential of the current study to detect a handedness 

difference also was reduced by the fact that we found a significant ear difference only in 

the number of SOAEs produced, not in SOAE power or CEOAE response amplitude; 
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thus, it was really only for the number of SOAEs that we had the capacity to see an 

attenuated ear difference in the non-right-handed group. 

Although we did not find the hypothesized interaction between ear and hand 

preference, we did find evidence that handedness, at least within the present sample, was 

associated with the absolute numbers and powers of SOAEs and CEOAE response 

amplitude.  This pattern reached significance in right-handed males, where weak right 

hand preference was associated with lower CEOAE values.  Consistent with this finding, 

Khalfa et al. (1998) found a tendency for increased left hand dependence to be associated 

with increased MOC inhibition.  This type of relationship would be consistent with a 

theory proposed by Geschwind & Galaburda (1985a,b,c), which states that elevated levels 

of prenatal testosterone predispose an individual towards non-right-handedness, either 

left-handedness or ambidexterity.  If this is true, and if increased androgen exposure is 

also the basis for the lower numbers and amplitudes of OAEs that are found in men vs. 

women, then an association between weak right hand preference in males (i.e., higher 

Crovitz-Zener scores) and lower OAE values might be expected, as seen in the current 

study.  Thus a common mechanism could explain both the handedness and sex effects.  

Further investigation is needed to explore the relationship between handedness, a product 

of cerebral lateralization, and capacity for OAE production. 
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3.1  Introduction 

 Differences between men and women have been shown to exist in a variety of 

behavioral, physical, and cognitive traits.  Some of these sexual dimorphisms are believed 

to be organized during fetal development, whereas others originate postnatally and may 

reflect the actions of environmental as well as biological factors.  A well-known physical 

characteristic that shows a sex difference during prenatal development (Galis, Ten Broek, 

Van Dongen, & Wignaendts, 2010; Malas, Dogan, Evcil, & Desdicioglu, 2006) and 

remains robust throughout life (Manning, Scutt, Wilson, & Lewis-Jones, 1998) is the ratio 

between the lengths of the 2
nd

 and 4
th

 digits (2D:4D).  Studies have shown that the 2D:4D 

ratio is significantly higher (closer to 1.0) in women compared to men (Manning et al., 

1998; Manning, Stewart, Bundred, & Trivers, 2004; McFadden & Shubel, 2002; 

McIntyre, Cohn, & Ellison, 2006; Peters, MacKenzie, & Bryden, 2002), and this 

difference has been observed as early as the end of the first trimester of fetal development 

(Malas et al., 2006). 

It has been proposed that the observed difference in 2D:4D ratios is due to the 

differential exposure of males and females to androgens prenatally, during the sensitive 

period for brain and behavioral differentiation (Manning et al., 1998).  Masculinized 

2D:4D ratios in women with congenital adrenal hyperplasia (CAH), a disorder 

characterized by excessive androgen production during prenatal development, offers one 

line of evidence supporting an influence of prenatal androgens on digit development 

(Brown, Hines, Fane, & Breedlove, 2002; Ciumas, Linden Hirschberg, & Savic, 2009; 

Okten, Kalyoncu, & Yaris, 2002; but see Buck, Williams, Hughes, & Acerini, 2003).  

Further support has been provided in a study by Lutchmaya, Baron-Cohen, Raggat, 
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Knickmeyer, and Manning (2004) that showed a negative association between infant digit 

ratios and the ratio of fetal testosterone to fetal estradiol sampled during the second 

trimester of gestation.  Partial masculinisation of the 2D:4D ratio also has been found in 

female dizygotic twins who gestated in the presence of a male co-twin (van Anders, 

Vernon, & Wilbur, 2006; Voracek & Dressler, 2007).  Previous studies on digit ratio 

support its use as a biomarker of individual differences in androgen exposure for studies 

of sex differences that originate during prenatal development, presumably due to different 

endocrine environments. 

 A recently discovered auditory trait that also is established during prenatal 

development is called otoacoustic emissions (OAEs).  OAEs are faint sounds produced 

naturally by the cochlea as a by-product of an amplification mechanism for higher 

hearing sensitivity and are propagated into the external auditory canal (Davis, 1983; 

Kemp, 1978).  OAEs have been shown to be a robust sexually dimorphic trait, with 

females producing greater numbers, strengths, and amplitudes of OAEs compared to 

males (Bilger, Matthies, Hammel, & DeMorest, 1990; Burns, Arehart & Campbell, 1992; 

Lamprecht-Dinnesen et al., 1998; Penner, Glotzbach, & Huang, 1993; Strickland, Burns, 

& Tubis, 1985).  The sex difference can be detected in ear recordings from newborn 

infants (Burns et al., 1992).  Because the development of the cochlear structures (i.e., 

outer hair calls) responsible for OAE production takes place during a developmental 

window (Lavigne-Rebillard & Pujol, 1986) that overlaps the timing of the critical period 

for sexual differentiation when the testes are active in the male fetus, it has been 

hypothesized that prenatal exposure to androgens gives rise to the sex difference by 

diminishing the capacity for OAEs.  Indirect evidence supporting this hypothesis was 
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provided by findings that female twins who had a male co-twin in utero produced fewer 

OAEs than other female twin or non-twin groups (McFadden, 1993; McFadden & 

Loehlin, 1995), presumably due to exposure to small amounts of androgens from the male 

fetus.  Further, bisexual and homosexual women have been shown to produce OAEs that 

are intermediate to heterosexual women and heterosexual men (McFadden & Pasanen, 

1998; McFadden & Pasanen, 1999).  It is believed that atypical exposure to androgens 

prenatally could be responsible for the masculinisation of OAEs in these women (for 

reviews, see McFadden, 2002; 2009). 

 Previous studies have attempted to establish a relationship between 2D:4D ratios, 

as a marker of prenatal androgen exposure, and other sexually dimorphic physical and 

behavioral traits, albeit with inconsistent results.  The logic underlying such studies is that 

if two sexually dimorphic traits are both organized prenatally by exposure to androgens, 

then observed individual variations in the two traits should be correlated as a reflection of 

their common origin.  Spatial abilities, for example, have been studied in relation to 

variations in the 2D:4D ratio, but a reliable correlation has not been found (Manning & 

Taylor, 2001; McFadden & Shubel, 2003; cf. Puts, McDaniel, Jordan, & Breedlove, 

2008).  Relationships between digit ratios and personality traits have been reported, but 

the directionality and magnitude of the association depends on the specific personality 

trait examined and the sex of the individual (Austin, Manning, McInroy, & Mathews, 

2002).  Androgen-dependent indices of body shape, such as waist-to-hip ratio or body 

mass index, have been found to correlate with digit ratios in some studies (e.g., Fink, 

Neave, & Manning, 2003). 
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 The purpose of the current study was to investigate the relationship between 

individual differences in 2D:4D ratio and OAEs in a sample of young men and women.  

Only one previous study has attempted to address this theoretical question.  McFadden 

and Shubel (2003) found no significant correlations between digit ratios and OAEs, but 

differed from the present study in the methods used to obtain finger length measurements, 

including the hand position used to visualize the anatomical markers. This study forms a 

backdrop for the present work.  In the present study, two types of OAEs were recorded 

and compared with digit ratios: 1) emissions that are produced naturally, without any 

deliberate external stimuli (spontaneous OAEs or SOAEs) and 2) echo-like waveforms 

produced in response to the presentation of clicks or tones (click-evoked OAEs or 

CEOAEs).  Both types of OAEs show robust sex differences, and the development of 

both digits and cochlear structures responsible for OAEs have been proposed to be 

influenced prenatally by exposure to androgens (McFadden, 2002).  From a theoretical 

point of view, if variation in androgen levels is responsible for individual variation in 

these two characteristics, then it is predicted that observed differences across individuals 

in 2D:4D digit ratios and OAEs will be positively correlated.  Specifically, it is 

hypothesized that individuals who have larger (more female-typical) 2D:4D ratios will 

have greater SOAE production and CEOAE response amplitude, whereas individuals who 

have smaller (more male-typical) 2D:4D ratios will have fewer SOAEs and CEOAEs 

with a smaller response amplitude.  If, on the other hand, the findings of McFadden and 

Shubel (2003) are replicated, the lack of a significant relationship between digit ratios and 

OAEs would suggest that other prenatal and/or postnatal factors may be influencing the 

development of one or both of these traits. 
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3.2  Methods 

3.2.1  Participants 

 Undergraduate male and female participants (n = 153) between the ages of 17 and 

26 were recruited from The University of Western Ontario.  Testing took place between 

2pm and 8pm in a darkened, quiet testing room.  The ethnic composition of the sample 

was predominantly Caucasian; 2% of the sample was black and 14% Asian.  Ethnic 

differences in 2D:4D (Manning, Stewart, Bundred, & Trivers, 2004) and OAEs 

(Whitehead, Kamal, Lonsbury-Martin, & Martin, 1993) have been documented, but in the 

present data, analyses limited to the Caucasian group produced results similar to those 

obtained with the entire population.  Thus, the full dataset is reported here.  To evaluate 

inner-ear integrity, participants were screened for hearing sensitivity separately in both 

ears at frequencies between 250 and 8000 Hz using standard clinical audiometric 

screening guidelines and equipment (GSI-17 pure-tone, air-conduction audiometer).  Any 

participant who exhibited a hearing threshold greater than 25 dB at any test frequency 

was excluded from the analysis.  In total, data from 22 participants were discarded due to 

hearing impairments or technical difficulties during the OAE recording (e.g., elevated 

environmental or participant noise).  As a result, data from 67 men and 64 women (total n 

= 131) were included in this study.  The mean age and standard deviation were 20.0 (2.5) 

and 19.5 (2.0), respectively. 

 

 3.2.2  OAE recording 

Participants first were asked to sit in a reclined sofa chair, and their external ear 

canals were examined using a clinical otoscope (Welch Allyn MacroView 23280) to 
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detect any type of blockage or debris that could interfere with OAE detection.  Next, a 

foam ear-tip attached to an ER-2 earphone was securely placed into the ear canal to be 

tested first, such that the base of the foam ear-tip was flush with the opening of the ear 

canal.  A low-noise microphone system (Etymotic ER-10B) was used to detect output 

generated by the ear (spontaneous or click-evoked), as well as delivering trains of clicks 

during CEOAE testing.  Before commencement of the SOAE and CEOAE recording 

procedures, participants were instructed to relax and remain completely still for a period 

of 20 minutes in order to acclimatize to the environment and the inserted ear-tip 

(Whitehead, 1991). 

 Acoustic output detected during SOAE and CEOAE testing first was passed 

through a pre-amplification device (Etymotic ER10-72) and then on to a custom-built 

low-noise amplifier and filter system, where the raw output was both amplified by 30 dB 

and high-pass filtered above 400 Hz.  The output then was passed on to a spectrum 

analyzer and analog-to-digital converter installed in the cardbus slot of the laptop 

computer (National Instruments, DAQ AI-16XE-50) and stored in digital form on a 

Macintosh G4 Powerbook (OS 9.2).  The SOAE and CEOAE data were analyzed off-line 

using custom-written software in LabVIEW (National Instruments, Austin, Texas). 

 Raw SOAE output was collected in four 30-second segments at a sampling rate of 

25 kHz and stored in digital form.  Participants were informed by the experimenter as to 

the start and finish of each recording session, and were given a small amount of time 

between sessions to relax.  Off-line analysis of each participant‟s two-minute SOAE 

recording was performed to isolate the quietest 150 time segments (each segment was 655 

ms in length and consisted of 75% overlap with other segments).  Fast-fourier transforms 
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were computed for each isolated time segment and were averaged to produce a singular 

frequency spectrum, which then was analyzed using the custom software to detect the 

presence of SOAEs according to established criteria (Pasanen & McFadden, 2000).  Only 

spectral peaks appearing between 1000 and 9000 Hz in the frequency domain were 

considered during SOAE identification, to avoid artifact attributable to low-frequency 

physiological noise.  In order to be classified as an SOAE, each initially flagged spectral 

peak was required to be more than five standard deviations above the averaged spectral 

baseline flanking the peak in question, and not closer than 0.1 octaves to a stronger peak 

already accepted as an SOAE.  The magnitude of each peak was then converted to sound-

pressure level (SPL) and stored. 

 CEOAE recording was performed individually for each ear using two separate 

computer-generated trains of clicks (75 peSPL and 69 peSPL) whose maximal amplitudes 

corresponded to the peak amplitudes of a continuous 1000-Hz tone presented at the 

desired intensity.  The acoustic clicks were generated using the built-in sound output of 

the Macintosh computer as rarefaction DC pulses at a sampling rate of 44.1 kHz.  The 

clicks first were calibrated for 20 seconds in the absence of any recording to set a nominal 

presentation rate of 10 clicks per second for the CEOAE recording procedure.  Next, a 

20-second sample of the ambient noise present within the ear canal (not involving the 

presentation of clicks) was taken in order to determine the maximum noise threshold and 

click-response artifact rejection level.  If, during CEOAE testing, the ambient noise 

exceeded the acceptable level, the presentation of the clicks was delayed until the noise 

level returned to the established baseline (or below) and the response to the click was 

recorded.  Clicks were presented through the low-noise microphone system and the click-
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response was recorded and averaged for the first 250 clicks that were judged to be 

artifact-free.  Each presented click (approximately every 100 ms) was followed by a 4-ms 

delay in the recording of a response to avoid any acoustical ringing that may have 

resulted from the presentation of the click.  The next 40 ms then were recorded, identified 

as the click-response, and analyzed for inclusion as an acceptable response.  The averaged 

waveform obtained from the 250 clicks was further analyzed off-line.  After eliminating 

the first 2 ms of the waveform to further ensure the absence of any acoustical ringing in 

the ear, a 20.48-ms segment was band-pass filtered between 1.0 to 5.0 kHz and the root-

mean-square output of the filter was converted to SPL and recorded as the click-evoked 

response for that particular ear at that particular click level (for further details of the 

CEOAE procedure see McFadden & Pasanen, 1998). 

 

3.2.3  Finger-length measurement 

Precise scanned images (using a digital photocopier) of the underside of both the 

right and left hands were taken with fingers extended in a splayed position.  A white cloth 

was placed over each hand in order to increase the clarity and visibility of the landmarks.  

Two distinct landmarks were used for finger-length measurement: a) the lower landmark 

was the most basal crease on each digit adjoining the palm and b) the upper landmark was 

the most distal point on the finger tip.  This method and the utilization of these landmarks 

has been used in our lab previously and by other labs studying digit ratios (Brown et al., 

2002; Manning et al., 2004; van Anders & Hampson, 2005; Figure 3.1).  A high precision 

digital calliper (Digital Measurement Metrology, Inc., Model ABS) with a resolution of 

0.005 mm was used to measure the finger lengths.  Finger lengths were independently  
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Figure 3.1. Photograph of the landmarks used to measure the lengths of the 2
nd

 and 4
th

 

digits.  Similar landmarks were used to measure the lengths of the 3
rd

 and 5
th

 digits as 

well. 
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measured by a second rater and the inter-rater reliabilities of the ratios computed using 

intraclass correlation.  For both left and right hand ratios, the inter-rater reliability was 

ICC = 0.99.  Although the digit ratio of primary interest in this study was the 2
nd

 to 4
th

 

digit ratio, all four finger lengths (thumb excluded) were measured and all digit ratio 

combinations were calculated (2D:3D, 2D:4D, 2D:5D, 3D:4D, 3D:5D, and 4D:5D).  

Although it is the 2D:4D ratio that has been hypothesized to be influenced by fetal 

androgens, several other digit ratios, notably 2D:5D and 3D:4D, also exhibit sexual 

dimorphism (McFadden & Shubel, 2002).  Thus, examining ratios beyond 2D:4D might 

increase the potential to detect significant associations. 

 

3.3  Results 

 Table 1 shows the means and standard deviations for all of the variables of 

interest.  To confirm the presence of a sex difference in the highly sexually dimorphic 

2D:4D ratio, the 2D:4D data were entered into a mixed-effects ANOVA with sex and 

hand as factors.  A main effect of sex was found, F(1,129) = 11.05, p = 0.001, with 

women, as expected, exhibiting greater digit ratios (closer to 1.0) compared to men.  A 

main effect of hand also was found, F(1,129) = 7.01, p = 0.009; however, the interaction 

between sex and hand was not significant.  Expressed as Cohen‟s d, the effect size for the 

sex difference in the 2D:4D ratio was d = 0.54, suggesting a medium effect.  This is in 

agreement with the average effect size found in other work (Voracek, Manning, & 

Dressler, 2007).   

As reported elsewhere (McFadden & Shubel, 2002), sex differences in several 

other digit ratios also were significant, including 3D:5D:  F(1,129) = 7.31, p = 0.008; 
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2D:3D:  F(1,129) = 6.49, p = 0.012;  2D:5D:  F(1,129) = 16.27, p < 0.001; and 3D:4D:  

F(1,129) = 5.08, p = 0.026.  One other variable, the directional asymmetry in 2D:4D (i.e., 

right 2D:4D minus left 2D:4D) was analyzed.  Though sexual dimorphism has been found 

in some studies, there was no evidence of a sex difference in directional asymmetry in the 

present data [M = 0.006, SD = 0.02 versus M = 0.007, SD = 0.04 for men and women 

respectively; F(1,129) = 0.12, p = 0.725].  Thus, directional asymmetry was not analyzed 

further. 

 Sex differences in the OAE data in this sample have been reported in detail 

elsewhere (Snihur & Hampson, 2008b).  In brief, mixed-effects ANOVAs were used to 

analyze the sex difference in SOAE production and CEOAE response amplitude.  A 

significant sex difference was found for both types of OAE parameters.  As summarized 

in Table 3.1, women produced a significantly greater number of SOAEs [F(1,119) = 9.97, 

p = 0.002] and produced CEOAEs with significantly greater response amplitude 

[F(1,111) = 10.76, p = 0.001] compared to men.  The effect sizes were d = 0.54 and d = 

0.85 for the differences in SOAEs and CEOAEs, respectively (cf. McFadden & Shubel, 

2003). 

 In order to determine whether there was an association between digit ratios and 

OAEs, bivariate correlations were computed using Pearson‟s r coefficient.  Because the 

incidence of SOAEs was low, the total number of SOAEs summed over the two ears was 

used to compute the correlations.  Correlations with 2D:4D ratios were of primary interest 

because of the significance of this particular digit ratio in the literature.  However, the 

correlations for all six digit ratios are shown in Tables 3.2 and 3.3.  There was an absence 

of significant associations between the 2D:4D ratio and any of the OAE variables.  This  
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Table 3.1.  Means and standard deviations for 2D:4D digit-ratios and OAE variables  

 Men Women 

Ear/Hand Variable Mean SD Mean SD 

 

 

 

Right 

2D:4D 0.96 0.03 0.98 0.04 

# SOAEs 1.83 1.98 3.15 2.75 

CEOAE 

amplitude   

75 dB 

 

9.82 

 

2.96 

 

11.23 

 

2.98 

CEOAE 

amplitude   

69 dB 

 

6.10 

 

3.24 

 

8.37 

 

3.47 

 

 

 

Left 

2D:4D 0.95 0.03 0.97 0.04 

# SOAEs 1.44 1.68 2.27 2.12 

CEOAE 

amplitude   

75 dB 

 

9.66 

 

2.88 

 

10.85 

 

2.97 

CEOAE 

amplitude   

69 dB 

 

5.69 

 

3.18 

 

7.69 

 

3.59 
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Table 3.2.  Correlations between digit-ratios and OAE measures in men 

 

Bolded values represent correlations (r) and italicized values represent probabilities (p) 

** significant using Bonferroni correction. 

 

 

 

CEOAEs 

 Total 

SOAEs 

Right 75 Right 69 Left 75 Left 69 

 

 

 

 

 

 

 

 

 

 

 

 

MEN 

 

 

 

 

 

Right 

Hand 

2D:3D .143 

.271 

-.087 

.520 

-.086 

.518 

.042 

.748 

.049 

.703 

2D:4D .058 

.652 

.029 

.832 

.082 

.539 

.087 

.499 

.095 

.462 

2D:5D -.094 

.470 

.014 

.918 

.114 

.391 

.332 

.008 

.302 

.017 

3D:4D -.144 

.269 

.142 

.293 

.211 

.109 

.067 

.607 

.073 

.573 

3D:5D -.173 

.184 

.059 

.661 

.163 

.217 

.316 

.012 

.288 

.023 

4D:5D -.120 

.358 

-.003 

.984 

.077 

.562 

.329 

.009 

.287 

.024 

 

 

 

 

 

 

Left 

Hand 

2D:3D .058 

.658 

.003 

.983 

.095 

.474 

.121 

.349 

.210 

.101 

2D:4D .111 

.384 

.110 

.416 

.176 

.182 

.175 

.173 

.245 

.055 

2D:5D -.139 

.287 

.116 

.217 

.235 

.073 

.352 ** 

.005 

.355 ** 

.005 

3D:4D .050 

.701 

.156 

.247 

.147 

.267 

.119 

.358 

.124 

.337 

3D:5D -.173 

.182 

.178 

.185 

.200 

.129 

.304 

.016 

.262 

.040 

4D:5D -.221 

.088 

.118 

.381 

.147 

.266 

.283 

.026 

.230 

.072 

D(r-l) -.099 

.449 

-.124 

.356 

-.149 

.261 

-.142 

.272 

-.237 

.063 
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Table 3.3.  Correlations between digit-ratios and OAE measures in women 

 CEOAEs 

 Total 

SOAEs 

Right 75 Right 69 Left 75 Left 69 

 

 

 

 

 

 

 

 

 

 

 

 

WOMEN 

 

 

 

 

 

Right 

Hand 

2D:3D -.129 

.31 

-.057 

.669 

.004 

.978 

.113 

.396 

.097 

.463 

2D:4D -.179 

.163 

.004 

.978 

.034 

.803 

.197 

.136 

.157 

.235 

2D:5D -.140 

.279 

.061 

.649 

.117 

.383 

.147 

.265 

.180 

.172 

3D:4D -.168 

.193 

.087 

.518 

.054 

.688 

.219 

.095 

.163 

.218 

3D:5D -.069 

.597 

.124 

.352 

.140 

.294 

.085 

.523 

.138 

.297 

4D:5D .034 

.793 

.082 

.538 

.119 

.374 

-.048 

.720 

.042 

.754 

 

 

 

 

 

 

Left 

Hand 

2D:3D -.119 

.357 

-.055 

.684 

-.041 

.763 

-.011 

.933 

-.085 

.521 

2D:4D -.099 

.443 

-.055 

.684 

-.008 

.952 

-.015 

.913 

-.087 

.512 

2D:5D -.100 

.440 

.033 

.807 

.097 

.467 

.034 

.797 

.018 

.890 

3D:4D -.021 

.871 

-.023 

.862 

.042 

.753 

-.009 

.948 

-.039 

.770 

3D:5D -.021 

.870 

.069 

.607 

.122 

.360 

.035 

.790 

.073 

.583 

4D:5D -.004 

.978 

.082 

.542 

.104 

.436 

.041 

.759 

.096 

.470 

D(r-l) -.110 

.397 

.064 

.632 

.049 

.743 

.257 

.049 

.286 

.028 

 

Bolded values represent correlations (r) and italicized values represent probabilities (p) 

** significant using Bonferroni correction 
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was true in both females and males and for both hands.  In most cases, the observed 

correlations were between .1 and -.1.  The correlations observed for other digit ratios 

were of a similar magnitude, with the exception of correlations with CEOAE response 

amplitudes for the left ear in the male sample, where several correlation coefficients in 

the .30 range were seen.  Only two of these, for left hand 2D:5D, survived Bonferroni 

correction whereby the criterion for significance was set at α = .005 to correct for 

multiple statistical tests. 

 

3.4  Discussion 

The goal of the current study was to investigate whether a relationship exists 

between 2D:4D digit ratios and OAEs, two characteristics that exhibit a robust sex 

difference and are hypothesized to be organized by testosterone during prenatal 

development.  A significant correlation between individual differences in the two traits 

was predicted based on the notion of a shared developmental origin. If found, a 

correlation would warrant further investigation into similarities in the mechanisms 

responsible for these traits, such as differential exposure to androgens between fetuses.  

Further, establishing an association between digit ratios and OAEs would strengthen the 

empirical basis for using OAEs as a biological marker of differences in prenatal hormone 

activity.  Although two significant correlations were identified between digit-ratios and 

OAE variables, the overall results of the current study, and especially the lack of 

associations with 2D:4D, do not support an association between digit-ratios and OAEs 

despite the presence of significant sex differences in both traits.  A previous study by 

McFadden and Shubel (2003), using different methods of digit ascertainment, likewise 
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failed to find significant correlations between digit-ratios and OAE production (see also 

McFadden et al., 2005).   A number of basic differences do exist between digit formation 

and development of the auditory system that may help to explain the lack of an observed 

association between these two characteristics. 

Digit formation and the maturation of the auditory system differ in terms of their 

developmental trajectory in utero, and this fundamental difference may be a contributing 

reason for the absence of an association between the variables.  Garn, Burdi, and Babler 

(1975) showed that adult bone-to-bone ratios are attained in human fetuses by week 13 of 

gestation, offering support for early prenatal completion of digit development.  This 

developmental timeline is in accordance with the observation that a sex difference in digit 

ratios is present in human fetuses early in prenatal development (Malas et al., 2006).  

However, the development of the cochlear structures integral to OAE production, such as 

the outer hair cells, as well as the functionality of the cochlea are not completed until later 

in the gestational period (Nemzek et al., 1996).  Specifically, it has been observed from 

anatomical studies that the onset of human cochlear functioning occurs around weeks 18 

– 20 of gestation and that maturation of the cochlear structures is not completed until 

week 30 of gestation and beyond (Pujol & Lavigne-Rebillard, 1995).  The fact that there 

is a difference in the developmental timeframe highlights the separate genetic control of 

these two traits.  With respect to the prenatal androgen hypothesis, the testes are active in 

the male fetus from weeks 8 – 24 of gestation (Forest, de Peretti, & Bertrand, 1976) and 

during this temporal window, various brain and behavioral systems are believed to pass 

through narrower windows („sensitive periods‟) when they transiently become receptive 

to testosterone or its metabolites.  Despite both characteristics overlapping the period of 
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testicular activity, the precise timing of the onset and completion of digit versus cochlear 

formation and development during this period is vastly different, increasing the likelihood 

that the applicable sensitive periods, during which hormones exert their influence on the 

basic genetic programs that control these processes, may not coincide in the two systems.  

Thus, taking into account the differences in developmental timing, it may not be 

surprising that a relationship between 2D:4D ratios and OAEs was not found. 

Differences in the timing and length of the maturational processes underlying digit 

and cochlear development could conceivably result in differential exposure to androgens.  

Instead of a single sustained surge, androgen production in the fetus varies, within limits, 

in response to external and internal stimuli (e.g., stressors, maturational stage of the 

testes) during the critical period and, in humans, there is an additional testosterone surge 

that occurs postnatally (for review, see Cohen-Bendahan, van de Beek, & Berenbaum, 

2005; Smail, Reyes, Winter, & Faiman, 1981).  Differential exposure of the digits and 

auditory structures to testosterone, due to differences in either the duration of exposure 

and/or hormonal concentration during the sensitive period, could account for our failure 

to observe any relationship between these characteristics.  Though less likely, an 

unrecognized role for the postnatal testosterone surge in male infants cannot be ruled out.  

In principle, postnatal testosterone exposure could act to mask any positive correlations 

between digit-ratios and OAEs that existed at birth by either further dampening the 

cochlear processes responsible for OAE production or via further effects on digit 

development and enlargement of the 2D:4D sexual dimorphism postnatally.  Galis et al. 

(2010) have recently suggested that the sexual dimorphism in the 2D:4D ratio may be 

initiated in utero but further refined by postnatal developmental processes.   
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The type of hormonal influence experienced during development also could 

account for the absence of a direct correlation between digit ratios and OAEs.  

Dihydrotestosterone and estradiol, both metabolites of testosterone, have been shown to 

have individual masculinising effects on specific physical and behavioral traits (for 

review, see Cohen-Bendahan et al., 2005). Evidence suggests that either testosterone or 

its androgenic metabolite dihydrotestosterone is the hormone responsible for sexual 

differentiation of 2D:4D (Berenbaum, Bryk, Nowak, Quigley, & Moffat, 2009; Manning, 

Bundred, Newton, & Flanagan, 2003), but the hormone responsible for sex differences in 

OAEs has not been identified. 

In addition to the organizational effects that hormones have during the 

developmental period, a number of behavioral and physiological characteristics are 

reversibly affected by hormones in adulthood.  Though not previously believed to apply 

to OAEs, recent research has offered support for a superimposed influence of adult 

steroid levels on OAE production, in addition to the underlying sex difference.  In 

women, slight fluctuations in SOAE frequency have been reported across the menstrual 

cycle (Bell, 1992) and significant departures from typical female SOAE and CEOAE 

patterns recently were found in women using oral contraceptives (Snihur & Hampson, 

2008a; for an earlier report of a non-significant contraceptive effect on OAE production, 

see McFadden, 2000).  Furthermore, a case report of a transsexual male undergoing 

hormone replacement therapy prior to sex re-assignment surgery showed evidence of 

SOAEs where previously there were none (McFadden et al., 1998).  In men, we recently 

found that concentrations of circulating testosterone are associated with CEOAE response 

amplitudes (Snihur & Hampson, 2009).  Similar results supporting a role for current 
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testosterone in OAE production have been found in rhesus monkeys through the effects 

that seasonal hormonal fluctuations have on CEOAEs (McFadden, Pasanen, Raper, 

Lange, & Wallen, 2006).  On the other hand, no known evidence exists for an effect of 

adult hormones on digit ratios.  Consequently, failure to observe a significant relationship 

between digit ratios and OAEs could simply be the result of uncontrolled postnatal 

hormonal influences that affect the stability of OAE patterns.  This explanation leads to a 

logical future experiment investigating the relationship between 2D:4D ratios and OAEs 

in young children under the age of six, so as to eliminate any potential postnatal 

hormonal influences that could differentially affect these two traits. 

Though correlations with 2D:4D were of primary interest in the present study, 

other digit ratios also were investigated.  Consistent with McFadden and Shubel (2002), 

sex differences in 2D:5D and 3D:4D, among others, were observed.  Moreover, two 

significant correlations were found between CEOAE response amplitudes and other digit 

ratios, despite a stringent criterion for significance of p = .005 that was adopted.  These 

correlations were of sufficient magnitude to be theoretically meaningful, were in the 

expected positive direction, and occurred for the digit ratio that showed the largest sex 

difference in our data, 2D:5D.  On the other hand, there are several reasons to believe 

these correlations could be spurious:  the associations were restricted to the left ear, with 

no indication of a similar correlation in the right ear, which is typically the stronger ear 

with respect to the magnitude of the CEOAE response, and no convergent evidence from 

the 2D:4D ratio.  Furthermore, a correlation of nearly the same size was found for right 

4D:5D, a ratio that was not sexually dimorphic in either the present work or in other 

literature (McFadden & Shubel, 2002).  Little data is available regarding ratios other than 
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2D:4D, and their association, if any, with prenatal androgens has not been established.  

To the extent that the sexual dimorphism in 2D:4D is attributable to androgens, however, 

one might expect other digit ratios that are sexually differentiated to have the same 

origins.  These correlations therefore bear following up in future research. 

Finally, it is possible that we failed to observe a correlation between OAEs and 

2D:4D because of limitations of digit ratios themselves as an acceptable index of prenatal 

testosterone exposure.  A recent study of women with complete androgen insensitivity 

syndrome (CAIS), a condition characterized by XY sex chromosomes but absent or 

dysfunctional androgen receptors (i.e., they are unable to respond to endogenous or 

exogenous androgens), offered compelling support for alternative influences on digit 

development (Berenbaum et al., 2009).  This study found that although women with 

CAIS showed feminized digit ratios that resembled those of typical female controls, all 

three groups under investigation (women with CAIS, typical women, and typical men) 

varied greatly in their 2D:4D ratios.  If individual differences in the digit ratio were under 

the sole guidance of prenatal androgens, then it would be expected that women with 

CAIS, in particular, would not vary to any appreciable extent because they cannot 

respond effectively to androgens.  However, the fact that the digit ratios in this 

experimental group did vary offers support for a mechanism other than prenatal 

androgens influencing digit development.  To the extent that this is true, the 2D:4D ratio 

may be an imprecise marker of prenatal androgen exposure and thus the failure of 

individual differences in 2D:4D, within each sex, to correlate with other traits 

hypothesized to be under prenatal control by androgens, would not be entirely surprising.   



93 

 

 

Future research is needed to clarify possible genetic components, and other 

potential factors, that regulate the development and expression of both digit ratios and 

OAEs.   
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4.1  Introduction 

Otoacoustic emissions (OAEs) are faint sounds produced by the outer hair cells of 

a normally functioning cochlea that can be detected in the external auditory canal using a 

highly sensitive microphone (Kemp, 1978).  An association between the production of 

OAEs and normal hearing sensitivity has been found (McFadden & Mishra, 1993; Probst, 

Lonsbury-Martin, Martin, & Coats, 1987), and these emissions are widely considered to 

be a natural by-product of an amplification mechanism in the cochlea designed to amplify 

low-intensity sounds (Davis, 1983).  Three types of OAEs have been identified: 1) those 

produced in the absence of external acoustic stimuli (spontaneous OAEs, SOAEs); 2) 

those produced in response to the deliberate presentation of acoustic stimuli, either tonal 

bursts or clicks (click-evoked OAEs, CEOAEs); and 3) those produced as a product of 

two simultaneously presented acoustic frequencies (distortion-product OAEs, DPOAEs). 

A sex difference in OAE production has been found in humans, with females, on 

average, producing greater numbers of SOAEs, greater overall power of SOAEs, and 

higher CEOAE response amplitudes compared to males (Burns, Arehart, & Campbell, 

1992; Penner, Glotzbach, & Huang, 1993; Snihur & Hampson, 2010a; for review, see 

Bilger, Matthies, Hammel, & DeMorest, 1990).  This robust sex difference has been 

observed in neonates, infants, and young children (Burns et al., 1992; Morlet et al., 1995; 

Strickland, Burns, & Tubis, 1985), as well as certain adult populations (Burns et al., 1992; 

Snihur & Hampson, 2010a; for review, see Bilger et al., 1990), and is most obvious in the 

first year after birth (Lamprecht-Dinnesen et al., 1998).  To explain the sexual 

dimorphism, it has been hypothesized that exposure to elevated androgens, specifically 

testosterone, in the male fetus during the critical window for sexual differentiation 
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masculinises the auditory system, including the structures responsible for OAE 

production (i.e., outer hair cells), resulting in a diminished capacity to generate OAEs in 

males relative to females (McFadden, 1993b, 1998, 2002).  A right-ear advantage in the 

production of both SOAEs and CEOAEs also has been reported (Bilger et al., 1990; 

Burns et al., 1992; Talmadge, Long, Murphy, & Tubis, 1993), but evidence to the 

contrary also exists (Collet, Gartner, Veuillet, Moulin, & Morgon, 1993). 

Support for the prenatal androgen hypothesis remains limited, due to the difficulty 

of studying prenatal effects in humans where the experimental manipulation of 

testosterone is not ethically permitted.  Female dizygotic twins who have male co-twins, 

however, have been shown to produce male-typical patterns of OAEs, presumably due to 

exposure to higher-than-normal levels of androgens in utero from their male co-twin 

(McFadden, 1993a).  Studies of sexual orientation and OAE production have shown that 

homosexual females lie intermediate to heterosexual females and heterosexual males with 

respect to the numbers and powers of SOAEs produced (McFadden & Pasanen, 1999), as 

well as CEOAE response amplitudes (McFadden & Pasanen, 1998).  The latter finding is 

congruent with the prospect that homosexual women are exposed to elevated levels of 

androgens prenatally, resulting in partial masculinisation of their brains, and subsequent 

behaviour (see also McFadden & Champlin, 2000; Hall & Kimura, 1995 for partial 

masculinisation of other traits).   

A recent study of spotted hyenas (Crocuta crocuta) offers support from a non-

human species for a prenatal hormonal effect on OAE production.  Both female and male 

hyenas are highly androgenised during prenatal development.  Female hyenas not only 

produce CEOAE response amplitudes similar to those present in male hyenas, but also the 
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prenatal treatment of both female and male hyenas with anti-androgens resulted in 

stronger CEOAE amplitudes in both sexes (McFadden, Pasanen, Weldele, Glickman, & 

Place, 2006).  Conversely, prenatal treatment with testosterone propionate has been found 

to reduce the amplitude of the CEOAE response in female sheep (McFadden, Pasanen, 

Valero, Roberts, & Lee, 2009).  These results support an effect of prenatal androgens on 

the production of OAEs and are consistent with the hypothesized dampening effect of 

testosterone exposure. 

Many sexual dimorphisms that are initiated by androgen exposure during the 

prenatal or perinatal period are subject to further regulation by levels of circulating 

hormones in adults (Goy & McEwen, 1980).  However, little empirical attention has been 

devoted to the possibility of a superimposed influence of adult steroids on OAE 

production.  McFadden et al. (2006) recently showed that male rhesus monkeys produce 

CEOAEs with lower response amplitude during the fall breeding season (i.e., elevated 

levels of sex steroids) compared to the summer non-breeding season (i.e., reproductively 

quiescent; lower levels of sex steroids).  Seasonal changes in levels of circulating 

testosterone might underlie the observed variation in response amplitude, though a 

connection to testosterone has yet to be established.  Androgens have been the focus of 

most existing research because of the mounting evidence that they exert organizational 

effects on the development of the auditory system, but other hormones might also play a 

role in the regulation of adult OAEs.  

An estrogenic influence has not been demonstrated to date, but would be 

consistent with several indirect observations.  In women, at least two case reports have 

described an infradian rhythm in the frequencies of emitted SOAEs that approximates the 
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length of the menstrual cycle (changes in OAE numbers or amplitudes were not reported).  

Three of 4 women studied by Bell (1992) showed cyclic fluctuation of about 6-14 Hz 

(0.4%) in the frequencies of the SOAEs they emitted and, in a single-case study, 

fluctuation in one woman‟s SOAE frequencies was reduced during periods of amenorrhea 

(Penner, 1995).  Endocrine verification of the menstrual cycle was not provided.  

McFadden (2000) speculated that oral contraceptive (OC) use, too, might affect OAE 

production in women.  This hypothesis has yet to be tested in a formal investigation.  

Previously undetected SOAEs were exhibited by a transsexual male while undergoing 

estrogen replacement (and androgen suppression) prior to sex-reassignment surgery 

(McFadden, Pasanen, & Callaway, 1998).  Hearing sensitivity, which shares 

physiological substrates with OAE production, exhibits variation over the menstrual 

cycle, with poorer auditory thresholds during menses when ovarian output is lowest (e.g., 

Swanson & Dengerink, 1988).  Recent demonstrations of estrogen receptor expression in 

the mouse, rat, and adult human cochlea (Stenberg, Wang, Fish, Schrott-Fischer, Sahlin, 

& Hultcrantz, 2001; Stenberg, Want, Sahlin, & Hultcrantz, 1999), notably the presence of 

ligand-dependent ERβ (a subtype of the estrogen receptor) in the inner and outer hair cells 

(Meltser et al., 2008), affords a potential mechanism by which circulating estradiol, the 

dominant estrogen in women of reproductive age, could influence OAE production.  

As a first step toward defining the role of adult steroid concentrations, the goal of 

the current study was to investigate whether the use of OCs affects the production of 

SOAEs and CEOAEs in women as predicted by McFadden (2000).  Oral contraceptives 

reliably suppress the ovarian production of estradiol and the rise in progesterone that 

follows ovulation (Kafrissen & Adashi, 2003).  If circulating estradiol levels are an 
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important regulator of OAE production, then we predict that the suppression of estradiol 

through OC use will influence the capacity to generate OAEs in women, as reflected in 

the number and overall power of SOAEs produced, and the response amplitude of 

CEOAEs elicited in response to acoustical stimulation.   

 

4.2  Methods 

4.2.1  Participants 

Male (n = 45) and female (n = 50) undergraduates, ranging in age from 17 to 25 

years, were recruited from The University of Western Ontario to participate in a study of 

sex differences in the auditory system.  All volunteers initially underwent standard 

clinical audiometric screening using a GSI-17 pure-tone air-conduction audiometer, at 

frequencies from 250 Hz to 8000 Hz, to ensure inner ear integrity.  Individuals who did 

not pass the screening criterion (i.e., who had audiometric thresholds greater than 25 dB 

hearing level at any of the tested frequencies) were not included.  Eligible participants 

were classified retrospectively into 3 groups based on their responses to a demographic 

and health questionnaire that was given following the OAE testing:  males (n = 39), 

females not using oral contraceptives at present (female non-OC users; n = 26), and 

females who self-identified as using oral contraceptives at present (female OC users; n = 

20).  Females in the OC group were taking standard low-dose OCs containing 20 to 30 

ug/day of ethinyl estradiol.  Sexually active females in the non-OC group used other 

methods of birth control that did not include any alternative form of hormonal 

contraception (e.g., injections, patch).  The demographics questionnaire also contained 

items that screened for health conditions previously shown to affect OAE production, 
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either temporarily or permanently, such as use of certain prescription drugs and ear or 

cochlear damage or surgery (McFadden & Plattsmier, 1984; Probst et al., 1987), which 

served as exclusionary criteria. 

The groups were well-matched on age:  males (M = 20.84 years + 2.59 SD), 

female non-OC users (19.65 + 1.83), and female OC users (20.09 + 2.25).   

 

4.2.2  General procedure and equipment. 

All testing took place in a darkened, quiet testing room between 1400h and 2000h.  

As classification into groups took place retrospectively, no attempt was made to assess 

OAEs at any particular stage of the menstrual cycle.  Retrospective assignment to groups 

ensured the experimenter was blind to participants‟ OC status during the OAE recording, 

identification, and scoring procedures.   

Participants reclined in a sofa chair during OAE detection.  The external auditory 

canal was examined for any debris or blockage using an otoscope (Welch Allyn 

MacroView 23820) to ensure the ear was not obstructed.  A foam ear-tip attached to an 

Etymotic ER-10B low-noise microphone system then was tightly fitted into the external 

auditory canal of the ear to be tested first.  The ear tested first, during both the 

audiometric and OAE procedures, and type of OAE tested first (SOAE or CEOAE) was 

counterbalanced.  The microphone system consisted of 2 small diameter coupling tubes 

protruding approximately 2 mm into the external auditory canal, connected to an 

Etymotic ER-2 miniature insert earphone, which served two functions: 1) to act as a 

conduit for the delivery of acoustic stimuli to the inner ear during the CEOAE recordings 

and 2) to allow the detection of emissions during both the SOAE and CEOAE testing.  
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Since previous research has shown that a period of habituation of approximately 15-20 

min with the ear-tip inserted into the auditory canal allows for better OAE detection 

(Whitehead, 1991; Zurek, 1981), participants remained still during a 15 min habituation 

period prior to commencing the SOAE and CEOAE testing. 

Emissions detected by the low-noise microphone system during the SOAE and 

CEOAE testing were amplified and filtered then stored digitally on a laptop computer for 

offline analysis and identification.  An ER 10-72 pre-amplifier received output from the 

microphone system and passed it along to a custom-built amplifier/filter.  Output 

responses were amplified by 30 dB to compensate for the loss in emission intensity from 

inner to outer ear and high-passed above 400 Hz to eliminate any extraneous bodily or 

environmental noises present during the recording.  The output was then digitized using a 

spectrum analyzer and analog-to-digital converter (National Instruments, DAQ AI-I6XE-

50) before being stored on a Macintosh G4 Powerbook (OS 9.2).  All data collection and 

offline analysis of the OAE data was accomplished using custom-written software in 

LabVIEW (National Instruments, Austin, Texas).  Programs were obtained courtesy of 

the laboratory of Dr. D. McFadden at the University of Texas at Austin.  

 

4.2.3  SOAE detection and identification 

For both SOAE and CEOAE recordings, participants were instructed to remain 

completely still throughout the procedure and were signalled by the experimenter as to 

the start and completion of each recording interval.  During SOAE testing, four 30-sec 

recordings of spontaneous activity were taken from each ear.  These raw SOAE 

recordings were then digitized with 16-bit resolution at a sampling rate of 25 kHz and 
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stored on the computer hard drive.  All further transformations, detection, and analysis of 

SOAEs were conducted offline.  The quietest 150 time-segments (655 ms in length; 

approximately 75% overlap with other time-segments) from the entire 2 min recording 

from each participant were selected, and fast fourier transforms of these segments were 

computed and averaged in the frequency domain.  This averaged spectrum corresponded 

to approximately 25% of the original 2 min sample.  Using an automated computer 

algorithm (for details, see Pasanen & McFadden, 2000), identification of true SOAE 

peaks was then determined.  To be defined as an SOAE, all of the following criteria had 

to be met: 1) the frequency of the peak resided between 1000 Hz and 9000 Hz; 2) the 

peak was at least 5 standard deviations above the averaged spectral baseline; and 3) the 

peak was not within 0.1 octaves of a stronger SOAE, as it has been previously suggested 

that true SOAEs cannot exist closer than 0.1 octaves of one another (Zwicker, 1990).  

Once identified as an SOAE, the peak was converted to sound-pressure level units (SPL) 

and stored for statistical analysis.  The dependent variables computed were the number of 

SOAEs produced, overall SOAE power summed across all the SOAEs identified in each 

ear (or across both ears), and the power per SOAE.   

 

4.2.4  CEOAE detection 

CEOAE detection was performed for two distinct click intensities (75 peSPL and 

69 peSPL) in each ear.  These click levels corresponded to the peak amplitude of a 1000 

Hz tone at the specified intensities and were generated as rarefaction DC pulses (97.7 ms 

in duration) by the laptop sound output system at a sampling rate of 44.1 kHz.  Each click 

intensity was calibrated prior to each CEOAE recording procedure.  Similarly, the level 
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of ambient noise present in the ear being tested was sampled and averaged to establish 

individual noise thresholds.  Once click calibration and noise floor threshold 

determination were completed, clicks were presented at a nominal rate of 10 per sec 

through the microphone system.  Evoked responses to the presentation of clicks were 

recorded unless the ambient noise during click presentation exceeded the pre-determined 

noise threshold by 0.25 standard deviations or more; if this occurred, presentation of 

subsequent clicks was delayed until the ambient noise returned to an acceptable level.  

Cochlear output was digitally sampled at 48 kHz, synchronized to the click stimulus as 

recorded directly from the sound output of the computer, and bandpass filtered at 1 to 5 

kHz.  In order to avoid interference from any acoustical ringing that resulted from the 

click presentation, a 6 ms delay was applied at the beginning of each response.  This 

corresponded to a 2 ms delay in the physical recording after presentation of the click, as 

well as a 4 ms delay during the off-line analysis of the click-evoked response.  The click-

evoked response used for statistical analysis consisted of an averaged response from 250 

of the quietest clicks (20.48 ms in duration) with the 4 ms delay applied.  The click-

evoked response was then converted from the root-mean-square output to SPL and stored 

for statistical analysis.  The dependent variable was therefore the amplitude of the click-

evoked response. 

 

4.2.5  Saliva collection and hormonal quantification 

The primary mechanism of OC action is to inhibit pituitary gonadotropins 

(Kafrissen & Adashi, 2003).  Thus endogenous production of estradiol by the ovaries is 

inhibited.  Estradiol concentrations are suppressed to levels typical of menses or below 
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(e.g., Gaspard, Romus, Gillain, Duvivier, Demey-Ponsart, & Franchimont, 1983).  

Bioavailable estradiol, the fraction of the hormone unbound to sex-hormone binding 

globulin (SHBG), is even lower and challenges the technical limits of detection by 

conventional assays in serum or saliva.  Most OCs also reduce bioavailable testosterone 

levels (Wiegratz et al., 2003) but effects are more variable.  Therefore, we quantified 

bioavailable testosterone using saliva in order to evaluate whether any changes in OAEs 

that result from OC use could be explained by testosterone rather than by the suppression 

of estradiol levels.   

Saliva was collected from each participant immediately prior to the SOAE and 

CEOAE recordings.  Participants refrained from eating, drinking (except water), smoking, 

or brushing their teeth for 1 hr prior to the experiment.  Before providing a sample of 

saliva, the mouth was rinsed with water to eliminate residual debris.  An inert sugarless 

gum (Trident™ peppermint) was used to stimulate saliva flow.  This stimulant is known 

to be inert in the assay employed here (cf., van Anders, 2010).  The saliva was collected 

into a polystyrene culture tube that had been pre-treated with sodium azide to prevent 

bacterial degradation.  The samples were covered with parafilm and allowed to settle at 

room temperature for 18-24 hr, after which they were stored at -20ºC until assay. 

Assays were performed in a single batch by an experienced lab technician.  

Testosterone was measured by radioimmunoassay using an 
125

I Coat-a-Count kit for total 

testosterone (Diagnostic Products Corporation, Los Angeles, CA) modified for saliva 

according to an established protocol (Moffat & Hampson, 1996; Puts, Cardenas, Bailey, 

Burriss, Jordan, & Breedlove, 2010).  The saliva was centrifuged and a double ether 

extraction was carried out prior to the assay.  All samples were analyzed in duplicate.  
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The lower limit of detection for the assay was equal to 2.5 pg/mL and the average intra-

assay coefficient of variation was 5.2 %.  Concentrations are expressed in picograms per 

milliliter of saliva (pg/mL). 

 

4.3  Results 

Mixed-effects ANOVAs with ear and, where applicable, click level as repeated 

measures were used to analyze group differences in SOAE production and CEOAE 

response amplitude.  One-way ANOVA was used to analyze group differences in SOAE 

power and testosterone concentrations.  Fisher‟s Least Significant Difference test was 

used to perform post-hoc pairwise comparisons.  Effect sizes were expressed using 

Cohen‟s d (Cohen, 1977).  By convention an effect size of d = .50 is considered a medium 

effect and .80 or above is considered large (Cohen, 1977). 

 

4.3.1  SOAEs 

The hypothesis predicting an effect of OC use on SOAE production in females 

was supported, as female OC users produced significantly less numerous and weaker 

SOAEs compared to female non-OC users.   

With respect to the total number of SOAEs produced, a significant main effect of 

group was found [F(2,82) = 7.47, p = 0.001; see Figure 4.1], with female non-OC users 

producing a greater number of SOAEs summed across both ears compared to female OC 

users (p = 0.005) and compared to males (p < 0.001).  The difference between non-OC 

females and males confirms the sex difference in SOAE production that has been reported 

in previous studies (e.g., Burns et al., 1992; Strickland et al., 1985).  No significant  



113 

 

 

T
o

ta
l 

N
u

m
b

e
r 

o
f 

S
O

A
E

s

0

1

2

3

4

5

6

7

8
N o n -O C  F e m a le s

O C  F e m a le s

M a le s

 

Figure 4.1.  Total number of SOAEs produced in both ears.  Female non-OC users 

produced significantly greater numbers of SOAEs than either female OC users or males.  

Error bars represent SEM. 
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difference was found between the female OC users and males.  A right-ear advantage in 

SOAE production was evident, with a greater overall number of SOAEs produced in the 

right ear than the left ear [F(1,82) = 11.34, p = 0.001; see Figure 4.2].  The ear advantage 

was seen most clearly among the female non-OC users, though the interaction between 

group and ear was only marginally significant [F(2,82) = 2.53, p = 0.086].  Effect sizes 

for the differences between the non-OC females and OC females and the non-OC females 

and males were 0.95 and 0.93, respectively. 

Participants who did not produce any SOAEs were not included in the analyses of 

SOAE power.  A significant difference in overall SOAE power, summed across both ears, 

was found among the three groups as shown in Figure 4.3, F(2,69) = 8.62, p < 0.001. 

Post-hoc comparisons revealed that female non-OC users produced SOAEs with greater 

power than males (p < 0.001) and female OC users (p = 0.03), whereas the mean for OC 

users was shifted in the male direction and not significantly different from the male 

group.  Effect sizes for the group differences between non-OC females and OC females 

and between non-OC females and males were 0.83 and 1.11, respectively.  This pattern 

was mainly attributable to power in the right ear, F(2,61) = 4.87, p = 0.011.  Female non-

OC users showed greater overall power in the right ear than either males (p = 0.004) or 

female OC users (p = 0.033).  There was no significant difference between OC users and 

males (p = 0.746).  Group differences in the left ear were not significant, F(2,50) = 0.94, 

p = 0.397.   To disambiguate whether the difference in overall power more likely resulted 

from larger numbers of SOAEs or larger amplitudes of the individual OAEs produced, 

ANOVA was performed using the power per SOAE as the dependent variable.  Though  
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Figure 4.2.  Number of SOAEs produced in the right and left ears.  An overall right ear 

advantage was observed, most prominently among female non-OC users.  Error bars 

represent SEM. 
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Figure 4.3.  Total power of all SOAEs produced in both ears.  Female non-OC users 

produced SOAEs with greater power than female OC users and males.  Error bars 

represent SEM. 
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the rank ordering of the group means was the same, power per SOAE considered on its 

own did not significantly differentiate the 3 groups, F(2,60) = 0.79, p = 0.458. 

 

4.3.2  CEOAEs 

It was hypothesized that females using OCs would differ in the amplitude of their click-

evoked responses compared to females not currently using OCs.  Figure 4.4 shows the 

average CEOAE response amplitude in female non-OC users, female OC users, and 

males for all ear and click level combinations.  A significant main effect of group 

[F(2,75) = 8.89, p < 0.001] and main effect of click level [F(1,75) = 621.73, p < 0.001] 

was found.  Female non-OC users produced the greatest overall CEOAE response 

amplitudes, whereas males produced the lowest amplitudes (p < 0.001 by post-hoc test).   

There was no significant difference between the ears.  Significant interactions also were 

found between click level and group [F(2,75) = 5.97, p = 0.004] and between click level 

and ear [F(1,75) = 5.30, p = 0.024].  Tests of simple main effects were used to break 

down the interaction between click level and group.  At 69dB, the non-OC females 

showed significantly greater response amplitudes than either OC females (p = 0.035) or 

males (p < 0.001) with effect sizes of 0.54 and 1.13, respectively, whereas at 75dB the 

difference between non-OC females and OC females was marginally significant (p = 

0.076; d = 0.55).  OC females did not differ significantly from males at either intensity (p 

= 0.099 and p = 0.194 for the two click levels, respectively). 

 

 

 



117 

 

 

C lic k  L e v e l (d B )  a n d  E a r  o f P re s e n ta t io n

M
e

a
n

 r
m

s
 A

m
p

li
tu

d
e

 o
f 

C
E

O
A

E

  
  

  
fr

o
m

 1
 -

 8
 k

H
z

 (
d

B
 S

P
L

)

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2
N o n -O C  F e m a le s

O C  F e m a le s

M a le s

R ig h t 7 5 R ig h t 6 9 L e ft 7 5 L e ft 6 9

 
 

Figure 4.4.  Mean CEOAE response amplitude in the right and left ears at two click 

levels (75dB and 69dB).  At 69dB, female non-OC users showed significantly greater 

response amplitudes than either female OC users or males.  At 75dB, the difference 

between non-OC users and OC users was marginally significant.  Error bars represent 

SEM. 
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Figure 4.5.  Mean salivary testosterone concentrations in the three groups.  Female non-

OC users had significantly higher circulating testosterone than OC users.  Error bars 

represent SEM. 
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4.3.3  Testosterone 

As shown in Figure 4.5, there was a significant group difference in salivary 

testosterone concentration in the current study, F(2,90) = 227.56, p < 0.001.  Males, as 

expected, had significantly higher testosterone levels compared to female non-OC users 

and OC users (both ps < 0.001).  A post-hoc t-test was run to compare the two female 

groups to determine whether OC use had the expected suppressant effect on testosterone 

(Bancroft, Sherwin, Alexander, Davidson, & Walker, 1991).  OC users were confirmed to 

have significantly lower salivary testosterone levels compared to female non-OC users, 

t(46) = 34.50, p < 0.001. 

 

4.4  Discussion 

The present study is among the first to investigate the effects of reproductive 

steroids on OAE production in adults.  As predicted, significant differences between OC 

users and non-users were found.  Female OC users produced significantly lower numbers 

of SOAEs, SOAEs with less total power and less power in the right ear particularly, and 

had significantly lower CEOAE response amplitudes than female non-OC users.  The 

lowered response amplitude was significant at the 69dB click level and approached 

significance at 75dB.  For each of the OAE variables, the OC users showed a pattern that 

was shifted in a direction away from the pattern typically seen in non-OC females.  That 

is, they were muted or diminished in their OAE output and thus, may be considered 

defeminised with respect to this particular trait.  The term „defeminization‟ is used in the 

neuroendocrine literature to denote the reduction in a female-typical characteristic 

(Breedlove & Hampson, 2002). 
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The present results confirm the hypothesis put forward by McFadden (2000) that 

OC use in women may alter patterns of OAE production.  Despite retrospectively 

combining data from two earlier published studies, McFadden (2000) was unable to 

confirm a difference between OC users and non-users on four different measures of OAE 

strength.  Thus, the present study is the first to find statistical support for this proposition.  

The difference between the current results and those of McFadden (2000) may be due to 

changes in the formulations of OCs that have occurred over the past 20 years.  McFadden 

(2000) found no significant differences between OC users and non-users, but current OC 

formulations are exceedingly low in estrogen activity, as indicated by reports of 

decreased bone density in girls who have been using OCs for an extended period of time 

compared to non-users (Teegarden, Legowski, Gunther, McCage, Peacock, & Lyle, 

2005).  In the current study, female OC users were defeminised with respect to the 

number of SOAEs produced, total SOAE power, and CEOAE response amplitude, 

offering empirical support for an effect of OC use, as well as support for the broader idea 

that circulating levels of adult hormones may influence OAE production.  The present 

data suggest that OC use in women diminishes, or dampens, the cochlear mechanisms 

responsible for SOAE and CEOAE production.   

 Female OC users in the present study did not demonstrate significant sex 

differences and resembled males in each measured element of OAE production.  In 

contrast, sexual dimorphism was confirmed when the normally-cycling females (i.e., OC 

non-users) were compared to males.  Previous studies have found similar sex differences, 

both in SOAEs and CEOAEs (e.g., Burns et al., 1992; Morlet et al., 1995; Strickland et 

al., 1985) in samples of participants that were either not using OCs (e.g., neonates, 
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infants, and children) or that contained a mix of OC users and non-users (Penner et al., 

1993).  Sex differences in OAE production generally have been attributed to androgen 

exposure in utero.  The prenatal androgen hypothesis posits that exposure of the cochlea 

to elevated levels of testosterone during a critical period in development dampens the 

capacity of the outer hair cells to produce OAEs in the male fetus.  This hypothesis has 

been invoked to explain the sexual dimorphism, as well as reductions in SOAE and 

CEOAE production seen in females with male co-twins (McFadden, 1993a) and in 

females of differing sexual orientation (McFadden & Pasanen, 1998, 1999).  The sex 

difference and, by implication, the androgen effect is often found to be more pronounced 

in the right ear than the left (Bilger et al., 1990; Burns et al., 1992; Talmadge et al., 1993), 

which is reminiscent of the ear differences found in the present study.  Though an 

organizational effect of prenatal androgens on the basilar membrane might exist, and can 

explain the existence of sex differences in OAE production in prepubertal children (Burns 

et al., 1992; Morlet et al., 1995; Strickland et al., 1985), it cannot explain the effects of 

OC use observed here.  The fact that the sex difference was attenuated so markedly 

among women choosing to use OCs suggests that the adult hormonal milieu is at least as 

important, if not more important, than are prenatal influences in determining the adult 

pattern of OAE production.   

OCs alter circulating hormone concentrations in several ways.  The primary 

mechanism of contraceptive action is the suppression of circulating estradiol and, 

secondarily, progesterone.  Alterations in ovarian hormones are perhaps the most likely to 

underlie the present effects, but testosterone levels also are altered by OC use, as 

confirmed in the present data.  We found that bioavailable testosterone levels were 
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substantially decreased in the OC users.  Thus, one question that arises is whether 

decreased testosterone can explain the observed effects of OCs on OAE production.  This 

seems unlikely for several reasons.  Studies of the prenatal effects of testosterone, 

including animal studies where testosterone levels were manipulated experimentally (e.g., 

McFadden et al., 2009), have shown that the direction of testosterone‟s effects is opposite 

to what was found in the present study (i.e., higher not lower levels of testosterone were 

associated with diminished OAE production).  Little work is available on the effects of 

adult testosterone, but recent studies suggest that the effect of adult testosterone, too, is to 

diminish OAE production.  In male rhesus monkeys, for example, decreased CEOAE 

response amplitudes were found during the breeding season when testosterone is elevated, 

compared to the non-breeding season when testosterone is low (McFadden et al., 2006).  

Further evidence that circulating testosterone may dynamically regulate OAE production 

has been offered by our lab.  Snihur and Hampson (2010b) reported a negative correlation 

between the level of testosterone in the circulation and CEOAE response amplitude in 

adult men.  In the current study, OC users showed the reverse pattern extremely low 

testosterone accompanied by reduced OAE production a result that is inconsistent with all 

previously observed associations between testosterone and OAEs.  If testosterone were 

the functional hormone involved, we would expect to find lower OAE production among 

non-OC users, who exhibited higher testosterone, not among OC-users.  It seems unlikely 

that elevated testosterone would be associated with diminished OAEs in numerous prior 

studies yet exert the opposite effect in the current study.  Therefore, another mechanism 

influencing OAEs must exist.  
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A possible explanation for the observed results is that estradiol, the primary form 

of estrogen that is present in females, is actively involved in regulating OAE production 

in the female cochlea.  Recent studies in fact support a potential role for estradiol in 

normal cochlear functioning.  Meltser et al. (2008), for example, showed that ERβ (an 

estrogen receptor subtype) in the mouse cochlea is involved in auditory sensitivity and 

protection from acoustic trauma, suggesting that estradiol may exert prophylactic effects 

on hearing.  Further research in mice has shown that estradiol protects against age-related 

hearing loss (Simonoska et al., 2009).  Aging women receiving hormone replacement 

therapy tend to have better hearing than women not on therapy (Hultcrantz, Simonoska, 

& Stenberg, 2006).  ER and ER expression have been described in segments of the 

mouse, rat, and adult human cochlea, including the outer hair cells, raising the probability 

that estradiol actively affects cochlear function (Stenberg et al., 1999, 2001).  Because 

previous work has established a relationship between hearing sensitivity and OAE 

production in humans (McFadden & Mishra, 1993; Probst et al., 1987), it is conceivable 

that the group differences in OAE production observed among women in the present 

study are due to a difference in estradiol availability to bind to ligand-dependent receptors 

in the inner ear.   

Previous studies of humans or other primates have implicated estrogen indirectly 

in OAE production.  But the possibility that estrogen modulates cochlear function has not 

received dedicated research attention and, as a result, most existing evidence is anecdotal.  

The acoustic frequencies of emitted SOAEs have been reported to fluctuate with the 

menstrual cycle (Bell, 1992; Penner, 1995), though studies are limited to case-reports of a 

small number of individual women.  SOAE frequencies peaked near the suspected time of 
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ovulation with some evidence of a second maximum between ovulation and menses 

(Penner, 1995), a pattern that would support an estradiol-driven effect.  The prospect of 

an estrogen-dependent mechanism is further supported by a case-study of a transsexual 

male undergoing estrogen replacement therapy prior to sex-reassignment surgery, in 

whom SOAEs appeared at frequencies where there previously were none (McFadden et 

al., 1998). In a recent study by McFadden et al. (2006), a group of female rhesus monkeys 

showed greater CEOAE response amplitudes during the fall breeding season when 

estradiol levels are elevated (Walker, Wilson, & Gordon, 1984), although this pattern did 

not reach statistical significance given the small sample size available.  In the current 

study, normally-cycling females who did not use OCs produced more female-typical 

OAEs than females whose ovarian hormones were suppressed by their use of OCs.  Thus 

the data from the current investigation, as well as previous studies, are consistent with the 

possibility that elevated levels of circulating estradiol in women are associated with 

enhanced OAE production, whereas lower levels are associated with diminished OAEs.  

The motility of the outer hair cells is controlled by acetylcholine (Frolenkov, 2006), a 

transmitter known to be modulated by estradiol levels. 

An effect of estradiol on OAE production would complement studies documenting 

a sex difference in the auditory brainstem response (ABR) and the ability of estradiol 

administration in ovariectomized rats to modify ABR latencies reflecting changes in both 

cochlear and brainstem processing (Coleman, Campbell, Cooper, Welsh, & Moyer, 

1994).  Shortened latencies in the ABR have been found in postmenopausal women 

taking hormone replacement, especially with estrogen-only replacement (Khaliq, Tandon, 

& Goel, 2005).  Shortened latencies also have been found during the periovulatory phase 
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of the menstrual cycle in naturally-cycling women when estradiol but not progesterone 

levels are elevated (Serra, Maiolino, Agnello, Messina, & Caruso, 2003).   

Although we favour an explanation in terms of estradiol, it should be noted that 

the use of OCs also reduces progesterone production due to the prevention of ovulation in 

women on OCs.  As a result, the increase in progesterone that normally occurs during the 

luteal phase of the cycle is absent.  To our knowledge, progesterone receptors in the 

cochlear structures integral to OAE production have not been found.  Though no current 

data are available that speak to the issue of progesterone modifying OAEs, support for a 

potential effect of progesterone on auditory evoked potentials in humans has been 

provided (Elkind-Hirsch, Wallace, Malilnak, & Jerger, 1994) with progesterone, given in 

the form of medroxyprogesterone acetate, attenuating the effects of estradiol   It should be 

emphasized that the higher-order mechanisms regulating these neural responses in the 

brainstem differ greatly from those responsible for OAE production in the inner ear.  

Thus, at present, there is little reason to think that progesterone may influence OAE 

production. 

We have assumed that if ovarian hormones play a role in influencing OAE 

production, they do so via direct interaction with the outer hair cells in the cochlea 

through a receptor mechanism.  However, the possibility that an indirect effect of the 

hormonal changes induced by OCs could be responsible for the changes in OAE 

production exists.  For example, differences in body temperature exist between normally-

cycling women and OC users.  In normally-cycling women, there is an increase in basal 

metabolic rate after ovulation, reflecting the thermogenic effects of progesterone.  This 

will be absent in OC users, where ovulation is suppressed.  These differences in body 
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temperature have been previously reported (Kattapong, Fogg, & Eastman, 1995).  Hall 

(1992) described an influence of body temperature changes on certain auditory properties, 

including auditory brainstem responses, although no such evidence exists for the effects 

of body temperature on OAE production.  Indeed clinical studies have shown no changes 

in OAEs except under extreme departures from normo-thermia.  In this respect, it appears 

unlikely that body temperature differences due to hormonal changes induced by OC use 

could indirectly influence SOAEs and CEOAEs, although other secondary mechanisms 

with effects on OAEs may as of yet be identified. 

The current study offers novel support for an effect of adult reproductive steroid 

levels on OAE production.  Relative to a matched group of female controls who were not 

currently using oral contraception, OC users showed a defeminised pattern of OAEs, 

characterized by fewer numbers of SOAEs, SOAEs with less total power, and smaller 

CEOAE response amplitudes in response to acoustical stimulation.  A comparison group 

of males showed the lowest numbers of SOAEs, lower total SOAE power, and lower 

CEOAE response amplitudes, consistent with previously established sex differences.  OC 

users did not differ significantly from males in any of the measured OAE parameters.  

Defeminisation of SOAEs and CEOAEs in women using OCs is likely to be mediated 

through an ovarian steroid-dependent mechanism. 
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5.1  Introduction 

 Otoacoustic emissions (OAEs) are a natural by-product of the cochlea of the inner 

ear that are propagated into the external ear canal and can be detected using a sensitive 

microphone system (Davis, 1983; Kemp, 1978).  OAEs can be produced either 

spontaneously (SOAEs), or in response to acoustic stimuli (clicked-evoked; CEOAEs), or 

else as a by-product of two simultaneously presented frequencies (distortion-product; 

DPOAEs).  The production of OAEs is highly dependent on normal cochlear functioning, 

as shown by previous research supporting a relationship between hearing sensitivity and 

OAE production (McFadden & Mishra, 1993) and by evidence that OAEs are absent in 

regions of the frequency spectrum with sensorineural hearing deficits greater than 30 dB 

(Probst, Lonsbury-Martin, Martin, & Coats, 1987).  OAEs tend to be differentially 

produced between the right and left ears, with the right ear producing more frequent 

SOAEs and stronger CEOAEs in response to acoustic stimuli than the left (Burns, 

Arehart, & Campbell, 1992; Talmadge, Long, Murphy, & Tubis; but see Collet, Gartner, 

Veuillet, Moulin, & Morgon, 1993 for an exception).  Further, sexual dimorphism in 

OAE production has been reported in some studies, with females producing larger and 

more numerous SOAEs and stronger CEOAEs than males (Bilger, Matthies, Hammel, & 

DeMorest, 1990; Burns et al., 1992; Lamprecht-Dinnesen et al., 1998; Penner, Glotzbach, 

& Huang, 1993; Strickland, Burns, & Tubis, 1985).  Because the sexual dimorphism is 

present in newborns and as early as 30 weeks of gestational age (Morlet et al., 1995), it 

has been proposed that prenatal androgen exposure in the male fetus dampens the 

capacity for OAE production by affecting the development of cochlear structures, 
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specifically the outer hair cells, which are integral to the production of OAEs (see 

McFadden, 2002, 2009). 

Support for the prenatal androgen hypothesis has come from studies of specialized 

human and non-human populations.  Masculinised OAE patterns have been found in 

female dizygotic twins who have male co-twins, presumably due to diffusion of 

androgens from the male fetus during prenatal development (McFadden, 1993a).  Partial 

masculinization of SOAEs and CEOAEs has been observed in bisexual and homosexual 

females (i.e., SOAEs and CEOAEs that were intermediate to heterosexual females and 

heterosexual males) (McFadden & Pasanen, 1998, 1999).  These data remain 

controversial, because a role for androgens in the establishment of sexual orientation in 

humans is uncertain.  The lack of a sex difference in CEOAE response amplitude in male 

and female spotted hyenas, a species in which both chromosomal sexes are highly 

androgenised during prenatal development, offers further support for the masculinisation 

of OAEs by androgens prenatally (McFadden, Pasanen, Weldele, Glickman, & Place, 

2006).  The effect of prenatal testosterone on OAE production also has been demonstrated 

in sheep, as substantially weaker, or masculinised, CEOAEs are evident in female sheep 

exposed prenatally to testosterone propionate compared to female sheep exposed to a 

normal prenatal environment (McFadden, Pasanen, Valero, Roberts, & Lee, 2009).  

 In addition to the proposed effect of prenatal androgens, recent evidence has 

raised the prospect of a superimposed influence of adult steroid levels on OAE 

production.  Though highly preliminary, a study in rhesus monkeys has offered novel 

support for an effect of seasonal changes in circulating testosterone concentrations on 

CEOAE production (McFadden, Pasanen, Raper, Lange, & Wallen, 2006).  It was 
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reported that male rhesus monkeys produced CEOAEs of lower amplitude during the 

breeding season when testosterone levels are elevated compared to the non-breeding 

season when testosterone levels are low, a pattern that is consistent with the hypothesized 

dampening effects of prenatal androgens on OAE production.  In humans, seasonal 

fluctuations in men‟s testosterone levels have been associated with variations in other 

anatomical or physiological traits such as waist-to-hip ratio (Svartberg, Jorde, Sundsfjord, 

Bonaa, & Barrett-Conner, 2003), but to our knowledge, an association between 

circulating testosterone and OAE production in men has not been investigated.  The 

demonstration of seasonal variation in human OAEs, in association with testosterone 

levels, would provide convergent support for the rhesus monkey data and constitute 

further evidence in favour of an activational, not just organizational, effect of testosterone 

on the cochlear mechanisms that underlie the production of OAEs.  If the auditory system 

is dynamically regulated by testosterone levels in men, it would significantly expand our 

theoretical understanding of the OAE model and its neuroendocrine basis.  

 Seasonal variation in testosterone production has been reported in humans, but 

patterns are not as clear and reliable as they are in non-human species.  Typically, 

seasonal elevations in testosterone production have been observed in men during the 

autumn months (Dabbs, 1990; Moffat & Hampson, 2000; Svartberg et al., 2003; van 

Anders, Hampson, & Watson, 2006), although seasonal peaks have also been reported 

during winter (Perry, Miller, Patrick, & Morley, 2000; Svartberg, Jorde, Sundsfjord, 

Bonaa, & Barrett-Connor, 2003) and even in the summer months, specifically June 

(Merrigiola, Noonan, Paulsen, & Bremner, 1996). 
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The current study investigated the association between circulating testosterone 

and CEOAEs in adult men.  Specifically, we examined whether expected seasonal 

differences in human testosterone production were associated with discernible differences 

in CEOAE response amplitude.  Click-evoked responses at two different intensities were 

recorded, in both the right and left ears.  Saliva was collected and analyzed to quantify the 

bioavailable testosterone levels present during the auditory recording.  It was 

hypothesized that men would exhibit seasonal differences in testosterone production, 

which in turn would differentially affect their CEOAE response amplitudes.  Specifically, 

based on the findings in rhesus macaques (McFadden et al., 2006), periods of elevated 

seasonal testosterone production were expected to result in lower, or more male-typical, 

CEOAE response amplitudes, and periods of reduced seasonal testosterone production 

were expected to result in greater, or less male-typical, CEOAE response amplitudes. It 

was also hypothesized that an overall negative correlation would be present between 

individual differences in testosterone levels and CEOAE production, offering further 

support for a postnatal dampening effect of testosterone on OAE production. 

 

5.2  Materials & Methods 

5.2.1  Participants 

Male (n = 67) and female (n = 37; not using oral contraceptives or OCs) 

undergraduates between the ages of 17 and 25 were recruited from the University of 

Western Ontario.  All were part of a larger study of sex differences in the auditory 

system.  Women using hormonal contraceptives were excluded as oral contraceptives 

suppress bioavailable testosterone levels (Bancroft, Davidson, Warner, & Tyrer, 1980).  
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Participants initially underwent an inspection of the external ear canals using an otoscope 

(Welch Allyn MacroView 23830), to ensure there was no debris/blockage that might 

interfere with the auditory measures being taken.  This was followed by standard clinical 

audiometric screening (GSI-17 pure-tone air conduction audiometer with Telephonics 

TDH-39P headphones) to verify normal hearing thresholds.  Because previous research 

has shown a relationship between normal hearing and the capacity for OAE production 

(McFadden & Mishra, 1993; Probst et al., 1987), any participant exhibiting a hearing 

threshold greater than 25 dB at any of the tested frequency levels between 250 and 8000 

Hz was excluded.  A total of four participants failed to meet the audiometric hearing 

criterion and were excluded on this basis. 

 

5.2.2  General Procedure 

CEOAE data were collected, using an observational design, during all months of 

the year except two.  To control for time of day, the testing was conducted in a darkened, 

quiet testing room between 1400h and 2000h, a period in the diurnal cycle during which 

changes in circulating testosterone levels are at a minimum (Rose, Kreuz, Holaday, Sulak, 

& Johnson, 1972). 

 

5.2.3  Saliva Collection and Radioimmunoassay 

On the test day, prior to CEOAE recording, participants provided a saliva sample 

for analysis of current levels of testosterone and cortisol.  Cortisol was included as a 

control hormone which, like testosterone, is a steroid and exhibits a diurnal rhythm in its 

pattern of basal release similar to testosterone.  No known relationship between cortisol 
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and OAE production exists.   To optimize the quality of the saliva, participants were 

asked to refrain from eating, drinking (except water), smoking, and brushing their teeth 

for 1 hr prior to the beginning of the experiment.  Saliva was collected into polystyrene 

test tubes using an inert sugarless gum (Trident™) to stimulate saliva flow.  Gum can 

alter apparent steroid concentrations in some types of assays (van Anders, 2010) but is 

known to be inert in the techniques used here (see below).  The tubes for saliva collection 

were pre-treated with sodium azide to prevent bacterial growth in the sample.  The tubes 

were stored at -20 C until analysis. 

The saliva was assayed in a single batch by an experienced lab technician.  After 

ether extraction, a 
125

I Coat-a-Count kit for total testosterone (Diagnostic Products 

Corporation, Los Angeles, CA) was used to quantify testosterone concentrations.  The 

Coat-A-Count method was modified for saliva according to an established protocol 

(Moffat & Hampson, 1996).  Samples were analyzed in duplicate.  The obtained 

sensitivity was 2.5 pg/mL and the intra-assay coefficient of variation was 4.4%.  

Testosterone was expressed in picograms per milliliter of saliva (pg/mL).  For cortisol, 

the samples were analyzed directly, in duplicate, using a Coat-A-Count 
125

I cortisol kit 

(Diagnostic Products Corporation, Los Angeles, CA) following the manufacturer‟s 

protocol for saliva.  Cortisol was analyzed in two separate assay.  The sensitivity of both 

of the assays was 0.69 nmol/L, and intra -assay coefficients of variation for the assays 

were 4% and 4.3%, respectively.  Cortisol concentrations were expressed in nanomoles 

per liter (nmol/L). 
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5.2.4  COAE Recording 

Participants were asked to sit in a reclined sofa chair for the duration of the 

CEOAE recording process.  A foam ear-tip was placed onto an ER-2 earphone attached to 

a low-noise microphone system (Etymotic ER-10B) and inserted into the auditory canal.  

This microphone system consisted of two silicon tubes that protruded approximately 2 

mm into the auditory canal.  One tube functioned as a delivery conduit for click stimuli 

generated by the computer system, whereas the other tube served as an opening for the 

detection of evoked OAEs.  In accordance with previously reported initializing effects on 

OAE production, participants were asked to relax and remain still for approximately 15 

min in order to acclimatize to the testing environment (Whitehead, 1991). The ear tested 

first was counterbalanced within each sex. 

Rarefaction DC pulses, approximately 100 ms in duration and sampled at a rate of 

44.1 kHz, were produced by the built-in sound output of the laptop (MacIntosh G4 

Powerbook OS 9.2) and served as the medium for generating click-evoked responses.  

Two separate computer generated click levels, whose maximal amplitudes corresponded 

to the peak amplitude of a continuous 1000 Hz tone presented at the desired intensity, 

were used for CEOAE screening (75 peSPL and 69 peSPL).  Data were individually 

obtained and recorded for both click levels in both ears of each participant.  Initially, 

presentation of acoustic clicks was calibrated at the desired intensity to obtain a nominal 

presentation of approximately 10 clicks per second that would be used during the final 

detection phase of the CEOAE screening process.  Next, a 20 ms sample of the ambient 

noise within the auditory canal, in the absence of any acoustic clicks, was recorded to 

establish a baseline noise threshold and click-response artifact rejection level.  During 
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detection of click-evoked responses (the final phase of CEOAE screening), elevated 

levels of noise in the auditory canal above the established rejection level resulted in a 

delay in the presentation of subsequent clicks until the ambient noise decreased to an 

acceptable level.  

During the final phase of CEOAE screening, trains of acoustic clicks were 

presented through the low-noise microphone system and evoked-responses were 

recorded.  A delay of 4 ms after the presentation of each individual click was applied to 

avoid any potential acoustical ringing in the ear canal, after which a 40 ms response was 

detected and recorded.  The raw acoustic output was then passed first through a pre-

amplification device (Etymotic ER10-72) and then on to a custom-built low-noise 

amplifier and filter system.  As a result, the acoustic output was further amplified by 30 

dB and high-pass filtered above 400 Hz.  The raw output was then passed on to a 

spectrum analyzer and analog-to-digital converter (National Instruments, DAQ AI-16XE-

50) before being stored in digital form on the laptop. 

Following previously established procedures (McFadden, 1998), evoked 

responses to the first 250 presented acoustic clicks judged to be artifact-free were 

recorded, averaged, and analyzed off-line using custom-written software in LabVIEW 

(National Instruments, Austin, Texas).  During off-line analysis, the first 2 ms of the 

averaged waveform was eliminated to further avoid any potential effects of ringing in the 

ear canal from the acoustic clicks.  The subsequent 20.48 ms segment of the waveform 

was bandpass filtered at 1.0 to 8.0 kHz, and the root-mean-square output of the filter was 

converted to SPL.  This was then recorded as the click-evoked response for the tested ear 

at the specific click level used. 
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5.3  Results 

To confirm that a sexual dimorphism in CEOAE response amplitude was present, 

a mixed-effects ANOVA was performed, with ear tested and click level as repeated 

factors and sex as the between-subjects factor.  Data for eight participants were 

unavailable due to technical difficulties during the CEOAE recording (e.g., elevated 

environmental background noise).  As reported by other labs (e.g., McFadden, 1993a; 

McFadden & Pasanen, 1998), men in the present sample produced CEOAEs with 

significantly smaller response amplitudes compared to women [F(1,89) = 12.60, p = 

0.001; see Figure 1].  In agreement with prior work, the ANOVA showed that the 

amplitude of the evoked response to the 75dB click level was significantly greater than 

the amplitude of the response to 69dB, F(1,89) = 853.39, p < 0.001.  Two-way 

interactions between sex and click level [F(1,89) = 12.37, p = 0.001] and between ear 

tested and click level [F(1,89) = 5.26, p = 0.024] were found; the sex difference was 

slightly larger in magnitude at 69dB than at 75dB.   

An overall sex difference in bioavailable testosterone was confirmed.  As 

expected, men (M = 79.8 pg/mL, SD = 22.9) had significantly higher circulating 

testosterone than women [M = 16.5 pg/mL, SD = 4.2; F(1,89) = 260.98, p < 0.001].  The 

values for both sexes fell within the normal range for time of day (Dabbs et al., 1995).  

Cortisol concentrations did not exhibit a sex difference, F(1,89) = 2.89, p = 0.93. 

 One-way ANOVA was performed to test whether the expected seasonal variation 

in testosterone production was present among the male participants.  One male outlier 

was removed from the analysis (testosterone greater than 3 SD above the mean).  An 

observed seasonal pattern would allow for a parallel analysis to determine if seasonality  
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Figure 5.1.  Mean CEOAE response amplitude for the right and left ears at two click 

levels (75dB and 69dB).  Error bars represent SEM. 
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in testosterone was accompanied by seasonality in CEOAE production.  Seasonality was 

evaluated by using the month during which participants were tested and creating four 

groups according to the timing of the solstices as follows:  Fall (October to December), 

Winter (January to March), Spring (April to June), and Summer (July to September).  

Although mean testosterone levels appeared highest in winter and spring (Figure 2), 

seasonal differences in testosterone production were not statistically significant [F(3,52) 

= 0.852, p = 0.47] and individual variability in the level of circulating testosterone was 

substantial.  Despite the lack of significance in the testosterone ANOVA, a mixed-effects 

ANOVA of the CEOAE data was carried out.  Seasonal variation in CEOAE response 

amplitude was significant, F(3,52) = 3.53, p = 0.021, with amplitudes tending to be 

higher in summer and fall, the seasons having the lowest mean testosterone levels.     

 To help clarify whether the seasonal variation in CEOAE amplitude was 

associated with testosterone or with other seasonally dependent factors, a median-split of 

the 10 months was performed based exclusively on the mean testosterone concentration 

for each month, ignoring season.  The median split yielded a “high testosterone” group 

composed of the months of March, April, May, July, and December, and a “low 

testosterone” group that included June, August, September, October, and November.  A 

confirmatory t-test verified that the resulting two groups differed significantly in mean 

testosterone concentration, F(1,54) = 8.17, p = 0.006.  Mixed-effects ANOVA, with ear 

tested and click level as repeated factors, then was performed to determine if CEOAE 

response amplitude differed between the months with high or low testosterone 

production.  The main effect of month approached significance, F(1,54) = 3.58, p = .064, 

and there was a significant interaction between ear tested and month (high vs. low  
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Figure 5.2.  Salivary testosterone concentrations in men across four seasons.  No 

significant differences were found.  Errors bars represent SEM. 
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testosterone months), F(1,54) = 6.02, p = .017.  As shown in Figure 3, for the right ear but 

not the left, CEOAE response amplitude was significantly lower in the high testosterone 

months.  This was significant for both the Right 75dB (p < .001) and Right 69dB (p < .01) 

ear and click level combinations by post-hoc test.  The effect size was d = 1.04 at 75dB 

and d = 0.79 at 69dB, based on Cohen‟s d-statistic (Cohen, 1977). 

 Given that circulating testosterone levels varied considerably from one male to 

another, bivariate correlations were performed to assess the association between 

individual differences in current levels of the hormones, testosterone and cortisol, and 

CEOAE response amplitude.  If circulating testosterone levels influence CEOAE 

amplitude, we might expect to find a significant correlation between a male's testosterone 

level at the time of his CEOAE recording and the size of his evoked response amplitude.  

Table 1 shows the correlations found for all four CEOAE ear and click level 

combinations and current testosterone and cortisol levels.  A significant negative 

correlation between testosterone concentration and CEOAE response amplitude was 

found for the right ear at both the 75dB (r = -.308, p = .020) and 69dB click levels (r = -

.305, p = .019).  Correlations in the left ear were smaller and did not achieve significance.  

There was no evidence of an association between CEOAE response amplitude and 

cortisol levels. 

 

5.4  Discussion 

Recent work has offered support for a seasonal influence of circulating 

testosterone on CEOAE production in male rhesus monkeys (McFadden et al., 2006).  

The present work is the first to investigate whether seasonal fluctuations in testosterone 
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Figure 5.3.  Average CEOAE response amplitude for right and left ears at two click 

levels (75dB and 69dB) during high and low testosterone months.  Error bars represent 

SEM. 
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Table 5.1.  Correlations between testosterone (or cortisol) levels and CEOAE response 

amplitudes 

 

 CEOAE response amplitude 

Right 75dB Right 69dB Left 75dB Left 69dB 

Testosterone 

(pg/mL) 
-.308 

.020 
-.305 

.019 
-.233 

.068 
-.204 

.112 

Cortisol 

(nmol/L) 
-.061 

.653 
-.015 

.909 
-.026 

.842 
.095 

.461 

 

Bold values represent Pearson (r) correlations; italicized values represent probabilities (p-

values). 
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can influence CEOAE response amplitudes in men.  Both studies address the possibility 

of activational influences of steroids on OAE production.  It generally has been assumed 

that sex differences in SOAEs and CEOAEs arise from the organizational effects of 

androgens prenatally, thus studies of adult hormones, and especially testosterone, are very 

limited.  Unexpectedly, the anticipated seasonal differences in testosterone production 

were not found in the current study.  Nevertheless, a significant difference in CEOAE 

response amplitude was identified when comparing months of the year characterized by 

high vs. low testosterone production.  The CEOAE response amplitudes of men tested in 

high testosterone months were lower than those tested in low testosterone months, though 

only for the right ear.  A significant negative correlation between circulating testosterone 

levels and CEOAE response amplitude also was observed on an individual basis.  

Overall, these results offer novel support for an influence of current testosterone on 

CEOAEs in men, in a manner consistent with the dampening effects of testosterone on 

OAE production proposed to occur during prenatal development. 

With respect to the observed sexual dimorphism in OAE production, it has been 

proposed that exposure to elevated androgens prenatally during the critical window for 

differentiation in the male fetus masculinises the auditory system, including cochlear 

structures integral to OAE production, resulting in diminished OAEs in males.  Support 

for a prenatal mechanism of action has been shown in studies demonstrating that a sex 

difference in the number and strength of OAEs can be identified in newborn infants or as 

early as 30 weeks of gestational age (Burns et al.., 1992; Morlet et al., 1995).  While early 

expression of a sex difference could alternatively be explained by cell-autonomous gene 

effects (Arnold, 2004), support for an androgen-dependent mechanism has been derived 
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from studies of specialized human and non-human populations (McFadden, 1993a; 

McFadden & Pasanen, 1998, 1999; McFadden et al., 2006; McFadden et al., 2009).  In 

addition to providing confirmatory evidence for a sex difference in CEOAE response 

amplitude, the current study offers novel support in humans for further down-regulation 

of OAE production in men due to elevations in postnatal testosterone in a manner 

consistent with the prenatal androgen hypothesis.  A negative association was found in 

the present study between testosterone and CEOAE response amplitude, such that men 

with elevated levels of circulating testosterone during the CEOAE recording produced 

CEOAEs with lower, or diminished, response amplitude.  The direction of the observed 

relationship is consistent with the fact that elevations in prenatal testosterone have been 

shown to have dampening effects on OAE production, suggesting that similar effects may 

exist in the postnatal environment as well. 

 In order to provide evidence for the specificity of the relationship between 

circulating testosterone and CEOAEs, current levels of cortisol were also analyzed in the 

saliva samples of men in the present study and correlations with all four CEOAE 

measures examined.  Cortisol and testosterone exhibit very similar circadian rhythms in 

humans (see Nelson, 2005; Rose et al., 1972), but cortisol has no reported or 

hypothesized influence on OAE production.  As expected, no significant association 

between circulating cortisol levels and CEOAE response amplitude was found, for either 

ear or click level.  The lack of any apparent association substantiates the validity of the 

observed negative relationship between circulating testosterone and CEOAEs and 

demonstrates that an association is not evident for a control steroid. 
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The present study did not find differences in seasonal production of testosterone in 

men, as has been reported previously in a number of studies (e.g., Dabbs, 1990; Perry et 

al., 2000; van Anders et al., 2006).  The lack of a significant seasonal change in 

testosterone was somewhat surprising, as previous research has reported seasonal 

variation, albeit inconsistently.  It should be acknowledged that seasonal differences are 

not always found (e.g. Brambilla, O‟Donnell, Matsumoto, & McKinlay, 2007a; Svartberg 

& Barrett-Connor, 2004; Wisniewski & Nelson, 2000).  In the current study, the smaller 

sample size obtained during certain months due to sampling constraints, combined with 

large individual differences in men‟s testosterone levels, may have reduced the 

probability of obtaining a seasonal pattern.  Inconsistency across studies in the 

observation of a seasonal effect may reflect the lack of a distinct breeding period in 

humans, geographical variation (e.g., Ellison et al., 2002), the multiple dietary, health, 

and lifestyle factors that can affect testosterone production (e.g., Svartberg & Barrett-

Connor, 2004), and the substantial individual variation that exists in average testosterone 

levels in humans (Brambilla, O‟Donnell, Matsumoto, & McKinlay, 2007b). 

Despite the absence of significant seasonal variation in testosterone levels, the 

current study nonetheless found a seasonal difference in CEOAE response amplitude, 

which became even sharper and clearer when season was disregarded in favour of 

classifying months as 'high' or 'low' based on monthly average testosterone.  The resulting 

high testosterone group included months spanning all four seasons, and a similar mixture 

of seasons was evident in the low testosterone group.  The fact that the statistical 

association between testosterone and CEOAE response amplitude was strengthened and 

clarified by the re-classification supports the likelihood that testosterone is the active 
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agent that underlies the association, rather than some other variable that ordinarily 

covaries with season, such as temperature or photoperiod.  Thus, the lack of the expected 

seasonal pattern in testosterone levels in the present work paradoxically may help to build 

a case for testosterone as the operative variable responsible for the changes in CEOAE 

amplitudes. 

It was initially hypothesized, based on recent research in rhesus monkeys 

(McFadden et al., 2006), that seasonal differences in testosterone levels in men would 

result in differential production of CEOAEs.  In male rhesus monkeys, diminished 

CEOAE response amplitude was observed during the breeding season when testosterone 

production is elevated, compared to the non-breeding season when circulating 

testosterone is appreciably reduced, with a calculated effect size of 0.79.  Although the 

current study failed to find the anticipated seasonal pattern in testosterone production, a 

median-split comparing CEOAE response amplitudes in months with high versus low 

testosterone production yielded the hypothesized differences in CEOAEs.  It was found 

that the group of men with high circulating testosterone produced CEOAEs with smaller 

response amplitudes compared to the group of men with lower circulating testosterone, a 

result directly analogous to the fluctuations in CEOAEs observed between high and low 

testosterone seasons in male rhesus monkeys.  Further, the effect size for this difference at 

the comparable intensity level (75dB) in the right ear is 1.03, suggesting that the 

magnitude of the observed difference in humans is greater than that observed in rhesus 

monkeys.  In both the current study and McFadden et al. (2006), elevations in current 

levels of testosterone served to further dampen, or masculinise, CEOAE response 

amplitude.  This comparable effect of circulating testosterone on CEOAEs in men in the 
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current study to that previously shown in rhesus monkeys offers further evidence for a 

postnatal influence of testosterone on OAE production, whereby natural elevations and 

reductions in the circulating testosterone production result in transient decreases and 

increases in CEOAE response amplitude, respectively. 

The current study also found significant correlations between circulating 

testosterone levels and CEOAE response amplitude on an individual basis.  Negative 

correlations were found in the right ear at both the 75dB and 69dB click levels only, 

although the correlations in the left ear were also in the anticipated negative direction.  

This result, coupled with the differential production of CEOAEs observed in the median-

split, enhances the probability that testosterone is the active agent influencing CEOAEs in 

adulthood.  Individual variations in circulating testosterone were shown to influence 

CEOAE response amplitude, although interestingly for both the group and individual 

analyses, significant results were only obtained for the right ear.  Previous research has 

offered support for greater CEOAE response amplitudes in the right ear of adults 

(McFadden, Loehlin, & Pasanen, 1996), and mechanisms mediating a right ear advantage 

in OAE production have been proposed (McFadden, 1993b).  Thus, the presence of 

significant differences in the right ear only in the current study suggests that the two ears 

are not equally susceptible to testosterone‟s effects, and that the mechanisms regulating 

these effects may differ slightly between the ears. 

For circulating testosterone to have an influence on CEOAE response amplitude 

in men, it needs to act on appropriate receptors in the auditory structures integral to OAE 

production (i.e., cochlea, outer hair cells).  Although, to date, androgen receptors have not 

been found in the human cochlea, evidence for androgen receptors in species other than 
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humans exists.  Maruska and Fernald (2010) found expression of androgen receptor 

mRNA in the main peripheral hearing organ of the African cichlid fish (Astatotilapia 

burtoni).  An abundance of androgen receptor mRNA also was found in the inner ear of 

the teleost fish (Forlano, Marchaterre, Deitcher, & Bass, 2010).  Thus, the presence of 

androgen receptors in the peripheral auditory system of these species and other 

vertebrates suggests that circulating androgens may play a role in hearing.  If similar 

receptors are present in the human cochlea, then a viable mechanism exists whereby 

fluctuations in circulating testosterone levels in adulthood can influence OAE production.  

If androgen receptors are not localized in the human cochlea, then an alternative 

mechanism may mediate the effects observed in the current study.  Noirot et al. (2009) 

used immuncytochemistry to localize ER- (an estrogen receptor subtype) and aromatase, 

the enzyme responsible for converting testosterone into estradiol, in the hair cells of both 

male and female zebra finches.  Previously, estrogen receptor  and estrogen receptor  

expression has been demonstrated in various parts of the adult human cochlea, but only in 

females (Stenberg, Wang, Fish, Schrott-Fischer, Sahlin, & Hultcrantz, 2001).  Thus, if 

estrogen, and not androgen, receptors are present in the adult male cochlea, it is plausible 

that conversion of testosterone into estradiol (via aromatase) and binding of estradiol to 

appropriate estrogen receptors may mediate the observed activational effect of circulating 

male sex steroids on OAEs. 

 The present results offer convergent support, from another species, for the 

possibility of an effect of postnatal testosterone on OAE production.  It was found that 

elevations in circulating testosterone in men were associated with dampened, or more 

male-typical, CEOAE response amplitudes, whereas reductions in circulating testosterone 
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were associated with greater, or less male-typical, CEOAE response amplitudes.  More 

research is needed to corroborate this effect.  To date, exploration of postnatal hormonal 

influences on OAE production in humans has been exceedingly limited, but such effects 

may have both theoretical and applied implications given that OAEs are used in clinical 

auditory assessment.  Ideally future work can employ a repeated measures design with 

active manipulation of circulating testosterone to substantiate an effect on OAE 

production.  While it is not ethically permissible to manipulate testosterone in humans for 

research purposes, such a design may be possible where testosterone is used medically. 
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6.1  Discussion 

 

 The data presented in this dissertation significantly expand our current 

understanding of otoacoustic emissions (OAEs) and the endocrine mechanisms that are 

involved in and influence their production.  A comprehensive investigation validated 

female superiority in several different measures of spontaneous OAE (SOAE) and click-

evoked OAE (CEOAE) production in Study 1.  Unlike many previous studies, the female 

superiority was observed in a population of normally-hearing young adults.  Differential 

production of emissions between the ears was observed for the number of SOAEs 

produced, but an attempt to support the recent suggestion of an influence of handedness 

on the magnitude of the asymmetry in OAE production between the right and left ears 

yielded inconclusive results.  The objective of Study 2 was to further test the hypothesis 

of an organizational influence of prenatal androgens on the sexual dimorphism in OAE 

production.  A statistical correlation between a biological marker of individual variations 

in prenatal androgen exposure, the 2D:4D digit-ratio, and OAEs was not found, although 

fundamental differences in the timing of prenatal development of these two traits as well 

as other influences do not exclude the possibility of a prenatal contribution to OAE 

production in humans.  A highlight of the thesis was the final two experiments, which 

provide new evidence that circulating levels of adult sex steroids, not merely 

organizational influences, may be capable of modulating OAE production in humans.  

Specifically, in women, oral contraceptive (OC) use was found to result in dampened 

SOAE and CEOAE production compared to non-users and in young men, an association 

between circulating testosterone levels and CEOAE response amplitude was found.  
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Combined, these two results offer some of the first support for an influence of adult sex 

steroids on OAE production in humans.  In turn, this suggests that the observed sex 

difference may be a dynamic function of both organizational and activational influences 

of sex steroids. 

 The sex difference in SOAE and CEOAE production previously observed in 

neonates and children (Burns et al., 1992; Strickland et al., 1985), as well as certain broad 

adult populations (see Bilger et al., 1990) was demonstrated in a population of non-

hearing-impaired young adults in the current thesis.  This not only corroborated the basic 

sex difference in a distinct population that has been previously ignored, but also validated 

the use of a new technique in our laboratory and a platform on which to further 

investigate the endocrine influences on OAE production.  Sex differences in a number of 

distinct OAE parameters were confirmed, including differences in the numbers of SOAEs 

produced, overall SOAE power, and the response amplitudes of the CEOAEs elicited in 

response to deliberate acoustical stimulation.  The sex difference in number of SOAEs 

was detected in the absence of a significant difference in SOAE prevalence in the current 

study, thus confirming that the sex difference in SOAE number reflects a genuine sexual 

dimorphism in OAE production, and not an artefact of a sex difference in prevalence.  

This has not always been clear from previous literature.  This is further supported by the 

observed sex difference in SOAE power and CEOAE response amplitudes, two OAE 

variables that are independent of differences in prevalence rates. 

This dissertation was unable to offer support for a link between individual 

variations in 2D:4D digit-ratios and OAE production.  A significant correlation would 

have provided support from a novel paradigm for an organizational effect of early 
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androgen exposure.  Currently the idea that early androgens can alter the capacity for 

OAE production is supported mostly by work in other species.  Data from human work 

has been difficult to obtain and has been limited by the inability to manipulate androgen 

levels in humans in order to investigate the resulting effects on OAEs.  Recently, it has 

been suggested that the 2D:4D digit-ratio may be a valid and easily accessible proxy for 

prenatal androgen exposure at the end of the 1
st
 trimester (Breedlove, 2010), which falls 

near the beginning of the period of active testosterone secretion in the male fetus (Forest, 

de Peretti, & Bertrand, 1976).  Cochlear structures, however, continue to develop and 

mature until 30 weeks of gestation and beyond (Pujol & Lavigne-Rebillard, 1995), and it 

is reasonable to speculate that the hypothesized prenatal influence of androgens on the 

auditory structures responsible for OAEs occurs later in gestation.  If correct, then the 

absence of a detectable relationship between individual variations in 2D:4D digit-ratios 

and OAE production in the current thesis may not be surprising, particularly if androgen 

levels do not remain stable and constant over the entire developmental period.  In spite of 

the lack of significant results in the present thesis, an organizational component 

influencing this auditory trait cannot be ruled out.   

Evidence for an effect of circulating adult sex steroids on OAE production was 

provided in this dissertation.  However, the existence and magnitude of these effects was 

neither controlled for nor anticipated while conducting Study 2.  These effects could not 

be anticipated because, to date, the research literature has been centered almost entirely 

on the possibility of an organizational effect of prenatal androgens.  It is plausible that the 

relationship between 2D:4D digit-ratios and OAEs was masked in Study 2 because of the 

influence of circulating hormones on OAE production in adulthood; no evidence for an 
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effect of circulating sex steroids on 2D:4D exists.  As a result, a study utilizing a pre-

pubertal population to investigate the hypothesized relationship between digit-ratios and 

OAEs, thereby eliminating the effects of circulating adult sex steroids, would be of great 

benefit in testing the hypothesized organizational influence on the auditory structures 

responsible for OAEs in humans. 

 Future research investigating the hypothesized influence of prenatal androgens on 

OAE production could alternatively focus on specialized populations exposed to 

abnormal prenatal hormonal environments.  Examples of such endocrine disorders 

include congenital adrenal hyperplasia (CAH), a condition characterized by excessive 

prenatal production of adrenal androgens, and complete androgen insensitivity syndrome 

(CAIS), a condition characterized by XY chromosomes but absent or dysfunctional 

androgen receptors.  If exposure to androgens influences OAE production, then it would 

be hypothesized that females with CAH would exhibit male-typical OAEs (due to 

exposure to elevated androgens prenatally) and genetic males with CAIS would exhibit 

female-typical OAEs (because prenatal androgens are unable to bind to the required 

receptors in order to exert their physiological influences).  Similar studies to those 

proposed have provided support for a prenatal hormonal influence on other traits (e.g., 

Brown et al., 2002; Ciumas et al, 2009; Berenbaum et al., 2009; Hampson, Rovet, & 

Altman, 1998), and would provide the most direct evidence in humans that OAEs are in 

fact influenced by prenatal androgens. 

 The current thesis is the first to provide compelling evidence supporting an 

activational influence of sex steroids on OAE production in humans.  In Study 3 and 

Study 4, both men and women showed differences in OAE production that were 
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associated with differences in their current levels of testosterone.  However, together 

these data also revealed a paradox.  In men, elevations in circulating testosterone levels 

were associated with diminished CEOAE response amplitudes, a result consistent with 

the hypothesized dampening effects of prenatal testosterone on OAE production 

(McFadden, 1998, 2002).  In women, those who had higher levels of current testosterone 

(i.e., normally-cycling women) had greater SOAE and CEOAE production than women 

with lower levels (i.e., those using OCs).  Because it is highly unlikely that testosterone 

exerts different effects on OAEs within each sex (i.e., diminishing OAE production in 

men yet enhancing OAE production in women), it is proposed that another sex steroid is 

involved in modulating OAE production in adult women. 

 A negative association between current levels of circulating testosterone and 

CEOAE response amplitude was found in adult men, suggesting that testosterone may 

exert a similar dampening effect on OAE production in adulthood as has been proposed to 

occur prenatally (see McFadden, 2002; 2009).  Although, to our knowledge, comparable 

evidence does not exist in humans to date, androgen receptor mRNA has been localized 

in various inner ear structures of other species (Forlano et al., 2010; Maruska & Fernald, 

2010).  If androgen receptors are similarly present in the human cochlea, then a 

mechanism exists whereby testosterone can exert its effects on the auditory structures 

responsible for OAE production in adulthood.  In light of the novel association found in 

the present work between testosterone and OAEs in adult men, future research should 

focus first and foremost on confirming a causal relationship.  For example, by examining 

the effects of actively manipulating testosterone levels in men, through injections or 

medication, on OAE production, a causal relationship between testosterone and OAEs in 
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adults could be more firmly established.  Further studies attempting to localize androgen 

receptor mRNA in the human cochlea would shed light on the proposed hormonal 

mechanism involved in differential OAE production in adulthood.  

 In women, on the other hand, the evidence reported in this dissertation suggests 

that a hormone other than testosterone, possibly estradiol, may be involved in mediating 

the observed differences in OAE production between OC and non-OC users.  Women 

using OCs were found to produce more male-typical SOAEs and CEOAEs, despite 

possessing levels of circulating testosterone that were suppressed to nearly undetectable 

levels, whereas women not currently using OCs produced female-typical SOAEs and 

CEOAEs.  This result contradicts the observed relationship between testosterone and 

OAEs found in men in the current thesis as well as other studies (e.g., McFadden et al., 

2006).  Because OC use in women also reliably suppresses estradiol (as well as 

progesterone) levels, and because evidence for both a beneficial effect of estradiol on 

hearing and a mechanism through which it can exert its actions exists, it is reasonable to 

propose that estradiol levels in women may influence OAE production.  Estradiol has 

been shown to have a positive effect on hearing in mice (Meltser et al., 2008; Simonoska 

et al., 2009), as well as an unconfirmed influence on OAE production (e.g., Bell, 1992; 

McFadden et al., 1998).  Estrogen receptor mRNA has been localized in the mouse, rat, 

and adult human cochlea (Stenberg et al., 1999, 2001), supporting a direct mechanism 

whereby estradiol could influence OAE production.  Thus, it is proposed that a reduction 

in the amount of circulating estradiol available to interact with estrogen receptors in the 

cochlea is responsible for diminished production of OAEs in women using OCs, and that 

estradiol, not testosterone, is responsible for influencing OAE production in adult women.  
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Future research examining the effects of estradiol on OAE production could include a 

systematic and in-depth study into the differential production of OAEs across the 

menstrual cycle (including precise hormonal quantification), as well as an investigation 

into the effect that manipulation of estradiol levels has on OAE production (e.g., in 

postmenopausal women undergoing estrogen replacement therapy). 

 As the future unfolds, it is imperative that researchers now consider the effects 

that circulating sex steroids have on OAE production when further examining this 

auditory trait in humans and, potentially, other species.  Despite the presence of hormonal 

influences on OAE production, OAE screening in newborn babies should remain a valid 

method of assessing inner ear integrity.  Although much research is still required, the 

current thesis has greatly enhanced our understanding of endocrine influences on OAE 

production in humans, and in doing so, has provided a further example of the dynamic 

effects that sex steroids can have on various cognitive, behavioural, and physical traits. 
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