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Modeling Enrollment in and Completion of Vocational Education: 

The role of cognitive and non-cognitive skills by program type 

 

April 2017 

Abstract: We examine the role of cognitive and non-cognitive skills on enrollment in and 

completion of three types of vocational training (VET): education/health, technical, and business.  

Using two nine-year panels of Danish youths, estimation proceeds separately by gender, 

controlling for selection and right censoring.  Cognitive skills are captured with math and 

language exam scores, non-cognitive skills with teacher-assigned grades.  We find that all skills 

are inversely related to enrollment and math scores are positively related to certification for all 

VET programs.  Language skills are, however, inversely related to completion for technical VET 

and non-cognitive skills are important only for business VET.   
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1 Introduction 

A substantial body of research has examined the impact of cognitive and non-cognitive 

skills on the decisions to enroll in and to drop out of high school and college.  Here we examine 

enrollment in and dropout from an important alternative educational route that has received far 

less attention – vocational education and training (VET).  We use language and math exam 

scores to control for cognitive ability and teacher-assigned grades (that arguably take into 

account effort/conscientiousness) to capture non-cognitive ability. Given the higher returns 

generally available from academic study, we posit that on average less able individuals will 

enroll in VET.  However, both cognitive and non-cognitive ability may still matter for 

completion.  Furthermore, we recognize the heterogeneous nature of vocational programs and 

distinguish among three types of VET - education and health, technical, and business programs.  

Different skills may matter for these different types of VET.  We hypothesize that math skills 

will have a more significant association with technical VET, while language skills may play a 

role in less technical VET tracks.  As completion may be correlated in the unobservables with 

the decision to enroll and VET programs often attract older students, selection and censoring 

must also be addressed.  The analysis of VET completion that follows proceeds with Danish 

register data on two cohorts of compulsory school graduates who are observed for a span of nine 

years, recognizes the heterogeneous nature of VET programs and skills, and makes clear 

methodological improvements compared to the existing literature.   

In Europe, VET programs enroll a significant population and are typically heavily 

subsidized.  About 33% of persons age 25-64 in the OECD report their highest completed 

education to be vocational, and 44% of those enrolled in upper secondary education are enrolled 

in vocational programs (OECD 2014).  In Denmark the figures are 42% and 46% respectively.  
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The costs associated with these programs are substantial both in time (most programs take 

between three and a half and four years to complete) and money.  On average the per student 

cost of vocational education is higher than the per student cost of academic upper secondary 

programs (OECD 2014).  The Danish government provides substantial subsidies.  The Danish 

Ministry of Finance reported spending 5.9 billion DKK (USD 1 billion) or about 17,500 USD 

per VET pupil in 2008.   

Vocational training is substantially less popular and less centrally organized in the US, 

but interest in such programs is rising as CEOs/firms have expressed concerns regarding the lack 

of qualified job applicants for positions requiring VET (Schulze 2016, Rugaber 2017).  While the 

US labor force is projected to grow about 0.5% annually through 2024, employment in the 

construction and health care sectors, that are typically served by apprenticeship programs 

(Torpey 2013), is expected to grow twice as fast making enrollment in and completion of VET 

programs particularly important.1  As in Europe, most formal apprenticeship programs take about 

four years to complete (Torpey 2013), though in the US less time is spent in the classroom, and 

firms and trainees bear more of the costs (Bilginsoy 2003).       

Investments in VET do provide a return.  Simple comparisons indicate that persons with 

a vocational education in Denmark have lifetime earnings that are 15% higher as compared to 

those with only a compulsory education (Danish Employers’ Association 2009).  Jepsen et al. 

(2014) find recipients of community college based vocational education in the US experience a 

significant boost in earnings and employment in the years immediately following receipt.  

Carneiro et al. (2010) and Eichhorst et al. (2015) also report higher employment probabilities for 

those completing VET as compared to those completing a more academically focused upper 

                                                             
1  See employment projections reported by the Bureau of Labor Statistics (BLS) at 

https://www.bls.gov/news.release/ecopro.toc.htm (accessed January 9, 2017). 
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secondary degree.  There is, however, also evidence (Hanushek et al. 2017) that the employment 

probabilities of those with more general education catch up to those with only vocational 

education over time, and that lifetime earnings are higher for academically educated persons.  

Thus, in general, students pursuing education beyond that which they are legally required to 

obtain have an incentive, ceteris paribus, to pursue an academic degree.    

We posit that the decision to pursue a vocational as opposed to an academic degree is 

likely related to the expected probability of completing each degree.  Enrollment does not 

guarantee completion in either the academic or the vocational track.  On-time graduation rates 

are actually lower for vocational as compared to academic upper secondary programs in the 

OECD (64% versus 76%).  Estimates for the US (Zeidenberg et al. 2015) suggest a similar 

pattern.  While there is a wealth of evidence linking ability to success in academic education, of 

interest here is the relation between ability – both cognitive and non-cognitive – and vocational 

education.  Hanushek et al. (2017) present some evidence using literacy scores from the 

International Adult Literacy Survey.  They find that ability (measured as the average of test 

scores in prose, document, and quantitative literacy) is on average lower for those having 

vocational as compared to academic education, but this analysis looks only at those who have 

completed such education.  Hanushek et al. do not address the impact of ability on enrollment 

versus completion of vocational education.  The high dropout rate for VET training could be the 

result of the selection of less able students into such programs when ability matters.  We are also 

the first to employ a specification that allows language and math skills as well as teacher-

assigned grades to have distinct effects.  We argue that the former, being nationally normed test 

scores, are likely to be more representative of cognitive skills, while the latter are more 

representative of non-cognitive skills.    
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Not only do we examine the impact of skills on both enrollment and completion, we also 

distinguish between different VET programs.  In Denmark there are 11 main types of VET 

programs.  Rather than treating these all as one, we recognize three broad groups:  EDHR, 

education and health-related; TECH or technical; and BUSI or business (see appendix A).  

EDHR provides training for medical assistants, welfare workers, and teaching assistants; TECH 

for construction, transportation, and manufacturing workers; BUSI for wholesale and retail 

purchasing assistants, financial assistants, and general office assistants.2    

In sum, this research advances the literature on VET in several ways.  First, we recognize 

the heterogeneous nature of VET and distinguish among three different types of programs.  

Second, we distinguish among several different skills, while also including a full complement of 

control variables. Third, we control for selection into VET.  If the unobservables driving 

enrollment are correlated with those driving completion, estimates that ignore selection will be 

biased.  We follow previous literature and use measures of the distance to alternative educational 

institutions and peer behavior to identify the enrollment equation.  Fourth, we control for right 

censoring.  Such censoring is important given the high fraction of those still enrolled – between 8 

and 16% for our sample depending on the type of VET.    

 

2 Literature review 

According to human capital theory, individuals act to maximize their lifetime utility, 

attending and continuing in higher education if the expected future marginal benefits exceed the 

expected future marginal costs.  Key variables used to model enrollment and persistence (see 

Bound and Turner 2011 and Stratton 2014 for reviews) include prior academic achievement, 

                                                             
2 Formal apprenticeship programs in the US emphasize construction and manufacturing (both in 

the TECH category) and healthcare (EDHR) (Torpey 2013).   



6 

 

parental education, and household income.  Generally speaking more academically prepared 

students find the cost of pursuing an academic degree to be lower, students with more educated 

parents have more support for and understanding of the educational system, and higher 

household income reduces the cost burden of higher education.3   

Two concerns not always addressed in the literature on academic achievement are 

selection and censoring.  Research has demonstrated that taking into account prior educational 

decisions can be important in modeling subsequent outcomes (see, for example, Cameron and 

Heckman 1998; Colding 2006a; Colding et al. 2009; and Holm and Jæger 2011).  Controls for 

ability also matter in addressing selection.  Holm and Jæger (2009) find that failing to control for 

ability when jointly modeling enrollment and completion results in substantially higher estimates 

of the cross-equation correlation in the unobservables and hence potentially biases all the 

covariate effects.  Many studies of academic achievement follow individuals for a fixed period of 

time and assume students have completed their studies within that time period.  Stratton and 

Wetzel (2013) and Garibaldi et al. (2012) have shown such is not the case with academic 

programs - that a substantial fraction of those who enter tertiary education are still enrolled well 

after their expected graduation date.  It is unclear to what extent findings from the literature on 

academic programs will apply to the VET sector, however, censoring in particular is likely to be 

an issue.  On-time VET graduation rates in Denmark are 35%, with 18% more being certified 

within another two years and even then 20% still enrolled.  Bilginsoy (2003) reports similar 

issues using US data on construction industry apprenticeship programs.  Moreover, VET 

programs often attract adult learners seeking to update their skills, hence students may enter VET 

training many years after completing compulsory education.  Given our analysis sample, these 

                                                             
3  In this analysis, household income is likely to play a much smaller role as higher education is 

fully subsidized in Denmark.   
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late starters may not yet have had time to complete.  We address both selection and censoring in 

the analysis that follows.   

The economics literature on VET is limited.  Colding (2006a, 2006b) and Colding et al. 

(2009) examine enrollment in and dropout from VET programs in Denmark, but have no 

controls for prior academic performance.  Bilginsoy (2003) examines dropout and completion 

from construction-type apprenticeships in the US, but also has no information on ability.  One 

might suppose that performance in VET programs is not particularly dependent on academic 

performance, but Dickerson and McIntosh (2013) find such controls to be critically important in 

their analysis of the choice of post-compulsory education (vocational or academic) in England.  

Furthermore, while recognizing that there exist many different types of VET training, works at 

best control for such either by distinguishing between programs of different lengths (Lopez-

Mayan 2010) or by including dummy variables to control for field (Colding 2006b and Colding 

et al. 2009).  The latter studies mimic work in the higher education field in which researchers 

control for major using dummy variables (for example, Bradley and Lenton 2007).  However, as 

is the case in the higher education field (Arcidiacono 2004), it seems logical to suppose that both 

the decision to enter different types of VET programs and the likelihood of completion may 

differ for individuals with different abilities and characteristics.  We address this here by 

estimating separate models for three types of VET: EDHR, TECH, and BUSI.   

A strength of the current study is the availability of several excellent measures of ability.  

The use of test scores (SAT, ACT, AFQT) to model student academic outcomes is well 

established (for example, Rivkin 1995, Cameron and Heckman 2001, Belley and Lochner 2007, 

Bound and Turner 2011).  A growing literature now focuses on the role of personality traits or 

non-cognitive skills as well (Heckman and Rubinstein 2001; Jacob 2002; Heckman et al. 2006; 
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Archibald et al. 2015).  Data on such are, however, typically not available in the data sets used 

by economists to analyze schooling outcomes.4  A common alternative approach has been to use 

exam scores to control for cognitive skills and teacher-assigned grades to control for non-

cognitive skills (Jacob 2002; Goldin et al. 2006; Archibald et al. 2015).   

This distinction is, of course, imperfect; each measure incorporates elements of both 

cognitive and non-cognitive ability (see Almlund et al. 2011 for a more in depth discussion).  

Test scores are viewed as more objective than grades as they are based on a student’s command 

of the subject material.  Being nationally normed and standardized, test scores are also readily 

compared across individuals and over time.5  On the other hand, test scores reflect performance 

at only a single point in time, and that limited observation window could introduce noise.  A 

student could be ill or temporarily distracted or could have an irrational fear of tests that affects 

his/her exam performance.  Grades reflect performance over a longer time period and many 

different types of assignments, mitigating this source of error.  However, grades are not normed 

or standardized – different teachers give different assignments and assign grades differently, 

different students take different classes, and grading scales differ across schools and over time.  

More importantly, grades likely reflect not just performance but also student behavior and 

organizational skills: are assignments turned in on time, does the student disrupt the class, is the 

student putting forth effort … .6  Such components are more readily related to non-cognitive than 

                                                             
4  An exception is information on locus of control and self-esteem (Heckman et al. 2006; 

Archibald et al. 2015).   
5  Danish exams are graded in part by the student’s teacher and in part by an external reviewer, 

with the external reviewer’s assessment given priority.   
6  Rangvid (2015) reports that by law grades in Denmark should, like exams, reflect student 

knowledge not effort.  This would suggest that both reflect only cognitive skills.  However, she 

also acknowledges that grades are more subjective than exam scores and finds significant 

differences between the two.  
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to cognitive ability.  While exam performance has also been found to be associated with non-

cognitive ability, relatively speaking grades have a stronger association (Almlund et al. 2011).   

Our rich data include nationally administered, standardized exam scores in mathematics 

and Danish obtained at the end of ninth grade or compulsory school, and teacher-assigned grades 

for the ninth grade.  Though many studies combine math and verbal skills to form a single 

measure, these subjects are quite distinct and reflect different skills.  The correlation between 

math and language test scores in Denmark is only 0.54.  Were grades simply an alternative 

measure of cognitive ability, they should be perfectly correlated with exam scores.  We find a 

correlation of 0.69 between math exam scores and math-specific grades and a correlation of 0.73 

between Danish exam scores and Danish grades.  The teacher grades used in this analysis 

encompass performance in all subjects, not just math and Danish, and as such include 

information on ability along other dimensions like science and foreign languages, but are 

similarly correlated with math and Danish exam scores (0.68 and 0.72 respectively).     

Of particular interest here is whether the skills necessary for success differ by type of 

VET program.  Turner and Bowen (1999) find that math and verbal SAT scores have 

significantly different effects on college major choice.  Higher math scores increase the 

probability of majoring in engineering, math, the physical sciences and, to a lesser extent, 

economics and the life sciences.  Higher verbal scores increase the probability of majoring in the 

humanities.  Furthermore, these effects differ by gender.  VET programs are no less varied than 

college majors.  TECH VET encompasses such fields as carpentry, plumbing, and manufacturing 

that require some math skills, hence our ex-ante expectation is that math scores will be positively 
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related to completion of TECH VET.7  Verbal skills are not necessarily unimportant - 

tradespeople wishing to run their own business, for example, need good communication skills to 

serve customers – but may be less important for TECH.  In support of this hypothesis, the 2016 

Occupational Requirements Survey in the US indicates that literacy is not required for 11% of 

workers in construction and extraction occupations as compared with 3% of all workers.  An 

apprentice in BUSI likely needs both math and verbal skills in order to keep appropriate records 

and provide service to the community.  An apprentice in EDHR is likely training for a position as 

a home health aide or a teaching assistant and as such may require limited skills in general.8     

 

3 Data 

The data consist of a population sample of individuals born in Denmark between 1983 

and 1989 inclusive, who complete compulsory education in Denmark in either the 2002 or the 

2003 academic year when they are between the ages of 14 and 18, and who are living in 

Denmark at age 15.  These cohorts were selected because elementary-level exam scores were 

first recorded in 2002 and many individuals pursue VET later in life, making a long panel 

                                                             
7  The US Department of Labor (nd) provides some evidence to this effect.  “Workers may need 

some skills—such as basic math and computer aptitude—before starting in manufacturing.” 

(2014/article/manufacturing.htm), “I would say math is number one, and not only for measuring 

and calculations: You need the critical thinking that you use in math to work through processes, 

especially for remodels and planning.” (2016/interview/plumber.htm), and “I use math, such as 

geometry and trigonometry” (2016/interview/woodworker.htm).   Information from Washington 

State Department of Labor and Industries (nd) regarding apprenticeship programs indicates that 

plumbers, steamfitters, pipefitters, and refrigeration workers “Must have completed one year of 

algebra and one year of plane geometry”, that electrical workers must have had algebra, and that 

many other tradesmen need trade or applied math.  
8 Requirements for an apprenticeship in ‘Early Care & Education’ focus primarily on the 

physical nature of the job.  There is no mention of math skills and only language skills sufficient 

to complete the application are required (Washington State Department of Labor and Industries, 

nd).   



11 

 

important.  After excluding about five percent of the total population who pursue no degree after 

ninth grade, report peculiar enrollment patterns (such as entering tertiary education without any 

secondary education), or are missing information on maternal age, the final sample includes 

101,367 individuals.  The data are truncated in September 2011 for those graduating from ninth 

grade in 2002 and in September 2012 for those graduating in 2003 so that the observation period 

does not differ by graduation date.  Enrollment behavior is observed for a minimum of 100 

months, with the majority of individuals observed for 111 months.   

Grades 1 through 9 constitute compulsory education in Denmark.  Tenth grade is a 

popular option, particularly for students who have struggled academically9 or are unsure of 

which career path to follow.  Students subsequently choose among three tracks: they can leave 

school, enter vocational education (VET), or enter academic upper secondary (high school) 

education.  Having successfully completed academic upper secondary education provides 

eligibility for higher or tertiary education (college).10  Figure 1 illustrates the month-by-month 

pattern of enrollment by general program type for the population.  The fraction of the population 

that is not enrolled is illustrated first, followed by those in tenth grade, vocational, academic 

upper secondary, and tertiary programs.   

The illustration shows that youth generally enroll in tenth grade immediately after ninth 

grade, and that 56% of these cohorts chose this experience.11  Academic upper secondary 

                                                             
9 We find a negative correlation between attending tenth grade and both grades (-0.24) and exam 

scores (-0.20 for both math and Danish).   
10  It is possible but very rare for VET students to continue on to higher education without 

acquiring an upper secondary degree.   
11 Enrollment in tenth grade may be an indicator of skill, much like exam scores and grades, but 

how such enrollment should be construed is not clear.  Tenth grade may enable less prepared 

students to catch up.  If so, this indicator may, controlling for prior performance, be a positive 

indicator of skill.  If, however, these students do not catch up or are enrolled for some other 

reason (for example, because they are uncertain what path to pursue), then this indicator may be 
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education is typically initiated soon thereafter.  This is comparable to high school in the US, 

Gymnasium in Germany, and A-levels in the UK.  There are two main routes in academic upper 

secondary education or high school: the traditional track (gymnasium) and two more 

vocationally-oriented tracks (a business and a technical track).  Each normally take three years to 

complete.  Only about four percent are enrolled in high school more than four years after 

completing compulsory education.  Not surprisingly enrollment in tertiary education picks up 

only after students have had the opportunity to complete high school.   

Of particular interest here is enrollment in vocational education or VET.  VET enrollment 

is substantially more diffused as compared to any other type of enrollment.  The fraction enrolled 

in VET peaks at 26% in month 14, but does not fall below 20% until five years and is still 7% 

nine years after completing compulsory education.  This illustration demonstrates the importance 

of addressing censored observations.  

Figure 2 breaks down enrollment by type of VET.  Enrollment in EDHR training is 

illustrated in Panel A.  These programs have the smallest and most stable average enrollment.  

However, about a quarter of students who complete one EDHR program reenroll and complete a 

second more advanced program.  As our analysis focuses on the first completion, we recalculated 

enrollment spells (see the dotted line) to exclude enrollment following the first completion to see 

how much of the extended EDHR enrollment is attributable to subsequent spells.  Enrollment in 

EDHR remains quite stable following this adjustment.  The fraction enrolled hovers between 1.5 

and 1.7% for the period 26 to 54 months after compulsory schooling, and remains around 1% 

through year nine.   

                                                                                                                                                                                                    

unrelated or even negatively related to completion of VET.  In light of this uncertainty, we 

choose not to focus on this measure.  However, while attending tenth grade is a choice, it is a 

choice that precedes the decision to pursue VET or academic high school, so we do include a 

control variable identifying those who enrolled in tenth grade in our analyses.   
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Reenrollment in technical and business VET is much less common, making any 

adjustment unnecessary.  Enrollment in TECH is illustrated in Panel B.  These programs have 

much higher enrollments than EDHR, with more than 10% of the population enrolled in TECH 

within two years following completion of primary school.  Enrollment peaks only slightly higher 

at 12.8% in year four, falls below 10% at the five-year mark, and continues to fall, ending around 

2.6%.  Enrollment in BUSI is even more delayed (see Panel C), likely because about one-quarter 

of those enrolling in BUSI completed business high school first.  Less than 1% are enrolled in a 

BUSI program in the first three years following completion of compulsory schooling.  

Enrollment peaks at 5.7% of the population five years after compulsory schooling is completed 

and remains above 1.5% for the duration.   

While Figure 2 illustrates enrollment by type of vocational education, it provides an 

incomplete picture of such programs as a substantial fraction of those enrolling subsequently 

drop out.  Per our calculations, the fraction of those beginning high school who complete their 

degree within our nine year time frame is approximately 85%.  Completion or certification rates 

for VET (see the top of Table 1) range from 64% for EDHR to 43-45% for BUSI and TECH.  

Even these numbers are misleading, however, given the substantial fraction still enrolled when 

last observed: 16% for EDHR and 9% for BUSI and TECH.  If those still enrolled nine years 

later are unlikely to complete VET, then treating them as failures is appropriate; however, if they 

are late starters who are progressing towards certification, then treating them as failures will bias 

the results.  The final two columns of Table 1 suggest that they are late starters.  Those still 

enrolled on average first entered VET training six to seven years after completing ninth grade, 

two and a half to four years later than the average completer, and, while they have been enrolled 

five to ten months less than those who have completed, they have been enrolled for a year or 
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more longer than those who are no longer enrolled.  Thus, we favor a specification that controls 

for censoring as well as VET type and selection, but will examine the sensitivity of our results to 

these treatments.   

Our goal here is to model jointly enrollment in and completion of these three types of 

vocational education, in order to take into account selection on unobservables.  As students often 

bounce between these programs and between academic high school and VET, we are unable to 

estimate a single, simple model of enrollment choice.12  Instead, we examine each type of VET 

training separately.13  The data include a rich set of covariates.  Sample statistics for these 

variables are reported in Table 2 for the full sample and for the subsamples who attempt each of 

the three types of VET programs we model.   

Of particular interest are our measures of ability.  Both grades and exam scores are 

entered using a set of six dummy variables identifying: those in the top decile, those in the 

bottom decile, those in a broad band of mid-level scores (encompassing half of all exam scores 

and 40% of all grades), those in additional categories linking the extremes and the middle scores 

(for example, those in the 11th to 30th percentiles of the distribution for math and Danish exam 

scores), and those missing values.  This measurement scheme is preferred to use of the 

                                                             
12  Of those ever attempting VET, at least seven percent attempt multiple types of VET and 35% 

attempt academic high school.  Less than 12% of those attempting EDHR or TECH VET 

complete academic high school, however, as noted above, about 25% of those attempting BUSI 

VET first complete academic business high school.    
13  In the case of EDHR, for example, the selection effect is estimated by comparing those ever 

enrolling in EDHR with all others ever enrolling in another type of education (high school, 

TECH, or BUSI) but not EDHR.  To the extent that selection is between high school and VET 

more broadly, this approach will bias our results against finding a selection effect.  Estimates of 

the selection equations estimated by excluding those who only enroll in a different type of VET 

from the comparison group are available upon request.  These results indicate that the 

importance of exam scores and grades for selection into VET is indeed underestimated, 

particularly for those performing below average, but results regarding completion are almost 

identical.     
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underlying continuous measures as it better accommodates nonlinear effects.   Results in Table 2 

indicate that those pursuing VET perform less well on both math and language exams than the 

full cohort; they also receive lower grades.  Those attempting EDHR are least well prepared 

academically; those attempting BUSI are the best prepared academically.  These figures suggest, 

as expected, that those with the highest ability go on to high school.   

Rather standard information on nationality, family background, and parental 

characteristics (age, income, and education) is available.  Information on peer enrollment and 

distance to high schools is also obtained.  Using the sample of students (excluding the respondent 

him/herself) in the respondent’s ninth grade class and the two previous graduating classes at the 

same institution, we identify the first type of education each student’s peers enroll in within five 

years of completing primary school.  Variables identifying the fraction of peers pursuing EDHR, 

BUSI, and TECH training as well as the fraction pursuing a more academic line of study at 

regular gymnasiums, technical gymnasiums, and business gymnasiums are created.14  Peer 

enrollment is intended to capture peer pressure and neighborhood partiality for particular 

educational paths.  The distance to each of the three different types of academic high schools is 

also measured in order to capture one element of the cost associated with academic education.  

The distance to different types of vocational schools is not available in our sample.  Dickerson 

and McIntosh (2013), however, found that distance to the nearest academic high school was a 

more significant factor than distance to the nearest vocational school in a study of vocational 

training using English data.   

                                                             
14  Enrollment in tenth grade is ignored.  Controls for peer behavior are not constructed for 

individuals who appear to have been home schooled or enrolled in primary schools with fewer 

than ten students per graduating class.  A dummy variable is used to identify these students.   
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Other variables sometimes included in models of educational enrollment and/or 

attainment are those related to local labor market conditions (Farber 1967, Bilginsoy 2003).  

Such variables capture the opportunity cost of enrollment.  Denmark, though, is a relatively 

small country geographically and the sample consists of only two cohorts, limiting this source of 

variation.  Nevertheless, dummy variables identifying cohort year and four geographic regions 

are incorporated to control for such market factors.   

 

4 Methods 

Since individuals may self-select into educational tracks on the basis of traits 

unobservable to the researcher, studying completion by limiting the analysis to only those 

observed enrolling may result in sample selection bias.  For instance, students choosing one VET 

track may possess more or less of a trait that correlates with completion of that track, such as 

diligence or ambition.  If this trait is correlated with any observed covariate, failure to take it into 

account, will seriously bias all the estimates (Heckman 1979, Holm and Jæger 2009).   

To control for such sample selection bias, we estimate a Heckman selection model.  Both 

the decision to enroll in a VET program and the decision to complete or drop-out are binary 

variables.  Thus, the resulting empirical model is a bivariate probit selection model.  This model 

jointly estimates how factors affect initial enrollment and dropout.  Individuals enroll in a 

program if: y1
* = x1β1 + ε1 > 0, where y1

* is the latent propensity to enter a VET program, x1 is a 

vector of covariates affecting the propensity to enter a VET program, and β1 is a vector of 

regression coefficients.  Finally ε1 is an error term capturing the effect of unobserved factors on 

the propensity to enter a VET program.  We do not observe y1
*, only a binary variable y1 = 1 if 

y1
*> 0 and 0 otherwise.  Given that they enroll, individuals complete if y2

* = x2β2 + ε2 > 0, where 
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y2
*, x2, β2 and ε2 are defined as above.  Again, we do not observe y2

*, just the binary variable y2 = 

1 if y2
* > 0 and 0 otherwise.  Completion status is observed if and only if individuals enroll in the 

program, i.e. y2 is observed iff y1 = 1.  Individuals who are still enrolled (i=1 to N1) when last 

observed are treated as censored observations, used to estimate parameters in the enrollment but 

not the completion equation.   

The log-likelihood function for this model is:  

𝑙𝑛𝐿 =∑(1 − 𝑦𝑖1)𝑙𝑛[Φ(−𝑥𝑖1𝛽1)] +∑𝑦𝑖1𝑙𝑛[Φ(𝑥𝑖1𝛽1)]

𝑁1

𝑖=1

𝑁

𝑖=1

+ ∑ {𝑦𝑖1𝑦𝑖2𝑙𝑛[Φ2(𝑥𝑖1𝛽1, 𝑥𝑖2𝛽2, 𝜌)] + 𝑦𝑖1(1 − 𝑦𝑖2)𝑙𝑛[Φ2(𝑥𝑖1𝛽1, −𝑥𝑖2𝛽2, −𝜌)]}

𝑁

𝑖=𝑁1+1

 

where the first element captures those not enrolling in VET, the second element captures those 

still enrolled/censored, and the final element captures those who enrolled and are not censored 

(i.e. completed or not).  Identification is achieved without relying solely on the assumption of 

normality as long as there is a variable in the selection equation (𝑥1) that does not appear in the 

outcome equation (𝑥2). We treat select measures of compulsory school peer behavior and 

distance to high schools as factors that affect enrollment but not completion given that one 

enrolls.  Theoretically these factors should become unimportant once the decision to enroll in 

VET is made.  The assumption that the behavior of compulsory school peers is not pertinent to 

completion may be violated if peers’ enrollment behavior is correlated with peers’ completion 

behavior.  Evidence from Anelli and Peri (2016) suggests that while high school peers can 

influence the college major to which students apply, subsequent performance is primarily a 

function of ability, providing external support for our use of peer behavior as an identification 

strategy.  Similarly, the assumption that the distance to the nearest high schools is not pertinent 
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to completion may be violated if it is not unusual to enroll in high school after VET.  However, 

most students do not enter the same VET15, the fraction of peers entering the same VET is 

incorporated in both the enrollment and completion equations16, and few students attempt high 

school after enrolling in VET17.  In addition to these theoretical arguments regarding instrument 

validity, our imposed restrictions hold when tested using specifications that are identified only 

off the assumption of normality.  The estimate of ρ will tell us whether the error terms ε1 and ε2 

are correlated and controlling for selection is necessary.   

 

5 Results 

 Results are presented separately for the three types of VET identified in this analysis.  

Our focus is upon the relation between cognitive and non-cognitive skills and completion, and 

how this relation varies by type of VET program.  As is indicated in Table 2, men and women 

are attracted to different types of VET.  Approximately 90% of those attempting EDHR training 

are women as compared with only 20% of those attempting TECH.  Analysis indicates that there 

are significant differences by gender18, hence estimation proceeds separately by gender, except in 

the case of EDHR for which the sample of men is too small.  In this case, we pool men and 

women and include a dummy variable to identify gender.   

                                                             
15  As reported in Table 2, on average the fraction of peers pursuing the same type of VET is 2% 

for those attempting EDHR and 10% for those attempting BUSI.  The fraction for those 

attempting TECH is almost 29%, but there are many different types of TECH VET programs so 

the fraction entering the identical program is substantially lower.    
16  Similarly, the fraction of peers attending technical (business) high school is also included in 

both the enrollment and completion equations for TECH (BUSI).   
17  Tabulations indicate that fewer than two percent of those who attempt (or complete) a VET 

certification subsequently complete a high school degree.   
18  P-values for these tests are 0.0000 for each type of program.  Gender differences are 

commonly observed in higher education (Stratton 2014) and likely to arise here in part because 

men and women pursue different types of VET even within these separate tracks.     
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5.1  Enrollment 

 Parameter estimates for the ability measures from the enrollment equations are presented 

in Table 3 for men (the combined sample for EDHR) and in Table 4 for women.  Further results 

are available upon request (see Appendix B).  The association between our ability measures and 

enrollment is highly significant.  Only 4 of the 72 relevant parameter estimates are not 

individually significant and all are jointly significant by type of measure (language exam, math 

exam, grade) at the 0.5% level.  The coefficients to the math exam scores uniformly indicate that 

students with higher skills are less likely to enroll in any VET program.  Those with better than 

median language exam scores and better than median grades are also uniformly less likely to 

enroll.  The associations between enrollment and lower than median language scores and grades 

are less clear.  Enrollment in BUSI and EDHR appears somewhat less sensitive to lower grades, 

and men with the lowest language scores are, in fact, significantly less likely to enroll in BUSI.  

Generally, however, our hypothesis that enrollment in VET is negatively associated with skill 

holds true.19    

Although we control for a broad array of individual and family characteristics, the 

association we observe between ability and enrollment may not be causal.  There may be some 

unobserved factor correlated with ability that drives enrollment.  To investigate the possibility 

that some family-specific trait that is correlated with ability is driving enrollment, we use a 

sample of siblings and pool all types of VET to estimate a linear probability model of enrollment 

with family-fixed effects.  As the effects of exam scores and grades are strong and consistent 

across all types of VET, these fixed effect estimates are likely to be informative, though possibly 

noisy.  Even controlling for unobservable family-specific effects, we find a strong negative 

                                                             
19  Results are substantially the same when second generation immigrants are excluded and are 

even stronger when the control population includes only those attempting high school.   
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relation between both exam scores and grades and VET enrollment (see Appendix D).  Siblings 

with higher ability scores are less likely to enroll in VET.  These results suggest that the relation 

between ability and VET enrollment is likely to be causal.  Failure to take this negative selection 

into VET into account might bias conclusions regarding the relationship between ability and 

VET completion. 

5.2 Completion 

Parameter estimates for the ability measures from the completion equations as well as the 

cross-equation correlation terms are presented in Table 5 for men (the combined sample for 

EDHR) and in Table 6 for women.  Further results are available upon request (see Appendix C).  

As described above, to identify the enrollment equation, we exclude select distance and 

compulsory school peer behavior measures when modeling completion.  In the case of EDHR, 

only information on the fractions of peers attempting EDHR or any high school are included in 

the completion equation.  Information on all the distance measures and on the fraction of peers 

attending other types of VET is excluded.  In the case of TECH, the variables excluded from the 

completion equation are the fraction of peers attending EDHR and the distance to the nearest 

academic high school.  In the case of BUSI, the variables included in both equations are the 

fraction of peers attending academic high school, the fraction attending business high school, the 

fraction attending business VET, and the distance to the nearest business high school.  Basically, 

the distance and peer measures we include in the equation modeling completion are those most 

closely associated with the type of VET in which the individual enrolled.   

 An analysis of the correlation terms from the six models indicates that the cross-equation 

errors are statistically significant and negatively correlated in five of six cases.  The negative 

correlation indicates that individuals who for unobservable reasons are more likely to enroll will 
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be less likely to complete.  Thus, individuals who have the highest unobserved preference for 

VET are those least likely to complete.   

Exam scores and grades are generally less significant determinants of completion than of 

enrollment.  Math exam scores are still highly significant.  They are jointly statistically 

significant in every specification and are consistently positively related to completion in all but 

one case.  The exception is that men with above median math exam scores are no more likely to 

complete business training than men with median math exam scores (the base case).  Grades are 

also jointly statistically significant in every specification.  Higher grades increase the probability 

of completing VET training of all types, though very high grades have little association with 

men’s completion of any VET program.  Language skills have a distinctly heterogeneous 

association with completion.  There is no significant association between language skills and 

completion of EDHR training; the association is positive though weak for BUSI; the association 

appears to be negative for men pursuing TECH training.  We anticipated language skills would 

be less important for TECH VET as compared to EDHR or BUSI, but did not expect this 

differential to be drive by a negative relation to completion of TECH.  Unfortunately the number 

of families with multiple siblings enrolling in and having differential success in VET is too small 

to permit estimation of a within-family model of completion, not to mention that the associations 

are rather heterogeneous to support pooling.20   

As these are nonlinear models, interpretation of the magnitude of the coefficients is 

difficult.  We calculate marginal effects on enrollment and on completion, in order to more 

effectively assess our results.  In the case of completion, we present estimates of the probability 

                                                             
20  Results are substantially the same excluding second generation immigrants.  The sole 

difference is that testing in the lowest decile for language skills becomes significantly negatively 

related to completion of TECH for women.   
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of completion conditional on enrolling (the conditional probability - Greene 1996) as this is how 

estimates not controlling for selection are typically interpreted.  Coming from a bivariate model, 

this conditional marginal effect has both a direct component measuring the impact each variable 

has via its association with completion and an indirect component measuring its association with 

enrollment.  A brief discussion of the joint effects follows.  We present analytic marginal effects, 

but numerical marginal effects are similar.  These marginal effects are calculated for an 

individual who attended tenth grade; has parents with a vocational education; has sample mean 

parental age and income, distance to high school, and peer behavior; and otherwise sample 

modal characteristics.  The probability with which such an individual enrolls is illustrated by 

gender and type of VET in Figure 3, Panel A.  This probability ranges from around 10% for 

EDHR to about 50% for men in TECH.   The probability with which the baseline individual 

completes VET conditional upon having enrolled is illustrated in Panel B.  These probabilities 

mostly range between 70 and 85%, but only 38% of women complete TECH given that they 

enroll.  We normalize the marginal effects reported below as a fraction of these probabilities in 

order to ease comparisons across program types and populations.   

Figure 4 illustrates the marginal effects exam scores and grades have upon enrollment: 

Panel A for language, B for math, and C for teacher-assigned grades.  To be noted first is the 

substantial magnitude of these effects.  The probability of enrolling is over 50% lower for those 

in the top decile in ten of eighteen cases (2 genders x 3 types of VET x 3 ability measures) and 

rises by more than 50% for those in the lowest decile in four.  These constitute large differences.  

Math skills are consistently negatively associated with enrollment in all types of VET.  Grades 

are negatively associated with enrollment in all types of VET, with some attenuation for EDHR 

and BUSI in the lowest decile.  That attenuation is even greater in the case of language skills.  
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Men with the lowest language skills are, indeed, actually 29% less likely to enroll in BUSI than 

men with modal language skills, and women with the lowest language skills are about equally 

likely to enroll in BUSI as women with modal language skills.  Language skills may be 

important enough for business occupations that the least skilled individuals choose not to attempt 

or are steered away from such training.    

Figure 5 is organized like Figure 4 but illustrates the marginal effects of our cognitive 

and non-cognitive skill measures on the conditional probability of completing, again scaled by 

the baseline probability.  These marginal effects are only about half as large in magnitude as 

those for enrollment and are more heterogeneous.  However, in every case showing a positive 

association between skills and completion, the direct effect of skills on completion had to have 

been sufficient to overcome the negative indirect effect of skills on enrollment.   

Language skills generally do not have a positive association with completion.  They have 

practically no association with completion in the case of BUSI and a fairly strong negative 

association for TECH, especially for women.  Meanwhile, low language scores have little 

apparent association with completion of EDHR, but higher than modal language skills are 

associated with a lower (4-15%) conditional probability of completing.   

By contrast, the positive direct effect of math skills on completion does generally 

outweigh the strong negative association between math skills and enrollment, but the effect is 

neither symmetric nor identical across program type.  Low level math skills have little impact on 

the conditional probability of completing EDHR (-2 to -3%), but are associated with 

substantially lower conditional probabilities of completing BUSI (-14 to -17%) and TECH (-18 

to -34%).  On the other hand, those with the highest math skills do not have a substantially 

higher conditional probability of completing TECH (3 to 6%), but do have a substantially higher 
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conditional probability of completing EDHR (22 to 25%).  The association differs by gender for 

BUSI as better math skills are associated with higher completion for women, but not men.        

Likewise, the association between grades and the conditional probability of completing 

VET varies tremendously.  For men, grades matter relatively little when it comes to EDHR or 

TECH programs, but are highly positively related to the conditional probability of completing 

BUSI.  Similarly, grades matter a lot for women pursuing BUSI.  The spread is on the order of 

30 to 40%.  Low grades are also associated with a substantially lower conditional probability of 

completing TECH for women (26% lower).  High grades have no particular association.   

The strong negative association between ability and enrollment causes the joint 

probability of enrolling and completing to remain negative for all types of VET and all ability 

measures.  The magnitude of that association, however, varies significantly.  In the case of 

TECH VET, men receiving math scores in the lowest decile have only a 4% higher probability of 

enrolling and completing as compared to those scoring at the median level, whereas for men with 

language skills (grades) in the lowest decile the joint probability is 27% (26%) higher.  For 

women pursuing TECH training the gradient differentials are smaller as the comparable figures 

are 3%, 13%, and 10%.  High grades and language skills are also associated with much lower 

joint probabilities of enrolling and completing in TECH (-17% and -25% respectively) as 

compared to BUSI (-8% and -9%) or EDHR (-8% and -11%) for men, while the differential for 

women is much less pronounced.    

5.3 Summary 

Overall these results provide strong evidence that cognitive and non-cognitive skills as 

captured by exam scores and grades are significantly and substantially negatively related to 
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enrollment in VET programs.  Such is particularly true for math skills.  Sibling analysis indicates 

that this result is not attributable to unobserved family-specific factors.   

The relation between our skill measures and VET certification conditional on enrollment 

is substantially more variable.  Cognitive skills have a heterogeneous association with 

completion that differs by skill type (language skills generally matter less than math skills) and 

by type of VET.  These results strongly support distinguishing among different types of VET 

programs and different types of cognitive skills when analyzing vocational education.  Non-

cognitive skills (as captured here by teacher-assigned grades) appear to matter more for those 

pursuing a business career where interpersonal skills are likely more important than for those 

entering other trades.   

5.4  Impact of innovations 

Historically, researchers have examined VET programs together as a whole, without 

accounting for censoring and often without controlling for selection.  To demonstrate the impact 

our innovations have, we estimated (1) an uncensored model of VET completion that does not 

distinguish among types of VET and does not control for selection; (2) an uncensored model of 

completion that distinguishes among the three types of VET but does not control for selection; 

and (3) an uncensored, selection-controlled model of completion that distinguishes among the 

types of VET (coefficient estimates available upon request).  Marginal effects scaled by the 

baseline probability are constructed for each of these models.  An individual with baseline 

characteristics is predicted to have a 64% probability of completing some type of VET in 

specification (1).  The baseline probabilities for models (2) and (3) have a similar pattern to those 

reported for our preferred model in Figure 4 though they are smaller, reflecting the classification 

of those still enrolled as non-completers.  Specifically, the baseline probabilities are ten 
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percentage points lower for EDHR, five points lower for BUSI, six points lower for men 

pursuing TECH, and four points lower for women pursuing TECH, as compared to the baseline 

probabilities that control for censoring.  All else equal, one would expect the censored results to 

yield smaller marginal effects relative to the baseline because the censored baseline probability is 

larger.   

Figure 6 illustrates the estimated marginal effects of our ability measures on the 

conditional probability of completing for model (1).  The magnitude of the differentials is small 

relative to our preferred specification, never exceeding ±20%.  Language skills are estimated to 

be negatively related to completion, as is the case for TECH but not BUSI VET.  Math skills are 

estimated to be positively related to completion, as they are in our preferred specification.  

Grades are estimated to have an inverted U relation to completion, such that those with modal 

grades have the highest probability of completing VET.  This result clearly does not capture the 

strong positive relation observed for BUSI.  Treating all VET programs the same masks the 

heterogeneous nature of VET programs and seriously biases inferences.    

Figure 7 illustrates the conditional marginal effects for model (2), Figure 8 for model (3), 

relative to baseline.  Differences by type of VET are observable even without controls for 

selection or censoring.  The overall pattern associated with language exam scores is the same for 

all models.  Selection increases the magnitude of the marginal effect for low language ability 

TECH students and decreases the magnitude for high language ability TECH students, but has 

little effect for EDHR or BUSI.  As expected, censoring in general reduces the magnitude of the 

marginal effects relative to baseline, but censoring does increase the marginal effect noticeably 

for high scoring EDHR students.  The pattern is similar for math exam scores.  Controlling for 

selection modestly increases the impact of high math ability on the conditional marginal 
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probability of completing for most samples.  Censoring generally reduces the conditional 

marginal effect of math scores, particularly for EDHR.  The results differ more dramatically in 

the case of our non-cognitive measure – teacher-assigned grades.  Models (2) and (3) generate 

estimated conditional marginal effects that have a distinctly inverted U-shape rather than the flat 

shape observed in our preferred specification for those pursuing EDHR and, particularly for 

model (2), also for those pursuing TECH.  Censoring reduces the effect for those with higher 

than modal grades who perhaps when they enroll, enroll later in life and so appear to be failures 

in the uncensored models because they are still enrolled.  Overall, failure to control for type of 

VET has the greatest impact on the estimates, while censoring is of some importance for 

identifying the effect of grades.     

 

6 Discussion and Conclusion 

The aim of this paper is to shed light on the relation between skills and vocational 

training (VET), recognizing the heterogeneous nature of both.  To this end, we use nine years of 

register data on two cohorts of graduates from compulsory school in Denmark to track 

enrollment in and graduation from VET.  We distinguish among three types of VET programs: 

business (BUSI), technical (TECH), and education/health related (EDHR), providing some 

discussion ex-ante that these professions rely differentially on language and math skills.  

Following common practice in the literature, we use nationally administered and normed math 

and language exam scores as measures of cognitive skills and teacher-assigned grades as 

measures of non-cognitive skills.  Our results indicate that recognizing the heterogeneity of both 

VET programs and skills is important.  We allow for further heterogeneity by modeling 

completion separately by gender by program.  The fact that estimates differ significantly by 
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gender suggests there may be further differentiation not captured by the three programs we 

recognize.   

A majority (55%) of these individuals do at some time enroll in a VET program, 

however, not all who enroll graduate and many are still enrolled when last observed, as many 

enroll in VET at a later age.  Thirty-six to fifty-five percent have not completed the qualification 

nine years after completing compulsory schooling; 16 to 44% percent of these are still enrolled.  

Treating those who are still enrolled as failures biases the results, making grades in particular 

appear more important for completion than they are.  Likewise, failure to jointly model 

enrollment and completion yields biased results because those more likely to enroll for 

unobservable reasons are also less likely to complete.  Our estimation technique controls for both 

these sources of bias.    

We hypothesized that cognitive skills would be negatively correlated with enrollment in 

VET because academic programs offer higher returns, but that their correlation with completion 

would differ by program type.  Ex-ante we reported evidence that math skills were more 

important for completing TECH and hypothesized that both language and math skills would be 

important for BUSI.  Evidence that either are important for EDHR is limited.  Non-cognitive 

skills such as conscientiousness would seem to be positively related to completion of any 

program, but prior evidence in this regard is limited.   

Our findings support the hypotheses regarding enrollment: more able individuals are less 

likely to enroll in VET.  These results hold up to family-specific fixed effects, though we also 

find some evidence that those with the lowest language skills are less likely to enroll in BUSI, 

perhaps because of the importance of these skills to this type of certification.  Our findings with 

respect to completion conditional upon enrollment indicate a positive association with math 
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scores for all types of VET, but one that is strongest for those seeking a technical certification, 

results modestly supporting our ex-ante hypothesis.  Language scores, on the other hand, are 

strongly negatively associated with the conditional probability of completing TECH and have a 

limited association with either EDHR or BUSI.  Our results indicate that grades (our best 

available measure of non-cognitive skills) are strongly positively associated with the conditional 

probability of completing BUSI, but have an inverse U-shaped association with completion of 

TECH and EDHR.  Those with the highest non-cognitive skills likely pursue an academic degree 

for its higher rewards, but non-cognitive skills are still important for completing vocational 

training.  Such skills may be most important for BUSI because many acquiring a business 

certification have attended a business high school and grades have been shown to be strongly 

associated with success in academic programs of study.  BUSI majors are also more likely to 

engage in interpersonal interactions where non-cognitive (sometimes called ‘soft’) skills are 

more important.   

In conclusion, this paper makes substantial contributions to the study of vocational 

education and training.  The implications are threefold.  First, cognitive and non-cognitive skills 

are important not just for those pursuing academic education, but also for those pursuing VET.  

Math skills in particularly are highly correlated with the probability of becoming VET certified 

conditional upon attempting.  Second, failing to control for enrollment or for censoring biases 

estimates of the association between skills and VET completion.  Third and most importantly, 

VET programs are heterogeneous.  We provide strong evidence that different programs require 

different skills and employing a one-size-fits-all approach to an analysis of student persistence in 

VET is inappropriate.  Future research should take these results into account in order to model 

VET better and to aid decision making by students, parents, educators, and policy makers.  
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Figure 1:  Enrollment Time-O-Gram 
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Figure 2 
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Figure 3 
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Figure 4:  Marginal Effects on Probability of Enrolling 
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Figure 5: Marginal Effects on Probability of Completing Conditional on Enrolling 

 
 

 
 

 
                        Note:  Marginal effects are scaled relative to the baseline probability. 
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Note:  Marginal effects are scaled relative to the baseline probability. 
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Figure 7: Marginal Effects on Probability of Completing Conditional on Enrolling 
Uncensored & Uncorrected for Enrollment 

  
 

  
 

  
                       Note:  Marginal effects are scaled relative to the baseline probability. 
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Figure 8: Marginal Effects on Probability of Completing Conditional on Enrolling 
Uncensored but Corrected for Enrollment 

  
 

 

 
 

                      Note:  Marginal effects are scaled relative to the baseline probability. 
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Table 1:  Educational Outcomes 

    
  

   % of Months prior Months in 

 % Ever Enrolled to Attempt Training 

EDHR Training   
  

 Ever Enrolled 5.38%    

 Completed 3.44% 63.81% 36.6 24.0 

 Still Enrolled 0.87% 16.07% 88.6 19.5 

 No Longer Enrolled 1.08% 20.12% 49.4   7.8 

TECH Training     

 Ever Enrolled 38.59%    

 Completed 17.54% 45.46% 28.1 44.3 

 Still Enrolled 3.40% 8.80% 73.3 34.1 

 No Longer Enrolled 17.65% 45.74% 28.9 12.1 

BUSI Training     

 Ever Enrolled 22.06%    

 Completed 9.61% 43.57% 51.0 34.7 

 Still Enrolled 1.97% 8.94% 85.0 26.5 

 No Longer Enrolled 10.48% 47.49% 31.2 14.6 

      

Population Size 101,367    
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Table 2:  Population Means 
          

  

Full 

Sample  
EDHR 

 
TECH 

 
BUSI 

 

Skill Measures         

 Language Exam Scores         

      Lowest 10% 0.089  0.147  0.180  0.105  

      11-25% 0.167  0.267  0.265  0.234  

      26-74% 0.454  0.430  0.362  0.480  

      75-89% 0.137  0.038  0.043  0.073  

      Highest 10% 0.070  0.006  0.011  0.020  

      Missing 0.082  0.112  0.138  0.087  

 Math Exam Scores         

      Lowest 10% 0.081  0.214  0.148  0.133  

      11-25% 0.156  0.284  0.228  0.221  

      26-74% 0.393  0.303  0.364  0.401  

      75-89% 0.220  0.060  0.105  0.131  

      Highest 10% 0.063  0.003  0.012  0.017  

      Missing 0.086  0.136  0.143  0.097  

 Grades         

      Lowest 10% 0.082  0.148  0.174  0.110  

      11-30% 0.199  0.372  0.323  0.289  

      31-69% 0.359  0.319  0.303  0.386  

      70-89% 0.187  0.054  0.070  0.108  

      Highest 10% 0.096  0.006  0.012  0.026  

      Missing 0.077  0.102  0.118  0.082  

Individual Characteristics         

 Female 0.492  0.901  0.312  0.605  

 Age - 16 0.070  0.140  0.137  0.086  

 Attended Tenth Grade 0.578  0.702  0.610  0.647  

 Second Gen. Immigrant 0.036  0.051  0.032  0.052  

 From Non-Nuclear Family 0.317  0.412  0.384  0.354  

Parental Characteristics         

 Mother's Age 28.016  26.593  27.083  27.242  

 Father's Age 30.958  2.986  30.216  30.282  

 Father's Age Missing 0.013  0.015  0.014  0.013  

 Mother's Real Income 297.762  259.099  269.662  271.562  

 Mother's Income Missing 0.018  0.018  0.019  0.020  

 Father's Real Income 448.584  366.545  393.829  407.659  

 Father's Income Missing 0.104  0.138  0.121  0.113  
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 Education of Most Educated Parent        

      Primary 0.062  0.081  0.070  0.081  

      Vocational 0.409  0.562  0.521  0.525  

      Academic Gymnasium 0.072  0.043  0.059  0.070  

      Short 0.277  0.168  0.206  0.197  

      Long 0.111  0.019  0.036  0.033  

      Missing 0.069  0.126  0.108  0.096  

Information Regarding Primary School Peers       

 % Not Enrolled 4.395  5.149  5.027  4.620  

 % in EDHR VET 1.688  2.014  1.813  1.771  

 % in Technical VET 25.806  28.724  28.680  27.429  

 % in Business VET 8.931  9.858  9.418  9.843  

 % in Academic High School 34.723  30.030  30.007  31.403  

 % in Technical High School 9.779  9.493  9.398  9.804  

 % in Business High School 11.649  10.775  10.960  12.058  

 Peer Info - Missing 0.030  0.040  0.047  0.031  

Distance to Nearest … :         

 Academic High School 6.391  5.876  6.514  6.605  

 Technical High School 9.744  8.926  9.675  9.927  

 Business High School 8.847  8.037  8.789  0.903  

 Missing 0.139  0.195  0.187  0.146  

Region         

 Capital Region 0.251  0.252  0.228  0.207  

 Zealand Region 0.156  0.168  0.172  0.164  

 Southern Denmark 0.239  0.249  0.245  0.243  

 Mid Jutland 0.237  0.230  0.226  0.247  

 Northern Jutland 0.118  0.102  0.129  0.139  

2003 Cohort 0.503  0.490  0.496  0.495  

          

Number of Observations 101,367  5,457  39,117  22,364  
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   Table 3:  Ability and Enrollment in VET 

Men 

         

Variables EDHR(a)   Technical   Business  

Language Exam Scores:         

     Lowest 10% 0.0461      0.5825  ***  -0.2040  *** 

 (0.0290)   (0.0254)   (0.0252)  

     11-25% 0.1060  ***  0.3356  ***  -0.0118     

 (0.0222)   (0.0180)   (0.0194)  

     75-89% -0.2706  ***  -0.3477  ***  -0.1028  *** 

 (0.0338)   (0.0257)   (0.0282)  

     Highest 10% -0.4181  ***  -0.4485  ***  -0.2522  *** 

 (0.0686)   (0.0463)   (0.0530)  

Math Exam Scores:         

     Lowest 10% 0.3461  ***  0.1452  ***  0.2019  *** 

 (0.0247)   (0.0255)   (0.0240)  

     11-25% 0.2456  ***  0.0849  ***  0.1131  *** 

 (0.0230)   (0.0211)   (0.0214)  

     75-89% -0.1877  ***  -0.2269  ***  -0.1741  *** 

 (0.0287)   (0.0182)   (0.0208)  

     Highest 10% -0.3492  ***  -0.4169  ***  -0.3215  *** 

 (0.0940)   (0.0378)   (0.0428)  

Grades:         

     Lowest 10% 0.2212  ***  0.6960  ***  -0.0219     

 (0.0318)   (0.0295)   (0.0281)  

     11-30% 0.2690  ***  0.4526  ***  0.0745  *** 

 (0.0222)   (0.0184)   (0.0197)  

     70-89% -0.3368  ***  -0.4373  ***  -0.1739  *** 

 (0.0313)   (0.0219)   (0.0250)  

     Highest 10% -0.6408  ***  -0.7370  ***  -0.4170  *** 

 (0.0800)   (0.0490)   (0.0548)  

F-Tests:         

Language Exam 131.61 ***  1041.33 ***  112.23 *** 

Math Exam 322.79 ***  309.29 ***  221.53 *** 

GPA 344.78 ***  1582.55 ***  115.14 *** 

         

Standard errors are reported in parenthesis.   

*Statistically significant at the .05 level; ** at the .01 level; *** at the .005 level.   

(a)  EDHR results are for the combined sample of men and women. 
Also included in the specification are a constant term and all the variables listed in Table 2. 
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Table 4:  Ability and Enrollment in VET 

Women 
 

Variables EDHR   Technical   Business  

Language Exam Scores:         

     Lowest 10% 0.1167  ***  0.3150  ***  0.0189     

 (0.0339)   (0.0303)   (0.0303)  

     11-25% 0.1558  ***  0.2659  ***  0.1522  *** 

 (0.0247)   (0.0209)   (0.0206)  

     75-89% -0.2508  ***  -0.1823  ***  -0.2535  *** 

 (0.0350)   (0.0227)   (0.0211)  

     Highest 10% -0.3780  ***  -0.2088  ***  -0.3410  *** 

 (0.0705)   (0.0363)   (0.0337)  

Math Exam Scores:         

     Lowest 10% 0.3514  ***  0.2819  ***  0.1834  *** 

 (0.0283)   (0.0242)   (0.0240)  

     11-25% 0.2626  ***  0.1604  ***  0.1131  *** 

 (0.0258)   (0.0215)   (0.0209)  

     75-89% -0.1834  ***  -0.1649  ***  -0.1222  *** 

 (0.0309)   (0.0208)   (0.0191)  

     Highest 10% -0.4199  ***  -0.2853  ***  -0.2342  *** 

 (0.1008)   (0.0479)   (0.0423)  

Grades:         

     Lowest 10% 0.2658  ***  0.4537  ***  0.2373  *** 

 (0.0368)   (0.0325)   (0.0323)  

     11-30% 0.2985  ***  0.3087  ***  0.2314  *** 

 (0.0245)   (0.0204)   (0.0201)  

     70-89% -0.3274  ***  -0.2907  ***  -0.2931  *** 

 (0.0323)   (0.0215)   (0.0199)  

     Highest 10% -0.6427  ***  -0.5492  ***  -0.4864  *** 

 (0.0817)   (0.0408)   (0.0365)  

F-Tests:         

Language Exam 126.13 ***  319.58 ***  281.73 *** 

Math Exam 273.81 ***  288.21 ***  150.5 *** 

GPA 335.84 ***  666.53 ***  500.08 *** 

Standard errors are reported in parenthesis.   

*Statistically significant at the .05 level; ** at the .01 level; *** at the .005 level.     

Also included in the specification are a constant term and all the variables listed in Table 2.   
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Table 5:  Ability and Completion of VET 

Men 

         

Variables EDHR(a)   Technical   Business  

Language Exam Scores:         

     Lowest 10% 0.0643      0.1011  ***  -0.0407     

 (0.0629)   (0.0323)   (0.0642)  

     11-25% -0.0290      0.0620  *  -0.0326     

 (0.0497)   (0.0268)   (0.0373)  

     75-89% 0.0433      -0.1097  *  0.0640     

 (0.1254)   (0.0538)   (0.0708)  

     Highest 10% -0.1293      -0.0197      -0.1587     

 (0.2679)   (0.1030)   (0.1414)  

Math Exam Scores:         

     Lowest 10% -0.2713  ***  -0.4030  ***  -0.2587  *** 

 (0.0593)   (0.0257)   (0.0771)  

     11-25% -0.2060  ***  -0.1840  ***  -0.1636  *** 

 (0.0517)   (0.0242)   (0.0556)  

     75-89% 0.2687  ***  0.1384  ***  0.0803     

 (0.0725)   (0.0293)   (0.0657)  

     Highest 10% 0.8915  *  0.2580  ***  -0.0608     

 (0.4311)   (0.0776)   (0.1330)  

Grades:         

     Lowest 10% -0.3101  ***  -0.3829  ***  -0.4839  *** 

 (0.0586)   (0.0335)   (0.0641)  

     11-30% -0.1183    -0.1753  ***  -0.3081  *** 

 (0.0648)   (0.0264)   (0.0558)  

     70-89% 0.2259  *  0.1235  **  0.0885     

 (0.1052)   (0.0445)   (0.0751)  

     Highest 10% 0.2255      0.1142      0.2181     

 (0.3152)   (0.1183)   (0.1959)  

         

Correlation -0.7940  ***  -0.5911  ***  0.3748     

 (0.2382)   (0.0674)   (0.2471)  

F-Tests:         

Language Exam 5.74   25.67 ***  6.16  

Math Exam 64.72 ***  368.76 ***  17.72 *** 

GPA 37.90 ***  137.29 ***  61.15 *** 

         

Standard errors are reported in parenthesis.   



47 

 

*Statistically significant at the .05 level; ** at the .01 level; *** at the .005 level.     

(a)  EDHR results are for the combined sample of men and women. 

Also included in these specifications is a constant term and most of the variables listed in Table 1.  

Excluded from the EDHR specification are all the distance measures, the peer behavior measures 
related to business and technical VET, and the missing peer behavior dummy.  Excluded from the 

Technical specification are the measures of peer enrollment in EDHR and distance to academic 

gymnasium.  Excluded from the Business specification are the measures of peer enrollment in 
technical high school, in EDHR, and in technical VET, as well as the distance measures related to 

academic and technical high schools and both the peer behavior and distance missing dummies.   
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Table 6:  Ability and Completion of VET 

Women 

         

Variables EDHR   Technical   Business  

Language Exam Scores:         

     Lowest 10% 0.0356      -0.0386      0.0257     

 (0.0702)   (0.0562)   (0.0373)  

     11-25% -0.0469      -0.1197  ***  -0.1142  *** 

 (0.0544)   (0.0355)   (0.0268)  

     75-89% 0.0453      0.1182  ***  0.2206  *** 

 (0.1257)   (0.0357)   (0.0346)  

     Highest 10% -0.1077      0.0098      0.1544  * 

 (0.2586)   (0.0738)   (0.0612)  

Math Exam Scores:         

     Lowest 10% -0.2959  ***  -0.3905  ***  -0.2963  *** 

 (0.0583)   (0.0328)   (0.0313)  

     11-25% -0.2427  ***  -0.2431  ***  -0.1544  *** 

 (0.0533)   (0.0287)   (0.0279)  

     75-89% 0.2230  ***  0.1827  ***  0.1820  *** 

 (0.0742)   (0.0295)   (0.0300)  

     Highest 10% 0.8541  *  0.2324  ***  0.3364  *** 

 (0.4282)   (0.0809)   (0.0770)  

Grades:         

     Lowest 10% -0.3370  ***  -0.4843  ***  -0.4229  *** 

 (0.0618)   (0.0376)   (0.0428)  

     11-30% -0.1439  *  -0.2700  ***  -0.2928  *** 

 (0.0647)   (0.0268)   (0.0258)  

     70-89% 0.2162  *  0.2076  ***  0.2683  *** 

 (0.1070)   (0.0365)   (0.0325)  

     Highest 10% 0.3107      0.4099  ***  0.3632  *** 

 (0.3005)   (0.0780)   (0.0682)  
         

Correlation -0.8206  ***  -0.9240  ***  -0.8493  *** 

 (0.2304)   (0.0486)   (0.0649)  

F-Tests:         

Language Exam 4.21   31.18 ***  74.88 *** 

Math Exam 64.26 ***  245.91 ***  158.29 *** 

GPA 36.98 ***  225.83 ***  286.12 *** 

         

Standard errors are reported in parenthesis.   

*Statistically significant at the .05 level; ** at the .01 level; *** at the .005 level.     

Control variables are the same as noted on Table 5.   
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Appendix A 

Aggregation of VET Main Program clusters 

Basic coursesa Aggregation 

1. Business BUSI 

2. Building and construction TECH 

3. Iron and Metal TECH 

4. Graphics TECH 

5. Other technics and industry TECH 

6. Food and housekeeping TECH 

7. Agriculture and fishing TECH 

8. Transport TECH 

9. Safety TECH 

10. Pedagogical EDHR 

11. Health EDHR 

 

a  Source: The Danish Ministry of Children and Education.   
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Appendix B1:  Enrollment in VET 

Men 

          

Variables EDHR(a)   TECH   BUSI  

Female 1.2392  ***       

  (0.0217)        

Second Gen. Immigrant -0.2344  ***  -0.7734  ***  0.3519  *** 

  (0.0440)   (0.0398)   (0.0373)  

Age - 16 0.1983  ***  0.0819  ***  0.0131     

  (0.0195)   (0.0172)   (0.0169)  

Attended Tenth Grade 0.0770 ***  -0.1928  ***  0.0997 *** 

  (0.0167)   (0.0137)   (0.0143)  

Non-Nuclear Home 0.0086      0.0846  ***  0.0372  * 

  (0.0173)   (0.0151)   (0.0155)  

Parental Characteristics:         

 Father's age -0.0005      -0.0042  **  -0.0029     

  (0.0018)   (0.0016)   (0.0016)  

 Father's age missing -0.0615      -0.0793      0.0123     

  (0.0678)   (0.0617)   (0.0607)  

 Mother's age -0.0106  ***  -0.0144  ***  -0.0007     

  (0.0023)   (0.0019)   (0.0020)  

 Father's real income -0.0004  ***  -0.0003  ***  0.0001  * 

  (0.0001)   (0.0000)   (0.0000)  

 Father's income missing 0.0331      -0.0352      0.0232     

  (0.0254)   (0.0236)   (0.0239)  

 Mother's real income -0.0002  *  -0.0004  ***  -0.0001  * 

  (0.0001)   (0.0001)   (0.0001)  

 Mother's income missing -0.0391      0.0069      0.0628     

  (0.0578)   (0.0488)   (0.0491)  

 Education of Most Educated Parent        

      Primary -0.0148      -0.0026      -0.0012     

  (0.0367)   (0.0330)   (0.0329)  

      Academic Gymnasium -0.1770  ***  -0.2487  ***  -0.0002     

  (0.0354)   (0.0249)   (0.0268)  

      Short -0.1721  ***  -0.3069  ***  -0.1766  *** 

  (0.0212)   (0.0161)   (0.0179)  

      Long -0.4195  ***  -0.6212  ***  -0.4143  *** 

  (0.0472)   (0.0271)   (0.0316)  
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      Missing -0.0162      0.0597  *  -0.0437     

  (0.0260)   (0.0284)   (0.0265)  

Information Regarding Primary School Peers       

 % in Academic High School -0.0012      -0.0040  ***  -0.0051  *** 

  (0.0016)   (0.0014)   (0.0014)  

 % in Technical High School -0.0018      -0.0011      -0.0017     

  (0.0021)   (0.0019)   (0.0019)  

 % in Business High School -0.0033      -0.0036  *  0.0079  *** 

  (0.0018)   (0.0016)   (0.0016)  

 % in Technical VET 0.0017      0.0116  ***  -0.0058  *** 

  (0.0018)   (0.0016)   (0.0016)  

 % in Business VET 0.0061  **  -0.0002      0.0120  *** 

  (0.0024)   (0.0021)   (0.0021)  

 % in EDHR VET 0.0238  ***  0.0032      -0.0004     

  (0.0052)   (0.0047)   (0.0049)  

 Peer Info - Missing 0.1029      0.4083  ***  -0.2004     

  (0.1499)   (0.1377)   (0.1386)  

Distance to Nearest … :         

 Academic High School -0.0023      0.0060  ***  -0.0079  *** 

  (0.0018)   (0.0015)   (0.0016)  

 Technical High School -0.0009      0.0003      -0.0018     

  (0.0012)   (0.0010)   (0.0011)  

 Business High School -0.0017      -0.0004      0.0006     

  (0.0016)   (0.0012)   (0.0013)  

 Missing -0.0295      0.1349  ***  -0.1369  *** 

  (0.0272)   (0.0238)   (0.0250)  

Region         

 Zealand Region -0.0585  *  -0.0232      0.0711  *** 

  (0.0258)   (0.0224)   (0.0238)  

 Southern Denmark -0.0528  *  -0.0432  *  0.0876  *** 

  (0.0239)   (0.0206)   (0.0217)  

 Mid Jutland -0.0165      -0.0484  *  0.0743  *** 

  (0.0248)   (0.0211)   (0.0223)  

 Northern Jutland -0.1433  ***  -0.0011      0.1387  *** 

  (0.0308)   (0.0253)   (0.0263)  

2003 Cohort -0.0118      -0.0382  ***  0.0027     

  (0.0153)   (0.0129)   (0.0135)  
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Missing Language Score -0.1361  *  0.5548  ***  -0.2566  *** 

  (0.0670)   (0.0633)   (0.0596)  

Missing Math Score 0.3259  ***  -0.0041      0.2262  *** 

  (0.0558)   (0.0641)   (0.0589)  

Missing Grade 0.0964      0.0600      -0.0096     

  (0.0528)   (0.0453)   (0.0457)  

Constant -1.9868  ***  0.8067  ***  -0.6044  *** 

  (0.1617)   (0.1446)   (0.1460)  

          

Standard errors are reported in parenthesis.   

*Statistically significant at the .05 level; ** at the .01 level; *** at the .005 level.   

(a)  EDHR results are for the combined sample of men and women. 
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Appendix B2:  Enrollment in VET 

Women 
          

Variables EDHR   Technical   Business  

Second Gen. Immigrant -0.2577  ***  -0.6021  ***  -0.1690  *** 

  (0.0487)   (0.0433)   (0.0379)  

Age - 16 0.2042  ***  0.0749  ***  0.0032     

  (0.0233)   (0.0189)   (0.0183)  

Attended Tenth Grade 0.0429 *  -0.1193 ***  -0.0842 *** 

  (0.0189)   (0.0147)   (0.0141)  

Non-Nuclear Home 0.0021      0.1248  ***  0.0173     

  (0.0194)   (0.0152)   (0.0148)  

Parental Characteristics:         

 Father's age -0.0002      0.0001      -0.0035  * 

  (0.0020)   (0.0016)   (0.0016)  

 Father's age missing -0.1333      -0.1658  **  -0.1643  ** 

  (0.0762)   (0.0617)   (0.0609)  

 Mother's age -0.0138  ***  -0.0108  ***  -0.0052  ** 

  (0.0026)   (0.0020)   (0.0019)  

 Father's real income -0.0004  ***  -0.0002  ***  -0.0001     

  (0.0001)   (0.0000)   (0.0000)  

 Father's income missing 0.0361      0.0055      -0.0379     

  (0.0284)   (0.0228)   (0.0225)  

 Mother's real income -0.0004  ***  -0.0006  ***  -0.0003  *** 

  (0.0001)   (0.0001)   (0.0001)  

 Mother's income missing -0.0031      0.0113      0.1024  * 

  (0.0646)   (0.0515)   (0.0476)  

 Education of Most Educated Parent        

      Primary -0.0047      0.0566      0.0211     

  (0.0412)   (0.0335)   (0.0312)  

      Academic Gymnasium -0.2218  ***  -0.1266  ***  -0.1165  *** 

  (0.0394)   (0.0282)   (0.0259)  

      Short -0.2233  ***  -0.1636  ***  -0.3530  *** 

  (0.0233)   (0.0175)   (0.0168)  

      Long -0.4823  ***  -0.2411  ***  -0.7306  *** 

  (0.0518)   (0.0311)   (0.0325)  

      Missing -0.0060      0.0713  **  -0.0206     

  (0.0297)   (0.0254)   (0.0248)  
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Information Regarding Primary School Peers       

 % in Academic High School -0.0003      -0.0094  ***  -0.0014     

  (0.0019)   (0.0015)   (0.0015)  

 % in Technical High School -0.0006      -0.0148  ***  0.0048  ** 

  (0.0024)   (0.0019)   (0.0018)  

 % in Business High School -0.0010      -0.0138  ***  0.0084  *** 

  (0.0021)   (0.0017)   (0.0016)  

 % in Technical VET 0.0033      -0.0015      0.0051  *** 

  (0.0021)   (0.0017)   (0.0016)  

 % in Business VET 0.0053      -0.0108  ***  0.0164  *** 

  (0.0029)   (0.0022)   (0.0021)  

 % in EDHR VET 0.0256  ***  -0.0104  *  -0.0034     

  (0.0059)   (0.0041)   (0.0043)  

 Peer Info - Missing 0.2409      -0.5434  ***  0.3476  * 

  (0.1807)   (0.1462)   (0.1422)  

Distance to Nearest … :         

 Academic High School -0.0021      0.0025      0.0005     

  (0.0019)   (0.0013)   (0.0014)  

 Technical High School 0.0005      0.0007      0.0007     

  (0.0014)   (0.0011)   (0.0009)  

 Business High School -0.0028      -0.0024      0.0004     

  (0.0016)   (0.0013)   (0.0012)  

 Missing -0.0129      0.0452      -0.0358     

  (0.0287)   (0.0232)   (0.0207)  

Region         

 Zealand Region -0.0880  ***  -0.0109      0.0629  ** 

  (0.0291)   (0.0229)   (0.0224)  

 Southern Denmark -0.0375      -0.0823  ***  0.0149     

  (0.0271)   (0.0215)   (0.0209)  

 Mid Jutland -0.0094      -0.0866  ***  0.0807  *** 

  (0.0280)   (0.0223)   (0.0214)  

 Northern Jutland -0.1445  ***  -0.0017      0.1482  *** 

  (0.0349)   (0.0260)   (0.0253)  

2003 Cohort -0.0366  *  -0.0352  **  -0.0405  *** 

  (0.0172)   (0.0135)   (0.0129)  
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Missing Language Score 0.0089      0.1608  *  -0.1426  * 

  (0.0759)   (0.0633)   (0.0641)  

Missing Math Score 0.2288  ***  0.3366  ***  0.0667     

  (0.0612)   (0.0533)   (0.0535)  

Missing Grade 0.0836      -0.0664      0.1262  ** 

  (0.0597)   (0.0474)   (0.0475)  

Constant -0.7421  ***  0.7568  ***  -0.4157  *** 

  (0.1892)   (0.1528)   (0.1473)  
          

Standard errors are reported in parenthesis.   

*Statistically significant at the .05 level; ** at the .01 level; *** at the .005 level.   
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Appendix C1:  Completion of VET 

Men 

          

Variables EDHR(a)   Technical   Business  

Female -0.5580           

  (0.3283)        

Second Gen. Immigrant 0.2384  **  -0.1571  *  -0.3842  *** 

  (0.0892)   (0.0629)   (0.1312)  

Attended Tenth Grade 0.0386   0.0063   0.1287 *** 

  (0.0514)   (0.0178)   (0.0315)  

Age - 16 -0.1729  ***  -0.0803  ***  -0.0549     

  (0.0413)   (0.0190)   (0.0370)  

Non-Nuclear Home -0.1271  ***  -0.3016  ***  -0.2474  *** 

  (0.0423)   (0.0182)   (0.0418)  

Parental Characteristics:         

 Father's age 0.0095  *  0.0038  *  0.0023     

  (0.0047)   (0.0019)   (0.0035)  

 Father's age missing -0.1622      -0.0240      0.0674     

  (0.1419)   (0.0699)   (0.1246)  

 Mother's age 0.0042      0.0062  **  -0.0072     

  (0.0055)   (0.0024)   (0.0042)  

 Father's real income 0.0005  ***  0.0005  ***  0.0002  *** 

  (0.0001)   (0.0001)   (0.0001)  

 Father's income missing 0.0143      -0.1365  ***  -0.1513  *** 

  (0.0533)   (0.0278)   (0.0527)  

 Mother's real income 0.0003      0.0006  ***  0.0003  * 

  (0.0002)   (0.0001)   (0.0002)  

 Mother's income missing -0.0251      -0.0077      -0.0839     

  (0.1249)   (0.0586)   (0.1066)  

 Education of Most Educated Parent        

      Primary -0.0867      -0.1638  ***  -0.0536     

  (0.0836)   (0.0392)   (0.0676)  

      Academic Gymnasium 0.0254      -0.0527      -0.0690     

  (0.0977)   (0.0348)   (0.0544)  

      Short -0.0133      0.0112      -0.2515  *** 

  (0.0813)   (0.0236)   (0.0405)  

      Long 0.0233      -0.2149  ***  -0.4044  *** 

  (0.1866)   (0.0608)   (0.0945)  

      Missing 0.0120      -0.1716  ***  -0.2087  *** 

  (0.0508)   (0.0275)   (0.0549)  
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Information Regarding Primary School Peers       

 % in Academic High School 0.0022      0.0075  ***  0.0006     

  (0.0012)   (0.0015)   (0.0011)  

 % in Technical High School 0.0028      0.0105  ***    

  (0.0034)   (0.0022)     

 % in Business High School 0.0054      0.0155  ***  0.0159  *** 

  (0.0028)   (0.0019)   (0.0026)  

 % in Technical VET    0.0090  ***    

     (0.0019)     

 % in Business VET    0.0073  ***  -0.0054     

     (0.0024)   (0.0043)  

 % in EDHR VET -0.0195           

  (0.0100)        

 Peer Info - Missing    0.5932  ***    

     (0.1475)     

Distance to Nearest … :         

 Technical High School    0.0063  ***    

     (0.0013)     

 Business High School    0.0039  **  0.0019     

     (0.0014)   (0.0018)  

 Missing    0.1005  ***    

     (0.0273)     

Region         

 Zealand Region 0.0613      -0.0209      0.0132     

  (0.0523)   (0.0270)   (0.0493)  

 Southern Denmark 0.0030      0.0736  ***  0.0746     

  (0.0518)   (0.0251)   (0.0452)  

 Mid Jutland 0.0362      0.0904  ***  0.0203     

  (0.0499)   (0.0262)   (0.0473)  

 Northern Jutland -0.0167      0.0253      -0.0429     

  (0.0804)   (0.0301)   (0.0593)  

2003 Cohort -0.0101      -0.0642  ***  -0.0723  * 

  (0.0329)   (0.0161)   (0.0287)  

Missing Language Score 0.1729      0.2921  ***  0.1830     

  (0.1239)   (0.0625)   (0.1566)  

Missing Math Score -0.4200  ***  -0.5931  ***  -0.3907  * 

  (0.1005)   (0.0597)   (0.1559)  

Missing Grade -0.1084      -0.1527  ***  -0.2097  * 

  (0.1089)   (0.0497)   (0.1024)  
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Constant 1.7656  ***  -0.6345  ***  -0.4198     

  (0.5427)   (0.1617)   (0.4004)  

          

Standard errors are reported in parenthesis.   

*Statistically significant at the .05 level; ** at the .01 level; *** at the .005 level.   

(a)  EDHR results are for the combined sample of men and women. 
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Appendix C2:  Completion of VET 

Women 

          

Variables EDHR   Technical   Business  

Second Gen. Immigrant 0.2752  ***  0.0958      -0.1542  * 

  (0.0936)   (0.1230)   (0.0666)  

Age - 16 -0.1537  ***  -0.0134      -0.0502     

  (0.0408)   (0.0239)   (0.0265)  

Attended Tenth Grade 0.0602    0.1279  ***  0.1189  *** 

  (0.0476)   (0.0186)   (0.0198)  

Non-Nuclear Home -0.1121  **  -0.1945  ***  -0.1746  *** 

  (0.0419)   (0.0223)   (0.0256)  

Parental Characteristics:         

 Father's age 0.0099  *  -0.0012      -0.0044     

  (0.0050)   (0.0020)   (0.0023)  

 Father's age missing -0.1556      0.2222  ***  0.1258     

  (0.1515)   (0.0789)   (0.0873)  

 Mother's age 0.0050      0.0113  ***  0.0125  *** 

  (0.0061)   (0.0026)   (0.0028)  

 Father's real income 0.0005  ***  0.0003  ***  0.0003  *** 

  (0.0001)   (0.0001)   (0.0001)  

 Father's income missing 0.0134      -0.0575      -0.0429     

  (0.0559)   (0.0300)   (0.0319)  

 Mother's real income 0.0006  **  0.0006  ***  0.0006  *** 

  (0.0002)   (0.0001)   (0.0001)  

 Mother's income missing -0.1146      0.0129      -0.1396  * 

  (0.1283)   (0.0625)   (0.0648)  

 Education of Most Educated Parent        

      Primary -0.0933      -0.0533      -0.0271     

  (0.0861)   (0.0422)   (0.0434)  

      Academic Gymnasium 0.0154      0.0916  *  0.0074     

  (0.1072)   (0.0389)   (0.0390)  

      Short 0.0137      0.0844  ***  0.0841  * 

  (0.0902)   (0.0267)   (0.0412)  

      Long 0.0337      0.0350      0.2026  * 

  (0.2023)   (0.0650)   (0.0944)  

      Missing 0.0036      -0.1243  ***  -0.0775  * 

  (0.0521)   (0.0311)   (0.0334)  
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Information Regarding Primary School Peers       

 % in Academic High School 0.0030  *  0.0091  ***  0.0036  *** 

  (0.0013)   (0.0018)   (0.0008)  

 % in Technical High School 0.0018      0.0140  ***    

  (0.0035)   (0.0024)     

 % in Business High School 0.0038      0.0173  ***  0.0048  * 

  (0.0029)   (0.0022)   (0.0019)  

 % in Technical VET    0.0055  *    

     (0.0022)     

 % in Business VET    0.0107  ***  -0.0120  *** 

     (0.0027)   (0.0020)  

 % in EDHR VET -0.0141           

  (0.0100)        

 Peer Info - Missing    0.6626  ***    

     (0.1730)     

Distance to Nearest … :         

 Technical High School    -0.0032  *    

     (0.0015)     

 Business High School    0.0053  ***  0.0006     

     (0.0017)   (0.0011)  

 Missing    -0.0027        

     (0.0295)     

Region         

 Zealand Region 0.0855      0.0623  *  -0.0742  * 

  (0.0548)   (0.0302)   (0.0309)  

 Southern Denmark -0.0059      0.1112  ***  -0.0731  * 

  (0.0529)   (0.0279)   (0.0296)  

 Mid Jutland 0.0562      0.1014  ***  -0.1212  *** 

  (0.0529)   (0.0289)   (0.0300)  

 Northern Jutland 0.0249      0.0255      -0.1455  *** 

  (0.0800)   (0.0333)   (0.0338)  

2003 Cohort 0.0000      0.0062      0.0222     

  (0.0358)   (0.0175)   (0.0182)  
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Missing Language Score 0.1266      -0.0391      0.1996  * 

  (0.1404)   (0.0752)   (0.0865)  

Missing Math Score -0.4174  ***  -0.3926  ***  -0.3505  *** 

  (0.1160)   (0.0592)   (0.0771)  

Missing Grade -0.1080      -0.0298      -0.1071     

  (0.1147)   (0.0614)   (0.0677)  

Constant 1.0968  ***  -0.6543  ***  0.5378  *** 

  (0.2271)   (0.1999)   (0.0981)  
          

Standard errors are reported in parenthesis.   

*Statistically significant at the .05 level; ** at the .01 level; *** at the .005 level.   
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Appendix C:  Family Fixed Effects 

 

To investigate whether the association we observe between skill and enrollment is 

attributable to unobserved family-specific factors, we estimate a linear probability model of 

enrollment that includes family fixed effects.  In this analysis, all VET programs are considered 

as one and boys and girls are pooled in order to yield a sufficiently large sample.  In total there 

are 4814 children from 2394 families in the sibling sample used for this analysis.  The sibling 

sample is comprised of more second generation immigrants and fewer children from non-nuclear 

households.  The sibling sample is also located a bit further away from academic high schools.  

Else the characteristics of the sibling sample generally match those of the population.  (See table 

D1.)   

The analysis proceeds including covariates only for the skill measures, a dummy for 

gender, and a dummy for those who attended tenth grade.  There is literally no variation in many 

of the control variables (for example, parental education and income) and too little in the others 

to estimate parameters reliably.  The estimated effect of exam scores/grades on enrollment for 

this sample rests primarily on those families in which one child chooses to enroll in VET and 

another chooses not to enroll in VET and those children have different reported (not missing) 

ability measures.  Such is the case for less than 20% of these families.  Furthermore, to the extent 

that different exam scores are caused by a temporary illness or otherwise unusual conditions on 

test day for one sibling, observed sibling differences may reflect noise rather than actual ability 

differences.  Thus, the effect of exam scores on enrollment may be biased towards zero in the 

family fixed effects model.  Such is less likely to be the case for grades.     

The results of this analysis are reported in Table D2.  All of the exam score/grade 

coefficients are of the expected sign and ten of twelve are statistically significant at the 5% level.  
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The other two (reflecting higher than modal language scores) are significant at the 10% level 

using a one-sided test.  Grades are in this case observed to have a more significant and 

substantial effect on enrollment than exam scores, perhaps because the exam score measures are 

likely to be noisier measures than the grades.  These results indicate that our findings regarding 

the relation between ability and enrollment are not driven by unobserved family-specific effects.  
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Table D1.  Comparing Sibling Means 
     

 Full Sample  Sibling Sample  

Enrolled in some type of VET 0.554  0.559  

Enrolled in EDHR 0.054  0.057  

Enrolled in TECH 0.234  0.238  

Enrolled in BUSI 0.131  0.114  

Female 0.492  0.499  

Second Gen. Immigrant 0.070  0.092  

Age - 16 0.036  0.076  

Completed Tenth Grade 0.578  0.574  

From Non-Nuclear Family 0.317  0.290  

2003 Cohort 0.503  0.501  

Region     

     Capital Region 0.251  0.250  

     Zealand Region 0.156  0.162  

     Southern Denmark 0.239  0.239  

     Mid Jutland 0.237  0.234  

     Northern Jutland 0.118  0.116  

Danish Exam Scores     

     Lowest 10% 0.101  0.112  

     11-25% 0.155  0.161  

     26-74% 0.454  0.437  

     75-89% 0.137  0.131  

     Highest 10% 0.070  0.070  

     Missing 0.082  0.088  

Math Exam Scores     

     Lowest 10% 0.119  0.118  

     11-25% 0.118  0.112  

     26-74% 0.393  0.400  

     75-89% 0.220  0.215  

     Highest 10% 0.063  0.061  

     Missing 0.086  0.093  

Grades     

     Lowest 10% 0.093  0.099  

     11-30% 0.188  0.182  

     31-69% 0.367  0.373  

     70-89% 0.196  0.181  

     Highest 10% 0.078  0.079  

     Missing 0.077  0.086  
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Information Regarding Primary School Peers    

     % Not Enrolled 4.395  4.411  

     % in EDHR VET 1.688  1.675  

     % in Technical VET 25.806  26.228  

     % in Business VET 8.931  8.999  

     % in Academic High School 34.723  33.919  

     % in Technical High School 9.779  9.722  

     % in Business High School 11.649  11.411  

     Peer Info - Missing 0.030  0.036  

Distance to Nearest … :     

     Academic High School 6.391  6.788  

     Technical High School 9.744  10.047  

     Business High School 8.847  9.016  

     Missing 0.139  0.140  

     

Number of Observations        101,367   4814  
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Table D2. 

Ability and Enrollment in VET 

with Family Fixed Effects 

   

Variables Coefficients  

Female Dummy -0.0865  *** 

 (0.0170)  

Language Exam Scores:   

     Lowest 10% 0.0813  *** 

 (0.0283)  

     11-25% 0.1224  *** 

 (0.0223)  

     75-89% -0.0546  * 

 (0.0280)  

     Highest 10% -0.0527     

 (0.0373)  

Math Exam Scores:   

     Lowest 10% 0.0873  *** 

 (0.0275)  

     11-25% 0.0996  *** 

 (0.0262)  

     75-89% -0.0495  ** 

 (0.0246)  

     Highest 10% -0.0829  ** 

 (0.0364)  

Grades:   

     Lowest 10% 0.1826  *** 

 (0.0337)  

     11-30% 0.1417  *** 

 (0.0250)  

     70-89% -0.1283  *** 

 (0.0266)  

     Highest 10% -0.1145  *** 

 (0.0419)  

Attended Tenth Grade -0.0002     

 (0.0208)  

Number of Observations 4814  

Number of Fixed Effects 2394  
Standard errors are reported in parenthesis.   

*Statistically significant at the .10 level; ** at the .05 level; *** at the .01 level.   
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