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Abstract

Measurement is crucial to the implementation of output-based incentive schemes. This

paper uses models to study the performance of teacher quality estimators that enter

teacher incentive schemes. I model an administrator tasked with (i) categorizing teachers

with respect to a cutoff, (ii) retaining teachers in a hidden type environment, and (iii)

compensating teachers in a hidden action environment. The preferred estimator would

be the same in each model and depends on the relationship between teacher quality and

class size. I use data from Los Angeles to show that simple fixed effects would almost

always outperform more popular empirical Bayes.
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1 Introduction

The vast majority of teacher remuneration is based on credentials and experience (Podgursky

and Springer (2006, 2011)). However, the fact that only a small amount of variation in student

achievement is explained by these characteristics (Hanushek (1986), Goldhaber and Brewer

(1997), Rivkin et al. (2005)) and evidence that teacher quality is an important determinant of

human capital (Hanushek (2011), Chetty et al. (2014a)) have spurred a debate about introduc-

ing teacher incentive pay schemes. Such schemes typically take as inputs estimates of teacher

quality,1 prompting a seemingly simple, but clearly germane question: How should teacher

quality be measured in the context of teacher incentive schemes?

At a broad level, the how to best measure quality depends on whether the goal is to predict

teacher quality or to maximize an economic objective. The unbiased sample mean of measured

teacher quality is an obvious candidate. However, the posterior mean of measured teacher

quality is desirable for prediction because it minimizes mean squared error. It accomplishes

this by downweighting, or “shrinking”, the sample mean toward the population mean, which

introduces bias while reducing variance. Lacking any other information about the economic

environment, minimizing mean squared error may seem like a reasonable criterion. Indeed,

this may explain the ubiquity of shrinkage estimators in research and practice (e.g., Rockoff

(2004) and Kane et al. (2008)).2 However, which estimator would be preferred would likely

depend on an educational administrator’s context, which we may know something about. It is

not clear that an estimator with a lower mean squared error would be preferred over one that

is unbiased for all relevant environments. Incentive schemes are predicated on the economic

theory of incentives. As such, it seems that estimators of teacher quality should be evaluated on

the basis of economic—not statistical—theory, which takes into account the relevant context.

This paper combines economic theory and data to examine how to best estimate teacher

quality in the context of a utility maximizing entity, such as a school district administrator. I

consider the ubiquitous “empirical Bayes” estimator, a type of shrinkage estimator,3 and the

unbiased fixed effects estimator, i.e., the sample mean of teacher quality net of other observed

inputs. The aforementioned bias-variance tradeoff emerges whenever comparing unshrunk es-

timates with shrunken ones. The framework developed in this paper could also be used to

examine the performance of other estimators.

I consider the choice of estimator in three economic environments that are salient for ed-

1I refer to “quality” and “value-added” interchangeably.
2 McCaffrey et al. (2003) write “Early [value-added model] applications . . . primarily used fixed effects, while

more recent applications . . . have used random effects almost exclusively” (64). Note that though empirical
Bayes can be viewed as the outcome of a random effects model, it also possible to shrink fixed effects using a
Bayesian approach.

3 Empirical Bayes estimators are often called BLUP (Best Linear Unbiased Predictor) because they minimize
the mean squared error.
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ucation policy. To most closely match the structure of the vast majority of existing schemes,

I start by developing a cutoff-based model where the administrator chooses an optimal cutoff

policy to classify teachers with respect to a desired threshold quality, minimizing the weighted

sum of expected Type I and Type II errors. Each policy specifies a cutoff in the distribution of

that estimator say, for receiving a bonus or not being dismissed. Intuitively, her expected util-

ity is equal to the expected probability of correct classifications, making it natural to compare

estimators based on their expected frequency of mistakes.

The estimators differ by how much they weigh sample data. In the context of estimating

teacher quality, these weights increase in class size. Analysis of the cutoff model shows that the

relationship between class size and teacher quality determines which estimator the administrator

would prefer. The administrator obtains the same expected maximized objective (or “value”)

when class size is constant because empirical Bayes shrinks estimates for all teachers towards

the population mean by the same proportion, preserving teacher rankings. However, if school

principals shift students away from the lowest-quality teachers or assign the highest-quality

teachers to teach small classes of gifted students then class size may depend on teacher quality.

This would cause the performance of the estimators to diverge, even when the administrator

uses estimator-specific optimal cutoff policies. To see why, consider a comparison between two

teachers of different below-average qualities. If the higher-quality teacher is assigned more

students, the larger number of signals about teacher quality increases the empirical Bayes’

weight on their students’ test score gains and decreases the weight on the population mean of

teacher quality, relative to the lower-quality teacher assigned fewer students. In the extreme

scenario where all but one student in a large school are assigned to the higher-quality teacher,

both estimators for that teacher converge to the true value. However, the empirical Bayes

estimate for the lower-quality teacher will likely be close to the population mean, implying that

an administrator using empirical Bayes would likely determine that the lower-quality teacher is

better. I show that the performance of the estimators differs most at the tails of the distribution

of teacher quality under several plausible scenarios, which is important if we seek to identify

either high- or low-quality teachers. For example, in 2010, the former Washington D.C. Schools

Chancellor Michelle Rhee fired 241 teachers based on performance measures (Turque (2010)).

The cutoff model’s close link to existing policy is clearly desirable. However, the cutoff

model does not directly link measurement and output. Therefore, I also use the two main types

of asymmetric information models to directly study how measurement of teacher quality may

affect output. In each model, the administrator chooses an estimator-specific reward policy

function to maximize her objective: output net the cost of the policy. The first is a hidden

type, or adverse selection, model in which unobserved types determine teacher quality. Teacher

quality is a determinant of student human capital and, hence, output, but cannot be exactly

recovered due to measurement error. I show that a reservation-value-, i.e., cutoff-, based policy
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would emerge in this environment. The optimality of a reservation-value policy suggests a link

between the cutoff and hidden type models. Indeed, I show that the administrator’s preferred

estimator in the hidden type model also depends on class size scenario and, moreover, would

be the same as her preferred estimator in the cutoff model. When class sizes are constant she

would be indifferent, when they are negative quadratic in teacher quality she would prefer fixed

effects, and the opposite when they are positive quadratic. Intuitively, in both the cutoff and

hidden type models the administrator’s value is higher the easier it is to identify teachers above

a particular threshold, and lower the more likely it is that high-quality teachers are estimated

to be below (or low-quality teachers are found to be above) that threshold.

The second asymmetric information model is a hidden action, or moral hazard, model, based

on Hölmstrom and Milgrom (1987). In this model, teachers take an unobserved action which

determines their quality. As in the hidden type model, teacher quality affects output but cannot

be exactly recovered because output is measured with noise. Hölmstrom and Milgrom (1987)

show that the optimal incentive scheme in this environment is linear in the output signal, which

depends on estimated teacher quality. As with the other models, I show that the administrator

would be indifferent between the estimators when class size is constant. I also show that

the administrator can change the scale of the estimator and achieve the same utility. This

means the key link between measurement and choice of estimator is that a negative-quadratic

(positive-quadratic) relationship between class size and teacher quality can be modeled as a

larger (smaller) noise component to an administrator paying teachers using the optimal contract

based on the empirical Bayes estimator. A larger noise component would reduce the strength

of optimal incentives, i.e., piece rate, if agents are risk averse, as teachers likely are. This model

provides an intuitive economics-based response to the sentiment that there is “too much” noise

in teacher quality measures4: This “big” variance would, in equilibrium, result in a flatter

optimal wage schedule. “Changing the data” by, e.g., shrinking fixed effects estimates would

only lead to an improvement if class size were positive quadratic in teacher quality. Therefore,

as in the cutoff and hidden type models, the administrator’s preferred estimator depends on

the class size scenario and, as in the hidden type model, lines up with her preferred estimator

in the cutoff model.

I also show that the administrator’s preferred estimator would be the same for a much

more general objective, which is increasing in the product of teacher quality (or monotonic

transformation thereof) and the reward assigned to the teacher, where the reward has the

natural property of being nondecreasing in estimated quality.

A distinguishing feature of this paper, relative to the literature, is that for each model I con-

4For example, American Federation of Teachers President Randi Weingarten said in a 2012 interview about
releasing VA scores to the public: “I fought against it because we knew value-added was based on a series of
assumptions and not ready for prime-time. But back then, we didn’t realize the error rates could be as high as
50 percent!” (Goldstein (2012)).
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sider the administrator chooses an optimal reward policy function for each estimator. Moreover,

for each model, the administrator’s optimized expected utility, or value, according to either es-

timator is characterized for a wide range of underlying parameters. This approach answers a

different type of question than one quantifying the effects of potentially suboptimal policies

using estimated models (e.g., Stinebrickner (2001), Tincani (2012), Todd and Wolpin (2012),

Behrman et al. (2016)) or even those with calibrated parameters (e.g., Rothstein (2014)). The

advantage of the approach taken here is that it is possible to compute the preferred estimator—

i.e., the one returning a higher value when coupled with the estimator-specific optimal reward

policy—without knowing the specific parameterization of the relevant model. All that is required

is the relationship between class size and teacher quality. This is feasible because in each envi-

ronment I consider, the administrator’s problem can be split into two parts: choose a teacher

quality estimator and then choose an estimator-specific optimal policy.

Given the theoretical results, the natural next step is to establish which estimator would

likely be preferred in the real world. Moreover, can we—at least roughly—quantify the extent

to which the choice of estimator matters? As the models show, the former question boils down

to the relationship between class size and teacher quality, which, to my knowledge, has not

been well-established. Therefore, I first make an empirical contribution by documenting this

relationship for the Los Angeles Unified School District—the second-largest school district in

the United States and a district with a large degree of diversity and variation in both student

achievement and class size—using value-added estimates provided by the Los Angeles Times

(Buddin (2011)). I find that class size increases in teacher quality at the low end of the quality

distribution and decreases in teacher quality at the high end; Section 2 shows there is reason

to believe similar relationships between class size and teacher quality may also be present

elsewhere. This is the class size scenario under which fixed effects would be preferred over

empirical Bayes in all the models. However, because the value to the administrator and gain in

output depend on model primitives, without further information this approach cannot quantify

the magnitude of the change according to using one estimator over another.

To address this limitation, I then use the models to compare the prospective performance

of the estimators. First, to approximate the objective of an administrator considering imple-

menting a district-wide cutoff-based incentive scheme, I use values calibrated from Schochet

and Chiang (2012) and the now-documented relationship between teacher quality and class size

in Los Angeles to solve for optimal cutoff policies for a wide range of prospective desired cutoffs

for each estimator. Because the cutoff model has few parameters, I can solve for the preferred

estimator for every desired cutoff, obviating calibrating additional parameters. Fixed effects

would perform better than empirical Bayes for almost every desired cutoff because the empiri-

cal relationship I document between class size and teacher quality would cause empirical Bayes

to correctly place fewer teachers of extreme quality in the tails, making it harder to separate
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them from other teachers. For example, I find that the administrator would make 10% more

classification errors by switching from fixed effects to empirical Bayes to categorize teachers

as being in the bottom percentile in Reading value-added in the Los Angeles Unified School

District. The recent outcry about a case where value-added was incorrectly calculated for 40

teachers in Washington DC, which resulted in at least one firing (Strauss (2013)), suggests that

the public is concerned about misclassifying public school teachers.

Next, I calibrate the additional parameters required to obtain a rough assessment of how the

choice of estimator would affect output in the asymmetric information models. For the hidden

type model, I calibrate a value for the cost of replacing a teacher and compute that using fixed

effects instead of empirical Bayes would increase output by around 0.11-0.22% in a period. For

the hidden action model, I calibrate model parameters using results from Muralidharan and

Sundararaman (2011), an experimental study of teacher incentive pay implemented in Andhra

Pradesh. I find that using fixed effects instead of empirical Bayes would increase output by

1.65% per period. This finding requires making an ancillary, yet interesting, contribution:

using the lens of the hidden action model to interpret the results of this teacher incentive pay

experiment and solve for the optimal strength of incentives in a hidden action environment.

Under fixed effects, the optimal slope of incentives in measured output would be more than six

times higher than it was in the experiment, under the calibrated parameters.

This paper provides evidence that, despite its desirable statistical properties, the most

popular estimator of teacher quality would be outperformed by simpler one. More generally, by

combining knowledge about an administrator’s context with an economic model, we can obtain

much-needed guidance for how to best estimate quality for use in teacher incentive schemes.

With appropriate information about administrator’s preferences and the relationship between

class size and teacher quality, the approach taken here could be used to evaluate the preferred

estimator in other environments. The first steps taken in this paper provide a framework that

could be used to compare the performance of other ways of measuring teacher quality, or other

important economic variables, as well.

The rest of this paper is organized as follows. Section 2 provides background and discusses

related literature. Section 3 develops and analyzes the cutoff model. Section 4 considers the

asymmetric information models: Section 4.1 develops the hidden type model and Section 4.2

illustrates results for a hidden action model. Section 5 presents the quantitative results. Section

6 concludes. The Appendix documents a number of teacher incentive pay schemes and also

contains proofs and further details about the quantitative results.
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2 Background

Correctly providing incentives in an environment where teachers may vary in both inherent

effectiveness and unobserved effort is a difficult contracting problem, which has caused existing

schemes to adopt several simplifications. First, student test score gains are assumed to sepa-

rately depend on teacher quality and other inputs, resulting in a value-added model (Hanushek

(1979)). Second, schemes often take the form of cutoff rules that reward (punish) teachers

with estimated value-added above (below) some cutoff. For example, Glazerman et al. (2011)

document that about half of the performance-based schemes drawing on the Teacher Improve-

ment Fund are based on cutoff rules and I find that even a higher share are cutoff-based in

my analysis of existing teacher incentive schemes in Appendix A. Finally, as mentioned above,

decisions are typically based on either fixed effects or empirical Bayes estimates.

Value-Added Models Value-added models are the workhorse of existing teacher incentive

schemes and education research. Due to their pervasiveness, I examine how the most commonly

used estimators of value-added perform when the underlying technology is consistent with a

value-added model. Therefore, this paper has a different focus than research studying how effec-

tively value-added models measure teacher quality (see, e.g., Baker and Barton (2010), Guarino

et al. (2014), Glazerman et al. (2010), and McCaffrey et al. (2003)). Value-added models are a

restricted form of a more general production technology for cognitive achievement (Todd and

Wolpin (2003)), and many authors have tested these restrictions to determine whether they

are good measures of teacher quality, with mixed results. First, some authors have compared

estimates of teacher value-added with and without random assignment of students to teachers

(Kane and Staiger (2008), Kane et al. (2013)) or with subjective ratings of teacher effectiveness

(Jacob and Lefgren (2008)), surmising that value-added models do a reasonably good job of

measuring teacher quality.5 Second, there is also concern that value-added models do not condi-

tion on sufficiently rich information about other inputs (Rothstein (2009, 2010), Andrabi et al.

(2011), Jackson (2014)), though the evidence is mixed here as well (Kinsler (2012a), Kinsler

(2012b), Chetty et al. (2014a), Kinsler (2016)). Bond and Lang (2013) question whether value-

added should be ascribed any cardinal meaning at all, noting that monotonic transformations

of test scores can eliminate growth in the black-white reading test score gap.6 Related to this,

Cawley et al. (1999) find a nonlinear (and non-log-linear) relationship between test scores and

wages, which suggests that, consistent with the cutoff model, ranking teachers may be useful.

Although many studies examine the statistical validity of value-added models, none compare

how estimators of value-added perform from the perspective of a utility-maximizing adminis-

5 Of course, additional data could improve estimates of teacher quality. Teixeira-Pinto and Normand (2009)
develop a method that combines data from binary and continuous variables that predict common outcomes.

6In this paper, comparisons are made within one academic year.
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trator. Schochet and Chiang (2012) calculate error rates for fixed effects and empirical Bayes

estimators of teacher quality, assuming the same cutoff policy for both estimators. Tate (2004)

notes that ranks formed by fixed effects and empirical Bayes may differ depending on class size,

but does not embed the analysis within a decision problem. Guarino et al. (2015) compare the

performance of fixed effects and empirical Bayes estimators, with a focus on how they perform

when students are not randomly assigned to teachers.

Endogenous Class Size The idea that class size can reflect information about teacher quality

has theoretical precedent and empirical support. Jacob and Lefgren (2008) and Lang (2010)

argue that principals know who the good and bad teachers are. Lazear (2001) develops a

theoretical model of class size and teacher quality. Barrett and Toma (2013) assume that higher

quality teachers have a smaller reduction in efficacy for a given increase in class size. Consider

then, a principal wanting to have students pass a low proficiency threshold and increase total

output at her school. The former could cause class size to increase in teacher quality at the

low end of her quality distribution. However, due to the lack of flexible wages in the public

education sector, she may also reduce class size at the high end of the quality distribution to

retain high-quality teachers.

Empirically, many papers have found a relationship between teacher value added and non-

monetary aspects of remuneration. For example, Player (2010) documents that higher quality

teachers have fewer black students, students with learning disabilities, and males—all char-

acteristics related to how difficult it is to teach such students. Clotfelter et al. (2006) show

that highly qualified teachers tend to be matched with more advantaged students. Jepsen and

Rivkin (2009) show that a funding increase resulted in smaller class sizes, though teachers hired

to affect this reduction had less experience. Because these teachers were likely far less effective

than experienced ones, this finding would be consistent with a positive relationship between

class size and teacher quality at the low end of the distribution.

Design of Teacher Incentive Schemes This paper also relates to the literature viewing

teacher payment as a contracting problem, where the administrator chooses the contract that

induces the most effort given that she observes only a noisy measure of output (e.g., student

scores on standardized tests). Barlevy and Neal (2012) combine the earlier literature on tour-

naments (Lazear and Rosen (1981), Green and Stokey (1983)) and the multi-task problem of

Hölmstrom and Milgrom (1991) to specifically study how best to make comparisons between

teachers serving comparable groups of students.

To most closely match existing incentive schemes, the first part of this paper assumes the

administrator follows a cutoff rule. However, I also show that such a rule could be used to imple-

ment a pay-for-percentile-type scheme (Barlevy and Neal (2012)) and, more importantly, would
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naturally emerge as the optimal policy in a hidden type environment; the latter observation

was also made by Staiger and Rockoff (2010).

3 Cutoff-Based Model

Overview A large body of empirical work evaluates value-added models and compares the

statistical properties of fixed effects and empirical Bayes estimators. However, determining

which would be the preferred estimator for making decisions about rewarding or punishing

teachers requires an economic model that posits an objective function for a decision maker.

In this section I develop a cutoff model, which formalizes the objective of a school-district

administrator; characterizes her optimal cutoff policy; and shows the relationship among (i)

how class size varies with teacher quality, (ii) her choice of estimator, and (iii) her expected

maximized utility, i.e., value. To most closely match existing policies, she takes as given an

exogenous desired cutoff (for example, she is told to give bonuses to the top 5% quality teachers

or to fire the lowest 1% quality teachers in the district) and chooses a cutoff policy, which may

depend on estimator type, to maximize her expected objective over all teachers in the district.

I begin with this model for several reasons. First, as will be shown below, her objective

can be measured in terms of the number of correct and incorrect classifications with respect to

the desired cutoff, embedding the administrator’s objective in a natural metric: the expected

number of mistakes. Second, a discrete policy is a natural fit for modeling discrete real-world

policies like retention, making the analysis in this paper highly relevant for the most pervasive,

and perhaps the most contentious, public education policy debates.7 Third, even though they

are not obliged to take such a form, almost all existing teacher incentive schemes for public

school teachers are cutoff-based, making this model’s results applicable to the vast majority

of existing teacher incentive pay schemes; as noted by Stiglitz (1991) and Ferrall and Shearer

(1999), real-world incentive schemes are typically quite simple in structure–even when, in theory,

they should depend on all observed signals (Hölmstrom (1979)). Fourth, related literature

also considers cutoff-based policies, e.g., Staiger and Rockoff (2010), Hanushek (2011), Tincani

(2012), Chetty et al. (2014b), and Rothstein (2014). Finally, the cutoff-based model is extremely

flexible and does not require us to take a stand on what underlies variation in measured output,

which could be heterogeneity in fixed teacher productivity types or unobserved actions. As such,

it can capture relevant economic environments, e.g., as is shown below, one in which teachers

are entered into a tournament (Barlevy and Neal (2012)).

7Section 4.1.1 explores similarities between the cutoff-based objective and optimal policy in a hidden type
environment.
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Model Specification The administrator receives utility from correctly rewarding a teacher

with true quality equal to or higher than the desired cutoff κ (not making a Type I error)

and not rewarding a teacher with a true quality below κ (not making a Type II error). The

administrator’s utility from using the estimator θ̂ and cutoff policy c on a teacher of true quality

θ is:

uCP (θ, θ̂; c, κ) = α 1{θ̂ ≥ c ∩ θ ≥ κ}︸ ︷︷ ︸
avoid Type I error

+(1− α) 1{θ̂ < c ∩ θ < κ}︸ ︷︷ ︸
avoid Type II error

,

where α and (1 − α) are her weights on not making Type I and II errors, respectively.8 The

parameter α helps link the model to the institutional context. An administrator tasked with

firing the lowest quality teachers might be willing to make many more Type I errors to avoid

a Type II error (i.e., α < 1/2). Alternatively, a high value of α may be more appropriate for

an administrator allocating performance bonuses from a tight budget. If α = 1− α = 1/2 the

administrator has symmetric preferences, or values Type I and II errors equally.

Teacher quality is distributed according to θi ∼ F = N (0, σ2
θ), where F is known.9 As

discussed in Section 2, the number of students assigned to teacher i, ni, may depend on i’s

quality. For simplicity, I assume that class size depends on θ, where I sometimes denote this

dependence by writing n(θ).10 If class size were instead a noisy signal of teacher quality, the

model solution would be more complicated without changing which estimator the administrator

would prefer. Note that what matters is the end relationship n(θ); whether it is the result of

school principals assigning smaller class sizes to certain teachers or, say, teacher lobbying effort

does not affect the results.

The test score gain for student j assigned to teacher i is yji = θi + εji, where measurement

error εji ∼ N (0, σ2
ε ) and εji ⊥⊥ θi. I only adopt this spare technology to simplify model exposi-

tion; the quantitative results use value-added estimates that control for many characteristics.

The fixed-effects (FE) estimator of θi is the sample mean, i.e., θ̂FEi =
∑

j
yji
ni

= θi + εi, and,

given true quality θi, is distributed according to θ̂FEi ∼ N
(
θi,

σ2
ε

ni

)
. The empirical Bayes (EB)

estimator of teacher value-added updates the prior (i.e., population) distribution of θi with data

{yji}j. Because both the prior distribution and measurement errors are normal the posterior

8I also analyze a version of the model where the administrator’s objective is increasing in the distance between
teacher quality and the cutoff. The administrator’s preferred estimator would not change. Quantitatively, this
change would inflate the performance difference between the estimators. Results are available upon request.

9I follow standard assumptions that teacher quality is normally distributed in the population, and that E [θ]
is normalized to 0 and estimated with infinite precision.

10If the number of students assigned to a teacher was a strictly monotonic function of teacher quality, teacher
rankings could be perfectly recovered by comparing class sizes. Therefore, I assume in this section that the
administrator cannot directly condition on class size; Appendix B.1 provides results for the case where the
administrator may directly incorporate class sizes in her policy. There are two reasons to avoid this direct
conditioning. Including class size would provide school principals with a direct incentive to manipulate class
size, outside of any effects of class size on total output. Additionally, doing so would complicate the scheme,
potentially reducing its attractiveness to policymakers
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distribution is also normal, giving θ̂EBi = λiθ̂
FE
i + (1 − λi) E [θ]︸︷︷︸

0

= λiθ̂
FE
i = λi(θi + εi), where

λi =
σ2
θ

σ2
θ+σ2

ε /ni
is the ratio of the true variation in teacher quality (the signal) relative to the

estimated variation using the fixed effects estimator (the signal plus noise).11 I express the

dependence of the weights on class size by writing λ(n(θ)) or λ(ni), or the reduced-form λ(θ),

depending on which is more convenient. How much the empirical Bayes estimator is shifted to-

wards the population mean depends on ni: λ(ni)→ 1 as the number of students observed for a

teacher ni increases, causing all the weight to be shifted to the sample mean.12 Note the empir-

ical Bayes estimate for a particular teacher’s quality is biased, i.e., Eε

[
θ̂i
EB
]

= λ(θ)θi 6= θi, but

also has a lower variance. Though the exposition here is for fixed effects and empirical Bayes

estimators, this bias-variance tradeoff would also apply to comparisons of other shrunken versus

unshrunken estimators.
Expected utility under the fixed effects estimator and candidate cutoff policy cFE integrates

the administrator’s objective over the distributions of teacher quality and measurement error:

E
[
uCP (θ, θ̂FE ; cFE , κ)

]
= αPr{θ̂FE ≥ cFE ∩ θ ≥ κ}+ (1− α) Pr{θ̂FE < cFE ∩ θ < κ}

= αPr{θ + ε ≥ cFE ∩ θ ≥ κ}+ (1− α) Pr{θ + ε < cFE ∩ θ < κ}

= α

∫ ∞
κ

(
1− Φ

(
cFE − θ
σε(n(θ))

))
dF (θ|θ ≥ κ) + (1− α)

∫ κ

−∞
Φ

(
cFE − θ
σε(n(θ)

)
dF (θ|θ < κ),

(1)

where σε(n(θ)) ≡ σε√
n(θ)

and F (θ|θ ≥ κ) = φ(θ/σθ)
σθ(1−Φ(κ/σθ))

and F (θ|θ < κ) = φ(θ/σθ)
σθΦ(κ/σθ)

are the

distribution functions for θ, truncated below and above κ, respectively. Expected utility under
the empirical Bayes estimator and candidate cutoff policy cEB is

E
[
uCP (θ, θ̂EB ; cEB , κ)

]
= αPr{θ̂EB ≥ cEB ∩ θ ≥ κ}+ (1− α) Pr{θ̂EB < cEB ∩ θ < κ}

= αPr{λ(n(θ))θ̂FE ≥ cEB ∩ θ ≥ κ}+ (1− α) Pr{λ(n(θ))θ̂FE < cEB ∩ θ < κ}

= α

∫ ∞
κ

1− Φ

 cEB

λ(n(θ)) − θ
σε(n(θ))

 dF (θ|θ ≥ κ) + (1− α)

∫ κ

−∞
Φ

 cEB

λ(n(θ)) − θ
σε(n(θ))

 dF (θ|θ < κ).

(2)

For either estimator, an increase in the prospective cutoff policy c decreases the probability

of correctly identifying a teacher with true quality above κ and increases the probability of

correctly identifying a teacher with true quality below κ. The optimal cutoff policy equates

the marginal increase in the probability of committing a Type I error (marginal cost) with the

marginal decrease in the probability of committing a Type II error (marginal benefit). That is,

11McCaffrey et al. (2003) discusses the differences between fixed effects and empirical Bayes estimators.
12 A common variant of the EB estimator estimates the overall mean of θ. If the overall mean of θ is

not parametrized according to another distribution, the empirical Bayes estimator may not be deemed fully
Bayesian.
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c∗EB solves

α

∫ ∞
κ

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
dF (θ|θ ≥ κ)

= (1− α)

∫ κ

−∞

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
dF (θ|θ < κ). (3)

The optimal cutoff for the fixed effects estimator c∗FE solves (3), where λ(θ) = 1, ∀θ.
Denote the value to the administrator of using the optimal cutoff policies c∗FE and c∗EB as

vFECP (κ) = E
[
uCP (θ, θ̂FE; c∗FE, κ)

]
and vEBCP (κ) = E

[
uCP (θ, θ̂EB; c∗EB, κ)

]
, respectively. The

administrator’s value for both estimators is increasing in the signal to noise ratio σθ/σε: as

the variance of the measurement error tends to 0, σε → 0 and all teachers will be correctly

categorized, giving vFECP (κ) = vEBCP (κ) = 1 for all desired cutoffs κ (see Appendix B.2 for the

proof).

Although the presentation of the cutoff model is for one classification problem, i.e., (α, κ),

nothing precludes the administrator from performing multiple classification problems simulta-

neously, each with its own parameterization. For example, the model could also be used to

implement a tournament-based scheme (e.g., “pay-for-percentile-type”, as studied by Barlevy

and Neal (2012)), by allowing for many discrete bonuses, one for each desired κ, which would

correspond to percentiles of the distribution of teacher quality in the ensuing equilibrium. The

bonus for each κ would be an increment above that for the κ immediately below.

Theoretical Results I now characterize the administrator’s value of using each estimator as

a function of the relationship between teacher quality and class size. Proposition 1 shows that

if there is no relationship between teacher quality and class size, the administrator’s value is

the same under both estimators. Next, I consider the case where class size depends on teacher

quality. Proposition 2 shows that, in general, the administrator’s value of the two estimators

depends on the relationship between class size and teacher quality. The administrator’s value

also depends on her Type I and II error weights, α and 1 − α, respectively. For simplicity, α

has been set to 1/2; Appendix B.3 shows this does not drive the findings.

Proposition 1. The administrator receives the same value from both estimators for any desired

cutoff κ when class size is constant.

Proof. If all classes are the same size then λ(n(θ)) = λ ∈ (0, 1),∀θ. Let c∗FE satisfy the

administrator’s first-order condition (3) when λ = 1. Because λ is constant, then c∗EB = c∗FEλ

also solves (3), and returns the same value (i.e., vFECP (κ) = vEBCP (κ)).

Figure 1 illustrates Proposition 1 by plotting the expected utility of the objective under

the fixed effects estimator (solid red line) and the empirical Bayes estimator (dotted blue line)

12



as a function of the cutoff policy for each estimator (x-axis), assuming the same class size

for all teachers. Each curve traces out the administrator’s expected utility as a function of

cutoff policies, given an exogenous desired cutoff quality κ. The left panel corresponds to

a desired cutoff of the first percentile teacher, i.e., κ = F−1(0.01) < 0, the middle panel

corresponds to a desired cutoff of median teacher quality, i.e., κ = F−1(0.50) = 0, and the right

panel corresponds to a desired cutoff of the 95th percentile teacher, i.e., κ = F−1(0.95) > 0.

Extremely low or high cutoff policies cause both estimators to misclassify either all low- or

high-performing teachers, respectively, which is why the administrator’s expected utility is 1/2

at either extreme (recall α = 1/2 in this example). The utility-maximizing cutoff policy for

each estimator is indicated by a vertical line c∗estimator(κ), where the administrator’s value from

using that estimator, v∗estimator
CP (κ), is the maximum of each curve. Because the curves for both

estimators obtain the same maximum height in each panel, we can see that these are equal when

class size does not vary by teacher quality (i.e., λ(n(θ)) is constant). The utility-maximizing

cutoff policy adjusts to take into account the larger variance of administrator utility under the

fixed effects estimator. This is because if c∗FE (= c∗FE

1
) solves (3), |c∗EB| must be smaller than

|c∗FE| to satisfy equation (3), as λ < 1 for the empirical Bayes estimator. In the case where class

size is constant, the optimal cutoff policies for both estimators are at the same quantiles of the

estimator distributions; that is, the same share of teachers are rewarded under both estimators.

For example, when the desired cutoff is the first percentile of teacher quality the cutoff policy

that maximizes expected administrator utility when using fixed effects is below the optimal

cutoff policy when using empirical Bayes (Figure 1a). In contrast, when the administrator

desires to separate the top 5% (95th percentile) from the rest of teachers, the optimal cutoff

policy under the fixed effects estimator is higher than that under the empirical Bayes estimator,

again due to the larger variance of the fixed effects estimator for teacher quality (Figure 1c).

However, this higher variance does not affect the administrator’s value, or maximized expected

utility (maximum height of each curve) because the administrator is risk neutral.13

Proposition 2 considers the case where class size may depend on teacher quality.

13 The theoretical results, including Proposition 1, apply to deterministic class size functions; i.e., n(θ) is
degenerate for each θ. If Φ(·) were linear then the results would also apply for the case of i.i.d. class sizes. I
have verified that the results, including estimator rankings, do not appreciably change when the administrator
also integrates over i.i.d. class sizes; e.g., the administrator’s objective under the fixed effects estimator is

α

∫ ∞
κ

(∫ n

n

(
1− Φ

(
cFE − θ
σε/n

))
dGn(n)

)
dF (θ|θ ≥ κ) + (1− α)

∫ κ

−∞

(∫ n

n

Φ

(
cFE − θ
σε/n

)
dGn(n)

)
dF (θ|θ < κ)

= α

∫ ∞
κ

1− En

[
Φ

(
cFE − θ
σε/n

)]
dF (θ|θ ≥ κ) + (1− α)

∫ κ

−∞
En

[
Φ

(
cFE − θ
σε/n

)]
dF (θ|θ < κ),

where Gn(·) is a truncated normal random distribution chosen to fit the empirical distribution of class sizes.
Due to the simpler exposition with degenerate class sizes this assumption is maintained. Results are available
upon request.
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Figure 1: Administrator’s objective, assuming constant class size
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(c) Desired cut 95%
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Proposition 2. In general, the administrator’s preferred estimator depends on the relationship

between teacher quality and class size.

Proof. Because λ is increasing in n, to simplify exposition I parametrize the empirical Bayes

weights λ directly as a function of θ and then see how changes in this function would affect

the administrator’s utility from using the empirical Bayes estimator. In particular, I assume

there is one slope for the relationship between teacher quality and weight below the population

mean (β−) and another slope for the relationship above the population mean (β+), where either

slope can be positive, negative, or zero. I set σε = 1 for all teachers for the proof of the current

proposition, which does not affect the result; σε varies between teachers in the quantitative

results. Parametrize the empirical Bayes weight according to

λ(θ) =

δ− + β−θ if θ < 0

δ+ + β+θ if θ ≥ 0.

Suppose κ < 0 and that c∗EB < 0. The result holds if κ > 0 and c∗EB > 0, using analogous
reasoning. Dividing through by α = 1/2, the administrator’s value is∫ κ

−∞
Φ

(
c∗EB

δ− + β−θ
− θ
)
dF (θ|θ < κ)+

∫ 0

κ

Φ

(
θ − c∗EB

δ− + β−θ

)
dF (θ|θ ≥ κ)+

∫ ∞
0

Φ

(
θ − c∗EB

δ+ + β+θ

)
dF (θ|θ ≥ κ).

(4)

Differentiate with respect to β−:

∂v

∂β−
=

[∫ κ

−∞

−c∗EBθ
(δ− + β−θ)2

φ

(
c∗EB

δ− + β−θ
− θ
)
dF (θ|θ < κ)

]
+

[∫ 0

κ

c∗EBθ

(δ− + β−θ)2
φ

(
c∗EB

δ− + β−θ
− θ
)
dF (θ|θ ≥ κ)

]
,

where ∂c∗EB

∂β−
= 0 due to the Envelope Theorem. The first term is negative because −c∗EBθ < 0
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for θ < κ. Analogously, the second term is positive. Factoring out the negative sign on the first

term, each term is the conditional mean of c∗EBθ
(δ−+β−θ)2 , weighted by the density φ

(
c∗EB

δ−+β−θ
− θ
)

.

Typically, the first term dominates, because it represents the conditional mean c∗EBθ
(δ−+β−θ)2 for the

extreme part of the distribution of θ. If the first term dominates then the administrator’s value

is decreasing in β−, i.e., the stronger the increase in class size from teacher quality. Analogously,

by differentiating equation (4) with respect to β+, we can see that the administrator’s value is

increasing in β+, meaning that increasing the weight associated with teacher fixed effects for

teachers above the population mean improves the administrator’s value. Note that reducing

the slope of class size in teacher quality for below-average teachers and increasing the slope

of class size in teacher quality for above-average teachers improves the administrator’s utility

from using the empirical Bayes estimator. In particular, if β− > 0 and β+ < 0, the fixed effects

estimator will provide the administrator with higher expected utility.

Figure 2 illustrates Proposition 2 by plotting the administrator’s objective under both es-

timators (equations (1) and (2)) against candidate cutoff policies (x-axis), but now under the

assumption that class size is an increasing function of teacher quality, implying that β−, β+ > 0,

meaning that lower-quality teachers are weighted closer to the population mean than higher-

quality teachers. If the administrator desires to separate the lowest quality teachers from the

rest (Figure 2a), the re-weighting inherent in the empirical Bayes estimator can actually reverse

teacher rankings and lead to a lower expected objective for the administrator than when the

fixed effects estimator is used. The opposite is true for when the administrator wishes to sepa-

rate the top teachers from the rest (Figure 2c)—the peak of the empirical Bayes curve is now

higher than that under the fixed effects estimator. Intuitively, the empirical Bayes estimator

is now dilating the estimated teacher quality further than the fixed effects estimator, reducing

the probability the administrator makes a ranking error. When the administrator only desires

to separate the upper and lower half quality teachers (Figure 2b), fixed effects and empirical

Bayes both obtain the same maximum height, i.e., they return the same expected objective. An

increase in either δ− or δ+ corresponds to an increase in the signal-to-noise ratio. Intuitively,

an increase in the signal provided by student test scores increases λ, reducing the dependence

of the weight on teacher quality.

Figure 3 summarizes the theoretical results for the cutoff model by comparing the per-

formance of the estimators by plotting the ratio in value functions for the administrator

(vFECP (κ)/vEBCP (κ)) as a function of the desired cut percentile F (κ) (x-axis), for scenarios where

class size is constant, increasing in teacher quality, negative quadratic in teacher quality, and

positive quadratic in teacher quality (average class size is the same across scenarios). For each

κ, estimator, and class size scenario, I solve for the administrator’s optimal cutoff policy and

plug it into her objective, returning vestimator(κ). The vertical axis then plots vFECP (κ)/vEBCP (κ)

15



Figure 2: Administrator’s objective, assuming class size increasing in teacher quality
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(c) Desired cut 95%
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Figure 3: Difference between administrator’s objective under fixed effects and empirical Bayes,
by class size scenario and desired cut point
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corresponding to the desired cutoff associated with the desired cut percentile F (κ). As shown

before, when class size is constant (dotted black line), the empirical Bayes cutoff is just a

scaled version of the fixed effects cutoff and the administrator’s value is the same under fixed

effects and empirical Bayes estimators—i.e., vFECP (κ)/vEBCP (κ) = 1 for all κ. When class size is

increasing in teacher quality (short-dashed red line), the fixed effects estimator performs better

than the empirical Bayes estimator when the administrator wishes to separate teachers of low

quality from the rest (Figure 2a), while the empirical Bayes estimator performs better when

the administrator wishes to isolate high-quality teachers (Figure 2c). When class size has a

negative-quadratic relationship with teacher quality (dot-dashed blue line), similar to the case

in Proposition 2 where β− > 0 and β+ < 0, it is increasing when teacher quality is low and

decreasing when teacher quality is high; in the example considered in Figure 3, the fixed effects

estimator outperforms the empirical Bayes estimator at both the lowest and highest desired

cutoffs. Finally, when class size is a positive-quadratic function of teacher quality (long-dashed

brown line), the opposite is true. Figure 3 also demonstrates that the difference between the

performance of fixed effects and empirical Bayes estimators decreases the closer the desired cut

point is to the population mean of 0. Intuitively, there is less of a difference between both the

estimates resulting from the fixed effects and empirical Bayes estimators when the administra-

tor seeks to identify teachers as being on either side of the population mean (see Proposition

7 in Appendix B.4 for a proof that the administrator would be indifferent if her problem is

symmetric).

It is important to note that, though the exposition here compares the performance of (un-

shrunken) fixed effects and (shrunken) empirical Bayes estimators, other Bayesian estimators

could be accommodated by simply changing the prior variance σθ, which would affect the

amount by which the sample mean is shrunk towards the mean.

As noted previously, the cutoff model could be applied to a tournament-based scheme,

e.g., “pay-for-percentile” (Barlevy and Neal (2012)). Therefore, Proposition 2 shows that the

administrator’s objective in such an environment would be lower when using empirical Bayes

when the relationship between class size and teacher quality is negative quadratic, the same

if class sizes were constant, and higher when class size is positive quadratic in teacher quality.

Intuitively, tournament-based schemes rely on ranking teachers, which is harder to do when

lower- and higher-quality teachers are disproportionately shrunk towards the population mean

(i.e., class size is negative quadratic in teacher quality).
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4 Asymmetric Information Models

4.1 Hidden Type Model

This section shows how results from the cutoff-based model studied in Section 3 can be thought

of in terms of a hidden type, or adverse selection, environment.14 It starts by considering a

general version, Model HT-G, which derives the administrator’s optimal policy when she can

observe a fairly general output signal. In the cutoff model the administrator was assumed to

follow a cutoff policy. In contrast, this section shows that such a policy would emerge as the

optimal one in a general hidden type environment. This is useful because if a certain type of

policy is optimal for the general signal in Model HT-G then it would also be optimal for the

specific estimators considered in subsequent sections.

4.1.1 Model HT-G

There are T periods, indexed by t, and J classrooms, or slots, indexed by j, where slot j has

nj students. As in the cutoff model, the administrator can provide rewards (or sanctions) to

teachers, but class sizes may be determined by school principals. As in the real world, the

administrator conditions on quality signals, but not directly on other data, e.g., class sizes.15

Let I denote the set of potential teachers, or applicants, who are indexed by i. Per-student

output from slot j being filled by teacher i in period t is qit = β0 + θi(j,t), where θi is teacher i’s

quality and output for slot j is zero if it has not been assigned a teacher (i.e., i(j, t) = ∅). The

quality of applicants for teaching positions is distributed according to θi ∼ N (µ, σ2
θ), where, as

in the cutoff model, µ = 0. Any teacher i in the applicant pool would accept a teaching job if

offered a wage at least as high as w. As in Staiger and Rockoff (2010), there is an arbitrarily

large number of teachers for each slot. This is not very restrictive because a change in the

distribution of teacher quality could be modeled by suitably adjusting the distribution of θ.

Teacher quality is not observed by the administrator, who, after the end of each period only

observes a noisy signal of mean output q̂it ∼ Gq̂(q̂it|qit). As in the cutoff model, the distribution

of the output signal depends on true output q. However, I make a weaker assumption here,

that Gq̂ satisfies the Monotone Likelihood Ratio Property (MLRP), which is consistent with

many distributions of measurement error on output—in particular, normally distributed errors

(Karlin and Rubin (1956)), which are ubiquitous in value-added models. Hiring a teacher costs

χ output, where χ > 0. Let It denote the subset of I who are employed as teachers in t. Let

Hit denote the history of signals for teacher i that are observed at the beginning of period t,

i.e., Hit = {q̂iτ}τ<t, where the number of previous signals for i is |Hit|.
14This environment is partially based on one developed in Staiger and Rockoff (2010). See page 2 of their

Online Appendix.
15Appendix B.1 examines a problem where the administrator can directly use class size in her policy.
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In each period, the administrator chooses a hiring policy ψh,t(·) and a reward policy ψr,t(·) to

maximize her expected objective, where ψr,t(·) consists of a wage wi(j,t), paid at the beginning

of the period, and a retention decision, made after that period’s signals have been realized.

The administrator chooses {ψh,t(·), ψr,t(·)}t∈T to maximize expected discounted total output,

net the cost of her policy:

uHTG =
∑
t

δt−1 Et

[(∑
j

qi(j,t),t − wi(j,t) − 1{|Hi(j,t),t| = 0}χ

)]
, (5)

where δ is the discount rate, Et [·] denotes the expectation using information available at period

t, and |Hi(j,t),t| = 0 means i is a new hire in period t.

Theoretical Results For simplicity, assume β0 = 0 and set w = 0.16 Then, ψh,t(·) will be

a list of |Jt| random numbers for indices i ∈ I/It, where Jt denotes the set of empty slots at

the beginning of period t (i.e., Jt = J in the first period and then the slots with just-dismissed

teachers thereafter). Now consider the administrator’s choice of how to reward a given portfolio

of teachers, ψr(·). In general, ψr(·) could depend on all signals (i.e., from the most recent and

also earlier periods) of all currently employed teachers, and may have a complicated functional

form. Proposition 3 greatly simplifies the solution.

Proposition 3. The administrator’s optimal policy ψr,t(·), for i ∈ It, will have the reservation

value property consisting a stopping region and, if Gq̂ satisfies the MLRP, a continuation region

above.

Proof. First, note that the additive separability of (5) implies we can split it into J separate

problems. Lippman and McCall (1976) proves that the optimal policy for each problem has

a reservation value property (see also Rothschild (1974)). Examination of (5) shows that the

administrator’s objective is increasing in output qit, and therefore also increasing in expected

output. If the MLRP holds, this implies that ∂ E[qit|q̂it]
∂q̂it

> 0, i.e., the posterior mean of a teacher’s

quality is increasing in signal q̂it. Then, there will then be a region in which the administrator

will retain the teacher (i.e., a continuation region) and below which she will pay χ to replace

her (i.e., a stopping region). Finally, within the continuation region note that the administrator

would not gain from paying additional wages per each slot, meaning that ψr,t will feature a wage

payment of wψr,t = w = 0 and the retention decision will have a reservation value property. Also

note that variation in nj does not affect the optimality of a reservation value policy, provided

Gq̂ satisfies the MLRP.
16This assumption is consistent with the administrator leaving no slots empty. An alternative would be to

assume β0 is such that the administrator would find it optimal to fill an empty slot j with a random hire from
the pool of applicants, i.e., expected output is β0 + E [θ] = β0 + µ > χ+w. This would encumber the notation
without changing the result.
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The optimality of a reservation-value policy is typical of optimal stopping problems, of

which the current model is an example, and suggests a link with the cutoff model from Section

3. However, the administrator’s objective (5) is quite general, which complicates obtaining

theoretical results about how the administrator would prefer to measure teacher quality and

relating results from the hidden type model to those from the cutoff-based model. Therefore, in

Section 4.1.2 I study Model HT-0, a version of Model HT-G with two periods and constant class

sizes. Model HT-1, in Appendix C.1, shows how a multi-period model, which allows teachers

to become more productive as they gain experience, can be mapped into a series comprised of

the second period of different HT-0 models. Model HT-2, in Appendix C.2, extends HT-0 to

examine the case of variable class sizes. As with Model HT-0, a multi-period version of Model

HT-2 could be related back to the second period of Model HT-2.

4.1.2 Model HT-0

There are two periods (T = 2) and teacher quality is fixed over time. Each slot j holds n > 0

students, which corresponds to the constant class size scenario for the cutoff-based model.

Output per slot is noisily measured according to q̂jit = qjit + εjit, where εjit ∼ N (0, σ2
ε/n) and

E [εjit|qjit] = E [εjit] = 0. Let ρ = σ2
θ/(σ

2
θ + σ2

ε

n
) be the signal reliability, i.e., the amount of

information about teacher quality in the output measure.

Theoretical Results As with Model HT-G, in the first period the administrator hires at

random from the pool of potential teachers. Therefore, I focus on the second period and

suppress the period subscript t and discount rate δ. In the second period she can choose

to either retain or replace each teacher i ∈ I1 based on information from the first period.

Proposition 3 shows the optimal solution has a reservation value property. Our goal then is to

characterize the marginal signal q in the distribution of first-period signals q̂.

Per slot, the administrator’s second-period objective from reservation value policy q on

signal q̂ is

1{q̂ < q} (E [q|new hire]−χ)︸ ︷︷ ︸
dismiss teacher; fill slot immediately

+ 1{q̂ ≥ q}E
[
q|q̂ ≥ q

]︸ ︷︷ ︸
retain teacher

= 1{q̂ < q}(E [θ|new hire]︸ ︷︷ ︸
=µ=0

−χ)+1{q̂ ≥ q}E
[
θ|q̂ ≥ q

]
.

(6)

Taking expectations over the signal q̂, we can write the administrator’s value of using estimator

q̂ with replacement cost χ as

vq̂HT0(χ) = max
q

Φ

(
q

σq̂

)
(−χ) +

(
1− Φ

(
q

σq̂

))
E
[
θ|q̂ ≥ q

]
. (7)

By setting q̂ = θ̂FE, the sample mean of each teacher’s observed signals during the first
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period, we can then use (7) to write the administrator’s value from using the fixed effects

estimator:

vFEHT0(χ) = max
qFE

Φ

(
qFE

σθ̂FE

)
(−χ) +

(
1− Φ

(
qFE

σθ̂FE

))
σ2
θ

σθ̂FE

φ(−qFE/σθ̂FE)

Φ(−qFE/σθ̂FE)
, (8)

using the result for a truncated bivariate normal distribution, E
[
θ|θ̂FE ≥ qFE

]
=

σ2
θ

σ
θ̂FE

φ(−qFE/σ
θ̂FE

)

Φ(−qFE/σ
θ̂FE

)

(see Greene (2003)).

We could solve for the reservation signal q∗FE by differentiating (8) with respect to qFE

and setting the resulting first-order condition to zero. However, we can also characterize the

marginal signal q∗FE by noting the administrator would be indifferent between replacing or

retaining a teacher with that signal. The administrator’s expected utility from replacing slot

j’s teacher is E [θ]−χ = −χ and her expected utility from retaining j’s teacher is E
[
θ|θ̂FE

]
,

which is equal to (1 − ρ)µ + ρθ̂FE = ρθ̂FE by Bayes rule. The administrator will then replace

teacher i if and only if −χ
ρ
≡ q∗FE > θ̂FEi(j,1). This expression has a clear intuition. First, suppose

that χ = 0. Then the marginal teacher is of average quality of the existing stock of teachers;

since hiring in the first period is random from the pool of applicants this means any teacher

with quality expected to be below the population average (µ) would be replaced. Increasing χ

would lower this threshold.

4.1.3 Relation Between Preferred Estimator in Cutoff and Hidden Type Models

The cutoff-based model in Section 3 has the advantage of being simple and embedding the

administrator’s objective in an intuitive, policy-relevant measure: the weighted sum of classi-

fication errors. This section shows how results from the cutoff-based model may also obtain

in the hidden type environment. There are two main cases, corresponding to the class size

scenarios covered by the propositions in Section 3.

Constant n When class sizes are constant the administrator is indifferent between using

either estimator. This is formalized in Proposition 4.

Proposition 4. The administrator receives the same value from both estimators for any re-

placement cost χ when class size is constant.

Proof. To obtain the administrator’s value from using the empirical Bayes estimator q̂ = θ̂EB ≡
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λHT0θ̂
FE, where λHT0 ≡ ρ, adapt (7) for the distribution of λHT0θ̂:

vEBHT0(χ) = max
qEB

Φ

(
qEB

σθ̂EB

)
(−χ) +

(
1− Φ

(
qEB

σθ̂EB

))
ρ
σ2
θ

σθ̂EB

φ(−qEB/σθ̂EB)

Φ(−qEB/σθ̂EB)

= max
qEB

Φ

(
qEB

ρσθ̂FE

)
(−χ) +

(
1− Φ

(
qEB

ρσθ̂FE

))
ρ

σ2
θ

ρσθ̂FE

φ(−qEB/(ρσθ̂FE))

Φ(−qEB/(ρσθ̂FE))
(9)

where the second line follows because σθ̂EB = ρσθ̂FE . Then, if q∗FE solves (8) then q∗EB = ρq∗FE

must solve (9) and, notably, return the same value for the administrator, i.e., vFEHT0(χ) =

vEBHT0(χ).

Therefore, as with Proposition 1 for the cutoff model, in Model HT-0 the administrator

would obtain the same value from using either estimator when class sizes are the same for all

teachers. Note also that the optimal empirical Bayes reservation signal q∗EB is shrunk toward

the population mean by exactly the same amount as was the optimal empirical Bayes cutoff

policy, suggesting an equivalence in optimal policies in the cutoff-based model and HT-0. We

can show this by setting κ = −χ and finding a Type I error weight αequiv such that c∗FE(κ =

−χ, αequiv) = q∗FE(χ). Then it will also be the case that c∗EB(κ = −χ, αequiv) = q∗EB(χ).

Model HT-1, in Appendix C.1, shows how the results for Model HT-0—in particular, its

relation to the cutoff-based model—can be extended to allow for multiple periods and changes

in teacher output over time, say, due to the accumulation of teaching experience. Specifically,

we can map Model HT-1 to a version of Model HT-0. This is formalized in Proposition 5.

Proposition 5. Model HT-1 can be mapped to Model HT-0.

Proof. See Appendix C.1.

Thus, the administrator would be indifferent in her choice of estimator for HT-0 or HT-1,

i.e., when class size is constant.

Variable n Ideally, we would know that if an estimator would be preferred for every param-

eterization of the cutoff model, given a class size scenario, it would also be preferred for any

hidden type environment for that class size scenario. Propositions 1, 4, and 5 show this is the

case with constant class sizes. Model HT-2 extends Model HT-0 to allow for nonconstant class

sizes (see Appendix C.2 for details). As was the case for the cutoff model, when class sizes

are variable the preferred estimator depends on other primitives. Proposition 3 implies that

the optimal policy in HT-2 would still have the reservation value property, so as long as the

MLRP is maintained. This, combined with the fact that the administrator would prefer fixed

effects to empirical Bayes for almost every parameterization of the cutoff model when n(θ) is
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negative quadratic and would prefer the opposite when n(θ) is positive quadratic (Proposition

2), suggests the administrator would also prefer fixed effects in model HT-2 under the negative-

quadratic scenario and would prefer empirical Bayes under the positive-quadratic scenario; i.e.,

the same ranking over estimators by class size scenario would also obtain for HT-2.

I confirmed this intuition by computing the preferred estimator for a range of parameteriza-

tions of Model HT-2, i.e., replacement costs χ. For brevity, the explicit model and results are

presented in Appendix C.2. The results are strikingly similar between the cutoff and hidden

type models: (i) which estimator the administrator would prefer depends on n(θ) (same as in

the cutoff model), (ii) the preferred estimator does not depend on the specific parameterization

of HT-2, other than the shape of n(θ) (same as in the cutoff model), and (iii) given n(θ), the

administrator would prefer the same estimator in the cutoff model as she would in HT-2. That

is, I find that the preferred estimator in the cutoff model, which depends on the class size

scenario n(θ), would also be preferred in model HT-2, regardless of the values of other model

parameters. Naturally, we might model an increase in T by decreasing χ (from the two-period

model), as replacing teachers would become relatively less costly when compared to the future

gains in output. Then, the fact that the administrator would have the same preferred estimator

for HT-2 suggests that she would also prefer the same estimator for multi-period versions of

HT-2. It is important to note that, while Model HT-2 has two periods, a similar transformation

to that done in Model HT-1 could be used to model multiple periods and potential changes in

teacher output due to experience. If an estimator was preferred in each period then it would also

be preferred when calculating the discounted value of the administrator’s dynamic objective.

There is an intuition for why the administrator would prefer the same estimator in the

cutoff and hidden type models. The administrator will have a higher value when there are

fewer Type I errors, i.e., teachers with high true quality appearing below the reservation signal,

because the cost of replacing them will be lower. At the same time, fixing the share of teachers

not retained, the administrator will have a higher objective coming from fewer Type II errors,

i.e., teachers with low true quality appearing above the reservation signal, because output will

be higher. A negative-quadratic relationship between teacher quality and class size would,

therefore, lead the administrator to prefer to use fixed effects over empirical Bayes in both the

cutoff model and Model HT-2. Appendix E shows that an administrator with a much more

general objective would also prefer fixed effects over empirical Bayes when n(θ) was negative

quadratic and empirical Bayes when n(θ) was positive quadratic.

4.2 Hidden Action Model

As discussed previously, many teacher incentive schemes—although cutoff-based—are predi-

cated on inducing higher effort levels from teachers, i.e., moral hazard/hidden actions. This
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section therefore presents the workhorse CARA-Normal model of moral hazard, as developed

in Bolton and Dewatripont (2005), to illustrate the potential role choice of estimator may play

in affecting output in a hidden action setting. This model assumes the contract is linear, which

need not be optimal. However, the solution of this model is the same as that in Hölmstrom and

Milgrom (1987), which studies a static one-period model split into a number of sub-periods,

where in each sub-period an agent (i.e., teacher) controls chooses the probability of success for a

binomial random variable. In particular, Hölmstrom and Milgrom (1987) show that the optimal

contract is linear, featuring an end-of-period payment that is a linear function of aggregated

signals. The interpretation for an education context would be that, in each infinitesimal unit

of time, the teacher could exert more or less effort to increase the probability a student obtains

a sub-period-specific “bit” of human capital, which is measured by an end-of-year exam.

Model Specification There is one period. The administrator has utility q − w, where q is

output and w is the wage paid to the teacher. The teacher has constant absolute risk aversion

(CARA) utility −e−ξ(w−ψ(a)), where ξ is their coefficient of absolute risk-aversion and the cost

of exerting effort a is ψ(a) = γa2/2. The teacher requires an expected utility of u to participate.

Output from teacher i depends on teacher quality according to qi = θi, where teacher quality

θi = ai+νi. The term ai is the teacher’s endogenous effort level and the error νi ∼ N (0, σ2
ν) is a

productivity shock common to students taught by the teacher; ν could correspond to a teacher-

classroom-specific match effect. Assume ν can be observed by the school principal, meaning

there may be a relationship between teacher quality and class size, as in the other models. The

teacher chooses a, without knowing the realization of ν. Average output for teacher i is noisily

measured according to an average test score q̂i = qi + εi = θi + εi = ai + νi + εi. Note that the

risk-neutrality of the administrator’s objective implies that she can solve a separate problem

for each teacher.

As Hölmstrom and Milgrom (1987) show, it is optimal for the administrator to pay the

teacher based on the noisy output measure using a linear contract w = β0 + β1q̂, where β1 is

the share of measured output paid to the teacher. Note that, from the teacher’s perspective,

uncertainty comes from the composite error νi + εi, which we can collect as ηi. We can then

write the wage as w(a, η), where the administrator can only observe a + η. Ex-ante, teachers

face the same uncertainty about ηi.
17

Substituting for output and output measure and using the result that the optimal contract

17This section adopts the simplifying assumption that teachers treat ηi as being normally distributed when
solving for their optimal action. Technically, they should integrate over the distribution of distributions of εi if
n(θ) is not constant. Simulation results confirm that ηi is approximately normally distributed for reasonable
parameter values; a Kolmogorov-Smirnov test of normality of ηi has a p-value of 0.131. Further note that all
teachers would still have the same equilibrium action in the latter case, meaning this assumption would not
affect the qualitative predictions from this model. This assumption is, therefore, consistent with this model’s
focus on a hidden action, in contrast to the hidden type specification.
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will be linear in observed output, the administrator’s problem is

max
β0,β1

Eν,η [a+ ν − w(a, η)] (10)

s.t. w(a, η) = β0 + β1(a+ η)

Eη

[
−e−ξ(w(a,η)−ψ(a))

]
≥ u (IR)

a ∈ arg max Eη

[
−e−ξ(w(a,η)−ψ(a))

]
, (IC)

where the individual rationality constraint (IR) ensures participation and the incentive com-

patibility constraint (IC) characterizes the teacher’s choice of action.

The teacher problem yields a unique optimal action a∗ = β1/γ by differentiating (IC) with

respect to action and the optimal linear contract features β∗1 = 1/(1 + ξγσ2
η) (see pp. 137-

139 of Bolton and Dewatripont (2005) for details).18 Therefore, expected output is E [q∗] =

Eν [a∗ + ν] = a∗ = 1/
(
γ(1 + ξγσ2

η)
)
.19 Intuitively, as the signal quality worsens (i.e., σ2

η in-

creases) the contract becomes lower powered (i.e., β∗1 decreases), resulting in lower action a∗

and expected output E [q∗].

As with the hidden type model, it is important to understand how choice of estimator would

affect output in this environment. The fixed effects estimator would simply be the unadulterated

output signal, i.e., q̂FEi = q̂i. Proposition 6 considers the case of constant class sizes.

Proposition 6. The administrator receives the same value from both estimators in Model HA

when class size is constant.

Proof. The empirical Bayes estimator would be q̂FEi shrunk by a constant factor λ, i.e., q̂EBi =

λq̂i. If (β∗FE0 , β∗FE1 ) solves (10) when using output measure q̂FEi then it must be that (β∗FE0 , β∗FE1 /λ)

solves (10) when using output measure λq̂i. Thus, the administrator obtains the same value

from using either estimator.

Intuitively, empirical Bayes contains the same ratio of signal to noise as fixed effects when

class sizes are constant, meaning the contract slope would simply adjust to take into account

its shrunken distribution. An implication of Proposition 6 is that we can scale the empirical

Bayes estimator in Model HA to have the same variance as the fixed effects estimator. That is,

we can compare estimator performance by scaling them to have the same variance and consider

only the information they contain.

18Note that, according to this model, output will necessarily be zero when teachers are salaried (i.e., β1 = 0),
which is the case in many real-world applications in which, for various reasons, output-based pay has not been
implemented. This obviously counterfactual implication can be resolved by assuming there are two types of
effort: the action a which is only imperfectly measured and another action that is perfectly observed, and
therefore, contractible.

19Note that, although in this moral hazard setting there is a degenerate distribution of teacher effort in
equilibrium, measured teacher quality (i.e., average test score q̂) is normally distributed.
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Model HA highlights the bias-variance “tradeoff” in a sense: if the variance of the fixed

effects estimator increased, the resulting optimal contract would partially protect a risk-averse

teacher by making incentives weaker in the output measure (i.e., test scores), or reducing the

slope of the linear contract β1. The more risk-averse the teacher, the more protected they

would be (i.e., the shallower the slope β1). Crucially, the optimal contract would not respond

to an increase in noise by “changing the data” (e.g., switching to a lower-variance estimator),

but rather, would in equilibrium adjust the way in which the data is used in remuneration

(i.e., decrease β1). Indeed, Proposition 6 shows we can re-scale the empirical Bayes estimator

when class size is constant, suggesting the use of a biased, yet lower-variance estimator could

be modeled by increasing the effective error variance σ2
η. What matters is the amount of

information about the action a in the output signal (Hölmstrom (1979)).

Therefore, as with the cutoff and hidden type models, the theoretical effect of switching

from empirical Bayes to fixed effects is unambiguous in the hidden action model, given the

relationship between class size and teacher quality: output would be the same with constant

class sizes, lower under empirical Bayes with a negative-quadratic n(θ), and higher under em-

pirical Bayes when n(θ) is positive quadratic. As noted previously, Appendix E shows that the

administrator with a much more general objective would also prefer fixed effects over empirical

Bayes when n(θ) was negative quadratic and empirical Bayes when n(θ) was positive quadratic.

5 Quantitative Results

In this section, I quantify the estimators’ performance, using data from the Los Angeles Unified

School District, the second-largest school district in the US.20 In Section 5.1, I calibrate parame-

ters needed to compare estimator performance in the cutoff model, which is most parsimonious.

In Section 5.2 I assume the administrator wishes to categorize all teachers in the district with

respect to an array of desired cutoffs in the district-wide distribution of teacher quality. Section

5.3 presents a back-of-the-envelope calculation of how choice of estimator would affect output

in the hidden type model. Section 5.4 presents a calibration of the additional parameters of

the hidden action model and computes how choice of estimator would affect output in that

environment. Although these incentive schemes are not currently in place in Los Angeles, these

exercises can serve as a useful benchmark for how the estimators might perform when used in

similar incentive schemes. Indeed, the fact that a high-stakes scheme was not in place obviates

addressing the potential strategic re-assignment of students to teachers.

20Imberman and Lovenheim (2016) use these data in their study of the market’s valuation of value-added.
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5.1 Calibration

The cutoff model shows that the difference in the administrator’s value depends on the variances

of teacher quality σ2
θ and the test score measurement error σ2

ε and the relationship between

teacher quality and class size, n(θ), implying that it is necessary to obtain values for these

objects to compare the performance of the estimators.

Variances Schochet and Chiang (2012) compile estimates of the variances from a large num-

ber of studies in their study of error rates in value-added models, providing a good source for

typical values for σ2
θ and σ2

ε (see Appendix D.1). The chosen parameter values of σ2
θ = 0.046

and σ2
ε = 0.953 indicate that the variance of the measurement error is about 20 times the size

of the variance of teacher quality, resulting in an average student-achievement signal-to-noise

ratio of 0.512; that is, student achievement for the average teacher in Los Angeles is about equal

parts signal and noise. This value is similar to the one used in Staiger and Rockoff (2010). As

has been noted by many other researchers studying a wide variety of contexts (e.g., McCaffrey

et al. (2009), Staiger and Rockoff (2010)), it is difficult to correctly classify teachers.

Relationship Between Class Size and Teacher Quality I recover the relationship be-

tween class size and teacher quality using value-added estimates provided by the Los Angeles

Times. In 2011, the Los Angeles Times published the results of a RAND Corporation study esti-

mating value-added for over 30,000 teachers serving almost 700,000 students (Buddin (2011)).21

The dataset contains estimated value-added, estimating using fixed-effects models, for 3rd to

5th grade teachers in both Reading and Math and class sizes which condition on several vari-

ables, including past performance of students, class size, student characteristics such as race,

gender, English proficiency and parents education, and classroom composition (past perfor-

mance of classmates and their student characteristics as well).22 In addition to describing the

relationship between teacher quality and class size, which is critical to compare the performance

of the estimators, the distributions of value-added estimates from Buddin (2011) are similar to

those in Schochet and Chiang (2012).23 The average class size is 22.5 students, with a standard

deviation of 5 students.

Figure 4 plots non-parametric regressions (solid blue lines) of class size on estimated teacher

value-added for Reading (4a) and Math (4b). Teachers at either end of the distribution of

21http://projects.latimes.com/value-added/
22The results do not appreciably change when using value-added estimates from specifications that control

for subsets of these characteristics.
23The distributions of value-added in the data have means of 6.4E-11 and 1.3E-10 and variances of 0.038

and 0.083 for Reading and Math value-added, respectively. Because the quantitative results combine data from
Buddin (2011) and parameter values calibrated from other datasets, the fact that these parameters are similar
across the two types of sources lends validity to the quantitative results.
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Figure 4: The relationship between class size and teacher quality
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Reading value-added have the smallest class sizes and those in the middle of the distribution

have the largest class sizes. Table 1 shows the results of regressions of teacher class size on

estimated teacher quality and estimated teacher quality squared. The first two columns are

for Reading and the second two are for Math. The dotted black lines on Figure 4 shows the

regression line fit for models in columns (1) and (3). Columns (2) and (4) are the same as

regressions in (1) and (3), respectively, but exclude teachers whose estimated quality is more

than two standard deviations from the population mean, showing that the estimates from the

full sample are not driven by outliers. These results indicate that class size is indeed increasing

in value-added in the lowest part of the distribution and decreasing in value-added in the

highest part of the distribution. The relationship is not as clear for math value-added, but the

regression shows that class size first increases and then decreases for reading value-added, with

a negative quadratic term for math value-added. Strikingly, the observed relationship between

teacher quality and class size is the worst-case scenario for the empirical Bayes estimator, as

outlined by Proposition 2.

To most closely match the model, n(θ) would ideally be known and fed into the administra-

tor’s problem. In practice, only estimates of n(θ), denoted by n̂(θ̂), are directly available from

any dataset; the latter are what was presented in Table 1. The estimated relationship n̂(θ̂) also

features a mechanical negative-quadratic relationship, caused by heteroskedastic errors possible

even under identically distributed class sizes. To address these issues, I calibrate n(θ) using

an indirect inference approach described in Appendix D.2. Table 2 presents the calibrated
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Table 1: Regressions of class size on teacher quality

Dependent variable: Class size

(1) (2) (3) (4)

Reading 0.618∗∗∗ 0.650∗∗∗

quality (0.139) (0.167)

Sq. Reading −6.801∗∗∗ −11.180∗∗∗

quality (0.368) (0.834)

Math 0.060 −0.008
quality (0.092) (0.109)

Sq. Math −1.014∗∗∗ −1.527∗∗∗

quality (0.212) (0.370)

Constant 22.609∗∗∗ 22.736∗∗∗ 22.434∗∗∗ 22.467∗∗∗

(0.030) (0.035) (0.032) (0.035)

Observations 36,125 34,407 36,125 34,372
R2 0.009 0.006 0.001 0.0005
F Statistic 170.442∗∗∗ 99.271∗∗∗ 11.442∗∗∗ 8.535∗∗∗

(df = 2; 36122) (df = 2; 34404) (df = 2; 36122) (df = 2; 34369)

Note: ∗∗∗p<0.01

relationships between teacher quality and class size, n(θ), which are used for the quantitative

results. The first column presents the intercept, the second the linear term, and the third the

term on the quadratic variable. The negative quadratic term in the calibrated relationship

between class size and teacher quality for Reading is stronger than that presented in Table

1, at -13.929, compared to -6.801 in column (1) of Table 1. On the other hand, there is a

negligible relationship between class size and teacher quality in Math. That is, the mechanical

relationship generated by heteroskedasticity can basically explain the fairly weak pattern in

Table 1.

Table 2: Calibrated n(θ), by subject

Subject Constant Subject quality Sq. subject quality Res. Std. Error
Reading 22.702 1.031 -13.929 5.124
Math 22.263 -0.225 -0.039 4.388

Note: Calibration details are in Appendix D.2.
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5.2 Quantitative Findings: Cutoff Model

This section computes the administrator’s value from using each estimator for a wide range of

desired cutoffs, using the calibrated values of error variances and the relationship between class

size and teacher quality obtained in Section 5.1. For each desired cutoff κ and subject (e.g.,

identifying teachers with quality at or above the 99th percentile for Reading value added), I solve

for the administrator’s optimal cutoff policy for fixed-effects and empirical Bayes estimators,

assuming a symmetric loss function.24 This returns an expected objective for each estimator,

for each desired cutoff (and subject), i.e., vFECP (κ) and vEBCP (κ) for the fixed-effects and empirical

Bayes estimators, respectively (for Reading).

Figure 5a plots the ratio of the administrator’s maximized expected objective under the fixed

effects and empirical Bayes estimators (vFECP (κ)/vEBCP (κ)) for Reading (solid black line) and Math

(dotted red line), for desired cutoffs ranging from the lowest to the highest teacher qualities. The

right panel (5b) plots how many more expected mistakes the empirical Bayes estimator would

make than the fixed effects estimator, assuming the Los Angeles school district employed 30,000

teachers.25 We can see that the quadratic nature of the association between teacher quality and

class size affects the relative performance of the fixed effects and empirical Bayes estimators in

the way demonstrated by Proposition 2. The stronger negative-quadratic relationship between

teacher quality and class size in the Reading test causes the larger divergence between the value

of using fixed effects rather than empirical Bayes estimators. The administrator’s value is higher

almost everywhere when she uses the fixed effects estimator, and the relative performance of the

empirical Bayes estimator is the worst at the extremes of the distribution of teacher quality. For

example, using fixed effects would increase the administrator’s value by 2%, corresponding to the

empirical Bayes estimator making almost 800 more mistakes than fixed effects when the desired

cutoff is at the 1st percentile, and 600 more when the desired cutoff is at the 99th percentile. Put

another way, even when the administrator is allowed to re-optimize and choose an estimator-

specific cutoff policy, using empirical Bayes would result in 9.5% more classification mistakes

when the desired cutoff was at the 1st percentile of teacher quality and 7.3% more mistakes

when the desired cutoff was the 99th percentile of teacher quality.26 The administrator’s values

from using the fixed effects and empirical Bayes estimators become comparable as the desired

cutoff approaches the center of the distribution of teacher quality. In sum, the performance of

the fixed effects and empirical Bayes estimators most greatly diverges precisely where policies

that sanction very low-performing teachers or reward very high-performing teachers would bite

24Results are qualitatively similar under asymmetric preferences, i.e., where α 6= 1/2; see Appendix B.3.
25The Los Angeles school district is the second-largest in the US. Though the value-added data I am using

cover 30,000 teachers, more than 45,000 worked in the district in 2007 (http://en.wikipedia.org/wiki/Los_
Angeles_Unified_School_District).

26The fraction of classification mistakes when using fixed effects when the desired cutoff κ is the 1st and 99th
percentile would be 27.8% and 27.1%, respectively.
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the most, and the fixed effects estimator returns higher expected maximized utility (i.e., in

expectation would make fewer mistakes) under almost every desired cutoff.

Figure 5: Administrator’s value and difference in mistakes, using calibrated n(θ)
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(b) Expected number of mistakes (EB - FE)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00

Desired cut percentile F (κ)

D
iff

er
en

ce
in

ex
p

ec
te

d
m

is
ta

ke
s

(E
B

-
F

E
)

Reading
Math

Note: Number of decisions is 30,000.

The divergence in estimator performance is largest when the desired cutoff is in the tails

of true teacher quality. However, all teachers would be affected by the administrator’s choice

of estimator. Figure 6a plots the probability that a teacher with true quality θ, measured

along the x-axis, has an estimated quality θ̂ above the optimal cutoff policy corresponding

to a desired cutoff κ of the first percentile of true teacher quality (dotted black line), e.g.,

Pr{θ̂FE ≥ c∗FE} for the fixed effects estimator. This desired cutoff could correspond to firing

teachers with quality at or below the first percentile. These probabilities are plotted for the fixed

effects (solid red line) and empirical Bayes (dashed blue line) estimators, using the relationship

between class size and teacher quality for Reading. The shaded area corresponds to teachers

with true quality below the desired cutoff. Having an estimated quality above c∗ for teachers

in this region would mean the administrator made a Type II error, e.g., they were incorrectly

retained, the probability of which corresponds to the distance from the estimator-specific curve

to 1 in Figure 6a. For teachers outside the shaded region, having an estimated quality below

c∗ would correspond to a Type I error, e.g., they were incorrectly dismissed, the probability of

which corresponds to the height of the estimator-specific curve.

For each estimator, the probability of having estimated quality above the optimal cutoff

policy increases as a teacher’s true quality increases (i.e., we move to the right). However,

31



the fixed effects estimator has a higher probability of measuring above-threshold teachers as

above c∗FE than does empirical Bayes for its corresponding optimal cutoff policy and a lower

probability of measuring below-threshold teachers as above c∗FE. That is, fixed effects would

have lower probabilities of both Type I and Type II errors. This is more clear in Figure

6b, which plots the ratio of probability of the estimate being above the respective cutoff for

fixed effects over empirical Bayes, i.e., Pr{θ̂FE ≥ c∗FE}/Pr{θ̂EB ≥ c∗EB}. For example, fixed

effects would have a 40% lower chance of measuring a teacher with true quality more than

four standard deviations below the mean (θ ≈ −0.8)—well below the desired cutoff quality of

the first percentile—as above the optimal cutoff policy and a 10% higher chance of finding a

teacher with true quality about 1.5 sd below the mean (θ ≈ −0.3)—above the desired cutoff

quality—as above the cutoff policy. More generally, teachers over a large range of quality would

be differentially affected by the estimator—that is, the impacts are not limited only to those in

the extreme tails of the quality distribution.

Figure 6: Probability of being measured above optimal cutoff policy, given F−1(κ) = 0.01

(a) Probability of being above c∗
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5.3 Quantitative Findings: Hidden Type Model

Although the cutoff-based model has an intuitive outcome space—the probability of correct

classification—it would also be of interest to gauge how choice of estimator would affect output.

We can also use the calibrated relationship between teacher quality and class size to form a
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rough idea of how moving to an output-based retention policy would affect outcomes if we had

information about the replacement cost χ.

As a rough approximation I use the two-period Model HT-2 to get an idea for how much

the choice of estimator affects output. I computed output under Model HT-2 (i.e., HT-0

with nonconstant n(θ)) under fixed effects and empirical Bayes estimators using the calibrated

Reading class size relationship from Table 2 and a calibrated replacement cost value of χ =

0.25σθ = 0.054. I chose this value for χ because Wiswall (2013) reports that teachers with 30

years of experience have value-added that is one standard deviation higher than new teachers

and 0.75 standard deviations higher than teachers with five years of experience, implying a 0.25

standard deviation difference acquired in the first five years of experience. This value is similar

to that used in Staiger and Rockoff (2010), who assume a first-year teacher has an average value

added 0.07 sd lower than teachers with two or more years of experience. Note that, by setting

χ in terms of standard deviations of teacher quality, the outcome is then naturally viewed in

terms of teacher quality.

Expected output when using empirical Bayes and the optimal reservation signal policy

q∗EB(χ, n(θ)), is 0.058. That is, second-period teacher quality from using empirical Bayes

would be 5.8% of a standard deviation higher than it would be in a world where all teachers

were retained. Expected teacher quality, and hence, output, from using fixed effects would be

0.11% higher. If instead, we used the value χ = 0.07 from Staiger and Rockoff (2010), expected

teacher quality in the second period would be 0.22% higher under fixed effects than when using

empirical Bayes. Either way, even though they are only based on a rough example, these results

suggest there is potentially a considerable benefit from using fixed effects instead of empirical

Bayes to measure teacher quality.

5.4 Quantitative Illustration: Hidden Action Model

As with the hidden type environment, it would be useful to get even a rough sense of how

measurement issues affect output in the real world in a hidden action environment, by using a

tractable model and realistic values for model parameters, including the relationship between

class size and teacher quality. The simplicity of the hidden action model affords an ancillary

contribution. If the model can be calibrated then, not only can I compute how the choice

of estimator would affect output, but I can also provide a rough sense of what the optimal

contract should look like in this environment, using the calibrated parameter values. This,

then, comprises an additional contribution of the current paper.

Therefore, this section takes two approaches to roughly examine how introducing output-

based wages and choice of estimator, might affect educational production. First, it uses esti-

mates from Muralidharan and Sundararaman (2011) to calibrate parameters from the hidden
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action model. Second it computes the effect on output from using either estimator of teacher

quality for a wide range of model primitives. The approaches use the relationship between class

size and teacher quality for Reading, from Section 5.1.27 and yield similar findings regarding

the increase in output coming from the administrator’s use of fixed effects, instead of empirical

Bayes. Note that, in each approach, actions and output are measured relative to their baseline

level, i.e., that provided by teachers in the absence of output-based incentives.

In the hidden action model, output is a function of the action, which itself depends on the

variance of noise η, CARA parameter ξ, and cost parameter γ. I first characterize how much

information the administrator can extract about teacher quality (here, teacher effort choices)

using either estimator. I do this by calibrating the implied variance of the composite error η for

the fixed effects and empirical Bayes estimators (see Appendix D.3 for details).28 As was the

case with a cutoff-based rule, the empirical Bayes estimator makes it more difficult to separate

high- and low-performing teachers when the class size function is negative quadratic. This can

be modeled as increasing the measurement error variance on teacher action, σ2
η, by 3.2%.29 The

next section shows how to obtain a baseline value of σ2
η, that is, the value of σ2

η under fixed

effects, which is required to solve the model.

Calibration Based on Muralidharan and Sundararaman (2011) With the above as-

sessment of how using empirical Bayes would affect measurement of output in the hidden action

model, we can obtain some rough guidance from research in this area by calibrating the hidden

action model using a “sophisticated” back-of-the-envelope method and data from an experi-

mental teacher incentive pay scheme. I use the term “sophisticated” because I calibrate using

equilibrium implications of the hidden action model. The objective is to use data from the

study and other information as needed, to calibrate the model parameters (γ, ξ, σ2
η). With

these in hand, then it is possible to characterize the optimal contract and the effect of using the

empirical Bayes estimator on equilibrium output under this optimal contract. As I show below,

values for ξ and σ2
η can be obtained either directly from external sources or by transforming

external data. However, to calibrate the effort cost parameter γ we need to know how much

teachers respond to incentive pay.

Muralidharan and Sundararaman (2011) estimate the effect of an output-based incentive

scheme for teachers in the Indian state of Andhra Pradesh, in which teachers were paid according

to a linear schedule, 500 rupees per percent increase in mean test scores, for test score gains

27The negligible relationship between teacher quality and class size for Math (see Table 2), when combined
with Proposition 6, obviates having to solve the model to compare estimator performance.

28This exercise abstracts from the error introduced by class size uncertainty. As is shown below, this would
understate the gain in output from using fixed effects instead of empirical Bayes.

29Of course, it would be in principle possible to also directly condition on class size. However, as has been
discussed previously, this would introduce a direct incentive to manipulate class size to affect the administrator’s
posterior beliefs about teacher quality.
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above 5%. The study covered two years. Of course, it would be ideal to use a study of

an incentive pay program in Los Angeles, or even the US. Unfortunately, to my knowledge,

none exist which provide a comparably close map to the environment developed in Model HA.

Moreover, as with any mapping between theory and data, assumptions have to be made. For

example, teachers are assumed to be paid a share of the amount of income generated (“output”)

by their action. However, we can still learn something from this exercise. First, note that CARA

utility implies that risk aversion is independent of wealth, meaning the large differences in wealth

between teachers in India and the US may not affect teacher actions/output (wealth differences

would only affect the intercept in the contract β0, via the outside option). Therefore, though I

calibrate remaining parameters as if the setting were the teachers in Andhra Pradesh and the

relationship between class size and teacher quality were the calibrated one based on LAUSD

Reading data, there is reason to believe the results may also be informative about output in

this paper’s context of the US.30 Second, the linear scheme employed in Muralidharan and

Sundararaman (2011) allows me to cleanly map their findings to the hidden action model,

as does their experimental research design, which obviates having to account for differences

in output between treatment and control groups being based on selection on hidden types.

Although the context is India, I convert currency into US dollars for convenience.

There were on average 3.14 teachers and 37.5 pupils per teacher in the incentive schools.

Students’ annual wages increased by an average of 2,156 rupees per student31 and the average

cost of the incentive scheme was 20,000 rupees.32 Assuming that none of this amount went

to administering the program and a conversion rate of 45 rupees per dollar, this corresponds

to $1,796.67 (=$47.91×37.5) in total output produced by the average teacher and $141.54

(=$444.44/3.14) paid to the average teacher. Then, the slope of the contract is the per-teacher

income increase ($141.54) divided by the increase in output ($1,796.67), or 0.0788; i.e., teachers

are paid a piece rate of 7.88% of output.

There is no particular reason to assume that the incentive pay schedule in this experiment

was optimal. However, note that we can exploit the teacher’s optimal choice of action, which

solves (IC) in (10) but does not rely on optimality of the slope β1, to map (β1, a) to the cost

γ. The value of γ which rationalizes this increase is then γ = β1/a = 0.0788/1, 796.67 =

4.385× 10−5. Nadler and Wiswall (2011) provide evidence that teacher risk aversion matters

for how incentives are structured. I set the CARA parameter to ξ = 6.7× 10−3, the mean

estimated CARA from the benchmark model of Cohen and Einav (2007), Table 5.

Finally, the variance of output, which is relevant for the teacher’s actions, depends on the

conversion from test scores to output and the variance of test scores. Suppose mean test scores y

30Results are similar if I instead use the mean class size in the LA data.
31See footnote 34 on page 72 of Muralidharan and Sundararaman (2011).
32The incentive scheme cost an average of 10,000 rupees for each of two years.

35



were converted to observed output via q̂ = βqy. Then the conversion factor βq can be calibrated

by noting that the scheme increased test scores by 0.15 sd and output per teacher by $1,796.67,

giving a conversion $11,977.78 (=$1,796.67/0.15). The variance of test score signal can be

computed by dividing the baseline variance of test score measurement error σ2
ε , from Section

5.1, by the mean number of students per teacher in the data, i.e., 0.953/(37.5). To obtain the

variance of income σ2
η we then square the test-score-to-income parameter and multiply by the

variance of mean test score, i.e., σ2
η =6,076,631$2(=$11,977.782 × 0.953/(37.5)).33

Having obtained the calibrated parameter values above, we can now solve for the optimal

slope of β∗FE1 = 0.483 and a corresponding optimal action of a∗FE = $11, 011.34, which corre-

sponds to an average increase in student achievement of 0.919 sd. This increase is 6 times larger

than the estimated increase in student achievement stemming from the much weaker incentives

provided under the experiment. In contrast, using the earlier reckoning that empirical Bayes

increases the variance of η by 3.2%, using empirical Bayes would produce an optimal slope of

β∗EB1 = 0.475 and optimal action of a∗EB = $10, 832.07, i.e., a 0.904 sd average increase in stu-

dent achievement. As expected, the higher measurement error variance on output from using

empirical Bayes would lower the strength of incentives (i.e., slope) and resulting equilibrium

action. Output would be 1.65% higher under fixed effects than it would be under empirical

Bayes, suggesting an obvious choice of fixed effects for education policymakers. Naturally, we

would expect the results from the hidden type model to be smaller than those from hidden

action model here, as the hidden type model primarily affects output at the low end of the

teacher quality distribution, while the hidden action model effects output for all teachers.

Sensitivity Analysis Via Parameter Grid The mean class size in the Los Angeles data is

22.5, much smaller than the mean of 37.5 used in the above calibration. Smaller class sizes would

increase the variance of the output measure. Moreover, Dohmen and Falk (2010) document

that teachers are more risk-averse than other workers. Therefore, it would seem reasonable to

examine how output would be affected by varying the parameters of the hidden action model.

Figure 7 presents contour maps of model outcomes for a grid of points covering a wide range of

alternative values of σ2
η and ξ, ranging from one half to ten times the calibrated value of each

parameter.34 Note that, because γ was recovered using the teacher’s optimal action choice and

can be recovered by using the slope of incentives in the experiment and increase in output, it

33This is because the variance of q̂, i.e., σ2
η, is β2

qσ
2
y. Alternatively, the calibration could be in terms of test

scores by scaling the CARA parameter by the increase in output per sd increase in mean test score, returning
ξy = 6.7× 10−3 × 11, 977.78 = 80.25. Then, using the slope of β1 = 0.0788 and output increase of 0.15 sd,
we can compute γy = 0.0788/0.15 = 0.525. Then, setting the variance of η equal to σ2

η,y = σ2
ε /37.5 we obtain

exactly the same optimal slope and action as when units are denominated in dollars.
34Table 2 in Babcock et al. (1993) shows that a higher-end estimate of ξ is about 0.35, well above the range

considered in the parameter grid here. The output loss from using empirical Bayes would be larger for CARA
parameters in that range.
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does not depend on (σ2
η, ξ) and is therefore fixed. Figure 7a is a contour map of the optimal

output share when using fixed effects, or β∗FE1 . Figure 7b is a contour map of optimal output

when using fixed effects, i.e., E
[
q∗FE

]
. In both figures, the value corresponding to the calibrated

values of σ2
η and ξ is indicated by a red dot. We can see that as teachers become more risk

averse (increasing ξ) or the output measure becomes noisier (increasing σ2
η), both incentive

strength (Figure 7a) and output decrease (Figure 7b). For example, the increase in output

ranges from over 3 sd in student achievement to around 0.5 sd when teachers are ten times

more risk averse than their calibrated value of ξ = 6.7e − 3; this latter figure is only about

three times the estimated effect of the incentive scheme. Figure 7c is a contour map of the

expected share of teacher income comprised by variable compensation when using fixed effects,

i.e., E
[
β∗FE1 q∗FE

]
/E
[
β∗FE0 + β∗FE1 q∗FE

]
. As with the slope and output, this share declines as

the output noise variance and degree of risk aversion increase.35 The optimal expected share

of income that is variable pay under the calibrated parameter values would be around 7%.

As interesting as these results are in their own right, the goal in this section is to quantify

the difference in output stemming from using one estimator versus another. Figure 7d shows

the ratio in optimal output from using fixed effects over that using empirical Bayes. We can see

here that, although optimal incentive strength and output gains vary quite a bit (in ways we

would naturally expect) with respect to σ2
η and ξ, the output gain associated with using fixed

effects versus empirical Bayes ranges from a little more than 1% to around 3%. Intuitively,

the higher noise in empirical Bayes matters more (relative to the cost γ) when teachers are

more risk averse or when the baseline variance on the shock to output is higher. Of course,

we cannot know the exact amount by which the output would be lower were the administrator

to use empirical Bayes; knowing this would require the development and estimation of a richer

and more realistic structural model. However, the variable share of compensation in Figure

7c can provide further of guidance for, say, a reader skeptical of the calibrated values of σ2
η

and ξ. Suppose it seemed reasonable that, in the optimal arrangement, the variable share of

compensation for teachers would be at most around 2% of their income; this would correspond

to the upper-right triangle of Figure 7c. Then the gain in output from switching from empirical

Bayes to fixed effects would be about 2-3%, which is even larger than it was at the calibrated

parameter values.

6 Discussion

While economic theory can help inform education policy, measurement issues are also impor-

tant when considering how to use data in actual educational policies. Possibly because they

35This was computed using a certainty equivalent value of $70,000, which is in the realm of teacher incomes;
see Himes (2015).
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Figure 7: Optimal output share and ratio of output for (σ2
η, ξ)−grid
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minimize mean squared error, empirical Bayes estimators of teacher value-added are used by

many education researchers and practitioners to make inferences about teacher quality, which

may serve as inputs to high-stakes decisions like bonus assignments, personnel decisions, or

even overall wages. It is not obvious this should be the case.

In this paper, I show that the preferred estimator depends on information that is plausibly

part of an administrator’s context. The preferred estimator would be the same for wide ranges

of underlying parameters for all the models considered and only depends on the relationship

between class size and teacher quality. I find that class size is negative quadratic with respect

to teacher quality in the Los Angeles Unified School District, the second-largest district in the

United States. At the lowest and highest percentiles of desired quality, an administrator using

empirical Bayes would respectively make 10% or 7% more classification mistakes than the fixed

effects estimator when classifying Los Angeles teachers based on their students’ Reading test

scores. Using fixed effects instead of empirical Bayes would increase output by 1.65% in the

hidden action model and by between 0.11%-0.22% in the hidden type model.

Suppose an administrator had been using empirical Bayes in an incentive scheme. Would

it make sense to switch to fixed effects? Of course, the relevant comparison in any economic

context is a cost-benefit one. It is important to note that the intervention considered in this

paper is very easy to implement and virtually costless—to use a different, more transparent

estimator of teacher quality—and that the preferred estimator would be the same across several

models of the administrator’s objective. Indeed, in all likelihood, the cost of switching to fixed

effects is virtually zero, or even negative, given the increased transparency of fixed effects, which

may translate to a lower nonpecuniary cost incurred by society. Then, by an economic criterion,

these results suggest an obvious benefit from using fixed effects instead of empirical Bayes in

the design of teacher incentive schemes if, as was suggested previously, class size is negative

quadratic in teacher quality in the relevant context. Moreover, the finding of this paper—that

measurement of teacher quality may affect the performance of teacher incentive schemes—

could in principle be applied to findings from other work in this area, or work studying how to

structure incentives and personnel decisions, based on noisy output measures.

Motivated by the quantitative results showing the choice of estimator can create differences

in policy-relevant outcomes, I have reviewed existing incentive schemes, which are summarized

in Appendix A. Most of the schemes use cutoff rules to assign bonuses and more than half

base bonuses, in part, on value-added models of student achievement. Almost 90% of the

latter use empirical Bayes estimators to calculate teacher quality. Strikingly, about one-fifth

of the schemes do not even specify how student achievement is mapped into teacher bonuses.

A corollary of this paper’s results is that, because the choice of estimator matters, teacher

incentive programs should clearly specify exactly how student achievement enters them.

This paper characterizes which estimator would be preferred by an administrator in an
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extremely large school district that has recently received much policy interest (such as that

created by the Los Angeles Times release of the value-added estimates used here). A study

of how best to estimate teacher quality for another context would require data from the rel-

evant geography and, to prescribe the optimal policy, information about the administrator’s

preferences. However, the uniform nature of the preferred estimator across the variety of en-

vironments studied in this paper suggests that a policymaker in another district could choose

the right estimator for their context with a certain degree of confidence. Important future work

would study optimal design of incentive schemes using a more general production technology

model relating economic output to teacher quality, such as one allowing for cumulative effects of

inputs in a dynamic setting. Other important future work could estimate models of assignment

of students to teachers.
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Appendix

A Teacher Incentive Schemes

Table 3 documents existing teacher incentive schemes that are based, at least in part, on student

achievement. Many of these schemes include estimates of value-added as a determinant of

teacher bonuses, and most that do base bonuses on value-added also include other measures of

teacher quality.

Table 3: Incentive pay schemes

Name of scheme Location Active dates Bonus schedule Uses value-added ? Uses EB?
Dallas Independent School
District (DISD) Principal
and Teacher Incentive Pay
program

Dallas, Texas 2007-08 school
year (Previ-
ous program
started in
1992)

Discrete Yes Yes

TVAAS Tennessee Since 1996 Discrete Yes Yes
Tennessee Educator Accel-
eration Model (TEAM)

Tennessee Since 2010 Discrete Yes Yes

Memphis’ Teacher Effec-
tiveness Measure (TEM)

Memphis, Tennessee Since 2010 Discrete Yes Yes

Pennsylvania Pennsylvania Since 2013-
2014

Discrete Yes Yes

Pittsburgh Pittsburgh Since 2013-
2014

Discrete Yes Yes

North Carolina Teacher
Evaluation Process

North Carolina since 2012-2013 Discrete Yes Yes

Mission Possible Guilford County,
North Carolina

2006-current Discrete Yes Yes

Milken Family Founda-
tion’s Teacher Advance-
ment Program (TAP)

Nationwide (125
schools in 9 states
and 50 districts as of
2007)

Since 1999 Discrete Yes Varies

Denver Public School’s
Professional Compensa-
tion System for Teachers
(ProComp)

Denver, Colorado Since 2005 Discrete (many bonus
levels)

No No

Special Teachers Are Re-
warded (STAR) (followed
by MAP)

Florida 2006-2007
(MAP since
2007)

Discrete (MAP has
both continuous and
discrete rewards)

No (though they do use
a discretized version of
value-added through a
value table)

No

North Carolina ABCs North Carolina 1996-2012 Discrete No No
Q-Comp Minnesota Since 2005 Varies, but mostly

discrete
Varies between partici-
pants, but unknown in
general.

?

Louisiana Louisiana Since 2010 Discrete ? ?
Texas’ Governor’s Educa-
tor Excellence Award Pro-
grams (GEEAP)

Texas 2008 school
year

? ? ?

Source: Author’s compilation.

B Cutoff Model Proofs and Extensions

B.1 Direct Conditioning on Class Size

The difference in administrator’s value from using different teacher-quality estimators derives

from the assumption that the administrator chooses a cutoff policy based on only test score in-

formation. Such a one-dimensional policy is quite simple and, therefore, is of considerable clear

policy relevance; this demonstrated by Table 3, which documents existing incentive pay pro-

grams and shows that none condition on class size, among incentivized teachers. Additionally,
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when compared with a policy that may also explicitly condition on class sizes, a test-score-based

cutoff may attenuate issues of class size manipulation for the sake of affecting the administra-

tor’s posterior about the quality of a particular teacher. However, allowing the administrator

to explicitly take into account class size is of theoretical interest. Therefore, this section shows

how the theoretical results in Section 3 would be affected.

Now suppose the administrator, instead of only indirectly taking it into account when max-

imizing her utility, could instead explicitly condition on class size ni. If ni was a strictly

monotonic function of teacher quality θ then the administrator could achieve a perfect clas-

sification of teachers by inverting n(θ)—even if she ignored all teachers’ test scores. A more

realistic case is where there are multiple teacher qualities for at least one class size. Suppose

that the distribution of teacher qualities for each class size is normally distributed. Note that,

because she can explicitly condition on class size, she can hold a separate cutoff-based classifi-

cation problem for each class size level; denote the administrator’s value from using the fixed

effects and empirical Bayes estimators as vFECP,n(κ) and vEBCP,n(κ), respectively. Then by Propo-

sition 1 the administrator would obtain the same value for either estimator given the desired

cutoff κ, i.e., vFECP,n(κ) = vEBCP,n(κ) for all (n, κ). Therefore, we can without loss of generality

consider only the fixed-effects estimator, with optimal cutoff policy c∗FEn . Further note that

the administrator’s expected objective would be at least as high if she is allowed to split her

original objective into one objective for each class size; if the cutoff for c∗FEn1
= c∗FEn2

for all class

sizes n1, n2, then her value under the separate class size scheme is the same as that from her

original objective.

B.2 Administrator’s Problem with Infinite Precision

We want to prove that as the variance of the measurement error tends to 0 (which implies
σε → 0) all teachers will be correctly categorized, giving vFECP (κ) = vEBCP (κ) = 1 for all desired κ.
First, consider the fixed effects estimator. The administrator’s utility for a teacher with true
quality θ under estimator θ̂ and cutoff policy c is

uCP (θ, θ̂; c, κ) = α1{θ̂ ≥ c ∩ θ ≥ κ}+ (1− α)1{θ̂ < c ∩ θ < κ} p→ α1{θ ≥ c ∩ θ ≥ κ}+ (1− α)1{θ < c ∩ θ < κ},
(11)

which is maximized at c = κ. The administrator’s utility from using empirical Bayes estimator

for the same teacher is

plimσε→0uCP (θ, θ̂; c, κ) = α1{θ ≥ c ∩ θ ≥ κ}+ (1− α)1{θ < c ∩ θ < κ}

= α1{λ(θ)θ ≥ c ∩ θ ≥ κ}+ (1− α)1{λ(θ)θ < c ∩ θ < κ}, (12)
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which is maximized at c = κ/λ(F−1(κ)). The probabilities of the events in both (11) and (12)

are all 1, giving an expected utility of 1 for all teacher qualities, which then integrates to a

value of 1 for each estimator.

B.3 Asymmetric Type I and Type II Weights

The main analysis assumed the administrator equally weighed Type I and II errors, i.e., α = 1/2.

However, the administrator’s preferred estimator is not sensitive to this assumption. Figure 8

plots the ratio of the administrator’s value under fixed effects and empirical Bayes, by class

size scenario n(θ) and desired cutoff κ, for different values of the Type I error weight. Figure

8a shows the ratio in administrator’s value when α = 1/4, or the administrator values Type I

errors one-third as much as she values Type II errors. Figure 8b shows the same ratio for when

α = 2/3, i.e., the administrator values Type I errors twice as much as Type II errors. In both

plots, we can see that the relative ranking of the estimators is the same as it was under the

symmetric weight, α = 1/2, scenario.

Figure 8: Difference between administrator’s value under fixed effects and empirical Bayes, by
class size scenario and desired cut point and weight on Type I error, α
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(b) vFECP (κ)/vEBCP (κ) when α = 2/3
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B.4 Proposition 7

This section proves that fixed effects and empirical Bayes return the same value when the

administrator’s problem is symmetric.

Definition 1. The administrator’s problem is symmetric if α = 1/2, n(θ) is symmetric around

the population mean of teacher quality, and the administrator’s desired cutoff is κ = 0.

Proposition 7. The administrator receives the same value from both estimators when the

problem is symmetric.

Proof. Because n(θ) is symmetric about θ = 0 and θi ∼ F = N (0, σ2
θ), the distribution of θ is

symmetric around its population mean of 0. The optimal c∗EB solves∫ ∞
0

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
φ(θ/σθ)dθ =

∫ 0

−∞

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
φ(θ/σθ)dθ.

At c∗EB = 0, the expression becomes∫ ∞
0

1

λ(n(θ))σε(n(θ))
φ

(
−θ

σε(n(θ))

)
φ(θ/σθ)dθ =

∫ 0

−∞

1

λ(n(θ))σε(n(θ))
φ

(
−θ

σε(n(θ))

)
φ(θ/σθ)dθ,

which holds because of the symmetry of φ(·), n(·), and λ(·) (through its dependence on n,

which is symmetric). Therefore, c∗EB = 0 solves the administrator’s problem when empirical

Bayes is used. Because λ(n(θ)) = 1, ∀θ when the fixed effects estimator is used, c∗FE = 0 must

also solve the administrator’s problem when fixed effects is used, meaning the administrator’s

objective is equivalent under both estimators.

C Extensions to Hidden Type Model HT-0

C.1 Model HT-1

Now allow T > 2 and let output depend on teacher experience xi(j,t),t according to qjit =

β0 + θi(j,t) + e(xi(j,t),t), where e(xit) represents output, net of β0 and teacher quality, for a

teacher with t− 1 periods of prior experience.

The optimal hiring policy ψh is unchanged. Consider the retention decision for teachers in

period t = T , for teachers with the same experience, xit = xt. Such a policy need not only apply

to teachers’ first years of experience; Wiswall (2013) shows that teacher quality also changes

after the first few years of experience. Let q̂Hit be the sample mean of teacher i’s output signals

realized before period t. The retention decision ψr still has a reservation value property, which

now depends on the mean of each teacher’s entire history of signals, q̂Hit , where the threshold

now depends on the period, i.e., q
t

= µ−
(
χ+e(xt)

ρt

)
, where ρt = σ2

θ/(σ
2
θ + σ2

ε

n|Ht|). The reservation
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signal q
t

is decreasing in xt if there are productivity gains to experience and increasing in ρt,

due to the higher precision about teachers’ true quality. Note that solution to this problem

would be the same as that from HT-0, setting the replacement cost (in HT-0) to χt ≡ χ+ e(xt)

and using the relevant ρt. Also, note that considering instead periods t < T would change the

desired threshold quality, which could be modeled by suitably adjusting the replacement cost

χ from the static model HT-0. Therefore, this sequence of per-period reservation signals can

then be mapped to the cutoff-based model via a sequence of cutoff-based problems, one for each

period of experience, as was done for Model HT-0. Finally, note that a similar transformation

to the one above could be performed to adapt Model HT-2 (see Section C.2) to also allow for

an effect of experience on output.

C.2 Model HT-2

This model augments HT-0 to allow class size to depend on teacher quality, i.e., ni = n(θ).

As in HT-0, consider the administrator’s problem in the second period. As in the cutoff

model, the administrator must now integrate over the distribution of class sizes when choosing

their reservation signal, meaning (8) must be adapted to obtain the administrator’s value from

using fixed effects:

vFEHT2(χ) = max
qFE

(∫ ∞
−∞

Φ

(
qFE − θ
σε(n(θ))

)
dF (θ)

)
(−χ)

+

∫ ∞
−∞

(
1− Φ

(
qFE − θ
σε(n(θ))

)) σ2
θ

σθ̂FE(n(θ))

φ
(
−qFE/σθ̂FE(n(θ))

)
Φ
(
−qFE/σθ̂FE(n(θ))

)
 dF (θ), (13)

where σθ̂FE(n(θ)) =
√
σ2
θ + σ2

ε/n(θ) and σε(n(θ)) is as defined on page 11. The administrator’s

value from using the empirical Bayes estimator is

vEBHT2(χ) = max
qEB

(∫ ∞
−∞

Φ

(
qEB/λ(n(θ))− θ

σε(n(θ))

)
dF (θ)

)
(−χ)

+

∫ ∞
−∞

(
1− Φ

(
qEB/λ(n(θ))− θ

σε(n(θ))

)) σ2
θ

σθ̂FE(n(θ))

φ
(
−qEB/

(
λ(n(θ))σθ̂FE(n(θ))

))
Φ
(
−qEB/

(
λ(n(θ))σθ̂FE(n(θ))

))
 dF (θ).

(14)

Because n(θ) is no longer constant, as it was in HT-0, the reliability of signals varies by

teacher and the analytical characterization of the administrator’s reservation signal from Model

HT-0 no longer obtains. However, as long as the MLRP holds, higher signal realizations will

cause the administrator to revise her belief about teacher quality upwards, meaning Proposi-
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tion 3 would still apply here. The estimator-specific reservation signals, q∗FE and q∗EB, are

respectively obtained by numerically solving (13) and (14).

The ranking of the administrator’s utility from HT-2, by class size scenario n(θ), is the

same as her ranking under the cutoff-based model. To show this, I solve for the administrator’s

objective for a wide range of replacement costs and under different class size scenarios: constant,

negative quadratic, and positive quadratic.36 Figure 9 shows how the relationship between class

size and teacher quality would affect outcomes in HT-2. The left panel, Figure 9a, plots the

ratio in her value from using the FE over the EB estimator. The constant class size scenario

(dotted black line) represents a special case of HT-2 where n(θ) = n. Unsurprisingly, then,

we obtain the same value for all replacement costs χ, as this is simply model HT-0. Under

the negative quadratic scenario (dot-dashed blue line) the administrator would obtain higher

value from using fixed effects for every χ. This is exactly the same result as was obtained for

different desired cutoffs (and Type I and II error weights; see Appendix B.3) under the cutoff-

based model. Also, as in the cutoff-based model, the estimator ranking is reversed under the

positive-quadratic class size scenario (dashed red line); i.e., she would prefer to use empirical

Bayes instead of fixed effects.

The right panel, Figure 9b, plots expected output under the administrator’s optimal program

for each estimator and replacement cost. As expected, the difference in estimator performance

when class size is not constant increases even more in replacement cost, as the output measure

does not take χ into account. Intuitively, retaining teachers with true quality above a certain

desired threshold—which depends on the replacement cost χ—is similar to correctly identifying

teachers with true quality above a particular desired cutoff κ in the cutoff model (i.e., not making

a Type I error). Unlike the cutoff model, in the hidden type models, the administrator faces the

same (replacement) cost for obtaining new teachers; that is, the cost portion of her objective

does not directly depend on teachers’ true quality θ.

As with model HT-1, an environment with multiple periods could be modeled by suitably

adjusting the desired threshold quality. For example, adding more periods could be accommo-

dated by decreasing the replacement cost, as the administrator would have a relatively higher

gain from replacing when there are more periods of output. Because they range from a cost of

zero to twice the estimated difference in value added between a teacher with five years experi-

ence and no experience, the calculations presented in Figure 9 then likely encompass costs for

multi-period environments as well.

The takeaway from this section is that (i) the administrator’s preferred estimator depends

on the class size scenario n(θ), (ii) though the difference in values from using either estimator

36Wiswall (2013) reports that teachers with 30 years of experience have value-added that is one standard devi-
ation higher than new teachers and 0.75 standard deviations higher than teachers with five years of experience;
this implies a 0.25 sd difference acquired in the first five years of experience. Therefore, I set χ = 0.25σθ = 0.054
and then use a range for the replacement cost running from zero to 0.10, approximately twice this value.
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Figure 9: Difference between administrator’s value under fixed effects and empirical Bayes, by
class size scenario and replacement cost χ
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depends on other model parameters (T, χ), the preferred estimator does not, and (iii) the

administrator would prefer the same estimator in HT-2 as she would in the cutoff model.

D Details for Quantitative Exercises

D.1 Calibrated Error Variances

I calibrate σ2
θ and σ2

ε from Table B-2 of Schochet and Chiang (2012) normalizing the total

variance to one. To most closely match a policy where an administrator would like to rank

teachers across a school district, I calibrate σ2
θ = 0.046 by summing the average of school- and

teacher-level variances in random effects. To most closely approximate an environment where

both student and aggregate-level shocks may affect student test scores, I calibrate σ2
ε = 0.953

by summing the average of class- and student-level variances in random effects. Note that,

due to the much greater student-level error variance, the approximate sizes of σ2
θ and σ2

ε are

approximately the same if school-level variances are excluded from σ2
θ or class-level variances

are excluded from σ2
ε , lending robustness to the quantitative findings.
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D.2 Heteroskedasticity Correction for Relationship Between Class

Size and Teacher Quality

The advantage of the indirect inference approach is that it can be implemented using a vector of

auxiliary moments which do not necessarily correspond to structural econometric parameters.

This is useful in the current context where the micro-data to directly correct for heteroskedas-

ticity are not available.37

Indirect Inference Algorithm The following is done separately for Reading and Math.

0. Estimate the relationship between class size (ni) and teacher i’s estimated quality in the

subject (θ̂i) by running the regression ni = βdata0 +βdata1 θ̂i +βdata2 (θ̂i)
2 + ei. The regression

coefficients
(
β̂data0 , β̂data1 , β̂data2

)
and residual standard error σ̂datae form the first set auxiliary

parameters to fit. Compute the 25th, 50th, and 75th percentiles of the empirical distribu-

tion of class sizes, (ndatap25 , n
data
p50 , n

data
p75 ). These are the remaining auxiliary parameters. The

target vector of auxiliary parameters is then
(
β̂data0 , β̂data1 , β̂data2 , σ̂e

data, ndatap25 , n
data
p50 , n

data
p75

)
.

1. Given σ2
θ , simulate teacher quality θsimi once for each teacher in the sample. (Recall the

population mean has been normalized to 0).

2. Simulate the random component of class sizes nsimi,i.i.d, which is distributed normal with

mean zero and standard deviation σnsim . As described below, this algorithm chooses the

parameter σnsim . Note these are independent from teacher quality to get an idea of the

role heteroskedasticity plays.

3. Assign incremental class sizes according to ninc(θsimi ) = a0 + a1θ
sim
i + a2(θsimi )2. As

described below, this algorithm chooses the parameters (a0, a1, a2). The final simulated

class size for teacher i is then nsimi = round{nsimi,i.i.d + ninc(θsimi )}, i.e., class sizes are integer-

valued.

4. Given σ2
ε and nsimi simulate an average shock for each teacher, εsimi ; form simulated

estimated teacher quality according to θ̂simi = θsimi + εsimi .

5. Regress nsimi = βsim0 +βsim1 θ̂simi +βsim2 (θ̂simi )2, estimating the auxiliary coefficients (β̂sim0 , β̂sim1 , β̂sim2 )

and auxiliary residual standard error σ̂sime . Compute the 25th, 50th, and 75th percentiles

of the simulated distribution of class sizes, (nsimp25 , n
sim
p50 , n

sim
p75 ). The simulated vector of

auxiliary parameters is then
(
β̂sim0 , β̂sim1 , β̂sim2 , σ̂sime , nsimp25 , n

sim
p50 , n

sim
p75

)
.

37If micro-data had been available, then one could in principle use an approach like the one in Lockwood and
McCaffrey (2014) to account for the nonlinearities produced by heteroskedastic errors.
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6. Compute the Euclidean distance between target auxiliary parameters and simulated aux-

iliary parameters (e.g., β̂data0 and β̂sim0 , respectively) as a function of the parameters gov-

erning class size, d(a0, a1, a2, σnsim).

Repeat steps 1-6 for the vector (a0, a1, a2, σnsim) until the distance between data and simu-

lated auxiliary moments is minimized.

D.3 Details for Quantitative Illustration for Hidden Action Model

Output in the hidden action model depends on several parameters, including the variance of

measurement error on output, σ2
η. I adjust the error variance in several steps, using Reading

test scores as the measure:

1. Simulate teacher quality, class sizes, and measurement errors using the parameters from

Section 5.1, for 30,000 teachers. Each simulated teacher then has a simulated quality θsi

and a simulated fixed-effect estimate θ̂s,FEi .

2. Use the empirical Bayes weights λ(·) to generate simulated EB measures of teacher quality

according to θ̂s,EBi = λ(n(θsi ))θ̂
s,FE
i .

3. Standardize θsi , θ̂
s,FE
i , and θ̂s,EBi to have variances of 1, to make the residual variances

comparable.

4. Finally, I estimate the residual variance from a regression of standardized θ̂s,FEi on the

standardized true (simulated) quality θsi and the residual variance from a regression of

standardized empirical Bayes measure θ̂s,EBi on standardized true (simulated) quality. The

ratio of residual variances, or amount unexplained in each regression, tells us how much

more (or less) the fixed effects estimator would inform the administrator about teacher

quality.

The regression results, shown in Table 4, indicate that the fixed-effects estimator explains about

3.2% more variation in teacher quality than the empirical Bayes estimator (1−0.69562/0.70702 =

0.032). That is, the fact that the EB estimator makes it more difficult to separate high- and

low-performing teachers when the class size function is negative quadratic, as it is in the data,

can be modeled as increasing the measurement error variance on teacher output, σ2
η, by this

amount.
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Table 4: Regressions of simulated teacher quality on FE and EB estimates

Dependent variable:

θs (standardized)

(1) (2)

θ̂s,FE (standardized) 0.718∗∗∗

(0.004)

θ̂s,EB (standardized) 0.707∗∗∗

(0.004)

Constant 0.002 −0.001
(0.004) (0.004)

Observations 30,000 30,000
R2 0.516 0.500
Residual Std. Error (df = 29998) 0.696 0.707

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

E Alternative Specification of Administrator’s Objec-

tive

Characterizing optimal contracts is difficult to do in a general setting. Therefore, in this

section I take a different approach and instead examine a problem qualitatively consistent with

economic environments of interest. Specifically, I consider an alternative objective in which

the administrator’s value is increasing in the product of teacher quality and reward assigned

to that teacher. For example, the administrator may want to assign higher wages to, or only

retain, higher-quality teachers. This objective is reasonable so long as an increase in estimated

quality does not decrease the reward assigned to a teacher and the administrator would like

for higher-quality teachers to receive rewards no lower than those assigned to lower-quality

teachers.

I first proceed by considering linear incentive schemes, which have been extensively studied

in the literature. Next, I show how the same result holds when incentives are weakly increasing

in estimated teacher quality, so long as the administrator’s objective has the intuitive property

of being weakly increasing in the product of the incentive and true teacher quality. For example,

this specification is consistent with the cutoff and hidden type models.

Consider the following objective for the administrator from assigning a reward w(θ̂) to
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teacher with true quality θ and quality signal θ̂:

umono(θ̂, θ;w(·)) = w(θ̂)θ, (15)

where θ̂2 > θ̂1 implies w(θ̂2) ≥ w(θ̂1), i.e., the “reward”—which could represent monetary

compensation such as bonuses or raises, or a retention decision—is weakly increasing in esti-

mated quality. The administrator’s value is obtained by integrating (15) over the distribution

of teacher quality:

vmono(λ(·)) =

∫
θ

(∫
θ̂

w∗(θ̂)dGθ̂(θ̂|θ;λ(·))
)
θdF (θ), (16)

where w∗(·) is the optimal reward schedule and Gθ̂(·) is the distribution quality signal θ̂, which

depends on true quality and the relationship between class size and teacher quality λ(·). Al-

though the specification of the administrator’s objective in (15) may not necessarily correspond

to any economic environment, results pertaining to the estimator rankings are unchanged when

we instead study the following objective:

umono,g(θ̂, θ;w(·)) = uw(w(θ̂))uθ(θ), (17)

where uw and uθ are both weakly increasing. For example, the administrator wanting to retain

higher-quality teachers or give them bonus payments, or having a wage schedule increasing in

estimated quality are both consistent with (17). What matters is that, by providing the correct

incentives, the administrator assigns higher rewards (or lower punishments) when she sees a

higher signal of teacher quality. This is a very natural assumption.

Linear Reward First, suppose w∗(θ̂) = β∗0 +β∗1 θ̂, i.e., the optimal reward schedule is a linear

function of estimated teacher quality. Note that, although this reward function is the same as

in Model HA, the case here does not necessarily assume the underlying unobserved input is

a choice of action by the teacher. This type of contract has been studied extensively in the

literature, perhaps due to its tractability and simplicity (see, e.g., Tincani (2012), Behrman

et al. (2016), Rothstein (2014)). Substituting in for estimated teacher quality, we get the

administrator’s optimized objective for a teacher with true quality θi:

E
[
umono(θ̂, θ;w

∗(·)
]

= E
[
θi(β

∗
0 + β∗1 θ̂i)

]
= E [θiβ

∗
0 + β∗1θiλ(θi) (θi + εi)]

= E
[
θiβ
∗
0 + β∗1λ(θi)θ

2
i + β∗1λ(θi)θiεi

]
= θiβ

∗
0 + β∗1λ(θi)θ

2
i , (18)
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where we go from the third to fourth line because E [εi|θi] = 0. By the envelope theorem, the

optimal reward parameters (β∗0 , β
∗
1) would not vary with an infinitesimal change in λ(·). We

can see that a negative-quadratic relationship of class size (and subsequently, λ(θi)) and teacher

quality θ reduces the above amount, e.g., for a high- or low-quality teacher. Integrating over all

teacher qualities, this means the administrator would prefer to use the fixed effects estimator

for this type of incentive scheme. If class size is constant in teacher quality, then by adjusting

(β∗0 , β
∗
1), the administrator could obtain the same expected objective by using either the fixed

effect or empirical Bayes estimator of teacher quality; this result is identical to that also derived

for the cutoff, hidden type, and hidden action models.

Increasing Reward However, without further structure, there is no theoretical reason to

assume the optimal incentive scheme would be linear in estimated teacher quality. Therefore, I

next consider the case where an administrator may employ any scheme that is weakly increasing

in estimated quality.

According to (15), the administrator’s optimized objective for a teacher with true quality

θi and shock εi is

umono(θi, θ̂i;w
∗(·)) = w∗(θ̂i)θi = w∗(λ(θi)θ̂

FE
i )θi = w∗(λ(θi) (θi + εi))θi

= w∗(λ(θi)θi + λ(θi)εi)θi, (19)

where the potential nonlinearity of w∗(·) means we cannot remove the εi from inside the wage

function as we did when the wage was linear. The closer w∗(·) is to linear, the closer is the

following approximation:

E
[
umono(θi, θ̂i;w

∗(·))
]
≈ w∗(λ(θi)θi)θi. (20)

By examining (20), we can see that, intuitively, if we consider teachers with positive true

quality, the expression will be higher when we change infinitesimally λ(·) to be more increasing

in θ. Conversely, the expression will be higher when λ(·) is infinitesimally changed to be more

decreasing in θ for teachers with negative true quality. Due to the infinitesimal nature of

these changes to λ(·) and the prior optimality of w∗(·), we can apply the envelope theorem

and disregard the effect of changes to w∗(·) on the administrator’s expected objective. Put

together, a positive-quadratic relationship between class size and teacher quality would increase

the administrator’s expected utility from using the empirical Bayes estimator of teacher quality,

while a negative-quadratic relationship would decrease the administrator’s utility from using

empirical Bayes.

However, (20) makes the unattractive assumption that w∗(·) is “close to” linear. To more
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generally verify that the administrator’s objective (15) is higher under fixed effects when class

sizes are negative quadratic and higher under empirical Bayes when class sizes are positive

quadratic, I randomly generated 100 nondecreasing wage schedules. For each schedule, I com-

puted the derivative of (16) with respect to a convexifying parameter δ, which represents the

“share” of the estimator θ̂ represented by the fixed effects estimator used in evaluating (16).

That is, θ̂i = δθ̂FEi +(1−δ)λiθ̂FEi . Increasing δ puts more weight on fixed effects, and, therefore,

less weight on empirical Bayes and λ(·); where λ(·) is adjusted to equalize the mean weight, in-

tegrating over the joint distribution of teacher quality and measurement error, under the initial

share δ and perturbed one.

Figure 10 presents six randomly generated reward functions and the associated derivative

with respect to δ under the negative-quadratic and positive-quadratic class size scenarios.38

For example, Figure 10a presents an optimal reward function w∗(·) that is essentially a cutoff

rule assigning a bonus (or retaining) teachers above a certain value in the estimated quality

distribution θ̂, showing how the objective (15) can capture meaningful economic environments,

such as the cutoff model and hidden type model. We can see at the top left that the derivative

with respect to share is 4× 10−5 when class size is negative quadratic in teacher quality. This

positive value means the administrator would prefer to increase the weight on fixed effects

in this case. We can also see at the top left that the derivative with respect to share is

−8× 10−5 when class size is positive quadratic in teacher quality, i.e., the administrator would

prefer to decrease the weight on fixed effects in this case, as expected. The reward function

in Figure 10f, on the other hand, has a flat spot below which the reward is flat—say, where

teachers are not retained—and then a reward that is roughly increasing linearly in measured

quality, similar to that in (18). This pattern holds for the rich variety of simulated wage

functions, so long as monotonicity of w∗(·) is not violated. On average, the derivative of the

administrator’s objective (16) is 9.13× 10−3 and −7.81× 10−3 when class size is respectively

negative- and positive-quadratic in teacher quality. That is, fixed effects would be preferred by

the administrator when class size is negative quadratic in teacher quality and empirical Bayes

would be preferred in the opposite scenario.

38Details of the simulation algorithm are available upon request.
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Figure 10: Reward functions w∗(·) and derivative w.r.t. share δ for selected simulations, by
n(θ)

(a) Simulation 46

-1.0 -0.5 0.0 0.5 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

θ̂

w
(θ̂

)

neg. quad. 4e-05

pos. quad. -8e-05

(b) Simulation 14

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

θ̂

w
(θ̂

)

neg. quad. 0.00042

pos. quad. -0.00018

(c) Simulation 23

-1.0 -0.5 0.0 0.5 1.0

0
5

10
15

20
25

30
35

θ̂

w
(θ̂

)

neg. quad. 0.00377

pos. quad. -0.00809

(d) Simulation 35

-1.0 -0.5 0.0 0.5 1.0

0
1

2
3

4
5

θ̂

w
(θ̂

)

neg. quad. 0.00146

pos. quad. -0.00115

(e) Simulation 9

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

θ̂

w
(θ̂

)

neg. quad. 0.00073

pos. quad. -0.00096

(f) Simulation 73
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