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Abstract 

Computed tomography (CT) scans are acquired prior to cochlear implant (CI) surgery. Three-

dimensional segmentations of the inner ear (IE) and round window (RW) based on clinical CTs 

can improve the CI procedure. Software pipelines are presented here which employ convolutional 

neural networks to automatically segment the IE and RW. The first pipeline produces high 

resolution segmentations of the IE and RW in tightly cropped CTs. Mean IE Dice score and RW 

centroid error were 0.88, 0.57mm and 0.93, 0.18mm in implanted and non-implanted samples, 

respectively. The second pipeline automatically segments the IE in large field of view CTs of any 

rotational orientation. Mean Dice scores of 0.83 and 0.89 were achieved in implanted and non-

implanted samples, respectively. This is the first known study to present automated segmentations 

of the IE and RW in CTs with CIs. The pipelines provide quick and accurate segmentations. 

 

 

 

 

 

 

 

Keywords: Automatic Image Segmentation, Computer Vision, Machine Learning, Convolutional 

Neural Network, Cochlear Implant, Inner Ear, Round Window 



iii 

Summary for Lay Audience 

Cochlear implants are a revolutionary invention which provides hearing to deaf people who have 

the most common form of hearing loss. Cochlear implants are surgically inserted into the inner 

ear, a tiny bony labyrinth within the temporal bone of the skull. The round window membrane is 

a natural opening from the middle ear to the inner ear and is the most frequently used entry point 

when surgically inserting a cochlear implant into the inner ear. Computed tomography scans are 

3D medical images which are acquired prior to the cochlear implant procedure to give surgeons 

an understanding of the patient's anatomy. Structures within a computed tomography scan, such 

as the inner ear, can be labeled by hand or by using an algorithm; these labels represent 3D models 

of the structures and are referred to as segmentations. Segmentations of a patient’s inner ear and 

round window are useful for the following applications: surgeons can build an enhanced 

understanding of a patient's anatomy, surgical rehearsal and training platforms could integrate 

specific patient cases, drilling locations and electrode insertion angles can be determined for robot-

assisted cochlear implant surgery, and the creation of customized cochlear implant frequency maps 

could be automated. Manual labeling of medical imaging data is not feasible for integration to 

clinical practice as it requires expert knowledge and is extremely time consuming. This work 

presents an automated approach which quickly and accurately segments the inner ear and round 

window based on any computed tomography scan with minimal user input. The automated 

segmentation approach utilizes a supervised machine learning algorithm (convolutional neural 

networks), and post-processing scripts which finalize the output segmentation. The automated 

approach was validated by use of clinical and cadaveric scans. Segmentations produced by the 

network were compared to manual expert segmentations as well as segmentations of high-

resolution imaging acquisitions. This is the first known study to present an automated approach 

which segments the inner ear and round window in scans with cochlear implants. The approach 

presented in this study utilized a wide variety of imaging acquisitions, resulting in a robust model 

which has promising clinical implementations.
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Chapter 1

 

The Clinical Problem 

 

1.1 Motivation 

Computed Tomography (CT) imaging is a prerequisite for most surgical procedures involving the 

head and neck. Otolaryngologists analyze CTs to determine the next steps in patient care. CTs are 

also a key tool otolaryngologists use in surgical planning to familiarize themselves with the 

patient’s specific anatomy and identify any abnormalities. To motivate this thesis, relevant 

anatomy and cochlear implants (CIs) are briefly described here, and described in further detail in 

Chapter 2. CIs are electronic devices which provide the sensation of sound to individuals with 

severe hearing loss. Within a CI, electrical impulses are generated to activate specific regions of 

an electrode array which is surgically inserted into the cochlea, the spiral shaped end organ of 

hearing (Figure 1.1). The round window is a membranous entry point into the cochlea, and is often 

the place of insertion when surgeons implant the electrode array into the cochlea. 
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Figure 1.1: Cochlear implant (https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia 

Commons). 

Segmentation is the act of manually or automatically making pixel-wise classifications in an 

image. Segmentation of the inner ear (IE) and round window (RW) in clinical CT scans are useful 

for an ever-increasing number of applications which benefit CI recipients impacted by 

sensorineural hearing loss. Quick and accurate IE and RW segmentations warrant improvements 

to the CI procedure and CI sound perception quality. Manual segmentation of the IE and RW based 

on clinical CT requires extensive domain knowledge and is time consuming, making manual 

segmentation infeasible to integrate to most clinical practice. A system achieving quick and 

accurate segmentations of the IE and RW would be useful in the following applications which will 

be described in further detail:  

● Surgical decision-making would be enhanced,  

● Surgical training and rehearsal could be patient-specific,  

● Robot-assisted surgery could be automated, and 

● Customized cochlear implant frequency-mapping could be automated. 

1.1.1 Surgical Decision-Making 

Preoperative planning for the CI procedure currently involves a surgeon manually scrolling 

through two-dimensional (2D) image slices of a CT scan to build intuition as to the three-
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dimensional (3D) characteristics of the anatomy. When the IE can be interactively viewed as a 3D 

segmentation volume, anatomical understanding is improved, especially in cases of malformation 

[1], [2]. Improved anatomical understanding allows a surgeon to make more informed decisions. 

An optimal electrode length and insertion angle can be calculated based on the relative 

segmentations of the IE and RW [3]. Appropriate choices of insertion angle and electrode length 

optimize hearing outcomes and reduce residual hearing loss which can occur as a result of the 

implant damaging cochlear microstructures [4]–[6]. These findings incentivize an enhanced 

understanding of individual patient anatomy to achieve optimal CI insertion. In addition to 

preoperative scans, postoperative scans can also be useful in a clinical setting. If a postoperative 

complication arises such as complete or partial electrode extrusion from the IE, corrective surgery 

is often performed, in which case it is useful to visualize 3D segmentations of the IE and RW prior 

to surgical intervention [7]. CT scans with implanted electrodes pose additional challenges due to 

metallic artifacts which distort the anatomy surrounding the titanium implant casing [8], [9]. 

Metallic artifacts hinder visualization of much of the cochlea and RW, especially in cases where 

RW insertion was performed. A system which could accurately segment the RW in electrode-

implanted scans would be especially useful due to the increased difficulty of interpreting electrode-

implanted scans. 

1.1.2 Surgical Training and Rehearsal 

Surgical training and rehearsal methods across medical disciplines have increasingly utilized 

computer-based simulated training systems; the systems can involve any combination of virtual 

reality headsets, 3D monitors, and haptic feedback devices [10]. Virtual training environments 

have gained recent attention as a possible approach to maintain surgical skills while many non-

essential surgical procedures have been stopped during the COVID-19 pandemic [11]. A limitation 

of many surgical simulation platforms is the inability to quickly import patient specific models 

corresponding to a medical image. CardinalSim is a surgical simulation platform being developed 

in the Auditory Biophysics Lab at Western University for temporal bone drilling, which is a 

necessary step in CI surgery [12]. Automated segmentations of the IE and RW facilitate quick 

implementation of patient cases to a simulated environment such as CardinalSim, allowing the 



4 

 

procedure to be practiced by surgeons prior to the procedure with no risk. Complex cases could 

also be presented as a training example for surgical residents gaining proficiency in the procedure. 

1.1.3 Robot-Assisted Surgery 

The use of robotic systems is being explored for a variety of precision surgical tasks, including 

head and neck surgery; the performance of these systems has in some cases exceeded that of 

experts [13]. If a robotic system is to be applied to the CI procedure, patient specific segmentations 

would be necessary to give the device sufficient information to deduce safe drilling locations 

which avoid critical structures. Similarly to the manual CI procedure, the relative positions of the 

cochlea and RW could be used to determine an ideal electrode insertion angle for a robotic system. 

1.1.4 Customized CI Frequency Mapping 

Current approaches to stimulate CIs are one-size-fits all and take no consideration to the specific 

anatomy of the patient. Customized CI frequency-maps which account for patient anatomy have 

recently shown improved hearing outcomes for CI recipients, especially in cases where patient 

anatomy deviates significantly from the average [14], [15]. The manual steps involved in creating 

a customized frequency-map are time consuming and could be greatly reduced through automated 

segmentations. Automating manual segmentation, a time-consuming step in customized CI 

frequency-mapping, could help facilitate integration of the technique to routine clinical practice. 

1.2 Novel Contributions 

This is the first known study which achieves automated segmentation of the RW in electrode-

implanted temporal bone CT scans, and the first study which achieves automated segmentation of 

the IE in electrode-implanted temporal bone CT scans. The effectiveness of the approach is 

evaluated by comparison with manual neurotologist and neuroradiologist segmentations. 

Segmentation accuracy metrics for IE and RW segmentation in non-implanted samples indicate 

competitive or improved results compared to other work. This work demonstrates superior 

robustness to other studies as it is validated by extensive CT data including clinical data from many 
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CT scanners as well as cadaveric micro-CT, Cone Beam Computed Tomography (CBCT), and 

helical CT. This work is also the first to validate a RW segmentation approach with synchrotron 

radiation phase contrast imaging (SR-PCI) data, and the first known study which segments the RW 

using a convolutional neural network (CNN).  

1.3 Thesis Outline and Objectives 

This thesis is structured as follows: Chapter 2 gives background information on concepts which 

are foundational to the thesis. Chapter 3 presents a method for automated high-resolution 

segmentation of the IE and RW in electrode-implanted and non-implanted cochleae. A limitation 

of this work was that the model was trained on data manually cropped to a small region of interest, 

and in a standardized clinical orientation. Chapter 4 presents a solution to the limitation, wherein 

a method is presented to segment the IE at a lower resolution in large field of view scans of any 

directional orientation with and without implanted electrodes. Together, Chapter 3 and Chapter 4 

lay the groundwork for a fully automated IE and RW segmentation in a variety of scans. The main 

objective of this thesis was to develop, implement, and evaluate an automated segmentation 

algorithm for the IE and RW. 
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Chapter 2 

Background 

 

2.1 Digital Images 

2.1.1 Introduction to Digital Images 

Digital images are composed of a sequence of finite, discrete values known as pixels in 2D, or 

voxels (volumetric pixels) in 3D. Pixels take on a range of values corresponding to the bit depth 

of the image with a relationship of: 𝑟𝑎𝑛𝑔𝑒 = 2𝑏, where b represents the bit depth. In a grayscale 

image, the intensity of a given image pixel is known as it’s gray level. For an 8-bit image, gray 

levels take on a range of 28 = 256 possible values (0 to 255 for unsigned integer representations). 

Figure 2.1 shows an 8-bit grayscale image which demonstrates how digital images appear 

continuous but are discrete image pixels when observed closely (if visual interpolation techniques 

are not used). The dimensionality of a digital image depends on whether an image is grayscale or 

‘red green blue’ (RGB). 2D grayscale images have a single channel dimension along with their 

associated spatial dimensions of length and width (1×L×W) whereas 2D RGB images have 3 

channels corresponding to red, green, and blue, in addition to spatial dimensions (3×L×W).  
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Figure 2.1: A subset of image pixels are shown up close without interpolation alongside their 

gray levels. The pixels shown on the left correspond to the pixels within the small red square on 

the right image. 

2.1.2 Image Segmentation 

Image segmentation involves the partitioning of an image to two or more groups, which is achieved 

through pixel-wise classification of the image. Figure 2.2 depicts an example image and the 

corresponding binary segmentation where each pixel is classified to label 0 (background) or 1 

(person). 

 

Figure 2.2: The left image depicts an RGB image of sprinters. The right image overlays a manual 

binary segmentation of image pixels classified as ‘background’ (blue) or ‘person’ (green). 
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Image segmentations have an identical spatial dimensionality to the images upon which they are 

based. Segmentation pixels take on values which correspond to the number of classes segmented. 

In the binary case, where only background and foreground classes are defined, the possible values 

of a segmentation are limited to 0 or 1. To segment outdoor scenery images, someone may decide 

to classify each image pixel as one of four categories: 0 (ground), 1 (tree), 2 (sky), 3 (other). 

Accurate segmentations of human anatomy in medical scans are useful for an increasingly large 

number of applications; for example, they can be used to quantify tumor shrinkage in a patient 

receiving cancer treatment. Segmentations of human anatomy can be produced based on medical 

image scans such as 2D planar X-ray, as well as 3D CT and MRI. Manual segmentations of human 

anatomy are time consuming and require expert levels of domain knowledge to correctly interpret 

medical image data.  

Image segmentation can be done manually, semi-automatically, or automatically. Manual 

segmentation involves a user classifying pixels with segmentation software; many software tools 

have been developed for the segmentation of 3D images [1]. Manual segmentation is the most 

time-consuming approach, as the user must carefully select pixels corresponding to structures of 

interest. Semi-automated segmentation approaches involve user input as well as an algorithm. In 

the semi-automated region growing segmentation approach, users select a seed pixel, and 

neighboring pixels are iteratively evaluated to check if they meet a similarity criteria. The 

segmenter can then add more seed pixels or manually correct errors made by the region growing 

algorithm. A benefit of manual or semi-automated segmentation is that human knowledge can 

guide decision making. For example, if the delineation between structures in a medical image is 

unclear due to an imaging artifact or poor contrast, an expert may be able to infer the location of 

structures by relying on their anatomical knowledge. Automated segmentation approaches involve 

segmentation with the least user input; the CNN is one such approach. Automated approaches 

sometimes require preprocessing steps to ensure the input is in a standardized format, as well as 

post-processing steps to finalize outputs. The pre- and post-processing steps may be done manually 

(making the overall approach semi-automated) or automated. Some important factors to consider 

when evaluating the effectiveness of a segmentation approach are: 
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● How long do automated and manual steps take? 

● What level of knowledge is necessary to complete manual steps? 

● What computational resources are required? 

2.1.3 Registration, Interpolation, and Resampling 

Image registration is a technique used to align images. Registration is achieved by bringing 

multiple images into one coordinate system. The image which has its coordinate system altered is 

referred to as the moving image, and the image which has the target coordinate system is the fixed 

or target image. The transformation applied to the moving image is determined by the type of 

registration which is applied. Rigid registration limits the transformation to only translation and 

rotation; affine registration additionally allows for scaling and shearing transforms. Figure 2.3 

demonstrates rigid and affine transformations. The restrictions associated with each transformation 

method form the search space of possible transformations to achieve registration [2]. Affine and 

rigid transformations are applied to the entirety of images; elastic transformations, on the other 

hand, allow for local warping of images.  

 

Figure 2.3: An affine transformation with translation and scaling steps is applied to image B to 

produce image A. A rigid transformation with translation and rotation steps is applied to image B 

to produce image C. 

Registration techniques can also be classified as intensity-based or feature-based. Intensity-based 

techniques achieve registration through comparison of image pixel values in the moving and target 
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images. Feature-based techniques consider image features such as lines or points which may be 

determined manually or automatically. If the correspondence between moving and target image 

features are known, the registration is achieved by finding a transformation which minimizes the 

distance between corresponding features in the moving and target images. To register a set of 

corresponding points on moving and target images, a cost function (e.g., the squared Euclidean 

distance between corresponding points) is minimized. The transformation corresponding to this 

minimization is the transformation matrix applied to the moving image. 

Following a transformation, interpolation is necessary to bring the transformed image into the 

image grid of the fixed image. To assign values to fixed image grid pixels, nearby pixels on the 

transformed image are considered. Nearest neighbor interpolation is the simplest as it only 

considers the nearest transformed image pixel to the target image grid pixel. Linear and cubic 

interpolation approaches consider the influence of multiple pixels in the transformed image and 

lead to qualitatively preferential results in most cases.  

Resampling an image involves changing the pixel size and number of pixels in an image. 

Upsampling refers to decreasing the size of pixels and therefore increasing the number of pixels, 

and downsampling involves increasing the size of pixels and decreasing the total number of pixels 

in an image. Interpolation techniques can be used to determine new pixel values in an upsampled 

or downsampled image. 

2.2 Clinical Background 

2.2.1 Anatomy 

The temporal bones are paired bones which form a lateral inferior portion of the skull that protects 

the temporal lobe of the brain and houses organs responsible for hearing and balance. The external 

auditory canal (ear canal), middle ear (malleus, incus, stapes), and IE (cochlea and semicircular 

canals) are located within the temporal bone (Figure 2.4). The carotid artery and jugular veins also 

pass through the temporal bone, which facilitate most blood flow to and from the brain. 
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Figure 2.4: Coronal view of the temporal bone and surrounding structures. Image courtesy of 

Stanford Otolaryngology, Head and Neck Surgery. Illustration reprinted with permission: ©Chris 

Gralapp [3]. 

The IE is a bony labyrinth located in the temporal bone. The IE comprises the cochlea, vestibule, 

and three semicircular canals (SCC) (superior, horizontal, posterior). The anterior portion of the 

IE is the cochlea, a spiral shaped cavity which is responsible for the conversion of sound waves to 

nerve impulses that are interpreted by the brain. The cochlea averages 2.5 turns around the conical 

bony modiolus. The modiolus houses the cochlear nerve’s neuronal cell bodies which carry 

electrical signals to the brain. The cochlea has three internal channels including the most inferior 

scala tympani, the middle scala media, and the superior scala vestibuli (Figure 2.6). The basilar 

membrane separates the scala tympani from the scala media and vibrates in response to acoustic 

stimuli. The vestibule is a bony cavity posterior to the cochlea and contains the utricle and saccule 

which help with balance. The three semicircular canals are posterior to the vestibule and also 

contribute to balance by sensing perilymph fluid motion. The RW is the most anterior of two 

openings between the inner and middle ear, located at the basal end of the cochlea. The RW allows 

for perilymph motion in the cochlea by vibrating with opposite phase to vibrations in the IE. The 

RW averages just 1.8mm in diameter and 70um in thickness [4].  
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2.2.2 Hearing Loss and Cochlear Implants 

Worldwide 432 million adults and 34 million children require rehabilitation to address their 

disabling hearing loss [5]. Disabling hearing loss is quantified as a loss of greater than 35 decibels 

in the better hearing ear. The negative impacts of hearing loss on one’s life are extensive if left 

untreated; those impacted disproportionately face social isolation as well as poor educational and 

employment outcomes [6]. 

Hearing loss can be categorized as sensorineural, conductive, or mixed. Sensorineural hearing loss 

is the most common form of hearing loss and involves an issue with the IE or auditory nerve. 

Sensorineural hearing loss is commonly caused by aging or noise damage. Conductive hearing 

loss involves an issue with sound conduction in the outer or middle ear structures such as the ear 

canal, ear drum, and ossicles (malleus, incus, stapes). Common causes of conductive hearing loss 

include cerumen (earwax) buildup in the external auditory canal, perforation of the tympanic 

membrane (eardrum), or infection. Mixed hearing loss describes conditions which could be related 

to a combination of the inner, middle, and outer ear. An example of mixed hearing loss is an 

infection which is present in both the middle and IE.  

A cochlear implant is an electronic device composed of an electrode array which, when surgically 

inserted into the cochlea, can be used to provide the sensation of sound to individuals with 

sensorineural hearing loss by directly stimulating cochlear nerve fibers [7]. CIs may be considered 

in cases of severe sensorineural hearing loss where a patient struggles with conversation even with 

the use of a hearing aid and relies heavily on lip reading. CIs may be implanted bilaterally (in both 

cochleae), or unilaterally (in one side). Bilateral implantation results in better hearing outcomes 

and allows for improved sound localization, as the difference in time and intensity of perceived 

sounds between the ears allows for understanding of the direction of a sound source [8], [9]. A CI 

is inserted into the cochlea through the RW or a cochleostomy, an unnatural entrance to the cochlea 

achieved by drilling (Figure 2.5). To access the cochlea, a mastoidectomy is performed, in which 

a portion of the mastoid part of the temporal bone is drilled away to expose the RW or a site for 

cochleostomy. The CI is inserted into the scala tympani, the inferior-most duct in the cochlea 

(Figure 2.6). Insertion is performed carefully to avoid puncture of the basilar membrane, which 
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separates the scala tympani from scala media, as damage could result in residual hearing loss. 

Residual hearing is the natural hearing a person still has when hearing loss is present. Preventing 

residual hearing loss during CI surgery is important, as demonstrated by the development of 

techniques to monitor changes to residual hearing intraoperatively with electrocochleography [10], 

[11]. 

 

Figure 2.5: Electrode insertion into the cochlea. The implant follows the lateral wall along the 

inside of the cochlea. A similar approach is implemented whether insertion takes place in the 

RW or a cochleostomy. Image courtesy of Stanford Otolaryngology, Head and Neck Surgery. 

Illustration reprinted with permission: ©Chris Gralapp [3]. 
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Figure 2.6: Surgical view of the IE through a mastoidectomy which exposes the RW. Image 

courtesy of Stanford Otolaryngology, Head and Neck Surgery. Illustration reprinted with 

permission: ©Chris Gralapp [3]. 

The facial nerve (seventh cranial nerve) may be located close to or in the ideal electrode insertion 

path depending on patient anatomy. Damage to the nerve could result in irreversible facial 

paralysis. A surgeon must be especially careful in cases of ossification or fibrosis of the IE, where 

growth of bone or soft tissue may obscure surgical landmarks in the basal turn of the cochlea. 

Excessive drilling superiorly could result in damaging the cochlear nerve in the modiolus, and 

anteriorly could damage the intratemporal carotid artery. 

2.2.3 Medical Imaging 

With the advent of medical imaging techniques came incredible improvements to healthcare. The 

ability to quickly and non-invasively view internals of the human body allowed for improvements 

in medical diagnostics, surgical planning, pathology, and anatomy. Medical images are 2D or 3D 

digital images which represent human anatomy or function. In CT and X-ray, image intensities 

correspond to the density of objects. In positron emission tomography (PET), intensities 

correspond to radiation emitted from radioisotopes introduced to the body. In magnetic resonance 
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imaging, intensities correspond to electron spins induced by a magnetic field. Medical images of 

different modalities which pertain to a specific subject can be aligned with registration techniques; 

an especially useful application of this is the alignment of a PET scan to a CT scan which combines 

information to show detailed structures and cellular activity within the body [12]. The combination 

of CT and PET scans was found to be useful, leading to the development of PET-CT scanners 

which acquire both PET and CT images in one scanning session [13]. CT was the first 3D medical 

imaging modality and shares many characteristics with the planar X-ray. The first commercially 

viable CT scanner was invented by Godfrey Hounsfield in 1972; as a result, voxel values in a CT 

scan are referred to as Hounsfield units (HU) which are a linear transformation of the estimated 

linear attenuation coefficient. The linear attenuation coefficient corresponds to the estimated 

density of an area within the body. Because dense tissues attenuate the transmission of X-rays 

more than less dense tissue, visualizing the densities results in an image which discriminates 

structures within the body. By rotating an X-ray source and detector around a patient, as is done 

in CT, information can be gathered to determine the density of structures in 3D. Filtered back 

projection or iterative algorithms are image reconstruction approaches to convert raw CT sinogram 

data to useful image data. The quality of a CT scan is impacted by spatial resolution, contrast, 

noise, and distortion. Micro-CT is an imaging approach which uses the same fundamentals as CT, 

but achieves higher resolution, improved contrast, and reduced noise. Micro-CT scanners are not 

used on live patients as they expose scanned specimens to dangerous levels of radiation, and 

because they can generally only be used with small specimens, i.e., the use of micro-CT requires 

dissection. 

2.3 Machine Learning 

2.3.1 Neural Networks 

Neural networks (NNs) are a subset of machine learning (ML) algorithms which involve neurons 

or nodes which learn underlying relationships in data. They are the focus of this section as the 

thesis utilizes them. The name originates from biological neurons which are electrically excitable 

cells in the brain. NNs involve layers of nodes connected to one another; layers are categorized as 
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input layers, hidden layers, or output layers (Figure 2.7). NNs have a single input layer which acts 

as the entry point for all data fed into the network. Networks may have any number of hidden 

layers and nodes per layer. There is a single output layer which may produce a continuous value 

in the case of a regression problem like forecasting product sales, or a discrete value in the case of 

classifying objects in images. Each connection between nodes has an associated weight, and each 

node has a bias term. Nonlinear activation functions such as rectified linear unit (ReLU) or sigmoid 

are applied to neuron activations to allow models to represent nonlinearity [14]. The activation of 

any given node is calculated as the summation of all inputs times their respective weights plus the 

node’s bias term, which is then input to an activation function (𝑛𝑜𝑑𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =

𝑓(∑ (𝑥𝑖𝑤𝑖𝑗) + 𝑏𝑗
𝑛
𝑖=1  )) where 𝑥 is the incoming activation, 𝑤 is the weight associated with that 

activation, and 𝑏 is the bias term of the node. The 𝑖 and 𝑗 subscripts indicate which node the 

activations, weights, and biases refer to. The activation function of the output layer depends on the 

type of ML problem, and often differs from the activation function used in hidden layers. For 

classification problems, the softmax and sigmoid functions are used to convert logits to 

probabilities which sum to 1; the probabilities correspond to the network's level of confidence that 

an input belongs to each class. 

 

Figure 2.7: NN illustration. 
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Training a Neural Network 

A loss function determines the amount of error associated with a network prediction. A high loss 

indicates that a prediction was poor, and a low loss indicates that the prediction was accurate. In 

the case of semantic segmentations, Dice loss can be used. Dice loss is calculated as one minus 

the Dice coefficient (1 −
2|𝑋∩𝑌|

(|𝑋|+|𝑌|)
) for segmentations X and Y, and measures the amount of 

overlap between a predicted and target segmentation. The numerator of the Dice coefficient is the 

number of overlapping voxels between the segmentations, and the denominator is the sum of each 

segmentation’s voxels individually. When segmentations completely overlap, the Dice coefficient 

is 1, and Dice loss is 0. When segmentations have no overlap, the Dice coefficient is 0 and the 

Dice loss is 1. Cross-entropy loss (−𝑙𝑜𝑔(𝑝𝑡)) is used to compare probabilities (𝑝𝑡)  output by the 

network to known labels for the data. For example, in a classifier which labels images as cats or 

dogs, a model may have a confidence of 0.7 that an image of a dog is a dog, which corresponds to 

a cross-entropy loss of −𝑙𝑜𝑔(0.7)  = 0.155 . If the model only had a confidence of 0.2 that an 

image of a dog was a dog (the model was 80% confident that it was a cat), the cross-entropy loss 

would be: −𝑙𝑜𝑔(0.3)  = 0.699.  Focal loss (−(1 − 𝑝𝑡)𝛾𝑙𝑜𝑔(𝑝𝑡), 𝛾 = 2) is an extension to cross-

entropy loss which adds a term (1 − 𝑝𝑡)𝛾 to cross-entropy loss. Focal loss exacerbates the loss 

contribution of poorly classified examples [15].  𝛾 is a regularization term which controls the 

contribution of the focal loss factor. With the same example, the focal losses are: −(1 −

0.7)2𝑙𝑜𝑔(0.7)) =  0.014 , and −(1 − 0.3)2𝑙𝑜𝑔(0.3)) =  0.256. In the case of cross-entropy loss, 

the contribution of the poorly classified example is 4.5× greater than the well classified example, 

in the case of focal loss, the poorly classified example yields a loss 18.2× larger. 

The training of NNs involves the minimization of a loss function; often this minimization is done 

using gradient descent, and it is achieved through the backpropagation algorithm. When an 

example is fed into a NN, the model makes a prediction, and a loss function estimates error by 

comparing the model prediction to a known ground truth. In backpropagation, network prediction 

errors are used to update weights and biases by estimating the contribution of each weight and bias 

to the overall error. The name backpropagation refers to the fact that weights and biases are 

updated starting from the output layer, and information is propagated backwards towards the input 
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layer. Partial derivatives are used at each layer to estimate the contribution of each parameter to 

loss, and to calculate updates for earlier layers. The batch size of a NN defines the number of 

examples it considers before making updates to weights and biases. One iteration is defined as 

the completed forward pass and backwards pass (backpropagation) associated with a batch. An 

epoch is defined as the network seeing each example of the dataset once. For example, if there are 

100 training examples and a batch size of two, one epoch involves 50 iterations. The learning rate 

of a NN is a scaling factor which determines how much weights and biases are updated with each 

iteration. A learning rate which is too low could lead to a model which converges slowly or is 

unable to escape local minima in loss, and a learning rate which is too high may lead to oscillatory 

non-convergence where minima in loss are missed. 

To train ML models including NNs, data is split into training, validation, and test sets. The training 

set is used by the network to update parameters (weights and biases). The validation set is used to 

evaluate the accuracy of the model with data that did not contribute to the update of model 

parameters. The validation set may be used to estimate model accuracy following one or more 

epochs. Finally, the test set is used to report accuracy of a model. Test set data was not used to 

update model parameters, like the training set, or to select the ideal model, like the validation set.  

Data Normalization and Regularization 

Data is often normalized or standardized before being fed into a machine learning model. 

Normalization allows input features with differing ranges to contribute equally to learned model 

parameters. Normalization can be achieved by transforming all values to a range between zero and 

one, and standardization by transforming data to have zero mean and unit standard deviation. For 

example, in a model aiming to predict life expectancy with inputs of age (ranging from 0 to 100) 

and salary (ranging from 0 to 1,000,000), the age and salary inputs should be normalized or 

standardized due to the relative scale of values. Normalization may also occur within a NN in the 

form of batch or group normalization; these techniques add trainable parameters to a NN which 

normalizes node activations. Research as to why batch and group normalization are effective is 

still ongoing, but it is thought that the techniques smoothen the loss function which is traversed in 

gradient descent. In batch normalization, activations are normalized along the batch dimension 
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[16]. Group normalization was introduced as an alternative to batch normalization which 

normalizes independently of batches. Group normalization is often preferred for applications such 

as computer vision, which utilizes small batch sizes due to memory limitations [17]. 

Regularization techniques are methods which aim to avoid overfitting in NNs. Overfitting occurs 

when a model begins to memorize training data and loses generalizability. Overfit models are 

considered to have high variance, as their performance heavily depends upon which subset of data 

is used to test the model. Overfitting can be identified when training loss continues to drop, but 

validation loss is rising. Some common regularization techniques are early stopping, dropout, L1 

and L2 regularization, and data augmentation; the previously described batch and group 

normalization also have regularization effects on a network [18]. In early stopping, the model 

which achieves the lowest validation loss is selected as the ideal model; this technique requires 

that the dataset is split into train and validation sets as was previously described. Dropout involves 

randomly temporarily removing a subset of network nodes during a given training iteration. 

Randomly removing nodes from the network prohibits the network from relying heavily on 

specific nodal pathways, which is frequently present in cases of overfitting. L1 and L2 

regularization add a term to the loss function which punishes large weights. Functionally, 

punishing large weights prohibits specific nodes from dominating the network. L1 regularization 

adds a coefficient (|𝑤|) to the loss function which is the absolute value of network weights, and 

L2 regularization adds a coefficient (𝑤2) which is the square of the weights. Compared to L1 

regularization, L2 regularization disproportionately punishes large weights, and does not punish 

small ones. L1 regularization accomplishes feature selection as small weights are forced to zero. 

Data augmentation reduces overfitting by artificially increasing the number of examples in a 

dataset. If an insufficient number of examples are provided to a NN, the network may learn a high 

variance function which minimizes loss by memorizing examples [19]. Applying augmentations 

such as translation, flip, scaling, and rotation to image data may result in a more robust model, 

especially when data is limited.  
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2.3.2 Image Convolution 

Convolutional kernels are general purpose filters which achieve a variety of tasks depending on 

kernel values. Convolutional kernels are applied to images by calculating a weighted sum of image 

pixels, with the weights corresponding to kernel values. The stride associated with a convolution 

describes how much the convolutional kernel is shifted across the image between each 

convolutional step. With a stride larger than one, downsampling of the image is achieved. Padding 

refers to the addition of zeros or mirrored pixel values surrounding the border of an image prior to 

convolution, which allows the output following convolution to match the input image size. Figure 

2.8 demonstrates a 3×3 convolutional kernel with a stride of one being applied to a 5×5 image with 

no padding. 

 

Figure 2.8: Convolution with 2D input and kernel. 

As convolutional kernels are general purpose filters, they can achieve a wide variety of tasks such 

as edge detection, sharpening, and blurring. Figure 2.9 demonstrates the diverse impacts of 

applying convolutional kernels to an image.  
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Figure 2.9: The top row depicts images convolved with the kernels shown under each image. The 

leftmost image is the original; when convolved with the identity kernel, the image is unmodified. 

The middle image was convolved with a 3×3 box blur kernel, and the right image was convolved 

with a 3×3 sharpening filter. 

2.3.3 Convolutional Neural Networks 

CNNs are a type of NN intended for application to image data. As the name suggests, they are 

based on the convolution operation which was discussed in the previous section. In a CNN, the 

parameters learned throughout network training are convolutional filter values. CNNs can be used 

to solve multiple types of problems including the following: 

● Classification: assign one or more labels to an entire image. 

● Object detection or localization: locate objects of interest within an image. 

● Semantic segmentation: pixel-wise classification of an image. 

CNN Building Blocks 

The architecture of a CNN depends on the application it aims to achieve. The focus of this section 

will be on the building blocks found in CNN architectures for semantic segmentation. Fully 



24 

 

connected layers contain nodes where each node is connected to all nodes in the previous layer. 

Convolutional layers are where convolutional operations take place and are often followed by 

ReLU (𝑓(𝑥) = 0 𝑓𝑜𝑟 𝑥 < 0, 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0) or a similar activation function. Once a convolutional 

kernel is applied, the intermediate result is referred to as a feature map. To interpret what is being 

learned at layers within a NN, feature maps may be visualized. In some cases, a stride greater than 

one is used in convolutional layers to achieve downsampling. Max pooling is another technique 

which achieves downsampling by selecting the maximum pixel value within an area corresponding 

to a kernel size. For example, if 2×2 max pooling is applied to a 4×4 image with stride 2, the result 

is a 2×2 image where each pixel corresponds to the largest pixel value in each 2×2 section of the 

original image (Figure 2.10). 

 

Figure 2.10: Demonstration of max pooling. 

A convolutional layer with a 1×1 filter can be used in CNNs to reduce the feature or channel depth 

[20]. These 1×1 convolutional filters match the input image in channel depth, and the number of 

1×1 filters applied corresponds to the feature depth of the convolved feature map. Resampling 

techniques as previously described can also be implemented in a CNN, such as bilinear upsampling 

of feature maps to increase their spatial resolution. Transposed convolutions use learnable 

convolution parameters to upsample feature maps. Skip connections are paths in neural networks 

which combine feature maps from early layers with those from layers deeper in the network. Skip 
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connections allow information present in early layers of the network to be passed to later layers; 

this information may have been lost during convolution and resampling operations. Skip 

connections also provide a shorter path through the network for gradients to travel along during 

backpropagation. Skip connections alleviate the vanishing gradient problem, in which updates to 

network parameters become tiny for early layers. Skip connections either involve concatenation 

or addition; in either case, the feature maps combined with a skip connection should share the same 

dimensionality. In the case of concatenative skip connections, the feature channels are combined. 

For example, if two 64×256×256 feature maps are combined with a concatenative skip connection, 

the result is a 128×256×256 feature map. In additive skip connections, element-wise addition takes 

place, which results in a feature map with the same shape as the inputs; if two 64×256×256 feature 

maps are combined with an additive skip connection, the result is also a 64×256×256 feature map. 

Patch-Based CNN 

Patch-based techniques have seen extensive use in biomedical CNN applications because 3D 

medical images are often too large to feed into a NN in their entirety [21]. The maximum size of 

an image which can be fed into a NN is determined by network architecture and hardware memory. 

Patch-based training involves feeding only a subset (patch) of each scan into the NN at each 

iteration. For example, if a dataset contains 3D scans with a size of 600×600×600, a network may 

only consider a 256×256×256 patch of the original scan. At each training and validation iteration, 

a patch sampling method is used to select the image patch which will be fed into the network. The 

patch may be selected randomly, weighted towards specific classes, or evenly sampled. In even 

sampling, a patch has an equal probability of being centered around a voxel corresponding to any 

label within the scan. In a full body CT dataset with classes of background, heart, brain, and lungs, 

even sampling would result in a 25% chance of a patch being centered around a voxel of each 

class. Even sampling allows minority classes to be adequately represented in network training. 

Patch sampling is reapplied for each scan in every epoch, allowing the network to learn from 

multiple locations within each example. When a full scan is fed into a network to generate a 

prediction, a sliding window approach is used. The patch is moved across the image until the 

entirety of the scan volume is covered. Patch edge issues frequently occur in which segmentations 

may appear discontinuous at locations where adjacent patches meet. Patch overlap is used to 
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mitigate patch edge issues by allowing adjacent patches to share voxels, and averaging the values 

of those shared voxels between patches. Patch overlap comes at a computational cost, as increased 

patch overlap means more patches must be fed through the network [22]. 

2.3.4 Transfer Learning 

Transfer learning is a ML technique which involves the refinement of a model which was trained 

on a dataset to achieve a related but modified task. When training a NN from scratch, the weights 

are initialized to small values close to zero, and may follow a distribution dependent on the 

activation function or number of neurons connected to a given node. Rather than using a random 

distribution of values as initial weights, transfer learning involves the use of weights which were 

learned during another training. Transfer learning is thought to be effective because similar tasks 

are involved in many problems; for example, edge detection and noise reduction may be useful in 

any computer vision problem. The new network is able to avoid learning these fundamental 

operations which speeds up model training. Any subset of original model weights can be copied 

to the new network, meaning it is not necessary that the models share identical architectures. 

2.4 Automated Segmentation of the Inner Ear and Round Window 

Various CNN and atlas-based approaches have been used to automate the segmentation of various 

IE structures. Although numerous studies have focused on segmentation of the IE, clear gaps in 

the literature exist which motivate the current study. This section discusses work related to 

automated segmentation of IE structures. 

Heutink et al. used 2D CNNs to detect and segment the cochlea in ultra-high-resolution CT (UHR-

CT) clinical scans and achieved a Dice score of 0.9 [23]. Scans spanned a 4cm cross section of the 

temporal bone including the IE, suggesting manual preprocessing of scans would be necessary to 

apply the model to scans with a larger field of view. The approach segmented only the cochlea 

portion of the IE, not the vestibule or SCCs. A limitation of the study is that all study data originates 

from two UHR-CT scanners. UHR-CT is also not readily available at many clinical institutions. 
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Hussain et al. [24] used three cascaded 2D CNNs to segment the full IE in micro-CT scans. A Dice 

score of 0.9 was achieved by their best model which used the U-net architecture. Each of the three 

CNNs corresponded to an anatomical plane (axial, coronal, sagittal) to incorporate 3D information 

to network predictions. All data used in the study originated from two scanners. The study also 

used cadaveric specimens, as is necessary for micro-CT scan acquisition. Micro-CT scans produce 

higher quality images than techniques which are applied in clinical practice.  

Powell et al. [25] used an atlas-based approach to segment cochlear microstructures in CBCT. 

Segmented structures include the scala tympani, scala vestibuli, modiolus, and RW. The vestibule 

and SCCs were not segmented. Dice scores of 0.77 and 0.74 were achieved for the scala tympani 

and scala vestibuli respectively, and the mean RW centroid distance error was 0.32mm. Ground 

truth segmentations were based on micro-slicing which involved fixed and dehydrated samples. 

The approach was additionally validated on 11 clinical CBCT scans from one scanner.  

Zhang et al. [26] applied a 3D CNN with a U-net architecture to segment the scala tympani, scala 

vestibuli, and modiolus. The vestibule and SCCs were not segmented. The model was validated 

with samples which had both micro-CT and clinical acquisitions. Dice scores of 0.87 and 0.86 

were achieved for the scala tympani and scala vestibuli respectively. The scans were manually 

cropped to a region of interest extending 5mm beyond the boundary of the cochlea, necessitating 

some manual preprocessing for model use. 

The present study is the first which has achieved automated segmentation of the IE and RW in 

electrode-implanted samples. Dice score and centroid distance results indicate competitive or 

improved results compared to other work. Additionally, the models presented in this thesis have 

been validated with extensive multi-institutional clinical data as well as high resolution 

acquisitions including micro-CT and SR-PCI. Finally, this study was validated by comparing the 

automated segmentation approach to manual expert segmentations completed by four experts. 
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Chapter 3 

A Deep Learning Solution for Automated Segmentation 

of the Inner Ear and Round Window on Electrode-

Implanted and Non-Implanted Computed Tomography 

Scans 

 

3.1 Introduction 

The cochlea and RW are highly variable IE structures which serve essential roles in hearing [1]–

[3]. A highly detailed segmentation of the IE is necessary to trace the lateral wall of the cochlea, 

which allows cochlear linear and angular length to be determined. An accurate estimate of lateral 

wall length based on clinical CT is a prerequisite for patient-specific electrode selection [4]. 

Implantation of an electrode which matches patient anatomy allows the apical region of the cochlea 

to be stimulated. Stimulation of the apical region in the cochlea, which interprets low frequency 

sounds, improves hearing outcomes on objective hearing tests [5]–[7]. The RW is an especially 

important structure of the IE as it marks the entry point for most CI procedures, and is the landmark 

used as a starting point to measure cochlear duct length and angular depth within the cochlea [8]; 

these measurements are important for preoperative electrode selection and postoperative 

customized pitch-mapping. 

The goal of the present study was to quickly and accurately segment the IE and RW in clinical CT 

scans with and without implanted electrodes. This study presents an automated ML pipeline 

involving two patch-based 3D U-nets with residual connections. The novel pipeline was found to 

result in accurate segmentations. 
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3.2 Materials and methods 

3.2.1 Image Acquisition  

Table 3.1 summarizes all data used throughout the study. Ethics for cadaveric scans were obtained 

(Ethics # 09052019) (Appendix A). Ethics for clinical scans were obtained through the temporal 

bone database at the Auditory Biophysics Laboratory (Ethics #112296). Both cadaveric and non-

cadaveric CTs were used in the development of the automated segmentation pipeline. Cadaveric 

scans differ from non-cadaveric scans due to cadaveric sample preparation steps such as extraction 

of the region of interest, and changes which occur in the body post-mortem. Evaluating the 

performance of the pipeline on non-cadaveric data ensured the pipeline was suitable for 

implementation to clinical practice. The pipeline was tested on cadaveric samples because both 

clinical quality scans and high-quality imaging modalities such as micro-CT and SR-PCI could be 

acquired for those samples. Micro-CT allows for clear delineation between cochlear turns which 

is often not visible in clinical modalities such as CBCT or helical CT, and SR-PCI provides 

exceptional soft tissue contrast [9]. Micro-CT and SR-PCI scans were manually segmented and 

aligned to clinical modality scans of the same samples. The formation of ground truth labels by 

segmenting high quality scans allowed for an improved ability to determine pipeline accuracy. 

Micro-CT and SR-PCI techniques can not be applied to live subjects due to high radiation exposure 

and limited detector sizes which necessitate dissection of the temporal bone surrounding the IE. 

Figure 3.1 depicts a qualitative side-by-side comparison of a variety of imaging modalities used in 

the study. Clinical scans without high resolution ground truth segmentations were segmented 

directly and used to train the models to increase the dataset size and promote robustness, allowing 

the models to perform well on scans from a variety of institutions which have differing resolutions 

and acquisition protocols. CTs were also acquired with and without implanted electrodes to create 

pipelines which are applicable to scans regardless of the presence of a CI. 
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Table 3.1: Description of study data. ‘Sample Details’ lists data subsets which share image 

acquisition modalities. Each bullet point in ‘Input Acquisitions’ represents one acquisition and 

specifies if an electrode was implanted in the corresponding scans. Acquisitions used in the test 

set appear in bold. ‘Ground Truth Modality’ and ‘Ground Truth Segmentation Method’ describe 

the imaging modality and method used to form ground truth segmentations in the respective data 

subset. The number of samples assigned to train, validation, and test sets are specified in ‘Data 

Split’. 

Sample 

Details 

Input Acquisitions Ground Truth 

Modality  

Ground 

Truth 

Segmentatio

n Method 

Data Split 

67 

cadaveric 

● CBCT 300um isotropic  

● Helical CT 

488um×488um×625um 

Soft Tissue Protocol 

● Helical CT 

488um×488um×625um 

Temporal Bone protocol 

● Helical CT 

488um×488um×1250um 

Soft Tissue Protocol 

● Helical CT 

488um×488um×1250um 

Temporal Bone protocol 

Micro-CT 50um 

isotropic 

 

 

IE: Micro-

CT 50um 

isotropic 

manually 

segmented 

RW: SR-

PCI atlas  

Train: 44 

Validation: 20 

Test: 3 

3 cadaveric Helical CT 234×234×625um  ● SR-PCI 9um 

isotropic 

● Micro-CT 

20um 

isotropic (1 

of 3) 

● Micro-CT 

40um 

isotropic (2 

of 3) 

IE: Micro-

CT 

20um/40um 

isotropic 

manually 

segmented 

RW: SR-

PCI 9um 

isotropic 

manually 

segmented 

Test: 3 

60 non-

cadaveric 

CBCT variety of clinical 

resolutions 

CBCT variety of 

clinical 

resolutions 

IE&RW: 

Preliminary 

network 

inference 

and manual 

correction 

Train: 36 

Validation: 16 

Test: 8 
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IE (test set 

samples): 

Manual 

segmentatio

n of scan 

upsampled 

to 50um 

isotropic. 

RW (test set 

samples): 

Expert 

manual 

centroid 

selection 

15 non-

cadaveric 

● CBCT variety of clinical 

resolutions 

● CBCT variety of clinical 

resolutions, electrode-

implanted low dose (7 of 

15) 

● CBCT variety of clinical 

resolutions, electrode-

implanted higher dose (7 

of 15) 

Qualitatively 

best pre-

operative CBCT 

available 

IE&RW: 

Preliminary 

network 

inference 

and manual 

correction 

Train: 9 

Validation: 6 

 

14 

cadaveric 

 Helical CT 234×234×625um Micro-CT 

154um isotropic 

IE&RW: 

Preliminary 

network 

inference 

and manual 

correction 

Train: 7 

Validation: 7 

6 non-

cadaveric 

● CBCT variety of clinical 

resolutions 

● CBCT variety of clinical 

resolutions, electrode-

implanted 

Qualitatively 

best pre-

operative CBCT 

available 

IE&RW: 

Preliminary 

network 

inference 

and manual 

correction 

Train: 4 

Validation: 2 

12 

cadaveric 

● CBCT 300um isotropic, 

electrode-implanted 

● Helical CT 

625×234×234um, 

Micro-CT 

154um isotropic 

IE&RW: 

Preliminary 

network 

inference 

Train: 8 

Validation: 2 

Test: 2 
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electrode-implanted  

● Helical CT 

625×488×488um Soft 

Tissue Protocol, 

electrode-implanted 

● Helical CT 

625×488×488um 

Temporal Bone protocol, 

electrode-implanted 

● Helical CT 

1.25×488×488um Soft 

Tissue Protocol electrode-

implanted 

● Helical CT 

1.25×488×488um 

Temporal Bone protocol, 

electrode-implanted 

and manual 

correction 

 

IE (test set 

samples): 

Micro-CT 

154um 

isotropic 

upsampled 

to 50um 

isotropic 

and 

manually 

segmented 

RW (test set 

samples): 

SR-PCI 

atlas  

 

 

Figure 3.1:  Axial slices of varying study data a: SR-PCI 9um isotropic, b: Micro-CT 40um 

isotropic, c: Helical CT 234×234×625um. 

Scanner acquisition settings for non-cadaveric data were not available. Scanner acquisition settings 

for all cadaveric data are provided. Specimens were scanned by CBCT at varying resolutions using 

the Xoran xCAT clinical scanner. X-ray tube voltage was 120kV and tube current was 6mA. 

Specimens were scanned by Helical CT at varying resolutions using the Discovery CT750 HD 

clinical scanner. X-ray tube voltage was 120kV and tube current was 160mA. Specimens 

underwent SR-PCI with 9um isotropic voxel spacing at Canadian Light Source Inc. using the 

Biomedical Imaging and Therapy beamline (05ID-2). Techniques used have been previously 

published [10], [11]. Specimens were scanned by micro-CT at 20 and 40um isotropic voxel 

spacing using the GE Locus micro-CT scanner. To fit within the scanner bore, a cylindrical drill 
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bit with a diameter of 40mm and a height of 60mm was used to extract the region of interest from 

the temporal bone. X-ray tube voltage was 80kV, tube current was 0.45mA, and exposure time 

was approximately 270 seconds. Specimens were scanned by micro-CT at 50um isotropic voxel 

spacing using the GE speCZT micro-CT scanner. X-ray tube voltage was 90kV, tube current was 

40mA, and exposure time was approximately 4050 seconds. Specimens were scanned by micro-

CT at 154um isotropic voxel spacing using the GE Locus Ultra micro-CT scanner. X-ray tube 

voltage was 120kV and tube current was 20mA. 

3.2.2 Data Preparation and Augmentations 

Image acquisitions for each sample were rigidly registered. All scans and segmentations included 

in the study, regardless of original voxel spacing, were resampled to 50um isotropic voxel spacing 

to promote segmentation smoothness and to ensure a consistent input resolution for CNN training. 

 

Image Segmentation 

Two graduate students manually segmented the IE in 67 of the 50um isotropic voxel spacing 

micro-CT scans. A multi-step manual procedure was used for RW segmentation, as the RW 

membrane was not easily discernible even in some micro-CT scans. An atlas-based approach was 

used to segment the RW in the 67 samples with no SR-PCI acquisition. The approach was based 

on specimens for which SR-PCI data was available. First, rigid landmark registration was 

performed by selecting points of recognizable anatomy in both the SR-PCI atlas and micro-CT 

scans such as the tip of modiolus, points on the RW bony overhang, and the stapes footplate. Rigid 

registration was used in order to maintain the distinctive saddle-like shape of the RW, as affine 

techniques may result in morphing of the RW to shapes which are not anatomically correct. The 

SR-PCI atlas was grown by 0.03mm in all directions, smoothed with a 5×5×5 kernel, and 

resampled to 50um isotropic spacing. A preliminary network with an architecture discussed later 

(see section 3.2.3) was trained with the 67 samples, the network was preliminary in that it was 

only trained on a subset of the dataset; this network was applied to further scans to generate 

preliminary segmentations which were manually corrected. All final segmentations were verified 
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by an expert to ensure consistency and quality control. Figure 3.2 depicts the registration process 

of clinical and SR-PCI scans as described in the atlas-based approach. 

 

Figure 3.2: 2D visualization of the SR-PCI atlas-based rigid registration. a: The fixed image 

(helical CT with 234×234×625um voxel spacing), b: The moving image (SR-PCI  9um isotropic 

voxel spacing) overlaid upon the fixed image after registration was applied. The resultant RW is 

displayed in green and identified by an arrow.  

As the described atlas-based SR-PCI RW segmentation approach was used to form ground truth 

segmentations for both training data and some test set scans, validation of the approach was 

necessary. To evaluate the effectiveness of the method, it was applied to three test set scans which 

have manual RW segmentations on SR-PCI. The error of the atlas approach was determined by 

finding the distance between the centroids of the RW produced by the atlas approach and the 

manually segmented RW based on SR-PCI. The atlas method was applied by registering an SR-

PCI atlas to a helical CT with 234×234×625um voxel spacing; as helical CTs have qualitatively 

inferior imaging characteristics compared to CBCT and micro-CT, the validation demonstrates a 

worst-case-scenario of the error. RW centroid distances between the manual SR-PCI segmentation 

and the SR-PCI atlas approach averaged 0.28mm. 3D renderings of the RWs produced by the atlas 

procedure for the three test set scans are shown in Figure 3.3 alongside the ground truth SR-PCI 

RW segmentations. As with all atlas-based segmentation approaches, the effectiveness of the 

method is dependent on how closely the atlas segmentation matches the target segmentation. A 

case of the atlas poorly matching target anatomy was seen (Figure 3.3b) where the moving atlas 

appears significantly smaller than the ground truth segmentation for the target scan; this case 

yielded the largest centroid distance error. Multi-atlas approaches could mitigate atlas mismatch 
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by selecting an atlas with closely corresponding characteristics to the target [12]. Implementation 

of multi-atlas techniques could lead to improved accuracy of the described RW segmentation 

protocol.  

 

Figure 3.3: 3D visualization of the SR-PCI ground truth RW segmentation in cyan, and the atlas 

approach RW in fuchsia. a,c: atlas fits to target anatomy  b: atlas differs from target anatomy. 

3D visualization was done with 3DSlicer (v4.11, https://www.slicer.org/)  [13]. 

For the three test set samples with both micro-CT (20um or 40um) and SR-PCI acquisitions, the 

IE was manually segmented based on micro-CT, as the micro-CT field of view included the 

vestibule and semicircular canals, unlike SR-PCI which had a field of view limited to the cochlea. 

The RW was segmented based on SR-PCI, grown by 0.03mm in all directions, and smoothed by 

a 5×5×5 kernel. IE and RW segmentations were combined, and voxels independently assigned to 

both IE and RW were labeled as RW. 

 

For the eight non-cadaveric test set CBCT scans, the IE was manually segmented based on the 

CBCTs after they were upsampled to 50um isotropic voxel spacing. Rather than voxel-wise 

segmentation of the RW, an expert otolaryngologist manually marked the RW centroids in the 

scans by viewing the samples in axial, sagittal, and coronal view planes. 

 

Four domain experts, including two radiologists and two surgeons, manually segmented eight test 

set cadaveric CT scans using the Dragonfly (v 2021.1, http://www.theobjects.com/dragonfly) 

software toolkit with supervision of a graduate student experienced with the software. Six CTs 

were segmented with no electrode, including three 300um isotropic voxel spacing CBCT scans, 

three 234×234×625um voxel spacing helical CT scans, and two 300um isotropic voxel spacing 

CBCT scans with implanted electrodes. These acquisitions were selected to be representative of 

https://www.slicer.org/
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what could be expected in clinical practice. Scans were manually segmented by experts at clinical 

resolution to keep segmentation times reasonable. To improve the expert segmentations, each was 

post-processed by upsampling them to 50um isotropic voxel spacing and Taubin smoothing was 

applied. Taubin smoothing was introduced to alleviate volume shrinkage, which is a common 

occurrence among traditional smoothing approaches [14]. Taubin smoothing was selected based 

on qualitatively preferential results compared to Gaussian and median filtering. Expert 

segmentations were post-processed to make comparison to the automated pipeline more fair, as 

the automated pipeline included upsampling and post-processing steps. Figure 3.4 depicts 3D 

renderings of the expert segmentation before and after post-processing. To confirm that the 

described post-processing improved expert segmentations, Dice scores were analyzed on a per-

expert basis (Figure 3.5). For all experts, the post-processing improved Dice scores. All data used 

in the following t tests were tested for normality with the Kolmogorov-Smirnov test of normality. 

A paired t test was performed to compare Dice scores of expert segmentations to post-processed 

expert segmentations. The t test suggests that there was a statistically significant difference in Dice 

score between the unprocessed segmentations (mean = 0.846, std dev = 0.031, 95% CI = 0.835 to 

0.857) and the processed segmentations (mean = 0.865, std dev = 0.034, 95% CI = 0.853 to 0.877) 

(t = 19.28, p<0.0001). All future comparisons of expert segmentations consider only the post-

processed versions. 
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Figure 3.4: Expert segmentation post-processing. The left column depicts unprocessed expert 

segmentations, and the right column depicts post-processed segmentations. From top to bottom, 

segmentations correspond to: 300um isotropic voxel spacing CBCT, 234×234×625um helical 

CT, implanted 300um isotropic voxel spacing CBCT. 

 

Figure 3.5: Dice scores with and without post-processing. 
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The simultaneous truth and performance level estimation (STAPLE) algorithm is an iterative 

approach to combine multiple expert segmentations of one sample [15]. STAPLE estimates the 

accuracy of experts and weights the contribution of their segmentation to the final consensus 

segmentation accordingly. Dice scores of the STAPLE consensus are plotted alongside expert 

scores in Figure 3.6. A paired t test was performed to compare the Dice score of processed expert 

segmentations to STAPLE consensus segmentations. The t test suggests that for each expert there 

was a statistically significant difference in Dice score between the processed segmentations (mean 

= 0.865, std dev = 0.034, 95% CI = 0.853 to 0.877) and the STAPLE consensus segmentations 

(mean = 0.882, std dev = 0.031, 95% CI = 0.861 to 0.885) (t = 4.17, p = 0.0002). The STAPLE 

consensus represents a best-case scenario for expert segmentations, although in clinical practice it 

would be infeasible to have multiple experts manually segment scans. 

 

Figure 3.6: Dice scores of processed expert segmentations and STAPLE consensus. 

Image Augmentation 

Extensive image augmentations were applied to the acquired data. All image augmentations were 

intended to represent realistic variations of the data, thereby expanding the dataset size and adding 

variance. All scans were flipped in the sagittal plane, effectively doubling the dataset size as all 

samples appeared as both a right and left IE. Each scan was modified with two levels of additive 

Gaussian noise with a mean of zero and standard deviation sampled from a uniform distribution. 
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Noise standard deviations ranged from 130-240 and 240-350 HU for low and high noise versions, 

respectively. Figure 3.7 depicts a scan modified with the described levels of additive Gaussian 

noise. Noise was added to scans at their native resolutions, rather than after the scans were 

upsampled to 50um isotropic voxel spacing. Adding noise to scans at their native resolution 

resulted in noise profiles which appeared more realistic, as adding noise after upsampling resulted 

in noise which was higher resolution than could have been present in the original scans. B-spline 

interpolation was used to upsample all scans, as other interpolation techniques led to imaging 

artifacts. Nearest neighbor resampling was used to resample segmentations to 50um isotropic 

voxel spacing. Scans were resampled to the image grid of their corresponding ground truth 

segmentations to ensure alignment. All scans were cropped via script to a bounding box 5mm 

beyond the extent of the IE ground truth segmentation in all directions. Following cropping and 

upsampling, image volumes averaged 499×483×467 voxels.  

 

Figure 3.7: Axial view of 300um isotropic cadaveric CBCT scans displayed without 

interpolation. a: scan without artificial noise, b: scan with low artificial noise (standard deviation 

185 HU), c: scan with high artificial noise (standard deviation 295 HU). 

To select the standard deviations of noise applied to scans, non-cadaveric scans were analyzed. 

Non-cadaveric scans often contain more noise compared to cadaveric scans due to the removal of 

anatomy surrounding the region of interest reducing radiation scatter [16]. By adding noise similar 

to what was observed in non-cadaveric scans to cadaveric scans, the cadaveric scans became more 

representative of scans the pipeline could encounter in clinical practice. Qualitatively noisy non-

cadaveric scans were identified by eye, and image intensity values were sampled along constant 

density regions of the scans (Figure 3.8). In a scan acquisition with no noise present, voxel 
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intensities should be relatively constant in regions with consistent density such as portions of the 

temporal bone or the fluid filled inner auditory canal. Standard deviations of the sampled image 

intensities were found to be <50 HU for cadaveric samples and >200 HU for clinical scans. A 

maximum standard deviation of noise applied was selected as 350 HU, to act as an overestimate 

which accounts for noisier acquisitions not present in the dataset. 

 

 

Figure 3.8: Axial view of voxel intensities sampled on a non-cadaveric CBCT scan without 

interpolation. a: a line through the temporal bone near the cochlea, b: a line through the fluid 

filled internal auditory canal. 

To determine the effectiveness of the artificial noise augmentation before application to all 

network training data, preliminary networks with only the first 67 samples were trained with and 

without the noise augmentations. All other network hyperparameters remained unchanged 

between the two trainings, meaning all differences in results were attributed to the presence or lack 

of the artificial noise augmentation. Figure 3.9 demonstrates the superior performance of the 

preliminary network which was trained with the artificial noise augmentation. Improved continuity 

in the SCCs, reduced false positives around the inner auditory canal, and improved smoothness in 

the cochlea were produced by the model trained with the artificial noise augmentation. 



44 

 

 

Figure 3.9: 3D renderings of pipeline outputs for two test set non-cadaveric scans. The left 

column shows inferences from the model trained without noise augmentations. The right column 

shows inferences from the model with the noise augmentation. 

3.2.3 Segmentation Pipeline 

Of the 151 samples included in the no-electrode network, 96 were assigned to the training set, 49 

to the validation set, and six to the test set. Of the 25 samples included in the electrode-implanted 

network, 17 were assigned to the training set, six to the validation set, and two to the test set. All 

image acquisitions of the same sample were assigned to the same set.  

 

The networks were trained using a workstation with a Xeon ES-2640 v4 CPU, 256GB RAM, and 

an A6000 GPU with 48GB VRAM, which was essential for a large training patch size of 

288×256×256. Although theoretical justification has not been formally proven, large patch sizes 

have seen promising results as they provide increased spatial context to CNNs [17], [18]. The 

NVIDIA CLARA Train (v 3.1, https://developer.nvidia.com/clara) toolkit was utilized to facilitate 
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model training and inference. The networks were trained with a batch size of one, which allowed 

patches to span the maximum receptive field size based on VRAM limitations. The ADAM 

learning rate optimizer was used with a learning rate of 0.0001. The network which achieved the 

maximum validation Dice score across the IE and RW labels was selected as the best network to 

prevent overfitting. 

 

The no-electrode network was trained for a total of 235 epochs. The electrode-implanted network 

was trained for 50 epochs with initial weights set to values learned during the no-electrode network 

training. Fine-tuning trained networks with data sharing characteristics of the original network has 

been shown to speed up convergence [19]. 

 

The network architecture followed a U-net-like encoder-decoder paradigm (Figure 3.10) with 

residual skip connections adapted from Myronecko et al. without inclusion of the variational 

autoencoder portion [20]; a starting point for hyperparameter values were selected in consideration 

of this paper as well as the IE segmentation papers discussed in section 2.4. Hyperparameters were 

adjusted one at a time to find ideal settings for the given segmentation task. The model utilized 3D 

convolutions with 3×3×3 convolutional kernels. On the contracting path, image volumes were 

progressively downsampled and feature depth was increased. On the expanding path, fewer kernels 

were used and feature maps were upsampled until the output matched the input size. The output, 

after being passed through the softmax function, was a three-channel probability map with 

probabilities indicating the model's certainty that each voxel belonged to classes 0 (background), 

1 (IE), or 2 (RW). 
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Figure 3.10: CNN architecture for 50um IE and RW segmentation. 
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Group normalization was utilized in each convolutional block with a group size of eight. Group 

normalization was selected over batch normalization as it has superior performance on small batch 

sizes [21]. L2 regularization was applied to all convolutional kernels with a regularization weight 

of 1e-5. A dropout rate of 0.2 was applied after the first encoder convolution. The PReLU 

activation function was applied in each convolutional block; PReLU is similar to ReLU, except 

instead of all values less than zero being set to zero, they are represented by a linear relationship 

which has a slope that is a learnable parameter. PReLU is thought to be effective as ideal 

nonlinearity may depend on the depth of the network at which convolutions are being applied. 

 

Voxel intensities were normalized to zero mean and unit standard deviation before being fed into 

the network. To account for differences in scanner acquisition protocols, image intensities were 

uniformly shifted during training between -30% and +30% of their original values. This range was 

selected through analysis of intensity differences in multiple CT modalities on both cadaveric and 

non-cadaveric data. To determine if a uniform shift of image intensities would be beneficial to 

network training, mean image intensities for 33 study scans all cropped to a 5mm region 

surrounding the IE were plotted (Figure 3.11). As these scans were all cropped to a similar region 

of interest, their intensities were directly comparable. A wide range of average intensities were 

observed which indicated that shifting image intensities should add realistic variance to the dataset. 
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Figure 3.11: Average image intensities for 33 study scans including 17 non-cadaveric CBCT 

scans, eight cadaveric CBCT scans, and eight cadaveric helical CT scans. 

A hybrid loss function representing an equally weighted sum of both focal loss  

(−(1 − 𝑝𝑡)𝛾𝑙𝑜𝑔(𝑝𝑡), 𝛾 = 2) and Dice loss (1 −
2|𝑋∩𝑌|

(|𝑋|+|𝑌|)
) was utilized. Dice loss aims to 

maximize overall segmentation similarity, and focal loss aims to mitigate class imbalance by 

emphasizing loss contribution of poorly classified voxels [22]. Due to the relative anatomical sizes 

of the IE and RW, the data showed clear class imbalance as the number of RW voxels was far 

outnumbered by IE and background voxels (97% background, 3% IE, <0.007% RW). Loss 

associated with the background class was included in the loss calculation, as excluding background 

loss contributions led to extensive RW false positives (background voxels incorrectly classified as 

RW).  

 

A balanced patch sampling technique was used for network iterations in which a single patch from 

scan volumes was selected with equal probability of being centered around background, IE or RW 

voxels. Balanced sampling was utilized to ensure a sufficient number of minority-class patches 

were seen in network training and validation. During inference, a sliding window approach was 
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utilized with 70% patch overlap. Increased overlap minimized patch artifacts by averaging the 

probabilities of shared voxels in adjacent patches, and resulted in a computational tradeoff as more 

patches were fed through the network to attain the final segmentation [23].  

 

To complete the pipeline, segmentations produced by the network were post-processed. First, the 

argmax function was used to convert the three-channel probability map produced by the final 

softmax activation function into a segmentation label map with values of 0, 1, or 2. Next, Taubin 

smoothing was applied which removed subtle patch lines introduced by the patch-based inference 

approach. Island removal was then applied to each structure, which ensured that only the largest 

island was kept. Pipeline outputs at each stage of post-processing are visualized in Figure 3.12. 

 

Figure 3.12: 3D renderings of intermediate pipeline segmentations for a non-cadaveric CT.  a: 

raw network output. Subtle patch lines are present as a result of the patch-based sliding window 

inference approach, b: the segmentation after Taubin smoothing. Small false positive islands are 

visible, c: the final pipeline output after island removal. 

3.2.4 Evaluation Metrics 

Numerous metrics were calculated to evaluate the segmentation pipeline. Dice coefficient 

(DC) (
2|𝑋∩𝑌|

(|𝑋|+|𝑌|)
) described the similarity of ground truth and pipeline output segmentations. 

Centroid distance (CD) (||𝐶1 − 𝐶2||, 𝐶1 = (𝑥1, 𝑦1, 𝑧1) , 𝐶2 = (𝑥2, 𝑦2, 𝑧2)) was used to find the 

distance between the centroid of the ground truth RW and that of the RW predicted by the pipeline. 

Centroid distance was used for the RW as the Dice coefficient may be a poor measure of accuracy 

when applied to a thin structure such as the RW. Maximum Hausdorff Distance (MHD)        
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(𝑚𝑎𝑥{𝑠𝑢𝑝𝑥∈𝑋(𝑖𝑛𝑓𝑦∈𝑌𝑑(𝑥, 𝑦)), 𝑠𝑢𝑝𝑦∈𝑌(𝑖𝑛𝑓𝑥∈𝑋𝑑(𝑥, 𝑦))}) gave an idea of the largest segmentation 

errors, and was calculated by sampling the pipeline output at all vertices and finding the nearest 

point, including any vertex, edge, or mesh face on the ground truth segmentation; the largest 

distance sampled is the MHD. The average Hausdorff Distance (AHD) is the average distance 

between sampled points when calculating MHD. 

 

3.3 Results 

Network inference was tested on an alternate workstation with an i7-7770k CPU, TITAN RTX 

GPU with 24GB VRAM, and 64GB RAM. This workstation is less powerful than the workstation 

used to train the models and is more representative of what could be available in a hospital setting. 

In total, the pipeline took 197 s (upsampling, 1 s; network inference, 166 s; and post-processing, 

30 s) to segment the IE and RW with 70% patch overlap. 

3.3.1 Testing on Cadaveric Scans with and Without Implanted Electrodes 

This section presents a qualitative and quantitative evaluation of the accuracy of the pipeline. The 

pipeline was tested using two cadaveric CBCT with implanted electrodes as well as three helical 

CT and three CBCT without implanted electrodes. Pipeline segmentations are evaluated by 

comparison to ground truth segmentations and manual expert segmentations. 

Comparison to Ground Truth Segmentations 

Here, ground truth segmentations are compared to pipeline outputs. Dice scores of 0.877 and 0.925 

were achieved for the IE in implanted and non-implanted samples, respectively. Distances between 

predicted and ground truth RW centroids were 0.567mm and 0.178mm in implanted and non-

implanted samples, respectively. Table 3.2 depicts further quantitative analysis. Results follow an 

expected trend based on the characteristics of each test set subset, with no-electrode metrics 

superior to that of electrode-implanted, and with no-electrode 300um isotropic CBCT metrics 

superior to no-electrode 234×234×625um helical CT. Figure 3.13 depicts 2D and 3D visualizations 

of pipeline output segmentations. IE and RW segmentations appear anatomically accurate even in 
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electrode-implanted samples where metallic artifacts directly cover predicted RW segmentations 

(Figure 3.13g,h). 

Table 3.2: Mean values are presented for all metrics. Data ranges are given in parenthesis. 

Metrics include Inner Ear Dice Coefficient (IE DC), Inner Ear Average Hausdorff Distance (IE 

AHD), Inner Ear Maximum Hausdorff Distance (IE MHD), and Round Window Centroid 

Distance (RW CD). Metrics are presented for three test set subsets as each is unique in clinical 

and ground truth modalities. 

Clinical 

Modality 

IE DC IE AHD (mm) IE MHD (mm) RW CD (mm) 

Helical CT 

234×234×625u

m  

0.916 (0.012) 0.069 (0.01) 0.628 (0.284) 0.240 (0.217) 

CBCT 300um 

isotropic 

0.923 (0.028) 0.067 (0.031) 0.459 (0.219) 0.116 (0.073) 

CBCT 300um 

isotropic 

electrode-

implanted 

0.877 (0.016) 0.102 (0.026) 0.734 (0.613) 0.567 (0.025) 

 



52 

 

 

Figure 3.13: 2D and 3D visualizations of pipeline output segmentations. IE (depicted in green) 

and RW (depicted in yellow) can be seen in all eight test set scans. a,b,c: 234×234×625um, 

d,e,f: 300um isotropic, g,h: 300um isotropic electrode-implanted. 

To interpret the localized accuracy of the segmentation pipeline, a 3D visualization of the shortest 

Euclidean distances between points on the pipeline output and ground truth were generated (Figure 

3.14). The largest segmentation errors, on the order of 0.2-0.35mm, were found in areas where low 

clinical CT contrast heavily impaired image quality such as the modiolus and between cochlear 

turns. In the electrode-implanted samples, mismatches of a similar magnitude were present in areas 
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impacted by electrode artifacts. Segmentation errors at the apex of the cochlea, which marks the 

endpoint for cochlear duct measurements, were on the order of 0.05mm. 

 

Figure 3.14: Distances between the pipeline output and ground truth segmentations are depicted 

by coloured pipeline output segmentations for eight test set scans. Distances are in units of mm 

and follow the scale shown in image a. a,b,c: 234×234×625um, d,e,f: 300um isotropic, g,h: 

300um isotropic electrode-implanted. 3D renderings and distance calculations were completed 

with MeshLab [24] (v 1.3.2, https://www.meshlab.net/). 

Comparison to Expert Segmentations 

Here, processed expert segmentations of clinical resolution scans are compared to automated 

pipeline segmentations. Figure 3.15 shows that pipeline Dice scores are superior to that of 
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processed manual expert segmentations, and that pipeline segmentation quality is more consistent 

than manual segmentations. As Figure 3.15 depicts results across all eight test set samples, the 

outlier related to the pipeline corresponds to an implanted sample for which poorer model 

performance is expected. 

 

Figure 3.15: Dice scores comparing processed expert segmentations, STAPLE consensus, and 

the automated pipeline. 

All data used in the following ANOVA and t tests were tested for normality with the Kolmogorov-

Smirnov test of normality. A one-way repeated measures ANOVA test was performed to evaluate 

how Dice score performance varied by expert. The one-way ANOVA suggests that there was not 

a statistically significant difference in Dice score between expert segmenters (F = 2.98, p = 

0.0837).  A paired t test was performed to compare Dice score of expert segmenters (grouped 

together) and the automated pipeline. The t test suggests that there was a statistically significant 

difference in Dice score between the experts (mean = 0.865, std dev = 0.034, 95% CI = 0.853 to 

0.877) and the automated pipeline (mean = 0.909, std dev = 0.021, 95% CI = 0.902 to 0.916) (t = 
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10.04, p<0.0001). A paired t test was performed to compare STAPLE consensus segmentations 

and the automated pipeline. The t test suggests that there was a statistically significant difference 

in Dice score between the STAPLE consensus (mean = 0.873, std dev = 0.035, 95% CI 0.849 to 

0.897) and the automated pipeline (mean = 0.909, std dev = 0.022, 95% CI 0.894 to 0.924) (t = 

4.02, p = 0.0051). These results indicate that the pipeline outperforms both processed expert 

segmentations, and an expert consensus segmentation generated by STAPLE. The Bonferroni 

correction indicates that all Dice comparisons included in the thesis are statistically significant 

with α = 0.05. As the test set was composed of three subsets (300um isotropic CBCT with 

implanted electrodes, 234×234×625um Helical CT, and 300um isotropic CBCT), processed expert 

segmentations were compared to the automated pipeline on a per test set subset basis in Figure 

3.16. Processed expert segmentations are visualized alongside ground truth segmentations and 

pipeline outputs in Figure 3.17. 

 

Figure 3.16: Dice scores comparing processed expert segmentations to pipeline segmentations 

based on each test set data subset. 
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Figure 3.17: 3D renderings of ground truth segmentations, pipeline predictions, and expert 

segmentations. Each row corresponds to one of the eight cadaveric samples. Rows one to three 

correspond to 234×234×625um helical CT, rows four to six correspond to 300um isotropic 

CBCT, and rows seven and eight are 300um isotropic CBCT with implanted electrodes. The first 

column shows ground truth segmentations, the second column shows automated pipeline 

outputs, and columns three to six are expert segmentations. 
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3.3.2 Testing on Non-cadaveric Scans Without Electrodes 

This section presents a qualitative and quantitative evaluation of the accuracy of the pipeline by 

comparing pipeline outputs to ground truth segmentations. The pipeline was tested using eight 

non-cadaveric clinical CBCT scans. The mean Dice score for the IE was 0.928 with a standard 

deviation of 0.013. The mean distance between the centroid of the RW predicted by the pipeline 

and the expert manually annotated centroid was 0.21mm with a standard deviation of 0.061mm. 

Figure 3.18 shows 3D renderings of pipeline predicted segmentations for all eight test set samples. 

Visually, there are no obvious IE segmentation errors such as bulbous false positives, or sections 

of the SCCs or cochlea missing. The predicted RW segmentations visually appear to have the 

anatomically correct saddle-like shape. Figure 3.19 demonstrates the relative scale of the average 

RW centroid error (0.21mm) compared to the anatomy. Figure 3.20 displays a pipeline RW 

segmentation which has a centroid distance error (0.205mm) closest to the mean of the eight 

samples (0.21mm). 
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Figure 3.18: 3D visualizations of pipeline output segmentations for all eight non-cadaveric test 

set scans. The IE is depicted in green, and RW in yellow. 
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Figure 3.19: 2D visualization of the average RW segmentation centroid error. 

 

Figure 3.20: 3D visualization of a pipeline output RW segmentation (in translucent yellow) with 

the predicted centroid in cyan, and the expert labeled centroid in fuchsia. 
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3.4 Discussion 

A pipeline was developed to automatically segment the IE and RW based on clinical CT scans 

with and without implanted electrodes. The approach achieves accurate automated segmentations 

rapidly, which facilitates implementation of the approach to a variety of settings including 

preoperative planning and surgical simulation. Adoption of the technique could help improve the 

safety of cochlear implantation, and hearing outcomes for CI recipients. 

 

In the current state of the pipeline, input scans should be in clinical orientation and cropped to a 

region of interest extending approximately 5mm in all directions around the IE, as this was the 

standard for training, validation, and test data. Future work may explore the automation of these 

data preparation steps to fully automate the segmentation pipeline. This could be accomplished 

through the training of a separate network which segments the IE in complete temporal bone CT 

scans with lower resolution and a larger field of view. The output of this network could be utilized 

to automatically crop and orient scans prior to using the pipeline presented in this work. 

 

To increase the accessibility of the model for clinical workflows while maintaining performance 

through high patch overlap, an inference server could be set up on a computer with performant 

hardware; this computer could accept scans from other computers, make predictions, and return 

the resultant segmentations. Alternatively, network performance should be evaluated using less 

patch overlap and more accessible hardware. 

 

A limitation of the study was the small cadaveric test set size of eight samples. This limitation is 

a result of the difficulty associated with obtaining scans having both clinical and high-resolution 

acquisitions, especially SR-PCI. The nearest facility capable of SR-PCI quality images is located 

in the geographically distant Canadian Light Source facility in Saskatoon, and involves a 

competitive application for beam time. Secondly, the study involved comparison of pipeline 

segmentations to manual expert segmentations. Manual expert segmentations are time-consuming 

and busy surgeons and radiologists were unavailable to manually segment a large test set. 
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A robot-assisted CI procedure has recently been explored in its first clinical trial [25]. To automate 

the robot-assisted CI procedure, a high-quality segmentation of the IE and RW is necessary to 

determine safe drilling locations and an ideal electrode insertion angle. The present work presents 

an approach which could be used in an automated robot-assisted CI procedure. Surgically relevant 

surrounding structures such as the facial nerve should also be segmented to identify anatomical 

abnormalities and inform the robot-assisted approach. The facial nerve’s anatomical course is 

highly variable, and the risk of facial paralysis resulting from nerve damage has led to 

intraoperative techniques which monitor the facial nerve [26]–[28]. Automated segmentation of 

the facial nerve would allow a robot-assisted approach to avoid facial nerve damage 

intraoperatively. 

 

The automated pipeline was accurate in predicting the location of the RW centroid and apical tip 

of the cochlea; these results incentivize use of the pipeline in preoperative planning, electrode 

selection, and postoperative pitch-mapping. The exact cochlear duct length and angular length of 

the cochlea can be determined by tracing the lateral wall of the cochlea from RW to the apical tip 

[29]. Custom pitch mapping techniques which utilize known electrode angular depths result in 

reduced semitone errors when compared to one-size-fits-all pitch-mapping approaches [30]. To 

facilitate custom frequency mapping, postoperative electrode positions must be determined, where 

their angular depth measurements begin at the RW and end at the centroid of each electrode. If 

electrode positions are combined with the IE and RW segmentations presented in this work, 

sufficient information is available to automate postoperative customized pitch-mapping. 
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Chapter 4 

A Deep Learning Solution for Automated Segmentation 

of the Inner Ear on Electrode-Implanted and Non-

Implanted Computed Tomography with a Large Field of 

View and Varying Orientation 

 

4.1 Introduction 

Semi-automated segmentation approaches sometimes involve extensive manual data preparation. 

Common steps to prepare data for use of a CNN include cropping and rotation, which requires 

software and some technical expertise [1]. Manual steps in automated segmentation pipelines 

should be minimized whenever possible to facilitate their smooth integration into clinical 

workflows. Extensive manual steps necessitate personnel training and act as a barrier to entry for 

technical developments.  

The goal of the present study was to quickly and accurately segment the IE in a variety of CT scans 

with minimal user input. This study presents an automated ML pipeline involving two patch-based 

3D U-nets with residual connections. The novel pipeline is robust to rotation, can handle 

electrodes, and was found to result in accurate segmentations. Additionally, the segmentations 

produced by this work can be used to automatically preprocess scan volumes for utilization of the 

pipelines proposed in Chapter 3. This chapter builds on Chapter 3 by removing the constraint that 

data must be manually cropped and rotated before using the pipeline. This is the first known study 

to validate an automated IE segmentation approach on rotated CTs. 
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4.2 Materials and Methods 

4.2.1 Image Datasets, Preparation, and Augmentation 

As Chapter 4 builds on Chapter 3, some CTs were used in the development of pipelines presented 

in both chapters. Scans utilized in both chapters remained in the same data split (train, validation, 

test), which allowed for end-to-end testing of both pipelines. Cadaveric and non-cadaveric CTs 

with and without CIs were used to develop the automated segmentation pipeline. Table 4.1 

summarizes all data used throughout the study. Scanner acquisition settings for non-cadaveric data 

were not available, and acquisition settings for cadaveric samples are the same as was presented 

in Chapter 3.  

Table 4.1: Description of study data. ‘Sample Details’ lists data subsets which share image 

acquisition modalities. Each bullet point in ‘Input Acquisitions’ represents one acquisition and 

specifies if an electrode was implanted in the corresponding scans. Acquisitions used in the test 

set appear in bold. ‘Ground Truth Modality’ and ‘Ground Truth Segmentation Method’ describe 

the imaging modality and method used to form ground truth segmentations in the respective data 

subset. The number of samples assigned to train, validation, and test sets are specified in ‘Data 

Split’. 

Sample 

Details 

Input Acquisitions Ground Truth 

Modality  

Ground Truth 

Segmentation 

Method 

Data Split 

64 

cadaveric 

● CBCT 300um 

isotropic  

● Helical CT 

488um×488um×625

um Soft Tissue 

Protocol 

● Helical CT 

488um×488um×625

um Temporal Bone 

protocol 

● Helical CT 

488um×488um×125

0um Soft Tissue 

Protocol 

● Helical CT 

488um×488um×125

0um Temporal Bone 

Micro-CT 50um 

isotropic 

 

 

IE: Micro-CT 

50um isotropic 

manually 

segmented. 

Train: 46 

Validation: 18 
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protocol 

84 non-

cadaveric 

CBCT variety of 

clinical resolutions 

CBCT  IE: Preliminary 

network inference 

and manual 

correction. 

 

IE (test set 

samples): Manual 

segmentation of 

scan upsampled 

to 154um 

isotropic. 

Train: 53 

Validation: 23 

Test: 8 

32 

cadaveric 

Helical CT 

234×234×625um 

Micro-CT 154um 

isotropic 

IE: Preliminary 

network inference 

and manual 

correction 

Train: 23 

Validation: 9 

12 

cadaveric 

● CBCT 300um 

isotropic, electrode-

implanted 

● Helical CT 

625×234×234um, 

electrode-implanted  

● Helical CT 

625×488×488um 

Soft Tissue Protocol, 

electrode-implanted 

● Helical CT 

625×488×488um 

Temporal Bone 

protocol, electrode-

implanted 

● Helical CT 

1.25×488×488um 

Soft Tissue Protocol 

electrode-implanted 

● Helical CT 

1.25×488×488um 

Temporal Bone 

protocol, electrode-

implanted 

Micro-CT 154um 

isotropic 

IE: Preliminary 

network inference 

and manual 

correction 

 

IE (test set 

samples): Micro-

CT 154um 

isotropic 

upsampled to 

50um isotropic 

and manually 

segmented 

 

Train: 8 

Validation: 2 

Test: 2 
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6 non-

cadaveric 

CBCT 200um isotropic, 

electrode-implanted 

Qualitatively best 

pre-operative 

CBCT available 

IE: Preliminary 

network inference 

and manual 

correction 

Train: 4 

Validation: 2 

7 non-

cadaveric 

CBCT variety of clinical 

resolutions, electrode-

implanted 

Qualitatively best 

pre-operative 

CBCT available 

IE: Preliminary 

network inference 

and manual 

correction 

Train: 5 

Validation: 2 

 

Image acquisitions for each sample were rigidly registered. All scans and segmentations included 

in the study, regardless of original voxel spacing, were resampled to 154um isotropic voxel spacing 

to ensure a consistent input resolution for CNN training. A larger voxel size was selected than in 

Chapter 3 to compensate for the greatly increased scan field of view in the present work. 

 

Two graduate students manually segmented the IE in 64 50um isotropic voxel spacing micro-CT 

scans.  To create ground truth segmentations for all other data which had no high-resolution 

acquisition, a multi-step process was implemented. First, scans were manually cropped to a 5mm 

region surrounding the IE and upsampled to 50um isotropic voxel spacing. The pipelines presented 

in Chapter 3 were used to generate preliminary IE segmentations. Each segmentation was then 

manually checked by a graduate student and segmentation imperfections were corrected manually.  

Image augmentations were applied to all scans to expand the dataset size and add variance. All 

scans used in network training were manually cropped to a spherical region with a diameter of 

100mm surrounding the IE (Figure 4.1). All voxels outside this spherical region were set to the 

lowest voxel intensity (black) in their respective images. Spherical cropping was necessary to limit 

the size of scan volumes. This form of cropping requires less expertise and time than the approach 

utilized to prepare data in Chapter 3, as spherical cropping can be achieved based on a single user 

click which represents the center of the spherical crop. All scans were flipped in the sagittal plane 

and modified with two levels of additive Gaussian noise as was described in Chapter 3. Scans of 

all resolutions were resampled to 154um isotropic voxel spacing with B-spline interpolation, and 

nearest neighbor resampling was used to resample segmentations to 154um isotropic voxel 
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spacing. Scans and segmentations were resampled to the same image grid to ensure alignment. All 

scans were also randomly rotated from -180 to 180 degrees in each of the x, y, and z axis; this 

rotation functionally achieved full 360-degree coverage such that all rotational variations were 

possible. The pipeline was designed to perform best on data in clinical orientation, as half of 

network training data was not rotated and the other half was equally distributed random rotations. 

In most cases, scans input to the network should be in clinical orientation, unless cadaveric samples 

were acquired without careful specimen positioning, or if CT metadata which tracks rotation was 

lost. 

 

Figure 4.1: Cadaveric helical CT study sample cropped to a 100mm diameter sphere surrounding 

the IE. From top to bottom and left to right: axial view, 3D rendering of bone-density scan 

voxels, coronal view, sagittal view. 2D and 3D visualization was done with 3DSlicer (v4.11, 

https://www.slicer.org/).  

4.2.2 Segmentation Pipeline 

Of the 180 samples included in the no-electrode network, 122 were assigned to the training set, 50 

to the validation set, and eight to the test set. Of the 25 samples included in the electrode-implanted 

https://www.slicer.org/
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network, 17 were assigned to the training set, six to the validation set, and two to the test set. All 

image acquisitions of the same sample were assigned to the same set. The networks were trained 

using the same workstation and software setup as was described in Chapter 3. 

 

The no-electrode network was trained for a total of 23 epochs. The electrode-implanted network 

was trained for 25 epochs with initial weights set to values learned during the no-electrode network 

training. Because the dataset had far more scans without electrodes than with, the 23 epochs of the 

no electrode training involved far more iterations than the 25 epochs of the training associated with 

the electrode-implanted network. 

 

The network architecture utilized was similar to that which was presented in Chapter 3 with the 

exception that the final activation function was sigmoid, as is appropriate for binary classification 

problems. The output of the network, after being passed through the sigmoid function, was a two-

channel probability map with values indicating the model's certainty that each voxel belonged to 

class 0 (background), or 1 (IE). The patch size was 288×256×256 with a batch size of one. The 

ADAM learning rate optimizer was used with a learning rate of 0.0001. Voxel intensities were 

normalized to zero mean and unit standard deviation, then shifted during training iterations 

between -30% and +30%. The network which achieved the maximum validation Dice score on the 

IE label was selected as the best network. 

 

The loss function was the same focal loss (−(1 − 𝑝𝑡)𝛾𝑙𝑜𝑔(𝑝𝑡), 𝛾 = 2) and Dice loss  

(1 −
2|𝑋∩𝑌|

(|𝑋|+|𝑌|)
) hybrid as was described in Chapter 3. Loss associated with the background class 

was not included in the loss calculation, as inclusion of background loss contributions allow the 

loss function to be dominated by the background class. As a result of the increased scan field of 

view, the vast majority (>99%) of scan voxels correspond to the background class. Balanced patch 

sampling was used in which each training and validation iteration involved a 50% chance of image 

patches being centered around an IE or background voxel. This patch sampling approach ensured 

the network would see sufficient examples including the IE, rather than being dominated by full 

patches of background. Inference utilized a sliding window approach with 70% patch overlap. 

Network outputs were post-processed to complete the segmentation pipeline. First, the argmax 
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function was used to convert the two-channel probability map produced by the final sigmoid 

activation function into a finite segmentation label map with values of 0 or 1. Island removal was 

then applied to the IE segmentation which ensured only IE islands composed of more than 4,000 

voxels were kept; the threshold of 4,000 voxels was selected experimentally by measuring the size 

of false positives produced by the network. This threshold was used rather than keeping only the 

largest island to handle cases where false negatives (IE voxels incorrectly classified as 

background) could separate portions of the IE. Smoothing of segmentation volumes was deemed 

unnecessary as patch lines were minimal as a result of the increased 154um voxel spacing. 

Metrics used to evaluate the segmentation pipeline include: Dice coefficient (DC) (
2|𝑋∩𝑌|

(|𝑋|+|𝑌|)
), 

Maximum Hausdorff Distance (MHD) (𝑚𝑎𝑥{𝑠𝑢𝑝𝑥∈𝑋(𝑖𝑛𝑓𝑦∈𝑌𝑑(𝑥, 𝑦)), 𝑠𝑢𝑝𝑦∈𝑌(𝑖𝑛𝑓𝑥∈𝑋𝑑(𝑥, 𝑦))}), 

and Average Hausdorff Distance (AHD). 

4.3 Results 

Network inference was tested on the same alternate workstation as was described in Chapter 3. 

For a scan with a physical dimensionality of 75mm×90mm×82mm, the pipeline took 175 s 

(upsampling, 1 s; network inference, 135 s; and post-processing, 39 s) to segment the IE with 70% 

patch overlap. 

4.3.1 Testing on Cadaveric Scans with Electrodes 

This section presents a qualitative and quantitative evaluation of the accuracy of the pipeline by 

comparing pipeline outputs to ground truth segmentations. The pipeline was tested using two 

cadaveric samples with implanted electrodes which have both CBCT and helical CT acquisitions. 

Metrics are also presented for the four scans after random rotational augmentations were applied. 

Quantitative results are shown in Table 4.2. Results followed an expected trend where the pipeline 

performed better on scans in standard clinical orientation than randomly rotated; half of the data 

used in network training and validation was in clinical orientation, meaning the CNN saw fewer 

examples of data in all other rotational variants. The pipeline also performed better on CBCT than 

on helical CT, as expected due to CBCT acquisitions having superior imaging characteristics 
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compared to helical CT. Pipeline performance can be seen visually (Figure 4.2) where rotated 

samples have far more false positives compared to the clinical orientation counterparts. 

Table 4.2: Mean values are presented for all metrics. Data ranges are given in parenthesis. 

Metrics include Inner Ear Dice Coefficient (IE DC), Inner Ear Average Hausdorff Distance (IE 

AHD), and Inner Ear Maximum Hausdorff Distance (IE MHD). Metrics are presented for four 

test set subsets. 

CT Modality IE DC IE AHD (mm) IE MHD (mm) 

CBCT 300um isotropic 

electrode-implanted 

0.859 (0.002) 0.116 (0.005) 0.691 (0.064) 

CBCT 300um isotropic 

rotated electrode-implanted 

0.837 (0.018) 0.163 (0.008) 1.084 (0.044) 

Helical CT 

234×234×625um electrode-

implanted 

0.838 (0.006) 0.140 (0.006) 0.780 (0.183) 

Helical CT 

234×234×625um rotated 

electrode-implanted 

0.795 (0.038) 0.186 (0.020) 1.091 (0.050) 
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Figure 4.2: 3D renderings of pipeline output segmentations for all implanted test set scans. Pairs 

of side-by-side images correspond to a single sample; the right-hand image of each pair 

corresponds to the randomly rotated sample. 

4.3.2 Testing on Non-cadaveric Scans Without Electrodes 

This section presents a qualitative and quantitative evaluation of the accuracy of the pipeline by 

comparing pipeline outputs to ground truth segmentations. The pipeline was tested using eight 

non-cadaveric clinical CBCT scans. Metrics are also presented for the eight scans after random 

rotational augmentations were applied. Table 4.3 depicts quantitative results.  Results followed an 

expected trend where the pipeline performed better on scans in standard clinical orientation than 

randomly rotated. Based on 3D renderings of pipeline predicted segmentations it is apparent that 

the rotated samples have more imperfections (Figure 4.3). 

Table 4.3: Quantitative results with std dev including Inner Ear Dice Coefficient (IE DC), Inner 

Ear Average Hausdorff Distance (IE AHD), Inner Ear Maximum Hausdorff Distance (IE MHD). 

CT Modality IE DC IE AHD (mm) IE MHD (mm) 

Clinical CBCT 0.895 ± 0.019 0.101 ± 0.021 1.07 ± 0.109 

Clinical CBCT rotated 0.885 ± 0.017 0.107 ± 0.023 1.07 ± 0.125 
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Figure 4.3: 3D renderings of predicted segmentations for non-implanted test set scans. Pairs of 

side-by-side segmentations correspond to a single sample; the right-hand segmentation of each 

pair corresponds to the randomly rotated sample. 
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4.4 Discussion 

A pipeline was developed to automatically segment the IE on clinical CT scans in any orientation, 

with and without implanted electrodes. The approach is robust and requires minimal preprocessing 

steps. The approach quickly and accurately segments the IE in a variety of CT scans. A scan 

volume can be cropped based on the IE segmentation predicted by this pipeline to automate the 

data preprocessing for use of the pipelines presented in Chapter 3. This network is useful as a 

standalone to identify significant abnormalities in the shape of IE structures such as the cochlea, 

SCCs, and vestibule; a higher resolution segmentation, as is produced by pipelines in Chapter 3, 

may be unnecessary to identify gross anatomical abnormalities. Additionally, the 154um 

segmentations produced by the pipelines presented in Chapter 4 may be sufficient for some 

surgical simulation platforms which have trouble rendering the amount of data present in a higher 

resolution segmentation volume; this may arise in cases where the system running a surgical 

simulation is limited in computational power. 

Rotational augmentations were necessary in the present work to alleviate the need for manual 

preprocessing steps. An alternative approach to achieve segmentation of rotated scans could be 

training CNNs from the Chapter 3 pipelines to be performant on rotated samples. This idea was 

explored through the training of two CNNs with an architecture similar to that of Chapter 3, but 

with only a single output channel, meaning the RW was not segmented. One network was trained 

on a dataset twice as large, where each sample was augmented with random rotations, as was 

described in Chapter 4. The other network was trained with only the clinical orientation data. 

Figure 4.4 displays a comparison of the pipeline performance on two test set clinical orientation 

scans. 
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Figure 4.4: 3D renderings of pipeline segmentations with and without rotational augmentations. 

The left and right columns show pipeline outputs with and without rotational augmentations 

respectively. The top row is based on cadaveric 300um isotropic CBCT, and the second row non-

cadaveric CBCT. 

As the networks were tested on data in clinical orientation, poor performance of the network 

trained with rotational augmentations indicates that as the model learned to perform on rotated 

scans, there was a performance trade-off for clinical orientation data. The most likely explanation 

for the poor performance of the 50um isotropic spacing network with rotated samples is the limited 

spatial field of view of the image patches. Although the patch size is 288×256×256 voxels in all 

trained networks, this corresponds to a 14.4mm×12.8mm×12.8mm region in 50um isotropic scans, 

and a 44.4mm×39.4mm×39.4mm region in 154um isotropic scans. The increased amount of spatial 

information present in patches of the 154um network provided sufficient information to recognize 

the IE in rotated positions, whereas the 50um network was unable to do so. Models with larger 

patch sizes have been found to have improved performance in computer vision tasks [2]. 

The automated pipeline presented in this chapter accurately predicts the IE in a variety of CT scans 

rotated in any orientation. It is acceptable that IE segmentations produced by the model described 

in this chapter are less visually appealing than predictions from the model presented in Chapter 3; 

this is because the primary use for this model is to automatically preprocess scans such that the 

Chapter 3 model can be utilized with minimal user input. 
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Chapter 5 

 

Conclusion  

5.1. Summary 

ML is quickly transforming the field of healthcare by providing assistance to doctors in an ever-

growing number of ways. Contrary to the common “Will ML replace doctors?” narrative, a more 

important question to be asked is “How can ML help doctors and improve healthcare?”. The 

presented work demonstrates ML assisting doctors to improve healthcare, as automated 

segmentations of the IE and RW are useful tools for doctors, but too time consuming to be done 

manually in clinical practice. 

Within this thesis, Chapter 3 demonstrated that CNNs can quickly and accurately generate detailed 

segmentations of the IE and RW. The method proved effective in electrode-implanted and non-

implanted CT scans on a variety of CTs including cadaveric and non-cadaveric scans, as well as 

CBCT and helical CT. Tightly cropped CT scans in a standard clinical orientation were used to 

train the network. Use of this model as a stand-alone would require manual processing to ensure 

that scans are in clinical orientation and cropped to a region around the IE. 

Chapter 4 presented CNNs which segment the IE in electrode-implanted and non-implanted scans 

on larger field of view CTs which may be rotated in any spatial orientation. Scans used in this 

network were cropped to a 100mm diameter sphere surrounding the IE, and were rotated randomly 

in 360 degrees. This network can be used to achieve an IE segmentation in any CT scan. When the 

Chapter 4 pipelines are used in conjunction with the pipelines presented in Chapter 3, automatic 

cropping of scan volumes can be done to generate detailed IE and RW segmentations with minimal 

preprocessing. 
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5.2. Future Work 

To improve the utility of the automated segmentation approach, nearby structures including the 

ossicles, facial nerve, and sigmoid sinus could be added to the network predictions. Expanding the 

number of structures segmented allows the pipeline to be applicable to otolaryngological 

procedures which involve numerous structures of the skull. Automated segmentation of these 

structures would allow for surgical planning, training, and robot assisted approaches to be further 

developed for many otolaryngological surgeries. 

A common concern with the application of CNNs to medical imaging problems is a lack of 

robustness to a wide variety of imaging data. To create a robust model, CNNs should be trained 

with medical scans from many institutions worldwide from all manufacturers and with all 

combinations of acquisition settings. To alleviate this problem in deep learning models, federated 

learning has been introduced. Federated learning facilitates easy and ethical sharing of data 

amongst institutions for the use of ML model training [1]. To minimize ethical concerns related to 

data sharing, federated learning allows multiple institutions to contribute data which trains a 

centralized model, but keeps data invisible to each institution. Federated learning could be applied 

to continue the training of networks deployed in this work, which should result in more robust 

models. 

Clinical trials are currently underway which aim to determine the effectiveness of customized CI 

frequency-maps; these frequency maps are based on manually annotated segmentations and 

measurements. To evaluate the effects of the automated steps presented in this work, quantitative 

analysis can be done which compares measurements taken on the manually segmented structures 

to that of the automated pipeline. Differences in electrode frequencies between the manual and 

automated approaches can be calculated directly, and a further clinical trial can find clinical 

implications of differences between the approaches. 

Lastly, software integration steps should be completed to combine the automated pipelines 

presented in this work to surgical training and planning software. This integration facilitates 
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improved surgical planning and training, as 3D volumes of patient anatomy could be visualized 

for each clinical patient. 
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