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Abstract 

Integrated Information Theory (IIT) is a framework developed to explain consciousness, 

arguing that conscious systems consist of interacting elements that are integrated through 

their causal properties. In this study, we present the first application of IIT to functional 

magnetic resonance imaging (fMRI) data and investigate whether its principal metric, F, can 

meaningfully quantify resting-state cortical activity patterns. Data was acquired from 17 

healthy subjects who underwent sedation with propofol, a short acting anesthetic. Using 

PyPhi, a software package developed for IIT, we thoroughly analyze how F varies across 

different networks and throughout sedation. Our findings indicate that variations in F closely 

reflect the conscious state of patients in the frontoparietal and dorsal attention networks, 

which are responsible for higher-order cognitive functions. Despite existing limitations in 

applying IIT to empirical data, we obtained promising results that merit further applications 

of this framework to fMRI.  
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Summary for Lay Audience 

Consciousness is a highly debated subject in neuroscience, and many different theories have 

been proposed to explain it. In this area of research, Integrated Information Theory (IIT) has 

emerged as a leading framework. IIT argues that a system, such as the brain, generates 

“consciousness” through the integration of its elements, which can be computed using the 

causes and effects associated with the system’s interactions. The principal metric of this 

framework is integrated information, or F, which measures the extent of a system’s 

integration. Although promising developments have been made so far, studies applying IIT to 

empirical neuroimaging data are limited. In this work, we provide a seminal application of 

this framework to resting-state functional magnetic resonance imaging data (fMRI). fMRI is 

a technique that allows for analysis of brain activity patterns over space and time. “Resting-

state” (also known as “task-negative”) acquisition describes measurements of spontaneous 

brain activity patterns when subjects are not involved in a particular task. Studies employing 

this technique have identified a series of resting-state networks (RSNs), which are collections 

of correlated regions associated with the brain’s functions at rest. We apply our analysis to 

several RSNs acquired from subjects who underwent sedation with propofol, a short acting 

anesthetic. To test whether F is a valid marker of consciousness, we thoroughly analyzed 

how it varies throughout the different states of awareness induced by the sedative. In our 

discussions, we relate our results to existing literature on these networks and how they are 

affected by propofol. Most notably, we found that F corresponds to the conscious state of 

subjects in higher-order networks of the brain that are responsible for awareness and 

perception. Altogether, our implementation presents a promising procedure for computing 

integrated information from fMRI data. Ultimately, our goal is to provide a foundation for 

future neuroimaging studies that apply IIT to better understand neurological disorders and 

other states of altered consciousness.      
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Chapter 1 : Introduction and Background 

1.1. Overview 
Consciousness is a remarkably complex concept that lacks a concrete and agreed-upon 

definition [1]. Colloquially, an individual would be described as “conscious” if they 

demonstrate wakefulness and awareness [2]. However, neuroscientific literature 

continues to show that conscious phenomena transcend the mere presence or absence of 

these behavioral traits [3–5]. 

One technology that has been particularly useful in this respect is functional 

magnetic resonance imaging (fMRI), which allows for observation of cortical activity in 

spatial and temporal domains [6]. Activity measured with fMRI corresponds to blood 

flow patterns that reflect the metabolic activities of different brain regions [7,8]. In 

studies involving healthy individuals and patients with traumatic brain injuries, fMRI has 

played a critical role in advancing our knowledge on the neurophysiology that underlies 

cognition, perception, and conscious phenomena  

Owing to developments made with neuroimaging technologies, several theories 

have been proposed to explain consciousness and how it may arise. In this respect, 

integrated information theory (IIT) has emerged as a leading framework [9–11]. IIT 

proposes that consciousness arises when a system, such as the brain, generates a high 

degree of information through the causal interactions that exist between its elements. It is 

important to emphasize that in IIT, “information” is derived from a system’s intrinsic 

causal properties and is hence different from the definition used in traditional information 

theory (i.e., Shannon entropy) [10]. The metric describing the extent to which this 

information is integrated within the system is called integrated information, which is 

denoted by F. In this work, we attempt to quantify F for resting-state fMRI (rs-fMRI) 

data, which involves acquisition of spontaneous brain activity without overt stimulation 

[12]. Even at rest, the brain maintains a sophisticated functional organization that has 

been the subject of extensive study in recent years. To our knowledge, this is the first 

published study that attempts to implement IIT to this form of neuroimaging.  
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Although IIT has had important implications to research on consciousness, its 

computational scheme poses several requirements that limit applicability to empirical 

data [13]. Thus, the first part of our study is dedicated to analyzing the time-dependent 

properties of fMRI data and the extent to which they satisfy the current requirements of 

IIT. For example, IIT requires that time-series satisfy a temporal feature known as a 

Markov property, and we employ an extensive statistical analysis to test this.  

To determine whether F presents a valid means of analyzing “consciousness”, we 

obtained fMRI data from subjects who underwent sedation with propofol, a short-acting 

anesthetic [14]. In the central analysis of Chapter 2, we evaluate how F varies as subjects 

experience the different states of awareness induced by this sedative. In Chapter 3, we 

focus on the relationship between certain temporal properties of fMRI data and how they 

may relate to integrated information. In Chapter 4, we discuss potential solutions to 

certain limitations intrinsic to fMRI, where we also aim to provide several guidelines for 

future implementations of IIT to resting-state fMRI. Ultimately, we hope that our 

approach will be applied in future studies that focus on other altered states of awareness, 

such as subjects who are engaged in a task, or patients suffering from disorders of 

consciousness that arise from traumatic brain injuries.  

The following pages of this chapter are organized into two main sections that 

provide readers with substantial background on our research. First, we provide a brief 

description of the human nervous system. We then discuss fMRI and how this technique 

works to produce measurements of brain activity. This is followed by a summary of the 

literature on propofol and its previously observed effects on resting-state brain activity. 

Once we cover all relevant concepts in neurophysiology and neuroimaging, we provide a 

comprehensive overview of IIT. We begin with the qualitative aspects of this framework, 

and then explain how integrated information is computed at two levels: individual 

mechanisms and a system of mechanisms.  
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1.2. Background on Neuroscience and Neuroimaging  

1.2.1. The Nervous System 

The human brain has always been a subject of great interest to the scientific community. 

For centuries, physicians, scientists, and philosophers studied the brain and attempted to 

understand how it gives rise to cognition, perception, and conscious processing. The 

brain is the central structure of the nervous system, and it has many crucial physiological 

roles related to control and regulation in the body [15,16]. 

To briefly discuss the fundamental properties of the nervous system, we begin at 

the cellular level with neurons. Neurons are the primary cells making up nervous tissue, 

and their function is to transmit electrical signals known as action potentials. Action 

potentials allow for communication with other neurons through connections called 

synapses. We present a diagram of the neuron and its principal parts in Figure 1.2.1a 

[16]. The part of the neuron responsible for transmitting an action potential is called the 

axon (also known as a nerve fiber), which projects from the cell body towards other 

neurons that are connected at nerve terminals.  

 

Figure 1.2.1. Fundamental structures of the nervous system. a) Diagram of the 
neuron, the cells responsible for transmitting signals within the nervous system; b) 
Diagram of the brain showing white and grey matter (inner and outer layers, 
respectively), as well as their connections through axons. 
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While we do not discuss anatomical details, it is important to understand the 

brain’s division into two fundamental structures known as white and grey matter, which 

we demonstrate in Figure 1.2.1b [15]. White matter is located deep within the brain and is 

primarily composed of axons. Accordingly, white matter is responsible for the 

connections between different parts of grey matter, which constitutes the brain’s outer 

layer and is primarily composed of neuronal cell bodies. The outermost layer of the grey 

matter is called the cerebral cortex, which is responsible for many of the brain’s “higher-

order” functions, such as awareness, attention, thought, memory, and language. Using 

neuroimaging, different regions of the cerebral cortex (referred to as cortices) have been 

associated with specific functions.  

1.2.2. Functional Magnetic Resonance Imaging 

The advent of advanced neuroimaging techniques greatly advanced our understanding of 

the brain’s structure and function. As a result, contemporary neuroscience almost 

completely relies on these technologies. In this respect, magnetic resonance imaging 

(MRI) has been an invaluable tool. MRI scanners produce images of organs through their 

strong magnetic field [17]. This field interacts with molecules in the body to generate 

excitatory signals that are captured by the scanner and processed to a form that can be 

interpreted visually. Although MRI can be used to image several different organs, it is 

particularly prevalent in neuroscience as it can produce higher resolution images of the 

brain compared to other forms of imaging [18]. Beyond generating images that allow for 

a structural perspective of the brain, MRI can also be used to analyze brain activity in the 

temporal domain. This is accomplished with a technique known as functional MRI 

(fMRI) [7], which is the principal form of neuroimaging used in our study. 

The advent of fMRI was inspired by a series of fundamental discoveries about the 

magnetic properties of blood, which change depending on its level of oxygenation. More 

specifically, molecules in deoxygenated blood are paramagnetic and those in oxygenated 

blood are diamagnetic, meaning that the former has stronger magnetic properties than the 

latter [19]. As regions of the brain become more active, their consumption of oxygen 

increases, causing more oxygenated blood to flow towards them. Accordingly, activity-

based changes to blood flow correspond to spatial variations of the brain’s magnetic 
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properties. These changes are captured by the scanner in the form of the blood-oxygen-

level-dependent (BOLD) signal. Since blood flow patterns are dynamic and change over 

time, the continuous acquisition of images allows for a time-dependent analysis of the 

brain’s activity patterns. 

Consecutive images are separated by the amount of time it takes for the scanner to 

generate excitatory signals and detect them, which is known as the repetition time (TR). 

In most cases, TR ranges between 2-3 seconds [7,12]. For each voxel (a three-

dimensional pixel of the image), a time-series is obtained, which shows changes to the 

BOLD signal’s strength after each TR. From here, a parcellation scheme is typically 

applied. Parcellation involves dividing the brain into non-overlapping regions made up of 

many voxels that are close in proximity. The regions of a parcellation scheme obtain their 

own time-series based on the signals of their constituent voxels, which allows for a better 

organized representation of brain structure and function.   

The parcellated time-series are then used to construct an important entity known as 

functional connectivity (FC). Through correlations, FC describes the degree of synchrony 

that different cortical regions present through their time-series; two regions are described 

as functionally connected if there is a high correlation between the evolution of their 

BOLD signals [20]. These statistical relationships are traditionally seen as indicators that 

regions are coupled or belong to the same functional network. For any pair of regions (𝑥 

and 𝑦), FC is calculated using the Pearson correlation coefficient 𝜌:  

𝜌!" =
Σ#(𝑥# − 𝑥̅)(𝑦# − 𝑦-)

.Σ#(𝑥# − 𝑥̅)$Σ#(𝑦# − 𝑦-)$
 1.2.1 

where 𝑥# and 𝑦# represent the BOLD signal strength at a particular time-point 𝑖. To 

describe the functional connectivity of 𝑁 regions (which may include the whole brain or 

a smaller network of cortical areas), it common to construct a functional connectivity 

matrix with dimensions 𝑁 × 𝑁. Each row and column represent a certain region, and the 

entries are populated with the correlation coefficient of the corresponding pair (e.g., the 

entry in row 1 and column 3 corresponds to 𝜌%&). The overall process of obtaining FC, 

starting from image acquisition, is summarized below in Figure 1.2.2. 
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Figure 1.2.2. Overview of functional MRI. a) Image of a typical MRI scanner, 
which produces a strong magnetic field that induces molecular excitations and 
picks up their signals to generate images of organs; b) Obtaining a time-series for 
each voxel based on changes to the BOLD signal over time, with each time point 
corresponding to one TR; c) Mapping of the cortex with a parcellation scheme, 
which yields well-defined regions and their corresponding time-series; d) Example 
of a functional connectivity (FC) matrix, a symmetric array that contains the 
Pearson correlation coefficient between every pair of cortical regions in the 
parcellation scheme. 

Traditionally, fMRI studies require subjects to undergo stimulation or participate 

in a certain task, with the goal of detecting which brain regions are activated in response. 

While such procedures have been essential to our understanding of cortical function, 

fMRI can also be used to analyze “resting-state” activity, which describes the brain’s 

intrinsic behavior in the absence of external stimuli or tasks [21]. Even at rest, the brain 

demonstrates a sophisticated functional organization that is worthy of analysis.  
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Acquisition of subjects in conditions of rest is called resting-state fMRI (rs-fMRI, 

also known as task-negative fMRI), and studies employing it have identified a series of 

resting-state networks (RSNs) [22]. RSNs comprise of several cortical regions that are 

temporally correlated, while also being functionally segregated from regions of other 

networks (i.e., they either show no correlation or a negative correlation with external 

regions). One of the first RSNs to be described was the default mode network (DMN), 

which gained a lot of attention for its high resting-state activity [23]. Although its 

functions are not completely understood, it is attributed to introspective thought, memory 

recollection, and mind-wandering. While these functions correspond to the sort of 

cognition that would occur in a task-negative state, even networks that are involved in 

specific tasks, such as the auditory and visual networks, remain synchronized at rest, and 

are hence also examples of RSNs [22].  

The parcellation scheme adopted for this study was used to extract 11 RSNs [24]. 

In Tables 1.2.1 and 1.2.2, we briefly introduce all these networks and describe their 

principal roles [24–28]. Seven are characterized as “higher-order” networks, meaning 

their functions are responsible for advanced cognitive and behavioral processes. The 

other four networks are associated with sensorimotor functions and the processing of 

stimuli; although these are not necessarily “lower-order” RSNs, their functions are related 

to more specific tasks than those in the former group.  

 

RSN Functions 

Frontoparietal 
(FPN) 

• Executive control and goal-oriented behavior (task-related) 
• Integration of external stimuli with working memory 

Default Mode 
(DMN) 

• Introspective thought, mind wandering, daydreaming 
• Activity is most pronounced in the resting state 

Retrosplenial (RS) • Spatial learning, visual processing, and navigation 
• Episodic memory of past personal experiences 

Dorsal Attention 
(DAN) 

• Externally directed and voluntarily driven attention 
• Goal-orienting and visuospatial processing 

Ventral Attention 
(VAN) 

• Complements the dorsal attention network 
• Directs attention towards unexpected stimuli (involuntary) 
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Cinguo-Opercular 
(CO)  

• Monitoring and coordination of control networks (such as 
FPN and DAN) 

Cingulo-Parietal 
(CP) 

• High activity during resting-state, complements the activity 
of the DMN 

Table 1.2.1. Descriptions of higher-order cortical networks.  

RSN Functions 

Sensorimotor Hand  • Coordination and execution of movements in the hand   

Sensorimotor 
Mouth • Coordination and execution of mouth and lip movements  

Auditory • Processing of auditory stimuli 

Visual • Processing of visual stimuli  

Table 1.2.2. Descriptions of sensorimotor, auditory, and visual networks.   

1.2.3. Anesthesia with Propofol 

In attempts to understand the cortical pathways responsible for awareness, fMRI has been 

used to study anesthesia. Anesthetics are drugs that suppress the body’s normal 

autonomic functions, such as cardiovascular activity, respiration, and brain function, 

hence resulting in a state of unconsciousness [29]. One of the most common anesthetics 

used in clinical and research settings is propofol, which is administered intravenously to 

rapidly induce an unconscious state [30].  

Despite the common use of propofol and all the extensive research conducted on 

it, much remains unknown about its mechanisms of action. Previous findings indicate that 

propofol preferentially suppresses higher-order processing regions in the frontal and 

prefrontal cortices, which are commonly attributed to awareness and perception 

[14,31,32] (the four lobes of the cortex are presented in Figure 1.2.3). One important 

RSN that is affected is the frontoparietal network (FPN), whose principal function is 

related to executive control and the integration of external stimuli [26,33]. The FPN 

includes regions of the prefrontal cortex and the parietal lobe. Previous fMRI studies 

found that under anesthesia, the functional connections between these regions break 
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down [31,34,35]. At the same time, propofol was not found to diminish the reactivity of 

sensory cortices (i.e., visual, auditory networks) to external stimuli, which also 

emphasizes the preferential suppression of higher-order cortices [36]. 

Since this study is based on fMRI data of subjects who underwent sedation with 

propofol, we will return to these principles when discussing how propofol affects the 

conscious state of subjects in Chapter 2.   

 

Figure 1.2.3. Propofol and the cerebral cortex. The molecular structure of 
propofol is given on the left. The red arrows indicate propofol’s preferential 
suppression of the frontal lobe (cerebral blood flow to this region is inhibited under 
anesthesia), as well as the breakdown of functional connectivity (FC) it induces 
between frontal and parietal regions. We also indicate the four major lobes of the 
cortex and briefly describe their functions.  
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1.3. Integrated Information Theory 
1.3.1. Defining Consciousness  

In recent years, advances in neuroimaging emphasized the intricate nature of 

consciousness and changed the neuroscientific community’s perspective on this concept. 

Traditionally, consciousness has been described as a behavioral phenomenon; an 

individual would be described as “conscious” if they are awake and aware, and 

“unconscious” if they are asleep, anaesthetized, or comatose.  

Over the last two decades, several important studies were published on patients 

suffering from disorders of consciousness (DOCs) [37]. DOCs typically arise from 

traumatic brain injuries and pertain to patients who demonstrate insufficient motor skills 

and an inability to communicate. One example is a condition known as the vegetative 

state, in which patients suffer from an almost complete lack of behavioral abilities [38]. 

Even so, fMRI studies have shown that individuals in this condition are more concious 

than their physical state suggests. In a series of experiments, patients in a vegetative state 

participated in an imaginary task where they were instructed to imagine playing a sport or 

to navigating a familiar environment. Remarkably, some of these patients demonstrated 

cortical activation patterns that were similar to those observed for healthy controls 

performing the same task, indicating a level of awareness that cannot be observed 

externally. These findings were highly consequential, and it is now well-established that 

individuals diagnosed with DOC may maintain a “covert” level of consciousness that is 

independent of their behavioral ability [39–41].  

Over the last decade, these discoveries have been complemented by several 

attempts to explain conscious phenomena and how they may arise. By using 

neuroimaging techniques, one important goal has been to identify neural correlates of 

consciousness (NCCs), which are measurable features of brain activity that correlate with 

specific conscious percepts (perceptions) [42,43]. In analysis involving NCCs, a 

recurring concept of great importance is causality: the relationship between cause and 

effect [44–46]. Considering what it means to be conscious in day-to-day life, it is 

expected that some event (cause) will produce a behavioral, emotional, or cognitive 
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response (effect). From a neurological perspective, the analysis of causal interactions 

between different regions of the brain can identify the functional pathways that underly 

conscious phenomena.  

While NCCs have been useful in understanding the neurological foundation for 

specific conscious percepts, recent attempts have been made to develop a theory that can 

explain consciousness more generally. As such, integrated information theory (IIT) was 

introduced as a framework that aims to account for all types of conscious experiences. 

This thesis focuses on IIT and the use of its principal metric, F, which aims to quantify 

the extent to which a system of interacting elements, such as the brain, is conscious [9–

11]. IIT was initially introduced by Giulio Tononi in 2004 [9] and has since undergone 

extensive developments. The qualitative and quantitative material we present in this 

section is primarily based on the latest version of IIT (version 3.0), which was published 

by Oizumi et al. in 2014 [11]. Although we provide a considerable amount of detail in 

this section, we emphasize that IIT is an exceptionally sophisticated framework, and our 

explanation is only a summary of its fundamental ideas.    

First, IIT defines the fundamental properties of consciousness based on its 

phenomenological aspects. The conscious nature of an experience is explained with a 

series of five axioms, or self-evident truths, about the experience [47]: 

1) Existence: Consciousness exists and is real; this reality is intrinsic to the subject 

undergoing the conscious experience, who views their present experience as 

actual, regardless of what external observers experience.  

2) Composition: Each conscious experience is structured and composed of multiple 

distinguishable features, such as colors, shapes, and sizes.  

3) Information: A conscious experience is specific and informative. This is not only 

because of the distinguishable features it contains, but also in how these features 

differ from those of other experiences.   

4) Integration: The features making up a conscious experience are interdependent 

and inseparable; they cannot be experienced alone. (i.e., when looking at a blue 

square, color and shape are experienced together as interwoven entities. 
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5) Exclusion: A conscious experience is limited; its composition and information 

exclude external features that are not part of the experience.  

Using these axioms as a foundation, IIT proposes that consciousness arises when 

a system, such as the brain, generates more information as an integrated whole than that 

which is generated by its elements acting alone. In other words, “consciousness” is 

tantamount to “irreducibility”; the interactions between a system’s elements, governed by 

its mechanisms, give rise to information that would not be produced if the system was 

reduced to its individual components.  

Although this may seem to contradict traditional notions of information theory, 

such as the principle of additivity (i.e., a composite system’s total entropy must equal to 

the sum of the entropies produced by its subsystems), it is important to emphasize exactly 

what type of “information” is being discussed. In accordance with the axiom of existence, 

the system must exist intrinsically, regardless of how it may be viewed externally. 

Fundamentally, the idea of intrinsic existence means that the system must be able to 

make a difference to itself; accordingly, information, as it is defined in IIT, quantifies the 

extent of this difference [47]. As we shall see, this intrinsic level of information is 

computed through the causal properties that govern the interactions between the system’s 

elements. On the other hand, measures from information theory, such as Shannon 

entropy, are extrinsic, meaning they are assessed from the perspective of an external 

observer [9,10]. This is not the type of information used in IIT, as a system can exist 

extrinsically but not from its own perspective (i.e., it cannot make a difference to itself).  

Once information is defined, IIT introduces the concept of integrated information, 

which describes the extent to which the information of the type described above pertains 

to a system as an inseparable whole. The measure for integrated information is F, which 

is obtained by assessing the system’s irreducibility to its individual components.  

The idea of irreducibility and how it relates to consciousness is summarized with 

a simple example in Figure 1.3.1. When we look at a smiley face, our conscious 

interpretation pertains to the symbol as an inseparable whole; although we may recognize 

that it consists of several features, such as an outer circle, eyes, and a mouth, we do not 
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experience these features separately. Instead, our experience is an integration that 

contains more meaning than the individual features themselves. The same could be said 

for the shapes and colors of these features (i.e., when we observe a blue circle, shape and 

color are inseparable – they cannot be experienced separately). 

 

Figure 1.3.1. A simple example of irreducibility. When observing a smiley face, 
our interpretation is an integration of its distinguishable features, and we ultimately 
observe the symbol as an irreducible whole that has more meaning than the 
individual features themselves; this conscious experience cannot be reduced to its 
individual elements.  

As another example, consider the following comparison between a camera and the 

human visual system [9]. Although digital photographs contain millions of pixels, the 

camera sensor that produces these images is not considered to be “conscious”, as it does 

not integrate the elements of the images in any meaningful way; the information stored 

by the camera is no more than the color grade of each pixel. When we observe an image 

with our eyes, light hits the cells of our retinas as it does in a camera sensor. However, 

these inputs undergo processing in the visual cortex, which integrates the different 

aspects of the stimulus. The ultimate result is a meaningful interpretation of what we see, 

which can be described as a “conscious” experience; the information produced by the 

visual system is more than just the input received by each retinal cell.   
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Finally, an example of neuroscientific evidence that is commonly used to support 

IIT is the distinction between two essential structures of the human brain: the cerebellum 

and cerebral cortex [47]. Although the cerebellum contains four times as many neurons, 

functions associated with consciousness are primarily attributed to the cerebral cortex 

[48,49]. This is because its neurons are much more interconnected than those in the 

cerebellum, which results in the complex interactions and pathways that underly this 

structure’s higher-order cognitive functions [47,50]. Previous studies on patients with 

damage to their cerebellum (and remarkably, even those born without one) emphasized 

that they still demonstrate overt consciousness through their behavior [51].  

1.3.2. Quantifying Integrated Information for a Single Mechanism 

When computing integrated information, one must begin with a system (or network) 

consisting of several elements that interact through well-defined mechanisms. An 

element is any component of the system that can take on a certain state, and a mechanism 

is any subsystem of elements that can change the system’s state (i.e., mechanisms have a 

causal role in the system). A mechanism can be elementary, meaning it consists of one 

element, or composite, meaning it consists of two or more elements. In the current 

computational scheme of IIT [13], each element in the system is restricted to be a binary 

node, meaning its possible states are 1 and 0 (“ON” and “OFF”, respectively). Integrated 

information is first computed for an individual mechanism, with which we begin our 

computational overview. Following the example presented by Oizumi et al., [11] we 

focus on a simple bidirectional network consisting of three elements A, B, C, all of which 

interact as logic gates (OR, AND, XOR, respectively). These three logic gates were 

chosen for this specific example, but this analysis could be applied to any other collection 

of logic gates or system with well-defined interactions.  

For a single mechanism, integrated information is quantified using “small phi”, or 

f . The system on which we focus is presented in Figure 1.3.2a, and the elementary 

mechanism for which we aim to compute f  is A1, where A is in the “ON” state. When 

thinking about the causal properties of A1, we aim to determine how this mechanism 

restricts the past and future states of the system. In other words, we are asking the 



 

 

 

15 

following question: what does A being ON tell us about the system’s past and future 

states?  

The mathematical entity that defines each mechanism’s causal properties is the 

system’s transition probability matrix (TPM). In Figure 1.3.2b, the system’s TPM is 

given in a state-by-state form, where each row and column correspond to the system’s 

overall state. Since each node is binary, the system can be in one of 8 (23) possible states, 

so the dimensions of this TPM are 8 ´ 8. First, each state is assigned a binary 

representation (A = 1, B = 0, C = 0 ® 100), which is converted to an integer for indexing 

purposes. In PyPhi, this conversion is accomplished using a little-endian byte order (i.e., 

bytes are flipped from left to right, meaning the least significant bytes are encoded first: 

state 100 ® state index 1). The indices corresponding to each row’s state are presented 

on the right side of the TPM in Figure 1.3.2b.  

An entry of the TPM describes the probability that the state corresponding to the 

row transitions to the state corresponding to the column. For instance, the state 100 (state 

index 1) has a 100% chance of transitioning to the state 001 (state index 4), so the entry 

in row 1 and column 4 is assigned a 1. Since C is an XOR gate and is only activated 

when both inputs are different, it will be activated as a result of A being ON and B being 

OFF in the current state. At the same time, neither A nor B will be activated (both inputs 

are the same for A and different for B), hence the transition to state 001.  

The mechanisms defined in this example leave no chance of transitioning to more 

than one state, so all other entries in row 1 correspond are assigned a zero (the sum of 

each row must be normalized to 1). Therefore, this TPM is said to be deterministic, as the 

mechanisms of the system are well-defined, and each state is associated with one specific 

transition. On the other hand, a TPM can also be probabilistic; instead of having definite 

transitions for each state (i.e., 100% or 0% probability for each entry as in the 

deterministic case), a state can transition to more than one other state with a specified 

probability for each transition. The entries of a probabilistic TPM can hence be less than 

1. In either case, each row must be normalized so that all its elements add to 1.  
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Figure 1.3.2. System diagram and transition probability matrix. a) The system 
being considered, which has three elements acting as logic gates; b) A state-by-state 
transition probability matrix, where each entry specifies the probability that the 
state corresponding to the row transitions to the state corresponding to the column. 
Since each state can only transition to one other state and all non-zero entries are 1, 
this TPM is said to be deterministic. 

The transition probability matrix is then used to construct a set of probability 

mass functions for the mechanism of interest, which are known as cause-effect 

repertoires. These are presented as bar graphs in Figure 1.3.3a. The horizontal and 

vertical axes contain the system’s possible states and their corresponding probabilities, 

respectively. The cause repertoire, p (ABC p | A1), specifies the probability that a certain 

past state (ABC p) preceded the mechanism, whereas the effect repertoire, p (ABC f | A1), 

specifies the probability of each future state (ABC f ) that may follow A1. The cause-effect 

repertoires are defined for time points that immediately precede or follow the mechanism.  

These distributions are then used to compute the information generated by the 

mechanism. Information quantifies the degree to which a mechanism’s causes and effects 

are selective, or constrained; the more selective these causal properties are, the more 

“relevant” the mechanism is to the evolution of the system, which corresponds to high 

information. On the other hand, an unselective mechanism has a weaker causal role in the 

system and is hence less relevant to the system’s evolution; its causes and effects are less 

specific, which yields little to no information. This is quantified by measuring the 

distance between the cause-effect repertoires and their “unconstrained” counterparts, 
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which are shown underneath the original cause-effect repertoires in Figure 1.3.3a. The 

unconstrained cause repertoire, puc (ABC p), is a uniform distribution where all states are 

equally possible, while the unconstrained effect repertoire, puc (ABC f ), is obtained by 

noising the inputs to each element (A1 is not included in the unconstrained probability 

mass functions as they do not depend on the mechanism in question). The distance 

between the cause repertoire and its unconstrained counterpart is defined as the cause 

information (ci), while the same metric applied to the effect probability mass functions is 

defined as the effect information (ei). The mechanism’s overall information is defined as 

the minimum of ci and ei, or cause-effect information (cei). The minimum implies that 

for a mechanism to generate information, it must do so through both its causes and 

effects. In other words, if one of ei or ci is 0, then cei is also 0. 

Since integrated information is a measure of irreducibility, it is computed by 

partitioning the system (breaking connections between its elements) and measuring the 

loss of information that follows. If the mechanism’s information in the partitioned system 

is not reduced, it is an indication that the system is poorly integrated and can be reduced 

to its individual components. This process is demonstrated in Figure 1.3.3b, which begins 

with all possible ways of partitioning the system.  

For each partition, cei is computed and compared to that of the unpartitioned 

mechanism. The partition that induces the smallest difference to information (D cei), or 

the minimum information partition (MIP), is the one used to measure the mechanism’s 

integrated information, f . The MIP is used because it provides a definite constraint on 

how strongly integrated the system can be. To compute f , the distance between the 

unpartitioned cause-effect repertoires and those of the MIP are obtained. Finally, this is 

repeated for every possible subset of the system’s elements (see methods for more details 

on subset analysis). The degree to which the system is integrated for a single mechanism 

is f max, which corresponds to the subset that maximizes f .  
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Figure 1.3.3. Computation of integrated information for a single mechanism. 
a) The distance between the cause-effect repertoires and their unconstrained 
counterparts is computed to obtain the mechanism’s cause and effect information. 
The minimum of these defines the overall information produced by the mechanism; 
b) The system is partitioned in all possible ways, and the MIP is used to compute 
the integrated information of the mechanism, f . This is repeated over all possible 
subsets, and the one that maximizes is used to obtain the maximum integrated 
information, f max. 
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1.3.3. Quantifying Integrated Information for a System of Mechanisms 

When a system takes on a specific state, there is more than one mechanism that can 

impact its evolution. In the next part of the formulation, the analysis for a single 

mechanism is extended to all the possible mechanisms within a system. The ultimate 

result is an intricate measure of irreducibility called the maximally integrated conceptual 

information, or Fmax, which is the principal metric of integrated information theory. 

Although this computation is significantly more sophisticated, we briefly describe how it 

is analogous to the procedure used for a single mechanism.  

First, the f max values of all possible mechanisms are computed. At this point, each 

mechanism, its cause-effect repertoires, and its maximum integrated information are 

referred to as concepts. This is used to construct a high-dimension probability distribution 

called a conceptual structure, which is populated with the f max values of each concept 

(like the cause-effect repertoires, a conceptual structure is obtained for both past and 

future states). The dimensions of this space are 2 ´ 2N, N being the number of nodes, with 

one dimension for each system state in both past and future. This time, the system is also 

partitioned, but the loss of information is evaluated for the conceptual space, and a 

version of the MIP is found using all possible partitions. The integrated information for 

the system of mechanisms, F, is defined as the distance between the unpartitioned 

conceptual structure and that of the MIP. Finally, a subset analysis is performed to obtain 

Fmax, which corresponds to the conceptual structure that maximizes F, or the maximally 

irreducible conceptual structure. This process is summarized in Figure 1.3.4, where the 

initial conceptual structure is compared to that of the MIP.  

In essence, the maximally integrated conceptual structure is a quantitative 

representation of a conscious experience. As explained in the beginning of this section, a 

conscious experience integrates the distinguishable features that make up its composition. 

In like manner, the maximally irreducible conceptual structure integrates the individual 

concepts that make it up. The concepts themselves can be seen as distinct and 

distinguishable features of the experience, and we discussed how these are both 

informative and integrated through their causal roles in the system.  
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Figure 1.3.4. Computation of integrated information for a system of 
mechanisms. a) Each mechanism of the system when it is in the state 100 is 
highlighted. Each mechanism and its f max values specify a “concept”, which is 
used to populate the system’s conceptual space; b) The system is partitioned, and 
the subsequent loss of information is evaluated for the conceptual space. The MIP 
is used to compute F, which is repeated for every possible subset. The subset that 
maximizes F is termed the maximally integrated conceptual structure, and its Fmax 
value (maximally integrated conceptual information) specifies the degree to which 
the system is “conscious”.  
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In conclusion, extracting the principal metric of IIT is a computationally rigorous 

process. Implementing this analysis to neuroimaging data has proven to be a difficult 

challenge, and as a result, most developments have been theoretical and speculative. In 

the next chapter, we outline a methodology for how Fmax could be extracted from 

empirical fMRI data. Although this section focused on a simple network with three 

elements and a deterministic evolution, calculations of Fmax can be extended to larger 

systems as well as those with probabilistic mechanisms.    

Although the present work is primarily focused on IIT, we acknowledge that this 

framework continues to be debated in the neuroscientific community and that other 

theories have been proposed to explain consciousnesses [43-45]. Therefore, we 

emphasize that our work is mainly an experimentation with this theory; while we attempt 

to relate our results to existing neuroscientific literature, much remains to be investigated 

when it comes to NCCs like integrated information. Ultimately, we hope that our 

approach will motivate future studies on how IIT pertains to real-life neurological 

systems and, most importantly, whether it can account for conscious phenomena.   
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Chapter 2 : Integrated Information in Resting-State Networks 

2.1. Overview 
In this chapter, we focus on quantifying the integrated information generated by 

individual resting-state networks (RSNs). We treat these as isolated systems, meaning no 

interactions between different RSNs are considered. Details about the acquisition 

procedure are provided in Chapter 6. In short, resting-state fMRI data was acquired for 17 

healthy subjects who underwent sedation with propofol, which allowed for measurements 

over four states of awareness: 1) awake (prior to propofol administration), 2) mild 

sedation (low propofol concentration), 3) deep sedation (high propofol concentration), 

and 4) recovery (subjects regain consciousness). We obtained 11 RSNs, which were 

processed to include five regions and their corresponding time-series.  

Our methodology begins with the processing and conversion of fMRI signals to a 

binary form that is suitable for calculations of integrated information. The software used 

to compute F was PyPhi, a publicly available Python software package developed in 

accordance with IIT 3.0 [1]. PyPhi assumes that networks obey two important features, 

which are the Markov property and conditional independence. After testing how well the 

time-series obey these requirements, we used PyPhi to compute Fmax for each state in an 

RSN’s time-series. Based on each network’s transitions between different states, we 

obtained a weighted average of Fmax, which we refer to as µ[Fmax]. This is the primary 

metric we use when describing each RSN’s overall integrated information. 

In our central analysis, we compute µ[Fmax] for all networks and states of 

awareness. Our goal is to determine whether integrated information can meaningfully 

reflect sedative-induced changes to the condition of subjects. If this metric can serve as a 

valid NCC, it is expected that its value will gradually decrease as subjects transition from 

wakefulness to deep sedation and increase as the anesthetic wears off. As a reference 

point, we also computed each RSN’s average interregional Pearson correlations, with 

which we hoped to point out any results of µ[Fmax] that go beyond traditional 

descriptions of functional connectivity. In the discussion, will relate our findings to 

existing neuroscientific literature on RSNs and propofol. 
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2.2. Methods 

2.2.1. Obtaining binary signals and transition probability matrices  

The process used to obtain discrete networks of binary elements, starting with fMRI 

acquisition, is presented in Figure 2.2.1. For each subject, RSN, and conscious condition, 

we obtained a time-series array with dimensions of 245 ´ 5 (number of time points ´ 

number of regions). We chose five regions to optimize balance between spatial resolution 

and computational efficiency; PyPhi has a scalability of O(n53n), where n is the number 

of regions, meaning that a sixth region would have increased computation time by over 

60-fold. Once time-series were denoised and filtered (see Chapter 6.1.2), they were 

standardized to have zero mean, which was accomplished by obtaining each region’s 

mean signal strength and subtracting it from the region’s time-series. For each time-point, 

regions with a positive z-score (above-baseline activity) were set to equal 1, and those 

with a negative z-score (below-baseline activity) were set to equal 0.  

With five regions and two possible states for each one, this allowed for a network 

to be in one of 32 (25 ) possible states a certain point in time. For instance, the state (1, 1, 

1, 1, 1) represents above-baseline activity in all of a network’s regions. Each state was 

then assigned an index between 0 and 31 using little-endian byte ordering (see Chapter 

1.3.2) as shown to the right of the binarized time-series in Figure 2.2.1d.   

Indexing was essential for the next step, which was to obtain a state-by-state 

transition probability matrix (TPM) for each RSN and subject condition. The TPM is the 

principal input necessary for calculating F, and there are two variants of it in PyPhi [1]: 

1. State-by-state TPM: Each entry describes the probability that a certain state of the 

network transitions to another state in the subsequent time point (dimensions 32 ´ 

32). This form is obtained directly from the time-series.  

 

2. State-by-node TPM: Each entry describes the probability of a node flipping from (0 

to 1 or 1 to 0) when the system is in a certain state (dimensions 32 × 5). In our 

procedure, the state-by-state TPM is obtained first and then converted to this form.  
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Figure 2.2.1. From fMRI acquisition to binarized time-series. a) Resting-state 
fMRI data was acquired for 17 subjects who underwent sedation with propofol; b) 
Data was processed to obtain 11 RSNs, each consisting of five regions (see Chapter 
6.1.2 for image processing procedure). The frontoparietal network and its five 
constituent regions are shown as an example; c) A time-series array: each column 
corresponds to one of an RSN’s five regions, and the rows correspond to time 
points (i.e., moving down corresponds to moving in time). For each subject and 
RSN, four time-series arrays were acquired, with one for each of the four 
conditions of awareness (awake, mild sedation, deep sedation, recovery). Time 
points highlighted in pink represent activity above the baseline, while those 
unhighlighted show activity below the baseline; d) The time-series were z-scored 
and binarized to obtain a binary representation for each region at a certain time 
point, leading to 32 possible states. Each time point’s state was assigned an index 
as indicated to the right of the time-series array.  
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To generate a state-by-state TPM directly from a time-series, we counted the 

number of times each of the 32 possible states transitioned to any other state. The count 

of transitions was used to populate a 32 ´ 32 square matrix, in which row and column 

indices corresponded to little-endian state integers. To normalize the matrix, each row 

was divided by the number of times the state corresponding to its index appeared in the 

time series. For example, if 5 transitions occurred from state (1, 0, 0, 0, 0) (index = 1) to 

state (1, 1, 0, 0, 0) (index = 3), then the entry in row 1 and column 3 was assigned a value 

of 5. The row was then normalized with respect to the number of times the state occurred 

in the time-series; if the first state occurred 20 times, the entry would be set to equal 0.25, 

representing a 25% chance that the transition from state 1 to 3 occurs.  

2.2.2. Concatenating time-series 

Recall that the time-series for an individual subject in one of the four conditions consisted 

of 245 time points, each separated by the repetition time (TR). Considering the 32 

possible states of the system, these time-series were relatively short, which was also 

problematic as it yielded sparse TPMs with significant inter-subject variation, resulting in 

spurious calculations of F. To address this issue, our solution was to concatenate, or link, 

the time-series of the entire subject population for each RSN. This resulted in longer time 

series, which we hoped would produce denser TPMs that provide a more complete 

description of the mechanisms involved in each network. The difference between single 

subject and concatenated TPMs is demonstrated in Figure 2.2.2.  

Inevitably, there were limitations to this approach. In chapter 4, we conduct a 

thorough analysis on how concatenations affected calculations of F. As we will show, 

linking time-series from different subjects resulted in decreased F values compared to 

those obtained at the single subject level. Moreover, differences between subjects 

resulted in discontinuities within the elongated time-series that would not exist if a signal 

of the same length was acquired for a single subject. Ultimately, these limitations result 

from the low temporal resolution of fMRI (2-3 seconds between time points), which 

limits the length of the signal that can be obtained in a single scan. Nevertheless, we 

hoped that concatenating would produce TPMs where the predominant mechanisms 
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contributing to F are those likely to be found across several subjects and are hence 

intrinsic to a particular network. With the exception of our analysis on the modulation of 

propofol (see section 2.2.6), we concatenated all 17 subjects for each RSN and subject 

condition. With 11 RSNs and four conditions, we obtained a total of 44 time-series.  

 

Figure 2.2.2. TPMs for the time-series of a single subject and 17 subjects. The 
TPM on the left, which was obtained from the time-series of the auditory network 
in the awake condition from a single subject, is sparse and varies significantly 
between subjects. The TPM on the right was obtained by concatenating the time-
series of the same network and condition from all 17 subjects.   

2.2.3. Statistical test for the Markov property  

PyPhi was programmed to work for discrete Markovian systems consisting of binary 

elements, and its algorithms were written with the assumptions that a network’s time 

series and TPM satisfy the following conditions [1,2]:  

1. The Markov property: The subsequent state of the whole system depends only on 

its state in the current point in time, and not on any previous state (i.e., only the state 

at time point t has an impact on the state at t+1; the states at t – 1, t – 2, … do not).   

 

2. Conditional independence: The subsequent state of each individual element depends 

only on the current state of the other elements, meaning that mechanisms are not 

allowed to act instantaneously (i.e., only the state at t has an impact on elements at 

t+1; the state of other elements at t+1 do not).  
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To evaluate whether a time-series obeys the Markov property, we employed a 

statistical test that scans through the sequences of states appearing in each time-series to 

detect a potential violation [3–6]. For each time-series, we recorded the occurrence of the 

most commonly occurring 3-state sequence (states a, b, c; b ¹ c) as well as other 3-state 

sequences that begin with the same two states but end with a different one (i.e., a 3-state 

sequence where the first and second states are a, b). Note that these are the states of the 

whole network, meaning that each of a, b, and c correspond to a state index between 0 

and 31. A violation of the Markov property is more likely if a particular 3-state sequence 

occurs at a greater frequency than other sequences that start with the same two states; if 

this is the case, it indicates that the third state in the sequence depends on two previous 

time points, which is not allowed for a Markovian system.   

We assigned a label h (h = 1, 2, 3, …, H) to each of the three-state sequences 

mentioned above, and the following quantities were obtained for each one: 

1. Sequence count, SC: The occurrence of the 3-state sequence in the time-series. 

2. Non-sequence count, NSC: The count of all 2-state sequences that match the first 

two states of h sequence but are followed by a different third state (a, b, e, e ¹ c). 

3. Total sequence count, TSC: The count of all 2-state sequences that correspond to the 

first two states of the 3-state sequence, including those followed by the third state in 

the sequence of interest (a, b, c; a, b, e; TSC = SC + NSC).  

These quantities were then organized into a contingency table of the type shown below. 

Each recorded count is referred to as Nhk , where h and k are row and column indices, 

respectively. As described above, the index h ranges between 1 and the total number of 3-

state sequences recorded in the table, H, while the index k can equal 1 or 2 for the SC and 

NSC columns, respectively. NhT represents a row total, NTk represents a column total, and 

n represents the total number of counts in the table.   

The table was used to compute a 𝜒$ value (equation 2.2.1), which indicates the 

extent to which the network’s temporal behavior deviates from the Markov property. This 

can be seen as a comparison between the state-sequence distribution of the time-series 
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and that of a state sequence distribution that satisfies the Markov property (i.e., this is 

essentially a “goodness of fit” test for the Markov property).  

												𝜒$ =4
[𝑁'( − 𝑛(𝑁')/	𝑛)(𝑁)(/𝑛)]$

𝑛(𝑁')/𝑛)(𝑁)(/𝑛)',(

 2.2.1 

This 𝜒$ value was then used to obtain a two-tailed p-value with the SciPy 

statistics module in Python (https://docs.scipy.org/doc/scipy/reference/stats.html). 

Significance was set to 0.05 and the number of degrees of freedom n was H – 1. 

Statistical significance indicated a significant deviation from the Markov property. 

Finally, we also obtained a reduced 𝜒$ statistic, or 𝜒n$	, to analyze the quality of each fit. 

The results obtained for each RSN’s time-series (with 17 subjects concatenated) are 

presented in Chapter 6.2.1. 

h SC NSC TSC 

1 N11 N12 N1T 

2 N21 N21 N2T 

3 N31 N32 N3T 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
H NH1 NH2 NHT 

Total NT1 NT2 n 

 

Table 2.2.1. Contingency table for counting the sequences of states in a time-
series. A contingency table of this form was constructed to compare the most 
common three-state sequence to other sequences that share the last two states (i.e., 
1-0-1, 2-0-1, 3-0-1, …, 31-0-1). Rows correspond to a specific three-state sequence 
(h). The middle columns correspond to counts of the three-state sequences and the 
occurrences of two state-sequences that start with the same two states (SC and 
NSC). The third column tallies the totals of each row. The table was used to 
compute a c2 statistic, which indicates the extent to which a time-series deviates 
from the Markov property.   
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2.2.4. Test for conditional independence test 

Next, we tested whether the networks satisfy the conditional independence property. 

PyPhi has built-in functions to check whether a state-by-state TPM satisfies conditional 

independence. For every state-by-node TPM, there is one unique state-by-state TPM that 

is conditionally independent, which is outputted by PyPhi when converting a TPM from 

state-by-node to state-by-state form [1]. We checked the extent to which our data met this 

property by taking the original state-by-state TPM, converting it to state-by-node form, 

and then back to state-by-state to obtain the conditionally independent version. The 

relative distance D between the original TPM (A) and the conditionally independent TPM 

(B) was computed by subtracting the two arrays and calculating the Frobenius norm (ℱ) 

of the residual, which was divided by the Frobenius norm of the conditionally 

independent variant: 

ℱ(𝑨) = 9Σ#Σ+ 	:𝐴#,+:
$ 2.2.2 

𝐷(𝑨	, 𝑩) =
ℱ(𝑨 − 𝑩)
ℱ(𝑩)  2.2.3 

2.2.5. Calculating µ[Fmax] for a time-series 

To calculate F, the TPM of the concatenated signals was converted to a state-by-node 

form and submitted to PyPhi to generate a network class, which defines a system’s 

mechanisms and elements. F is calculated for a particular subsystem S of the network 

class, which comprises of 1) the state of the system at a given time, which sets the 

necessary background conditions for each element, and 2) the subset of nodes to be 

included in the subsystem.  

In a complete analysis, F is computed for every possible subset of a network’s 

regions, and the system’s Fmax at a certain state is defined as the maximum value 

obtained from the F values of all subsets. A subset must consist of at least two elements 

and can contain as many as five (the whole network). As the state of each RSN varies 

throughout its time series, we calculated Fmax for every state and obtained a weighted 
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average, which we refer to as µ[Fmax]. The contribution, or weight, of each state was 

based on the frequency of its occurrence in the time-series. Calculating µ[Fmax] allowed 

us to use a single metric to compare the integrated information of all networks and states 

of awareness. The process used to compute µ[Fmax] is presented in the schematic below. 

 

Figure 2.2.3. Computing average integrated information for a time-series. a) 
The TPM is obtained from a time-series and used to generate a network class in 
PyPhi (nodes/regions are labeled as 𝑛,, 𝑛%, …, 𝑛-); b) For a specific state (in this 
case, the state at time point t4), a subset analysis is performed. The process begins 
with defining each subset consisting of at least 2 elements leading up to the entire 
system (𝑆%, 𝑆$, …, 𝑆.), with 𝑁 being the total number of subsets. The irreducibility 
analysis outlined in Chapter 1.3, where the system is partitioned to obtain 
integrated information F, is performed for each subset, leading to a collection of F 
values (F1, F2, …, F.). The maximum value of F, Fmax, is then obtained from this 
set of values; c) The subset analysis is repeated for each state in the time-series to 
obtain Fmax for every time point. Finally, a weighted average of Fmax is computed 
based on the frequency of each state in the time-series.   
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2.2.6. Analysis of modulation by propofol 

In our central analysis, we measured sedative-induced changes to integrated information 

within each individual RSN. To allow for a statistical analysis of these changes, we did 

not use the 44 time-series obtained by concatenating 17 subjects, as those only had one 

measurement for each RSN and condition. Instead, we created sampling distributions of 

µ[Fmax] as follows: for each RSN and condition, 17 time-series were generated by 

concatenating signals from 16 subjects in random order, leaving a different subject out 

each time. A sample of µ[Fmax] values was then obtained, and the mean of this sample, 

m, was taken to be the mean of the population. The standard deviation of the sample was 

taken to be the standard error, which was multiplied by the square root of the sample size 

(√17) to obtain the standard deviation of the population, 𝜎 [7].  

We tested for statistically significant differences between the four conditions 

using Welch’s t-test [8], which is used for two samples with different variances and sizes. 

Although the sample size N was the same for each condition, the variance of µ[Fmax] was 

assumed to be different. Within the same network, t values were computed for every 

possible pair of conditions i and j (e.g., awake vs. mild sedation): 

𝑡 = 	
𝑚# −𝑚+

.𝑁/%(𝜎#$ − 𝜎+$)
 2.2.4 

We then computed the number of degrees of freedom 𝜈 using the Welch-Satterthwaite 

equation (simplified for two samples of the same size) [8]: 

𝜈 = (𝑁 − 1)
G𝜎#$ + 𝜎+$I

$

𝜎#- + 𝜎+-
		 2.2.5 

Finally, we computed a two-tailed p-value using the t-distribution obtained for each 

comparison. Through these comparisons, our goal was to see which networks 

demonstrate a modulation pattern that corresponds to the conscious state of subjects:  

µ[Fmax]awake > µ[Fmax]mild  > µ[Fmax]deep  < µ[Fmax]recovery 
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2.2.7. Interregional correlations 

Throughout our analysis, we introduced the average Pearson correlation of each RSN’s 

time-series as a reference point for our results with µ[Fmax]. For every pair of regions 

within an RSN (regions a and b), the Pearson correlation coefficient 𝜌 was computed 

between their time-series (tsa and tsb) using the SciPy statistics module. The average of 

all correlations, µ[𝜌], was then obtained by adding up all the correlations and dividing by 

10 (total number of possible pairs of regions out of 5 regions): 

µ[𝜌] =
1
104𝜌(𝑡𝑠0 , 𝑡𝑠1)

021

 2.2.6 

2.2.8. Spatial and temporal control procedures 

As a control procedure, we tested whether the RSNs in question generate more integrated 

information than a random collection of five regions. To do this, we took the 

concatenated time-series of the 11 RSNs and randomly distributed the individual nodes 

(columns of the time-series array) into 100 control networks, ensuring all nodes within 

the new networks came from different RSNs. We then calculated µ[Fmax] for each new 

time-series. This was repeated for every conscious condition to obtain four control 

distributions, to which we then compared the µ[Fmax] values of the original RSNs.  

In the second control procedure, the original grouping of each RSN’s cortical 

regions remained unchanged, but the order of each signal’s time points was randomly 

permuted. All time points were shuffled individually, which completely reordered each 

time-series’ sequences of states and introduced a high level of disorder to the signals. 

This was achieved by switching the positions of two randomly selected time points 105 

times, which we repeated 50 times for each network and condition to obtain temporal 

control distributions of µ[Fmax]. Ultimately, the goal of these procedures was to point out 

any intrinsic dependencies of an RSN’s integrated information on its spatial and temporal 

structure.  
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2.3. Results 

2.3.1. Markov property and conditional independence 

For almost all time-series acquired by concatenating the entire subject population, the test 

for the Markov property did not show statistically significant differences between the 

observed sequence distribution and the reference (Markovian) sequence distribution. Out 

of the 44 time-series tested, only three yielded p < 0.05: the retrosplenial network in the 

recovery condition, the ventral attention network in the awake condition, and the cingulo-

parietal network in awake condition. Out of the remaining 41 time-series, the reduced 

chi-squared values ranged between 0.26 and 1.50, with most values between 0.7 and 1.3, 

indicating a good quality fit of the Markovian model to the state-sequence distributions of 

our data. The chi-squared values, degrees of freedom, and significance tests obtained for 

each time-series are provided in Chapter 6 (supplementary material).  

For the conditional independence property, we found that the relative difference 

between the raw (original) TPM and its conditionally independent counterpart ranged 

between 22% to 75% depending on the network and condition in question. The networks 

with the lowest deviations were the default mode, frontoparietal, and dorsal attention 

networks, while those with the highest deviations were the visual, sensorimotor mouth, 

and cingulo-parietal networks. All relative differences are shown in Table 2.3.1. 

 Awake Mild Deep Recovery 
Frontoparietal 36.97 27.48 21.81 39.22 
Default Mode 43.49 33.75 34.46 51.52 
Retrosplenial 57.36 50.75 49.34 59.69 
Dorsal Attention 41.56 37.85 34.53 43.9 
Ventral Attention 42.94 33.44 35.98 40.5 
Cingulo-Opercular 42.27 33.93 31.14 41.9 
Cingulo-Parietal 67.85 68 56.85 65.12 
SM Hand 51.53 62.68 60.34 56.74 
SM Mouth 68.59 61.28 51.44 64.93 
Auditory 62.24 53.76 54.73 65.36 
Visual 74.88 62.24 60 71.37 

 
Table 2.3.1. Relative distance between original TPMs and their conditionally 
independent versions. The relative residual between the TPMs generated directly 
from the time-series and their conditionally independent counterparts are given as 
percent differences for each RSN (row) and condition (column).  
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2.3.2. Modulation of µ[Fmax] by propofol 

Our central analysis focused on how the administration of propofol impacts the integrated 

information generated within each RSN. The µ[Fmax] distributions we obtained by 

concatenating 16 subjects (with a different subject excluded for each sample) are shown 

in Figure 2.3.1. Each network is presented in a subplot that includes four bars for each 

condition. The RSNs are arranged according to their association with “higher-order” 

cortical functions and conscious processing. For visual simplicity, statistically significant 

differences are shown only for comparisons that include the awake condition (all t and p-

values are provided in Chapter 6.2.1).  

The networks that most clearly demonstrated the expected propofol-induced 

modulation pattern were the frontoparietal (FPN) and dorsal attention networks (DAN) 

(p<0.001 for awake vs. deep & awake vs. recovery in both RSNs). While both 

demonstrated a significant increase moving from deep sedation to recovery, the FPN 

underwent a remarkably large jump in this transition. A similar behavior was seen for the 

default mode network (DMN), albeit at significantly lower µ[Fmax] values. In each of 

these instances, no significant difference was observed between the awake and mild 

sedation conditions.  

Several RSNs demonstrated small and statistically insignificant fluctuations 

across the four conditions. Out of the higher-order networks, these included the 

retrosplenial, ventral-attention, and cingulo-opercular networks. Although the cingulo-

parietal network may appear to fall in this category, its relative margins of error are very 

large, and it is hence not possible to accurately describe its modulation. Turning to the 

four motor and sensory cortices, the sensorimotor hand network (SM hand) came closest 

to matching the conscious evolution of subjects, as it demonstrated a substantial drop in 

deep sedation followed by an increase in recovery. While the auditory network 

underwent significant changes to µ[Fmax], its modulation is inconsistent with any of the 

other behaviors described. On the other hand, the sensorimotor mouth and visual cortices 

did not demonstrate any meaningful sedative-induced changes.   
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There are also notable differences in the magnitudes of µ[Fmax] across different 

networks. Out of all RSNs, the two sensorimotor networks generated the greatest amount 

of integrated information. In the higher-order group, the RSNs with the greatest µ[Fmax] 

were the frontoparietal and retrosplenial networks, while the ones with the lowest values 

were the DMN and cingulo-opercular network. Altogether, there was substantial 

heterogeneity in the magnitude and variation of µ[Fmax] among the networks.  

 
Figure 2.3.1. Modulation of µ[Fmax] by propofol in individual RSNs. For each 
network, µ[Fmax] is compared for the four conditions. Bar heights represent the 
mean of the µ[Fmax] distribution and error bars represent standard deviations. 
Statistically significant differences are shown for all comparisons that involve the 
awake condition (0.01< p < 0.05: *, 0.001< p < 0.01: **, p < 0.001: ***).  
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We also computed average interregional correlations, µ[𝜌], for the same set of 

time-series (16 subjects concatenated, 1 left out), which we present in Figure 2.3.2. In 

contrast to µ[Fmax], the sedative-induced modulation of this measure was much more 

consistent among the RSNs, nearly all of which demonstrate a significant decrease 

moving from awake to mild sedation and mild to deep sedation, followed by an increase 

in recovery. Accordingly, the heterogeneity observed for µ[Fmax] across the RSNs, which 

can be seen as a feature differentiating the networks from each other, is not demonstrated 

by variations in µ[𝜌]. 

 

Figure 2.3.2. Modulation of µ[𝝆] by propofol in individual RSNs. The analysis 
in Figure 2.3.1 was repeated for each RSN’s average interregional correlations. 
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The only exception to this general trend was the sensorimotor hand network, 

whose correlations increased during mild sedation and decreased during recovery. 

Another abnormality is that the retrosplenial and ventral attention networks had an 

unusually large variance in the mild and deep sedation conditions. While these RSNs 

followed the universal behavior with their average correlation, this large margin of error 

may reflect significant inter-subject variation in the acquisition procedure.  

2.3.3.  Spatial and temporal control procedures 

The following control procedures were based on the time-series acquired by 

concatenating all 17 subjects. Figures 2.3.3 presents a comparison between the µ[Fmax] 

distributions of the control networks, which consisted of random regions from different 

RSNs, and the µ[Fmax] values of the 11 concatenated RSNs for the four conditions.  

 

Figure 2.3.3. Comparison of µ[Fmax] between RSNs and spatial control 
networks. For each of the four conditions, the µ[Fmax] distribution of networks 
generated by shuffling nodes (blue violins) is shown together with the µ[Fmax] 
values of the original RSNs (purple dots). The means of both distributions are 
indicated with horizontal bars. Text adjacent to the violins indicates networks that 
fall within the distribution of random networks, which are those with lower µ[Fmax] 
relative to other RSNs (default mode, cingulo-opercular, auditory). 
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Most of the original RSNs fell well above the mean µ[Fmax] of the control 

networks. Three RSNs, whose µ[Fmax] were relatively low compared to the rest, fell 

within the control distributions. These were the default mode (awake, mild, deep, 

recovery), cingulo-opercular (awake, mild), and auditory (mild) networks. Otherwise, this 

indicates that the majority of RSNs, through their intrinsic composition, produce more 

integrated information than networks generated in random.  

A similar comparison is shown for the reference correlation metric, µ[𝜌], in 

Figure 2.2.4. Similarly, randomly grouping cortical regions significantly reduced the 

correlational strengths of the original RSNs. This result is not surprising, as the networks 

were constructed using correlation-based functional connectivities in the first place.  

 

Figure 2.3.4. Comparison of µ[𝝆] between RSNs and spatial control networks. 
The analysis in Figure 2.3.3 was repeated for average interregional correlations.  

In the temporal control procedure, we permuted each signal’s time points to 

generate a collection of new time-series with completely different state transitions. The 

µ[Fmax] distributions we obtained are presented in the bottom panel of Figure 2.3.5. 

While µ[Fmax] ranged between 0.3 and 0.7 for the original (unpermuted) signals, the 

values obtained for the controls ranged between 0.03 and 0.1. This drastic decrease 
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underscores the importance of the temporal structure in the fMRI data we obtained. We 

also present the correlations obtained in top panel of Figure 2.3.4. These values 

correspond to both the original and shuffled signals; unlike µ[Fmax], µ[𝜌] remained 

unchanged when the signals were permuted.  

 
Figure 2.3.5. Distributions of µ[Fmax] and µ[𝝆] obtained for temporal controls. 
Each RSN is presented with abbreviations across the horizontal axis. The bottom 
panel presents the µ[Fmax] distributions of the permuted time-series (50 
measurements for each RSN and condition); bar heights correspond to the mean of 
the controls, and error bars represent their standard deviation. The middle panel 
shows the µ[Fmax] of the unpermuted time-series. The top panel presents the µ[𝜌] 
values for both the ordered and permuted time-series; while µ[Fmax] dropped 
drastically for the controls, correlations remained unchanged. 
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2.4. Discussion 

We started our analysis with tests for the Markov property and conditional independence, 

which are assumed to be satisfied in the mathematics underlying PyPhi’s algorithms. 

While the first test showed that the Markov property was mostly obeyed, we saw that the 

TPMs obtained directly from the fMRI signals were not conditionally independent. In 

other words, while the entire system exhibited a Markovian behavior, the individual 

elements themselves had instantaneous causal properties. Calculations of Fmax are based 

on the conditionally independent variant of the TPM, and as a consequence of converting 

to this form, some of the features contained in the original signals were lost. 

Nevertheless, we believe that the network properties preserved in the conditionally 

independent variants could still be used for meaningful calculations of integrated 

information, especially for networks with lower deviations from this property.  

Our central investigation focused on each network’s behavior as subjects 

transitioned throughout the four states of sedation. In general, the effects of anesthesia 

differed among the RSNs. The variation of µ[Fmax] that corresponds to the conscious 

state of subjects is a decrease moving from wakefulness to deep sedation, followed by an 

increase in the recovery condition. Such modulation was most clearly observed in the 

frontoparietal and dorsal attention networks (FPN and DAN, respectively). The FPN, also 

known as the central executive network, is a crucial hub for cognitive control and goal-

oriented behavior [9,10]. It is said to connect external stimuli with “stored internal 

representations”, and hence plays an important role in integrating inputs from other 

cortical regions [11]. Accordingly, its drop in µ[Fmax] coincides with the loss of these 

functions as subjects become deeply sedated. Interestingly, its integrated information 

peaked during the recovery stage, which could indicate an important integrative role in 

the recovery of consciousness.  

The DAN demonstrated a very similar behavior to the FPN, but without a drastic 

increase in the recovery condition. This network facilitates top-down, voluntary 

mediation of external attention that is primarily associated with visuospatial orienting 

[12,13]. As with the FPN, its reduced µ[Fmax] coincides with the loss of these voluntary 
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functions as subjects become unresponsive. Considering the related functions and 

previously observed interactions between the FPN and DAN [10], the similarities they 

demonstrate through integrated information is a promising result.  

It is also important to discuss the default mode network (DMN), which is widely 

investigated in neuroscientific literature for its role in introspective cognition [14]. 

Interestingly, the DMN presented the lowest average integrated information for all 

conditions. This may indicate that despite a high metabolic activity at rest, the DMN’s 

internal integrated information as an isolated system is intrinsically low. Perhaps, an 

analysis of its interactions with other cortical networks may be necessary to better 

understand its integrative mechanisms [15,16]. Like the FPN and DAN, it demonstrated a 

significant drop in µ[Fmax] during deep sedation, but with no decrease moving from 

wakefulness to mild sedation. Previous studies found that some regions of the DMN 

resist a suppression of activity during mild propofol sedation but not under deep 

anesthesia [17,18], which may be reflected in the modulation we observed.  

On the other hand, no meaningful sedative-induced changes were observed in the 

ventral attention network. Like the DAN, this counterpart has an important role in 

sensory orienting, although its function is associated with involuntary shifts of attention 

directed at unexpected stimuli [13]. The lack of modulation may therefore be appropriate, 

as the sort of stimulation necessary for its integration of external stimuli was absent in 

our resting-state acquisition procedure. Minor and insignificant fluctuations of µ[Fmax] 

were also observed in the retrosplenial and cingulo-opercular networks. Although some 

significant changes were demonstrated by the sensory RSNs, we did not find any 

consistent relationship between their integrated information and the condition of subjects.    

As explained in Chapter 1, propofol is known to preferentially suppress higher-

order processing regions in the frontal and prefrontal cortices, which are commonly 

attributed to awareness [19]. In our attempt to quantify “consciousness” using integrated 

information, µ[Fmax] most closely reflected the conscious evolution of subjects in the 

FPN and DAN, both of which include frontal and prefrontal regions. Our results are also 

supported by findings that propofol inhibits functional connections between the frontal 
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and parietal cortices, which are essential to the FPN’s integrative pathways [20]. At the 

same time, propofol was not found to diminish the reactivity of sensory cortices to 

stimulation, which may explain the lack of modulation in µ[Fmax] for these RSNs [19]. 

We also note that while the RSNs demonstrated a variety of modulations to their 

integrated information, the behavior of their correlations was much more homogenous. In 

almost all cases, the average Pearson correlation µ[𝜌] decreased during deep sedation and 

increased in recovery. Although this is consistent with the conscious evolution of 

subjects, it suggests that all networks equally reflect conscious experiences. This cannot 

be the case, as it is well-established that certain RSNs have more important roles than 

others in consciousness. Instead, the homogeneity of correlations across networks may 

reflect a global neurophysiological effect that is induced by the sedative [21]. 

In the control procedures, we showed that the BOLD signal of each RSN 

generates an intrinsic level of integrated information that arises from each network’s 

spatial composition and time-dependent behavior. While µ[Fmax] was subject to a drastic 

decrease whenever an RSN’s time-series was permuted, doing the same had no effect on 

µ[𝜌]. This shows that our measure of integrated information can capture an RSN’s causal 

structures and differentiate its time-dependent behavior from that of a time-series 

generated in random. On the other hand, correlational descriptions of activity appear to 

be insensitive to a network’s causal properties. The insensitivity of µ[𝜌] to permutations, 

as well as the global behavior of this metric in nearly all networks, supports the argument 

that traditional measures of functional connectivity may not be substantial to effectively 

analyze fMRI data [22].  
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Chapter 3 : Resting State Networks and their Temporal Structure  

3.1. Overview 
At its root, integrated information theory (IIT) is a framework based on causality; in 

Chapter 1, we saw how the “information” aspect of IIT is measured directly from the 

causes and effects of a mechanism. It has been previously argued that due to its low 

temporal resolution, causality-based metrics may be unsuitable in fMRI because many 

neuronal processes happen at a much faster rate than the 2-3 second repetition time (TR) 

separating images [1]. While fMRI may be unable to capture high frequency processes, 

research on low-frequency activity is a subject of continuing research. There is 

substantial evidence to suggest that a neural basis exists for BOLD fluctuations captured 

in the 0.008 - 0.1 Hz range, for which the temporal resolution of fMRI is adequate [2,3].  

We began to address the importance of the BOLD signal’s temporal structure in 

the control procedure of Chapter 2. When permuted, the µ[Fmax] value of each RSN’s 

concatenated time-series was subject to a ten-fold decrease. This suggested an inherent 

causality in the signals we measured, which we were unable to capture with interregional 

correlations. In this chapter, we extend this procedure and apply a series of permutations 

that vary in their extent of disruption to the original time-series. After generating new 

signals and measuring their µ[Fmax] values, we aim to characterize how rapidly 

integrated information drops with respect to the “strength” of the permutation performed 

(i.e., the extent to which the signal’s original order of states is disrupted). To quantify this 

rate, we introduce 𝜆, a fit parameter that represents the exponential decay of µ[Fmax].  

Using these permuted signals, we also analyze how µ[Fmax] relates to the 

fluctuation rate of a time-series. Since permutations reorder a signal randomly, the 

permuted signals can be seen as having a higher rate of random fluctuations than the 

original time-series. We measure the effects of each permutation using a property 

referred to as the “diagonal strength” of the signal’s corresponding TPM. By analyzing 

the relationship between diagonal strength and µ[Fmax], we aim to point out which 

temporal properties of the BOLD signal are associated with high levels of integrated 

information.   
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3.2. Methods 

3.2.1. Grouped permutations  

For each RSN and condition, we started with the concatenated time-series containing all 

17 subjects. While the control procedure consisted of shuffling time points individually, 

the following analysis extended this idea by permuting each network’s time-series in 

grouped blocks of time points. The order of states within these blocks was unchanged, 

but their position within the time-series was shuffled in random. By varying the sizes of 

these blocks, we aimed to analyze how µ[Fmax] varies with different degrees of 

disruption to the original time-series.  

The block sizes used, which we refer to as n, were 2, 3, 5, 7, 15, and 35 time 

points. We also included the individual time point permutations from the control 

procedure, for which n = 1. An illustration for n = 1, 2, and 3 is given in Figure 3.2.1. 

 

Figure 3.2.1. Individual and grouped permutations. A simple version of the 
original time-series is shown on the left, with 6 time points and 3 possible states 
indicated by different colors. On the right, we present permutations for n = 1, 2, and 
3. For n = 2 and n = 3, grouped time points are highlighted with the grey “links” on 
the left of the permuted time-series. The arrangement of blocks was shuffled, but 
the order of time points within them remained unchanged (i.e., for n = 2: 12-34-56 
® 56-34-12).  
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As an intermediate step between the n = 1 and n = 2 permutations, we also 

generated an n = 1.5 group, which was achieved by grouping two consecutive time points 

and permuting the third one separately. We obtained 20 new time-series for each n and 

computed µ[Fmax] for each one. Although these time-series had a different arrangement 

of states, this procedure did not change the overall content of states in the new signals 

(i.e., the number of times each state appeared was unchanged).   

In terms of how these permutations vary in extent, larger n corresponds to a 

greater degree of signal preservation; by keeping more time points together, the total 

number of blocks to shuffle is smaller, and permutations result in less changed 

transitions. On the other hand, permuting with smaller n resulted in a greater degree of 

disruption to the original time-series, as there are more blocks to shuffle and hence more 

transitions to change. After obtaining the mean µ[Fmax] of each group, these values were 

plotted against n on a logarithmic scale. As our results will show, the relationship 

resembled an exponential plateau function. We applied a fit of the form in equation 3.2.1 

using a non-linear least squares method in the SciPy statistics module. The behavior of 

this function and its parameters is illustrated in Figure 3.2.2. 

µ[F345] = Γ[1 − 𝑒/67] 3.2.1 

 

Figure 3.2.2. Exponential plateau function used to fit grouped permutation 
data. The means of µ[Fmax] were plotted against n and an exponential plateau 
function of the type shown above was used to fit the data points.  
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The first parameter, Γ, corresponds to the maximum value reached by the curve and is 

effectively an approximation of the network’s unpermuted µ[Fmax], while the exponential 

parameter, 𝜆, is proportional to the rate at which the plateau is approached. To allow for a 

fit of this form and to avoid a third parameter, we used the average µ[Fmax] of the n = 1 

(control) distribution as a baseline (i.e., this value was subtracted from all data points), 

and the first point in the logarithmically scaled graph was ln (n=1) = 0, µ[Fmax] = 0.  

3.2.2. Diagonal strength and diagonally selective permutations 

To gain better insight into how permutations affected each RSN’s time-series and 

integrated information, we sought to obtain a metric that represents a network’s overall 

rate of fluctuation. Since permutations randomly disrupted each time-series’ transitions, 

we expected to see an increased fluctuation rate in the permuted signals. To underscore 

this effect, Figure 3.2.3 compares the state-by-state TPMs of the original and permuted 

time-series for the frontoparietal network. When shown side-by-side, the most apparent 

difference is that the original TPM contains much larger probabilities along its diagonal 

entries, whereas the entries of the permuted TPM are smaller and more dispersed.     

 

Figure 3.2.3. TPMs for the original and permuted time-series of the frontoparietal 
network. A noticeable difference between the original TPM and its permuted counterpart 
is that the former has many more diagonal entries with high probabilities.  

The diagonal entries of a TPM represent the probabilities of states transitioning to 

themselves. Accordingly, a TPM with larger values along its diagonal represents a 

network that spends more time in a certain state before transitioning to another one, and 
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hence fluctuates more slowly. For each permuted time-series and their respective TPMs, 

we computed the proportion of probabilities in the diagonal entries to those in the off-

diagonal entries, which we referred to as diagonal strength (DS): 

𝐷𝑆 =
∑ 𝑇𝑃𝑀#+#	9+

∑ 𝑇𝑃𝑀#+#	2+
 3.2.2 

 In the analysis that followed, we aimed to determine whether any relationship 

exists between DS and µ[Fmax]. In the unpermuted signals, DS ranged between 0.2 and 

0.3. Considering the random nature of the permutations performed, we expected DS to 

drop for the permuted time-series. Therefore, if we only used these permuted signals, our 

analysis would have been limited to DS values between 0 and 0.3. Theoretically, the 

upper limit of DS is 1, which corresponds to a matrix where all entries are along the 

diagonal. To increase the range of values included in our analysis, we performed another 

set of rearrangements to each RSN’s time-series. Instead of permuting time points 

randomly, we grouped time points belonging to the same state so that they appear 

consecutively within the time-series. We outline this procedure and the type of time-

series it produced in Figure 3.2.4.  

 

Figure 3.2.4. Diagonally selective rearrangements of time-series. To rearrange a 
time-series for increased diagonal strength, we changed the positions of time points 
sharing the same state (indicated by colors as in Figure 3.2.1) so that they appear 
consecutively in the permuted time-series. Each iteration consisted of doing this to 
a single state chosen at random (3 iterations are indicated by the arrows). 
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 We wrote an iterative algorithm that scans through the signals, picks a state at 

random, and locates two non-consecutive instances of the chosen state within the time-

series. The second instance of the state was then repositioned to follow the first; note that 

this repositioning could have been applied to one or several time points, depending on 

whether the chosen instance contained a consecutive repetition of the same state. The 

more iterations performed, the greater the increase in diagonal strength. The effects this 

had on the original TPM are presented in Figure 3.2.5. This algorithm was repeated to 

obtain a set of 140 new reordered time-series for each RSN in the awake condition.   

We started with 100 iterations and increased this number by 35 each time, which 

allowed for an incremental increase of DS for each new signal. We found that the upper 

limit of DS could be reached with 5000 iterations. The upper limit was usually very close 

to 1, but always slightly less. Since the original time-series cycled through each state at 

least once and the frequency of each state’s appearance in the time-series was unchanged, 

there had to be off-diagonal entries representing these inevitable transitions.   

 

Figure 3.2.5. The effects of diagonally selective reordering of a TPM. The 
algorithm used to increase diagonal strength was repeated for increasing iterations 
until the upper limit of DS was reached.  
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3.3. Results 

3.3.1. Grouped permutations  

The results of the grouped permutation procedure are presented in Figures 3.3.1 

and 3.3.2, where µ[Fmax] values are plotted against n, the number of grouped time points.  

 

Figure 3.3.1. Grouped permutations in higher-order RSNs. For several group 
sizes containing n time points, permutations were performed by randomly 
rearranging the positions of grouped blocks within the time-series. The mean and 
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standard deviation of µ[Fmax] are plotted against each n (logarithmically scaled) for 
RSNs that are associated with higher-order functions. Different networks are given 
along rows and the four conditions are presented across columns. While all RSNs 
plateau towards the µ[Fmax] value of the original (unpermuted) time-series as n 
increases, the rate of approach differs across networks and states of sedation.  

 

Figure 3.3.2. Grouped permutations in sensorimotor and sensory RSNs. The 
results for the same procedure are shown but for RSNs associated with 
sensorimotor and sensory functions.   

In almost all cases, the grouped permutations decreased µ[Fmax]. Any increase of 

this measure was minor in magnitude and mostly observed for permutations with large n. 

In the two figures above, the same general behaviour is demonstrated across RSNs and 

conditions: as n increases, µ[Fmax] converges towards the values of the original time-

series, from which the n = 35 distributions do not deviate significantly. This result is not 

surprising considering our description of these permutations; with smaller n, there is a 

larger number of blocks to be shuffled, which induces a greater degree of sequential 

disruption and reduces µ[Fmax] more drastically. On the other hand, permutations with 

larger n swap fewer transitions and hence preserve more of the original signal.  
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It appears that the span of each plateau, and hence the rate at which the 

unpermuted µ[Fmax] values are approached, varies across networks and conditions. The 

means in these figures were fitted using the exponential plateau function given in 

equation 3.2.1. As demonstrated in Figure 3.2.2 of the Methods section, the exponential 

parameter 𝜆 is proportional to the rate at which the plateau is reached: a high 𝜆 

corresponds to a faster rate of approach as the number of grouped time points increases, 

which can be observed with a longer plateau (i.e., µ[Fmax] is near the maximum at n = 5). 

In contrast, networks with low 𝜆 demonstrate a steadier increase that continues with 

larger n values, and their plateau is visibly shorter. The 𝜆 values obtained for each RSN 

and condition are presented in the bar plots of Figure 3.3.3. For reference purposes, we 

also plotted each network’s µ[Fmax] values. 

Upon closer inspection, it is noticeable that higher 𝜆 values pertain to networks 

lower in µ[Fmax]. For example, consider the default mode (DMN) and frontoparietal 

(FPN) networks in the awake condition (Figure 6, rows 1 & 2): the latter generates an 

unpermuted µ[Fmax] value nearly twice as great as the former, while its 𝜆 values are 

substantially lower (DMN: µ[Fmax] = 0.30, 𝜆 = 0.81; FPN: µ[Fmax] = 0.56, 𝜆 = 0.39). The 

same observation holds true for other RSNs with higher µ[Fmax], such as the 

retrosplenial, ventral-attention, and sensorimotor mouth networks. Recall that some 

higher-order RSNs, such as the ventral attention and retrosplenial networks, presented no 

significant changes in µ[Fmax] throughout sedation. This is also the case for their 𝜆 

values, which do not fluctuate significantly over the four conditions. Furthermore, there 

appears to be an exception to this trend in the DMN; although 𝜆 is significantly different 

for the four conditions, it presents no clear relationship with µ[Fmax]. The sensorimotor 

hand network is another exception, as there are no significant changes in 𝜆 despite its 

substantial variations in µ[Fmax]. Otherwise, the sensorimotor mouth and sensory 

networks also demonstrate an inverse relationship between the two parameters.  

This relationship is also apparent for sedative-induced changes within a network. 

In the FPN and dorsal attention network (DAN), µ[Fmax] decreased moving towards deep 

sedation and increased in recovery; in terms of 𝜆, both networks demonstrate a significant 
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increase in deep sedation followed by a significant decrease in recovery for the FPN. 

Taking all networks and conditions together, the Pearson correlation coefficient between 

µ[Fmax] and 𝜆 was - 0.68 (p < 0.001, with 44 samples for each parameter). The 

relationship between these two parameters is shown more clearly in Figure 3.3.4, where 

we plot each of the 44 values obtained for 𝜆 against µ[Fmax].  

 

Figure 3.3.3. Modulation of 𝝀 and its inverse relationship with µ[Fmax]. The 
data in Figures 3.3.1 and 3.3.2 was fitted using an exponential plateau function, 
from which we obtained the exponential parameter 𝝀 to quantify the rate of 
approach with respect to increasing n. As a reference, we also plot the 
corresponding µ[Fmax] values. An anticorrelation was found between 𝝀 and 
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µ[Fmax], which can be observed across different networks and the four conditions. 
Statistically significant differences are shown only for comparisons that involve 𝝀 
in the awake condition (0.01< p < 0.05: *, 0.001< p < 0.01: **, p < 0.001: ***). 

 

Figure 3.3.4. Anticorrelation between 𝝀 and µ[Fmax]. All values obtained for 𝜆 
and µ[Fmax] (44 time-series, obtained by concatenating all 17 subjects). There is an 
inverse correlation between the two parameters, with an increase in µ[Fmax] 
corresponding to a decrease in 𝜆. 
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3.3.2. Diagonal strength and diagonally selective permutations 

Although we analyzed the relationship between µ[Fmax] and n for grouped permutations, 

we also wanted to confirm that a decrease in diagonal strength would correspond to a 

decrease in µ[Fmax]. In Figure 3.3.5, we plot µ[Fmax] against the range of DS values 

corresponding to the permuted signals of each RSN in the awake condition. While these 

plots verify the expected relationship in a general sense, it is important to comment on the 

vertical clusters of data points. These clusters, which correspond to the same n value, 

present a significant variance in µ[Fmax]. At the same time, the DS value does not vary as 

significantly for the points within them. Therefore, the resolution of this relationship is 

limited, and DS does not appear to provide any more information than the group size used 

for each permutation. 

Nevertheless, we continued with the second part of this analysis, where µ[Fmax] 

was analyzed for signals with DS ranging between 0.3 and 1.0. The results for each RSN 

in the awake condition are presented in Figure 3.3.6. The points on the left of the 

unpermuted signal are those presented in Figure 3.3.5, while those to the right of it were 

obtained from the diagonally selective permutations. Over the entire range of DS values, 

µ[Fmax] demonstrates a bimodal behavior. The first peak corresponds to the value 

obtained for the unpermuted time-series. A further increase in DS leads to a second peak 

between 0.6 and 0.7. In all RSNs except for the cingulo-parietal network, the value of 

µ[Fmax] at the second peak is greater than the first. From this point, µ[Fmax] drops rapidly 

and approaches 0 as DS nears its maximum value. µ[Fmax] also vanishes at the lower 

limit of DS (DS = 0). As seen with the clusters corresponding to grouped permutations, 

µ[Fmax] continues to have large variance over a small range of DS values, so the 

resolution of this measure remains limited. Although there is variation in values of 

µ[Fmax] and DS at the second peak, we could not find any meaningful relationships in 

how these properties vary between different networks and states of awareness.  
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Figure 3.3.5. Relationship between µ[Fmax] and TPM diagonal strength for 
grouped permutations. The first part of our attempt to relate µ[Fmax] and DS 
involved the grouped permutations (0 < DS < 0.3). The µ[Fmax] values obtained by 
randomly permuting each RSN (awake condition) in groups are plotted against the 
diagonal strength of the TPM corresponding to the permuted time-series. The 
colors of points reflect the n value of the permutation performed, which are shown 
using the legend on the right.  
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Figure 3.3.6. Relationship between µ[Fmax] and TPM diagonal strength for 
grouped permutations. This figure builds on the relationship shown in Figure 
3.3.5 and extends to the upper limit of diagonal strength (DS = 1). Grey scatters 
indicate grouped permutations (same data as Figure 3.3.5), whereas blue scatters 
represent diagonally selective permutations. The overall behavior is bimodal, with 
two peaks of µ[Fmax] at different values of DS. At the lower and upper limits, 
µ[Fmax] approaches 0. 
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3.4. Discussion 

In this chapter, we sought to relate µ[Fmax] to several temporal characteristics of the 

fMRI data we obtained. First and foremost, the permutation procedure we applied (as 

well as the related control procedure in Chapter 2) showed that when random changes are 

introduced to each RSN’s time-series, integrated information is almost always subject to 

a decrease. Since causality is the foundation for computing integrated information, this 

finding underscores the existence of causal structures that govern the time-dependent 

behavior of each RSN.   

By applying a series of permutations that varied in their extent of disruption to the 

original time-series, we found that each RSN’s integrated information can persist until a 

substantial portion of its temporal structure is broken. While all networks demonstrated a 

similar behavior as the degree of permutation was increased (which corresponded to 

smaller group sizes n), there was variation in how rapidly each RSN’s µ[Fmax] value 

changed. To describe this rate, we introduced a fit parameter 𝜆. Based on our results, this 

can be seen as a measure of a signal’s capacity to maintain its integrated information 

despite disruptions to its temporal structure; the higher 𝜆 is for a network, the more it 

must be randomly permuted for µ[Fmax] to drop significantly.  

The network with the highest value for this parameter was the DMN; when its 

time-series was permuted in groups containing as few as five time points, µ[Fmax] did not 

drop significantly. Fundamentally, this means that the dynamics giving rise to the DMN’s 

integrated information are relatively simple, as they can be captured over a short 

sequence of states. On the other hand, significantly lower 𝜆 values were observed in the 

FPN, where the slightest permutation significantly reduced µ[Fmax]. In contrast to the 

DMN, this means that the dynamics giving rise to its integrated information span a larger 

group of time points and are hence more sophisticated.  

While the DMN had the highest 𝜆 value, we also saw that its time-series 

generated the lowest integrated information. By comparing 𝜆 and µ[Fmax] in all RSNs 

and conditions, we found a moderate to strong negative correlation between these two 
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measures. In time-series with high 𝜆 and low µ[Fmax], such as the DMN, grouped 

permutations did not drastically impact µ[Fmax] because these signals contained weaker 

causal structures in the first place. In other words, one can describe the transitions in their 

time-series as being more “random” or “inconsequential. On the other hand, highly 

integrated networks with low 𝜆 were more susceptible to permutations; this reflects a 

more intricate temporal behavior that contains a higher frequency of “consequential” 

transitions between states, which ultimately accounts for their high µ[Fmax].  

These differences were also observed for different states of awareness within the 

same network. In the FPN and DAN, 𝜆 reached its maximum value during deep sedation. 

At the same time, µ[Fmax] was minimized for this condition. By the same reasoning, this 

could indicate that the time-series of the FPN and DAN exhibited more sophisticated 

causal properties when subjects are awake than when they were deeply sedated. This is in 

line with our discussion about these networks in Chapter 2, where we referred to 

neuroscientific literature to explain why their integrated information most closely 

corresponded to the conscious state of subjects.  

In contrast to the use of random permutations, the second procedure in this 

chapter relied on rearrangements that were specifically designed to increase the 

consecutive appearance of a states within the time-series. When random permutations 

were applied, we noticed that the probabilities in the diagonal entries of the TPMs were 

significantly reduced (see Figure 3.2.3); originally, each RSN’s time-series tended to 

remain in a certain state for several time points before transitioning to another one, which 

was characterized as having a high diagonal strength (DS) in its TPM. However, 

permutations introduced random transitions that resulted in more random fluctuations 

between different states, and consequently, the initial level of “inertia” was lost.   

While the first analysis showed that random permutations reduce µ[Fmax], we 

aimed to determine how integrated information would behave for time-series where DS 

was increased. After generating such signals, we found that µ[Fmax] had a bimodal 

behavior with respect to this TPM property. At both lower and upper limits of DS (0 and 

1, respectively), µ[Fmax] approached zero. In keeping with what integrated information 
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theory aims to do, we can consider these two extremes to be two separate cases of 

impaired consciousness. The case where DS ® 0 may correspond to a time-series that is 

highly disordered and fluctuates too rapidly for integration to occur. This may describe 

the cortical activity of patients diagnosed with disorders of consciousness (DOC). For 

example, the connectivity of the DMN was found to be diminished in patients diagnosed 

with a vegetative state [4,5]. While some DMN activity in these patients persists, its 

impairment can result in temporal fluctuations that lack coherence. On the other hand, the 

case where DS ® 1 represents a network that is frozen in its state and hence lacks the 

fluctuations necessary to generate causal structures. This would correspond to a condition 

known as brain death; whereas DOC patients lose behavioral abilities but maintain a 

range of brain functions, brain death involves a complete loss of brain activity and, 

inevitably, consciousness [6].     

While we were unable to interpret both peaks in the µ[Fmax] vs DS curves, it is 

important to mention that a healthy and wakeful brain (as measured with the unpermuted 

signal) operates somewhere between these two limits. This is consistent with an 

important theory known as the “critical brain hypothesis”, which argues that the brain 

operates at a “critical point” that maintains balance between states of order and disorder 

[7-9]. In most of the networks shown in Figure 3.3.5, µ[Fmax] was greater at the second 

peak. This peak may represent the time-series of a network in a “hyper-conscious state”, 

such as involvement in a task or hyper arousal [10]. Although we found some general 

relationships between integrated information and DS, these were limited in precision, as a 

certain value of DS corresponded to a large range of µ[Fmax] values. Ultimately, this 

underscores that µ[Fmax] is a much more intricate measure than a TPM property that is 

relatively easy to compute  
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Chapter 4 : Integrated Information and the Length of a Time-Series 

4.1. Overview  
Throughout this thesis, we computed the integrated information of each RSN over the 

entire population of subjects. To do this, we concatenated the time-series of individual 

subjects and obtained elongated signals for each network and condition. The initial 

motivation for this was the inconsistency of outputs obtained at the single subject level, 

which resulted from short time-series and sparse TPMs. In the data we obtained, subjects 

were scanned over four different states of awareness, which was a limiting factor in the 

number of time points that could be acquired for each condition. Although concatenations 

did not preclude our analyses from yielding meaningful results, there were inevitable 

limitations to this approach (see section 2.2.2).  

In future studies, we hope to see our procedure applied to the fMRI data of 

individual subjects. This will be an important advancement, especially if IIT is to be 

implemented as a diagnostic measure for conditions such as disorders of consciousness. 

To reliably measure µ[Fmax], this would require a longer acquisition time that yields a 

substantial number of time points for a single subject. In this chapter, we analyze the 

variation of µ[Fmax] with respect to the number of time points used to compute it. We 

begin this analysis by varying the number of concatenated subjects. In doing so, we hope 

to provide a general guideline of how long a scan would have to be to obtain consistent 

measurements of integrated information.  

Even so, it is important to keep in mind that the time used for fMRI acquisition is 

a matter of concern to clinicians and subjects receiving the scan [1,2]. This is because the 

process can cause discomfort and distress, as subjects are required to lie still in the 

scanner’s narrow space. As a potential solution to this problem, we briefly discuss a 

theoretical framework known as the Generalized Ising Model (GIM), which our group 

previously implemented to simulate resting-state brain activity using structural data [3]. 

Implementing this model may overcome the time constraint of fMRI measurements, as 

there is no limit on the number of time points that can be obtained from a simulation.   
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4.2. Methods 

4.2.1. Concatenations and their effects on µ[Fmax]  

To analyze the dependence of an RSN’s µ[Fmax] on the number of time points in its 

signal, we obtained a range of concatenated time-series that differed in length. Starting 

with the time-series of individual subjects, we incrementally increased the number of 

time points by adding the time-series of one subject at a time until all 17 subjects were 

included. For each number of subjects (N), a sample of 16 time-series was obtained by 

randomly choosing the subjects to include in the concatenation. For a single subject in the 

awake condition, each time-series contained 245 time points. Therefore, the lengths of 

these time-series were 245 (N = 1), 490 (N = 2), 735 (N = 3), …, and 4165 (N = 17).  

After computing µ[Fmax] for each sample, we applied Welch’s t-test (see section 

2.2.6) to analyze statistically significant differences that result from different numbers of 

subjects. The standard deviation of the sample was multiplied by the square root of the 

sample size to obtain the population’s standard deviation.  

4.2.2. The Generalized Ising Model  

Although the first analysis may indicate the number of time points needed to reliably 

compute µ[Fmax], it still contained data from different subjects. As previously described, 

inter-subject variations resulted in time-series with discontinuities. The ideal case would 

be to obtain a time-series of comparable length but from a single subject. Although we 

did not have longer empirical time-series for individual subjects, we approached this 

problem by simulating an RSN’s activity with the Generalized Ising Model (GIM) [4-6].   

The GIM, which originates from thermodynamics, simulates an RSN’s time 

dependent behavior using structural data obtained with diffusion tensor imaging (DTI). 

DTI provides a structural connectivity matrix J that specifies the strength of white matter 

connections between the different regions of an RSN. An entry of this matrix represents 

the coupling strength between any two regions (i and j). We provide a brief 

demonstration of how this simulation works in Figure 4.2.1.  
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Each region in an RSN is assigned a “spin” S, which can be +1 or -1 in 

accordance with the two binary states we have been using (+1 for high activity, 1- for 

low activity). An important parameter in this simulation is the temperature T, which 

describes the network’s external conditions. The energy E of the system at a certain state 

s is obtained by summing over the product of each pair of spins and their coupling 

strengths. The probability of the system being in a certain state, Ps, is defined by using 

the Boltzmann probability distribution.  

 

Figure 4.2.1. Simulating functional connectivity using the GIM. a) The process 
begins with a structural connectivity matrix J, which is fed into a Monte-Carlo 
Metropolis algorithm based on the Boltzmann probability distribution. The time-
series obtained is used to construct a functional connectivity matrix r ; b) the 
networks consist of five regions (circles) that are connected through different 
coupling strengths (represented by lines of varying widths). At each time step, 
every spin is given the chance to flip. This process is repeated for a range of 
temperatures to find the one that best fits empirical data (T*).  

To simulate the network’s evolution over time, these principles are implemented 

in a Monte-Carlo Metropolis simulation. Starting with a random state, each region is 

given the chance to flip. If the flip is energetically favorable (i.e., ∆E < 0), it is allowed to 

occur. If it is unfavorable, a random number is generated; if this random number falls 



 

 

 

70 

between 0 and the probability of the new configuration, the flip is allowed to occur. Once 

this has been repeated for every spin, the state of the system at the next time point is 

obtained. This is repeated for a specified number of time points, which constitute the 

simulated time-series of the network. The time-series is then used to construct a 

functional connectivity matrix that describes the network’s temporal correlations. 

Finally, this simulation is repeated for a range of temperature parameters. A 

correlation matrix is obtained for each iteration, and the temperature that produces the 

best fit between the simulated and empirical functional connectivity matrices is denoted 

T* (i.e., this is the temperature where the simulation most closely resembles the 

correlation matrix that would be observed with real fMRI data).  

4.2.3. µ[Fmax] and the length of a simulated time-series 

To test the relationship between time-series length and µ[Fmax] in a single subject, we ran 

the GIM for the retrosplenial network at its T* in the awake condition. DTI data 

corresponding to a single subject was obtained from the human connectome project 

database, which was processed to match the representative regions used in this study. We 

chose this RSN based on simulations conducted for previous studies, where we found that 

its simulated activity adequately matched empirical fMRI data at T* = 1.12 (see Figure 

4.2.2.) We ran the GIM and obtained simulated time-series for the same set of lengths 

used in the first procedure (245, 490, …, 4165, or the equivalent of 1, 2, …, 17 subjects). 

16 time-series were generated for each length and µ[Fmax] was computed for each one.  

 

Figure 4.2.2. Empirical and simulated functional connectivity matrices. The 
GIM was found to accurately model r  for the retrosplenial network at T* 
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4.3. Results 

4.3.1. Concatenations and their effects on µ[Fmax]  

The effects of concatenating time-series from different subjects are presented in Figure 

4.3.1, where we focus on the DMN and FPN in the awake condition. First, the mean and 

standard deviation of µ[Fmax] were highest for the time-series of individual subjects. As 

the number of concatenated subjects increased, µ[Fmax] dropped steadily and leveled off 

with time-series consisting of 8-10 subjects. Using Welch’s t-test, we measured a 

significant difference from the single subject sample (N = 1) for all N ³ 8 time-series. 

 

Figure 4.3.1. Variation of µ[Fmax] with respect to the number of subjects 
concatenated. The means and standard deviations are presented for each sample of 
time-series obtained by concatenating a different number of subjects (N). µ[Fmax] 
decreases for time-series with increased length. A significant difference from N = 1 
was measured for all N ³ 8, and the value of µ[Fmax] appears to stabilize past this 
point (0.01< p < 0.05: *). 
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4.3.2. Simulated and empirical time-series  

For the comparison between empirical and simulated time-series in the retrosplenial 

network, µ[Fmax] is plotted against the number of time points as opposed to the number 

of subjects. The empirical results still correspond to different numbers of concatenations 

as in Figure 4.3.1, but the simulated data was obtained for a single subject. The overall 

behavior of the model is similar to the empirical time-series, with a drop of µ[Fmax] that 

steadies as the number of time points reaches the equivalent of 8-10 subjects. However, 

the groups of simulated time-series do not present any significant differences.  

 

Figure 4.3.2. Variation of µ[Fmax] in empirical and simulated time-series. 
µ[Fmax] is plotted against the number of time points, which corresponds to the 
number of subjects concatenated using empirical data (top plot) and the number of 
time points simulated for a single subject in the model (bottom plot). For the 
empirical data, a significant difference from N = 1 was measured for all N ³ 9. 
While the simulated behavior of the retrosplenial network is similar to that of the 
empirical time-series, none of its decreases were statistically significant.  
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4.4. Discussion 

When it comes to obtaining time-series, the principal limitation of fMRI is its low 

temporal resolution [1]. Recall that consecutive images are separated by the repetition 

time (TR), which ranges between 2-3 seconds. This means that acquisition of 245 time 

points (one subject in one condition) required a scan ranging between 8-12 minutes per 

condition. We saw that for this amount of time points, the procedure yielded spurious 

results for µ[Fmax], which prompted us to concatenate the population’s time-series for 

each RSN and condition. By analyzing how the length of a time-series affects µ[Fmax], 

our goal in this chapter was to provide general guidelines for future implementations of 

IIT in fMRI.  

First, the most evident effect of concatenations (and increasing time points in the 

simulation) was that they reduced µ[Fmax]. Considering that each subject’s time-series 

were different, this observation is in line with the fundamentals of IIT. In Chapter 1, we 

explained that mechanisms generate integrated information through a selective set of 

causes and effects. When different time-series are combined, the constraints pertaining to 

each subject’s mechanisms are relaxed, meaning their cause-effect repertoires become 

less selective. For instance, if in the time-series of one subject, state i only transitions to 

state j, but in another subject, state i transitions to states j and k, the combined signal will 

have a less selective effect repertoire for the mechanisms related to state i. This effect 

became more pronounced as the length of the time-series increased, which is what we 

observed in Figures 4.3.1 and 4.3.2. In the simulated data, the same behaviour was 

observed because larger number of time points allowed for a broader range of spin flips 

and state transitions. As a primary guideline, we emphasize that the number of time 

points used in this procedure must be a fixed control; the comparison of µ[Fmax] must be 

applied to time-series of the same length.  

 While increased length resulted in a general decrease of integrated information, 

the standard deviation corresponding to most samples of the empirical data was quite 

large. While this may suggest inconsistency regardless of what number of subjects is 

concatenated, it is important to note that these samples were generated by concatenating 
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random groups of subjects. Accordingly, there was significant variation in the time-series 

included for each measurement. In Chapter 2, we obtained a sample of 17 µ[Fmax] values 

by concatenating 16 subjects and excluding a different subject for each measurement, 

which resulted in much less variation in the time-series. As the results showed, the 

standard deviation of µ[Fmax] was much more reasonable, which allowed for 

observations of statistically significant differences between different states of awareness 

in certain RSNs. Thus, we suggest this practice for any future studies that involve the 

concatenation of time-series over a population (e.g., in a study with 12 subjects, this 

would involve obtaining a sample of 12 µ[Fmax] values by concatenating the time-series 

of 11 subjects for each measurement).  

Although the random grouping of subjects accounts for the large variance of 

µ[Fmax] in the concatenated time-series, we also observed significant variance in the 

simulated results. Theoretically, the simulation was intended to represent the time-series 

of a single subject. While the GIM has been successfully applied to predict a network’s 

correlational functional connectivity, it may not be as consistent when it comes to 

simulating integrated information. The large variation of µ[Fmax] may be due to the 

stochastic nature of the model [4,5], which allows for a variety of time-dependent 

behaviors that vary in their integrated information.  

Ultimately, using fMRI to obtain longer time-series from subjects will be the best 

way to understand how many time points are necessary to accurately compute µ[Fmax] 

for an individual. While we can conclude with certainty that 245 TRs or less are not 

enough, it is difficult to provide exact guidelines with the data we used. Based on the 

statistically significant differences we found, this may require the equivalent of 8 

concatenated subjects, or around 2000 TRs. However, this would make for a rather long 

scanning session (over 65 minutes), which is impractical for most clinical purposes [7]. 

While the results for time-series with less than 8 concatenated subjects did not indicate 

any statistically significant differences, it is possible that the equivalent of 5-7 

concatenated subjects, or roughly 1200-1700 TRs, would be substantial to obtain 

consistent results. This would amount to a scanning time of at least 40 minutes, which is 

realistic for a resting-state acquisition procedure [8]. 
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Chapter 5 : Summary, Conclusions, and Future Work  

5.1. Summary 
This thesis began with a comprehensive review on consciousness and how integrated 

information theory (IIT) attempts to explain it [1]. Up to this point, most developments 

made with this framework have been purely theoretical, as it is a difficult to implement to 

empirical data. To move past this precedent, we presented a methodology on how F, the 

principal metric of IIT, can be obtained from fMRI measurements. Our approach relied 

on converting a collection of cortical resting-state networks (RSNs) to discrete systems 

consisting of binary elements, to which we then applied the computational scheme of IIT.  

 Altogether, we obtained promising results when this approach was applied to 

fMRI data of subjects who underwent propofol-induced sedation. In Chapter 2, we found 

that changes to integrated information from anesthesia closely reflected the conscious 

evolution of subjects in the frontoparietal and dorsal attention networks, which are 

frequently associated with executive control, voluntary attention, and higher-order 

processing of stimuli [2]. In Chapter 3, we extended this analysis and showed that 

networks with high integrated information demonstrate more intricate causal structures, 

as their time-dependent behavior was highly susceptible to permutations. This analysis 

underscored the intrinsic causal structures of each RSN, which gave rise to the integrated 

information we computed. 

An important step in our methodology was the concatenation of time-series from 

the entire subject population, which were the signals used to analyze the integrated 

information of each RSN. However, this was one limitation of our study. As we 

discussed, the need for this stemmed from an inherent disadvantage of fMRI, which is its 

low temporal resolution. While this approach did not preclude a meaningful analysis of 

our data, Chapter 4 discussed how the length of a time-series affected our calculations of 

integrated information. We took this opportunity to present several guidelines for future 

implementations of our procedure, including an approximation of how long a scan should 

be to reliably compute integrated information for individual subjects.  
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Besides the use of concatenations and the low temporal scale of fMRI, there are 

other limitations worth mentioning. First, the use of time-series for calculations of F is 

constrained by the Markovian assumptions underlying the mathematical formulation of 

PyPhi [3]. In our case, the fMRI signals did not completely satisfy the conditional 

independence property, meaning that some of the original signal properties were 

inevitably lost when inputted to PyPhi. Another limitation of this software is the high 

computation cost of obtaining F and how it scales with increasing network size. 

Although an improved spatial resolution may provide better insight into each RSN’s 

mechanisms, a scalability of O(n53n) means that a sixth region would increase 

computation time by over sixty-fold.  

A critical step in the procedure was simplifying the time-series to create systems 

whose elements take on binary states. Although this is required by PyPhi for 

computational purposes, describing activity in this form allows for no consideration of 

the BOLD signal’s fluctuation amplitudes, which is also an important factor in each 

network’s dynamics. Moreover, we assigned one of the two binary states to a signal 

regardless of how much above or below it was relative to the baseline. To maintain a 

discrete system of elements while improving the signal’s discrete resolution, it is perhaps 

more appropriate to analyze the system using three states, which could be +1 for activity 

significantly greater than the baseline, 0 for activity near the baseline, and -1 for activity 

significantly below the baseline. Although PyPhi is currently restricted to work with 

binary state systems, developments are currently being made to extend the number of 

possible states for each element within a system [4]. It is also possible to maintain a 

system of two states, but only consider time points where each region’s activity is 

significantly above or below baseline. Even though binarizing the time-series 

significantly simplified the behaviour of each network, it is important to emphasize that 

the binarized signals still reflect variations that occur in the original data. While we were 

unable to compute integrated information from the BOLD signal in its natural form, our 

procedure still presents a promising starting point to achieve this goal.  
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5.2. Conclusions and Future Work 

As discussed, we believe that an important step forward will be to apply our method to 

time-series of substantial length from individual subjects, which will allow for more 

meaningful comparisons of how integrated information varies from one individual to 

another. To further investigate F as a neural correlate of consciousness, this analysis 

should be applied to fMRI data obtained for other cases of impaired consciousness, such 

as the neurological disorders we discussed in Chapter 1. Although we focused on fMRI, 

our procedure could, in principle, be applied to other temporal measurements of brain 

activity where time-series are obtained for a set of brain regions, such as electrical 

activity measured with electroencephalography (EEG) [5]. In particular, the procedure we 

used for analyzing the Markov property and conditional independence could also be used 

to test the applicability of IIT to these other techniques.   

We emphasize that although our study focused on integrated information, this 

framework continues to be debated, with some challenging the validity of the axioms 

used for its foundation. More generally, the importance of causality to consciousness is a 

subject of great debate, and some in the neuroscientific community believe that causal 

structure theories cannot account for conscious phenomena [6]. In the context of ongoing 

arguments about IIT, we believe that empirical applications of this framework are the 

best way to test the validity of its metrics as indicators of consciousness, which was the 

goal of our implementation. Moreover, IIT is not the only framework proposed to explain 

consciousness. Other notable perspectives include global workspace theory [7], Granger 

causality [8], and even quantum mechanical postulates about the brain [9]. Instead of 

ascribing to a single theory, the neuroscientific community should investigate this topic 

through multiple viewpoints that complement, rather than contradict, one another. 

Ultimately, the multifaceted nature of consciousness calls for a multifaceted approach to 

advance our understanding of this astonishingly intricate concept.   
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Chapter 6 : Supplementary Material  

6.1. Propofol Administration and fMRI Acquisition  

6.1.1. Participants and Ethics 

We recruited 17 healthy volunteers (4 women; mean age 24 years, SD = 5) after posting 

printed advertisements throughout the university and sharing the study through word of 

mouth. All were native English speakers, right-handed, and had no history of 

neurological disorders. The attending MR technician and anesthesiologist instructed 

volunteers to complete safety screening questionnaires for MRI and propofol, followed 

by written informed consent forms to confirm their understanding of any potential risks 

involved. We remunerated volunteers for their time and willingness to participate. Ethical 

approval was obtained from the Health Sciences Research Ethics Board and Psychology 

Research Ethics Board of Western University (REB #104755) [1,2]. 

6.1.2. Administration of Propofol 
In preparation for sedation, a 20 G i.v. cannula was inserted into a vein in the dorsum of 

the non-dominant hand and a propofol infusion system was connected to it. Intravenous 

propofol was administered with a Baxter AS 50 syringe pump (Singapore). To deliver 

propofol in an incremental, stepwise fashion, an effect-site/plasma steering algorithm was 

used in combination with a computer-controlled infusion pump. The infusion pump was 

adjusted to achieve the desired level of sedation, which was guided by target propofol 

concentrations predicted by the TIVATrainer (the European Society for Intravenous 

Anaesthesia, eurosiva.eu) pharmacokinetic simulation program. This model provided 

target-controlled infusion by adjusting propofol infusion rates, with the goal of reaching 

and maintaining the target blood concentrations specified by the Marsh 3 compartment 

algorithm for each participant (also incorporated in the TIVATrainer software) [3]. 

Subjects underwent four conditions throughout sedation and acquisition:  

1) Awake: Propofol was not yet administered. Participants were fully awake, alert, and 

communicative.  

2) Mild sedation: At the start of this phase, we began propofol infusion with a target 

effect-site concentration of 0.6 µg/ml. Oxygen was titrated to maintain SpO2 above 
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96%. After reaching the target effect-site concentration, we assessed the participants’ 

level of sedation and maintained the effect-size concentration if observations were 

consistent with mild sedation. Initially, participants became calmer and slow in their 

responses to verbal communication. Once they stopped engaging in spontaneous 

conversation, became sluggish in speech, and only responded to loud commands, they 

were classified as level 3 using the Ramsay sedation scale [4] and considered mildly 

sedated.  

3) Deep sedation: Prior to reaching the deep sedation phase, the target effect-site 

concentration was increased in increments of 0.3 µg/ml and responsiveness was 

assessed with each increase. Once participants reached level 5 on the Ramsay scale of 

sedation, whereby they stopped responding to verbal commands and were unable to 

engage in conversation, the level of propofol was maintained. Participants remained 

capable of spontaneous cardiovascular function and ventilation.  

4) Recovery: Propofol administration was terminated after acquisition in deep sedation. 

Approximately 11 minutes afterwards, participants reached level 2 on the Ramsey 

scale, which was marked by clear and quick responses to verbal commands. 

 

The mean estimated effect-site propofol concentration was 2.48 (1.82–3.14) 

µg/ml, and the mean estimated plasma propofol concentration was 2.68 (1.92–3.44) 

µg/ml. The mean total mass of propofol administered was 486.58 (373.30–599.86) mg. 

The variability of these concentrations and doses is typical for studies of the 

pharmacokinetics and pharmacodynamics of propofol [5,6]. 

Prior to initiating fMRI acquisition, three independent assessors (two 

anesthesiologists and one anesthesia nurse) evaluated participants with the Ramsay scale. 

Participants were also asked to perform a basic verbal recall memory test and a 

computerized (4 min) auditory target detection task, which further assessed each 

participant’s wakefulness/sedation level independently of the anesthesia team. Scanning 

commenced only after agreement on the wakefulness/sedation level among the three 

anesthesia assessors. 
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6.1.3. fMRI Acquisition and Neuroimaging Data Preprocessing 
Echo-planar sequencing was used to acquire functional images with the following 

properties: 33 slices, voxel size: 3 × 3 × 3 mm3, inter-slice gap of 25%, TR = 2000 ms, 

TE = 30 ms, matrix size = 64 × 64, FA = 75°. Resting-state scans had 256 vol. We also 

obtained an anatomical scan using a T1-weighted 3D MPRAGE (Magnetization Prepared 

- RApid Gradient Echo) sequence with the following properties: 32 channel coil, voxel 

size: 1 × 1 × 1 mm3, TE = 4.25 ms, matrix size = 240 × 256 × 192, FA = 9°.  

T1 images were preprocessed using the following toolboxes: SPM 

(http:www.fil.ion.ucl.ac.uk/spm), FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), SimpleITK 

(http://www.simpleitk.org/) and Dipy (http://nipy.org/dipy/). Preprocessing for T1-

weighted imaging consisted of the following: manual removal of the neck, removal of 

non-brain tissue using the FMRIB Software Library (FSL), correction of non-uniformity 

in low frequency intensity based on the N4 bias field correction algorithm (obtained from 

SimpleITK), image denoising with the nonlocal means algorithm from Dipy, and spatial 

normalization to standard stereotactic Montreal Neurological Institute (MNI) space using 

the SPM12 normalization algorithm. The three initial volumes were discarded to avoid 

T1 saturation effects in the fMRI data. Head motion and slice timing correction were 

performed using the MCFLIRT algorithm from FSL. We then ran artifact outlier 

detection, followed by artifact correction using RapidArt 

(https://www.nitrc.org/projects/rapidart/).  fMRI data were subsequently co-registered 

onto the T1 image and spatially normalized to the MNI space with the SPM12 

normalization algorithm. Finally, spatial smoothing was applied to the fMRI data using a 

Gaussian kernel (8 mm full width at half maximum as implemented in SPM12). 

6.1.4. Extraction of Representative Regions from RSNs 

The regions constituting each RSN were obtained from a cortical parcellation scheme 

based on resting-state correlations [7]. Cortical areas were grouped into representative 

regions of interest (ROI), which were selected from five clusters by running a k-means 

algorithm over the spatial centroids of each RSN. Five regions were included in each 

extracted network to maintain reasonable balance between spatial resolution and 

computational complexity. Note that because calculations of Φ have a scalability of 
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O(n53n), with n being the number of nodes (cortical regions), larger networks would have 

resulted in computation times. The RSNs extracted were the Default Mode, 

Frontoparietal, Retrosplenial, Dorsal, Ventral, Cingulo-opercular, Cingulo-parietal, 

Auditory, Visual, Sensorimotor Hand, and Sensorimotor Mouth networks. The ROIs 

extracted for each network, along with descriptions of their functions, are presented in the 

supplementary material.  

Once the five representative regions of each network were obtained, their means 

throughout the time-series were computed. The time-series were then cleaned by 

removing spurious variance by means of nuisance signal regression, which was based on 

the average time series of external regions of noninterest (white matter and cerebrospinal 

fluid) [8]. A rigid body transformation, which was obtained from head-motion correction 

with FSL, yielded six motion parameters for translation and rotation in three dimensions, 

which were also included in the nuisance regressors. The time-series were then detrended 

and filtered using a bandpass Butterworth filter with cut-off frequencies set at 0.01 Hz 

and 0.1 Hz. Finally, we standardized the time-series to have zero mean. 

 

Figure 6.1.1. Obtaining five representative regions for an RSN. Starting with 40 
regions in the DMN, a k-means algorithm was used to obtain five clusters, each 
associated with a centroid. These were used to obtain a total of five time-series.  
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Figure 6.1.2. Representative cortical regions of the 11 RSNs from the 
parcellation scheme. The five regions obtained for each RSN are presented in the 
figure above and are separated into the two categories of RSNs we described.   

 

 

 

 



 

 

 

85 

6.2. Propofol Administration and fMRI Acquisition  

6.2.1. Markov Property Test 

The results for the Markov property test (section 2.2.3) are presented in the table below, 

where we give the chi-square statistics obtained from each network’s contingency table. 

	 𝜒! 	 𝜈	 𝜒!/	𝜈	 𝑝		 	

	
35.66 28 1.27 0.15 Awake 

22.25 28 0.79 0.77 Mild 

29.24 29 1.01 0.45 Deep 

10.52 30 0.35 1.00 Recovery 

	
23.16 28 0.83 0.72  

16.46 27 0.61 0.94  

29.59 28 1.06 0.38  

25.46 30 0.85 0.70  

	
21.94 29 0.76 0.82  

10.85 22 0.49 0.98  

29.33 29 1.01 0.45  

41.82 27 1.55 0.03  

	
16.13 28 0.58 0.96  

17.68 30 0.59 0.96  

15.43 25 0.62 0.93  

8.52 28 0.30 1.00  

	
34.41 22 1.56 0.04  

34.48 23 1.50 0.06  

22.99 24 0.96 0.52  

16.57 29 0.57 0.97  

	
8.18 31 0.26 1.00  

13.33 30 0.44 1.00  

21.72 31 0.70 0.89  

11.35 29 0.39 1.00  

	
45.11 27 1.67 0.02  

27.28 29 0.94 0.56  

19.34 29 0.67 0.91  

15.09 30 0.50 0.99  
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	 𝜒! 	 𝜈	 𝜒!/	𝜈	 𝑝	

	
22.43 30 0.75 0.84 

33.61 31 1.08 0.34 

42.94 31 1.39 0.08 

31.18 29 1.08 0.36 

	
26.26 30 0.88 0.66 

32.52 29 1.12 0.30 

38.78 30 1.29 0.13 

22.70 29 0.78 0.79 

	
22.76 31 0.73 0.86 

41.19 29 1.42 0.07 

17.43 30 0.58 0.97 

20.10 31 0.65 0.93 

	
17.34 31 0.56 0.98 

24.75 30 0.82 0.74 

36.24 31 1.17 0.24 

21.78 30 0.73 0.86 

 

Table 6.2.1. Results for the Markov property contingency table test. Each block 
corresponds to an RSN, with four rows corresponding to the four states of 
awareness (awake, mild, deep, recovery). The first column gives the 𝝌𝟐 values 
obtained from equation 1, the second column gives the degrees of freedom 𝝂 
(number of sequences – 1), the third column gives a reduced 𝝌𝟐 value, or  𝝌𝟐/	𝝂, 
and the fourth column gives p values. Time-series yielding statistically significant 
differences (p < 0.05) were considered to violate the Markov property and their p-
values are highlighted with red text. 

6.2.2. Modulation of µ[Fmax] by Propofol 

For each comparison of µ[Fmax] in the same network (i.e., awake vs. mild sedation, mild 

vs. deep sedation, etc.), we present all statistics obtained in the set of tables below. These 

were obtained using Welch’s t-test on a sample of 17 time-series for each RSN and 

condition, which was obtained by concatenating 16 subjects at a time. 
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Frontoparietal 
 M D R  
 

A 
1.17 4.3 -4.12 t 

31.94 30.43 31.99 n 

0.25 0.00016 0.00025 p 

                   
M 

3.2 -5.19  
30.93 31.98  

0.00318 0.00001  

   
  

  
D           

-7.9  
30.64  

0  

 
 
Retrosplenial 

 M D R 
 

A 
-0.02 1.06 -0.15 
31.26 30.69 31.56 
0.98 0.3 0.88 

                   
M 

1.18 -0.15 
31.9 31.96 
0.25 0.89 

   
  

  
D           

-1.31 
31.74 
0.2 

 
Ventral Attention 

 M D R 
 

A 
-0.18 1.04 0.85 
30.45 30.57 27.19 
0.86 0.31 0.4 

                   
M 

1.08 0.92 
27.17 23.73 
0.29 0.37 

   
  

  
D           

-0.31 
30.46 
0.76 

 
 
 
 

Default Mode 
 M D R 
 

A 
-0.35 2.14 -1.75 
27.96 30.38 31.9 
0.73 0.04007 0.0894 

                   
M 

3.04 -1.7 
31.17 27.06 
0.0047 0.1 

   
  

  
D           

-4 
29.62 

0.00039 

 
 
Dorsal Attention 

 M D R 
 

A 
1.74 7.21 3.69 
31.87 29.06 31.89 
0.0912 0 0.00083 

                   
M 

5.49 2.11 
29.97 31.54 

0.00001 0.04282 
   

  
  

D           
-2.73 
28.16 

0.01072 
 
 
Cingulo-Opercular 

 M D R 
 

A 
0.94 0.24 0.19 
29.4 19.88 31.27 
0.35 0.81 0.85 

                   
M 

-1.12 -0.81 
22.91 31.28 
0.28 0.42 

   
  

  
D           

0 
21.21 

1 
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Cingulo-Parietal 
 M D R 
 

A 
1.29 1.38 0.7 
30.8 31.26 31.97 
0.21 0.18 0.49 

                   
M 

0.12 -0.5 
31.93 30.43 
0.9 0.62 

   
  

  
D           

-0.6 
30.96 
0.55 

 
 
Sensorimotor Mouth 

 M D R 
 

A 
1.22 0.14 -0.63 
30.35 29.82 30.87 
0.23 0.89 0.53 

                   
M 

-1.26 -1.76 
31.95 27.46 
0.22 0.09002 

   
  

  
D           

-0.82 
26.83 
0.42 

 

Table 6.2.2. Results for statistical 
comparison of µ[Fmax] over the four 
states of awareness in each of the 11 
RSNs. A: awake; M: mild; D: Deep; 
Recovery: R; Welch’s t-test was used to 
obtain t, 𝝂 (degrees of freedom), and p 
values, which are given in this respective 
order within each comparison block 
(highlighted with the bolded borders). 
Statistically significant p values are 
highlighted in red (p < 0.05). Positive t 
values indicate a decrease of µ[Fmax], 
whereases negative values indicate an 
increase. 

Visual 
 M D R 
 

A 
0.27 -1.48 -0.2 
25.11 31.88 28.96 
0.79 0.15 0.84 

                   
M 

-1.28 -0.4 
24.21 30.25 
0.21 0.69 

   
  

  
D           

1 
28 

0.33 

 
 
Sensorimotor Hand 

 M D R 
 

A 
-0.24 2.75 1.23 

32 30.27 31.96 
0.81 0.00992 0.23 

                   
M 

2.96 1.47 
30.29 31.96 

0.00593 0.15 
   

  
  

D           
-1.72 
29.82 

0.09601 

 
 
Auditory 

 M D R 
 

A 
2.39 -1.62 -2.12 
29.91 28.82 31.81 

0.02361 0.12 0.04201 
                   

M 
-3.5 -4.25 

31.82 28.76 
0.0014 0.0002 

   
  

  
D           

-0.04 
27.59 
0.96 
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