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Abstract 1 

Many biological processes are partitioned among organs and tissues, necessitating tissue-specific 2 

or organ-specific analysis (particularly for comparative -omics studies). Standardised techniques 3 

for tissue identification and dissection are therefore imperative for comparing among studies. Here 4 

we describe dissection protocols for isolating six key tissues/organs from larvae of the Asian 5 

longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae): the 6 

supraoesophageal ganglion, posterior midgut, hindgut, Malpighian tubules, fat body, and thoracic 7 

muscle. We also describe how to extract haemolymph and preserve whole larvae for measurements 8 

such as protein, lipid, and carbohydrate content. We include dissection protocols for both fresh-9 

killed and previously frozen specimens. Although this protocol is developed for A. glabripennis, 10 

it should allow standardised tissue collection from larvae of other cerambycids and be readily 11 

transferrable to other beetle taxa with similar larval morphology. 12 

 13 

Résumé 14 

Les processus physiologiques et moléculaires ont cours au sein de différents tissus, ce qui nécessite 15 

pour chacun des analyses distinctes, en particulier dans le cadre d’études «omiques» comparées. 16 

Il est donc impératif de standardiser les techniques de dissection et les protocoles d'identification 17 

des tissus pour comparer des études. Nous décrivons ici les protocoles de dissection pour isoler six 18 

tissus ou organes clés de larves du longicorne asiatique Anoplophora glabripennis (Motschulsky) 19 

(Coleoptera: Cerambycidae), soient le ganglion supraoesophagien, l’intestin moyen, le tube 20 

digestif postérieur, les tubules de Malpighi, le corps gras et les muscles thoraciques. Nous 21 

décrivons également comment extraire l'hémolymphe et conserver les larves entières pour 22 

effectuer des mesures de teneur en protéines, en lipides et en glucides. Nous incluons des 23 



protocoles de dissection non seulement pour les échantillons frais, mais aussi pour les échantillons 24 

congelés, afin d’aider les chercheurs qui n’ont pas accès à des spécimens vivants. Bien que ces 25 

protocoles aient été élaborés pour A. glabripennis, ils devraient permettre de standardiser la 26 

collecte de tissus chez les larves d’autres cérambycidés, et être aisément transférables à d'autres 27 

taxons de coléoptères avec une morphologie larvaire similaire28 



Introduction 29 

Insects maintain homeostasis via integrated physiological systems with a division of labour 30 

among tissues (Klowden 2013). Thus, most physiological processes should be explored at the 31 

tissue level; for example, the midgut is usually the focus of digestion and absorption studies 32 

(Caroci and Noriega 2003; Jagadeshwaran et al. 2010), while the Malpighian tubules are normally 33 

responsible for excretion (Dow et al. 1998). However, many transcriptomic studies analyse 34 

homogenised whole insects (e.g., Teets et al. 2012; Poupardin et al. 2015; MacMillan et al. 2016; 35 

Torson et al. 2017; Koniger and Grath 2018), and thus do not capture tissue-specific processes, 36 

which may be important. For example, upregulated sodium pump expression in the Malpighian 37 

tubules would likely reduce primary urine production, while a similar upregulation in the hindgut 38 

would likely enhance water reabsorption to the haemolymph. The physiological implications of 39 

these two scenarios would not be predicted from a whole-animal homogenate (Des Marteaux et 40 

al. 2017, 2018). 41 

Shifting from whole animal to tissue-specific analyses must be done carefully, as 42 

inconsistencies in dissection technique or inadvertent inclusion of non-target tissues (e.g., 43 

inclusion of fat traces with gut samples) can lead to misleading results. Furthermore, tissues, 44 

organs, and organ systems may be improperly homologised. For example, the large, anterior 45 

portion of the midgut in cerambycid larvae has been misinterpreted as belonging to the foregut 46 

(Wei et al. 2006; Choo et al. 2007), likely leading to spurious reports of chitinase and cellulase 47 

enzymes occurring in the foregut. Thus, it is important to standardise dissection and sample 48 

preparation protocols to ensure comparable results across samples within a study as well as among 49 

studies on the same or related species. Such standardised tissue classification (and developmental 50 



staging) protocols are de rigeur for model organisms (e.g., Sinha 1958; Eaton 1974; Bainbridge 51 

and Bownes 1981; Goodman et al. 1985; Curtis et al. 1999). 52 

Some cerambycid (longhorned) beetles are important forest pests (Eyre and Haack 2017). 53 

Asian longhorned beetle (Anoplophora glabripennis Motschulsky; Coleoptera: Cerambycidae: 54 

Lamiinae) larvae feed on healthy tree tissues across a broad host range (Faccoli et al. 2016) and 55 

this species has been inadvertently introduced in North America and Europe (Nehme et al. 2010; 56 

Dodds and Orwig 2011; Hull-Sanders et al. 2017). As with many economically important invasive 57 

species, the physiology and molecular biology of Asian longhorned beetle is the focus of current 58 

studies in multiple laboratories and countries. Thus, standardised dissection methods (currently 59 

unavailable for any cerambycid) are required to ensure appropriate tissue/organ identification and 60 

consistent sampling and comparisons.  61 

Here we present a protocol for collecting haemolymph and dissecting six tissues/organs (the 62 

supraoesophageal ganglion, posterior midgut, hindgut, Malpighian tubules, fat body, and thoracic 63 

muscle) from Asian longhorned beetle larvae, distinguishing the appearance of the tissues in fresh 64 

and previously frozen specimens. This protocol should facilitate consistency among studies of 65 

Asian longhorned beetle and other cerambycid larvae and be useful for other beetles with similar 66 

larval morphology. 67 

 68 

Protocol 69 

Asian longhorned beetle larvae used in the present study originated from a laboratory colony 70 

derived from the Chicago (Illinois, United States of America) infestation, and were reared under 71 

quarantine (Canadian Food Inspection Agency authorisation WA-2013-017) at the Insect 72 

Production and Quarantine Laboratory at the Great Lakes Forestry Centre (stock number: 73 



Glfc:IPQL:AglaUIC01; Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada) (Roe et 74 

al. 2018). We reared larvae at 25 ºC under constant darkness for 10 weeks and then exposed them 75 

to 7 ºC to induce a developmental arrest (Keena and Moore 2010). We sampled all larvae during 76 

this developmental arrest. We dissected live larvae at the Great Lakes Forestry Centre and freeze-77 

killed larvae at the University of Western Ontario in London, Ontario. Freeze-killed larvae had 78 

been flash-frozen in liquid nitrogen at the Great Lakes Forestry Centreand thereafter stored at -80 79 

°C until shipping to the University of Western Ontario on dry ice. 80 

 81 

External larval anatomy 82 

Asian longhorned beetle larvae are large, reaching up to 50 mm in length and weighing more 83 

than 1 g (Keena and Moore 2010). The external anatomy of the cylindrical, cream-coloured larvae 84 

(Fig. 1) has been described in detail elsewhere (Cavey et al. 1998) and is similar to that of other 85 

cerambycid larvae (Svacha and Lawrence 2014). The head is heavily sclerotised, prognathous, and 86 

partially retracted. The prothorax (Fig. 1: t1) is expanded relative to the mesothoracic and 87 

metathoracic segments (Fig. 1: t2 and t3) and has a partially-sclerotised pronotum. The 88 

mesothoracic spiracle is well developed and there are functional spiracles on the first eight 89 

abdominal segments (Fig. 1: a1–a8). The larvae lack both thoracic legs and abdominal prolegs: the 90 

virtual absence of thoracic legs distinguishes Lamiinae from other cerambycid subfamilies which 91 

(except for some Cerambycinae) have segmented legs.  92 

 93 

Haemolymph extraction 94 

Prior to dissection, we punctured the anterior edge of the prothoracic shield cuticle of live 95 

larvae with a 22-gauge 1-inch needle (Thermo Fisher Scientific; Sunnyvale, California, United 96 



States of America) to create a bleeding wound (Fig. 2). We held the larva over a 1.5-mL tube to 97 

collect the haemolymph. The total volume of extracted haemolymph varied from 90–300 μL 98 

among individuals due to variation in larval size. We centrifuged the collected haemolymph for 3 99 

seconds at 2000 × g to separate the haemolymph (infranatant) from lipids (supernatant) and other 100 

debris (high-density fraction). We used this low spin force to avoid separating haemocytes from 101 

the plasma of the haemolymph. We aliquoted known quantities of haemolymph for biochemical 102 

analyses into 1.5-mL microcentrifuge tubes and flash-froze them in liquid nitrogen. Evaporation 103 

should be minimised for some applications, such as measuring haemolymph osmolality. In these 104 

cases, we covered the haemolymph with a layer of mineral oil (M5904, Sigma-Aldrich,Oakville, 105 

Ontario, Canada) before freezing to reduce evaporation. Haemolymph will begin to melanise after 106 

15 minutes (Fig. 2B), so it must be processed quickly. Because freezing damages tissue and 107 

perturbs homeostasis, hemolymph from previously-frozen larvae is probably not physiologically-108 

relevant, so while extracted hemolymph can be frozen, we do not recommend extracting 109 

hemolymph from previously-frozen larvae. 110 

 111 

Internal anatomy and dissection 112 

Larval dissection. We dissected larvae in a dark-bottomed Sylgard-lined dish (Living Systems 113 

Instrumentation; Saint Albans City, Vermont, United States of America) that was deep enough 114 

(approximately 3 cm) to submerge the entire body in dissection media of choice (examples 115 

below). We pinned the larvae through the sides of the prothorax (Fig. 1: t1) and the last 116 

abdominal segment (Fig. 1: a10) to hold it ventral side-down with the body straight and the 117 

cuticle taut. We then cut through the cuticle along the dorsal midline anteriorly using 118 

microscissors held with the blades angled dorsally to avoid puncturing the gut. We spread the 119 



body walls laterally with 8–10 additional pins to open the body cavity and expose the internal 120 

organs (Fig. 3). To relax the tissues for easier dissection, frozen larvae were thawed and 121 

submerged in an aqueous solution chosen based on specific downstream needs (e.g., water, 122 

Ringer’s, or insect saline). Submerging fresh (unfrozen) specimens entirely in solution caused 123 

the fat body to dislodge and obscure other tissues, therefore we pipetted 1–2 mL of an aqueous 124 

solution (as above) into the opened body cavity to wash away the fat body and relax the tissues 125 

of fresh specimens. We placed sampled tissues in a drop of fresh saline on a sterile Petri dish and 126 

cleared the samples of fat body and large (readily visible) tracheae and nervous tissue prior to 127 

flash-freezing in microcentrifuge tubes. 128 

 129 

Fat body, Malpighian tubules, and gut. The fat body occupies much of the larval internal 130 

cavity and obscures many internal organs, although the gut (orange or green in colour) is 131 

typically at least partly visible. We collected fat body samples from three areas: the lateral 132 

regions of the prothorax (Fig. 1: t3-a1); posterior midgut (Fig. 1: a4-a5); and hindgut (Fig. 1: a7-133 

a9). We removed a total of approximately 300–500 mg for metabolite analysis, then removed 134 

and discarded all remaining fat body (an additional 300 mg could easily be collected from a 135 

medium-sized larva). Removing the remaining fat improves visibility of the gut and other organs 136 

(Fig. 4).  137 

We collected the Malpighian tubules prior to removing the gut. The Malpighian tubules (which 138 

may be entangled in tracheae) attach at the bulbous midgut-hindgut intersection (Fig. 5). Because 139 

cerambycid larvae have cryptonephridial Malpighian tubules, we collected the free regions of the 140 

tubules prior to their entrance into the rectal wall. At this stage of the dissection there are critical 141 

differences between fresh and freeze-killed specimens. For freeze-killed larvae, the gut may be 142 



pinned to one side away from the body to expose and isolate the Malpighian tubules. Multiple 143 

tracheae must be severed to liberate the gut, and this should be done carefully to avoid damaging 144 

the entwined Malpighian tubules (Fig. 5). Note that frozen larvae have white, rather than yellow, 145 

Malpighian tubules. Although the Malpighian tubules and tracheae both appear white in frozen 146 

larvae, the Malpighian tubules can be distinguished by their opaque, slightly flattened and 147 

repeatedly curved (bumpy) appearance, while the tracheae, being internally supported by the 148 

cuticular taenidia (visible with specific lighting and/or higher magnification), appear cylindrical, 149 

hollow, shiny, and without repeated curves (Fig. 5). Although we could not pin the extremely 150 

fragile midguts of fresh larvae to the side, the Malpighian tubules of fresh larvae were bright 151 

yellow and therefore easily distinguishable from the tracheae. We used fine forceps to sever the 152 

Malpighian tubules from the base at the hindgut-midgut intersection.  153 

Morphological differences between the midgut and hindgut are clear in both fresh and frozen 154 

specimens; the junction between the gut regions is identifiable by a decrease in diameter, 155 

attachment of Malpighian tubules (Fig. 5) and (potentially) a change in colour (Fig. 4). To collect 156 

the hindgut, we severed the midgut-hindgut junction with microscissors. We sampled the posterior 157 

midgut by collecting a 2.0–2.5 cm section of gut anterior to the midgut-hindgut junction. After 158 

dissecting each gut section, we cut open the section, removed the solid contents (food bolus) with 159 

forceps, and then rinsed the tissue with fresh insect saline (note that a portion of the gut luminal 160 

microbiota will likely remain in the gut folds). Inclusion of the gut contents for downstream 161 

analyses (e.g., microbiome; Scully et al. 2014) can be achieved by clamping the gut closed at each 162 

end prior to severing the tissue (see MacMillan and Sinclair 2011).  163 

 164 



Muscle. Large muscle bundles are found in the prothorax and attached to the body wall of each 165 

thoracic and abdominal segment and are among the easiest tissue to sample.  We sampled muscle 166 

bundles within the prothorax (i.e., the main dorsal head retractor and pharyngeal muscles) (Fig. 6). 167 

These firm, striated muscles are easily distinguishable from other musculature in both fresh and 168 

frozen individuals. We used forceps or microscissors to remove prothoracic muscle (making cuts 169 

away from the midline), being careful to avoid damaging the nervous tissue such as the 170 

supraesophageal ganglia or nerve cord along the midline (see below). 171 

 172 

Supraoesophageal ganglia. The brain (supraoesophageal ganglia) is comprised of two lobes 173 

placed above the oesophagus within the sclerotized cranium, which is retracted beneath the 174 

pronotum (Fig. 7). We used the oesophagus as a guide to locate the brain. First, we carefully 175 

exposed the oesophagus by pushing the posterior cranial margin up and forward. This helps to 176 

expose the brain, allowing access to it through the occipital foramen. To extract the brain, we 177 

gently severed the circumoesophageal nerve ring with microscissors or forceps and removed the 178 

brain with forceps.  179 

 180 

Discussion 181 

 There are more than 36 000 described Cerambycidae species (Monne et al. 2017). Consistent 182 

dissection approaches, such as those outlined here, should facilitate tissue-specific physiological 183 

and molecular research for Asian longhorned beetle and related cerambycids even for non-184 

morphologists. The large size of Asian longhorned beetle larvae allows tissue harvesting for 185 

multiple purposes (e.g., samples destined for both physiological assays and genotyping), providing 186 



an opportunity to associate physiology with population genetic information; an approach that can 187 

inform mechanistic species distribution models for invasive species (Buckley et al. 2010).  188 

 Haemolymph collection is perhaps the most time-dependent component of the protocol we 189 

describe. Melanisation in Asian longhorned beetle is fairly fast, so haemolymph should be 190 

sampled, processed, and stored within 15 minutes. Haemolymph samples destined for assays such 191 

as haemocyte counts or metabolite concentrations can be flash frozen in liquid nitrogen. For other 192 

downstream measurements (e.g., haemolymph osmolality), it is necessary to store the samples 193 

under mineral/immersion oil or in a capillary tube to prevent evaporation. Note that freezing 194 

disrupts cellular integrity, thus haemolymph collected from previously frozen specimens may 195 

contain products from ruptured cells of various tissues. One potential solution to this problem 196 

would be to centrifuge at a higher speed to remove cells and large cellular debris.  197 

 We expect this protocol to be generally applicable throughout Cerambycidae, although species-198 

specific differences in tissue size and appearance are likely. For example, because cerambycid 199 

larvae range from approximately 5–200 mm in length (Lawrence 1991) we expect that tissues of 200 

smaller individuals may be difficult to dissect and differentiate, and may not yield sufficient 201 

material for some downstream applications (e.g., RNA-seq). In such cases, tissue samples from 202 

multiple individuals can be pooled. Larval morphology among beetle families can vary 203 

significantly, however the methods outlined here should be generalisable to families with similar 204 

morphology to Cerambycidae. 205 

 206 
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Figure Captions 330 

 331 

Figure 1. External larval anatomy of Anoplophora glabripennis. A, Dorsal view of the head (h), 332 

pronotum, thoracic segments (t1–3), and abdominal segments (a1–10) B, lateral view. 333 

 334 

Figure 2. Haemolymph collection from Anoplophora glabripennis larvae. A, A bleeding wound 335 

was created by puncturing the anterior edge of the prothoracic shield; B, fresh haemolymph (left) 336 

and haemolymph that has melanised following 15 minutes exposure to air.  337 

 338 

Figure 3. Open body cavity. Larval morphology of the head, prothorax, fat body, and gut in 339 

Anoplophora glabripennis. A) Freeze killed; B, fresh killed. 340 

 341 

Figure 4. Gut and associated structures. Foregut (blue), midgut (green), and hindgut (orange) of 342 

Anoplophora glabripennis larvae after removal of surrounding fat body. A, freeze killed; B, fresh 343 

killed. 344 

 345 

Figure 5. Malpighian tubules and tracheae. Morphological differences between the Malpighian 346 

tubules and tracheae in both freeze-killed and fresh-killed Anoplophora glabripennis larvae. The 347 

Malpighian tubules emerge at the midgut/hindgut boundary, appear opaque (cloudy), and are 348 

repeated curved (bumpy). Tracheae appear hollow, shiny, and smooth in appearance. Tracheae 349 

and Malpighian tubules are similar in colour in freeze-killed specimens, but tubules are bright 350 

yellow in colour in fresh-killed larvae. Scale bars are 0.2 mm. 351 

 352 



Figure 6. Muscle. Musculature for both freeze-killed and fresh-killed Anoplophora glabripennis 353 

larvae. A, Head and thorax; B, abdomen. 354 

 355 

Figure 7. Supraoesophageal ganglia. The supraoesophageal ganglia (brain) of Anoplophora 356 

glabripennis larvae lies dorsal to the oesophagus and ventral to the prothoracic muscle. The 357 

ganglion lobes are easily distinguished from surrounding tissue in both frozen and fresh-killed 358 

specimens. A, Frozen specimens, B) fresh-killed specimens. 359 

 360 
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