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Abstract

Regulators’ early intervention is crucial when the financial system is experiencing di�cul-
ties. Financial stability must be preserved to avert banks’ bailouts, which hugely drain gov-
ernment’s financial resources. Detecting in advance periods of financial crisis entails the
development and customisation of accurate and robust quantitative techniques. The goal of
this thesis is to construct automated systems via the interplay of various mathematical and
statistical methodologies to signal financial instability episodes in the near-term horizon.
These signal alerts could provide regulatory bodies with the capacity to initiate appropriate
response that will thwart or at least minimise the occurrence of a financial crisis. This thesis
presents three self-contained but related research undertakings on the subject of inventing
early-warning alert systems described as follows.

Our first research study puts forward a generalised multivariate version of a hidden Markov
model (HMM) that modulates the regime-switching framework. In particular, the bivariate
dynamics of the Financial Stability Index (FSI) and Industrial Production Index (IPI) ex-
hibiting salient features of stochasticity, mean reversion, seasonality, spikes and memory
are accurately and simultaneously captured by the resulting HMM filters. An integrated
early-warning device is constructed, where the FSI and IPI are taken as inputs, to capture
both the financial and business cycles.

In our second research investigation, two di↵erent stochastic models are fused together to
describe adequately the behaviours of four financial-market indices: Treasury bill yield-
Eurodollar spread (TED), US Dollar Index (DXY), Volatility Index (VIX) and S&P 500
bid-ask spread, which are all deemed to mirror the liquidity levels in the financial markets.
A blended multivariate HMM, which drives the regime-switching characteristics of market-
liquidity risk, is proposed to capture the dynamics of four time series. An early-warning
signal extraction method along with its validation diagnostics is devised to generate alerts
prior to or at a relatively early stage of the crisis events.

The third research work in this thesis focuses on the determination of signs for possible cri-
sis episodes that may wreak havoc to financial market or economic stability. Synthesising
stochastic-process modelling, hidden Markov filtering, Random Forest and XGBoost, we
create a hybrid supervised-learning system to detect anomalies in a multivariate time-series
index data. Our methodology is capable of e�ciently and accurately tracing concomitantly
the FSIs of multiple countries and more importantly detecting anomalous FSIs’ behaviour
portending a possible financial instability. Our proposed model is able to generate dynam-
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ically 6-step-ahead binary anomalous-normal classification predictions in a probabilistic
sense. Two projected anomaly-warning signals are constructed to forecast two types of
extremely anomalous events in the near future with a good accuracy.

Keywords: regime-switching model, HMM filtering, financial stability, change of refer-
ence measure, optimal parameter estimation, predictive analytics, machine learning, early-
warning alert system
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Summary for Lay Audience

The wheels of the economy, via a financial system, provide crucial services to meet the
needs of households and businesses. Financial mechanisms under this system enable money
borrowing for house or car purchase, having protected savings and investments for retire-
ment, and getting valuable job trainings, amongst others. Similarly, businesses require
capital to strengthen their production, expand operations, and pay their new and existing
workers’ remuneration. Thus, a stable financial system is so desired as it foments and beefs
up conditions for the prevention of major market-transaction disruptions. Economic partic-
ipants could then raise and operate funds. However, when weaknesses in the system begin
to manifest, problems can pop up and snowball if not controlled, thereby disrupting the
supply of goods and services to the society.

The theme of this research is the development of an early-warning alert system (EWS)
that generates short-term likelihood forecasts of financial-instability episodes. This thesis,
therefore, extends the literature on dynamic modelling that identifies the economic regime
characterised by the presence of threats to financial stability. Through a hidden Markov
model approach in conjunction with the multivariate stochastic processes, filtering-based
calibration, and machine learning techniques, three alert systems are put forward. The
first EWS detects financial-stress occurrences using data related to financial and business
cycles. In the second EWS, we determine the illiquidity regime, where liquidity refers to a
company’s ability to pay its short-term debts and cash out its assets quickly. The market-
liquidity risk is assessed by examining the joint behaviours of four financial-market indices:
Treasury bill yield-Eurodollar spread, US Dollar Index, Volatility Index, and S&P 500 bid-
ask spread. A hybrid methodology is proposed in the third EWS to ferret out anomalies in
the joint evolution of multiple countries’ financial-stability indices.

Our EWSs support the monitoring of financial markets and structures as well as the im-
plementation of regulators’ policy frameworks to mitigate the impact of financial fragility.
This thesis aids in achieving financial stability for the e�cient allocation of resources,
financial-risk management, maintenance of employment rate within the neighbourhood of
the economy’s natural rate, and subduing of relative real or financial asset’s price move-
ments.
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Chapter 1

Introduction

1.1 Research motivation and objectives

A financial crisis, as a result of financial system instability, generates two broad types of
costs: (a) excess investment in some sectors and undue indebtedness and leverage; and (b)
severe recessions induced and exacerbated by financial stress. The global financial crisis
that started in 2007 was an episode of severe financial market stress, which spilled over to
the real economy causing the Great Recession [21]. Considering the great uncertainty of
our times, the quest for systematic and reproducible methods that could detect periods of
financial crisis has become even more pressing.

In the literature of financial crisis analyses, many studies were based simply on one-state
stochastic processes. However, such processes may not be able to capture precisely the
behaviours of the underlying data series, especially during the periods of market uncer-
tainty and abrupt fluctuations. We approach this problem by employing a regime-switching
paradigm to improve model performance not only in achieving very good model fitting to
the data but also in making reliable short-term predictions. The latter consideration plays
an important role in pre-crisis warning signal detection.

The core motivation of this thesis is to build automated systems with the fusion of various
mathematical and statistical models to detect financial instability episodes in advance. This
is for the purpose of providing quantitative insights for practitioners, who could utilise
the models’ results and implications to build concrete regulatory policies that beef up the

1
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resilience of the financial system. The main research objectives are detailed as follows:

(a) Develop stochastic modelling frameworks, with regime switching, to characterise
specific time series related to various financial-stablity problems.

a.1 Embed a multivariate HMM into an Ornstein-Uhlenbeck (OU) model or an OU
hybridised with Geometric Brownian Motion (GBM) modelling frameworks to
capture the dynamics of multidimensional data series.

a.2 Develop self-calibrating recursive filtering algorithms to extract latent informa-
tion (state of the hidden Markov chain and other HMM-related quantities) from
observed multivariate time series.

a.3 Obtain optimal model parameter estimates utilising the Expectation-Maximisation
(EM) algorithm.

(b) Demonstrate the applicability of integrating HMM filtering and other modern ma-
chine learning algorithms to provide dynamic estimated levels of a specific country’s
exposure to financial instability.

b.1 Create a novel ensemble supervised learning model combining HMM-modulated
stochastic model with Random Forests (RF) and XGBoost to delineate multi-
variate time series (Financial Stress Indices).

b.2 Develop training and tuning algorithms to calibrate the hybrid supervised learn-
ing model to generate multiple-step-ahead predictions to pinpoint the potential
anomalous episodes in the future.

b.3 Assess model’s forecasting performance with various diagnostic tools.

b.4 Define tailored metrics to features’ importance analysis to verify the contribu-
tion of HMM filtering in terms of improving the model’s predictive power.

(c) Construct various early warning alarm signals (EWAS) to advance further the pro-
posed models’ capacity for detecting early-stage episodes of financial instability.

c.1 Build specific warning signals primarily based on HMM-state estimates to gives
out alert before or at the early stage of the crisis events by classifying financial
stress and liquidity regimes.

c.2 Create various extreme alert signals utilising outcomes from HMM-related quan-
tities and machine learning algorithms to forecast extreme anomalous episodes
that lead to financial instability.
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c.3 Assess the EWAS’s performance with multiple statistical tools.

1.2 Literature review

This section provides a brief overview of modelling approaches for FSI, market illiquid-
ity and other considerations for the analyses of financial stability. The aim is to provide
an overview highlighting the current state of the art in financial-stability modelling and
implications on the possible directions of this research field.

1.2.1 Background of Financial Stress Index (FSI)

Measuring the degree of financial stability or instability is a complex endeavour consider-
ing the interdependence of internal and external forces acting on the financial system and
economy [32]. Financial stress is defined as the pressure endured by economic agents due
to the uncertainty and changing expectations about possible losses arising from activities of
the financial markets and institutions; see Illing and Liu [49]. The expert-based approach
is the prevalent way of determining periods of systemic financial stress. Although there
are reproducible methods for the detection of financial-stress events, these methods remain
inadequate. There are, nevertheless, growing e↵orts to come up with a single composite
quantitative index that could signify the extent of financial stress.

To buttress with evidence the time periods that are regarded to have undergone systemic
financial stress, an FSI is developed in [49] for the Canadian financial system. The FSI de-
velopment consolidates a survey of responses from senior Bank of Canada’s policy makers
and economists. The aim is to establish a common agreement on which events are causing
financial stress on the Canadian financial market and economy in general. Aided by an
FSI analysis, some key features of the relationships between financial stress and the real
economy are given in Chapter 2.

In [49], it is asserted that there is a manifestation for FSI to be more or less concomitant
of the level of past and current stresses, and the extent of financial system’s stress could be
gauged from it directly. Its predictive power for future stresses is open for consideration
in as much as it could be a useful means in financial-stress assessment and portend early
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stresses in the short-term future as FSI tracks down changes in economic variables. These
would typically align with tight liquidity conditions and asset-price instability.

Duprey et al. [21] argued that the real economic dimension of systemic stress should be
considered in financial-stress modelling. Systemic financial stress episodes are those events
that qualify both as periods of financial market stress and periods of real economic stress. It
was found in [21] that systemic financial stress events have the following recurrent patterns:
(i) financial stress usually occurs first and is followed by real economic stress; and (ii)
when associated with high financial market stress, recessionary periods last on average
seven months longer, and real economic output declines on average by three additional
percentage points.

Duprey et al. [21] constructed a new multi-country level FSI dependent on three core fi-
nancial market segments: (i) equity markets, (ii) bond markets, and (iii) foreign exchange
markets. The details of the FSI’s inputs and construction procedure are elaborated in [21].
In the literature, it is possible to identify those systemic financial stress episodes, which are
consistent with the expert-categorised stress periods. This is attained by using a Markov-
switching and threshold vector autoregressive model to combine FSI with elements quanti-
fying financial stress on business cycle. More specifically, 83% of systemic financial-stress
periods detected in [21] are also identified as crisis states by the experts.

1.2.2 Background of market illiquidity

A liquid asset has the characteristic of being able to be traded quickly at a low cost [36].
In [53], the “low cost" condition is change to “without loss". Tenyakov et al. [76] defined
liquidity in terms of large quantities of an asset that is realisable with its price impacted only
slightly. Furthermore, liquidity relies on funding availability of traders and such funding
depends on the market liquidity of assets [9].

The literature typically links an asset’s market liquidity and traders’ funding liquidity (i.e.,
the ease with which they can obtain funding) via a model. This model explains the proper-
ties of market liquidity, such as (i) drying up suddenly (fragility), (ii) co-movement across
assets, (iii) correlation with volatility, (iv) subjected to “flight to quality”, and (v) movement
in tandem with the market.

The connection between market liquidity and the capital of financial intermediaries and
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their funding constraints was examined by Gromb and Vayanos [38]. Through trading via
intermediaries, who take advantage of price discrepancies when supplying liquidity, trading
gains across segmented markets may materialise to investors. Shocks to asset prices caus-
ing capital losses will increase funding constraints and compel intermediaries to decrease
their positions. Consequently, this further amplifies the shocks and intensifies market illiq-
uidity.

The TED spread, which is the di↵erence between the risky LIBOR rate and the risk-free
US Treasury bill rate, could serve as a measure of market-liquidity level [8]. When the
market is illiquid, banks want to get first-rate collateral, which makes holding Treasury
bonds more attractive and this then decreases the Treasury bond rate. On the other hand,
banks charge higher interest for unsecured loans to compensate for the credit risk, which
pushes up the LIBOR rate. Therefore, TED spread widens in times of liquidity crises.

Bid-ask spread is another intuitive and popular measure of illiquidity; it is defined as the
di↵erence between the quoted ask and bid prices. Tenyakov et al. [76] pointed out that
the S&P 500 bid-ask spread metric is able to capture the illiquidity episodes where TED
spread failed to do so. In this study, we investigate the aggregate spread index based on the
evolution of the S&P 500, which as stated in [76] contains at least in part the liquidity level
of the stock market.

A positive correlation between illiquidity and volatility is another finding in many studies
in the literature. Kyle [55] and Karpo↵ and Walkling [52] measured the illiquidity of
stocks assuming that it has a positive correlation to price volatility and a negative one
to the price level, market capitalisation, and number of shares. Vayanos and Wang [80]
explained that liquidity suppliers who trade high-volatility assets are exposed to more risk
and possibly to situations with more asymmetric information. Therefore, they require a
large price movements to absorb liquidity shocks, which means that these shocks have huge
price impact and cause wide transitory deviations between price and fundamental value.
Hauser and Kedar [44] showed that liquidity facilitates a large share redistribution across
agents causing changes in average risk aversion, which increases Sharpe-ratio variability,
and hence, stock return volatility.

The VIX 1 provides an instantaneous measure of the future degree of volatility and market

1The Chicago Board Options Exchange (CBOE), defines the volatility index (VIX) as an up-to-the-minute
market estimate of expected volatility that is calculated based on real-time S&P 500 index option bid-ask
quotes.

http://www.cboe.com/products/vix-index-volatility#category.name
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uncertainty. The index has been utilised to gauge the level of investors’ risk aversion or
market sentiment; see Brunnermeier et al. [10] and Bekaert et al. [4], and it has also a
negative relation with stock returns as documented by Giot [35] and Whaley [85]. Tenyakov
et al. [76] found that VIX is capable of capturing some periods of market illiquidity that
were not picked up by the TED spread.

Smales and Kininmonth [71] provided empirical evidence on the existence of a nexus be-
tween stock market returns, which are related to investors’ sentiment, and the FX markets.
It is pointed out in [71] that currency investments tend to depreciate when there is an in-
crease in investors’ fear. This disquieting response arises from the financial system’s liq-
uidity severely a↵ected for instance by the 2008 collapse of Lehman Brothers and the 2012
European sovereign debt crisis. Zapatero [93] illustrated that in fully integrated markets,
the volatility of the exchange rate is explained by the volatility of the stock markets of the
two countries concerned. Thus, understanding the behaviour in the FX market is important
to measure market illiquidity. An important quantity is the DXY, which is a measure of the
value of the US dollar relative to the value of a basket of currencies of the majority of the
US’s most significant trading partners. Therefore, the DXY could mirror market illiquidity
as it contains information regarding investors’ expectation of the FX market. For additional
discussion of DXY, see ICE: U.S. Dollar Index Contracts.

1.2.3 Implementations of HMM in finance and economics

Shifting structural regimes is a widely observed phenomenon in financial economics. Brun-
nermeier and Pedersen [9] described the relationship between volatility and speculators‘
positions through the so-called “margin spiral", which is a characterisation of a market that
switches between two equilibriums (or regimes). For these regimes, one is the low-liquidity
equilibrium with high volatility and reduced positions, and the other is the high-liquidity
equilibrium with low volatility and increased positions.

A regime-switching-based technique is suited for modelling an evolving economic envi-
ronment assumed to switch amongst di↵erent regimes. Such a technique has the capability
of clinching changes in economic states by allowing model parameters to change stochasti-
cally. Ichiue and Koyama [48] proposed a regime-switching model to probe how exchange
rate volatility and depreciation of low-interest-rate currencies are related to each other. In
Afonso et al. [1], a time-varying parameter modelling approach is applied to determine the
shifts in the pricing regime in the sovereign bond markets of the eurozone area. A regime-

https://www.theice.com/publicdocs/futures_us/ICE_Dollar_Index_FAQ.pdf#category.name
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switching mechanism could be embedded in models as shown in Duprey et al. [21]. The
intent is to identify the states in the individual or joint dynamics of the data series in con-
junction with the detection of financial and business-cycle turning points.

An HMM is a doubly-embedded stochastic process comprised of an observation series and
an underlying hidden process delineated by its number of states and transition probabilities
or intensities. Moreover, an HMM is the building block of a regime-switching-based tech-
nique. This technique pins down some underlying processes in finance or economics where
they primarily evolve with the random shifts of their statistics (e.g., mean or variance)
amongst di↵erent states. Thus, the HMM framework o↵ers flexibility that allows structural
regimes, which are governed by the location, scale and shape parameters of a distribution,
to shift stochastically over time. Such a framework is suited in capturing widely observed
phenomena in finance and economics. The Markov-switching methodology in economics
could be traced back to Hamilton’s work [41], with the static estimation of the model ad-
dressed. The Markov-switching model designed mainly to describe structural changes in
time series aims to (i) di↵erentiate regimes of the economy and (ii) estimate the probability
of being in an expansion state or contraction state.

The parameters of an HMM could be estimated based on the observed data series unveil-
ing the dynamics of the driving but unobserved Markov chain. Thus, it is necessary to
devise optimal, e�cient and self-updating estimation techniques. This kind of estimation
for the model parameters and Markov chain’s unobservable state, as expected, presents
some challenges both from the practical and mathematical standpoints. In a comprehen-
sive work, Elliott et al. [25] made significant landmarks in the estimation methodology
under an HMM-based modeling framework via the change of measure technique for model
identification with the processing of data by batches. The HMM-based technique provides
directly immediate recursive filters for the estimates of model parameters without stipu-
lating a priori the dynamics of the observation series other than to say that the observed
process is governed by a Markov chain. The recursive filtering, which gives rise to a self-
calibrating model, is an innovation vis-à-vis models in the past that are heavily dependent
on the static model fitting approach of maximum likelihood estimation [59]. Therefore, the
capacity to extract information in order to provide optimal model parameter estimates, by
filtering out the noise from the data set, is the dominantly superior feature of HMM-based
methods.

Recent research progress in this HMM filtering framework highlights various implementa-
tions in the areas of finance and economics. Elliott et al. [26] introduced an HMM approach
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in describing the short-rate process and filtering methods were applied to obtain optimal
estimates of the parameters. In Elliott and Mamon [24] a Vasiček model is presented in
which the mean-reverting level depends on a continuous-time Markov chain. The optimal
filtering of log returns of commodity prices was proposed in Mamon et al. [59] whereby
both the mean and volatility are modulated by an HMM with finite state space. Erlwein
et al. [28] built investment allocation strategies relying on HMM filtering approaches. A
model for the evolution of arbitrage-free heating oil futures prices under a HMM regime-
switching framework is given in Date et al. [17]. Xiong and Mamon [92] illustrated that
an Ornstein–Uhlenbeck (OU) process, driven by a hidden Markov chain (HMC) to model
both the mean-reversion and stochasticity, could be utilised to model the evolution of daily
average temperatures for the analysis of weather derivatives.

A blended Kalman and HMM multi-regime dynamic filtering approach was proposed in
Tenyakov et al. [74] to provide a powerful method for pairs-trading actualisation. Xi
and Mamon [88] put forward a mean-reverting interest rate model whose mean-reverting
level, speed of mean-reversion, and volatility are all modulated by a higher-order HMM
(HOHMM). In Xiong and Mamon [91], an Ornstein–Uhlenbeck (OU) process modulated
by a higher-order hidden Markov chain (HOHMM) was used to model the evolution of
daily average temperatures (DATs). Erlwein et al. [29] employed an OU process with that
HMM driven parameters as well to model the dynamics of electricity spot prices. To assess
the levels of market and funding liquidity risks, Tenyakov et al. [76] introduced a multi-
variate HMM-embedded OU process. In Siu and Elliot [70], the valuation of American
options was discussed in an HMM with jump-di↵usion framework, where the dynamics of
a latent economic state process over time is captured by a continuous-time hidden Markov
chain with finite-state. Mamon et al. [60] proposed an integrated pricing framework for
a GMMB focusing on segregated fund contracts where the stock index, interest rate, and
mortality rate are driven by HMMs. In Chen et al. [14], A Markov-switching vector au-
toregression (MS-VAR) model with parameters modulated by a hidden Markov chain was
put foward to delineate the causal relationship between renewable-energy prices and eco-
nomic growth. Xiong and Mamon [90] proposed a multi-dimensional HOHMM online
filtering framework to capture the dynamics of salmon futures prices. In Xiang et al. [89],
a Markov-switching model (MSM) capturing di↵erent economic regimes to model the spot
price in the fishing industry was compared with a multi-factor model (MFM) with three
correlated stochastic factors. The MSM gives more accurate results in terms of parameter
estimation whilst the MFM outperforms the MSM under some metrics related to goodness
of fit and model complexity. Mamplata et al. [61] developed a generalised multivariate
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HMM model whose parameters are estimated recursively then utilised to test several dy-
namic investment strategies on four precious metals.

1.2.4 Implementations of machine learning in financial instability de-
tection

Machine learning algorithms could be divided into two categories: supervised learning and
unsupervised learning. The aim of supervised learning is to predict the value of a target
variable based on some given input features. The supervised learning process is guided by
the target variable. In unsupervised learning, the target variables are either unavailable or
unobservable and the task is to describe particular associations and patterns, i.e., how the
data are organised or clustered amongst a set of input features [43].

In machine learning, an ensemble method combines multiple predictors to obtain predic-
tive modelling performance that is better than simply using a single-component modelling
algorithm. Random forests (RFs) [7] are an ensemble machine learning framework for
classification and regression via the construction of multiple decision trees. The RF’s have
become one of the most favoured supervised-learning models due to its considerable advan-
tages, which are: (i) notable accuracy, (ii) robustness to outliers and noise, (iii) ease of use,
and (iv) availability of internal estimates of error and variable importance [7]. In addition,
the model has strong immunity from overfitting (see [7] [43]), especially for classification
problems [43].

Owing to its superiority as pointed out above, an RF is widely employed as a predic-
tive model to solve various regression and classifciation problems in time series analysis.
Tyralis and Papacharalampous [78], Karasu and Altan [51] and Hao et al. [42] found that
the predictive error could be reduced by selecting features using an RF on di↵erent time-
series data sets.

Boosting is another powerful learning-ensemble algorithm that aims to convert a set of
weak learners, which could only extract a small amount of information, into a strong learner
[68]. The weak learners are weighted in some way related to their accuracy. The weights
are updated after a weak learner is added. Eventually, the final model is established by
weighting all the component learners based on their performance. The final result of the
boosting model is obtained by averaging and counting votes in the solutions to regression
and classification problems, respectively.
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XGBoost (Extreme Gradient Boosting) is based on a gradient-tree boosting [31] and en-
tails a numerical optimisation approach to minimise the loss function via the addition of
trees in the gradient-descent algorithm. It is a scalable end-to-end boosting system, which
is widely recognised by data scientists to achieve state-of-the-art results and outperforms
many other competing models tackling various machine-learning challenges [13]. The fun-
damental idea of XGBoost [13] is to predict the sum of scores from multiple classification
and regression trees (CARTs) considering that one tree is usually not capable of capturing
su�cient information from the data. XGBoost uses a tree ensemble model that consists of
a group of CARTs [6]. More specifically, new trees are built and trained on the errors of
that previous model so that more importance are given to the observations in which existing
learners were misclassified. A strong learner is updated by adding a new trained tree that
generates a new prediction, whereby each tree’s contribution is determined by minimising
the overall error of the strong learner.

XGBoost became popular in tackling various finance and economics related problems.
In Basak et al. [3], it was found that models based on XGBoost and RFs are able to
achieve high-accuracy predictions of the stock-price movements’ direction in the medium
to long term. Nobre and Neves [64] constructed an automated stock-trading system which
combines Principal Component Analysis (PCA), Discrete Wavelet Transform (DWT), XG-
Boost and a Multi-Objective Optimisation Genetic Algorithm (MOO-GA).

Some researches focusing on financial stability use machine-learning algorithms to build
early-warning models to predict the occurrence of a financial crisis. Duttagupta and Cashin
[22] utilised a Binary Classification Tree (BCT) model to investigate banking crises in 50
emerging markets and developing countries. An early-warning model is constructed with
Random Forests in [2] to predict systemic banking crisis to financial stability. Ward [83]
found that the out-of-sample classification performance of the banking crisis indicator con-
structed with the RF outperforms that of the logit models when tested on a long-run multi-
ple countries data set. Casabianca et al. [12] developed an early-warning system to detect
banking-crisis episodes with Adaptive Boosting (AdaBoost) which is able to obtain better
out-of-sample performance than the logit models. An early-warning system, which is cre-
ated in Fioramanti [30] using artificial neural network, surpasses the traditional parametric
models in terms of prediction performance in identifying sovereign-debt-crisis episodes.

When dealing with real life-data, HMM could also be employed as a statistical learning
model to make classifications on time series according to its estimated parameters. In Li
et al. [56] for instance, an HMM-embedded device was developed to detect anomalies
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in multivariate time series. In financial economics, where the manifestations of irregular
or anomalous events are not apparently visible, an HMM-based model is a beneficial tool
in the analysis of pertinent data. In Cao et al. [11], for example, an HMM with wavelet
transformations and gradients was utilised to detect price manipulation activities in the
stock markets.

1.3 Structure of the thesis

The remaining parts of this thesis are organised as follows. Chapter 2 presents the results of
a research study, where a hybrid bivariate OU-GBM regime-switching model is pioneered
with parameters driven by a hidden Markov chain to describe the features of the FSI and In-
dustrial Production Index (IPI). We create an early warning device for financial crisis based
on the HMM filtering approach. In Chapter 3, we employ a 4-dimensional blended HMM
to evaluate the market liquidity by capturing the dynamics of 4 indices of the financial mar-
kets. An early-warning system (EWS) relying on the HMM-state estimates and the related
statistical assessment on its capability of detecting financial instability are demonstrated.
Chapter 4 introduces a hybrid supervised learning device which integrated stochastic mod-
elling, hidden Markov model, Random Forest and XGBoost to detect anomaly episodes of
multiple financial stress indices. We propose two early alert signals with outcomes from
HMM filters and XGBoost classier to identify extreme anomalous episodes. Lastly, a sum-
mary of research contributions and directions of future work are provided in Chapter 5.
The contents of Chapters 2-4 are briefly presented below.

1.3.1 Online estimation for a predictive analytics platform
with a financial-stability-analysis application

An online parameter estimation via filtering recursions is constructed to support a data-
analytics scheme in the predictive domain. Multivariate financial market indices or signals
revealed in real time are used in our numerical implementation. This work contributes to
the analysis and forecasting of financial crises in an environment that evolves dynamically.
In particular, we capture the regime-switching characteristics of the FSI and IPI, designed
to detect periods of financial crisis. We integrate two di↵erent stochastic models for FSI
and IPI deemed to mirror the systemic financial stress levels in the financial and business
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cycles, respectively. The joint dynamics of the FSI and IPI, exhibit stochasticity, mean
reversion, seasonality, and occasional jumps are identified in the most e�cient way. All
parameters are modulated by a discrete-time hidden Markov chain that switches between
economic regimes reflecting various interacting economic forces. Through change of refer-
ence probability technique, adaptive multivariate filters are derived which in turn provides
online optimal parameter estimates. Historical Canadian economic-based FSI and IPI are
examined and an early-warning signal extraction method is put forward to generate alerts
at the early stage of some crisis events. Our modelling approach captures the empirical
characteristics of FSI and IPI as well as provides auspiciously early warnings for episodes
of systemic financial crisis.

1.3.2 An analysis and forecasting of financial market liquidity regimes

A multivariate HMM-based approach is developed to capture simultaneously the regime-
switching dynamics of four financial market indicators: Treasury-Euro Dollar rate spread,
US dollar index, volatility index and S&P 500 bid-ask spread. These indicators exhibit
stochasticity, mean reversion, spikes and state memory, and they are deemed to drive the
main characteristics of liquidity risk and regarded to mirror financial markets’ liquidity
levels. In this chapter, an online system is proposed in which observed indicators are pro-
cessed and the results are then interfaced with an advanced alert mechanism that gives out
appropriate measures. In particular, two stochastic models, with HMM-modulated param-
eters switching between liquidity regimes, are integrated to capture the evolutions of the
four time series or their transformations. Parameter estimation is accomplished by deriving
adaptive multivariate filters. Indicators’ joint empirical characteristics are captured well
and useful early warnings are obtained for occurrence prediction of illiquidity episodes.

1.3.3 A multivariate-index-driven anomaly detection system with su-
pervised learning

We develop a hybrid supervised learning system to detect anomalies in a multivariate time-
series index data. Our focus of application is the determination of signs for possible crisis
episodes that may wreak havoc to financial market or economic stability. Our proposed
statistical-computing approach synthesises stochastic process modelling, hidden Markov
filtering, Random Forest and XGBoost. Such an approach is capable of e�ciently and
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accurately tracing simultaneously the financial stress indices (FSIs) of multiple countries
and more importantly identifying anomalous FSIs’ behaviour that signals an impending
financial instability. We show that our method is capable of dynamically making 6-step-
ahead binary anomalous-normal classification predictions in a probabilistic sense for the
benefit of industry practitioners and regulators. Our method, which also gives rise to an
early-warning system, is benchmarked with other alternative methods and its advantage is
highlighted via various model validation measures.



Chapter 2

Online estimation with predictive
analytics for financial stability analysis

2.1 Introduction

2.1.1 Motivation

The prediction of financial crises has garnered much attention from researchers and in-
terdisciplinary methodologies have been employed in an attempt to explain, forecast, or
suggest remedies to deal with the presence of financial stress. Our motivation is the early
detection of financial-stress episodes, which is crucial for bankers and regulators to allevi-
ate the shock brought about by financial crises. We aim to provide continuity and respond
to such a research theme of developing approaches and strategies geared towards strength-
ening global financial stability. In this chapter, an early-warning predictive analytics system
is developed to assist in detecting future periods of financial instability; in so doing, certain
mitigation measures could be put in place in advance. It is also our intention to showcase
the considerable potential impact and influence of powerful techniques in systems and con-
trol theory to deal with contemporary challenges in economics and finance such as those
highlighted in Imanov [50] and Li and Zhang [57]

In the context of our exposition, we define financial stress as the force borne by economic
agents due to uncertainty and changing expectations concerning possible losses on activi-
ties occurring in the financial markets and institutions; see Illing and Liu [49]. The global

14
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financial crisis that started in 2007 was a period of “systemic" financial market stress, which
spilled over to the real economy causing the Great Recession. A discrete-event dynamic
system is one paradigm in mitigating financial instability, and the pursuit of a solution plat-
form that incorporates information streaming in real time, similar to the concept in Murao
et al. [63], is paramount. Early detection of financial-stress episodes is crucial for bankers
and regulators to alleviate the shock brought about by financial crises. The expert-based
approach is the currently prevalent way of identifying systemic financial-stress episodes;
there are reproducible methods for the detection of financial-stress periods but they remain
inadequate; refer to Duprey et al. [21] for further discussion. Considering the huge un-
certainty of our times, the quest for objective and quantitative methods that could identify
occurrences of systemic financial stress, which is usually di�cult to pinpoint and classify,
has become even more pressing (cf Liang [58]).

2.1.2 Modelling crisis episodes via FSI and IPI

To model and forecast crisis episodes, we consider the Financial Stress Index (FSI) and
Industrial Production Index (IPI). Both the FSI and IPI are the primary components of
our data series as previous research suggest they have the capability to link real economic
turbulence and the instability in financial cycle. An FSI is developed in Illing and Liu
[49] to capture epochs of systemic financial stress for the Canadian financial system. The
development of FSI comes from a survey of senior Bank of Canada policy-makers and
economists aimed to establish a consensus on which events have been the most stressful for
Canadian markets over the past 25 years. The literature also indicate some key features of
the relationships between financial stress and real economy. These include the findings that
(i) real economic behaviour can be altered su�ciently to have adverse e↵ects on the real
economy if financial stress is systemic; (ii) some measures of confidence for business cycle
demonstrates stronger relationships with the FSI during recessions, but do not necessarily
appear to be strongly coincident with major financial stress events; and (iii) the sampling
frequency and timing of data of business confidence may a↵ect these results.

It is also emphasised in [49] that the FSI pins down the contemporaneous level of stress and
provides an ordinal measure of stress in the financial system. However, it is not expected
to have a strong predictive power for future stresses or crises. Hence, FSI is viewed as
a preliminary attempt to quantify the stress spectrum. Yet, it could be more informative
in developing an early warning indicator model using the FSI to explain changes in real
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economic variables. Financial stress impairs not only the financial system but also lead
to significant losses in the real economy. For example, it could result to tight liquidity
conditions and asset-price instability, both of which cause an increase in the cost of capital
and reduce private investment and consumption.

Duprey et al. [21] argued that the real economic dimension of systemic stress should be
considered in financial-stress modelling. Systemic financial stress episodes are those events
that qualify both as periods of financial market stress and periods of real economic stress. It
is asserted in [21] that systemic financial stress events have the following recurrent patterns:
(i) financial stress usually occurs first and is followed by real economic stress; and (ii)
when associated with high financial market stress, recessionary periods last on average
seven months longer, and real economic output declines on average by three additional
percentage points.

2.1.3 Capturing regime-switching features using a hidden Markov model

A one-state stochastic model may not be adequate to describe the behaviour of financial
stress with su�cient accuracy, especially during occurrences of some financial crises. The
introduction of a regime-switching mechanism via an HMM yields modelling flexibility. A
bivariate Markov-switching vector autoregressive (MSVAR) framework is proposed here
to model jointly a newly constructed monthly country-specific FSI and IPI. This is aimed
to identify regimes of systemic financial stress characterised by significant jumps in the
joint dynamics of real economic and financial market stress data proxied by appropriate
indices. The outcome is consistent with many expert-based stress periods in which 83%
of the model-based systemic financial stress periods are also identified as crises by experts
[21].

Methodologies have been developed in order to capture the dynamic behaviour of financial
and economic variables. Typically, Markov chain-driven stochastic models are employed
as framework for pricing financial derivatives under a regime-switching framework; see for
example, Song et al. [72]. But, a regime-switching mechanism could also be embedded in
models to identify states in the individual or joint dynamics of data series to detect finan-
cial and business cycle turning points [21]. A regime-switching-based technique assumes
an economic environment being modelled evolves and shifts between di↵erent regimes.
Such a technique has the flexibility and capability of handling changes in economic states
by allowing model parameters to change stochastically. Davig and Gerlach [18] proposed
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a test of the response of stock prices to Federal Reserve policy shocks using a Markov-
switching framework. Gerdrup et al. [34] introduced a financial stress model with a shock
component driven by a Markov chain. To ensure that reality is modelled more suitably,
a regime-switching model is encapsulated in a hidden Markov model (HMM). That is, an
HMM is a doubly-embedded stochastic process composed by an observation series and
an underlying unseen process defined by its number of states and transition probabilities.
Thus, an HMM has the parameters that change over time in accordance with the dynam-
ics of an unobserved Markov chain but could be estimated. The estimation of HMM is
via filtering methods, whose applications are quite popular in electronics and electrical en-
gineering, physics and statistics (Mamon et al. [59]). Our HMM application to the area
of financial stability modelling is rather new. Markov-switching modelling began with
Hamilton’s research [41], with static estimation of the model addressed, concentrating on
a structural approach to (i) distinguish states of the economy and (ii) infer the probability
of being in a state of expansion or contraction using a hidden Markov chain.

In practice, the data-fitting performance of Markov-switching models is of prime impor-
tance. As the Markov chain is unobserved, it is necessary to devise optimal, e�cient and
self-updating estimation techniques. As can be expected, this kind of estimation for the
model parameters and Markov chain’s unobservable state presents some challenges both
from the practical and mathematical standpoints. In a comprehensive work, Elliott et al.
[25] made significant landmarks in the estimation methodology under a HMM-based mod-
eling framework via the change of measure technique for model identification after pro-
cessing batches of data. The HMM-based technique provides directly immediate recursive
filters for the estimates of model parameters without stipulating a priori the dynamics of
the observation series other than to say that the observed process is governed by a Markov
chain. The recursive filtering, which gives rise to a self-calibrating model, is an innovation
vis-à-vis models in the past that are heavily dependent on the static model fitting approach
of maximum likelihood estimation [59].

Developments in the regime-switching literature typically concentrate on the extension of
the HMM framework to address various problems in quantitative finance, insurance, eco-
nomics, epidemiology, and other branches of the sciences and engineering. Elliott et al.
[26] introduced an HMM approach in describing the short-rate process and filtering meth-
ods were applied to obtain optimal estimates of the parameters. In Elliott and Mamon [24]
a Vasiček model is presented in which the mean-reverting level depends on a continuous-
time Markov chain. The optimal filtering of log returns of commodity prices is proposed
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in [59], whereby both the mean and volatility are modulated by an HMM with finite state
space. Erlwein et al. [28] built investment allocation strategies relying on HMM filtering
approaches. A model for the evolution of arbitrage-free heating oil futures prices under a
HMM regime-switching framework is given in Date et al. [17]. Xiong and Mamon [92]
illustrated that an Ornstein–Uhlenbeck (OU) process, driven by a hidden Markov chain
(HMC) to model both the mean-reversion and stochasticity, could be utilised to model the
evolution of daily average temperatures for the analysis of weather derivatives. A blended
Kalman and HMM multi-regime dynamic filtering approach was proposed in Tenyakov
et al. [74] to provide a powerful method for pairs-trading actualisation. Xi and Mamon
[88] put forward a mean-reverting interest rate model whose mean-reverting level, speed
of mean-reversion, and volatility are all modulated by a higher-order HMM (HOHMM).
In Xiong and Mamon [91], an Ornstein–Uhlenbeck (OU) process modulated by a higher-
order hidden Markov chain (HOHMM) is used to model the evolution of daily average
temperatures (DATs). Erlwein et al. [29] employed an OU process with that HMM driven
parameters as well to model the dynamics of electricity spot prices. To assess the lev-
els of market and funding liquidity risks, Tenyakov et al. [76] introduced a multivariate
HMM-embedded OU process.

2.1.4 Methodology

The overview of our methodology and its rationale are important elements for this re-
search investigation. This work puts forward a self-calibrating bivariate HMM governing
the regime-switching framework, in an e↵ort to extract early-warning signals for possible
future-crisis occurrences. It reinforces research progress in the areas studied in [21] and
[49] and promote similar and related objectives. We shall make use of both the FSI and IPI
to capture, with improved accuracy, the behaviour and features arising from the impact of
systemic financial stress on financial and business cycles. This is important for regulators
who must prepare in advance to maintain financial stability in the regional and global scale.
Noting that the FSI’s constructed in [21] and [49] both have mean-reverting feature, it is,
therefore, reasonable to consider the OU process as a natural candidate model for the FSI
movement. We use a geometric Brownian motion (GBM) to describe IPI’s dynamics as
they are relatively smooth and tend to increase in the long run. In essence, we propose a
hybrid bivariate stochastic process aptly to pin down the main features (e.g., seasonality,
mean-reversion and jumps) of the joint movement of two indices. The FSI and IPI obser-
vations will be used to infer the presence or lack thereof of systemic financial stress, which
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is referred to as financial stress widespread across di↵erent financial markets that can have
particularly serious implications on the real side of the economy. Informational content
is ‘filtered out’ from the observation process to find the ‘true’ state of the hidden Markov
chain, which drives the random switching of economic regimes in discrete time.

In this chapter, we shall demonstrate the change of probability measure technique in es-
timating optimal filters of various quantities pertinent to the calculation of the bivariate
model’s parameters . This is done through the adaptive processing of market signals
(treated as the FSI and IPI series) that will unconceal information about the states of the
financial economy. A self-tuning algorithm is generated, which updates parameters with
the continual arrival of new observed signals (i.e., indices). Our methodology extends the
HMM multivariate results of Elliott et al. [25] and Tenyakov et al. [76] with each univariate
series constituting the entire multivariate set up being di↵erent from each other. This more
flexible modelling set up avoids the forward-backward algorithm typical in most filtering
techniques, thereby entailing much less memory during computation. Other filters (e.g.,
Hamilton-type filters) are computationally intensive to implement because they are based
on static algorithms requiring full reruns involving the original data set every time there
is addition of a few data points, we successfully circumvented the issue of recalculation
involving old data set that keeps getting larger as data collection continues.

2.1.5 Major contributions

To delineate our contributions from the current state of the art in systemic financial stress
modelling, we highlight the following accomplishments in this chapter: (i) Our proposed
approach combining the OU and GBM in an integrated HMM framework is a new attempt
to capture jointly the important stylised properties of bivariate data series, such as mean re-
version, seasonality, and stochasticity, in identifying systemic financial stress episodes. (ii)
Although our methodology is adopted from the literature in Markovian regime-switching
models supporting derivative pricing and risk management, we tailor a particular applica-
tion to financial-stress modelling and analysis. (iii) Theoretical formulation is accompanied
by detailed empirical implementation with model validation diagnostics and some aspects
of inference adressed. (iv) Finally, our empirical work provides an impetus for an HMM-
based early warning system (EWS). This work’s significance hinges to its benefit to central
bankers and regulatory authorities who are on the look out to avert, or at least mitigate, the
e↵ects of future financial crises.
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We note that Hubrich and Tetlow [46] also empirically modelled the interaction between
financial stress and economic dynamics in a Markov-switching framework using the United
States’ FSI, albeit utilising a Markov-switching vector autoregression set up. Our work is
distinct but complements [46] considering our: (a) richly parameterised bivariate model
blending GBM and OU specifications customised to pin down important properties of our
time series data, (b) natural choice of model estimation via the HMM-based online filtering
scheme providing regime-switching parameters as well, and (c) focus on bivariate data
consistent with the principle of parsimony (i.e., choice of simple model specification but
with greatest explanatory power). Additionally, it is observed in [46] that FSI modelling
by some of the twelve Reserve Banks in the US employ principal component analysis to
choose only the relevant variables. Lastly, we leave out other economic variables related
to monetary policy. This is because as the result in [46] shows, conventional monetary
policy is not particularly e↵ective in financial-stress periods; instead, a much more potent
means is to induce a switch in the economy from a high-stress regime to a financially stable
regime.

The structure of this chapter is as follows. Section 2 presents the formulation of the joint
modelling of FSI and IPI with a discrete-time hidden Markov chain governing the model
parameters. In Section 3, we introduce the change of probability measure technique to
derive recursive filtering equations for quantities that are functions of HMM, and carry
out an online parameter estimation. In Details of the numerical implementation of our
proposed model for the bivariate FSI and IPI data sets are given in Section 4. The selection
of the most appropriate model setting is demonstrated in Section 4 by comparing prediction
performance and penalised log-likelihood of di↵erent competing set ups. Furthermore, an
empirical early warning signal extraction method is proposed in Section 5. The last section
summarises and includes some concluding remarks.

2.2 Model construction

2.2.1 The OU process

Suppose Xt is an FSI following the OU process, i.e.,

dXt = ✓ (µ � Xt) dt + �dWt, (2.1)
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where µ is the mean level; ✓ is the speed of mean reversion; and � is the volatility. In (2.1),
Wt is a standard Brownian motion defined on a probability space

⇣
⌦,F X, P

⌘
, where F X is

the filtration generated by Xt.

It is assumed that ✓, µ and � are all positive constants. By Itô’s lemma,

Xt = X0e�✓t + (1 � e�✓t)µ + �e�✓t
Z t

0
e✓sdWs. (2.2)

Discretising the solution in Eq. (2.2), we get

Xtk+1 = Xtke
�✓·�t + (1 � e�✓·�t)µ + �

r
1
2✓

(1 � e�2✓·�t) wk+1, (2.3)

where the �t = tk+1 � tk and wk+1 s IID N(0, 1). The derivation of the second term in (2.3)
is justified by the property of a normal distribution and the Itô’s isometry.

2.2.2 The GBM

Let Qt be an IPI following the GBM dynamics. That is,

dQt = ⌘Qtdt + ⇠QtdBt, (2.4)

where ⌘ is the percentage drift and ⇠ is the percentage volatility. In (2.4), Bt is a standard
Brownian motion defined on a probability space

⇣
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⌘
, where F Q is the filtration

generated byQt. The parameters ⌘ and ⇠ are positive constants. By Itô’s lemma, Eq. (2.4)
has the solution

ln Qt � ln Q0 =
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!
t + ⇠Bt. (2.5)

Let Yt = ln Qt, so that

Yt = Y0 +

 
⌘ �
⇠2

2

!
t + ⇠Bt (2.6)

Discretising Eq. (2.6), by applying the Euler approximation, we get

Ytk+1 = Ytk +

 
⌘ �
⇠2

2

!
�t + ⇠

p

�t · bk+1, (2.7)

where the �t = tk+1 � tk and bk+1 s IID N(0, 1). The third term is obtained by invoking
the properties of a standard Brownian motion.
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2.2.3 Markov chain-governed parameters
For both models of indices, it is realistic to think that their parameter values are time-
dependent. Similar to Zhou and Mamon [95], we regard the states of a Markov chain as
regimes of an economy, or more specifically, financial stress regimes that are dependent on
certain factors causing economic turbulence. Thus, to capture economic regime-switching,
the parameters ✓, µ, �, ⌘ and ⇠ are modulated by a discrete-time Markov chain zk, for
k = 0, 1, . . .. Its state space is finite and it is isomorphic to the canonical basis of RN , which
is the set {e1, e2, . . . , eN}. The vector ei = (0, ..., 0, 1, 0, ..., 0)>, where > denotes the
transpose of a vector, is a unit vector with 1 in its ith component and helps simplify a lot of
algebra in the succeeding calculations. The Markov chain is dictated by the representation

zk+1 = ⇧zk + vk+1. (2.8)

Note that in (2.8),⇧ is a transition matrix and vk+1 is a martingale increment with E[vk+1|F z] =
0, where F z is the filtration generated by z0, z1, z2, . . ..

In particular, the dependence of the parameters on the Markov chain is reflected in the
notations ✓(zk), µ(zk), �(zk), ⌘(zk), and ⇠(zk). Under the one-state setting, the parameters
in the distribution of Xtk+1 are constants over the time interval (tk, tk+1]. For the N�state
setting, we assume that the parameters under the one-state setting depend on a Markov
chain. Hence, the two-dimensional process (Xt, Yt)> can be expressed as

8>>>><
>>>>:

Xtk+1 = Xtke�✓(zk)�t + (1 � e�✓(zk)�t)µ(zk) + �(zk)
q

1
2✓(zk) (1 � e�2✓(zk)�t) wk+1

Ytk+1 = Ytk +
⇣
⌘(zk) � ⇠

2(zk)
2

⌘
�t + ⇠(zk)

p
�t bk+1.

(2.9)

Note that µ(zk) = hµk, zki, ✓(zk) = h✓k, zki, �(zk) = h�k, zki, ⌘(zk) = h⌘k, zki and ⇠(zk) =
h⇠k, zki, where µk = (µk,1, µk,2, ..., µk,N)>,�k = (�k,1, �k,2, ..., �k,N)>, ✓k = (✓k,1, ✓k,2, ..., ✓k,N)>

, ⌘k = (⌘k,1, ⌘k,2, ..., ⌘k,N)> and ⇠k = (⇠k,1, ⇠k,2, ..., ⇠k,N)> are all in RN; and h·, ·i is the inner
product in RN .Write wk := (wk, bk)> with wk and bk are independent for all k = 0, 1, 2, . . .
. Note that all processes in our modelling set up are supported by a complete probability
space (⌦,F , P), where F = F X

_F Q
_F z.

2.2.4 Probability density of observation process

We derive the conditional probability density function of the process (Xtk+1 , Ytk+1)>. Xtk in
Eqs. (2.9) can be written as

Xtk+1 = ↵(zk)Xtk + � (zk) +  (zk) wk+1 (2.10)
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with
8>>>>>>>><
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Eq. (2.10) implies
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For the distribution of Yk+1, we consider
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This implies

Ytk+1

�����Ytk s N
�
Ytk + ⇣ (zk) , ⌫ (zk)

�
. (2.15)

2.3 Filters and parameter estimation

2.3.1 Change of measures

Under the real-world probability measure P, the true state of the underlying Markov chain
zk is neither observed nor measured directly since it is “latent” in the noisy observation pro-
cess with “real world” dynamics given by Eqs. (2.10) and (2.13). Our objective is to “filter”
the noise out of the observation process in the best possible way. Unfortunately, the deriva-
tion of filters under P is not straightforward. Inspired by the approach described in Elliott
et al. [25], we perform a change of probability measure to introduce the the ideal-world
measure P̄ from the real-world probability measure P by invoking the discrete-time version
of the Girsanov’s theorem. Under this ideal measure, the observations are independent and
identically distributed random variables which makes the calculations of conditional expec-
tations manageable. The filters, which are conditional expectations, are then related back
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to the real-world by the use of the Bayes’ theorem for conditional expectation. Following
section 3.4, page 62 of [25], the real-world measure P equivalent to an ideal measure P̄ is
constructed through the Radon-Nikodym derivative

⇤̄k =
dP
dP̄

������
Fk

=

kY

l=1

�̄(X)
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(Y)
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where �(·) is the density function of a standard normal random variable.

2.3.2 Filtering

Let ẑk be the conditional expectation of zk given Fk under probability measure P, i.e.,

ẑk := E
h
zk

���Fk

i
=
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ẑ(1)

k , ẑ(2)
k , . . . , ẑ(N)
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���Fk

i
, (2.18)

where Fk is the filtration generated by the bivariate observation reflecting all information
available up to time k. By the Bayes’ theorem,
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Note that the second expression in (2.20) follows from the fact that
PN

i=1hzk, eii = 1. There-
fore, the conditional expectation of zk has the form

ẑk =
pkPN

i=1hpk, eii
. (2.21)

Following similar principles in [59], define the diagonal matrix
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where Ak,i =
Xk � ↵k�1,iXk�1 � �k�1,i

k�1,i
and Bk,i =

Yk � Yk�1 � ⇣k�1,i

⌫k�1,i
.

For j = 1, 2 . . . , N, we define the following quantities:

G
s, j
k =

kX

n=1

hzn�1, e jihzn, esi (2.24)

O
j
k =

kX

n=1

hzn�1, e ji (2.25)

T
j,(X)

k =

kX

n=1

hzn�1, e ji f (X) (2.26)

T
j,(Y)

k =

kX

n=1

hzn�1, e jig(Y). (2.27)

Equations (2.24) and (2.25) denote the respective number of jumps from state j to s and
the amount of time that the process {zn} occupies the state j up to time k. The quantities
T

j,(X)
k and T j,(Y)

k in (2.26) and (2.27) are auxiliary processes that depend on functions f (·)
and g (·), respectively, of the observation process. In our empirical application, f (·) takes
the form Xk, X2

k and Xk�1Xk whilst g (·) takes the form Yk, Y2
k and Yk�1Yk.

Let Hk be any scalar Fk-adapted process; H0 is F0 measurable. A filter for Hk is defined
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Thus, 81  s, j  N, k = 1, 2, 3. . . , we obtain the filters for the state of the Markov chain,
number of jumps G, occupation time O, and auxiliary process T as follows:

pk = ⇧D(Xk, Yk) pk�1 (2.30)

�(Gs, j
k zk) = ⇧D(Xk, Yk) �(G

s, j
k�1zk�1) + dj (Xk, Yk) hpk, e ji⇡s jes (2.31)
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, j
k�1zk�1) + dj (Xk, Yk) hpk, e ji⇧e j (2.32)

�(T j,(X)
k ( f )zk) = ⇧D(Xk, Yk) �(T

j,(X)
k�1 ( f ) zk�1) + f (Xk) dj (Xk, Yk) hpk, e ji⇧e j (2.33)

�(T j,(Y)
k (g)zk) = ⇧D(Xk, Yk) �(T

j,(Y)
k�1 (g) zk�1) + g(Yk) dj (Xk, Yk) hpk, e ji⇧e j. (2.34)

The derivations of Eqs. (2.30) – (2.34) follow similar steps and techniques applied in [59]
or [25]. It is immediate from Eq. (2.29) that the normalised filter estimates of �(Gs, j

k ), �(O j
k),

�(T j,(X)
k ( f )) and �(T j,(Y)

k (g)) can be determined by summing the components of the vector
expressions given in Eqs. (2.31)–(2.34) and then dividing each of them by the expression
in Eq. (2.30).

2.3.3 Optimal parameter estimates

In this section, we present the optimal estimates for the parameters of our proposed in-
tegrated model using a dynamic maximum-likelihood approach. Since maximising the
likelihood or log-likelihood functions is cumbersome for richer models such as the one in
this chapter, the Expectation-Maximisation (EM) algorithm is utilised; see Elliott and Kris-
namurthy [23] and Wu [86] for a review.
Here, we combine and extend the one-dimensional EM estimations in [59] and Tenyakov
et al. [75] to our multivariate HMM setting, thereby obtaining the optimal model parameter
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estimates below:
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Ô
i
k

(2.37)

⇣̂i =
T̂

i,(Y)
k (Yl) � T̂ i,(Y)

k (Yl�1)

Ô
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The proofs of Eqs. (2.35)–(2.40) are given in the Appendix (Supplementary Material). By
Eqs. (2.11) and (2.14), we get
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Now, we consider the statistical inference of evaluating the variability of the parameter
estimates. Related works on this issue could be found in the results in Xi and Mamon
[88] and Xiong and Mamon [91] where explicit formulae of the Fisher information for
each parameter was derived. The inverse of the Fisher information is used to calculate the
variance associated with the maximum-likelihood estimates. The sampling distribution of
a maximum likelihood estimator is asymptotically normal; see Garthwaite et al. [33], for
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example.
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+ Ôi

k⇣
2
i

⇣
⌫2

i

⌘3

+
2⇣iT̂ i,(Y)

k (Yk�1) � 2T̂ i,(Y)
k (YkYk�1) � 2⇣iT̂ i,(Y)

k (Yk)
⇣
⌫2

i

⌘3

�
Ô
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Suppose H and ⇥ are two vectors corresponding to the vectors of new and original model
parameters, respectively. The Fisher information for H can be computed using the equation
I (H) := �E

h
d2

dH2 log (L (H))
���H

i
. The derivation of the Fisher information involved in

each estimator is straightforward; refer to the Supplementary Material. The results are
summarised in Eqs. (2.42)–(2.47). The Fisher information for the original parameters
can be calculated as I(⇥) = J>I(H)J, where J is the Jacobian matrix with (i, j)th entry
Ji j =

@Hi
@⇥ j

. With the explicit Fisher-information expressions the variance for the estimates ⇥
readily follows, more specifically, I�1 (⇥).
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2.4 Numerical implementation

2.4.1 Preliminary analysis of data for implementation

The model is tested on a bivariate monthly time series covering the period Jan 1980 – Dec
2017. The Canadian FSI metric and data are based on [21] whilst the IPI data are compiled
by Statistics Canada. There are 456 ⇥ 2 data points. The evolution of the data and the
summary descriptive statistics are presented in Figure 2.1 and Table 2.1, respectively. The
FSI is skewed to the right and has a large coe�cient of variation of 1.003. The logarithm of
IPI’s is skewed to the left with a coe�cient of variation of 0.045. The plot of the FSI shows
a cyclical behaviour of the economy, shifting from high financial stress level to lower level
frequently. This phenomenon provides support for using an OU process to describe the
mean reverting feature of the underlying data series.
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Figure 2.1: Evolution of FSI and logarithm of IPI.

Table 2.1: Descriptive statistics of FSI and log IPI

Mean Median Minimum Maximum SD CV Kurtosis Skewness

FSI 0.0909 0.0579 0.0042 0.4650 0.0912 1.003 3.8743 1.9548

Log(IPI) 4.4917 4.5486 4.0307 4.7441 0.2040 0.0454 -1.0316 -0.4954

Given its smaller variation range, the IPI is less volatile than the FSI. It is worth noting
that it takes longer to transit from crisis state to a normal state. As both the mean and
volatility of the IPI are dependent on the value of the index, but without apparent trends
and presence of mean reversion, the geometric Brownian motion is an appropriate model
for this index process. Equations (2.5)–(2.7) show that a Brownian motion with drift is
obtained after applying a log transform on a GBM. The kurtosis of the FSI exceeds the
normal distribution’s by 3.8743; this signifies that the probability mass function of FSI is
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Table 2.2: Least-squares parameter estimation on a particular data segregation.
FSI Overall Jan 82 – Dec 83 Jan 87 – Dec 88 Jan 08 – Dec 09 Jan 05 – Dec 06

crisis regular crisis regular

sample mean 0.0909 0.2563 0.0234 0.2152 0.0114

sample variance 0.0083 0.0222 0.0001 0.0153 0.0001

µls 0.0931 0.2307 0.0998 0.0558 0.0355

✓ls 2.1590 1.6771 2.1844 2.1654 2.2897

�2
ls 0.0022 0.0053 0.0047 0.0007 0.0006

Di↵erence of log IPI Overall Jan 82 – Dec 83 Jan 87 – Dec 88 Jan 08 – Dec 09 Jan 05 – Dec 06

crisis regular crisis regular

sample mean 0.0014 0.002 0.0044 -0.0059 -0.0004

sample variance 0.0001 0.0003 0.0001 0.0002 0.0001

⌘ls 0.0293 -0.0044 0.0413 0.0213 0.0347

⇠2ls 0.0017 0.0029 0.002 0.0013 0.0013

either concentrated around the mean with several values far from the mean or concentrated
in the tails of the distribution; see Moors [62]. On the other hand, the logarithm of IPI has
a negative excess kurtosis, which indicates that its probability mass function concentrates
around the mean with fewer outliers relative to the normal distribution; see Westfall [84].
These facts inspire the use of a regime-switching model for the underlying bivariate data
series; virtually, all distributional shapes can be reproduced by mixtures of distributions
(normal in our case), which is intrinsic to the regime-switching approach.

Table 2.2 displays the descriptive statistics and possible segregations into two states based
on the FSI values. To make the discussion more practical and the mathematics tractable, we
assume that the economy can only have two states - a “crisis" regime associated with ab-
normally high indicator values and a “regular" regime. A transitional state may be created
and could persist over some time due to the weighted combination of volatilities under the
above two regimes. The evolutions of FSI and IPI undergo several regimes characterised
by di↵erent parameter values. This is supported by the estimates for parameters ↵, �, 2, ⇣
and ⌫2 in the possible grouping periods obtained by using a least-squares method in each
designated interval. Then, we recover the model parameters µ, ✓, �2, ⌘ and ⇠2 by the set of
equations in Eq. (2.41) with �t = 1/12.

The preliminary analysis results in Table 2.2 demonstrate possible segregation of the actual
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data into di↵erent states in accordance with the values of the mean-reverting level, mean
reversion rate and volatility for the FSI, and the values of percentage drift and percentage
volatility for IPI. In particular, we see that the FSI has a low mean-reverting speed, high
mean-reverting level and high volatility when the sample mean is high. When the sample
mean of the FSI is low, the estimated mean reversion speed is high, and both the values of
mean-reverting level and the volatility are low.

The logarithm of the IPI has a large percentage drift value when the sample mean of log
returns grows. A decreasing percentage volatility in IPI could be observed due to IPI’s
increasing long-run trend, which makes the ratio between volatility and IPI fall in general
even when the IPI plummets during an economic crisis.

2.4.2 Initial values for the parameter estimation

The implementation procedure starts by selecting initial values for the parameters. Several
approaches have been employed by researchers to find initial parameters for the filtering
algorithms (e.g., Xi and Mamon [88] and Erlwein et al. [29]).

In this chapter, we follow a method based on maximising the log-likelihood function, which
was characteristically found to be e�cient when searching for initial values by Tenyakov
et al. [75] and Xiong and Mamon [91]. Model parameter estimation via the EM algo-
rithm, producing expressions involving the HMM filters, extends the static maximum log-
likelihood method. As noted in Tenyakov et al. [75], the usual log-likelihood maximisation
approach could generate ideal initial parameters to fit the data well; consequently, this leads
to an appreciable stability of the HMM filters.

Xi and Mamon [87] pointed out that, given a data set, if the initial values satisfy the model’s
assumptions, the estimated parameters will converge eventually to some stable level. How-
ever, the speed of convergence could be a↵ected by the initial values. Based on our exper-
iment, the initial values determined by the MLE method provide stability to our parameter
estimation in less than 6 algorithm steps. This is very crucial for a small data set such
as the data series in this chapter. On the other hand, if the initial values are invalid (i.e.,
inconsistent with model’s supposition) ab initio or they are too far from the neighbourhood
of a local maximiser, the implementation will fail or give results that are not interpretable.

In this chapter, we shall apply the maximum-likelihood method on the first 12 points of the
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2-dimensional data set. The aim is to have reasonable initial estimates to achieve a stable
model performance and relative ease of implementation.

When obtaining initial values, it is assumed that the estimates for the true parameter set
⇥ =

n
⇡ ji, ↵, �, 2, ⇣, ⌫2

o
is homogeneous (i.e., the true model parameters stay the same

for data subsets of any size) at least at the beginning. Based on the discussion in Subsection
2.2.4, the log-likelihood function is given by
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Table 2.3: Initial parameter values for the 1-, 2-, and 3-state HMM-based models.

FSI 1-state HMM 2-state HMM 3-state HMM

- State 1 State 2 State 1 State 3 State 2

µinit 0.07683 0.10379 0.05401 0.09844 0.06327 0.05936

✓init 2.27332 2.16877 2.36186 2.1895 2.32594 2.34111

�2
init 0.00013 0.00074 0.00009 0.00055 0.00015 0.00013

Di↵erence of log IPI 1-state HMM 2-state HMM 3-state HMM

- State 1 State 2 State 1 State 3 State 2

⌘init 0.02276 -0.00241 0.03025 -0.00635 0.0196 0.0449

⇠2init 0.00263 0.00294 0.00254 0.00288 0.00287 0.00247

We first find the estimates of the parameters by simply maximising the log-likelihood func-
tion (2.48) under the assumption that the system always operates under a one-state setting
(i.e., N = 1). We employ the function ‘optim’ in the statistical software R to solve the op-
timisation problem. The initial values for parameters of the single-state model are treated
as benchmarks in generating the initial values for frameworks with more than one regime.
All non-zero entries in the transition matrix are set to 1/N in the 2- or 3-state set ups. The
results of the optimisation for the 1-, 2-, and 3-state HMM based models are exhibited in
Table 2.3. In our case, all the initial values of

n
µ, ✓, �2, ⌘, ⇠2

o
for the single-state model

lie between the corresponding estimates for the two-regime-switching model.
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2.4.3 Filtering procedure and results

The filters obtained in Subsection 2.3.3 were implemented under a data-point processing
rather than a batch-processing scheme. Such a processing scheme is a generalisation of
the typical procedure in the previous HMM filtering literature, namely the parameters are
updated sub-optimally using group-data processing. More specifically, one complete algo-
rithm step or algorithm run processes one bivariate data point. At the end of each algorithm
step, new parameter estimates are calculated and they are utilised iteratively as starting
values for the next algorithm step. Each data point in the bivariate data set is fed into the
recursive filtering equations to obtain the best estimates, in the sense of conditional expec-
tation, of various quantities of interest. The dynamics of the estimates are computed by first
generating the estimates for parameters ↵, �, 2, ⇣ and ⌫2. Then, the succeeding estimates
are obtained through the set of equations in Eq. (2.41).

We have a couple of reasons why we adopt the point-by-point filtering method. First, both
the FSI and IPI are monthly data. Thus, it is natural and rational to make the frequency
of the filtering procedure compatible with the frequency of the data compilation. This
compatibility is essential, without introducing any extra noise, to pin down the evolving
major structural breaks. Second, the components of our bivariate time series have di↵er-
ent dynamic features which makes it di�cult to generate filtering results by processing a
batch of data points obtained by a moving window without information loss. Although the
data-point processing for our filtering method results to some variations in the model pa-
rameters estimates, the outputs contain all information about the FSI and IPI fluctuations.
Our method captures well the joint e↵ects of the bivariate time series accurately.

Our filtering procedure makes use of the initial parameters in Table 2.3. The data set
contains 2 columns covering the FSI and log IPI. There are 432 time points considered
in our filtering application. As pointed out in in Subsection 2.4.2, the first 12 bivariate
data points (January – December 1980) are used to come up with the initial parameter
values. The model performance is assessed using the remaining 444 monthly observations
from January 1981 to December 2017. So, there are 444 algorithm steps in total with an
algorithm step of 1 month.

The outcomes of the filtering-based parameter estimation under the one-state HMM frame-
work are illustrated in Figure 2.2. All the parameter estimates converge to some definite
levels at the end of the filtering process. The evolutions of the OU parameter estimates
show some significant variations over time, especially at time windows of regarded eco-
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nomic or financial-crisis episodes whilst the GBM parameters behave much smoother than
the OU parameters do. The FSI’s volatility, in particular, converges to the level of 0.02
with a periodic and fading amplitude patterns, which are consistent to FSI’s unsettled na-
ture. Note that the variation of parameters from 1981 to 1984 is ascribed mainly to the
FSI’s high volatility as well as to IPI’s dynamics, tracing a locally ‘valley-like’ behaviour
and manifesting an unambiguous trough during this period. The severe fluctuation of FSI
drives the variation of the mean level and volatility of the OU process. The GBM’s mean
level follows the evolution of IPI, falling continuously from Sep 1981 to Jan 1983. As
mentioned in Subsection 2.4.2, the parameters’ initial values under the one-state parameter
estimation can be used as benchmarks for assigning initial parameters when implementing
the 2- and 3- state HMMs. We examined the movement of the parameter estimates under
the 2-state HMM-based model. The behavioural patterns of the OU parameter estimates
under a 2-regime setting are significantly di↵erent in each of the two states; in particular,
there is no tendency for the two evolutions in any of the parameters to even coincide. In
addition, the state-estimate outcomes for states 1 and 2 converge to di↵erent levels, and the
filtering outputs for state 1 have inherently more fluctuations than those of state 2 in almost
every crisis event.

The evolution of the GBM parameters’ estimates converge to di↵erent levels with a be-
haviour that is more stable than the OU parameters’. This situation is in agreement with
the result of the preliminary analysis on the possible data segregations illustrated in Ta-
ble 2.2. Our results show that each of the parameter estimates in the 1-state HMM lies
between the two estimates produced under the 2-state HMM; the estimates under both set-
tings, as they unfold with time, exhibit similar patterns. This could be taken as indication
of the data set’s excellent fit with the 2-regime HMM. Furthermore, in comparison to the
1-regime HMM filtering, the 2-regime HMM filtering captures more e↵ectively the major
jumps in the FSI and log IPI. Therefore, a 2-state HMM model is worthy of consideration
by regulators in the quest to mitigate potential financial crisis occurrences.
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Figure 2.2: Evolution of parameter estimates for µ, ✓, �2, ⌘ and ⇠2 under a 1-state HMM-based
model.
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Figure 2.3: Evolution of parameter estimates for µ, ✓, �2, ⌘ and ⇠2 under a 2-state HMM-based
model.
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Figure 2.4: Evolution of parameter estimates for µ, ✓, �2, ⌘, ⇠2 and ⇡ ji under a 3-state HMM-based
model.

Filtered estimates under the 3-state HMM-based model are depicted in Figure 2.4. No-
ticeably, the evolution of the parameters in state 1 under the 3-regime setting is similar to
that under the 2-state HMM. The parameters under the new added regime, state 3, evolve
almost identically to the ones associated with state 2 that jibes with the state 2 under a
two-regime setting. This suggests that a 2-state HMM is adequate to model the bivariate
time series, which is in accord with the further statistical-analysis results from the 2-state
HMM filtering in the next section.

2.4.4 Model selection and post-modelling diagnostics

As per the modelling formulations drawn up in Subsections 2.2.3 and 2.2.4, one-step ahead
forecasts for Xk and Yk under the 1-, 2- and 3- state HMMs can be expressed as the condi-
tional expectation of the observation process at time k + 1 given the information set at time
k, i.e.,

8>>>><
>>>>:

E [Xk+1 | Fk] = E
⇥
↵(zk)Xk + � (zk) +  (zk) wk+1 | Fk

⇤
= h↵, ẑkiXk + h�, ẑki

E [Yk+1 | Fk] = E
⇥
Yk + ⇣ (zk) + ⌫ (zk) bk+1 | Fk

⇤
= Yk + h⇣, ẑki.

(2.49)
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Figure 2.5: One-step ahead forecasts under the 1-, 2-, and 3-state HMMs.

Figure 2.5 plots the one-step ahead forecasts for the bivariate FSI and IPI series under the 1-
, 2- and 3- state HMM settings. The 1-step forecast curves resemble superbly the dynamics
of both the FSI and log IPI. In general, the prediction for log IPI outperforms (i.e., fits the
original data points better) the one for the FSI. Moreover, in terms of the predicted values
following the graph of the actual data, the 2- and 3-state HMMs are better than the 1-state
HMM. This finding will be justified as well by the error analysis presented in the latter part
of this section.

We perform an error analysis to evaluate the goodness of fit of di↵erent HMM settings.
The criteria put forward in [29] and [92] are utilised, which include the root mean square
error (RMSE), absolute mean error (MAE), relative absolute error (RAE) and mean abso-
lute percentage error (MAPE). The notation hj denotes the true value of our observational
process at time j; ĥ j symbolises the one-step ahead prediction at time j, h̄ stands for the
sample mean of the underlying process, and n is the sample size. The RMSE, AME, RAE
and MAPE for the one-step ahead predictions are calculated as follows:

RMSE =

r
1
n

Xn

j=1

⇣
ĥ j � hj

⌘2
, MAE =

1
n

Xn

j=1
|ĥ j � hj|,

RAE =

Xn

j=1
|ĥ j � hj|

Xn

j=1
|hj � h̄|

, MAPE =
1
n

nX

j=1

�����
ĥ j � hj

h j

�����.

Table 2.4 displays the error-analysis results involving the 1-, 2- and 3-HMM settings. Pre-
diction errors of log IPI under all HMM settings are generally much smaller than those
of the FSI, which are expected considering that, in index level scale, FSI is less volatile
than IPI. The error metrics showed that the 2-state HMM-based model outperforms the 1-
and 3-state models in predictive accuracy for both FSI and log IPI even though the error
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di↵erences are very small.

Table 2.4: Results of error analysis.

FSI log IPI

N = 1 N = 2 N = 3 N = 1 N = 2 N = 3

RMSE 0.05155 0.02653 0.02653 0.01923 0.01066 0.01068

MAE 0.03990 0.01647 0.01649 0.01492 0.00824 0.00822

RAE 0.60414 0.24939 0.24966 0.08122 0.04487 0.04485

MAPE 0.59100 0.20643 0.20688 0.00334 0.00184 0.00184

Table 2.5: p-values for paired t-tests applied to RMSE, MAE, RAE, and APE values.

FSI

2-state vs 1-state 3-state vs 1-state 2-state vs 3-state

RMSE 2.2829⇥10�06 2.3908⇥10�06 0.1504

MAE 1.7881⇥10�06 1.4786⇥10�06 0.2349

RAE 1.7783⇥10�06 1.9797⇥10�06 0.1783

MAPE 1.9168⇥10�06 1.7256⇥10�06 0.0962

log(IPI)

2-state vs 1-state 3-state vs 1-state 2-state vs 3-state

RMSE 1.6498⇥10�07 1.9827⇥10�07 0.0827

MAE 1.0294⇥10�07 1.6041⇥10�07 0.0909

RAE 1.4086⇥10�07 1.1196⇥10�07 0.0662

MAPE 1.6662⇥10�07 1.5956⇥10�07 0.0797

We wish to determine whether the error mean di↵erences are statistically significant in
each pairwise HMM setting. A t-test, by applying the bootstrap method, is conducted on
the 4 di↵erent error metrics spanning all possible paired HMM settings. In this chapter,
the bootstrapped sample size is 10000. The outcomes of our pairwise t-test are reported
in Table 2.5. For the 2-state HMM versus the 1-state HMM and 3-state versus 1-state
HMM, all the p-values are smaller than 10�5 so that we can conclude the di↵erence in
the error metrics, after adding one or more regimes into the one-state model, is highly
significant. For the 2-state HMM versus the 3-state HMM, all the p-values are greater
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than 0.05, signifying that we cannot reject the null hypothesis of no di↵erence. However,
for a 5% significance level, both the 1- and 2-state HMM pair and 1- and 3-state HMM
pair are statistically di↵erent in terms of their prediction errors. This result suggests that
there is a recognisable benefit to using a regime-switching model whilst the 2- and 3-state
HMM settings have similar forecasting capacity in our implementation. Hence, our 2-state
HMM-based model is su�cient to capture the dynamics of the observed FSI and IPI.

Table 2.6: Number of estimated parameters under various HMM settings.

HMM settings

1-state 2-state 3-state · · · N-state

No. of parameters 5 12 21 · · · 3N + 2N + N(N � 1)

In choosing the best HMM set ups, we accompany our error analysis by a likelihood-based
model selection analysis, such as the Akaike Information Criterion (AIC), as argued in [88].
This estimates the Kullback–Leibler information under the ML paradigm. The AIC metric
is given by AIC = �2L(⇥) + 2c, where c is the number of parameters to be estimated in
the model as presented in Table 2.6. With ⇥ =

n
⇡ ji, ↵, �, 2, ⇣, ⌫2

o
, L(⇥) denotes the log-

likelihood function that is custom-made for our HMM filterting procedure. In particular,

L(⇥) =
NX

i=1

h
hzk, eii

⇣
L(X)

i + L(Y)
i

⌘i
, (2.50)

where

L(X)
i = �

1
2

log
⇣
2⇡2i

⌘
�

(Xk+1 � ↵i · Xk � �i)2

22i
(2.51)

L(Y)
i = �

1
2

log
⇣
2⇡⌫2

i

⌘
�

(Yk+1 � Yk � ⇣i)2

2⌫2
i

.

The AIC for each model is computed using the parameter estimates given at the end of
each algorithm step. This means that we also obtain an AIC value after each algorithm
run. The evolution of AIC values for the 1-, 2- and 3-state models after each algorithm
step is portrayed in Figure 2.7. Given the form of the metric in (3.35), the model deemed
the best and should be selected is the one that yields the lowest AIC value. In our case,
the AIC increases considerably as the regime size grows; this arises from the substantial
increase in the number of parameters especially due to the enlargement of the transition
probability matrix’s dimension. Even though the 1-state model brings in the smallest AIC
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Figure 2.6: Evolution of AIC values for the 1-, 2-, and 3-state HMMs.

values for some of the steps, it is evident that a 2-state HMM continually sustains a low
AIC value with a more stable pattern for the entire data set even during turbulent economic
conditions. Therefore, the 2-regime HMM is the most suitable for modelling the bivariate
data series under investigation having attained the greatest balance between model’s fitness
and complexity. This conclusion confirms and reinforces the previous results in our error
analysis on the most appropriate modelling framework.

Table 2.7: AIC for all algorithm steps.

N = 1 N = 2 N = 3

AIC Mean 6.2279 5.0032 13.3932

AIC Summation 2833.6962 2276.4655 6093.9106

2.4.5 Model diagnostics

We are interested on the statistical computing stability of our approach and the accuracy
of parameter estimates. The bootstrap technique applied to the original data series will
aid us in assessing these two points of interest. In particular, with the use of bootstrapped
samples, we calculate the standard deviation (SD) for each parameter estimate through Eqs.
(2.42)–(2.47). Ranges of tabulated SD over the entire algorithm steps for each parameter
under the 2-state HMM are presented in Table 2.8 (see columns 4 and 5).

Following Visser et al. [82] concerning the inference on HMM parameter estimation, we
employ the moving block bootstrapping method. The optimal moving block lengths for
both the FSI and IPI time series are determined in accordance with Politis and Romano
[66], Politis and White [67] and Patton et al.[65] using the R function “b.star" from“np"
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Table 2.8: Parameter estimates’ SD ranges: Bootstrap versus EM method.

SD (Bootstrap) SD (EM)

min max min max

µ1 0.06122 0.06322 0.06312 0.06447

µ2 0.02618 0.02687 0.02668 0.02718

✓1 0.07838 0.08658 0.08494 0.09154

✓2 0.07294 0.07595 0.07543 0.07800

�2
1 0.01265 0.01288 0.01290 0.01315

�2
2 0.00166 0.00169 0.00167 0.00170

⌘1 0.01583 0.01859 0.01576 0.01852

⌘2 0.01423 0.01687 0.01412 0.01676

⇠2
1 0.00070 0.00076 0.00072 0.00077

⇠2
2 0.00059 0.00063 0.00061 0.00064

⇡11 0.07109 0.07871 0.07048 0.07778

⇡12 0.07109 0.07871 0.07048 0.07778

⇡21 0.07508 0.07779 0.07707 0.07938

⇡22 0.07508 0.07779 0.07707 0.07938

package. The respective optimal block lengths for FSI and IPI series turn out to be 30 and
41. We take the maximum of the two (i.e., 41) as the optimal value in bootstrapping the
bivariate time series, which aims to capture the dependence and correlation properties.

We generate 10,000 bivariate time series samples from the original data using the R func-
tion “tsboot" from “boot" package. The 2-state EM-based HMM estimation is then per-
formed on the bootstrapped samples. As well, the optimal parameter estimates utilising
the HMM filtering scheme on the original data series are obtained, and their SDs using the
Fisher information are generated; similar idea was adopted in Xi and Mamon [88]. For the
bootstrapped samples, the ranges of the SDs over the algorithm steps are reported in sec-
ond and third columns of Table 2.8. We observe that the ranges’ upper and lower bounds
of the bootstrap-based SDs under the HMM filtering method are approximately close to
those computed under the EM algorithm. This is a strong evidence supporting that our
approach’s statistical computing aspect is stable.
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Table 2.9: t-test results for prediction performance metrics in bootstrapped samples: HMM versus
DCC-GARCH and HMM versus VAR.

Data
Benchmark

models
Metric

Mean
(HMM)

Mean
(Benchmark)

Mean di↵erence
(HMM-Benchmark)

95% Confidence interval

DCC-GARCH MAE 0.01644 0.01814 -0.00170 -0.00175 -0.00164

DCC-GARCH MAPE 0.20618 0.22733 -0.02115 -0.02172 -0.02059

DCC-GARCH RAE 0.24919 0.27466 -0.02547 -0.02616 -0.02479

FSI DCC-GARCH RMSE 0.02402 0.02865 -0.00463 -0.00472 -0.00454

VAR MAE 0.01644 0.02025 -0.00381 -0.00388 -0.00373

VAR MAPE 0.20618 0.25423 -0.04806 -0.04892 -0.04719

VAR RAE 0.24919 0.30828 -0.05909 -0.06014 -0.05805

VAR RMSE 0.02402 0.03236 -0.00833 -0.00846 -0.00821

DCC-GARCH MAE 0.00793 0.00905 -0.00112 -0.00116 -0.00109

DCC-GARCH MAPE 0.00184 0.00200 -0.00016 -0.00016 -0.00015

DCC-GARCH RAE 0.04488 0.04863 -0.00375 -0.00388 -0.00362

Log(IPI) DCC-GARCH RMSE 0.01036 0.01147 -0.00112 -0.00115 -0.00109

VAR MAE 0.00793 0.01014 -0.00221 -0.00225 -0.00217

VAR MAPE 0.00184 0.00217 -0.00033 -0.00034 -0.00033

VAR RAE 0.04488 0.05269 -0.00781 -0.00798 -0.00764

VAR RMSE 0.01036 0.01218 -0.00182 -0.00186 -0.00179

It has to be noted that our EWAS was constructed specifically to accommodate the HMM-
filtered state estimate as a signal. Thus, it is not feasible to compare the EWAS’s prediction
performance under our HMM-based framework (with two states referring to crisis and non-
crisis regimes) and those under the one-state models used as benchmarks. However, we
compare the forecasting of FSI and IPI levels under our proposed model and two bench-
mark models. For each bootstrapped sample, one-step ahead predictions were generated
using the HMM filtering process on all algorithm steps. We asses prediction performance,
in terms of four error metrics, between HMM and two other benchmarked multivariate
time series models: Dynamic Conditional Correlation-Generalised Autoregressive Condi-
tional Heteroscedasticity (DCC-GARCH)(1,1) and Vector Autoregressive(VAR)(1). We
make use of the R functions “dccfit" and “VAR" to build the two benchmark models. For
each comparison (i.e., HMM versus DCC-GARCH(1,1) and HMM versus HMM versus
VAR(1)), a t-test is conducted to ascertain the significance of the mean di↵erence in the
prediction error measurements between HMM and the model for benchmarking.

The estimated means, mean di↵erences and corresponding 95% confidence intervals are
reported in Table 2.9. We observe that the 95% confidence intervals are bounded away
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from zero. This imply evidently that, based on the bootstrap experiment, the one-step-
ahead prediction errors of the HMM framework are significantly smaller than those of
other two benchmark models.

2.4.6 Early-warning detection capacity for financial crisis

To draw attention to the practical utility of this work, we use dated historical economic
and financial crisis episodes to probe the proposed model’s capacity of spawning an early-
warning system under the 2-state HMM setting. In this research work, the pre-crisis stage is
assumed to be totally captured by the HMM-state process only, and not by any other model
parameters. We shall then delve into the relationship between historical events designated
as financial crises and the HMM state estimate in an e↵ort to devise some meaningful pre-
crisis signalling system. We set forth an intuitive but e↵ective approach that seizes the key
features of a variable designed to emit warning signals before or at least at the early stage
of the crisis events.

Let ✏k be the component related to “crisis” regime of the Markov chain ẑk; that is, ✏k =
hẑk, e1i.Write �✏k := ✏k� ✏k�1. Define ak = ✏k�1� zr sk/

pp and bk = ✏k�1+ zr sk/
pp as alarm

thresholds for ✏k, where sk is the moving sample SD of the data set
n
✏k�p+1, ✏k�p+2, . . . ✏k

o
.

In this study, we set p = 12; that is, the sample SD was calculated employing 12 data
points; this choice is mainly due to economic data that are typically of low frequency
and possessing long memory. Let {Ak}, {Bk} and {Ck} be sequences of events such that
Ck = Ak \ Bk with Ak = {✏k < [ak, bk] or ✏k � 0.5} and Bk = {�✏k � 0}.

In our set up, we have dynamic thresholds. Such a set up is a substantial extension to that in
Tenykov et al. [75] in which a static criterion to detect liquidity crisis was introduced. The
manner of defining the indicators Ak and Bk is akin to capturing the stochastic features of
crisis regimes, modelled by a Markov chain, before or at the beginning of historical-crisis
events. In other words, the indicators capture not only the current but also the moving trend
of the economy. Of course, these could be adjusted by practitioners according to varying
objectives in getting early alerts e↵ectively. The conditions instituted for an EWAS hinge
on clinching the synchrony between its outcome and the historical dated crisis data. From
the perspective of translating the indicators into economic intuition, they could be viewed
as monitoring quantities that detect the latent variable’s anomalous behaviour attributed to
certain crisis episodes.
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The setting of Ak is based on Tenykov et al.’s work [75] that keeps track of the probability
of a Markov chain being in a crisis regime. In this work, the alert is also triggered when the
probability of a Markov chain being in a crisis regime is greater than 0.5. When ✏k > 0.5,
the HMM indicates that the economy is in a crisis state. The 0.5 threshold alludes to the
fact that the 2-state HMM filter is regarded as a binary classifier, which usually sets 0.5 as a
default but adjustable benchmark to determine whether a subject is in one category or not.

We define our early warning alarm signal (EWAS) at time k as

EWASk =
1
q

kX

i=k�q+1

mi, (2.52)

where

mi =

8>>>><
>>>>:

1 if Ci , ;

0 if Ci = ;

, i = k � (q � 1), k � (q � 2), . . . , k.

Clearly, EWAS as defined in (2.52) relies on HMM state estimates, which incorporate the
filtered information from the bivariate time series and measures optimally the intensity (via
the Markov chain’s transition matrix) and frequency (via the Markov chain’s occupation
time) of certain stressful events over a specific time window. Note that r and q are two
adjustable variables in the warning-signal setting. The quantity r corresponds to the width
of the rolling confidence intervals for ✏k given Fk�1. Specifically, it is the probability
level corresponding to the standard score z. Assuming other parameters are fixed, small
r values will make the warning process more sensitive so that it probably generates more
false alarms (Type-II error) whilst large r values may lead to failure in signalling some crisis
(Type-I error). The quantity q equals the number of data points covered by the moving
window. Large q values will make the signal process long memory-dependent, which will
possibly cause false warning alarm (Type-II error). Small q values will lead to a failure of
generating alarm for a crisis at its early stage (Type-I error). In fact, q is the memory length
for which the system has the su�cient count of the number of events triggering an alert. It
is a hyper-parameter of the alarm system which needs to be set before fitting model to the
data set instead of being learnt from the given data series. Since our purpose is to detect the
anomaly related to crisis events, one natural consideration is to calibrate the value q against
the historical crisis event. In practice, one could calibrate this quantity depending on one’s
preference for the trade o↵ between Type I and II errors.

Suitable conditions instituted for EWAS hinge on its ability to clinch the synchrony be-
tween its outcome and the historical dated crisis data. When ✏k > 0.5, the HMM indicates
that the economy is in a crisis state. The lower bound ak serves to identify the starting point
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of a crisis as well as the ending point or point of recovery from a crisis.

We demonstrate our early warning detection method by using a set of dated Canadian
historical systemic financial stress events. This set was obtained from a survey that sought
inputs from senior Bank of Canada policy makers and economists to establish a consensus
on which events have been the most stressful for the Canadian markets over the past 25
years and for what reasons. Respondents included a former governor, 3 governing council
members, 8 senior bank o�cers, 12 bank o�cers, and 3 analysts; see [49] for the details
of survey methodology. Note that the survey data in [49] only cover the period Jan 1980 –
December 2001, and this work provides an updated set of dated financial-stress events. In
particular, we enlarge the events set by adding other commonly viewed systemic financial
stress events viz. sub-prime crisis, Bear Stearns scandal, Lehman Brothers collapse, 2008
recession, second bailout in Greece, Taper Tantrum 2013, NYMEX (WCC) oil price below
$40 CAD for the first time, and the 2015 recession.

In our implementation, we first set r = 0.999 to minimise the chance of triggering false
alarms due to small fluctuations in the HMM state ✏k. Second, we consider q = 1, 2, . . . , 10.
For each fixed q, we then compute the average values of EWAS in the neighbourhood (±6
months) of every crisis event and for all regular (non-crisis) intervals. In the context of
aiding the identification of crisis episodes, the purpose of such an average calculation is to
associate the EWAS with a q value that produces the least number of false alarms. In other
words, we look for a q that brings forth a large average signal intensity in the crisis-episode
neighbourhoods and a small average signal intensity in the non-crisis intervals.
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Figure 2.7: EWAS True/False warning intensity comparison: HMM vs. non-HMM

To delineate the advantage of EWAS gained from our HMM-based approach, we also apply
exactly the same method to extract EWAS directly from the FSI and IPI data with the best
window length value q. Figures 2.7 to 2.8 exhibit the EWAS computed with di↵erent q val-
ues. From Figure 2.7, it is evident that the True/False warning intensity of HMM-generated
EWAS is significantly greater than that of the non-HMM-generated EWAS, which is in turn
confirmed by the box plot in Figure 2.8. The non-HMM-generated EWAS, derived directly
from FSI and IPI, are simply too noisy and ine↵ective in di↵erentiating between crisis and
regular regimes.

Our aim is to find an appropriate memory window length q such that the EWAS renders
the best performance in distinguishing Crisis/Regular regimes. The ideal EWAS should
have higher signal intensity on crisis events and relatively lower value over normal time
periods. Our procedure in carrying out the determination of optimal q is as follows. (i) We
assess the frequency distributions of False warning signal intensities generated from HMM
and non-HMM EWAS (e.g., Figures 2.8 and 2.9). (ii) The extreme values are excluded;
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Figure 2.8: Box plot of HMM versus non-HMM EWAS True/False warning intensities
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Figure 2.9: Histograms of HMM and non-HMM EWAS False warning intensities

these are the outliers, which are highlighted in orange in Figure 2.9. (iii) Finally, from the
remaining data, we find q that bears the largest True-warning signal intensity. Based on
the above procedure, we find that both the HMM EWAS and non-HMM EWAS have the
commonly optimised window length of q = 7.

Figure 2.10 displays the HMM and non-HMM EWAS based on FSI and and IPI data. The
non-HMM EWAS generates more noise making crisis-event detection unreliable. The time
periods of historical real-crisis episodes are represented by light-red coloured rectangular
areas whilst the financial-stress events are denoted by light-green coloured rectangular ar-
eas. We observe that the EWASk metric (plotted as red curves) is capable of generating
di↵erent alarm levels at a reasonably early stage of these dated prior crisis incidents and
making very few Type-II errors. This supports that our EWAS under the 2-state HMM in
conjunction with the filtering technique has good predictive performance in crisis forecast-
ing.
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Figure 2.10: Outcome comparison between HMM and non-HMM EWAS

2.5 Conclusion

The development of a hybrid bivariate regime-switching HMM-based model to evaluate
the level of systemic financial stress is the major contribution of this chapter. Our proposed
model, which came out as a synthesis of an OU process and a GBM, is capable of capturing
the main characteristics of the FSI and IPI. The parameters of this sysnthesised model
are simultaneously governed by a hidden Markov chain in discrete time. The extraction
of beneficial information from the observed bivariate stochastic process was elaborated
in our methodology together with the model’s one-step ahead predictions. Both the EM
algorithm and change of reference probability measures smoothly link to produce a new
set of multivariate HMM online recursive filters.

The actual bivariate time series data on Canadian monthly FSI and IPI compiled during a
37-year period were considered to examine the model’s implementability and forecasting
capability. To capture the dynamics of the underlying data set continually, we execute
the application of the recursive filtering algorithm with data-point processing. Under the



2.5. Conclusion 49

1-, 2- and 3- state HMM settings, the one-step ahead predictions are calculated. Multi-
regime HMMs have substantially smaller forecasting errors than those produced by the
1-state HMM in our post-modelling assessment. Our AIC comparison in conjunction with
the one-step ahead forecasts’ goodness-of-fit analysis justifies the choice of the optimal
number of states. It is worth nothing that a 2-regime model surpasses the 1-regime model
significantly in terms of performance under some criteria. This tells us that the 2-state
HMM provides the most reliable framework for the data that we investigated.

By the block bootstrapping technique, statistical inference involving parameter estimates
was carried out to assess the stability performance of our approach. The comparison with
two benchmark multivariate time series models showed that our proposed model has better
prediction accuracy in so far as obtaining the one-step ahead predictions. In addition to the
statistical-inference-based validation, we closely examined the consistency of our model’s
results and performance against actual financial-stress events. An empirical pre-crisis de-
tection method was established and tested on dated crisis episodes in economic history.
We found that the proposed 2-regime HMM filters enabled fairly well the generation of
early-warning signals for financial crises.

In several ways, this work rea�rms and boosts the merits of the HMM modelling as fol-
lows: (i) a new model (i.e., HMM-embedded OU-GBM framework) for bivariate data se-
ries that captures and describes occurrence of systemic financial stress episodes, (ii) an
extended self-tuning estimation procedure that flexibly permits each univariate series com-
ponent to have di↵erent dynamics, (iii) implementation with ample details of the newly
derived filters together with suitable model validation metrics, and (iv) an early-warning
system primarily relying on the HMM-state estimates calibrated from empirical data.

We provided a quantitative methodology for financial-stability modelling in which the es-
timation and implementation are designed to capture the e↵ects and identification of fi-
nancial crisis-events location in the context of drafting regulatory measures and oversights.
Evolving parameter estimates of models tailored for systemic financial risk management
are computed using our filtering recursions. The regular/crisis-regime classification that
was elaborated by our regime-switching modelling approach accurately correspond to those
already established and accepted by practitioners. The ease of interpretation, with direct
relevance to bankers, economists, regulators and policy makers, is indeed another attractive
hallmark of the regime-switching results.



Chapter 3

An analysis and forecasting of financial
market liquidity regimes

3.1 Introduction

3.1.1 Background of market illiquidity

Keynes [53] characterises an asset as liquid “if it is more certainly realisable at short notice
without loss”; that is, a liquid asset can be traded quickly and at a low cost [36]. By
extension, if large quantities of an asset can be traded with a small impact on its price, the
market for that asset is said to be liquid [76]. Thus, market liquidity reflects the trade-o↵
between the speed for which some underlying asset can be traded and the variation in its
price.

Brunnermeier and Pedersen [9] argued that market liquidity depends on trader‘s availabil-
ity of funding. Conversely, traders‘ funding liquidity relies on assets‘ market liquidity.
Gromb and Vayanos [38] linked market liquidity to the capital of financial intermediaries
and their funding constraints. The general literature indicates that investors are subject to
liquidity shocks and could realise gains from trade across segmented markets by trading
with intermediaries who exploit price discrepancies to supply liquidity to investors. As per
[38], shocks to asset prices that trigger capital losses tighten funding constraints and force
intermediaries to reduce their positions. This then lowers market liquidity and amplifies
the shocks. In [69], it is pointed out that the liquidity characteristics of the stock market,

50
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all of which show the areas where the market has placed its current money, are considered
the most important that a↵ect the probability of a big gain or loss in the stock price.

Brunnermeier and Pedersen [9] proposed a model that links an asset’s market liquidity and
traders’ funding liquidity (i.e., the ease with which they can obtain funding). The model
explains the properties of market liquidity: (i) can suddenly dry up (fragility), (ii) co-moves
across assets, (iii) is correlated related to volatility, (iv) is subject to “flight to quality”, and
(v) moves with the market.

Historically, TED spread, the di↵erence between the risky LIBOR rate and the risk-free
US Treasury bill rate, is viewed as a measure of market-liquidity level. When the market is
illiquid, banks want to get first-rate collateral, which makes holding Treasury bonds more
attractive and this then decreases the Treasury bond rate. On the other hand, banks charge
higher interest for unsecured loans to compensate for the credit risk, which pushes up the
LIBOR rate. Therefore, TED spread widens in times of liquidity crises; see Brunnermeier
[8].

Illiquidity can be linked to a number of aggregate variables [80]. Huberman and Halka
[45] illustrated that negative market returns and increased market volatility are followed
by an increased level of illiquidity. Bid-ask spread is an intuitive and popular measure of
illiquidity; it is defined as the di↵erence between the quoted ask and bid prices. Tenyakov et
al. [76] pointed out that the S&P 500 bid-ask spread metric is able to capture the illiquidity
episodes where TED spread failed to do so. In this study, we investigate the aggregate
spread index based on the evolution of the S&P 500, which as stated in [76] contains at
least in part the liquidity level of the stock market.

The second key variable that we investigate is the volatility index (VIX). The Chicago
Board Options Exchange (CBOE), defines it as an up-to-the-minute market estimate of
expected volatility that is calculated based on real-time S&P 500 index option bid-ask
quotes. More specifically, the VIX provides an instantaneous measure of the future degree
of volatility and market uncertainty. The VIX has been utilised to gauge the level of in-
vestors’ risk aversion or market sentiment; see Brunnermeier et al. [10] and Bekaert et al.
[4], and it has also a negative relation with stock returns as documented by Giot [35] and
Whaley [85].

A positive correlation between illiquidity and volatility is another finding in many studies
in the literature. Kyle [55] and Karpo↵ and Walkling [52] measured the illiquidity of stocks

http://www.cboe.com/products/vix-index-volatility#category.name
http://www.cboe.com/products/vix-index-volatility#category.name


52 Chapter 3. An analysis and forecasting of financial market liquidity regimes

assuming that it has a positive correlation to price volatility and a negative one to the price
level, market capitalisation, and number of shares. Vayanos and Wang [80] explained that
liquidity suppliers who trade high-volatility assets are exposed to more risk and possibly to
situations with more asymmetric information. Therefore, they require a larger price move-
ment to absorb liquidity shocks, which means that these shocks have larger price impact
and cause larger transitory deviations between price and fundamental value. Hauser and
Kedar [44] showed that liquidity facilitates a large share redistribution across agents caus-
ing changes in average risk aversion, which increases Sharpe-ratio variability, and hence,
stock return volatility. Tenyakov et al. [76] found that VIX is capable of capturing some
periods of market illiquidity that were not picked up by the TED spread.

VIX contains market-sentiment information which is a joint e↵ect from the stock and FX
markets. For instance, Smales and Kininmonth [71] provided empirical evidence on the
existence of of a relationship that links stock market returns, which are related to investor
sentiment, with the FX markets. It is pointed out in [71] that currency investments tend
to depreciate when there is an increased in investors’ fear, which is linked to the financial
system’s liquidity severely a↵ected for instance by the 2008 collapse of Lehman Brothers
and the 2012 European sovereign debt crisis. Zapatero [93] illustrated that in fully inte-
grated markets, the volatility of the exchange rate is explained by the volatility of the stock
markets of the two countries concerned. Thus, understanding the behaviour in the FX mar-
ket is important to measure market illiquidity. Therefore, the US Dollar Index (DXY) –
a measure of the value of the US dollar relative to the value of a basket of currencies of
the majority of the US’s most significant trading partners – is examined and included as
an important indicator in our financial-stability analysis; for a further discussion of DXY,
see ICE: U.S. Dollar Index Contracts. The evolution of DXY is able to mirror market
illiquidity as it contains information regarding investors’ expectation of the FX market.

3.1.2 HMM-based regime-switching models

Shifting structural regimes is a widely observed phenomenon in financial economics. Brun-
nermeier and Pedersen [9] described the relationship between volatility and speculators’
positions through the so-called “margin spiral", which is a characterisation of a market
that switches between two equilibriums (or regimes): one is the low-liquidity equilibrium
with high volatility and reduced positions, and the other is the high-liquidity equilibrium
with low volatility and increased positions. In [8], it is shown that the economy has a

https://www.theice.com/publicdocs/futures_us/ICE_Dollar_Index_FAQ.pdf#category.name
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“self-stabilising e↵ect" liquidity feature that is either a “loss" or a “margin".

A regime-switching-based technique is suited for modelling an evolving economic envi-
ronment assumed to switch amongst di↵erent regimes. Such a technique has the capabil-
ity of pinning down changes in economic states by allowing model parameters to change
stochastically. Ichiue and Koyama [48] proposed a regime-switching model to probe how
exchange rate volatility and depreciation of low-interest-rate currencies are related to each
other. Afonso et al. [1] applied a time-varying parameter modelling approach to deter-
mine the shifts in the pricing regime in the sovereign bond markets of the eurozone area.
A regime-switching mechanism could be embedded in models as shown in Duprey et al.
[21] for identifying states in the individual or joint dynamics of the data series in conjunc-
tion with the detection of financial and business-cycle turning points. In regime-switching
models, the use of a Markov chain is appropriate because of the ease in interpreting re-
sults and the capacity to model adequately the random-time occurrence of the switching. A
Markov-switching methodology was popularised in Hamilton’s research [41], where model
estimation is addressed, albeit in a static sense, and a structural approach is put forward to
(i) distinguish states of the economy and (ii) infer the probability of of an expansion state
or contraction state. Employing a Markov-switching framework, Davig and Gerlach [18]
studied the response of stock prices to Federal Reserve policy shocks . Gerdrup et al. [34]
developed a financial model with a shock component driven by a Markov chain.

The e�cient and accurate recovery of parameters for Markov-switching models using data
is of utmost consideration for a successful implementation. Within the HMM-based frame-
work, Elliott et al. [25] pioneered the change-of-measure method that yields recursive
filters leading to a self-calibrating model; see [59] for a pedagogical introduction of this
method. In particular, an HMM is a doubly-embedded stochastic process consisting of a
series of observed values deemed to contain the underlying unobserved Markov chain typ-
ically with an undetermined number of states and transition probabilities to be estimated.
In the current literature, the HMM filtering is tailored to certain applications in quantitative
finance, insurance, economics, epidemiology, and other branches of the sciences and engi-
neering. In finance specifically, these include short-rate modelling (e.g., Elliott et al. [26],
Elliott and Mamon [24], Erlwein and Mamon. [27], and Xi and Mamon [88]); investment
strategies (Tenyakov et al. [74] and Erlwein et al. [28]; commodity price forecasting (Date
et al. [17]); weather derivative pricing (Xiong and Mamon [91] and Xiong and Mamon
[92]); and modelling electricity spot prices (Erlwein et al. [29]).
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3.1.3 Motivation

In Tenyakov et al. [76], a multivariate HMM framework is introduced to assess and fore-
cast the market liquidity regime. Augmenting similar and related objectives in [76] and
extending their theoretical developments, this work puts forward a modified multivariate
regime-switching HMM framework to extract early-warning signals for possible liquidity
crisis occurrences using certain indicators and new metrics. Considering that significant
variation in illiquidity arises not only within asset classes but also across classes [80], we
shall include four proxies: Treasury-Eurodollar spread (TED), Volatility Index (VIX), US
Dollar Index (DXY), and S&P 500 bid-ask spread. The state of the liquidity characteris-
tics could be inferred from the money, stock, and foreign-exchange markets with the use
of these indices. Consequently, the outcome of this study is beneficial for the regulators
who must adjust policies as well as for the investors who strategise their their investment
positions taking into account the occurrence of market illiquidity episodes.

Noting that TED, VIX and DXY have a common mean-reverting feature, their movements
are then modelled by an OU process. We use a geometric Brownian motion (GBM) to
describe the S&P 500 bid-ask spread’s dynamics on the basis the long-term evolution of
its sample path. In essence, we propose a hybrid multivariate stochastic process apt to
simultaneously describe the main features (e.g., seasonality, randomness, mean-reversion
and jumps) of the joint dynamics of the four indices. Optimal estimates of various pa-
rameters will be ‘filtered out’ from the market information; that is the ‘true’ state of the
Markov chain, probabilities of transition and all other parameters of our proposed multi-
variate model for 4 indices that mirror how liquidity regimes evolve in discrete time.

In this chapter, we shall demonstrate the change of probability measure technique in ob-
taining optimal filters of various quantities pertinent to the calculation of the multivariate
model’s parameters. This constitutes the adaptive processing of four-dimensional market
signals revealing information about the states of the market liquidity. A self-tuning algo-
rithm is generated, which updates parameters with the continual arrival of new observed
signals coming from the time series of four indices.

Our methodology expands the HMM multivariate results of [25] and [76] in the sense that
each univariate series that forms the entire multivariate set up has di↵erent dynamics speci-
fication; thus, the modelling framework allows for more flexibility. It retains the advantage
of avoiding the forward-backward algorithm that is prevalent in most filtering techniques,
thereby entailing much less memory during computation. In [76], it is remarked that other
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filters (e.g., Hamilton-type filters) are computationally intensive to implement because they
are based on static algorithms requiring full reruns involving the original data set every time
a few data points are added. In our case, we successfully bypass this issue through the re-
cursive filtering equations that keep updating estimates in real time.

Relative to the current state of market-liquidity modelling and analysis, the highlights of
our research contributions are as follows. (i) Our proposed approach combines OU and
GBM processes in an integrated HMM framework. This is a new attempt to capture jointly
the important stylised properties of a multivariate data series. (ii) Estimation and inference
under the new formulated setting are addressed with empirical illustrations. (iii) Finally,
we come up with a new metric suited for an HMM-based early warning alert system.

The remaining parts of this chapter are structured in the following way. Section 2 presents
the formulation of the 4-dimensional hybridised stochastic process with a discrete-time
hidden Markov chain governing the model parameters. In Section 3, we perform a change
of probability measure in establishing recursive filters for quantities that are functions of
HMM, and then carry out an online parameter estimation. Details of the numerical im-
plementation on actual data are given in Section 4 along with the selection of the most
appropriate model setting via prediction performance and penalised log-likelihood of dif-
ferent competing set ups. Section 5 proposed an empirical early-warning signal extraction
method and associated diagnostics. Lastly, Section 6 provides some concluding remarks.

3.2 Model Construction

3.2.1 Ornstein-Uhlenbeck (OU) process

Suppose Xt is an OU process whose stochastic evolution is

dXt = ✓ (µ � Xt) dt + � dWt, (3.1)

where µ is the mean level, ✓ is the speed of mean reversion, and � is the volatility. The
parameters ✓, µ and � are assumed positive. In (3.1), Wt is a standard Brownian motion
defined on a probability space

⇣
⌦,F X, P

⌘
, where F Xt is the filtration generated by Xt.

By Itô’s lemma, the solution to (3.1) is

Xt = X0e�✓t + (1 � e�✓t)µ + �e�✓t
Z t

0
e✓sdWs. (3.2)
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Discretising the solution in Eq. (3.2), we get

Xtk+1 = Xtke
�✓·�t + (1 � e�✓·�t)µ + �

r
1
2✓

(1 � e�2✓·�t) wk+1, (3.3)

where the �t = tk+1 � tk and {wk+1} is a sequence of independent and identically distributed
(IID) standard normals, i.e., wk+1 s IID N(0, 1). The derivation of the second term in (3.3)
is justified by the Gaussian property and the Itô’s isometry.

3.2.2 Geometric Brownian motion (GBM)

Let Qt be a GBM with stochastic dynamics

dQt = ⌘Qtdt + ⇠QtdBt, (3.4)

where ⌘ is the percentage drift and ⇠ is the percentage volatility. In (3.4), Bt is a standard
Brownian motion defined on a probability space

⇣
⌦,F Q, P

⌘
, where F Qt is the filtration

generated by Qt. The parameters ⌘ and ⇠ are positive constants. By Itô’s lemma, Eq. (3.4)
has the solution

ln (Qt) � ln (Q0) =
 
⌘ �
⇠2

2

!
t + ⇠Bt. (3.5)

Write Yt := ln (Qt), so that

Yt = Y0 +

 
⌘ �
⇠2

2

!
t + ⇠Bt (3.6)

Discretising Eq. (3.6) with the the Euler approximation, we get

Ytk+1 = Ytk +

 
⌘ �
⇠2

2

!
�t + ⇠

p

�t · bk+1, (3.7)

where the �t = tk+1 � tk and bk+1 s IID N(0, 1).

3.2.3 Markov chain-governed parameters

For both models of indices, having parameter values that are time-dependent would be
realistic. Adopting a similar idea from Zhou and Mamon [95], we regard the states of a
Markov chain as regimes of financial market liquidity; more specifically, liquidity regimes
are dependent on certain factors that cause market turbulence. Thus, for an economic state
to be regime-switching, we posit that the parameters ✓, µ, �, ⌘ and ⇠ are modulated by
a discrete-time Markov chain zk, for k = 0, 1, . . .. The state space of zk is finite and it
is isomorphic to the canonical basis of RN , which is the set {e1, e2, . . . , eN}. The vector
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ei = (0, ..., 0, 1, 0, ..., 0)>, where > denotes the transpose of a vector, is a unit vector
with 1 in its ith component; this formulation simplifies a lot of algebra in the succeeding
calculations. The semi-martingale representation of zk is

zk+1 = ⇧zk + vk+1, (3.8)

where ⇧ is a transition matrix; vk+1 is a martingale increment with E[vk+1|F z] = 0; and
F z is the filtration generated by z0, z1, z2, . . ..

The dependence of the parameters on the Markov chain is reflected in the notations ✓(zk),
µ(zk), �(zk), ⌘(zk), and ⇠(zk). Under the one-state setting, the parameters in the distribution
of Xtk+1 are constants over the time interval (tk, tk+1]. For the N�state setting, we assume
that the parameters depend on a Markov chain.

Write M := MOU + MGBM for the dimension of the underlying time series; MOU and MGBM

represent the dimension of the data series assumed to follow the OU and GBM processes,
respectively. In this study, we have MOU = 3 and MGBM = 1 based on the the assumed
features exhibited by the data. Our modelling approach supposes that all the parameters of
each component of the M-dimensional observation process are Markov-driven, i.e.,
8>>>>>>>>>><
>>>>>>>>>>:

X(g)
tk+1

= X(g)
tk e�✓(g)(zk)�t + (1 � e�✓(g)(zk)�t)µ(g)(zk) + �(g)(zk)

q
1

2✓(g)(zk) (1 � e�2✓(g)(zk)�t) w(g)
k+1,

Ytk+1 = Ytk +

 
⌘(zk) �

⇠2(zk)
2

!
�t + ⇠(zk)

p
�t bk+1,

(3.9)

where g = 1, 2, ...,MOU . Note that µ(g)(zk) = hµ
(g)
k , zki, ✓(g)(zk) = h✓

(g)
k , zki, �(g)(zk) =

h�(g)
k , zki, ⌘(h)(zk) = h⌘(h)

k , zki and ⇠(h)(zk) = h⇠(h)
k , zki, where µ(g)

k
= (µ(g)

k,1, µ
(g)
k,2, ..., µ

(g)
k,N)>,

�(g)
k
= (�(g)

k,1, �
(g)
k,2, ..., �

(g)
k,N)>, ✓(g)

k
= (✓(g)

k,1, ✓
(g)
k,2, ..., ✓

(g)
k,N)> , ⌘(h)

k
= (⌘(h)

k,1, ⌘
(h)
k,2, ..., ⌘

(h)
k,N)> and

⇠(h)
k
= (⇠(h)

k,1, ⇠
(h)
k,2, ..., ⇠

(h)
k,N)> are all in RN; and h·, ·i is the inner product in RN .Write Nk :=

(w(1)
k , w(2)

k , w(3)
k , b(1)

k , b(2)
k )> whose components are independent for all k = 0, 1, 2, . . ..

Let (⌦,F , P), where F = F X
_F Q

_F z be a complete probability space that supports
all processes in our modelling set up. Note that F X and F Q are the filtrations generated
by all OU-processes and all the GBMs, respectively.
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3.2.4 Probability density of observation process

Eq. (3.9) can be re-written as

X(g)
tk+1
= ↵(g)(zk)X

(g)
tk + �

(g) (zk) + (g) (zk) w(g)
k+1 (3.10)

with 8>>>>>>>>><
>>>>>>>>>:

↵(g) (zk) = e�✓(g)(zk)�t

�(g) (zk) = (1 � e�✓(g)(zk)�t)µ(g)(zk)

(g) (zk) = �(g)(zk)
q�

2✓(g)(zk)
��1

⇣
1 � e�2✓(g)(zk)·�t

⌘
. (3.11)

Eq. (3.10) implies

X(g)
tk+1

�����X
(g)
tk s N

⇣
↵(g)(zk)X

(g)
tk + �

(g) (zk) , (g) (zk)
⌘
. (3.12)

For the distribution of Yk+1, we consider

Ytk+1 � Ytk =

 
⌘(zk) �

⇠2(zk)
2

!
�t + ⇠(zk)

p

�tbk+1= ⇣ (zk) + ⌫ (zk) bk+1 (3.13)

with 8>>>><
>>>>:

⇣ (zk) =
⇣
⌘(zk) � ⇠

2(zk)
2

⌘
�t

⌫ (zk) = ⇠(zk)
p
�t.

(3.14)

Consequently,

Ytk+1

�����Ytk s N
�
Ytk + ⇣ (zk) , ⌫ (zk)

�
. (3.15)

3.2.5 Filters and parameter estimation

We present the optimal estimates for the parameters of our proposed integrated model using
a dynamic maximum-likelihood approach using the Expectation-Maximisation (EM) algo-
rithm is utilised; see Elliott and Krisnamurthy [23], and Wu [86] for a review of the EM
algorithm. Here, we combine the one-dimensional EM estimations in [59] and Tenyakov
et al. [75]. Then, we extend the multivariate HMM setting, by considering not necessarily
the same dynamic specification for each component series, and obtain optimal estimates of
model parameters.
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For j = 1, 2 . . . , N, we define the following quantities:

G
s, j
k =

kX

n=1

hzn�1, e jihzn, esi (3.16)

O
j
k =

kX

n=1

hzn�1, e ji (3.17)

T
j

k ( fk) =
kX

n=1

hzn�1, e ji fn(·). (3.18)

Equations (3.16) and (3.17) denote the respective number of jumps from state j to s and the
amount of time that the process {zn} occupies the state j up to time k. The quantities in T j

k

in Eq. (3.18) is an auxiliary process that depends on the function fn (·), of the observation
process. In our empirical application, fn (·) takes the form xn, x2

n and xn�1xn, where xn is any
component from the M-dimensional observation process. The details of filters’ construc-
tion procedure along with the derivations of Eqs. (3.19) – (3.24) are given in Appendices
B and C, respectively. The estimation results are given below.
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⇡̂ ji =
Ĝ
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b⇣i =
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i
k (Yk) � T̂ i
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(3.23)
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From Xiong and Mamon’s idea [91], we can compute the variance of estimators in our
blended multivariate HMM filtering via the Fisher informationI (⇥) = �E

h
d2

d⇥2 log (L (⇥))
���⇥

i
.

The derivation of the Fisher information involved in each estimator is straight forward and
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the results are given below; see also Appendices F.1–C.12.
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+ Ôi

k�
2
i � 2↵iT̂

i
k (XkXk�1) � 2�iT̂

i
k (Xk)

⇣
2i

(g)⌘3

+
2↵i�iT̂

i
k (Xk�1) � Ôi
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From Eqs. (3.19) – (3.30), we can obtain the optimal values for the original model param-
eters specified in Eqs. (3.11) and (3.14):
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i
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◆ ;

b⌘i =
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i

2�t
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b⌫2

i

�t
. (3.31)

Let ⌅ and ⇥ be the vectors related to the new and original parameters, respectively. The
Fisher information for the original parameters can be calculated as I(⇥) = J>I(⌅)J, where
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J is the Jacobian matrix with (i, j)th component as Ji j =
@⌅i
@⇥ j

. The MLE is consistent and
has an asymptotically normal sampling distribution (Van de Varrt [79]). With the explicit
Fisher-information expressions in (3.25) – (3.30), we can calculate the 95% confidence

interval for the estimates ⇥ with ⇥̂ ±
1.96
p
I (⇥)

.

3.3 Numerical implementation

3.3.1 Preliminary analysis of data for implementation
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Figure 3.1: Evolution of input data series

The proposed multivariate model is tested on a 4-dimensional daily time series covering
the period Mar 1998–Aug 2018 (i.e., 5159 ⇥ 4 data points) which includes the bid-ask
spread of S&P 500 (BASP500), US DXY and CBOE VIX all obtained from Bloomberg
and the TED spread compiled by the Federal Reserve Bank of St. Louis. The choice of
daily (high-frequency) data is justified in Vayanos and Wang [80] from which it is argued
that low-frequency measures (less frequent than daily) are imperfect proxies of illiquidity.

We made two transformations on the original data set: (i) To simplify the data processing
and visualisation, we take the logarithm of BASP500, DXY and VIX. ii) We take the 21-
day moving averages of the logarithm of BASP500 to make the input data smoother for the
HMM filters without a↵ecting the ability to capture the evolution of the illiquidity regime.

https://fred.stlouisfed.org/series/TEDRATE
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The evolution of the data and descriptive statistics are presented in Figure 3.1 and Table
3.1, respectively.

Table 3.1: Descriptive statistics of the input data series

Index Mean Median Minimum Maximum SD CV Kurtosis Skewness

log(BASP500) 0.999 0.751 -0.866 4.297 1.303 1.305 0.082 0.965

TED 0.472 0.340 0.090 4.580 0.416 0.881 18.132 3.388

log(VIX) 2.976 2.958 2.231 4.495 0.372 0.125 0.205 0.550

log(DXY) 4.503 4.490 4.267 4.795 0.125 0.028 -0.721 0.378

The log(BASP500) has the highest sample standard deviation and coe�cient of variation
due to its increasing behaviour, lack of mean reversion, and a large range which can be
observed in Figure 3.1. The mean level mainly depends on the data’s volatility. This
makes a Brownian motion with some drift and volatility an ideal candidate model for
log(BASP500). Hence, the BASP500 level will be modelled as per (3.5)–(3.7).

The distribution of TED is highly skewed to the right. The kurtosis of the TED exceeds
that of the normal distribution by 18.132; this signifies that TED’s probability mass func-
tion is concentrated around the mean with several values concentrated in the tails of the
distribution (Moors [62]). The data set for log(DXY) has a negative excess kurtosis, which
indicates that its probability mass function concentrates around the mean with fewer out-
liers (Westfall [84]). The log(DXY) exhibits similar numerical values for its mean, median,
maximum and minimum; it evolves with small variation around the mean; see the lower
right panel of Figure 3.1. The plot of log(VIX) shows cyclical dynamics, shifting more of-
ten from a higher to a lower level; this gives a standard deviation comparable to other series
but with a small coe�cient of variation. The evolutions of TED, log(VIX) and log(DXY)
have mean-reverting features supporting the suitability of the OU process for describing
their underlying characteristics.

Table 3.2 displays a possible data segregation into di↵erent state classification based on two
historical illiquidity-crisis events, which are the “Dotcom Bubble" and "2007 Global Finan-
cial Crisis". To make the mathematics tractable and outcomes interpretable, we assume a
two-state market having an “illiquid" regime associated with abnormally high indicator
values and a “regular" regime. A transitional state may be devised and could persist over
some time due to the weighted combination of volatilities under the above two regimes.
The evolutions of the multivariate series undergo several regimes arising from the di↵erent
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parameter values recovered from the data.

Such regime classification is supported by the estimates of ↵, �, 2, ⇣ and ⌫2 in the possible
grouping periods using a least-squares method for each designated interval. The parameters
µ, ✓, �2, ⌘ and ⇠2 are computed utilising the set of equations in Eqs. (3.31) with �t = 1/253;
the NYSE and NASDAQ have an average of about 253 trading days a year.

Table 3.2: Least-squares parameter estimation on certain data subsets

Index Parameters Normal Dotcom Bubble Financial Crisis Overall

Jun,03 to May, 05 Mar, 00 to Oct,02 Dec, 07 to Jun, 09 Mar,98 to Aug,18

log(BASP500)
⌘ls -0.00073 -0.0001 -0.00036 -0.000071

⇠2
ls 0.036 0.055 0.056 0.045

µls 0.230 0.540 1.390 0.479

TED ✓ls 2.148 2.049 2.301 2.240

�2
ls 0.640 0.827 1.108 0.859

µls 2.937 3.204 3.314 2.984

log(VIX) ✓ls 1.549 1.656 1.625 1.658

�2
ls 0.744 0.881 0.805 0.879

µls 4.518 4.714 4.354 4.505

log(DXY) ✓ls 1.278 1.426 1.309 1.408

�2
ls 0.005 0.007 0.008 0.005

The preliminary results in Table 3.2 demonstrate a possible segregation of the actual data
into di↵erent state groupings. The basis of this grouping is the combined assessment of val-
ues for the mean-reverting level, mean reversion rate and volatility of the TED, log(VIX)
and log(DXY) and the values of log(BASP500)’s percentage drift and percentage volatil-
ity. Indices fitted to the OU-process have high mean-reverting levels during the illiquidity
period whilst the GBM’s percentage drift and volatility under the illiquidity regimes are
higher than those in the regular regime. In general, the OU volatilities are relative lower in
regular states. The only exception is the log(DXY) having almost identical volatility levels
even in di↵erent states as can be gleaned from Table 3.2. A plausible explanation for this
is that the original data series has a smaller variation range, which leads to least-square
estimates that are close to each other for these di↵erent periods.

The mean-reverting speed has a more complicated behaviour than the mean level’s. For
log(BASP500), log(VIX) and log(DXY), we observe higher mean-reverting rates at illiq-
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uidity episodes. However, this is not the case for TED which has a higher mean-reverting
rate in regular regime but it has lower ones during illquidity events. This is not surprising
as Figure 3.1 shows that it has several extreme values during 2007-2009 but attains lower
levels with small variation in other time periods.

Table 3.2 though o↵ers only partial information since least-square estimates are neither ac-
curate nor e�cient to capture the dynamic features of data under varying states. In order
to extract the characteristics of a data set under di↵erent regimes, we employ an HMM-
based regime-switching model with an online-estimation scheme. These characteristics are
encapsulated by the data’s changing distribution as time progresses. Virtually all distribu-
tional shapes could be reproduced by a mixture of normal distributions, which is intrinsic
to our regime-switching approach.

3.3.2 Initial values for the parameter estimation

The implementation procedure requires initial parameter values for ⇥ which is defined as
⇥ =

n
⇡ ji, ↵(g), �(g), 2

(g)
, ⇣, ⌫2

o
, where g = 1, 2, 3. Several ways of setting initial val-

ues for HMMs are tackled in Erlwein and Mamon [27], Erlwein et al. [29], Date and
Ponomareva [16], Tenyakov et al. [76], and Xiong and Mamon [91]. We shall apply the
maximum-likelihood method on the first 251 points of the 4-dimensional data set spanning
the period Mar 1998–Feb 1999. The aim is to come up with reasonable initial estimates
that could facilitate a stable implementation.

From Subsection 3.2.4, we consider, under the one-state setting (i.e., N = 1), the log-
likelihood function

Lini =

NX
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0
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With the aid of the function ‘optim’ in the statistical software R to solve the optimisation
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problem (3.32). These one-state initial values serve as guides to systematically generate
initial values for frameworks with more than 1 regime. All non-zero entries in the transition
matrix are set to 1/N for N = 2, 3. The initialisation results are exhibited in Table D.1 of
Appendix D.1

3.3.3 Filtering procedure and results

The filters established in Appendix B make use of a data-point processing instead of the
usual data-batch processing implementation. This type of processing generalises the con-
ventional HMM sub-optimal batchwise data processing. Here, one algorithm step is com-
pleted with the input of one multivariate data point and new parameter estimates are gener-
ated, which are then used for the next algorithm step. It is also natural to have a processing
frequency for the filtering procedure that is compatible with the frequency of the data com-
pilation (daily in our case). Such compatibility avoids the introduction of extra “noise" in
the filtering results.

Additionally, the components of our 4-dimensional time series have di↵erent dynamic fea-
tures that filtering a batch of data points may result to loss of salient information. We found
that our one-data point filter processing reflects well the original data’s fluctuations.

Our filtering procedure relies on the initial parameters in Table D.1; see Appendices D.1.
The first 251 four-dimensional data points (Mar 1998– Feb 1999) are used to for setting
initial parameter values. The model performance is assessed with the remaining 4908 daily
observations from Mar 1999 to Aug 2018.

The outcomes of the filtering-based parameter estimation under the one-state HMM are
illustrated in Figure D.1 of Appendix D.2. Each parameter estimate converges to a certain
level at the end of the filtering process.The GBM parameters’ evolution is relatively smooth
whilst the evolutions of OU parameters’ estimates show some significant variations over
time. All filtered parameters have di↵erent increasing trends, right after some illiquidity
incidence (e.g., 2008 global financial crisis).

The dynamics of bµ for the three OU processes coincide with that of the original data se-
ries.The mean reversion rates’ estimatesb✓ are less variable signifying stability for all three
indices. The squared volatility b�2’s exhibit diverse patterns for the three indicators; both
logarithm of VIX and DXY’s b�2 have relative flat curves whilst the TED’s has a big spike
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at the 2008’s financial crisis.
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Figure 3.2: Evolution of parameter estimates for µ, ✓, �2, ⌘, ⇠2 and ⇡ ji under a 2-state HMM-based
model.

Figure 3.2 displays the movement of the parameter estimates under the 2-state HMM. Note
that getting transition probabilities converge to 0 does not bespeak absence of regime-
switching feature in the original data. The filtered probabilities’ lack of variation is at-
tributed to data’s high frequency (daily) for which a significant market regime switch is
rarely and not visibly seen. The OU parameter estimates under a 2-regime setting have
di↵erent dynamics in each of the two states; there is no tendency for the two parameter-
estimates evolutions to even coincide. Outcomes for states 1 and 2 bifurcate into two dif-
ferent levels whereas the GBM parameter estimates settle to di↵erent levels but they their
behaviours are somewhat stable. These findings reconcile with the preliminary analysis
on the possible data segregations in Table 3.2. The data set’s excellent fit with the the 2-
regime HMM is supported by the behaviour of parameter estimates that jibe with dynamics
of the actual time series. Furthermore, in comparison to the 1-regime HMM filtering, the
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2-regime HMM filtering captures more e↵ectively the major spikes in the 4 indicators.
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Figure 3.3: Evolution of HMM state estimate under a 2-state model

Figure 3.3 depicts the state estimate of the HMM. The red curve corresponds to the illiquid
state whilst the green one refers to the liquid regime. The filtering of HMM states covered
the period of historical illiquidity events mentioned in Table 3.2. We shall construct an
early-warning alarm signal driven by the HMM-state estimate in Section 3.4. Filtered
estimates for the 3-state HMM-based model are plotted in Figure D.2. The evolution of the
parameters in state 1 under the 3-regime setting is similar to that in state 1 under the 2-state
HMM. For some parameters (e.g, OU-parameter µ and GBM-parameter ⌘), the parameters
under the new added regime, state 3, possess similar patterns with those of one of the two
states of a 2-regime HMM. It is true that the mean-reversion rate estimate b✓ and squared
volatility estimate b�2 for the added state (state 3) provide some new information given its
di↵erent evolution feature. Nonetheless, these information do not impact prediction results
as shown in the next section.
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3.3.4 Model selection and diagnostic

3.3.4.1 Prediction and error analysis

From the model formulations in Subsections 3.2.3 and 3.2.4, the respective one-step ahead
forecasts of Xk and Yk are
8>>>><
>>>>:

E
h
X(g)

k+1 | Fk

i
= E

h
↵(g)(zk)Xk + �

(g) (zk) + (g) (zk) w(g)
k+1 | Fk

i
= h↵(g), ẑkiXk + h�

(g), ẑki,

E [Yk+1 | Fk] = E
⇥
Yk + ⇣ (zk) + ⌫ (zk) bk+1 | Fk

⇤
= Yk + h⇣, ẑki,

(3.34)
where g = 1, 2, 3. Figure 3.4 gives the plots of the one-step ahead forecasts. The 1-step

ahead forecasts trace superbly the dynamics of all four indices. The predictions under
log(DXY) and log(BASP500) are better than those under log(VIX) and TED, i.e., the pre-
dictions fit the actual data better. In terms of the predicted values, the 2- and 3-state HMMs
are better than the 1-state HMM especially for time periods when spikes occur. This is
justified by an error analysis (similar to [29] as well as [92]). In particular, the forecasts’
goodness of fit under di↵erent HMM settings is performed using the root mean square er-
ror (RMSE), absolute mean error (MAE), relative absolute error (RAE) and mean absolute
percentage error (MAPE). Suppose hj refers to the observed data value at time j and ĥ j

symbolises the one-step ahead prediction at time j. Moreover, let h̄ stand for the sample
mean of the underlying process and n denote the sample size. With the above-mentioned
notations, the RMSE, AME, RAE and MAPE are calculated as

RMSE =

r
1
n

Xn

j=1

⇣
ĥ j � hj

⌘2
, MAE =

1
n

Xn

j=1
|ĥ j � hj|,

RAE =

Xn

j=1
|ĥ j � hj|

Xn

j=1
|hj � h̄|

, MAPE =
1
n

nX

j=1

�����
ĥ j � hj

h j

�����.

Table 3.3 displays the error-analysis results and the prediction errors under the log(DXY)
and log(BASP500) for all HMM settings are generally much smaller than those under the
log(VIX) and TED, which are more volatile than the logarithms of DXY and BASP500.
The chosen error metrics showed that the 2- and 3-state HMM-based models outperform
the 1-state model in prediction accuracy for all 4 data series even though the errors are very
small.

In order to determine whether the error mean di↵erences are statistically significant in each
pairwise HMM setting, a t-test is conducted and facilitated by the bootstrap method using
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Figure 3.4: One-step ahead forecasts under the 1-, 2-, and 3-state HMMs

Table 3.3: Results of error analysis

log(BASP500) log(VIX)

1-state HMM 2-state HMM 3-state HMM 1-state HMM 2-state HMM 3-state HMM

RMSE 7.4115⇥10�2 1.7338⇥10�2 1.7339⇥10�2 RMSE 8.9696⇥10�2 6.7345⇥10�2 6.7338⇥10�2

MAE 5.4689⇥10�2 9.3656⇥10�3 9.3648⇥10�3 MAE 6.9938⇥10�2 4.7756⇥10�2 4.7752⇥10�2

RAE 5.4038⇥10�2 8.8407⇥10�3 8.8399⇥10�3 RAE 2.3188⇥10�1 1.5797⇥10�1 1.5799⇥10�1

MAPE 3.2005⇥10�1 8.7599⇥10�2 8.7622⇥10�2 MAPE 2.3318⇥10�2 1.6013⇥10�2 1.6011⇥10�2

TED log(DXY)

1-state 2-state 3-state 1-state 2-state 3-state

RMSE 6.0258⇥10�2 5.2172⇥10�2 5.2150⇥10�2 RMSE 2.0834⇥10�2 5.0960⇥10�3 5.0938⇥10�3

MAE 3.2725⇥10�2 2.3927⇥10�2 2.3907⇥10�2 MAE 2.0061⇥10�2 3.8330⇥10�3 3.8308⇥10�3

RAE 1.2340⇥10�1 8.8434⇥10�2 8.8412⇥10�2 RAE 1.8911⇥10�1 3.6045⇥10�2 3.6047⇥10�2

MAPE 6.9177⇥10�2 5.2097⇥10�2 5.2068⇥10�2 MAPE 4.4422⇥10�3 8.5180⇥10�4 8.5127⇥10�4
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a bootstrapped sample size of 100,000. The outcomes of our pairwise t-test are reported in
Table 3.4. For the 2-state HMM versus the 1-state HMM and 3-state versus 1-state HMM,
all the p-values are smaller than 1% so that we can conclude that the di↵erence in the error
metrics, after adding one or more regimes into the one-state model, is statistically signif-
icant. For the 2-state HMM versus the 3-state HMM, most p-values are not significantly
less than 5%, signifying that we cannot reject the null hypothesis of no di↵erence. How-
ever, for a 5% significance level, the 1- and 2-state and 1-and 3-state HMM models are
statistically di↵erent in terms of the prediction errors. This suggests that there is merit to
using a regime-switching model whilst the 2- and 3-state HMM settings have similar fore-
casting capacity in our implementation. When various considerations are taken, the 2-state
HMM-based model is su�cient to capture the dynamics of data set.

Table 3.4: p-values for paired t-tests applied to RMSE, MAE, RAE, and APE values

log(BASP500) log(VIX)

2-state HMM

vs

1-state HMM

3-state HMM

vs

1-state HMM

2-state HMM

vs

3-state HMM

2-state HMM

vs

1-state HMM

3-state HMM

vs

1-state HMM

2-state HMM

vs

3-state HMM

RMSE 5.2873⇥10�5 3.3789⇥10�5 1.7699⇥10�2 RMSE 8.2564⇥10�4 8.6343⇥10�4 5.1127⇥10�2

MAE 1.5286⇥10�6 2.4510⇥10�6 9.2244⇥10�2 MAE 9.8775⇥10�4 6.2133⇥10�4 9.3636⇥10�2

RAE 7.7296⇥10�6 5.4001⇥10�6 4.2437⇥10�2 RAE 2.4689⇥10�3 4.5646⇥10�3 5.4729⇥10�2

MAPE 4.9509⇥10�6 9.8931⇥10�6 7.0021⇥10�2 MAPE 6.5236⇥10�3 2.9940⇥10�3 3.9241⇥10�2

TED log(DXY)

2-state HMM

vs

1-state HMM

3-state HMM

vs

1-state HMM

2-state HMM

vs

3-state HMM

2-state HMM

vs

1-state HMM

3-state HMM

vs

1-state HMM

2-state HMM

vs

3-state HMM

RMSE 8.2065⇥10�3 7.5948⇥10�3 4.2852⇥10�2 RMSE 4.2833⇥10�6 5.6844⇥10�6 2.6254⇥10�2

MAE 4.1235⇥10�3 6.8042⇥10�3 9.8906⇥10�2 MAE 7.0769⇥10�6 1.0683⇥10�6 6.4139⇥10�2

RAE 1.2670⇥10�4 7.9439⇥10�4 7.1553⇥10�2 RAE 6.9683⇥10�6 9.8990⇥10�6 4.7058⇥10�2

MAPE 1.1153⇥10�3 1.6865⇥10�3 5.5724⇥10�2 MAPE 9.5421⇥10�6 1.9270⇥10�6 7.0059⇥10�2

3.3.4.2 Model selection

In choosing the best HMM set up, we complement our error analysis by a likelihood-
based model selection analysis (e.g., Akaike Information Criterion (AIC) tailored to HMM
similar to the one utilised in Xi and Mamon [88]). The AIC metric estimates the Kull-
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back–Leibler information under the ML paradigm, and for each algorithm step this is given
by AIC = �2L(⇥)+2c, where c is the number of parameters to be estimated (cf Table 3.5).
With ⇥ =

n
⇡ ji, ↵(g), �(g), 2

(g)
, ⇣, ⌫2

o
, for g = 1, 2, 3, let L(⇥) denote the log-likelihood

function customised for our HMM filtering procedure. In particular,

L(⇥) =
NX

i=1

2
6666664hzk, eii

0
BBBBBB@

3X

g=1

⇣
L

(X(g))
i

⌘
+L(Y)

i

1
CCCCCCA

3
7777775 , (3.35)

where

L
(X(g))
i = �

1
2

log
⇣
2⇡2i

(g)⌘
�

⇣
X(g)

k+1 � ↵
(g)
i · X

(g)
k � �

(g)
i

⌘2

22i
(g)

(3.36)

L
(Y)
i = �

1
2

log
⇣
2⇡⌫2

i

⌘
�

(Yk+1 � Yk � ⇣i)2

2⌫2
i

.

The AIC for each model setting is computed using the parameter estimates given at the
end of each algorithm run or step. The evolution of AIC values for the 1-, 2- and 3-
state models after each algorithm run is portrayed in Figure 3.5 From (3.35), the model
setting is deemed the best for the data set and should be selected if it yields the lowest AIC
value. As an o↵shoot of growing regime size and time-series dimension, there will be an
upsurge in the AIC’s magnitude. This is due to the substantial increase in the number of
parameters especially the enlargement of the transition probability matrix. Whilst the 1-
state model produces a sequence (as a function of algorithm steps) of smallest AIC values,
evidently the 2-state HMM generally produces a set of more stable AIC values which are
the lowest during turbulent market periods. Table 3.6 contains the statistics of the AIC and
log-likelihood values covering all algorithm steps. The likelihood statistic of the 2-state
HMM is smaller than the 1-state model’s. The standard deviation of the AIC and likelihood
values under the 2-regime set-up are less than those under the 1-regime framework.

Table 3.5: Number of estimated parameters under various HMM settings

HMM settings

1-state 2-state 3-state · · · N-state

Number of parameters 11 24 39 · · · (3 · 3N) + (1 · 2N) + N(N � 1)

Therefore, the 2-regime HMM is the most suitable for modelling the 4-dimensional data
series for having attained the greatest balance between model’s fitness and complexity.
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This conclusion, which confirms and reinforces the previous results in our error analysis,
is similar to the findings on the most appropriate modelling framework obtained in [76].

-10

90

190

290

390

490

590

690

19
99
-03
-02

20
00
-03
-02

20
01
-03
-02

20
02
-03
-02

20
03
-03
-02

20
04
-03
-02

20
05
-03
-02

20
06
-03
-02

20
07
-03
-02

20
08
-03
-02

20
09
-03
-02

20
10
-03
-02

20
11
-03
-02

20
12
-03
-02

20
13
-03
-02

20
14
-03
-02

20
15
-03
-02

20
16
-03
-02

20
17
-03
-02

20
18
-03
-02

AIC

1-state 2-state 3-state

Figure 3.5: Evolution of AIC values for the 1-, 2-, and 3-state HMMs

Table 3.6: AIC statistics covering all algorithm steps

AIC 1-state 2-state 3-state

Mean 5.387 28.790 57.770

Standard Deviation 24.573 11.034 11.470

Log-likelihood 1-state 2-state 3-state

Mean 8.306 9.605 10.115

Standard Deviation 12.286 5.517 5.735

3.4 Early-warning detection of market illiquidity

To augment the benefits of this work, an early-warning alert signal (EWAS) is generated
under the 2-state HMM setting. We use dated historical economic and illiquidity episodes
to probe the proposed alert system’s capacity to unmask signals for predicting market illiq-
uidity. In this specific implementation, the pre-crisis stage is assumed to be totally captured
by the HMM-state process alone, and not by any other model parameters. We shall then
delve into the relationship between historical illiquidity events and the HMM state estimate
in an e↵ort to devise some meaningful pre-crisis signalling system. We set forth an intuitive
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but e↵ective approach that seizes the key features of a variable designed to emit warning
signals before or at least at the early stage of the crisis events.

3.4.1 Market liquidity regime forecasting

From Eqs. (B.2)–(B.5), ẑt is the filtered-regime estimate of a hidden Markov chain that
assesses the market-liquidity state. Based on Eq. (3.19), ⇧t is the filtered transition proba-
bility matrix at time t. According to the set up in Eq. (3.8) from subsection 3.2.3, the n-step
ahead predicted regime is computed as

ezt+n = E [ẑt+n|Ft] = ⇧n
t · E [zt|Ft] = ⇧n

t · ẑt (3.37)

We further write ẑ(1)
t = hẑt, e1i and ez(1)

t+n = hezt+n, e1i which are the first components of
filtered and n-step forward predicted regimes, respectively. Both of them are related to
the illiquidity regimes in this implementation. To make the filtered results interpretable,
we denote by Ŝ t and eS t+n the metrics for the current and n-step forward predicted market
illquidity severity, respectively, i.e.,

Ŝ t = 1n
ẑ(1)

t �0.5
o (3.38)

eS t+n = 1n
ez(1)

t+n�0.5
o, (3.39)

where 1{·} is an indicator function.

For a given prediction step n, we shall test the performance of the proposed n-step for-
ward regime forecasting method by measuring the predicted clustering error involving the
Markov-chain regimes. More precisely, we compute Type I and II mis-clustering error rates
(MCER(I) and MCER(II)) defined as follows:

8>>>>><
>>>>>:

MCER(I) =
1

J � n
PJ

t=n+1 1
{eS t+n=1, Ŝ t+n=0}

MCER(II) =
1

J � n
PJ

t=n+1 1
{eS t+n=0, Ŝ t+n=1},

(3.40)

where J is the total number of observations. Figure 3.6 presents the results for the MCER(I)

and MCER(II) yielding 21 steps ahead regime predictions. Both error rates grow when the
number of steps increases. The level of Type II Error rate (false negative) is lower than 4%
when n < 12 (trading days). In general, within 21 (trading days) prediction step length,
both error rates are below 0.12, which make ẑ(1)

t and ezt+n two reliable candidates for the
component of the early warning alarm generating system.
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Figure 3.6: Type I and II mis-clustering error rates for the n-step ahead regime prediction

3.4.2 Construction early warning alarm signal

Let xk be some time series with finite values. We construct a dynamic percentage rank
function

R(xk, s, t) =
1

t � s

t�1X

k=s

1{xk<xt}, (3.41)

where s is a parameter to determine memory length. The function (3.41) has a short (long)
memory if the value of s is large (small). Note that s can be chosen based on di↵erent
criteria, and its impact on the early warning signal’s performance is highly dependent on
the data set.

In order to extract information in evaluating possibility of future market illiquidity episodes,
we shall examine the current and predicted Markov chain state vis-à-vis historical dynamics
of the HMM filtered regimes. Eq. (3.41) quantifies the severity of market illiquidity at time
t by appraising the percentage rank of the current value of the Markov chain state relative
to all past data points. We first define the Past Regime Factor (PRF) Pt, which emits alarm
signals based on the filtered regime ẑk, as

Pt =
1
2
· 1n

R(ẑ(1)
k , s, t)>aP

o · 1n⇣
R(�ẑ(1)

k , s, t)>bP
⌘
[

⇣
ẑ(1)

t >cP
⌘o, (3.42)

where aP, bP, cP 2 (0, 1) are threshold parameters, and �ẑ(1)
k = ẑ(1)

k � ẑ(1)
k�1. The PRF’s alarm

signals are obtained by tracing the ranks of filtered regimes and the trend of their change.
An alarm is triggered when two conditions are both satisfied: (i) The rank of filtered regime
ẑ(1)

k exceeds the upper bound aP, and (ii) Either the rank of the di↵erenced filtered regime
�ẑ(1)

k is above some threshold bP or ẑ(1)
k is greater than the corresponding boundary cP.
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Recall the definition ofezt+n and write ėzk: = max
⇣
ez(1)

k+1, ez
(1)
k+2..., ez

(1)
k+n

⌘
. We set n = 21 (trading

days) in this implementation. Similar to PRF, we define the Forecast Regime Factor (FRF)
Ft as

Ft =
1
2
· 1
{R(ėzk , s, t)>aF}

· 1
{(R(�ėzk , s, t)>bF)[(ėzk>cF)}, (3.43)

where aF , bF , cF 2 (0, 1) threshold parameters; and �ėzk = ėzk+1�ėzk. The FRF also generates
alarm signals via the tracing of the ranks of forecast regimes and the trend of their change.
More specifically, the alarm is triggered when two conditions are both met: (i) The rank of
the maximum of 21 steps ahead predicted regimes ėzk’s exceeds the upper bound aF and; (ii)
Either the rank of the maximum di↵erenced �ėzk 21 steps ahead predicted regimes is above
some threshold bF or ėzk is greater than the corresponding boundary cF .

The early-warning alarm signal (EWAS) at time t is then constructed as

EWASt = Pt + Ft. (3.44)

EWAS (3.44) evaluates dynamically the status of liquidity way by tracing the backward as
well as forward HMM evolution at time t. The range of EWAS output is the interval [0, 1].
An outcome of 1 means that the anticipated severity of illiquidity is high whilst 0 means that
the future illiquidity risk is low. For ease of interpretation, we set to 0.5 all the boundary
parameters in EWAS, i.e., aP, bP, cP, aF , bF , and cF . That is, we let the PRF and FRF
capture the event that value of the underlying sequence’s percentage rank exceeds 50%.
The memory length parameter s is set to 0 in order to include all historical information. All
EWAS parameters can be adjusted by practitioners based on certain characteristics of the
input data to minimise the error rate.

3.4.3 EWAS outcomes and diagnostics

In this subsection, we shall examine the output of the EWASt and related error analysis.

3.4.3.1 Output of EWAS

Figure 3.7 provides the plots of EWAS (red curve) as well as dated illquidity risk episodes
(cloured rectangular areas) We observe that the EWASk metric (plotted as red curves) is
capable of generating di↵erent alarm levels before or sometimes at least at the early stage
of these dated prior illiquidity incidences with very fewer Type-I Errors. This outcome
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supports the 2-state HMM filters giving good predictive performance in market illquidity
forecasting.
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Figure 3.7: Outcome of EWAS

3.4.3.2 Type I and II errors

We construct a time series Vt based on dated illiquidity events as follows:

Vt:=1{Illquidity event happens at time t}. (3.45)

For a given prediction step number n, we shall assess the performance of EWASt by mea-
suring the clustering error. More specifically, we will compute Type-I and Type-II errors.
Note that, in this implementation, the Type-I error is related to false positive (warning)
alarm whilst Type II Error (false negative) means failure of generating alarm for an illiq-
uidity episode at its early stage. Let A(FP)

t be a triggered false positive alarm (Type-I error);
in this case, a non-zero EWASt results in the following periods: (i) 21 (trading days) earlier
than an illiquidity incident when ẑ(1)

t < 0.5 or (ii) in any interval where no illiquidity events
happen when ẑ(1)

t < 0.5. Similarly, the false negative event A(FN)
t (Type-II error) occurs

when EWASt = 0 within the 21 (trading days) intervals for each illiquidity event when
ẑ(1)

t � 0.5. We define the mean Type-I and Type-II errors as
8>>>>>>>>><
>>>>>>>>>:

ME(FP) =
1
J
PJ

t=1 1n
A(FP)

t ,;
o

ME(FN) =
1
J
PJ

t=1 1n
A(FN)

t ,;
o,

(3.46)

where J is the total number of observations. As shown in Table 3.7, both mean Type-I
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and II errors are below 6% indicating that the proposed warning system has the ability to
identify the upcoming and current illiquidity events.

Table 3.7: EWAS: Mean Type-I and II errors

ME(FP)

(Type I)

ME(FN)

(Type II)
Total

Value 0.0515 0.0346 0.0861

3.4.3.3 Sensitivity and Specificity

Treating EWAS as a binary classifier, we evaluate the sensitivity and specificity by comput-
ing the True Positive Rate (TPR) and False Positive Rate (FPR). A perfect classifier, which
has the highest performance in the identification of illiquidity episodes, leads to TPR = 1
and FPR = 0. The calculation of TPR and FTR is based on8>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

TPR =
JTP

JPOS
=

PJ
t=1

✓
1{EWASt>0} � 1n

A(FP)
t

o
◆

PJ
t=1

✓
1{EWASt>0} � 1n

A(FP)
t

o + 1n
A(FN)

t

o
◆

FPR =
JFP

JNEG
=

PJ
t=1 1n

A(FP)
t

o

PJ
t=1

✓
1{EWASt=0} � 1n

A(FN)
t

o + 1n
A(FP)

t

o
◆ ,

(3.47)

where JPOS (or JNEG) is the number of condition positive (or negative) data points whilst
JTP (or JFP) is the number related to true (or false) positive alarm. Note that J = JPOS+ JNEG

is the total observation number. The event A(FP)
t signifies a false positive alarm defined in

3.4.3.2. As shown in Table 3.8, the TPR is close to 1 and FPR is close to 0, which is a
strong evidence for EWASt’s capability in pinpointing illiquidity events.

Table 3.8: True and false positive rates

TPR FPR

Value 0.9285 0.0998
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3.4.4 Granger’s causality test

In addition to the visualisation illustrated by Figure 3.7, we shall use some statistical tools
to test whether or not the EWAS generates warning signal earlier than the illiquidity in-
cidence. Granger (1969) [37] argued that causality in economics could be tested for by
measuring the ability to predict the future values of a time series using prior values of
another time series. The Granger’s causality test has been widely used as an e↵ective tech-
nique to determine the existence of predictive causality between two time series. In this
study, we shall apply Granger’s test to justify the e↵ectiveness of the EWAS function in
accordance with the succeeding descriptions.

3.4.4.1 Construct stationary time series

The Granger’s test requires the time-series input to be stationary. Thus, we obtain a dif-
ferenced time series EWASt and Vt, and conduct the Augmented Dickey–Fuller (ADF)
test and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test to check stationarity. Further
information regarding these tests are detailed in [20] and [54].

Table 3.9: Stationarity: Results of ADF and KPSS tests

Tested Time Series Test H0 p-values Decision (5% significance)

�EWASt
ADF �EWASt is not stationary < 0.01 Reject the Null Hypothesis

KPSS �EWASt is stationary > 0.1 Do not reject the Null Hypothesis

�Vt
ADF �Vt is not stationary < 0.01 Reject the Null Hypothesis

KPSS �Vt is stationary > 0.1 Do not reject the Null Hypothesis

Table 3.9 implies that �EWASt and �Vt are stationary time series at a 5% significance
level. This result validates the assumption of the Granger’s causality test on the bivariate
data series that we are investigating.
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3.4.4.2 Tests set up

Two Granger’s causality tests are conducted on time series models formulated as

T1 :

8>>>><
>>>>:

Restricted Model (H0) : �Vt = a0 +
Pt�⌧

i=t�1 ai · �Vi + ✏t,

Full Model (Ha) : �Vt = a0 +
Pt�⌧

i=t�1 ai · �Vi +
Pt�⌧

j=t�1 bj · � EWAS j + ✏t,

(3.48)

T2 :

8>>>><
>>>>:

Restricted Model (H0) : � EWAS t = c0 +
Pt�⌧

i=t�1 ci · � EWAS i + �t,

Full Model (Ha) : �Vt = c0 +
Pt�⌧

i=t�1 ci · � EWAS i +
Pt�⌧

j=t�1 dj · �Vj + �t,

(3.49)

where ai, bi, ci and di are unknown constants, and ✏t and �t are white-noise error terms.
T1 is designed to determine whether there is significant statistical evidence to support that
� EWAS t causes �Vt whilst T2 aims to verify statistical significance of whether �Vt causes
� EWAS t.

Note that ⌧ is the lag parameter for the test. Similar to the method in [77], we use AIC, BIC
and F-test to search the appropriate values for ⌧. Assuming an early-warning alarm signal
corresponding to an illiquidity event will not be generated 21 more trading days prior it
happens, we set an upper bound ⌧ = 21. Table 3.10 provides the optimal ⌧ value based on
di↵erent criteria for assessing the regression in Eqs. (3.48) and (3.49).

Table 3.10: Granger’s causality test: selection of the lag ⌧

Criteria AIC BIC F-test

Selected lag ⌧ for T1 2 1 8

Selected lag ⌧ for T2 14 1 19

3.4.4.3 Tests’ result

We employ the R function “grangertest" in carrying out the Granger’s test for T1 and T2

with 6 lag parameters in Table 3.10. The resulting p–values are exhibited in Table 3.11.
We observe that all the p–values generated from T1 are less than 5%; thus, we reject, at
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a 5% significance level, all null hypotheses (Restricted Model) under T1 for all 6 di↵erent
lag parameters. This implies that � EWAS t causes �Vt at a highly significant level. On the
other hand, all the 6 p–values produced by T2 are relatively large (> 0.5), which indicates
not having enough evidence to reject the null hypothesis at 5% significance level. So,
there is insu�cient basis to say that �Vt causes � EWAS t. Consequently, with the data set
analysed in this study, we conclude with empirically and statistical support that EWASt is
capable of generating early warning alarm signals that aid in detecting forthcoming market-
illiquidity events .

Table 3.11: p–values for the Granger’s causality test

Test
Lag for T1 Lag for T2

⌧ = 1 ⌧ = 2 ⌧ = 8 ⌧ = 1 ⌧ = 14 ⌧ = 19

T1 0.0083 0.0074 0.0062 0.0083 0.0377 0.0146

T2 0.9996 0.9968 0.9274 0.9996 0.6589 0.5951

3.5 Conclusion

The major contribution of this work is the development of a hybrid multivariate regime-
switching HMM-based model to assess the level of market illiquidity. Three OU processes
and a GBM, whose parameters are simultaneously governed by a hidden Markov chain
in discrete time, were synthesised. It was shown that our proposed model is capable of
capturing various time-series characteristics simultaneously. We detailed a methodology
in extracting essential information from the observed multi-dimensional stochastic process
as well as linking the empirical results to the model’s one-step ahead predictions. Tak-
ing advantage of the EM algorithm and change of reference probability measures, a new
multivariate HMM online recursive filtering method is obtained.

The model’s implementability and forecasting performance were tested on actual daily
multi-dimensional time series of log(BASP500), TED, log(VIX) and log(DXY) compiled
during a 15-year period. The recursive filtering algorithm, with data-point processing, was
applied. The one-step ahead predictions are calculated under the 1-, 2- and 3- state HMM
set-ups. The post-diagnostic modelling analysis reveals that forecasting errors generated
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by the multi-regime HMMs are significantly smaller than those produced by the 1-state
HMM. More specifically, the 1-regime model significantly underperforms compared to
the 2-regime model. The choice of the optimal number of states is justified by the AIC
comparison in conjunction with the goodness-of-fit numerical exercise for the one-step
ahead forecasts. We found that the 2-state HMM provides the most reliable framework for
the data that we investigated.

We explored the utility of our model’s results to gauge occurrence of actual past illiquidity
events. An empirical pre-crisis detection method was established and tested on historical
illiquidity episodes. Our findings indicate that the proposed 2-regime HMM filters could
generate early-warning signals before or at least at the early stage of the illiquidity risk
incidences.

This work further elevates progress in HMM modelling in the following respects: (i) blend-
ing of the OU and GBM frameworks within HMM, which is new in an attempt to cap-
ture important stylised joint properties of series relevant for financial-market illiquidity
analysis, (ii) development of an extended self-tuning estimation procedure under a mul-
tivariate HMM set up in which each univariate series component has di↵erent dynamics,
(iii) detailed implementation of filtering method with model validation, (iv) creation of an
early-warning system primarily relying on the HMM-state estimates of a regime-switching
model, and (v) statistical assessment of EWAS’s performance.

We provide a quantitative methodology for market illiquidity modelling in which the es-
timation and implementation are designed to capture the e↵ects and identify illiquidity-
events location in the context of drafting regulatory measures and policies. Our filtering
equations could be employed to provide dynamic parameter estimates of models tailored
for financial-market liquidity risk management. The liquid/illiquidity-regime classification
in our regime-switching modelling approach accurately correspond to those identified by
practitioners. The regime-switching results are also easy to interpret with direct relevance
to bankers, economists, regulators and traders.



Chapter 4

A multivariate anomaly detection system
with supervised learning

4.1 Introduction

The intent of this chapter is to construct an algorithmic platform that integrates machine
learning algorithm and statistical models to tackle some challenges in the artificial intelli-
gence’s task of classification. We demonstrate how our methodology works in addressing
one primary concern in economics and finance although with the generality of its principle
our approach can be applied to other multivariate modelling problems in the natural sci-
ences and engineering. In our case, an automated predictive mechanism to detect future
periods of financial instability will be constructed. The aim is to widen available tools and
techniques that could rein in situations that weaken global financial stability.

Since the financial crisis of 2007, researchers, market participants, and regulators alike have
explored ways to examine and forecast the potential for instances of financial instability in
the future. As there are various characterisations of financial stability, we rely on the World
Bank of its portrayal, namely, (i) the absence of system-wide episodes, i.e., financial crisis,
in which the financial system fails to function; and (ii) the resilience of financial systems
to stress. In other words, financial stability is a state where the financial system is immune
to systemic financial crisis and is able to smoothly perform its basic functions. Thus, the
detection in advance of financial-stress episodes is pivotal for bankers and regulators in
mitigating the shock attributed to the occurrence of financial stress.

83

https://www.worldbank.org/en/publication/gfdr/gfdr-2016/background/financial-stability
https://www.worldbank.org/en/publication/gfdr/gfdr-2016/background/financial-stability
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Measuring the degree of financial stability or instability is a complex endeavour consider-
ing the interdependence of internal and external forces acting on the financial system and
economy [32]. Yet, there growing e↵orts to come up with a single composite quantitative
index that could signify the extent of financial stress. Duprey et al. [21] constructed a new
country-level Financial Stress Index (FSI) covering three core financial market segments:
(i) equity markets, (ii) bond markets, and (iii) foreign exchange markets. The details of
the FSI’s inputs and construction procedure are elaborated in [21]. The literature, using
Markov-switching and one threshold vector autoregressive model to combine FSI with ele-
ments quantifying financial stress on business cycle, successfully identified those systemic
financial stress episodes that are consistent with the expert-categorised stress periods. More
specifically, 83% of systemic financial-stress periods detected in [21] are also identified as
crisis states by the experts.

The machine learning algorithms could be divided into two categories: supervised learning
and unsupervised learning. The aim of supervised learning is to predict the value of a
target variable based on some given input features. The term “supervised" is due to the
fact that the learning process is guided by the target variable. In unsupervised learning, the
target variables are either unavailable or unobservable and the task is to describe particular
associations and patterns, i.e., how the data are organised or clustered amongst a set of
input features.[43]

Some researches focusing on financial stability use machine-learning algorithms to build
early-warning models to predict the occurrence of a financial crisis. Duttagupta and Cashin
[22] utilised a Binary Classification Tree (BCT) model to investigate banking crises in
50 emerging markets and developing countries. An early-warning model is constructed
with Random Forests in [2] to predict systemic banking crisis to financial stability. Ward
[83] found that the out-of-sample classification performance of the banking crisis indicator
constructed with Random Forest outperforms that of the logit models when tested on a
long-run multiple countries dataset. Casabianca et al. [12] developed an early-warning
system to detect banking-crisis episodes with Adaptive Boosting (AdaBoost) which is able
to obtain better out-of-sample performance than the logit models. In [30], an early-warning
system, which is created using artificial neural network, surpasses the traditional parametric
models in terms of prediction performance in identifying sovereign-debt-crisis episodes.

Instead of making predictions by incorporating multiple di↵erent types of indices as the
input variables, our approach, in contrast to the prevalent methodologies in the literature,
assumes a scenario that we only have partial information consisting of the FSI and an ag-
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gregated index covering various component indices in our model development process.
Our methodology – a composite of algorithms leading to a supervised-learning classifi-
cation approach – is designed to ‘filter out’ essential information from the country-level
FSI in [21] that will help identify high financial-stress episodes. The main point of in-
terest is to capture the evolution of multiple countries’ FSI altogether and then generate
multiple step-ahead predictions that give out signals concerning the FSI levels in the fu-
ture. The characterisation of the FSI’s dynamics, whether they are anomalous or not, is
carried out by introducing a discriminative signal. Such a signal is defined as the lag-⌧ dif-
ferenced of the original time series. HMM-modulated OU processes are utilised to model
17 di↵erent countries’ discriminative signals simultaneously. The HMM recursive online
filters are then established to extract signal information from the input time series with
the implementation of the change of probability measure technique. In conjunction with
the Expectation-Maximisation (EM) algorithm, the HMM-driven multivariate OU model
parameters are obtained. A detailed methodology construction and design is a particular
feature in this chapter, wherein predictive-analytics performance is strengthened and im-
proved through the employment of Random Forest and XGBoost classifier. Random Forest
enables variable selections amongst the HMM and Non-HMM predictors concomitantly.
XGBoost, whose hyper-parameters are tuned using time series cross-validation combined
with grid search, is deployed as the final-stage classifier. The integrated modelling algo-
rithm is trained when the arrival of new data; and model parameters are updated to cap-
ture the dynamics of the input-data series. We apply a direct-prediction approach , which
avoids error propagation in a multi-step-ahead forecasting [73], in making 6-step ahead
predictions on the financial-stress status of all countries considered in the study, thereby
producing early-warning financial-crisis signals.

Using the actual multi-dimensional time series of 17 countries’ FSIs, the predictive perfor-
mance of our algorithmic modelling approach is assessed under di↵erent diagnostic mea-
sures and through benchmarking with five well-known competing algorithms. A tailored
analysis on the features’ importance indicates that the HMM-related variables have high
impacts on the accuracy of the anomaly detection. Furthermore, two anomaly-warning sig-
nal systems are constructed to identify two di↵erent types of extreme anomalous episodes
six months ahead. Our findings indicate that our proposed modelling algorithm has a
stronger capability to detect in advance the FSIs’ abberations with fewer false alarms. Our
model could be utilised to obtain dynamic quantitative assessments of FSI status tailored
to country-level financial stability management for economists and regulators.
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The structure of the remaining parts of this chapter is as follows. Section 2 provides a
brief overview of the underlying principles of the major components of our modelling
algorithm. In Section 3, we illustrate the formulation of our methodology consisting of
HMM filtering derivation, Random-Forests predictors’ selection module, and XGBoost
tuning and training. The details of a comparative examination involving the algorithm put
forward in this work vis-à-vis existing approaches are given in Section 4. The construction
and diagnostics of two signal-projection systems are laid out in Section 5. Lastly, Section
6 provides a summary and implications of this study.

4.2 Related work

4.2.1 HMM-based regime-switching models

HMM is a doubly-embedded stochastic process comprised of an observation series and an
underlying hidden process delineated by its number of states and transition probabilities or
intensities. The parameters of an HMM can be estimated based on the observed data series
unveiling the dynamics of the driving but unobserved Markov chain. Thus, the capacity to
extract information in order to provide optimal model parameter estimates, by filtering out
the noise from the data set, is the dominantly superior feature of HMM-based methods.

When dealing with real life-data, HMM could be employed as a statistical learning model
to make classifications on time series according to its estimated parameters. See for in-
stance, Li et al. [56]) who constructed an HMM-embedded device to detect anomalies in
multivariate time series. In financial economics, where the manifestations of irregular or
anomalous events are not apparently visible, an HMM-based model is an advantageous tool
in the analysis of pertinent data. In Cao et al. [11], for example, an HMM with wavelet
transformations and gradients was utilised to detect price manipulation activities in the
stock markets.

Moreover, an HMM is the building block of a regime-switching-based technique in pinning
down some underlying processes in finance or economics where they primarily evolve with
the random shifts of their statistics (e.g., mean or variance) amongst di↵erent states. Thus,
the HMM framework o↵ers the flexibility that allows structural regimes, which are gov-
erned by the location, scale and shape parameters of a distribution, to shift stochastically
over time. Such a framework is suited in capturing widely observed phenomena in finan-
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cial economics, natural sciences, and engineering. The Markov-switching methodology
in economics could be traced back to Hamilton’s work [41], with the static estimation of
the model addressed. The Markov-switching model designed mainly to describe structural
changes in time series aims to (i) di↵erentiate regimes of the economy and (ii) estimate the
probability of being in an expansion or contraction.

In this work, the HMM modulates a mean-reverting OU process to capture the dynamic
behaviour of an FSI. The estimation of HMM is performed via filtering methods, which
are quite common in electronics and electrical engineering. The recursive filtering, which
gives rise to a self-calibrating model, is an innovation relative to the models created in the
past that are heavily dependent on static-model fitting approach of maximum likelihood
estimation [59]. A change of reference probability measure, which is a dominant feature in
our HMM-filtering procedure and pioneered by Elliott et al. [25], facilitates the develop-
ment of a self-calibrating model. An accessible introduction of this method can be found
in Mamon et al.[59].

Recent research progress in this HMM filtering framework highlights various implemen-
tations in the areas of quantitative finance, insurance, economics, epidemiology, and other
branches of the sciences and engineering. In finance specifically, these include short-rate
modelling (e.g., Elliott et al. [26], Elliott and Mamon [24], Erlwein and Mamon. [27], and
Xi and Mamon [88]); investment strategies (Tenyakov et al. [74] and Erlwein et al. [28];
commodity price forecasting (Date et al. [17]); weather derivative pricing (Xiong and Ma-
mon [91] and Xiong and Mamon [92]); liquidity risk forecasting(Gu et al.[40]) modelling
electricity spot prices (Erlwein et al. [29]).

The major motivation in this work in the incorporation of the HMM-based model into
our modelling process is to augment the capacities of learning the FSI’s evolution. The
turning points and pertinent evolution patterns could indicate possible financial-instability
episodes. Therefore, numerical outcomes from our HMM filters could enable the detection
of anomalies related to impending financial stress.

4.2.2 Random Forests

In statistical learning, an ensemble method combines multiple predictors to obtain predic-
tive modelling performance that is better than simply using a single-component modelling
algorithm. Random forests (RFs) [7] are an ensemble machine-learning framework for
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classification and regression via the construction of multiple decision trees. The RF have
become one of the most favoured supervised-learning models due to its considerable ad-
vantages, which are: (i) notable accuracy; (ii) robustness to outliers and noise; (iii) ease
of use; and (iv) availability of internal estimates of error and variable importance [7]. In
addition, the model has strong immunity from overfitting (see [7] [43]), especially for clas-
sification problems [43]. The algorithm in RFs used for classification is summarised in
Algorithm 1.

The RFs are also aimed at enhancing the variance reduction of bagging (short for bootstrap
aggregating) via building a large collection of de-correlated trees. This is attained by se-
lecting variables randomly in the tree-growing procedure [43]. More specifically, all trees
are grown to some bootstrap samples drawn from a training set. It can be shown that , when
the sample size is large, approximately 63.2% of the instances in the training set are used
to build one tree 1. As a consequence, the remaining 36.8% of the data are used to evaluate
the out-of-bag (OOB) error which is a good metric to measure the predictive power for
each tree.

The OOB samples are also used to construct a measure for variable importance by eval-
uating the prediction power of each predictor. Once a tree is built, the OOB samples are
processed by the tree, and the prediction accuracy is obtained. The algorithm randomly
permutes the values for each single variable in the OOB samples to calculate the accuracy.

1Brief proof: Let n be the sample size of the training set. The probability of an instance not selected to
build a tree is 1 � (1 � 1

n )n
! 1 � e�1

⇡ 0.632 as n goes to infinity.
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The di↵erence between the accuracy values before and after permutation is averaged over
all trees, which is treated as a measure for the variables’ importance in the RF.

Owing to its superiority as pointed out above, an RF is widely employed as a predic-
tive model to solve various regression and classifciation problems in time series analysis.
Tyralis and Papacharalampous [78], Karasu and Altan [51] and Hao et al. [42] found that
the predictive error could be reduced by selecting features using an RF on di↵erent time-
series data sets. In this research, we shall employ RFs to identify variables that contribute
more to the prediction of our target variable. These selected features will be passed on to
the next-stage classifier to make the final prediction.

4.2.3 Extreme Gradient Boosting (XGBoost)

Boosting is another powerful learning-ensemble algorithm that aims to convert a set of
weak learners, which could only extract a small amount information, into a strong learner
[68]. The weak learners are weighted in some way related to their accuracy. The weights
are updated after a weak learner is added. Input samples with poor learning result lead to
a higher weight, which is then emphasised more and reflected when adding the next weak
learner. Eventually, the final model is established by weighting all the component learners
based on their performance. The final result of the boosting model is obtained by averaging
and counting votes in the solutions to regression and classification problems, respectively.

The fundamental idea of XGBoost [13] is to predict the sum of scores from multiple clas-
sification and regression trees (CARTs) considering that one tree is usually not capable
of capturing su�cient information from the data. XGBoost uses a tree ensemble model
that consists of a group of CARTs [6]. It is a scalable end-to-end boosting system, which
is widely recognised by data scientists to achieve state-of-the-art results and outperforms
many other competing models tackling various machine-learning challenges [13]. XG-
Boost is based on a gradient-tree boosting [31] and entails a numerical optimisation ap-
proach to minimise the loss function via the addition of trees in the gradient-descent al-
gorithm. More specifically, new trees are built and trained on the errors of that previous
model so that more importance are given to the observations in which existing learners
were misclassified. A strong learner is updated by adding a new trained tree that generates
a new prediction, whereby each tree’s contribution is determined by minimising the overall
error of the strong learner.



90 Chapter 4. A multivariate anomaly detection system with supervised learning

Following Chen and Guestrin [13], XGBoost could be described in the following way. For
a given data set with n instances and m features, a tree-ensemble model uses K additive
functions to predict the target variable y. That is,

ŷi =

KX

k=1

fk(xi), (4.1)

where fk 2 F and F = { f (x) = wq(x) | q : Rm
! T, w 2 RT

} is a functional space
that includes all possible CARTs. Note that q(·) is the structure of each tree that maps an
instance to the corresponding leaf index. Also, T represents the number of leaves in the
tree. Each fk is related to an independent tree structure q and the leaf weight w.

Instead of growing multiple trees at once, the model is trained in an additive manner. To
clarify this further, let y(t)

i be the prediction of the ith instance at the tth step, and ft is added
to minimise the objective function of the form given by (4.2). In other words, ft is added in
a greedy way that provides the optimal improvement to the model. In order to optimise the
loss function e�ciently, Chen and Guestrin [13] use a Taylor approximation through the
first and second-order gradients gi and hi in Eq. (4.3); in turn, more information concerning
the gradients’ directions are gained. Taking into account the above-mentioned descriptions,
the loss function is given by

L
(t) =

nX

i=1

l(yi, ŷ(t�1)
i + ft(xi)) +⌦( ft) (4.2)

⇡

nX

i=1

l(yi, ŷ(t�1)
i + gi ft(xi) +

1
2

hi f 2
t (xi)) +⌦( ft), (4.3)

where ⌦( f ) = �T +
1
2
�

TX

j=1

w2
j ; gi = @ŷ(t�1)

i
l(yi, ŷ(t�1)

i ); and hi = @2
ŷ(t�1)

i
l(yi, ŷ(t�1)

i ).

The function l in (4.2) is convex and continuously twice di↵erentiable; it quantifies the
di↵erence between the true value yi and the prediction ŷi. In order to avoid over-fitting, there
is a regularisation term ⌦ in (4.2) that e↵ectively penalises the complexity of the model.
Thus, this regularisation incentivises in selecting a simple model with strong predictive
power.

The major advantages and features of XGBoost are: (i) gradient-boosting-method imple-
mentation with the utility of the second-order partial derivatives, which provides more ac-
curate approximations of the loss function; (ii) presence of regularisation that enhances
model’s predictive abilities; and (iii) capacity to incorporate parallel and distributed com-
puting which makes learning faster than existing algorithms [13].
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XGBoost became popular in tackling various real-life data-analysis problems. Zhang et
al. [94] proposed an XGBoost-based classifier to detect indoor-human activities based on
time series collected via smart-phone sensors. In Basak et al. [3], it was found that models
based on XGBoost and RFs are able to achieve high-accuracy predictions of the stock-
price movements’ direction in the medium to long term. Nobre and Neves [64] constructed
an automated stock-trading system which combines Principal Component Analysis (PCA),
Discrete Wavelet Transform (DWT), XGBoost and a Multi-Objective Optimisation Genetic
Algorithm (MOO-GA).

In this work, we shall employ XGBoost as a final classifier to detect anomalies related to
that task of coming up with multiple-step-ahead prediction regarding the movements of all
FSI time series for each country in the data set.

4.3 The integrated modelling algorithm construction

4.3.1 Model structure

This work presents an automated early-warning system designed to detect the anomaly in
the FSI. This is accomplished by predicting the probability of occurrence of a rising edge
in the next 6 months. A supervised learning framework consisting of HMM filters, RF
and XGBoost binary classifier is proposed. Figure 4.1 illustrates a schematic layout of our
modelling approach, which is implemented in the R programming language.

4.3.2 Input layer

4.3.2.1 Dataset

The data set in this work is taken from Duprey et al. [21] comprising the monthly FSIs of
17 countries for the period Jan 1968–Sep 2019 (i.e., a matrix of 621 ⇥ 17 data points). The
descriptive statistics and the graphical evolution of the multi-dimensional time series are
illustrated in Table 4.1 and Figure 4.2, respectively. Note that the range of FSI values is
from 0 (no financial stress) to 1 (extremely high financial stress).
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Figure 4.1: The architecture of the proposed modelling approach

4.3.2.2 Discriminative signal

Let S t denote the FSI process. We shall forecast S t’s movement which may signal financial
stress in the future. More precisely, at a given time t, we need to determine whether or not
the time series will have a rising edge between t + 1 and t + h inclusive. To carry this out,
the original input undergoes the transformation

Yt =

Z t

t�⌧
dS u = S t � S t�⌧, (4.4)

where ⌧ is the length of the moving window. In Eq. (4.4), Yt has two interpretations: (i) the
di↵erence in the S t values between time t and time t � ⌧; and (ii) the cumulative sum of S t

changes over the interval [t � ⌧, t].

Since FSI is a monthly data series, we set ⌧ = 12. Thus, Yt measures the aggregate elevation
of the index in the last 12 months; it could be viewed as the FSI’s year-over-year net growth.
Thus, Yt’s progression also traces dynamically the movement of S t. The evolution of Yt is
exhibited (red curve) in Figure 4.2.

4.3.2.3 Target variable formulation
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Figure 4.2: The FSIs and discriminative signals
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Table 4.1: Descriptive statistics of the FSI data series
Code Country Mean SD Median Minimum Maximum Skewness Kurtosis

AT Australia 1.209 ⇥ 10�1 8.520 ⇥ 10�2 9.457 ⇥ 10�2 7.414 ⇥ 10�3 4.411 ⇥ 10�1 1.398 ⇥ 100 1.572 ⇥ 100

AU Austria 1.643 ⇥ 10�1 1.271 ⇥ 10�1 1.219 ⇥ 10�1 1.175 ⇥ 10�2 6.990 ⇥ 10�1 1.476 ⇥ 100 1.826 ⇥ 100

CA Canada 1.933 ⇥ 10�1 1.288 ⇥ 10�1 1.588 ⇥ 10�1 1.803 ⇥ 10�2 6.526 ⇥ 10�1 9.497 ⇥ 10�1 5.072 ⇥ 10�1

CH Switzerland 1.475 ⇥ 10�1 1.226 ⇥ 10�1 1.099 ⇥ 10�1 2.114 ⇥ 10�2 7.528 ⇥ 10�1 2.055 ⇥ 100 4.710 ⇥ 100

DE Germany 1.354 ⇥ 10�1 1.056 ⇥ 10�1 1.024 ⇥ 10�1 1.938 ⇥ 10�2 6.697 ⇥ 10�1 1.749 ⇥ 100 3.309 ⇥ 100

DK Denmark 1.188 ⇥ 10�1 8.288 ⇥ 10�2 9.205 ⇥ 10�2 1.455 ⇥ 10�2 5.339 ⇥ 10�1 1.644 ⇥ 100 3.401 ⇥ 100

ES Spain 1.305 ⇥ 10�1 9.901 ⇥ 10�2 9.561 ⇥ 10�2 1.966 ⇥ 10�2 5.669 ⇥ 10�1 1.734 ⇥ 100 3.089 ⇥ 100

FI Finland 1.735 ⇥ 10�1 1.382 ⇥ 10�1 1.334 ⇥ 10�1 1.962 ⇥ 10�2 7.565 ⇥ 10�1 1.713 ⇥ 100 3.191 ⇥ 100

FR France 1.424 ⇥ 10�1 9.978 ⇥ 10�2 1.123 ⇥ 10�1 2.052 ⇥ 10�2 5.475 ⇥ 10�1 1.414 ⇥ 100 1.806 ⇥ 100

GB United Kindom 1.487 ⇥ 10�1 1.164 ⇥ 10�1 1.137 ⇥ 10�1 1.167 ⇥ 10�2 8.050 ⇥ 10�1 1.869 ⇥ 100 4.421 ⇥ 100

IT Italy 1.318 ⇥ 10�1 1.139 ⇥ 10�1 9.333 ⇥ 10�2 8.979 ⇥ 10�3 6.472 ⇥ 10�1 1.995 ⇥ 100 4.745 ⇥ 100

JP Japan 1.586 ⇥ 10�1 1.152 ⇥ 10�1 1.214 ⇥ 10�1 1.842 ⇥ 10�2 7.142 ⇥ 10�1 1.528 ⇥ 100 2.557 ⇥ 100

KR Korea 1.064 ⇥ 10�1 7.808 ⇥ 10�2 8.500 ⇥ 10�2 1.228 ⇥ 10�2 6.095 ⇥ 10�1 2.368 ⇥ 100 8.225 ⇥ 100

NL Netherlands 1.111 ⇥ 10�1 8.624 ⇥ 10�2 8.700 ⇥ 10�2 1.654 ⇥ 10�2 5.814 ⇥ 10�1 2.186 ⇥ 100 6.203 ⇥ 100

NZ New Zealand 2.251 ⇥ 10�1 1.720 ⇥ 10�1 1.657 ⇥ 10�1 1.728 ⇥ 10�2 8.081 ⇥ 10�1 1.040 ⇥ 100 2.668 ⇥ 10�1

SE Sweden 1.334 ⇥ 10�1 1.040 ⇥ 10�1 1.023 ⇥ 10�1 2.117 ⇥ 10�2 6.292 ⇥ 10�1 2.069 ⇥ 100 5.236 ⇥ 100

US United States 1.640 ⇥ 10�1 1.400 ⇥ 10�1 1.195 ⇥ 10�1 1.140 ⇥ 10�2 8.093 ⇥ 10�1 1.635 ⇥ 100 2.828 ⇥ 100

Define the binary target variable Zt as

Zt =

8>>>><
>>>>:

1 (Positive), if Yt > 0,

0 (Negative), if Yt  0,
(4.5)

From Eq. (4.5), Zt = 1 means that, at time t, FSI is growing relative to its value at time t�⌧
or, equivalently, it has positive net growth in the time interval [t � ⌧, t] which indicates that
the rising possibility of FSI is high. The dynamics of Zt are visualised as shaded areas (light
purple) in Figure 4.2. It is apparent that the major increasing edges of FSI are captured by
the target variable. That is, the FSI is increasing or going to rise when Zt = 1. The main
purpose of this work is to propose a model to forecast the value of Zt in the next h time
periods, i.e., Zt+h. Thus, for regulators, this quantity could serve as an indicator for both
the direction of the FSI in the short run and a country’s exposure to financial instability.
The distributions of Zt for each country are presented in Figure 4.3 as a percent-stacked
bar chart. It is worth noting that all the 17 data series are nearly balanced. That is each
of them contains equal or almost equal number of samples from the positive and negative
class corresponding to the value of the target variable Zt.
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Figure 4.3: Distribution of the Zt values

4.3.3 HMM filtering module

4.3.3.1 Ornstein-Uhlenbeck (OU) process

Figure 4.2, showing the discriminative signals Yt derived from all the country level FSIs,
portrays a mean-reverting behaviour, dynamically and randomly moving from high to low
level and vice-versa. This fact provides support for an OU process as a means to capture
the signals’ mean-reverting attribute.

Suppose the discriminative signal Yt in Eq. (4.4) Yt follows an OU process in accordance
with the stochastic di↵erential equation

dYt = ✓ (µ � Yt) dt + � dBt, (4.6)

where µ represents the mean-reverting level, ✓ is the speed of mean reversion, and � is the
volatility. We assume that the parameters ✓, µ and � are positive. The standard Brownian
motion Bt is defined on some probability space

⇣
⌦,F Yt , P

⌘
, where F Yt is the filtration

generated by Yt.

By Itô’s lemma, it may be verified that the solution to Eq. (4.6) is

Yt = Y0e�✓t + (1 � e�✓t)µ + �e�✓t
Z t

0
e✓sdBs. (4.7)
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To implement Eq. (4.7) empirically, we require its discretisation given by

Yk+1 =Yke�✓·�t + (1 � e�✓·�t)µ +

r
�2

2✓
(1 � e�2✓·�t) Bk+1, (4.8)

where �t = (k + 1) � k = 1 and {Bk+1} is a sequence of independent and identically
distributed standard normal random variables. The third term in Eq. (4.8) is justified by the
Gaussian property and the Itô’s isometry.

4.3.3.2 HMM-governed OU process

To equip our modelling approach with the capability for time-varying or stochastic param-
eters, a hidden Markov-chain model (HMM) modulates the OU process in Eq. (4.6). In
this work, we treat the states of the HMM as the country’s financial-stress regime, i.e.,
normal or anomalous, which is an actualisation of interacting factors that cause financial
instability.

To make the FSI regime-switching, the parameters ✓, µ and � are governed by a discrete-
time Markov chain xk, for k = 0, 1, . . .. The state space of xk is finite and it is iso-
morphic to the canonical basis of RN , which is the set {e1, e2, . . . , eN}. The vector ei =

(0, ..., 0, 1, 0, ..., 0)> is a unit vector with 1 in its ith component. The semi-martingale
representation of xk is

xk+1 = ⇧kxk + vk+1, (4.9)

where ⇧k is a transition matrix; vk+1 is a martingale increment with E[vk+1|F xk] = 0; and
F xk is the filtration generated by x0, x1, . . . xk. The dependence of the model parameters
on the HMM should be clear from the notations ✓(xk), µ(xk) and �(xk).

With M as the dimension of the multivariate time series, we have M = 17 for the data
series with summary statistics in Table 4.1. For the mth component of the M-dimensional
discriminative signal, i.e., Y (m)

t , its parameters are driven by some HMM x(m)
k that evolves

as per Eq. (4.9) so that

Y (m)
k+1 = Y (m)

k e�✓(x
(m)
k )�t + (1 � e�✓(x

(m)
k )�t)µ(x(m)

k ) +

vt

�2(x(m)
k ) ·

1 � e�2✓(x(m)
k )�t

2✓(x(m)
k )

b(m)
k+1. (4.10)

In Eq. (4.10), 8m = 1, 2, ...,M,8>>>>>>>><
>>>>>>>>:

µ(x(m)
k ) = hµ(m)

k , x(m)
k i

✓(x(m)
k ) = h✓(m)

k , x(m)
k i

�2(x(m)
k ) = h�2

k
(m)
, x(m)

k i,

(4.11)
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with 8>>>>>>>><
>>>>>>>>:

µ(m)
k = (µ(m)

k,1 , µ
(m)
k,2 , ..., µ

(m)
k,N)>

✓(m)
k = (✓(m)

k,1 , ✓
(m)
k,2 , ..., ✓

(m)
k,N)>

�2
k

(m)
= (�2(m)

k,1 , �
2(m)

k,2 , ..., �
2(m)

k,N)>

(4.12)

where µ(m)
k , ✓(m)

k and �2
k

(m) are all in RN; and h·, ·i is the inner product in RN .

4.3.3.3 Parameter estimation

Eq. (4.10) is re-parameterised as

Y (m)
k+1 = ↵(x(m)

k )Y (m)
k + �(x(m)

k ) + ⇣(x(m)
k ) b(m)

k+1, (4.13)

where
8>>>>>>>>>>><
>>>>>>>>>>>:

↵(x(m)
k ) = e�✓(x

(m)
k )�t

�(x(m)
k ) = (1 � e�✓(x

(m)
k )�t)µ(x(m)

k )

⇣2(x(m)
k ) = �2(x(m)

k ) ·
1 � e�2✓(x(m)

k )·�t

2✓(x(m)
k )

.

(4.14)

Eq. (4.13) implies that, given Y (m)
k ,

Y (m)
k+1 s N

⇣
↵(x(m)

k )Y (m)
k + �(x(m)

k ), ⇣2(x(m)
k )

⌘
. (4.15)

Let x̂(m)
k be the conditional expectation of the state of hidden Markov chain x(m)

k given F (m)
k under

probability measure P(m). Thus,

x̂(m)
k B E

h
x(m)

k

���F (m)
k

i
=

⇣
x̂(m)

k,1 , x̂(m)
k,2 , . . . , x̂(m)

k,N

⌘>
, (4.16)

where

x̂(m)
k,i = P

⇣
x(m)

k = ei
���F (m)

k

⌘
= E

h
hx(m)

k , eii
���F (m)

k

i
. (4.17)

We shall utilise the EM algorithm to find the estimate of the parameters of the HMM-driven model,
which is a component of our hybridised modelling algorithm. See Elliott and Krisnamurthy [23] as
well as Wu [86] for the details of the EM algorithm.

We further define the following quantities for states j = 1, 2 . . . , N:
8>>>>>>>>><
>>>>>>>>>:

G
s, j,(m)
k =

Pk
n=1hx

(m)
n�1, e jihx(m)

n , esi

O
j,(m)
k =

Pk
n=1hx

(m)
n�1, e ji

T
j,(m)

k ( f ) =
Pk

n=1hx
(m)
n�1, e ji f (·).

(4.18)
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The quantities Gs, j,(m)
k and O j,(m)

k represent the respective number of jumps from state j to s and the
amount of time that the Markov chain {x(m)

n } occupies the state j up to time k, respectively. Also,
T

j,(m)
k is an auxiliary process that depends on the function f (·). In our empirical application, f (·)

takes the form Y (m)
n , (Y (m)

n )2 and Y (m)
n Y (m)

n�1. Following the procedure introduced in [59] and [75], we
obtain the optimal parameter estimates below.

x̂(m)
k =

u(m)
k

PN
i=1hu

(m)
k , eii

. (4.19)

⇡̂ j,i,(m) =
Ĝ

j,i,(m)
k

Ô
i,(m)
k

(4.20)

↵̂(m)
k,i =

T̂
i,(m)
k

⇣
Y (m)

k Y (m)
k�1

⌘
� �̂(m)

k�1,i · T̂
i,(m)
k

⇣
Y (m)

k�1

⌘

T̂
i,(m)
k

✓
Y (m)

k�1
2
◆ (4.21)

�̂(m)
k,i =

T̂
i,(m)
k

⇣
Y (m)

k

⌘
� ↵̂(m)

k�1,i · T̂
i,(m)
k

⇣
Y (m)

k�1

⌘

Ô
i,(m)
k

(4.22)

c⇣2
k,i

(m)
=
T̂

i,(m)
k

✓
Y (m)

k
2
◆
+ ↵̂(m)

k�1,i · T̂
i,(m)
k

✓
Y (m)

k�1
2
◆

Ô
i,(m)
k

+

⇣
�̂(m)

k�1,i

⌘2
Ô

i,(m)
k + 2↵(m)

k�1,i�̂
(m)
k�1,iT̂

i,(m)
k

⇣
Y (m)

k�1

⌘

Ô
i,(m)
k

�

2↵̂(m)
k�1,iT̂

i,(m)
k

⇣
Y (m)

k Y (m)
k�1

⌘

Ô
i,(m)
k

�

2�̂(m)
k�1,iT̂

i,(m)
k

⇣
Y (m)

k

⌘

Ô
i,(m)
k

(4.23)

The details of how we develop the HMM filtering and estimation are presented in Appendices E
and F. For the original model parameters specified in Eq. (4.10), we use Eqs. (4.20) – (4.23) to get
the following optimal values:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

µ̂(m)
k,i =

�̂(m)
k,i

1 � ↵̂(m)
k,i

✓̂(m)
k,i =

ln(↵̂(m)
k,i )�1

�t

d�2
k,i

(m)
= 2✓̂(m)

k,i ·
c⇣2
k,i

(m)✓
1 � e�2✓̂(m)

k,i ·�t
◆
.

(4.24)
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4.3.3.4 Feature construction: Markov-chain state estimate

Tenyakov et al. [76] and Gu et al. [40] find the state of the hidden Markov chain filtered from
the given data series carries essential information that can be treated as an early warning signal of
financial instability events. In this work, our underlying process is Y (m)

t which dynamically trace the
trend of corresponding FSI. It’s intuitive to consider that the HMM state estimate x(m)

k , which drives
the OU process Y (m)

t , is able to provide salient guidance to forecast the movement direction of FSI.

Equation (4.17) defines the estimate of hidden Markov chain x(m)
k state at time k. The calculation

formula is given in Eq. (E.6) in Appendix E. According to the set up in Eq. (4.16), we can write the
ith component of x̂(m)

k as follows:

x̂(m)
k,i = hx̂

(m)
k , eii, 8i 2 {1, 2, · · · ,N} (4.25)

Findings obtained by previous researches such as Erlwein et al. [29], Tenyakov et al. [76] and
Xiong and Mamon [91] indicate that a 2-state HMM set up is su�cient to express the evolution of
the underlying data series. Thus we set numbers of state N = 2 for all Markov chains in this work.
We shall include the Markov-chain state estimates which related to anomalous state, i.e., x̂(m)

k,1 , in the
input set for next stage modelling. The evolutions of x̂(m)

k,1 are illustrated in Figure G.1 in Appendix
G.

4.3.3.5 Feature construction: Deviation from the reverting mean

The evolution of Y (m)
t is captured by the outcomes of the HMM filters, which are used to predict its

future dynamics. From Eq. (4.10),

Ŷ (m)
k+1 � µ

⇣
x(m)

k

⌘
= E

h
Y (m)

k+1

���F (m)
k

i
� µ

⇣
x(m)

k

⌘

=
⇣
Y (m)

k � µ(x(m)
k )

⌘
· e�✓(x

(m)
k )�t. (4.26)

Equation (4.26) implies that the di↵erence between Y (m)
k and its mean could be predicted using the

HMM filtered parameters.

Write

d
⇣
x(m)

k

⌘
:=

⇣
Y (m)

tk � µ
⇣
x(m)

k

⌘⌘
· e�✓(x

(m)
k )�t. (4.27)

With the formulation of notation in Eq. (4.11),

d
⇣
x(m)

k

⌘
= hd(m)

k , x(m)
k i, (4.28)

where

d(m)
k = (d(m)

k,1 , d(m)
k,2 , ..., d(m)

k,N)> (4.29)
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and
d(m)

k,i =
⇣
Y (m)

k � µ(m)
k,i

⌘
· e�✓

(m)
k,i �t, 8i 2 {1, 2, · · · ,N}. (4.30)

At time k, we obtain

d̂(m)
k,i = E

h
d(m)

k,i

���F (m)
k

i
=

⇣
Y (m)

k � µ̂(m)
k,i

⌘
· e�✓̂

(m)
k,i �t, 8i 2 {1, · · · ,N}. (4.31)

In addition to the discriminative signal, we incorporate d̂(m)
k,i along with the Markov-chain state

estimate x̂(m)
k,1 as the initial inputs in our proposed modelling approach. The evolutions of d̂(m)

k,i are
presented in Figure G.2 in Appendix G.

4.3.4 Random-Forest-based feature-selection module

4.3.4.1 Model set up

The modelling-component set ups in Subsections 4.3.2 and 4.3.3 signify that the input features to
the RF module can be divided into three categories: (i) discriminative signals, (ii) deviation from the
reverting mean derived from the HMM filters, and (iii) Markov-chain state estimates. Each category
constitutes a set of features of di↵erent countries with a range of time lags.

Our hybridised model is defined as follows:

Z(m)
k+h = G(m)

h (Yk,Dk,Xk|Fk) (4.32)

with 8>>>>>>>>><
>>>>>>>>>:

Yk =
n
Y (m)

k�q

���m = 1, 2, ..., 17; q = 0, 1, ..., (T � 1).
o

Dk =
n
d̂(m)

k�q,i

���i = 1, 2; m = 1, 2, ..., 17; q = 0, 1, ..., (T � 1).
o

Xk =
n
x̂(m)

k�q,1

���m = 1, 2, ..., 17; q = 0, 1, ..., (T � 1).
o
.

(4.33)

In Eq. (4.32), Z(m)
k+h , as previously defined in equation (4.5), is the binary target variable corre-

sponding to Y (m)
k . The function G(m)

h (·) is unknown and does not have a closed form although it
could be estimated. Furthermore, q represents the memory length of the model with boundary T .
Considering the monthly frequency of the data series, we set T = 12; that is, the proposed model
has a memory length of 12 months. More specifically, for each country in the data set, we let the
corresponding target variable Z(m)

k depends on the those three groups of predictors of itself as well
as others with the maximum lag of 12 months. In this work, we use the first n (n = 90) rows of
sample points to initialise our model.

The model for G(m)
h (·) is essential in making multi-step predictions on the binary target variable Zt.

A recursive-filtering strategy is typically utilised in obtaining multi-step-ahead predictions. For a
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time series xt, the procedure in making the h-step-ahead prediction at time k is as follows: (i) Train
the model on {x1, x2, . . . ,, xk}; (ii) Predict xk+1 using the previously trained model; (iii) Predict xk+2

with the same trained model using a data set including the previously predicted xk+1. The procedure
continues until xk+h is predicted.

Under a recursive prediction framework, the model is only trained once based on a 1-step-ahead
optimisation criterion, which could make the model fail in capturing the temporal dynamics [73].
We note that incorporating the estimated value (i.e., prediction for last time point) in the inputs
inevitably introduces cumulative errors in the long-horizon forecasting [81]. This recursive predic-
tion’s limitation is further confirmed in [15] in which propagation errors are sustained when tested
on real-world data set.

1−step−ahead predictionAlgorithm step
k k 

k+1 k+1

k+2 k+2

k+3 k+3

k+4 k+4 time
2−step−ahead predictionAlgorithm step

k k 

k+1 k+1

k+2 k+2

k+3 k+3

k+4 k+4 time

Figure 4.4: A demonstration of model training and prediction: 1 and 2-step-ahead predictions

In this chapter, we apply a direct prediction method for multi-step forecasting. Figure 4.4 diagrams
the training and test schemes for 1-step-ahead and 2-step-ahead predictions. At each time point, we
build a specific predictive model to generate a single output for an h�step-ahead prediction. More
precisely, at time k, for all m data series and all h-step-ahead (h = 1, 2, . . . ,6) forecasting tasks, a
particular model G(m)

h (·) is calibrated on a training set (marked by dark cyan dots in Figure 4.4) with
a sample size of (n + k � h) to generate a prediction Ẑ(m)

k+h (marked by large red diamonds in Figure
4.4). Such a prediction is a probabilistic value classifying the current data point as either positive
(i.e., anomalous) or not.

4.3.4.2 Selection procedure

Tyralis and Papacharalampous [78] employed an RF to e�ciently select the lag feature of a time
series. In our case, we also use an RF in the selection of lag variables as well as country predictors.
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More specifically, at time k, for every Z(m)
k+h with m = 1, 2, ..., 17, h = 1, 2, . . ., 6, we first fit the

model defined in Eq. (4.32) to the data with all the variables included in Eq. (4.33). After each
round, the features’ importance are calculated. We select the predictors with top-20 highest scores.
The mean decrease of accuracy (i.e., OOB) is chosen as the measure of feature importance. The R
function randomForest is utilised to implement the selection process.

We assign the number of trees to grow (ntree) to a value of 500. The number of variables selected as
candidates at each split (mtry) is set to p/2, where p is the total number of predictors. To minimise
the computation time of the feature selection, all the other parameters are set as the default value of
the function. The predictors selected by RF are then passed to the XGBoost classifier to produce a
final prediction.

4.3.5 Extreme Gradient Boosting (XGBoost) classification module

The purpose of the XGBoost classification module is the generation of predictions Ẑ(m)
k+h at time k for

h = 1, 2, . . ., 6. The input of the module includes the past target-variable series Z(m)
k and the features

selected by the RF module. The output Ẑ(m)
k+h, lying between 0 and 1, is the estimated probability that

Z(m)
k+h = 1, which could be viewed as the country’s FSI having a rising edge at time k + h as well as

the country’s estimated level of exposure to financial instability. The XGBoost is implemented with
the R functions “xgb.train" and “xgb.cv" from “xgboost" package.

4.3.5.1 XGBoost model set up

Before utilising the XGBoost classifier, it is necessary to set the parameters that will direct the
model’s learning process. In Table 4.2, the model parameters’ values or specified subsets of param-
eter space are presented; these information are based on empirical experience concerning XGBoost
implementation in practice. Those parameters with potential values will be tuned via cross valida-
tion.

4.3.5.2 Hyper-parameter tuning

Five parameters in Table 4.2 are hyper-parameters: nrounds, eta, max_depth, gamma and alpha.
Since these parameters could not be estimated directly from the data, the optimal values are searched
in such a way that the pre-defined loss function is minimised, which consequently yield good out-
of-sample prediction results.
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Table 4.2: XGBoost model parameters’ setting
Parameters Value Description

booster gbtree Booster to use

objective binary:logistic Objective function

eval_metric logloss Cross validation metric

nrounds 100 The number of boosting iteration

eta {0.02, 0.06, 0.08, 0.1} Learning rate

max_depth {4, 5, 8} Maximum depth of a tree

gamma {0, 0.1, 0.3, 0.5} Minimum loss reduction for a new node

alpha {0.01, 0.02, 0.03, 0.04} L1 regularisation term

others Default –

A gridsearch is a typical method in machine learning for tuning hyper-parameters. The basic pro-
cedure consists of the following steps: (i) Generate a list that incorporates all the combinations of
hyper-parameters that are candidates for tuning; (ii) Define J training and validation partitions of the
original data; (iii) For each j = 1, 2, . . ., J, fit the models with all hyper-parameters setting defined in
(i) on the training set; (iv) Make predictions on the validation set and calculate all the error metrics
for all models; (v) Select the hyper-parameters for which the model gives the best performance, i.e.,
having the smallest log loss.

Note that the error metric used in the grid search algorithm is typically measured by cross vali-
dation. Bergmeir and Benítez [5] found that applying the traditional cross-validation methods on
time series data will lead to both theoretical and practical problems , and as a consequence, fail to
provide appropriate guidance to select the optimal parameters. Hyndman and Athanasopoulos [47]
introduced a cross-validation technique tailored to time series and this is known as “evaluation on a
rolling forecasting origin". In the literature, we implement this cross-validation method to make the
training and validation partitions in step (ii) of the grid-search procedure. The process is illustrated
in the Figure 4.5 with the examples of 1-step-ahead and 2-step-ahead prediction cases.

More specifically, our model makes an h-step-ahead prediction Ẑ(m)
k+h all data available up to time k as

inputs. The dark cyan dots along the horizontal data axis in Figure 4.5 represent all the data available
at time k whilst the large red diamonds stand for the corresponding prediction data point. To search
for the optimal hyper-parameters we need to create J training and validation partitions of the data
set known at time k. We set J = 5 considering the balance of search e�ciency and e↵ectiveness.
As exhibited in Figure 4.5, each one of the short blue axes cv1 to cv5 shows a training-validation
partition in the cross validation. For each j = 1, 2, . . ., J, (i) the data points with time index from 1
to k � J + j � h are in the training set (small light blue dots on the short axes) for cross validation;
(ii) those with time index from k � J + j to k are in the validation set (small red triangles along the
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1−step−ahead prediction
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2−step−ahead prediction
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cv5

Data
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Figure 4.5: A demonstration of cross-validation set ups: 1-step-ahead and 2-step-ahead predictions

blue axes). Figure 4.5 demonstrates the cross-validation set ups exemplifying the 1-step-ahead and
2-step-ahead predictions. The procedure could be generalised to higher values of h.

4.3.5.3 Training and prediction

The XGBoost classifier with optimal parameter are trained on all data sets with selected features.
More specifically, at time k, for each h = 1, 2, . . ., 6, we fit the model with the best parameter
obtained using the grid-search process with cross validation on the available data set with the cor-
responding features selected by the aid of the RF module.

In order to fully capture the dynamics of the multivariate data series, we set the length of each
algorithm step to 1 time unit (month). So, for each algorithm step k, we continuously tune the
XGBoost classifier’s hyper-parameters and then train the model using all available data up to time
k. The main principles behind our modelling algorithmic approach is summarised in Algorithm 1.
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4.4 Results and diagnostics

Our proposed modelling approach is tested on 17 countries’ FSI data series covering the period
Jan 1968–Sep 2019. We benchmark our hybridised model with 5 di↵erent alternative models. As
presented in Table 4.3, Model_1 is our proposed model. Model_2 uses RF instead of XGBoost
as the final-stage classifier. Thus, the purpose of Model_2 is to test the significance of XGBoost’s
contribution on system’s performance. Model_3 and Model_4 are parts of Model_1 and Model_2,
respectively. The motivation of introducing these two benchmark models is to verify the importance
of HMM features. Model_5 is Vector Autoregressive Model with a memory length of 12. The first
four models are embedded with classifiers at their final-stage component. Therefore, their outcomes
are Ẑ(m)

k+h which could be interpreted as the model’s implied probabilities of Z(m)
k+h = 1.

The Naive model makes classifications based on the h-step-ahead predictions using the value at time
k whilst Model_5 generates the predictions in a recursive way. The original outcomes of Model_5
and Naive method are x̂(m)

k+h and the h-step-ahead predicted values of Y (m)
k . The binary forecasting

values for target variable Z(m)
k+h are obtained based on the definition of Z(m)

t in equation (4.5).

Table 4.3: Models compared in this chapter
Model Stage 1 Stage 2 Stage 3

Model_1 HMM feature generation RF feature selection XGBoost classifier
Model_2 HMM feature generation RF feature selection RF classifier

Model_3 RF feature selection XGBoost classifier -

Model_4 RF feature selection RF classifier -

Model_5 VAR(12) - -

Naive x̂k+h = Yk, 8h = 1, 2, ... - -

Since this research is actually solving a supervised learning problem, the model’s predicted class is
defined through

Z̃(m)
k+h =

8>>>><
>>>>:

1 (Predicted as Positive), if Ẑ(m)
k+h � p0,

0 (Predicted as Negative), if Ẑ(m)
k+h < p0,

(4.34)

where p0 is a discrimination threshold. Equation (4.34) defines a decision rule concerning a data
point at time k + h, whether to classify it as an anomalous point or not based on Ẑ(m)

k+h given all
information at time k. In this work, we set p0 = 0.5 for all classification models in Table 4.3 for
simplicity and consistency of interpretation. After training the models on each individual time series
Y (m)

t , the models’ forecasting power is evaluated vis-à-vis their stepwise out-of-sample prediction
performance under 3 di↵erent metrics, which are discussed in the succeeding subsections.
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4.4.1 Performance metrics derived from confusion matrix

The classification accuracy is a straightforward measure, which calculates the percentage of correct
classification of a supervised learning model. The accuracy’s evaluation formula is

ACC(m)
h =

X

k

✓
1n

Z̃(m)
k+h=1, Z(m)

k+h=1
o + 1n

Z̃(m)
k+h=0, Z(m)

k+h=0
o
◆

X

k

✓
1n

Z(m)
k+h=1

o + 1n
Z(m)

k+h=0
o
◆ , (4.35)

where 1 is an indicator function, and for h = 1, 2, . . ., 6.

Although accuracy gives a direct assessment of the model, it does not tell the full story of classifi-
cation performance. The metric will provide misleading outcomes when the data set is unbalanced
(e.g., the distribution of observations across all categories is biased). A model’s classification power
in all known classes cannot definitely be assessed by the accuracy metric.

Our target is making binary classifications on multiple countries’ FSI. We introduce a confusion
matrix to gauge further the out-of-sample classification performance of our proposed model. More
specifically, we trace the classification outcomes of all models’ stepwise forecasts and compare
them with the true values in the data set. For each step-ahead prediction, we aim to determine the
numbers of True Positives, True Negatives, False Positives and False Negatives. For each step-ahead
forecasting, the True Positive Rate (TPR) or Sensitivity, True Negative Rate (TNR) or Specificity,
Positive Prediction Value (PPV) or Precision, and Negative Prediction Value (NPV).
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Figure 4.6: Illustrating the concept of confusion matrix
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The metrics in the set of Eqs. (4.36) are equal to 1 for perfect classification models. The numerical
results of such metrics are displayed in Figure 4.7. It can be observed that even though each model’s
forecasting power declines as the prediction horizon increases, Model_1 achieves high scores in all
five metrics when applied on all countries’ FSI data series.

This result indicates that the proposed model has better out-of-sample classification capability than
other benchmark models. More specifically, attaining high accuracy score indicates that Model_1, in
general, has a lower chance than other benchmark model to misclassify the data points. Furthermore,
getting higher TPR and TNR scores implies that Model_1 has a better capacity in di↵erentiating
anomalous/normal episodes with relative lower false positive/negative errors. In addition, obtaining
higher PPV and NPV scores suggests that Model_1 has a higher credibility on the correctness of its
predictions. Last but not least, the above advantages of Model_1 is robust with respect to di↵erent
time series within our data set.
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Figure 4.7: Comparison of models in terms of stepwise forecasting classification performance for

various h’s
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Figure 4.8: A comparison of models in terms of their stepwise forecasting classification perfor-
mance under the AUC metric

4.4.2 Area under ROC curve (AUC)

The metrics derived from the confusion matrix in Subsection 4.4.1 assesses the model performance
based on a fixed discrimination threshold p0 = 0.5. Additional insights could be gained amongst
di↵erent models with the investigation of each model’s classification performance at di↵erent values
of p0.

A receiver operating characteristic (ROC) curve is a graphical tool showing the performance of a
binary classification model at all discrimination thresholds. In general, the AUC considers the pre-
dicted probabilities as the criteria to judge the model’s performance. The procedure to construct an
ROC can be summarised as follows: (i) Order models’ predicated probabilities Ẑ(m)

k+h. (ii) Calculate
Z̃(m)

k+h at multiple p0’s and obtain the corresponding TPR’s and FPR’s. (iii) Plot the TPRs against the
FPRs. An important summary metric is the area under the curve (AUC) representing the probability
that a binary classification model ranks a randomly chosen positive example higher than a random
negative instance. Note that AUC’s value lies in the interval [0, 1]. The AUC of a worst model that
makes 100% wrong predictions is 0 whilst that of a model that makes 100% right forecasting is 1.
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Figure 4.8 gives a visualisation of the AUC values for the 4 di↵erent classification models under
several step-ahead predictions. Model_1 achieves the highest AUC score in all 6-step-ahead pre-
dictions when applied on each single countries’ FSI time series. Note that Model_5 and the Naive
method in Table 4.3 are not included in the AUC comparison because the probabilistic outcomes
are not available for these two models.

In order to ascertain the statistical significance of the results in Figure 4.8, we conduct a pairwise
one-tailed t-test facilitated by the bootstrap method. A sample size of 10,000 is chosen from each
model’s predicted probabilities on all countries’ FSI data. A significance test of Model_1 versus
Model_ j ( j = 2, 3, 4) on AUC at h-step-ahead predictions is formulated below.

8>>>><
>>>>:

H0 : AUC(m)
1,h  AUC(m)

j,h

Ha : AUC(m)
1,h > AUC(m)

j,h ,
(4.37)

where m is the country index. The outcomes of the tests for each paired models are presented in
Tables 4.4 - 4.6. In each pairwise test, for every single FSI time series, the p-values are less than
5% on all prediction horizons. This implies that H0’s are rejected and our proposed model has more
robust out-of-sample classification power than the other 3 models.

In addition to the t-test,a DeLong test [19] is performed to validate our model’s significant supe-
riority with regard to AUC. The null and alternative hypotheses are defined in a similar manner
to (4.37). Using the R function “roc.test" from package “pROC", the outcomes are obtained and
displayed in Tables 4.7 - 4.9. All p-values are less than 5%, and so the null hypothesis is rejected.
This justifies, in terms of the AUC score, that our proposed model dominates the other benchmark
models.

4.4.3 Log loss

As pointed out in Subsection 4.4.2, the AUC determines the model’s capability to di↵erentiate
two classes by measuring the probability that a positive instance is ranked higher than a negative
one. In this subsection, we shall compare the models’ classification power based on a logistic loss,
which is also known as log-loss or cross-entropy loss. This entails the evaluation of the negative
log-likelihood for the predicted probabilities generated by the classification model.

In this work, the logistic loss is calculated

L(m)
h = �

1
Nh

X

k

n
Z(m)

k+h log
⇣
Ẑ(m)

k+h

⌘
+

⇣
1 � Z(m)

k+h

⌘
log

⇣
Ẑ(m)

k+h

⌘o
. (4.38)

From Eq. (4.38), the log loss could be computed using the actual class indicators and the logarithm
of the predicted probabilities for each class. A classifier achieves a high log loss score if it yields
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Table 4.4: p-values of bootstrapped t-test on AUC: Model_1 vs Model_2

Country 1-step-ahead 2-step-ahead 3-step-ahead 4-step-ahead 5-step-ahead 6-step-ahead

AT 6.710 ⇥ 10�7 5.392 ⇥ 10�7 3.141 ⇥ 10�3 5.558 ⇥ 10�4 2.007 ⇥ 10�2 2.937 ⇥ 10�3

AU 4.391 ⇥ 10�11 1.198 ⇥ 10�3 3.178 ⇥ 10�7 1.097 ⇥ 10�8 2.377 ⇥ 10�4 1.399 ⇥ 10�9

CA 1.113 ⇥ 10�4 2.302 ⇥ 10�2 1.492 ⇥ 10�5 2.958 ⇥ 10�6 5.484 ⇥ 10�5 1.367 ⇥ 10�2

CH 4.170 ⇥ 10�4 2.147 ⇥ 10�5 7.994 ⇥ 10�6 7.845 ⇥ 10�4 5.961 ⇥ 10�3 7.123 ⇥ 10�4

DE 6.526 ⇥ 10�7 3.580 ⇥ 10�7 5.472 ⇥ 10�4 1.246 ⇥ 10�6 1.515 ⇥ 10�3 3.711 ⇥ 10�8

DK 1.612 ⇥ 10�4 1.110 ⇥ 10�5 5.708 ⇥ 10�7 1.061 ⇥ 10�5 5.704 ⇥ 10�10 4.026 ⇥ 10�4

ES 4.342 ⇥ 10�5 2.837 ⇥ 10�4 7.662 ⇥ 10�4 1.601 ⇥ 10�7 5.926 ⇥ 10�7 5.088 ⇥ 10�8

FI 1.117 ⇥ 10�9 1.302 ⇥ 10�5 5.145 ⇥ 10�8 2.432 ⇥ 10�6 4.652 ⇥ 10�7 4.705 ⇥ 10�5

FR 5.303 ⇥ 10�4 4.828 ⇥ 10�7 6.534 ⇥ 10�9 6.192 ⇥ 10�4 4.009 ⇥ 10�5 1.996 ⇥ 10�6

GB 3.022 ⇥ 10�4 4.081 ⇥ 10�7 3.258 ⇥ 10�7 1.854 ⇥ 10�8 9.359 ⇥ 10�5 1.721 ⇥ 10�4

IT 5.220 ⇥ 10�7 3.704 ⇥ 10�8 1.181 ⇥ 10�7 9.993 ⇥ 10�11 4.002 ⇥ 10�6 4.728 ⇥ 10�7

JP 1.483 ⇥ 10�4 1.219 ⇥ 10�9 6.282 ⇥ 10�9 3.089 ⇥ 10�5 3.808 ⇥ 10�5 1.480 ⇥ 10�7

KR 5.330 ⇥ 10�7 1.199 ⇥ 10�6 1.619 ⇥ 10�7 2.517 ⇥ 10�5 2.592 ⇥ 10�7 1.027 ⇥ 10�5

NL 4.072 ⇥ 10�6 2.286 ⇥ 10�8 1.619 ⇥ 10�6 4.581 ⇥ 10�8 1.870 ⇥ 10�7 5.303 ⇥ 10�8

NZ 4.999 ⇥ 10�8 2.380 ⇥ 10�8 6.802 ⇥ 10�7 4.660 ⇥ 10�11 2.188 ⇥ 10�5 1.086 ⇥ 10�5

SE 2.309 ⇥ 10�11 5.048 ⇥ 10�8 9.964 ⇥ 10�8 1.280 ⇥ 10�4 1.692 ⇥ 10�5 1.478 ⇥ 10�3

US 2.377 ⇥ 10�7 4.291 ⇥ 10�7 1.173 ⇥ 10�4 7.635 ⇥ 10�10 1.104 ⇥ 10�5 2.902 ⇥ 10�9

Table 4.5: p-values of bootstrapped t-test on AUC: Model_1 vs Model_3
Country 1-step-ahead 2-step-ahead 3-step-ahead 4-step-ahead 5-step-ahead 6-step-ahead

AT 2.724 ⇥ 10�7 3.712 ⇥ 10�8 1.962 ⇥ 10�4 4.511 ⇥ 10�3 1.201 ⇥ 10�6 1.860 ⇥ 10�7

AU 7.749 ⇥ 10�18 2.259 ⇥ 10�6 9.266 ⇥ 10�11 4.046 ⇥ 10�17 2.289 ⇥ 10�8 6.682 ⇥ 10�11

CA 4.579 ⇥ 10�6 5.753 ⇥ 10�6 4.126 ⇥ 10�4 1.319 ⇥ 10�5 7.607 ⇥ 10�8 7.213 ⇥ 10�4

CH 8.005 ⇥ 10�5 2.151 ⇥ 10�6 5.954 ⇥ 10�7 5.833 ⇥ 10�7 4.387 ⇥ 10�5 4.738 ⇥ 10�7

DE 1.058 ⇥ 10�7 4.518 ⇥ 10�11 2.020 ⇥ 10�6 9.052 ⇥ 10�8 1.422 ⇥ 10�7 1.962 ⇥ 10�7

DK 3.040 ⇥ 10�7 2.182 ⇥ 10�6 3.196 ⇥ 10�6 9.675 ⇥ 10�5 7.921 ⇥ 10�8 1.685 ⇥ 10�4

ES 4.323 ⇥ 10�8 1.889 ⇥ 10�4 3.288 ⇥ 10�5 2.062 ⇥ 10�6 4.273 ⇥ 10�8 4.669 ⇥ 10�11

FI 1.585 ⇥ 10�11 2.118 ⇥ 10�6 1.361 ⇥ 10�8 4.915 ⇥ 10�7 6.913 ⇥ 10�9 5.447 ⇥ 10�8

FR 1.495 ⇥ 10�5 4.942 ⇥ 10�10 4.273 ⇥ 10�11 7.734 ⇥ 10�4 3.250 ⇥ 10�7 1.342 ⇥ 10�4

GB 4.070 ⇥ 10�6 8.874 ⇥ 10�10 3.475 ⇥ 10�7 5.351 ⇥ 10�9 4.270 ⇥ 10�7 1.238 ⇥ 10�4

IT 1.253 ⇥ 10�8 1.545 ⇥ 10�8 2.086 ⇥ 10�9 5.414 ⇥ 10�14 6.401 ⇥ 10�10 9.986 ⇥ 10�11

JP 1.634 ⇥ 10�3 2.740 ⇥ 10�8 1.555 ⇥ 10�10 1.045 ⇥ 10�7 2.009 ⇥ 10�7 2.225 ⇥ 10�6

KR 2.188 ⇥ 10�8 2.108 ⇥ 10�5 3.066 ⇥ 10�9 1.562 ⇥ 10�8 3.970 ⇥ 10�9 1.368 ⇥ 10�5

NL 2.395 ⇥ 10�5 1.510 ⇥ 10�7 3.173 ⇥ 10�8 3.036 ⇥ 10�9 6.759 ⇥ 10�8 1.569 ⇥ 10�9

NZ 9.642 ⇥ 10�6 1.389 ⇥ 10�8 1.202 ⇥ 10�7 1.600 ⇥ 10�11 5.182 ⇥ 10�6 3.280 ⇥ 10�6

SE 5.118 ⇥ 10�12 1.160 ⇥ 10�8 1.680 ⇥ 10�13 9.289 ⇥ 10�10 3.508 ⇥ 10�9 2.932 ⇥ 10�6

US 1.352 ⇥ 10�7 1.031 ⇥ 10�8 6.999 ⇥ 10�8 9.143 ⇥ 10�12 1.013 ⇥ 10�7 5.704 ⇥ 10�10

Table 4.6: p-values of bootstrapped t-test on AUC: Model_1 vs Model_4
Country 1-step-ahead 2-step-ahead 3-step-ahead 4-step-ahead 5-step-ahead 6-step-ahead

AT 4.623 ⇥ 10�12 3.535 ⇥ 10�14 1.773 ⇥ 10�7 4.284 ⇥ 10�7 4.392 ⇥ 10�10 2.840 ⇥ 10�7

AU 5.568 ⇥ 10�18 7.808 ⇥ 10�10 3.261 ⇥ 10�13 1.158 ⇥ 10�12 1.020 ⇥ 10�11 7.084 ⇥ 10�17

CA 1.101 ⇥ 10�7 1.250 ⇥ 10�7 9.609 ⇥ 10�7 7.595 ⇥ 10�8 3.094 ⇥ 10�9 3.676 ⇥ 10�5

CH 6.903 ⇥ 10�12 6.690 ⇥ 10�13 1.736 ⇥ 10�11 3.900 ⇥ 10�11 2.339 ⇥ 10�9 9.617 ⇥ 10�12

DE 2.986 ⇥ 10�13 1.110 ⇥ 10�13 1.970 ⇥ 10�12 3.508 ⇥ 10�12 1.115 ⇥ 10�11 1.235 ⇥ 10�9

DK 4.253 ⇥ 10�13 2.130 ⇥ 10�12 1.203 ⇥ 10�7 1.498 ⇥ 10�8 1.521 ⇥ 10�11 2.920 ⇥ 10�7

ES 7.852 ⇥ 10�10 7.292 ⇥ 10�7 2.755 ⇥ 10�10 9.898 ⇥ 10�13 2.351 ⇥ 10�10 2.097 ⇥ 10�12

FI 7.926 ⇥ 10�14 2.169 ⇥ 10�9 4.723 ⇥ 10�10 2.967 ⇥ 10�7 4.860 ⇥ 10�13 3.779 ⇥ 10�7

FR 1.602 ⇥ 10�7 6.806 ⇥ 10�11 9.198 ⇥ 10�13 4.455 ⇥ 10�8 9.502 ⇥ 10�6 1.983 ⇥ 10�10

GB 2.959 ⇥ 10�7 8.216 ⇥ 10�11 6.099 ⇥ 10�6 4.273 ⇥ 10�15 6.390 ⇥ 10�10 8.172 ⇥ 10�9

IT 4.098 ⇥ 10�7 3.028 ⇥ 10�12 6.572 ⇥ 10�12 3.651 ⇥ 10�13 1.326 ⇥ 10�11 2.935 ⇥ 10�11

JP 9.162 ⇥ 10�7 8.646 ⇥ 10�11 8.310 ⇥ 10�14 1.577 ⇥ 10�10 3.349 ⇥ 10�8 4.176 ⇥ 10�9

KR 1.415 ⇥ 10�8 4.483 ⇥ 10�9 1.393 ⇥ 10�14 5.524 ⇥ 10�11 4.848 ⇥ 10�10 1.087 ⇥ 10�10

NL 1.931 ⇥ 10�7 2.077 ⇥ 10�13 1.394 ⇥ 10�8 1.377 ⇥ 10�17 9.825 ⇥ 10�15 1.492 ⇥ 10�12

NZ 7.162 ⇥ 10�11 2.322 ⇥ 10�13 1.259 ⇥ 10�8 6.490 ⇥ 10�13 3.662 ⇥ 10�9 2.398 ⇥ 10�8

SE 1.012 ⇥ 10�17 5.027 ⇥ 10�12 2.043 ⇥ 10�12 1.451 ⇥ 10�11 3.783 ⇥ 10�9 5.072 ⇥ 10�9

US 1.292 ⇥ 10�12 4.583 ⇥ 10�10 1.595 ⇥ 10�11 2.010 ⇥ 10�14 1.018 ⇥ 10�7 4.113 ⇥ 10�12
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Table 4.7: p-values of Delong tests on AUC: Model_1 vs Model_2

Country 1-step-ahead 2-step-ahead 3-step-ahead 4-step-ahead 5-step-ahead 6-step-ahead

AT 7.907 ⇥ 10�7 4.020 ⇥ 10�7 3.506 ⇥ 10�3 4.967 ⇥ 10�4 2.404 ⇥ 10�2 3.220 ⇥ 10�3

AU 6.707 ⇥ 10�12 1.858 ⇥ 10�3 1.864 ⇥ 10�7 1.338 ⇥ 10�8 2.364 ⇥ 10�4 1.367 ⇥ 10�9

CA 1.823 ⇥ 10�4 2.011 ⇥ 10�2 7.301 ⇥ 10�6 3.556 ⇥ 10�6 5.038 ⇥ 10�5 1.304 ⇥ 10�2

CH 5.268 ⇥ 10�4 2.363 ⇥ 10�5 8.169 ⇥ 10�6 1.018 ⇥ 10�3 5.704 ⇥ 10�3 9.891 ⇥ 10�4

DE 2.295 ⇥ 10�7 1.896 ⇥ 10�7 4.362 ⇥ 10�4 5.771 ⇥ 10�7 1.745 ⇥ 10�3 2.222 ⇥ 10�8

DK 1.651 ⇥ 10�4 1.179 ⇥ 10�5 5.361 ⇥ 10�7 8.983 ⇥ 10�6 3.798 ⇥ 10�10 6.839 ⇥ 10�4

ES 4.752 ⇥ 10�5 3.180 ⇥ 10�4 6.839 ⇥ 10�4 1.195 ⇥ 10�7 8.497 ⇥ 10�7 2.976 ⇥ 10�8

FI 1.536 ⇥ 10�9 1.137 ⇥ 10�5 1.763 ⇥ 10�7 2.088 ⇥ 10�6 5.660 ⇥ 10�7 4.232 ⇥ 10�5

FR 4.423 ⇥ 10�4 3.303 ⇥ 10�7 1.041 ⇥ 10�8 6.101 ⇥ 10�4 3.162 ⇥ 10�5 2.612 ⇥ 10�6

GB 2.658 ⇥ 10�4 4.676 ⇥ 10�7 5.968 ⇥ 10�7 3.183 ⇥ 10�8 5.583 ⇥ 10�5 2.040 ⇥ 10�4

IT 3.763 ⇥ 10�7 6.099 ⇥ 10�8 8.665 ⇥ 10�8 1.240 ⇥ 10�10 1.675 ⇥ 10�6 7.450 ⇥ 10�7

JP 1.358 ⇥ 10�4 5.648 ⇥ 10�10 8.501 ⇥ 10�9 4.894 ⇥ 10�5 4.363 ⇥ 10�5 2.150 ⇥ 10�7

KR 1.013 ⇥ 10�6 9.121 ⇥ 10�7 2.035 ⇥ 10�7 5.119 ⇥ 10�5 1.379 ⇥ 10�7 5.490 ⇥ 10�6

NL 5.639 ⇥ 10�6 4.121 ⇥ 10�9 2.659 ⇥ 10�6 1.297 ⇥ 10�7 1.915 ⇥ 10�7 6.864 ⇥ 10�8

NZ 6.968 ⇥ 10�8 1.473 ⇥ 10�8 7.359 ⇥ 10�7 7.888 ⇥ 10�11 3.054 ⇥ 10�5 1.495 ⇥ 10�5

SE 4.028 ⇥ 10�11 5.782 ⇥ 10�8 1.915 ⇥ 10�7 1.142 ⇥ 10�4 1.009 ⇥ 10�5 1.666 ⇥ 10�3

US 4.661 ⇥ 10�7 2.783 ⇥ 10�7 1.100 ⇥ 10�4 2.233 ⇥ 10�9 1.357 ⇥ 10�5 6.296 ⇥ 10�9

Table 4.8: p-values of Delong tests on AUC: Model_1 vs Model_3
Country 1-step-ahead 2-step-ahead 3-step-ahead 4-step-ahead 5-step-ahead 6-step-ahead

AT 2.011 ⇥ 10�7 1.346 ⇥ 10�7 2.265 ⇥ 10�4 4.003 ⇥ 10�3 1.231 ⇥ 10�6 1.806 ⇥ 10�7

AU 2.400 ⇥ 10�17 1.124 ⇥ 10�6 1.989 ⇥ 10�10 2.895 ⇥ 10�16 2.652 ⇥ 10�8 4.711 ⇥ 10�11

CA 2.600 ⇥ 10�6 2.975 ⇥ 10�6 3.302 ⇥ 10�4 1.447 ⇥ 10�5 9.782 ⇥ 10�8 6.123 ⇥ 10�4

CH 4.928 ⇥ 10�5 4.572 ⇥ 10�6 9.888 ⇥ 10�7 6.242 ⇥ 10�7 4.829 ⇥ 10�5 1.121 ⇥ 10�6

DE 1.587 ⇥ 10�7 5.070 ⇥ 10�11 3.214 ⇥ 10�6 2.976 ⇥ 10�7 2.778 ⇥ 10�7 2.540 ⇥ 10�7

DK 4.465 ⇥ 10�7 1.469 ⇥ 10�6 2.905 ⇥ 10�6 7.424 ⇥ 10�5 3.393 ⇥ 10�8 1.403 ⇥ 10�4

ES 1.505 ⇥ 10�7 1.742 ⇥ 10�4 4.225 ⇥ 10�5 2.032 ⇥ 10�6 9.111 ⇥ 10�9 6.952 ⇥ 10�11

FI 5.836 ⇥ 10�12 2.559 ⇥ 10�6 1.283 ⇥ 10�8 8.740 ⇥ 10�7 3.819 ⇥ 10�9 6.095 ⇥ 10�8

FR 1.187 ⇥ 10�5 4.704 ⇥ 10�10 9.823 ⇥ 10�11 6.502 ⇥ 10�4 4.627 ⇥ 10�7 8.758 ⇥ 10�5

GB 2.407 ⇥ 10�6 1.900 ⇥ 10�9 2.271 ⇥ 10�7 9.012 ⇥ 10�9 3.924 ⇥ 10�7 1.555 ⇥ 10�4

IT 5.217 ⇥ 10�9 5.009 ⇥ 10�9 1.781 ⇥ 10�10 8.638 ⇥ 10�14 1.953 ⇥ 10�9 2.562 ⇥ 10�10

JP 1.539 ⇥ 10�3 4.055 ⇥ 10�8 4.318 ⇥ 10�10 1.367 ⇥ 10�7 1.570 ⇥ 10�7 2.813 ⇥ 10�6

KR 2.206 ⇥ 10�8 3.269 ⇥ 10�5 1.341 ⇥ 10�8 2.249 ⇥ 10�8 9.874 ⇥ 10�9 9.874 ⇥ 10�6

NL 3.348 ⇥ 10�5 1.047 ⇥ 10�7 2.729 ⇥ 10�8 1.618 ⇥ 10�9 4.517 ⇥ 10�8 2.064 ⇥ 10�9

NZ 7.561 ⇥ 10�6 1.122 ⇥ 10�8 6.679 ⇥ 10�8 1.539 ⇥ 10�11 8.053 ⇥ 10�6 5.058 ⇥ 10�6

SE 2.581 ⇥ 10�12 8.289 ⇥ 10�9 9.528 ⇥ 10�13 3.266 ⇥ 10�9 2.333 ⇥ 10�9 5.976 ⇥ 10�6

US 1.420 ⇥ 10�7 2.455 ⇥ 10�8 2.615 ⇥ 10�8 1.504 ⇥ 10�11 1.360 ⇥ 10�7 3.097 ⇥ 10�10

Table 4.9: p-values of Delong tests on AUC: Model_1 vs Model_4
Country 1-step-ahead 2-step-ahead 3-step-ahead 4-step-ahead 5-step-ahead 6-step-ahead

AT 2.597 ⇥ 10�12 2.675 ⇥ 10�14 1.450 ⇥ 10�7 2.483 ⇥ 10�7 1.868 ⇥ 10�10 2.669 ⇥ 10�7

AU 8.075 ⇥ 10�19 3.660 ⇥ 10�10 2.933 ⇥ 10�13 3.421 ⇥ 10�13 3.562 ⇥ 10�11 2.015 ⇥ 10�16

CA 9.730 ⇥ 10�8 1.455 ⇥ 10�7 1.028 ⇥ 10�6 5.239 ⇥ 10�8 8.614 ⇥ 10�9 2.881 ⇥ 10�5

CH 1.350 ⇥ 10�11 1.306 ⇥ 10�14 4.233 ⇥ 10�12 4.452 ⇥ 10�12 1.528 ⇥ 10�9 2.559 ⇥ 10�11

DE 1.202 ⇥ 10�13 6.366 ⇥ 10�13 1.552 ⇥ 10�11 9.884 ⇥ 10�12 5.299 ⇥ 10�12 1.819 ⇥ 10�9

DK 3.443 ⇥ 10�13 3.082 ⇥ 10�12 9.693 ⇥ 10�8 1.521 ⇥ 10�8 2.456 ⇥ 10�11 3.010 ⇥ 10�7

ES 1.443 ⇥ 10�9 5.681 ⇥ 10�7 4.808 ⇥ 10�10 1.414 ⇥ 10�12 1.261 ⇥ 10�10 1.331 ⇥ 10�11

FI 1.962 ⇥ 10�14 5.120 ⇥ 10�9 3.628 ⇥ 10�10 2.908 ⇥ 10�7 5.424 ⇥ 10�13 6.533 ⇥ 10�7

FR 7.163 ⇥ 10�8 3.029 ⇥ 10�10 1.328 ⇥ 10�12 2.350 ⇥ 10�8 1.211 ⇥ 10�5 4.790 ⇥ 10�10

GB 3.248 ⇥ 10�7 1.489 ⇥ 10�11 6.499 ⇥ 10�6 6.220 ⇥ 10�16 1.787 ⇥ 10�10 9.475 ⇥ 10�9

IT 7.050 ⇥ 10�8 5.000 ⇥ 10�12 2.819 ⇥ 10�11 1.200 ⇥ 10�13 3.831 ⇥ 10�11 1.412 ⇥ 10�11

JP 1.138 ⇥ 10�6 8.750 ⇥ 10�11 6.450 ⇥ 10�14 7.320 ⇥ 10�10 3.613 ⇥ 10�8 1.244 ⇥ 10�8

KR 1.110 ⇥ 10�8 3.900 ⇥ 10�9 1.669 ⇥ 10�15 3.916 ⇥ 10�11 1.570 ⇥ 10�9 6.657 ⇥ 10�11

NL 3.184 ⇥ 10�7 8.840 ⇥ 10�13 5.378 ⇥ 10�9 1.744 ⇥ 10�16 4.996 ⇥ 10�15 8.112 ⇥ 10�12

NZ 1.158 ⇥ 10�10 2.716 ⇥ 10�13 8.010 ⇥ 10�9 7.786 ⇥ 10�13 4.280 ⇥ 10�9 2.637 ⇥ 10�8

SE 2.899 ⇥ 10�17 2.977 ⇥ 10�12 2.999 ⇥ 10�12 4.140 ⇥ 10�11 4.765 ⇥ 10�9 8.968 ⇥ 10�9

US 5.252 ⇥ 10�12 1.063 ⇥ 10�9 9.583 ⇥ 10�12 6.889 ⇥ 10�15 1.309 ⇥ 10�7 5.491 ⇥ 10�12
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high predicted probabilities for true positive example and low values for true negative instances.
Theoretically, a perfect classification model’s log-loss score is 0 whilst a bad one has a log-loss
score is some relatively large positive value up to infinity.

In Table 4.10, we report the logistic loss for the proposed model and 3 other benchmark classification
models. It could be seen that Model_1 has the lowest score in all 6 prediction horizons. Hence, it
has higher predicted probabilities than the other models.

Table 4.10: A log-loss comparison of four competing models
Step-ahead Model AT AU CA CH DE DK ES FI FR GB IT JP KR NL NZ SE US

1

Model_1 0.3687 0.3808 0.3859 0.4302 0.4106 0.3923 0.4313 0.3794 0.4019 0.4543 0.4030 0.4439 0.4277 0.4450 0.4029 0.3756 0.4357
Model_2 0.5055 0.5914 0.4860 0.5276 0.5741 0.4880 0.5575 0.5614 0.4970 0.5550 0.5429 0.5694 0.5794 0.5907 0.5634 0.5629 0.5950

Model_3 0.5192 0.6475 0.4962 0.5603 0.5721 0.5414 0.5966 0.5936 0.5410 0.6097 0.5638 0.5395 0.6005 0.5865 0.5342 0.5973 0.5905

Model_4 0.5830 0.6928 0.5409 0.6581 0.6392 0.6209 0.6320 0.6210 0.5923 0.6122 0.5597 0.5989 0.6167 0.6162 0.5966 0.6581 0.6802

2

Model_1 0.3856 0.5060 0.4308 0.4413 0.4171 0.4481 0.4817 0.4668 0.4134 0.4683 0.4260 0.4294 0.4187 0.4590 0.4021 0.4800 0.4635
Model_2 0.5188 0.5916 0.4816 0.5615 0.5688 0.5648 0.5814 0.5961 0.5738 0.6363 0.5765 0.6299 0.5498 0.6393 0.5657 0.6493 0.6421

Model_3 0.5296 0.6543 0.5690 0.5694 0.6103 0.6065 0.6077 0.6055 0.6034 0.6627 0.6008 0.5908 0.5452 0.6204 0.5758 0.6720 0.6505

Model_4 0.6302 0.7256 0.6017 0.6834 0.6250 0.6788 0.6378 0.6619 0.6199 0.7088 0.6663 0.6325 0.6131 0.6880 0.6421 0.7033 0.6581

3

Model_1 0.4622 0.4858 0.4647 0.4832 0.4491 0.4646 0.5082 0.4990 0.4282 0.4984 0.4805 0.4619 0.4235 0.4875 0.4499 0.4851 0.5030
Model_2 0.5495 0.6422 0.5994 0.6067 0.5597 0.6231 0.6086 0.6587 0.5732 0.6596 0.6540 0.6455 0.5833 0.6293 0.6009 0.6644 0.6308

Model_3 0.5869 0.7060 0.5744 0.6412 0.6065 0.6111 0.6356 0.6805 0.6282 0.6687 0.6872 0.6944 0.6047 0.6598 0.6151 0.7105 0.6824

Model_4 0.6272 0.7474 0.6158 0.7234 0.7022 0.6650 0.7118 0.7018 0.6485 0.6335 0.7033 0.7322 0.6791 0.6871 0.6384 0.7195 0.7217

4

Model_1 0.5145 0.5148 0.4978 0.5245 0.4670 0.4806 0.5252 0.5288 0.5090 0.4764 0.4565 0.4843 0.5041 0.4972 0.4165 0.5319 0.5082
Model_2 0.6251 0.6898 0.6414 0.6332 0.6306 0.6139 0.6959 0.6803 0.6073 0.6785 0.6504 0.6007 0.6440 0.6818 0.6130 0.6619 0.7128

Model_3 0.5963 0.7700 0.6324 0.6855 0.6360 0.5927 0.6778 0.6830 0.6225 0.6526 0.6809 0.6442 0.6995 0.7019 0.6163 0.7476 0.7345

Model_4 0.6873 0.7724 0.6710 0.7741 0.6905 0.6755 0.7909 0.6941 0.6890 0.7588 0.7123 0.6774 0.7332 0.7897 0.6634 0.7565 0.7702

5

Model_1 0.5318 0.5324 0.5005 0.5403 0.5114 0.4454 0.5280 0.5158 0.5246 0.5719 0.4839 0.5208 0.5040 0.5396 0.4790 0.5350 0.5399
Model_2 0.5976 0.6552 0.6167 0.6185 0.6146 0.6603 0.7030 0.6772 0.6721 0.7232 0.6362 0.6482 0.6783 0.7233 0.5983 0.6709 0.6991

Model_3 0.7003 0.7571 0.6803 0.6695 0.6959 0.6190 0.7321 0.7144 0.7150 0.7491 0.6867 0.7009 0.6951 0.7302 0.6243 0.7368 0.7420

Model_4 0.7631 0.7814 0.7072 0.7551 0.7502 0.6707 0.7647 0.7871 0.6662 0.8150 0.7269 0.7011 0.7214 0.8294 0.6919 0.7367 0.7189

6

Model_1 0.5477 0.5305 0.5602 0.5301 0.5160 0.5633 0.5481 0.5966 0.5490 0.5992 0.5163 0.5436 0.5554 0.5489 0.5357 0.5633 0.5284
Model_2 0.6601 0.7251 0.6502 0.6320 0.7253 0.6578 0.7432 0.7460 0.7163 0.7345 0.6805 0.7228 0.7338 0.7652 0.6864 0.6612 0.7474

Model_3 0.7318 0.7486 0.6639 0.7011 0.6773 0.6759 0.7779 0.8066 0.6893 0.7108 0.7231 0.7044 0.7224 0.7489 0.6907 0.7065 0.7588

Model_4 0.7358 0.8267 0.7145 0.7718 0.7471 0.7540 0.7875 0.7800 0.7675 0.8369 0.7609 0.7691 0.7740 0.7970 0.7263 0.7876 0.7806

4.4.4 Kolmogorov-Smirnov test

As highlighted in Subsection 4.4.3, we assess the classification models’ good of fit by analysing the
logistic loss, which measures the log-likelihood of the predicted probabilities. However, a logistic
loss does not capture the di↵erence in the models’ outcome for each class. Hence, we need to
determine the divergence, in terms of the distribution, of a model’s responses for di↵erent classes.
More specifically, in our case, we shall apply the two-sample Kolmogorv-Smirnov (KS) test on
the predicted probabilities’ distributions covering the anomalous (True Positive) and normal (True
Negative) episodes. This enables the comparison of the models’ capacity to separate the actual
anomalous intervals of FSI from the normal ones. The KS statistic is

D(m)
h = sup

���F(m)
0,h � F(m)

1,h

���, (4.39)
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where F(m)
0,h and F(m)

1,h are the empirical cumulative distribution functions (ECDF) of Ẑ(m)
k+h for the true

positive and negative classes, respectively. The statistic quantifies the supremum of the set of the
distances between the points on ECDFs of the two classes.

Note that a perfect model that generates two mutually exclusive categories with each one having a
separate class label of observations has a KS statistic score of 100%. On the other hand, the worst
model that fails to di↵erentiate two groups has a score of 0%. In general, a high KS-statistic value
s suggests that the model is good in distinguishing the two classes.

Table 4.11 presents the KS statistics calculated from the predicted probabilities, which were pro-
duced by the proposed and benchmark models. It is noticeable that Model_1 attains the highest
scores in all forecast horizons when implemented on all FSI time series. The higher the divergence
between the distributions of predicted probabilities, the stronger the capacity to identify anomalous
periods from regular episodes.

Table 4.11: Kolmogorov–Smirnov test results
Step-ahead Model AT AU CA CH DE DK ES FI FR GB IT JP KR NL NZ SE US

1

Model_1 71.20 70.31 73.90 68.79 66.69 73.21 65.29 70.00 68.76 66.66 69.39 68.41 68.71 67.01 73.99 74.44 66.82
Model_2 62.65 50.50 67.83 59.77 55.14 60.98 54.50 53.24 59.67 49.93 54.95 56.74 53.36 50.47 58.19 49.51 50.79

Model_3 61.59 44.20 63.65 54.87 57.25 60.52 53.50 54.14 61.18 45.94 55.41 58.70 51.04 53.83 62.19 49.49 50.51

Model_4 54.07 41.33 60.70 46.49 44.65 50.16 47.32 50.87 53.47 46.78 53.02 53.21 51.50 49.46 50.43 42.58 43.39

2

Model_1 70.24 55.35 64.47 60.91 65.84 64.56 63.71 63.41 66.22 59.23 64.67 63.35 70.23 62.02 64.92 60.57 62.80
Model_2 59.41 50.80 60.18 52.63 53.32 50.96 47.74 49.98 54.12 40.81 51.82 46.91 53.42 46.54 54.00 43.99 44.98

Model_3 58.68 43.16 55.48 52.36 50.43 51.07 49.44 46.43 55.37 40.82 53.62 51.22 57.57 48.16 52.66 40.50 45.56

Model_4 47.57 39.30 53.15 41.12 45.09 43.83 40.98 42.84 47.89 37.33 48.75 47.30 52.60 40.41 47.82 36.94 38.99

3

Model_1 61.14 55.54 60.62 60.30 62.58 59.62 57.65 53.60 63.80 56.66 62.78 57.04 61.92 58.27 61.31 54.88 57.53
Model_2 55.61 39.99 49.85 47.66 52.39 45.09 45.64 41.82 54.76 40.36 44.67 42.96 48.95 45.64 50.37 41.09 47.53

Model_3 50.88 38.44 52.97 47.16 51.46 46.37 45.37 39.01 48.95 36.55 44.63 46.05 48.37 38.71 50.48 32.35 45.02

Model_4 49.04 36.56 45.28 32.92 43.32 41.34 32.59 36.20 46.22 39.51 40.73 38.11 38.77 37.53 46.98 29.83 31.03

4

Model_1 54.31 51.19 53.47 49.16 57.91 54.90 49.62 56.41 60.04 53.93 55.13 58.70 56.05 52.54 61.34 51.60 54.71
Model_2 48.04 33.33 44.21 43.19 44.25 43.24 37.73 39.08 44.75 40.14 41.12 42.21 43.10 37.54 46.33 39.28 37.67

Model_3 45.67 29.48 44.35 37.36 44.59 50.81 38.10 37.73 45.35 39.44 42.52 38.97 39.41 37.01 50.42 33.02 36.81

Model_4 37.23 29.63 37.22 28.80 42.99 38.11 28.23 36.44 38.80 33.60 39.03 38.21 35.99 27.13 43.14 26.43 31.64

5

Model_1 47.95 48.48 58.48 53.20 51.84 60.13 49.32 51.22 49.83 46.59 56.90 54.86 55.69 52.02 61.69 49.40 49.28
Model_2 41.00 36.51 41.63 43.76 43.64 37.65 32.99 33.63 42.03 32.03 40.18 39.07 37.90 33.68 44.75 33.73 36.42

Model_3 34.30 33.54 40.96 39.79 45.75 42.92 34.63 34.55 40.16 25.29 42.87 34.95 34.16 29.88 44.53 32.82 33.40

Model_4 27.25 25.40 35.96 31.78 34.48 35.62 28.60 33.24 38.20 24.35 35.85 32.22 33.40 22.16 42.52 29.70 28.79

6

Model_1 50.00 49.24 49.02 48.63 50.08 47.55 44.56 43.42 46.21 46.87 51.63 51.30 48.61 45.67 50.62 46.31 48.38
Model_2 39.49 32.67 41.33 39.39 38.58 36.76 32.46 29.58 31.30 37.84 36.01 32.59 32.73 31.39 38.38 36.13 28.61

Model_3 31.74 34.63 40.06 36.86 35.53 34.81 28.32 27.77 37.66 29.05 31.79 38.80 38.80 26.87 37.47 33.21 27.59

Model_4 31.19 25.84 35.50 27.68 28.97 24.81 23.36 28.57 30.23 26.70 29.38 30.28 23.38 24.10 37.18 30.25 25.14

4.4.5 Analysis on features’ importance

In addition to building a system with the capability to yield accurate predictions, it is also imperative
to examine the model’s interpretability. More specifically, we need to understand which features or
input variables are most important for our system to detect the anomalous episodes in advance.
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Thus, in this subsection, we shall diagnose the proposed model by investigating the features’ im-
portance.

As discussed in Subsection 4.3.4, we apply the RF to select the top-20 features on the basis of their
importance which are being measured by the mean decrease of the OOB accuracy. The selected
features are then used to train the XGBoost classifier for the generation of the out-of-sample (h-
step-ahead) classifications. Our analysis mainly focuses on two types of quantities related to the
features’ importance: (i) frequencies of the features selected by the RF module, and (ii) gain score
2) calculated by the XGBoost classifier.

At each algorithm step t, we trace the frequencies of all the features that are selected by the RF
module and their importance scores calculated by the XGBoost classifier when making every h-
step-ahead prediction (h = 1, 2, ..., 6). Furthermore, we calculate the marginal total frequencies of
the features selected by the RF module and their marginal averaging importance scores output via
the XGBoost module with respect to m (country index) and q (time lag). These quantities serve
as comprehensive measurements of the contributions coming from di↵erent types of features in
detecting anomalous episodes.

Let  t be the set of features selected by the RF module when performing an h-step-ahead prediction
for one of the data series Z(m)

k at algorithm step t. We define the marginal total frequencies of these
features, i.e., Di(m), eDi(q) (i = 1, 2), X(m), eX(q), Y(m) and eY(q) as follows:8>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:
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t

11X
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k�q,i2 t}
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11X

q=0

1
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k�q,12 t}
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(4.40)

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:
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(4.41)

where 1{·} is an indicator function. The quantities in the sets of Eqs. (4.40) and (4.41) act as
the preliminary measures for evaluating the association between the target variable (i.e., Anoma-
lous/Normal) and the di↵erent types of input features. In general, a higher marginal total frequency

2According to the XGBoost R package document, the gain score is defined as the improvement in accuracy
attained by a feature to the branches which it is on. The details of the Gain score’s calculation could be found
in the XGBoost Tutorials.

https://xgboost.readthedocs.io/en/latest/R-package/discoverYourData.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
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indicates that the related feature is treated as an important variable, with more recurrence, by the RF
module in identifying the anomalies.

Let It(·) be the importance score of some feature calculated by the XGBoost classifier at each algo-
rithm step. The marginal averaging XGBoost importance scores di(m), edi(q) (i = 1, 2), x(m), ex(q),
y(m) andey(q) are calculated as follows:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

di(m) B
1

Di(m)

X

t

11X

q=0

It
⇣
d̂(m)

k�q,i

⌘
1
{d̂(m)

k�q,i2 t}
, m 2 {1, 2, ..., 17}, i = 1, 2
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1

X(m)

X

t

11X

q=0
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k�q,1

⌘
1
{x̂(m)

k�q,12 t}
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x(m) B
1

Y(m)

X

t

11X

q=0

It
⇣
Y (m)

k�q

⌘
1
{Y (m)

k�q2 t}
, m 2 {1, 2, ..., 17}.

(4.42)
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17X
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1
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1
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k�q,12 t}
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ey(q) B
1

eY(q)

X

t

17X

m=1

It
⇣
Y (m)

k�q

⌘
1
{Y (m)

k�q2 t}
, q 2 {0, 1, 2, ..., 11}.

(4.43)

Note that the marginal averaging importance scores in the sets of Eqs. (4.42) and (4.43) serve as
metrics for the dependence of the target variable on di↵erent features. In general, a higher value of
the marginal averaging importance score implies that the corresponding feature is more important
for the XGBoost classifier in the detection of the anomalous episodes.

The marginal total frequencies (with respect to a country index m) of the features selected through
the RF module are presented as stacked bar charts in Figure 4.9. The plot shows that when predicting
the FSI status Z(m)

k of a specific country, the RF module would more frequently select those features
belonging to that specific country under consideration rather than the features belonging to other
countries. Figure 4.10 is a visualisation of the marginal averaging importance scores (with respect
to a country index m) of those selected features. It is noticeable that the average importance scores
of the HMM-related features are higher than those of the non-HMM features. This result, along
with the previous error analysis, further confirms that the features generated by the HMM have
stronger impacts on forecasting the upcoming anomalous episodes. It could also be observed that
in the process of detecting anomalies in a specific country’s FSI, the features belonging to that
country in question would have the highest importance scores relative to the features’ scores of other
countries. It could also be seen that, when the forecasting horizon h grows, the leading position of
the importance score for each country’s individual feature relegates to lower ranks. In other words,
the predicted anomalous/normal state of a country’s FSI tends to be increasingly a↵ected by other
countries’ FSI status as the prediction horizon h increases. This phenomenon could be treated as
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a numerical realisation of a country’s idiosyncratic FSI and an aberration could propagate across
countries to precipitate some systemic anomalous episodes.

Figure 4.11 exhibits the marginal total frequencies (with respect to a time lag q) of the features
selected by the RF module. The chart shows that the features with q = 0 value are more likely to
be selected by the RF. The marginal averaging importance scores (with respect to a time lag q) are
illustrated in Figure 4.12. It could be observed that the HMM-related features get notably higher
scores than the non-HMM features do, specifically, the original discriminative signals. We could
also notice that the features with a time lag q = 0 achieve the highest importance scores. Neverthe-
less, the importance scores of features with a time lag q > 0 climb slightly as the forecasting horizon
h rises. This indicates that the projected financial stress anomalous/nomal status is characterised by
a strong short-memory dependence when the prediction step is small and by a weak long-memory
dependence when the forecasting step increases. This serves as a numerical confirmation that a
country’s financial stress anomalies could accumulate to trigger a future crisis event.
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Figure 4.9: The marginal total frequencies (with respect to a country index m) of the selected
features
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Figure 4.10: The marginal averaging importance scores (with respect to a country index m) of the
selected features
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Figure 4.11: The marginal total frequencies (with respect to a time lag q) of the selected features
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Figure 4.12: The marginal averaging importance scores (with respect to a time lag q) of the selected
features
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4.5 Forecasting with anomaly-warning signals

As defined in Eq. (4.34), Z̃(m)
k+h, which is obtained from the probabilistic outcomes generated by the

XGBoost classifier, provides a set of alert signals that quantify the FSI’s exposure to aberrations in
the future in a point-wise manner. In this section, we shall construct two warning signals to forecast
the extent of the FSI anomaly in the near future. More specifically, given a fixed time horizon, we
are going to forecast whether some extreme abnormality will happen which, in consequence, could
precipitate high financial stress episodes in the short term.

We define two types of extreme abnormality episodes for all 17 countries’ FSI as follows: (i)
Multiple-Anomaly Episodes (MAE): A(m)

h ; and (ii) Consecutive-Anomaly Episodes (CAE): H(m)
h .

We say that the FSI enters the MAE at time t if the discriminative signal Y (m)
t � 0 (Z(m)

t = 1) for
more than 50% of the time in the interval [t, t + h � 1]. Thus, we define the actual and projected
Multiple-Anomaly-Episodes as follows:

8>>>>>>>>><
>>>>>>>>>:

A(m)
h B

8>><
>>:t

�����
1
h

h�1X

i=0
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9>>=
>>; .
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h B

8>><
>>:t

�����
1
h

h�1X

i=0

Z̃(m)
t+i � 0.5

9>>=
>>; .

(4.44)

The FSI is said to move into a Consecutive-Anomaly Episodes (CAE) at time t if they exists, in
[t, t + h � 1], whenever at least one sub-interval with a length greater than 1 where Y (m)

t � 0
(Z(m)

t = 1) for all the time points in it. In other words, there exists at least one run of 1 for Z(m)
t in

[t, t + h � 1]. Therefore, the actual and projected CAE could be expressed as
8>>>>>>>>>><
>>>>>>>>>>:

H(m)
h B
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>>>:

t
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(4.45)

Note that in Eqs. (4.44) and (4.45), h is a prediction-step parameter which takes integer values in
[2, 6].

According to Eq. (4.44), A(m)
h incorporates the time points where Z(m)

t is positive in no less than
50% percent of the next h time steps which indicates that the FSI has rising edges multiple times
within the next h�step-ahead points. Eq. (4.45) comprises those time points, where Z(m)

t is positive
successively within an h�step-ahead horizon; this implies that the FSI is likely to surge on the next
h time points. Since the actual MAE and CAE, Ã(m)

h and H̃(m)
h , respectively, are related to Z̃(m)

t which
is the predicted value of Z(m)

t , the projected MAE and CAE could serve as the respective predictions
of A(m)

h and H(m)
h .

In order to capture the extremely anomalous episodes, we construct two alert signals utilising the
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MAE and CAE: (i) Multiple-Anomaly Indicators (MAI); and (ii) Consecutive-Anomaly Indicators
(CAI). The formulation for these two collections of warning signals are as follows:

8>>>>><
>>>>>:

MAI: U(m)
k,h = 1n

k+1 2 Ã(m)
h

o

CAI: V (m)
k,h = 1n

k+1 2 H̃(m)
h

o,
(4.46)

where 1{·} is an indicator function and h 2 {2, 3, . . . , 6}. The MAI (U(m)
k,h ) takes the value 1 at time

k when 1
h
Ph�1

i=0 Z̃(m)
k+1+i � 0.5 and 0 otherwise. Thus, it provides an aggregate value to project the

mean intensity of the anomalies of the FSI in the upcoming h time points. The CAI (V (m)
k,h ) signals a

positive at time k if there exists some integers j and l with 0  j < l  h�1 such that
Ql

i= j Z̃(m)
k+1+i = 1.

Therefore, the CAI yields an aggregate value to predict the extent of the propagation of anomalies
of FSI over the h�step ahead time horizon.

Figures 4.13 and 4.14 depict the MAI and CAI. Note that the binary signals are plotted in a de-
scending order of the parameter h, from top to bottom in all graphs. We see that the signal captures
the FSIs’ rising edges (light purple shaded areas) for all the 17 countries included in our data set.
Evidently, the MAI and CAI are capable of predicting the extent of the anomalies of FSI in the
upcoming h�step-ahead horizon since all the signals are generated in an adapted way.

The error analysis for MAI is displayed in Table 4.12. The medians of the TPR for 3 and 6-step-
ahead predictions are 80.97% and 76.89%, respectively. The medians of the ACC are 81.29% and
77.38% associated with the 3 and 6 forecasting horizons, respectively. According to the minimums
of TPR and ACC of U(m)

k,6 , MAI is able to detect more than 71% of the MAE in the upcoming 2-6
months amongst all countries’ FSI with false discovery rate (1-PPV) less than 29%.

The performance of the CAI is reported in Table 4.13. The TPR medians for the 3 and 6 prediction
horizons are 78.95% and 77.15%, respectively. The ACC medians are 81.47% and 77.38% for the 3
and 6-step-ahead forecasting, respectively. The minimums of TPR and ACC of V (m)

k,6 indicate that the
CAI is capable of identifying at least 71% of the CAE in the next 2-6 months amongst all countries’
FSI with false discovery rate less than 23%.

The performance measurements provided in Tables 4.12 and 4.13 justify that the prediction power of
the proposed model could be further extended via the introduction of two anomaly-warning signals:
MAI and CAI. The major advantages of MAI and CAI are the (i) capacity to detect and di↵erentiate
di↵erent types of extreme anomalies of FSI in advance; and (ii) specification of the time via the
parameter h to capture extreme abnormalities. The two types of indicators, along with the point-
wise predicted value Z(m)

k , certainly provide a comprehensive quantitative framework to identify
extreme abnormalities of FSI in the near future for practitioners.



4.5. Forecasting with anomaly-warning signals 123

US

NZ SE

KR NL

IT JP

FR GB

ES FI

DE DK

CA CH

AT AU

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Rising edge:  Zt
(m) = 1 FSI:  St

(m)

MAI:  Ut,2
(m)

MAI:  Ut,3
(m)

MAI:  Ut,4
(m)

MAI:  Ut,5
(m)

MAI:  Ut,6
(m)
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Table 4.12: Classification performance evaluation for the MAIs: U(m)
k,h

h AT AU CA CH DE DK ES FI FR GB IT JP KR NL NZ SE US Min Med Max

2

ACC 0.8434 0.8057 0.8377 0.8132 0.8264 0.8434 0.7981 0.8302 0.8075 0.7962 0.8472 0.7962 0.8226 0.8094 0.8434 0.8113 0.7943 0.7943 0.8132 0.8472

TPR 0.8367 0.8188 0.8182 0.8293 0.8194 0.8459 0.8127 0.8185 0.8043 0.7953 0.8212 0.8051 0.8170 0.8000 0.8182 0.7915 0.8031 0.7915 0.8182 0.8459

TNR 0.8517 0.7873 0.8649 0.7942 0.8355 0.8400 0.7767 0.8472 0.8125 0.7979 0.8900 0.7834 0.8310 0.8256 0.8755 0.8442 0.7810 0.7767 0.8310 0.8900

PPV 0.8754 0.8433 0.8936 0.8264 0.8657 0.8776 0.8421 0.8862 0.8691 0.8730 0.9249 0.8428 0.8780 0.8874 0.8934 0.8942 0.8482 0.8264 0.8754 0.9249

NPV 0.8072 0.7565 0.7742 0.7975 0.7814 0.8008 0.7389 0.7625 0.7284 0.6906 0.7511 0.7359 0.7532 0.7061 0.7907 0.7089 0.7225 0.6906 0.7532 0.8072

3

ACC 0.8412 0.7807 0.8166 0.8129 0.8355 0.8166 0.8072 0.8034 0.8412 0.7977 0.8091 0.7977 0.8393 0.8204 0.8318 0.7940 0.7788 0.7788 0.8129 0.8412

TPR 0.8340 0.7712 0.7782 0.8233 0.8285 0.8097 0.8112 0.7903 0.8315 0.7790 0.7918 0.7967 0.8388 0.8106 0.8122 0.7395 0.7698 0.7395 0.8097 0.8388

TNR 0.8475 0.7884 0.8555 0.8047 0.8414 0.8227 0.8036 0.8149 0.8511 0.8168 0.8269 0.7986 0.8397 0.8302 0.8467 0.8470 0.7870 0.7870 0.8269 0.8555

PPV 0.8273 0.7459 0.8449 0.7671 0.8115 0.8000 0.7860 0.7903 0.8506 0.8125 0.8256 0.7747 0.8153 0.8263 0.8017 0.8248 0.7668 0.7459 0.8115 0.8506

NPV 0.8536 0.8105 0.7923 0.8536 0.8561 0.8315 0.8272 0.8149 0.8321 0.7839 0.7934 0.8188 0.8607 0.8148 0.8552 0.7695 0.7899 0.7695 0.8188 0.8607

4

ACC 0.8030 0.7557 0.7898 0.7727 0.8011 0.7973 0.7936 0.7841 0.8239 0.7860 0.8011 0.7992 0.8182 0.7917 0.8163 0.7689 0.7670 0.7557 0.7936 0.8239

TPR 0.8216 0.7821 0.7600 0.7868 0.8007 0.7840 0.7979 0.7708 0.8271 0.7778 0.7834 0.8007 0.8156 0.7799 0.8127 0.7533 0.7617 0.7533 0.7840 0.8271

TNR 0.7838 0.7258 0.8289 0.7578 0.8016 0.8133 0.7881 0.8000 0.8197 0.7981 0.8271 0.7975 0.8211 0.8082 0.8199 0.7902 0.7739 0.7258 0.8000 0.8289

PPV 0.7978 0.7631 0.8539 0.7754 0.8155 0.8333 0.8233 0.8222 0.8531 0.8507 0.8693 0.8237 0.8394 0.8516 0.8220 0.8297 0.8136 0.7631 0.8237 0.8693

NPV 0.8088 0.7469 0.7241 0.7698 0.7860 0.7597 0.7592 0.7442 0.7893 0.7083 0.7224 0.7720 0.7953 0.7224 0.8106 0.7024 0.7149 0.7024 0.7592 0.8106

5

ACC 0.8197 0.7173 0.8083 0.7609 0.8197 0.8046 0.7932 0.7932 0.8216 0.7552 0.7761 0.7951 0.8216 0.7818 0.8178 0.7476 0.7552 0.7173 0.7932 0.8216

TPR 0.8333 0.7156 0.7739 0.7585 0.8095 0.7860 0.7927 0.7875 0.7940 0.7280 0.7463 0.7886 0.8101 0.7689 0.8062 0.7043 0.7276 0.7043 0.7860 0.8333

TNR 0.8084 0.7185 0.8421 0.7629 0.8277 0.8204 0.7936 0.7979 0.8500 0.7820 0.8069 0.8007 0.8310 0.7947 0.8267 0.7889 0.7794 0.7185 0.8007 0.8500

PPV 0.7843 0.6545 0.8279 0.7218 0.7857 0.7893 0.7708 0.7652 0.8446 0.7661 0.8000 0.7760 0.7967 0.7899 0.7787 0.7605 0.7427 0.6545 0.7787 0.8446

NPV 0.8529 0.7722 0.7915 0.7957 0.8478 0.8175 0.8139 0.8179 0.8007 0.7455 0.7545 0.8123 0.8427 0.7741 0.8493 0.7370 0.7657 0.7370 0.8007 0.8529

6

ACC 0.8042 0.7205 0.7909 0.7662 0.7947 0.7776 0.7719 0.7681 0.8004 0.7738 0.7548 0.7776 0.8042 0.7605 0.7795 0.7452 0.7357 0.7205 0.7738 0.8042

TPR 0.8346 0.7366 0.7587 0.7744 0.7913 0.7656 0.7690 0.7727 0.7884 0.7641 0.7318 0.7818 0.8060 0.7492 0.7689 0.7220 0.7188 0.7188 0.7689 0.8346

TNR 0.7744 0.7045 0.8292 0.7577 0.7978 0.7905 0.7751 0.7634 0.8155 0.7867 0.7857 0.7729 0.8023 0.7753 0.7901 0.7749 0.7563 0.7045 0.7753 0.8292

PPV 0.7834 0.7122 0.8411 0.7658 0.7852 0.7977 0.7918 0.7669 0.8431 0.8273 0.8216 0.7904 0.8090 0.8145 0.7868 0.8038 0.7811 0.7122 0.7918 0.8431

NPV 0.8273 0.7294 0.7425 0.7665 0.8037 0.7576 0.7510 0.7692 0.7540 0.7137 0.6848 0.7638 0.7992 0.7012 0.7724 0.6858 0.6897 0.6848 0.7540 0.8273

Table 4.13: Classification performance evaluation for the CAIs: V (m)
k,h

h AT AU CA CH DE DK ES FI FR GB IT JP KR NL NZ SE US Min Med Max

2

ACC 0.8642 0.8245 0.8547 0.8283 0.8509 0.8509 0.8377 0.8208 0.8528 0.8151 0.8358 0.8472 0.8491 0.8226 0.8491 0.8415 0.8132 0.8132 0.8415 0.8642

TPR 0.8520 0.7955 0.8241 0.7869 0.8462 0.8209 0.8316 0.8043 0.8519 0.7500 0.7915 0.8238 0.8396 0.8223 0.8222 0.7970 0.7903 0.7500 0.8222 0.8520

TNR 0.8713 0.8390 0.8758 0.8501 0.8534 0.8693 0.8413 0.8295 0.8535 0.8545 0.8652 0.8605 0.8542 0.8228 0.8629 0.8679 0.8256 0.8228 0.8542 0.8758

PPV 0.7952 0.7107 0.8203 0.7347 0.7512 0.7933 0.7546 0.7150 0.8000 0.7576 0.7952 0.7718 0.7585 0.7330 0.7551 0.7811 0.7101 0.7101 0.7576 0.8203

NPV 0.9094 0.8919 0.8786 0.8832 0.9138 0.8882 0.8949 0.8885 0.8933 0.8494 0.8625 0.8951 0.9071 0.8867 0.9042 0.8784 0.8793 0.8494 0.8885 0.9138

3

ACC 0.8526 0.7732 0.8185 0.8053 0.8318 0.8147 0.8147 0.7940 0.8336 0.7902 0.8072 0.8091 0.8393 0.8166 0.8185 0.7940 0.7713 0.7713 0.8147 0.8526

TPR 0.8489 0.7535 0.7720 0.7917 0.8203 0.7931 0.8139 0.7798 0.8347 0.7427 0.7724 0.7895 0.8465 0.8109 0.7895 0.7393 0.7723 0.7393 0.7895 0.8489

TNR 0.8553 0.7866 0.8602 0.8147 0.8397 0.8316 0.8154 0.8039 0.8327 0.8299 0.8375 0.8239 0.8344 0.8213 0.8375 0.8373 0.7705 0.7705 0.8316 0.8602

PPV 0.8128 0.7074 0.8319 0.7467 0.7807 0.7863 0.7737 0.7359 0.8150 0.7851 0.8051 0.7725 0.7778 0.7878 0.7604 0.7828 0.7119 0.7074 0.7807 0.8319

NPV 0.8844 0.8233 0.8081 0.8500 0.8704 0.8373 0.8497 0.8389 0.8509 0.7940 0.8089 0.8378 0.8881 0.8415 0.8590 0.8019 0.8217 0.7940 0.8389 0.8881

4

ACC 0.8390 0.7386 0.7784 0.7708 0.8182 0.7898 0.8030 0.7727 0.8201 0.7860 0.7973 0.7803 0.8182 0.7955 0.8049 0.7576 0.7595 0.7386 0.7898 0.8390

TPR 0.8419 0.7362 0.7394 0.7671 0.8135 0.7643 0.8075 0.7698 0.8107 0.7553 0.7857 0.7719 0.8230 0.7849 0.8025 0.7159 0.7557 0.7159 0.7719 0.8419

TNR 0.8364 0.7409 0.8238 0.7742 0.8225 0.8151 0.7985 0.7754 0.8306 0.8211 0.8105 0.7887 0.8140 0.8072 0.8069 0.8016 0.7632 0.7409 0.8072 0.8364

PPV 0.8256 0.7248 0.8300 0.7520 0.8071 0.8040 0.8015 0.7578 0.8439 0.8288 0.8240 0.7838 0.7905 0.8202 0.7733 0.7918 0.7586 0.7248 0.8015 0.8439

NPV 0.8519 0.7519 0.7309 0.7883 0.8285 0.7770 0.8046 0.7868 0.7954 0.7454 0.7701 0.7770 0.8436 0.7701 0.8327 0.7279 0.7603 0.7279 0.7770 0.8519

5

ACC 0.8046 0.7400 0.7571 0.7571 0.7970 0.7780 0.7837 0.7476 0.8065 0.7837 0.7799 0.7818 0.7913 0.7666 0.7913 0.7324 0.7533 0.7324 0.7799 0.8065

TPR 0.8333 0.7657 0.7184 0.7706 0.7978 0.7552 0.7904 0.7545 0.8140 0.7588 0.7818 0.7751 0.7955 0.7630 0.8092 0.7209 0.7543 0.7184 0.7706 0.8333

TNR 0.7743 0.7095 0.8119 0.7419 0.7960 0.8059 0.7754 0.7400 0.7965 0.8194 0.7773 0.7899 0.7871 0.7717 0.7736 0.7478 0.7521 0.7095 0.7754 0.8194

PPV 0.7951 0.7578 0.8441 0.7706 0.8125 0.8264 0.8127 0.7628 0.8419 0.8582 0.8304 0.8175 0.7895 0.8246 0.7794 0.7920 0.7921 0.7578 0.8125 0.8582

NPV 0.8156 0.7185 0.6705 0.7419 0.7804 0.7290 0.7500 0.7312 0.7627 0.7024 0.7185 0.7431 0.7931 0.6983 0.8039 0.6680 0.7097 0.6680 0.7312 0.8156

6

ACC 0.7966 0.7452 0.7433 0.7567 0.7776 0.7757 0.7776 0.7338 0.7776 0.7833 0.7738 0.7510 0.7738 0.7567 0.7757 0.7357 0.7510 0.7338 0.7738 0.7966

TPR 0.8182 0.7683 0.7100 0.7738 0.7900 0.7692 0.7917 0.7450 0.7875 0.7715 0.7879 0.7613 0.7965 0.7522 0.7986 0.7455 0.7563 0.7100 0.7715 0.8182

TNR 0.7708 0.7109 0.8000 0.7330 0.7611 0.7850 0.7570 0.7193 0.7621 0.8042 0.7500 0.7361 0.7469 0.7644 0.7490 0.7194 0.7427 0.7109 0.7500 0.8042

PPV 0.8097 0.7987 0.8577 0.8000 0.8144 0.8392 0.8261 0.7762 0.8372 0.8754 0.8414 0.8055 0.7882 0.8485 0.7875 0.8173 0.8203 0.7762 0.8173 0.8754

NPV 0.7806 0.6726 0.6190 0.7013 0.7319 0.7000 0.7137 0.6833 0.6978 0.6638 0.6774 0.6824 0.7563 0.6376 0.7615 0.6267 0.6623 0.6190 0.6833 0.7806

4.6 Conclusion

The key contribution of this work is the development of a hybrid multivariate supervised learning
device. Our algorithmic approach integrated stochastic process modelling, hidden Markov model,
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random forest and XGBoost. The application in this research focused on tracing the movement of
multiple countries’ FSIs simultaneously. The ultimate goal was the detection in advance of signs
for possible crisis episodes that will disturb the financial stability.

A discriminative signal, which is evaluated as the lag-⌧ di↵erence of the original data series, is
introduced to characterise the anomalous behaviour of all FSI time series. The OU processes, with
parameters governed by the HMM, are employed to model 17 di↵erent countries’ discriminative
signals altogether. Utilising the EM algorithm and change of reference probability measures, the
HMM online recursive filters were constructed. This in turn, unveils the information content of
the observed multiple stochastic processes. Two new features, ie., estimate of the Markov-chain
state and deviation from the mean, were created to describe the characteristics of the underlying
time series under the HMM filtering framework. A feature-selection module was established that
consequently improves the out-of-sample predictive performance at a lower the computing cost of
modelling. Random Forest was utilised to select the HMM and Non-HMM predictors concurrently
based on the OOB accuracy.

XGBoost is the final stage classifier in our modelling approach. Time series cross-validation com-
bined with grid search was applied to tune the hyper-parameters. In order to fully capture the evolu-
tion of the input data series, the classification model is tuned and trained once new data is available.
To avoid error propagation in multi-step-ahead forecasting, a direct prediction method was applied
to generate a multivariate 6-step ahead predictions for the countries’ financial stress status, which
served as an early-warning signal for the future occurrence of financial-crisis episodes.

Benchmarking with other five models, our model’s implementability and predictive performance
were tested on the actual multi-dimensional time series of 17 countries’ FSI. Each models’ predic-
tive power was assessed though four di↵erent model-diagnostic tools: (i) confusion matrix, (ii) area
under ROC, (iii) logistic loss, and (iv) Kolmogorov-Smirnov test. The confusion-matrix analysis
showed that our model had the highest TPR, TNR, PPV and NPV scores in all forecasting horizons.
This means that our proposed model is able to detect positive (i.e., anomalous) episodes more accu-
rately with lower false positive error than the benchmark models when the discrimination threshold
is set to 0.5. The comparison of AUCs showed that the proposed model scored higher than the
other models at all prediction steps. The outcomes of the pairwise t-test and DeLong test supported
the statistical significance of our model’s AUC score. The logistic loss of the models revealed that
our model has better capability in determining anomalous periods; this is based on higher predicted
probabilities for positive instances than for negative ones. The result of the Kolmogorov-Smirnov
test attested to the robustness of our proposed modelling approach in di↵erentiating anomalous
events from regular ones. Our modelling methodology for multivariate prediction substantially ben-
efited from the fusion of RF, HMM and XGBoost.
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A customised feature-importance analysis was conducted to measure the features’ contribution to
detect anomalous episodes. The results suggested that the HMM-features have significant impacts
on the prediction accuracy. Our findings also indicate that, as the forecasting horizon increases, the
prediction of anomalies of each country’s FSI could have a long-memory e↵ect on other countries’
features.

Employing the anomalous/normal classification results, two projected anomaly-warning signals
(MAI and CAI) are constructed to predict two types of extremely anomalous events (MAE and
CAE). The results show that our proposed modelling approach is able to detect the specified ex-
tremely anomalous episodes in the near future (2-6 months ahead) with a good accuracy.

This research work contributed to supervised learning, multivariate time series, and financial-stability
modelling in the following ways: (i) Development of a new framework integrating HMM with the
supervised learning models: RF and XGBoost. This enabled us to trace with accuracy the dynamics
of multiple FSI time series in an attempt to detect future financial stability; (ii) Utility of a multiple
self-tuning estimation procedure under the HMM set up to generate new features for classification;
(iii) Implementation of a 2-dimensional feature selection using RF; (iv) Application of time series
cross validation and grid search for hyper-parameter tuning for XGBoost; (v) Independent training
framework for di↵erent prediction steps; (vi) A comprehensive model performance diagnostics us-
ing multiple statistical tools. (vii)A customised analysis of the features’ importance to assess and
interpret di↵erent types of input variables’ impact on the anomaly detection; and (viii) Construction
of two early warning alert signals MAI and CAI to detect extremely anomalous episodes in the
future.

This work laid out a new ensemble supervised learning classification model which is designed to
detect future anomalous episode location for the benefit of financial-stability research and pertinent
policy implications. Our proposed model provides predictive analytics for country-level FSI status
which is relevant to financial-stability management. Our approach formulated a framework that
allows us to recast our solution to anomalous/normal classification outcomes. Since these quantities
are also given in a probabilistic form, they have natural interpretations as an estimated level of
exposure to financial instability which is relevant to central bankers and economists. In addition, we
conducted a tailored features’ importance analysis to quantify the relationship between the predicted
FSI’s anomalous/normal status and di↵erent types of input variables; this in turn provides accessible
interpretation of our proposed modelling to practitioners. Lastly, we enhanced further our model
by constructing two projected warning signals, MAI and CAI, to forecast some specified extremely
anomalous episodes in the near future. The said enhancement gives additional quantitative insights
for the policy makers in mitigating possible financial-crisis event.



Chapter 5

Concluding remarks

5.1 Summary and commentaries

In this thesis, we designed various HMM-based EWAS to detect instances of financial instability
based on signal alerts extracted from multiple financial and economic indices. We briefly described
these particular EWAS. First, a theoretical framework that incorporates HMM into a multivari-
ate setting was constructed to capture stylised characteristics of multivariate economic-indicator
time series. Second, taking advantage of the EM algorithm and change of reference probability
measures, we derived new multivariate HMM online recursive filtering algorithms to underpin the
models’ dynamic parameter estimation. Third, utilising HMM’s valuable capabilities in extracting
essential information from the observed data series, we built a hybrid supervised learning device by
integrating stochastic modelling and HMM with Random Forest and XGBoost. This facilitates the
identification of signs in multiple FSIs for possible episodes that will disturb financial stability. As
a result, early warning signals arising from specific input data series were obtained when various
anomalous behaviour were detected.

More specifically, the accomplishments in this research commenced with the construction of a hy-
brid bivariate OU-GBM regime-switching model with parameters driven by a hidden Markov chain
to describe the features of FSI and IPI in Chapter 2. We created an early warning device for financial
crisis based on the ensuing HMM filtering recursions. In Chapter 3, a 4-dimensional blended HMM-
based framework was proposed to measure the market liquidity by capturing the joint dynamics of
4 financial indices. In addition, we tested the capacity of new EWAS in detecting financial insta-
bility with the use of HMM-state estimates along with a statistical assessment. In Chapter 4, we
introduced a supervised learning method with the amalgamation of stochastic modelling and hidden

128
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Markov model with Random Forest and XGBoost to detect anomalies in multiple financial stress
indices. Two early warning signals were obtained through the HMM filters and XGBoost classier,
thereby identifying extreme anomalous episodes.

Generally, this research work contributed thinking paradigms to HMM modelling, supervised learn-
ing, multivariate time series, and financial-stability modelling in the following ways: (i) A fusion-
information-based design of a framework integrating di↵erent stochastic processes within HMM,
which is a new approach in capturing jointly the important properties of series associated with
tracking down financial instability; (ii) Construction of a new framework integrating HMM with the
supervised learning models to trace with accuracy the dynamics of multiple FSI time series in an
attempt to detect future financial stability; (iii) Development of an extended self-tuning estimation
procedure under a multivariate HMM set up bringing forth new features for other machine learning
models to detect anomalies; (iv) Implementation of independent model training strategy for di↵er-
ent prediction horizons; and (v) Creation of various early-warning signals employing outputs from
the interplay of HMM filters and some machine learning algorithms.

This thesis o↵ers insights and research advances by developing a set of quantitative methodologies
to assess the level of financial stress and market illiquidity. The time points of financial instabil-
ity occurrences that were pinpointed out by our modelling approaches accurately correspond to
those already established and accepted by practitioners. The outputs from our proposed models
are straightforward to interpret with direct relevance to bankers, economists, regulators and policy
makers.

5.2 Future research directions

Although we made significant progress with our proposed modelling setups for financial-stability
analysis, certain limitations open opportunities. The contributions of this work are designed to
stimulate further research activities with both theoretical and practical considerations. Potential en-
hancements or alternative quantitative methodologies are continually sought in the areas of financial
stability management. The application aspect of this work would be of value to central bankers and
regulatory authorities whose tasks are to mitigate the e↵ects or the occurrence of future financial
crises. We outline below several ramifications emanating from the various results of this research
work.

• In Chapters 2 and 3, additional research investigations are needed to determine accurately
the lag between the EWAS and the crisis taking place. It is desirable to come up with certain
statistical models supporting a rigorous procedure that connects a pre-crisis alert from the
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HMM filtering methodology with the actual outcomes.

• So far, our models are all based on regular HMM. However, it may be challenging for a
HMM-driven to capture adequately some long-memory characteristics of financial indices.
It is, therefore, ideal to introduce a higher-order HMM (HOHMM) that would drive the
underlying process. In turn, as the state memory is recovered, filters could provide more
informative estimates generating EWAS with better forecasting performance.

• All of our proposed models are formulated as stochastic processes whose parameters are gov-
erned by an HMM only. When dealing with real-world financial data, it is not uncommon that
drift and volatility are influenced by di↵erent factors. Thus, it is rational to build modelling
frameworks supported by stochastic processes whose parameters are modulated by di↵erent
HMMs or HOHMMs to strengthen the framework’s flexibility.

• The multivariate stochastic models considered in this research study are based on the assump-
tion that all component processes have independent noise term; such an assumption may not
be realistic with every financial time series encountered in practice. Henceforth, there is merit
in putting forward multivariate stochastic processes with non-zero correlation, which could
also be dependent on HMM or HOHMM. The benefits of HOHMM are elaborated in [90]
and the references therein.

• In Chapter 4, we created a hybrid model combining the HMM with RF and XGBoost. The
result demonstrated that HMMs could be utilised as an ideal feature-generating device in a
machine learning framework. Implementation of the HMM in combination with a certain
type of Neural Network is also anticipated to bring high predictive power in the context of
big-data processing environment.

• In the field of machine learning, both the HMM and HOHMM are deemed unsupervised
learning models. As demonstrated in this work, the HMM could be applied with a super-
vised learning model to achieve good forecasting results. In this thesis, setting the number of
regimes to 2 definitely simplifies the mechanics of the HMM development. A generalisation,
to pin down data’s stylised facts, could be explored by constructing a methodology that en-
sures the the HMM or HOHMM satisfies certain objectives, i.e.,by, for example, minimising
the MSE or classification error. More specifically, we could treat the number of states of the
HMM and the memory length of HOHMM as hyper-parameters. The optimal values could
be searched via cross validation.
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Appendix A

Derivation of optimal parameter
estimates in Chapter 2

A.1 Optimal estimate for ⇡ ji

The idea of the proof is similar to that in [59]. To perform the measure change mentioned in

Subsection E.1, define a new measure P⇡̂ ji via
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A.2 Optimal estimate for ↵
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This implies

LR
⇣ ˆi2

⌘
= E

2
666664log

dP̂2

dP2

������Fk

3
777775

= E

2
6666664

kX

l=1

2
66664�

1
2

log
⇣
̂2 (zl�1)

⌘
�

(Xl � ↵ (zl�1) Xl�1 � � (zl�1))2

2̂2 (zl�1)

3
77775 + R

������Fk

3
7777775

= E

2
6666664

kX

l=1

NX

i=1

hzl�1, eii

0
BBBBBB@�

1
2

log
⇣
̂2i

⌘
�

X2
l + ↵

2
i X2

l�1 + �
2
i � 2↵iXlXl�1 � 2�iXl + 2↵i�iXl�1

2̂2i

1
CCCCCCA + R

������Fk

3
7777775

=

NX

i=1

0
BBBBBB@�

1
2
Ô
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Appendix B

Procedure for filters’ construction in
Chapter 3

B.1 Change of measures

Under the real-world probability measure P, the true state of the underlying Markov chain zk is
neither observed nor measured directly since it is “latent” in the noisy observation process with
“real world” dynamics given by Eqs. (3.10) and (3.13). Our objective is to “filter” the noise out of
the observation process in the best possible way. Unfortunately, the derivation of filters under P is
not straightforward.

Inspired by the approach described in [25], we perform a change of probability measure to intro-
duce the the ideal-world measure P̄ from the real-world probability measure P by invoking the
discrete-time version of the Girsanov’s theorem. Under this ideal measure, the observations are in-
dependent and identically distributed random variables which makes the calculations of conditional
expectations manageable.

The filters, which are conditional expectations, are then related back to the real-world by the use of
the Bayes’ theorem for conditional expectation. Following [25] (chapter 3.4, page 62), the real-
world measure P equivalent to an ideal measure P̄ is constructed through the Radon-Nikodym
derivative
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where �(·) is the density function of a standard normal random variable.

B.2 Filtering

Let ẑk be the conditional expectation of zk given Fk under probability measure P, i.e.,

ẑk := E
h
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i
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k , ẑ(2)
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, (B.2)

where Fk is the filtration generated by the bivariate observation reflecting all information available
up to time k. By the Bayes’ theorem,

ẑk = E
h
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i
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E
h
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Write pk := E
h
⇤̄kzk

���Fk
i

so that

E
h
⇤̄k

���Fk
i
= E

2
6666664⇤̄k

0
BBBBBB@

NX

i=1

hzk, eii

1
CCCCCCA
���Fk

3
7777775 =

NX

i=1

E
h
h⇤̄kzk, eii

���Fk
i

=

NX

i=1

⌦
E

h
⇤̄kzk

���Fk
i
, ei

↵
=

NX

i=1

hpk, eii. (B.4)

For the second expression in (B.4) we rely on the fact that
PN

i=1hzk, eii = 1. Therefore, the condi-
tional expectation of zk has the form

ẑk =
pkPN

i=1hpk, eii
. (B.5)
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Following similar principles in [59], define the diagonal matrix
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Let Hk be any scalar Fk-adapted process; H0 is F0 measurable. A filter for Hk is defined as
E

h
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���Fk
i

and by the Bayes’ theorem,

E
h
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Write �(Hk) B E
h
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���Fk
i
, and so
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i
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where 1 is a vector of 1’s. Therefore, Eq. (E.7) becomes
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⌦
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Thus, we obtain the filters for the state of the Markov chain, number of jumps G, occupation time
O, and auxiliary process T .

pk = ⇧Dk pk�1 (B.12)

�(Gs, j
k zk) = ⇧Dk �(G

s, j
k�1zk�1) + dk, jhpk, e ji⇡s jes (B.13)

�(O j
kzk) = ⇧Dk �(O

, j
k�1zk�1) + dk, jhpk, e ji⇧e j (B.14)

�(T j
k ( f )zk) = ⇧Dk �(T

j
k�1( f ) zk�1) + f (·) dk, jhpk, e ji⇧e j (B.15)

The derivations of Eqs. (B.12) – (B.15) are similar to those given in [59] or [25]. It is immediate, by
Eq. (B.11), to determine the normalised filter estimates of �(Gs, j

k ), �(O j
k) and �(T j

k ( f )) by summing
the components of the vector expressions given in Eqs. (B.13) – (B.15), and then dividing each by
the expression in Eq. (B.12).



Appendix C

Derivation of optimal parameter
estimates and Fisher information in
Chapter 3

C.1 Optimal estimate for ⇡ ji

The idea of the proof is similar to that in [59]. To perform the measure change mentioned in

Subsection E.1, define a new measure P⇡̂ ji via
dP⇡̂ ji

dP⇡ ji

������
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where R does not contain ↵̂.

It must be noted that
PN

j=1 G
j,i
k = O

i
k,

PN
j=1 Ĝ

j,i
k = Ô

i
k. The optimal estimate for ⇡ ji is the value

that maximises the log-likelihood log
dP⇡̂ ji

dP⇡ ji
constrained to

PN
j=1 ⇡̂ ji = 1. Introducing the Lagrange

148
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multiplier and solving the associated optimisation problem yield the solution

⇡̂ ji =
Ĝ

j,i
k

Ô
i
k

.

⌅

C.2 Fisher information for ⇡ ji

We write the log-likelihood of ⇡ ji as

L

⇣
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⌘
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C.3 Optimal estimate for ↵

Let ↵ = (↵1, ↵2, ..., ↵N)> 2 RN . To calculate ↵̂ = (↵̂1, ↵̂2, ..., ↵̂N)> 2 RN , consider a new measure
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This implies
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We di↵erentiate LR (↵̂i) with respect to ↵̂i and then equate the result to zero. Consequently,
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C.4 Fisher information for ↵i

We write the log-likelihood of ↵i as
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Hence, the Fisher information of ↵i is
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C.5 Optimal estimate for �
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C.6 Fisher information for �i

We write the log-likelihood of �i as
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Ergo, the Fisher information of �i is

I (�i) = �E
2
66664

d2

d�2
i
L (�i)

�������i

3
77775 = E

2
6666664

kX

l=1

hzl�1, eii

2i

�������i

3
7777775 =
Ô
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C.7 Optimal estimate for 2
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By di↵erentiating LR
⇣ ˆi2

⌘
with respect to ˆi2 and equating the resulting mathematical derivative to
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C.8 Fisher information for 2i
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C.9 Optimal estimate for ⇣
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This tells us that

LR
⇣
⇣̂i
⌘
= E

2
666664log

dP⇣̂

dP⇣

������Fk

3
777775

= E

2
6666664

kX

l=1

⇣2 (zl�1) � ⇣̂2 (zl�1) + 2 (Yl�1 � Yl)
⇣
⇣ (zl�1) � ⇣̂ (zl�1)

⌘

2⌫2 (zl�1)

������Fk

3
7777775

= E

2
666666664

kX

l=1

NX

i=1

hzl�1, eii
�

⇣
⇣̂i
⌘2
� 2 (Yl�1 � Yl)

⇣
⇣̂i
⌘

2⌫2i
+ R

������Fk

3
777777775

=

NX

i=1

8>><
>>:

2T̂ i
k (Yk) ⇣̂i � 2T̂ i

k (Yk�1) ⇣̂i � Ôi
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C.10 Fisher information for ⇣i
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C.11 Optimal estimate for ⌫2
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The representation of the log-likelihood of ⌫2i is

L

⇣
⌫2i

⌘
=

kX

l=1

2
66664hzl�1, eii

0
BBBB@�

1
2

log (2⇡) � log ⌫i �
(Yl � Yl�1 � ⇣i)2

2⌫2i

1
CCCCA
3
77775 .

This implies that the Fisher information of ⌫2i is

I

⇣
⌫2i

⌘
= �E

2
66664

d2

d⌫2i
L

⇣
⌫2i

⌘ ������⌫
2
i

3
77775

= E

2
6666664

kX

l=1

hzl�1, eii

0
BBBBB@�

1
2⌫4i
+

Y2
l + Y2

l�1 + ⇣
2
i � 2YlYl�1 � 2⇣iYl + 2⇣iYl�1

⌫6i

1
CCCCCA

������⌫
2
i

3
7777775

=
T̂

i
k

⇣
Y2

k

⌘
+ T̂ i

k

⇣
Y2

k�1

⌘
+ Ôi
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Appendix D

Additional details and results for HMM
filtering in Chapter 3

D.1 Initial values for HMM-based models

Table D.1: Initial parameter values for the 1-, 2-, and 3-state HMMs

Index Parameters 1-State HMM
2-State HMM 3-State HMM

State 1 State 2 State 1 State 3 State 2

log(BASP500)
⌘ini 1.6⇥10�3 1.9⇥10�3 1.3⇥10�3 1.8⇥10�3 1.5⇥10�3 1.3⇥10�3

⇠2
ini 0.034 0.011 0.022 0.006 0.013 0.014

TED

µini 0.814 0.992 0.636 0.952 0.745 0.676

✓ini 2.097 2.104 1.922 2.104 2.019 1.937

�2
ini 0.857 0.290 0.575 0.165 0.346 0.354

log(VIX)

µini 3.329 3.421 3.238 3.403 3.302 3.256

✓ini 1.522 1.583 1.693 1.545 1.732 1.734

�2
ini 1.092 0.371 0.736 0.211 0.443 0.453

log(DXY)

µini 4.581 4.672 4.489 4.655 4.531 4.506

✓ini 1.227 1.597 1.377 1.679 1.231 1.157

�2
ini 0.006 0.002 0.004 0.001 0.002 0.003
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D.2 1-state HMM filtering outcomes
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Figure D.1: Evolution of parameter estimates for µ, ✓, �2, ⌘ and ⇠2 under a 1-state HMM
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Figure D.2: Evolution of parameter estimates for µ, ✓, �2, ⌘, ⇠2 and ⇡ ji under a 3-state HMM



Appendix E

Procedure for filters’ construction in
Chapter 4

E.1 Change of measures

Under the probability measure P, which describes our stochastic model in the real-world, the true
state of the Markov chain x(m)

k is “hidden” in the noisy observation process given by equation (4.10).
Therefore, the true state could neither be observed nor be measured directly. Instead, we could
construct filters that extract the latent information out of the observation process. Nonetheless,
filtering is not straightforward under the probability measure P due to the evaluation of expectation
of products of random variables that are not independent.

Adopting a change-of-probability-measure method [25], an ideal reference measure P equivalent
to the real-world probability measure P is constructed. This is made possible by the discrete-time
version of the Girsanov’s theorem. Under P, the observations are independent and identically dis-
tributed random variables facilitating the computations of conditional expectations involved in the
filters. Applying the Bayes’ theorem for conditional expectation, the filters are then related back to
the real world. Alternatively, we could back out P from P through the Radon-Nikodym derivative

⇤̄
(m)
k =

dP(m)

dP
(m)

������
F (m)

k

=

kY

l=1

�̄(m)
l (xl�1), (E.1)

where
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and

⌫(m)
l =

Y (m)
l � ↵(x(m)

l�1)Y (m)
l�1 � �(x

(m)
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. (E.3)

In Eq. (E.2), �(·) is the density function of a standard normal random variable.

E.2 Filtering

By the Bayes’ theorem,
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The second equation in Eq. (E.5) comes from the fact that
PN

i=1hx
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Let ⇠(m)
k be any scalar and F (m)

k -adapted process; ⇠0 is F (m)
0 measurable. A filter for ⇠(m)

k is defined
as the E
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So, we get
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where 1 is a vector of 1’s. Therefore, Eq. (E.7) becomes
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Following similar formulation in [59], we define the diagonal matrix
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Consequently, the filters for the state of the Markov chain, number of jumps Gs, j,(m)
k , occupation

time O j,(m)
k , and auxiliary process T j,(m)

k are
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Equations (E.14) – (E.17) could be derived in a similar manner to those analogous filters given in
[59] or [25]. From Eq. (E.10), the normalised filter estimates of �(Gs, j,(m)

k ), �(O j,(m)
k ) and �(T j,(m)

k ( f ))
are determined by summing the components of the vector expressions in Eqs. (E.15) – (E.17), and
then dividing each by the expression in Eq. (E.14).



Appendix F

Derivation of optimal parameter
estimates in Chapter 4

In this Appendix, we shall derive the optimal estimates of the parameters for the HMM-driven OU
process. Without loss of generality, the superscript (m) in all model parameters which is used to
denote the FSI of di↵erent countries’ is omitted in the following derivation.

F.1 Optimal estimate for ⇡ ji

The proof is similar to that in [59]. To perform the measure change, we define a new measure P⇡̂ ji

via
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where R does not contain ↵̂.
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It must be noted that
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F.2 Optimal estimate for ↵
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Appendix G

Visualisations of HMM features in
Chapter 4

This Appendix presents the evolution of HMM’s regimes and the deviations from the mean-reverting
level.
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