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Abstract

Electricity load forecasting has been attracting increasing attention because of its impor-

tance for energy management, infrastructure planning, and budgeting. In recent years, the

proliferation of smart meters has created new opportunities for forecasting on the building and

even individual household levels. Machine learning (ML) has achieved great successes in this

domain; however, conventional ML techniques require data transfer to a centralized location

for model training, therefore, increasing network traffic and exposing data to privacy and se-

curity risks. Also, traditional approaches employ offline learning, which means that they are

only trained once and miss out on the possibility to learn from new data. Online and Federated

Learning are among the potential solutions to alleviate the mentioned concerns. Online models

learn from data as they arrive while Federated Learning (FL) approaches train a single ML

model in a distributed manner without requiring participants to share their data.

Consequently, this thesis investigates Online and FL for load forecasting with smart meter

data. Deep learning typically requires large and diverse data streams; however, this data may

not be readily available due to data collection issues/expenses, privacy and security concerns, or

other reasons. Therefore, Recurrent Generative Adversarial Network is designed for generating

realistic energy data.

To enable continuous learning from newly arriving data and adapting to new patterns with-

out the need to re-train the model, a novel Online Adaptive Recurrent Neural Network (RNN) is

proposed. RNN is employed to capture time dependencies while the online aspect is achieved

by updating the RNN weights according to new data. The results show that the proposed

approach achieves higher accuracy than the standalone offline approaches and other online

algorithms.

For FL, an approach based on FedAVG was designed first: this synchronous approach waits

for all clients to complete training before the server aggregates weights. Next, FedNorm, an

asynchronous approach for FL, is proposed: it aggregates updates without waiting for lagging

clients. To achieve this, FedNorm measures the clients’ contributions considering similarities

i



of local and global models as well as the loss function magnitudes. The experiments demon-

strate that FedNorm achieves higher accuracy than seven state-of-the-art FL approaches.

Keywords: Federated Learning, Distributed Learning, Asynchronous Learning, Load Fore-

casting, Online Learning, Deep Learning, Recurrent Neural Networks, Generative Adversarial

Models
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Summary for Lay Audience

Electricity load forecasting has been attracting research and industry attention because of

its importance for energy management, infrastructure planning, and budgeting. In recent years,

the proliferation of smart meters and other sensors has created new opportunities for sensor-

based load forecasting on the building and even individual household level.

Machine learning (ML) has achieved great successes in load forecasting; however, conven-

tional ML techniques require data transfer to a centralized location for model training. This

exposes data to privacy and security risks and increases network traffic. In addition, traditional

approaches employ offline learning: they are only trained once and miss out on the possibil-

ity to learn from new data. Moreover, the energy consumption patterns change over time, for

example when new equipment is installed, making traditional ML models built on old data

inconsistent with new data. A different strategy in terms of design and learning is required to

support training ML models across many clients without sharing data and to embrace changes

in data, enable fast model adaptations, and capture new revealing patterns.

Online and Federated Learning are among the potential solutions to alleviate the mentioned

concerns. Online models are well suited for load forecasting since they dynamically adjust to

new patterns in the data while federated Learning (FL) collaboratively trains a shared ML

model across many participants without requiring participants to share their local data.

Consequently, this thesis proposes novel Online and FL approaches for load forecasting

with smart meter data. Large and diverse data streams for evaluating the online algorithm

may not be available due to data collection issues, expenses, privacy and security concerns, or

other reasons. To address the lack of energy data, Recurrent Generative Adversarial Network

is designed for generating realistic energy data. Next, Online Adaptive Recurrent Neural Net-

work (RNN) is proposed for continuous learning from new data and adapting to new patterns

without the need to re-train the model. Two FL approaches are designed: synchronous and

asynchronous. In the synchronous approach, each client must complete its work before the

training process can continue while the asynchronous approach can tolerate lagging clients.
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Chapter 1

Introduction

This chapter presents thesis motivation and discusses the main research contributions. Finally,

the thesis organization is presented.

1.1 Motivation

Energy production is the largest source of greenhouse gas emissions and about two-thirds of

global greenhouse gas emissions are the result of burning fossil fuels for energy production [1].

The environmental impact of energy production is expected to become even more exacerbated

as it is estimated that world energy consumption will grow by 28% between 2015 and 2040 [2].

At the same time, countries are setting aggressive greenhouse gas emissions targets; European

Union, for example aims to reduce emissions for 40% and increase energy efficiency for 27%

by year 2030 [1]. Nevertheless, energy demand is continuously increasing making energy

management a crucial factor in reducing environmental impact while ensuring that the growing

demand is met [3].

Although renewable energy resources are expanding quickly, their intermittent nature and

variability pose challenges for balancing supply and demand. In such changing environment,

energy management plays a crucial role for ensuring supply-demand balance, reducing envi-

ronmental impact, and moving towards a smarter grid. Improved energy management also

2
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leads to financial benefits for the end consumers in terms of reduced energy costs and associ-

ated operating expenses.

Load forecasting is a critical and fundamental part of energy management: accurately es-

timating future loads assists in maintaining demand-supply balance. Load forecasting helps

energy suppliers to reduce the gap between demand and supply by estimating load flows and

to make decisions that can prevent overloading. It ensures that consumers have a reliable sup-

ply of energy at the most reasonable cost. Moreover, load forecasting provides information

for generation scheduling, grid operation, and infrastructure planning. Also, financial benefits

from improved load forecasting can be large: for example, a 1% improvement in a six hour

ahead wind generation forecast leads to savings of 972 thousand dollars over six months [4].

On the other hand, the expansion of smart meters and other sensors has enabled measuring

and recording energy consumption on a large scale. Utility companies have been extensively

installing smart meters: in 2016, there were over 70 million smart meters in the USA and

over 96 million in China, and the number is continuously growing [5]. This large smart meter

data created a backbone for new deeper insights into energy usage patterns and forged new

opportunities in hourly load forecasting for individual buildings and even individual homes

[6].

In sensor-based forecasting, historical data from smart meters or other sensors are used in

combination with meteorological data to infer future energy consumption. Machine learning

(ML) techniques have been widely used in a variety of load forecasting and energy prediction

tasks [7] as they discover relations within data and identifying patterns. ML-based techniques

typically use historical load data collected by smart meters or other sensor to train machine

learning models, and then, those models are used to predict future energy consumption. Con-

ventionally, smart meter data are transmitted to a data center or other centralized systems for

storage and ML model training. There are two main categories of these centralized solutions:

the first category trains a single model for each smart meter and, thus, generates individual

forecasts for each meter, while the second category trains a machine learning model with the
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aggregated data from several smart meters and, hence, provides aggregated load forecasts [8].

The conventional offline models are trained once by repeatedly passing all training data

through the model; one pass is referred to as epoch. Then, the model is used to infer future

loads. This approach is missing out on the information that new data could provide. Of course,

the model can be re-trained occasionally using all old data together with new data, but this is

very computationally expensive as each time, the model is re-trained from scratch. Ideally, the

model would learn from new data as they become available, without the need to re-train or to

retain old data.

Although, these centralized solutions have shown great results in load forecasting, they are

faced with numerous challenges:

1. Limited data availability: ML applications typically require significant quantities of

data; however, the data may not be readily available because of challenges such as costs

associated with collecting data, privacy and security concerns, or other reasons. More-

over, when it comes to evaluating the online algorithm, the availability of large and

diverse data streams is required.

2. Necessity of online processing: Predicting energy consumption in near real-time is be-

coming critical to modern energy management systems. Storing data in the cloud and

re-training machine learning models with all historical sensor data is time-consuming

and often unfeasible. Consequently, a load forecasting approach capable of continuously

learning from new data as they arrive is required.

3. Presence of Concept Drift: The data distributions in energy domain change over time,

producing what is known as concept drift [9]. For example, adding a new appliance or a

change in home occupants behaviour patterns will result in different energy consumption

profiles. In the presence of concept drift, machine learning models experience weak and

degrading predictive performance [10].

4. Network congestion: The volume of generated data is increasing exponentially, and
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centralized systems require transmitting all data to a centralized location, what leads to

increased network traffic [11]. This is true for both types of forecasting, individual and

aggregated.

5. Security and privacy: A centralized ML not only requires sharing local data with the

centralized systems imposing security and privacy concerns, but also makes complying

with stringent data regulations such as EU General Data Protection Regulation (GDPR)

[12] and The Personal Information Protection and Electronic Documents Act (PIPEDA)

[13]. These regulations establish the guidelines for how organizations collect, use, and

disclose personal information in the course of their for-profit commercial activities.

6. Scaling: A massive amount of smart data have led to a new deeper insights into energy

usage patterns as well as large-scale load forecasting at the individual consumer level.

However, as the number of smart meters grows, training an individual ML model for

meter-level load forecasting become computationally expensive and even infeasible [11].

Although centralized offline machine learning approaches have achieved great results in

load forecasting, new techniques are needed to address the discussed challenges. Methods for

making machine learning models better suited for learning from sensor data and addressing

the aforementioned points are explored under the research themes of ”Online Learning” and

”Federated Learning”.

Online machine learning, sometimes referred to as incremental or continuous learning,

referrers to algorithms that learn from data streams by dynamically updating the model as data

become available. In online learning, the data can be discarded after they are consumed by the

model. In contrast to offline or batch learning techniques, which train the model by learning

on the entire training data set at once, in online machine learning, the model is updated as data

become available. Moreover, for batch (offline) learning, all data must be available at the start

of training while online models learn continuously as new data arrive without the need to store

all data.
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Figure 1.1: Standard federated learning

Federated Learning (FL) presents a possible way to assist with mentioned challenges by

decoupling the ability to train the ML model from the need to store the data on the cloud or

another centralized system. The fundamental idea of FL is to train local models on local data

and periodically exchange learned parameters with the central server to build a global model.

Figure 1.1 depicts a FL scheme: each device receives a copy of the global model and improves

it by learning from local data. Then, instead of raw data, the updated parameters of the local

models are sent to the server to be aggregated and incorporated into the global model.

This thesis investigates and proposes online and federated learning techniques for load

forecasting. FL represents a major shift from a costly central analytic system to a distributed

ML approach that can exploit numerous distributed computational resources. This will help

enterprises to retain data on-site, reduce network traffic, and reduce ML model training time.

On the other hand, because online learning does not require re-training with all historical data,

it provides a quicker response to changes in data patterns and, thus, is better suited for dynamic

data streams. The proposed method also helps with data protection regulations such as GDPR

and PIPEDA by keeping personal data on client devices that gives users more direct physical

control of their own data while sending model updates to the server.
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The approaches proposed in this thesis will allow utility companies to predict energy con-

sumption patterns in near real-time and provide them with an efficient energy management

system while respecting end user privacy and building trust. Online and federated learning will

enable load forecasting on a large scale without the need to move data to a centralized location.

Moreover, the energy domain shares many characteristics with other IoT domains and time-

series data; therefore, the online and FL technique developed in this research have the potential

to be expanded to benefit other learning tasks in different time-series domains.

1.2 Contributions

The main contributions of this thesis are organized into four main categories.

1. Recurrent Generative Adversarial Networks (R-GANs) for generating realistic en-

ergy consumption data by learning from real data. R-GANs have the potential to offer

a new way of training and evaluating ML methods by generating potentially unbounded

data to simulate the data streams for online and offline algorithms. The main contribu-

tions of this part of the research are as follows:

• Propose Recurrent Generative Adversarial Network (R-GAN) to generate synthetic

energy data for evaluating ML models.

• Incorporate Wasserstein GANs (WGANs) and Metropolis-Hastings GAN (MH-

GAN) approaches into R-GAN to improve training stability, overcome the mode

collapse, and, consequently, generate more realistic data.

• Evaluate the quality of generated data through comprehensive experiments.

• Demonstrate the robustness of the proposed R-GAN approach and generate the

synthetic data with similar distribution to the original dataset.

2. Online Adaptive Recurrent Neural Network (RNN), an approach for load forecasting

capable of continuously learning from newly arriving data and adapting to new patterns.
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The main contributions of this part of the research are as follows:

• Propose Online Adaptive RNN, a deep recurrent neural network load forecasting

approach capable of continuously learning from new data as they arrive.

• Evaluate the performance of the proposed Online Adaptive RNN through compre-

hensive studies using the real-world data from residential consumers.

• Propose Prequential-Holdout evaluation method to compare online and offline al-

gorithms.

• Conduct a comprehensive evaluation to compare the proposed method with stan-

dard online models.

• Conduct a comprehensive evaluation to compare the proposed method to the offline

RNN models.

3. Federated Learning (FL) for load forecasting capable of handling statistical hetero-

geneity in load forecasting data. The proposed FL method encounters statistical het-

erogeneity challenges as the local nodes correspond to consumers with different energy

use patterns and magnitudes. The main contributions of this part of the research are as

follows:

• Adapt Federated Stochastic Gradient Descent (FedSGD) and Federated Averaging

(FedAvg) paradigms for energy prediction applications.

• Propose FL with adaptive learning rate for load forecasting capable of handling

statistical heterogeneity.

• Evaluate the performance of the proposed FL model compared to individual and

central models.

• Conduct case studies to measure the performance of proposed model in dynamic

environment where some clients join the federation after the training is complete

and only use an already trained model for forecasting.
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4. Asynchronous Adaptive Federated Learning, an approach for FL learning without

need to wait for lagging clients. Here we extend our previous FL work to an asyn-

chronous FL model for load forecasting and proposed FedNorm. In this novel technique,

the server aggregates model updates from clients without the need for synchronous pro-

cessing on clients while still handling statistical heterogeneity. The main contributions

of this part of the research are as follows:

• Propose FedNorm, an approach for load forecasting without the need to wait for

lagging clients and without requiring all clients to complete local training in each

round.

• Propose a simulation approach to mimic the asynchronous settings in order to ex-

amine and compare the asynchronous algorithms.

• Conduct comprehensive experiments to compare the proposed algorithm with syn-

chronous and asynchronous methods.

• Evaluate the performance of the proposed FedNorm through comprehensive stud-

ies.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 describes the background,

which includes Recurrent Neural Networks in Section 2.1, Generative Adversarial Networks in

Section 2.2, Recurrent Batch Normalization in Section 2.3, and Hyperparameter Optimization

in Section

Chapter 3 discusses the related works. First, Section 3.1 discusses conventional load

forecasting models, then Section 3.2 discuss the recent works related to the generating syn-

thetic energy consumption and load forecasting data. Section 3.2 introduces various online

machine learning and deep learning algorithms. In Section 3.4 the studies associated with
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federated learning are investigated and Section 3.5 presents the recent research regarding the

asynchronous federated learning field.

Chapter 4 first, in Section 4.1 presents the methodology applied in generating synthetic

data streams including pre-processing, feature generation, and the recurrent generative model.

Then, in Section 4.2, the evaluation process for measuring the quality of generated data is

described, and, in Section 4.3, evaluation results are presented. Finally, results are discussed in

Section 4.4.

Chapter 5 first presents the proposed Online Adaptive RNN including pre-processing,

batch normalization, buffering, and tuning module in Section 5.1. Next, in Section 5.2, the

evaluation methodology is described and two main approaches for evaluating the online algo-

rithms are presented. Consequently, in Section 5.3, the proposed model is evaluated and the

results are discussed in section 5.4.



Chapter 2

Background

This chapter introduces Recurrent Neural Networks (RNN), Generative Adversarial Networks

(GAN), Recurrent Batch Normalization, and Hyperparameter Optimization. These algorithms

were applied in various aspects of our research and are considered the foundations of our work.

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of artificial neural network designed for se-

quential data such as those found in language translation or load forecasting [14]. The recur-

rent connection to the same neurons in the previous time step together with their internal state

(memory) make RNNs well suited for modeling temporal behavior. RNNs are mainly trained

using backpropagation through time; however, for large sequences, this can lead to the van-

ishing gradient problem causing the RNN to forget older information. The Long Short Term

Memory (LSTM) networks were designed to overcome this problem, and, consequently, they

are able to maintain information for longer periods and make better predictions [15].

As illustrated in Fig. 2.1, the LSTM cell contains a cell state c, a hidden state h, an update

step g, and three gates: input i, forget f , and output o. LSTM computation at time t is given as

follows:

11
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Figure 2.1: The LSTM cell

it = σ(Wxixt + bxi +Whiht−1 + bhi) (2.1a)

ft = σ(Wx f xt + bx f +Wh f ht−1 + bh f ) (2.1b)

ot = (Wxoxt + bxo +Whoht−1 + bho) (2.1c)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxgxt + bxg +Whght−1 + bhg) (2.1d)

ht = ot ⊙ tanh(ct−1) (2.1e)

Here, σ is the sigmoid activation function, tanh is the hyperbolic tanh activation function, and

⊙ represents elementwise multiplication. The Wx’s and Wh’s are the input-hidden and hidden-

hidden weights, respectively, and bx’s and bh’s are the corresponding biases. The LSTM cells

are responsible for learning dependencies among the elements in the input sequence. The

gates within the cell control how data flow through the cell and regulate which data should be

memorized and which can be forgotten.

2.2 Generative Adversarial Networks

In machine learning, generative modelling is an unsupervised learning task that includes auto-

matically detecting and learning patterns in input data so that the model can be used to produce

new examples that could have been drawn from the original dataset.
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Generative Adversarial Networks (GANs) are a type of generative models that [16] discover

and learn patterns present in the training data and are thus capable of generating new data with

similar characteristics. As illustrated in Fig. 2.2, a GAN consists of two networks: a generator

and a discriminator. The task of the generator is to mimic data samples (e.g. images, video,

audio) with the objective of fooling the discriminator into thinking that the generated samples

are real. The discriminator learns to recognize whether a sample is real or synthetic. The

two try to defeat each other: the generator tries to fool the discriminator into thinking that the

produced samples are real while the discriminator tries to identify the fake samples.

The generator produces fake data from the random input as illustrated in Fig. 2.2. The

discriminator receives two inputs, the real data and the fake data generated by the generator,

and produces an output indicating probabilities that samples are real. The two play min-max

game with value function V(D,G):

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2.2)

where G and D are the generator and discriminator, x is the real data sample drawn from

pdata(x), and z is the random (noise) input drawn from pz(z).

Figure 2.2: Generative Adversarial Network.
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GANs have mostly been used in computer vision for tasks such as generating realistic-

looking images, text to image synthesis [17], image completion, and resolution up-scaling

[18]. If GANs could generate realistic energy data, they could be used to generate data for ML

training and for imputing missing values.

Studies have demonstrated that GANs can provide good samples [19, 20, 21]; however,

their training may experience diverging or oscillatory behavior resulting in failure to converge

[22]. GANs are also prone to mode collapse and vanishing gradients. Mode collapse refers

to a situation in which the generator collapses and always produces the same outputs whereas

vanishing gradients indicate a situation in which the generator updates become so small that

the overall GAN fails to learn [22].

Wasserstein GANs (WGANs) [23] have been proposed to deal with non-convergence and

vanishing gradient problems. The cost function in original GANs has a large variance of gra-

dients what makes the model unstable. WGANs improve stability of the training process by

using a new cost function, Wasserstein distance, which has smoother gradients everywhere.

The Wasserstein distance calculation can be simplified using Kantorovich-Rubinstein duality

to:

W(pr, pg) =
1
K

sup
∥ f ∥L≤K

Ex∼pr [ f (x)] − Ex∼pg[ f (x)] (2.3)

where pr and pg are probability distributions, sup is the least upper bound, and f is a K-

Lipschitz function following the following constraint:

| f (x1) − f (x2)| ≤ K|x1 − x2| (2.4)

Wasserstein distance in WGAN, uses 1-Lipschitz functions, therefore, the K = 1.

Metropolis-Hastings GAN (MH-GAN) [24] aims to improve standard GANs by adding

aspects of Markov Chain Monte Carlo. In standard GANs, the discriminator is used solely to
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train the generator and is discarded upon the end of training. In MH-GAN, the discriminator

from GAN training creates a wrapper around the generator. The generator produces a set of

samples, and the discriminator chooses the sample closest to the real data distribution. This

way, the discriminator contributes to the quality of the generated samples.

2.3 Recurrent Batch Normalization

Normalizing the input data for deep neural networks helps the models converge faster. How-

ever, this only impacts the input to the first layer while all other layers receive inputs from

the previous layers. The distribution of network activations changes during training due to the

changes in network parameters. These changes alter the distribution of inputs to the inner lay-

ers and slow down the training. This problem is known as internal covariate shift [25]. Batch

normalization is a mechanism in mini-batch training, which aims to normalize the inputs to

inner layers in order to fight the covariate shift problem [25].

Considering a mini-batch B of m samples, the batch normalization is applied to each input

dimension xi independently. The batch normalizing transform starts as follows:

x̄i =
xi − µB√
σ2

B + ϵ
(2.5)

where µB =
1
m

∑m
i=1 xi and σ2

B =
1
m

∑m
i=1(xi − µB)2 are the mean and variance for that dimension,

and ϵ is a small constant added for stability.

Next, the input is scaled and shifted as follows:

yi = γx̄i + β (2.6)

where γ and β are parameters learned during training along with other parameters of the net-
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work.

Cooijmans et al. [26] proposed a reparameterization of LSTM that brings the benefits

of batch normalization to the recurrent neural networks. They demonstrated that the Batch-

Normalized RNNs (BNRNNs) lead to faster convergence and improved generalization. The

batch-normalizing transform BN(· ,γ,β) is introduced into the LSTM as follows:



ft

it

ot

gt


= BN(Whht−1, γh, βh) + BN(Wxxt, γh, βh) (2.7)

ct = σ( ft) ⊙ ct−1 + σ(it) ⊙ tanh(gt) (2.8)

ht = σ(ot) ⊙ tanh(BN(ct, γc, βc)) (2.9)

where BN(·) is the transformation introduced with equations (2.5) and (2.6). The recurrent

Whht−1 and the input Wxxt terms are normalized separately. To preserve LSTM dynamics, the

normalization is not applied to the cell update ct. During training, the mean and the variance

are calculated independently for each batch, and at test time, the average of the estimates over

the training set is used.

2.4 Hyperparameter Optimization

Hyperparameter optimization aims to find a combination of hyperparameters that leads to the

optimal ML model performance. It has been shown that tuning hyperparameters plays a ma-

jor role in the ML model accuracy [27]. In general, the hyperparameter optimization can be

represented in an equation form as:
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xbest = argmin[ f (x)]|x ∈ X (2.10)

where f (x) represents a score that should be minimized, the X is the domain of the hyperpa-

rameter values, and xbest is a combination of hyperparameters that yields the lowest value of

the score f (x).

Finding optimal hyperparameters manually is challenging and computationally expensive,

especially in a case of complex models such as neural networks. Grid search and random

search are slightly better, but they are unaware of the model’s past evaluations, which results

in long tuning time and often leads to a sub-optimal set of hyperparameters.

In contrast to those approaches, Bayesian optimization [28] (BO) keeps track of the past

evaluations to form a probabilistic model for mapping hyperparameters to a probability P of

an objective function score:

P(score|hyperparameters) (2.11)

This probability model is referred to as the “surrogate” for the objective function. The

surrogate is easier to optimize than the actual objective function; thus, BO searches for hyper-

parameters using the surrogate. BO process is described in Algorithm 1. First, the probabilistic

model Pmodel is initialized with a Gaussian process prior on f (x) [28]. Then, in each iteration,

the best set xbest is found for the current probabilistic model Pmodel, the model score for that set

xbest is determined, and the Pmodel is updated.

Similar to the described Gaussian process-based optimization, the Tree-structured Parzen

Estimator (TPE) also constructs models to approximate the performance of hyperparameters

based on historical measurements, and then subsequently chooses the new hyperparameters to

test based on this approximate model [28]. However, while Gaussian approach estimates the
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Algorithm 1 Bayesian Hyperparameter Optimization
1: Pmodel← Surrogate(f(x))
2: xbest ← {}

3: while i < maxIterations do
4: xbest ← Pmodel(score,hyperparameters)
5: score← f (xbest)
6: Pmodel← U pdate(Pmodel, score)

probabilities directly, TPE estimates them indirectly. Since TPE achieved better accuracy than

the Gaussian process-based BO, TPE is used in our study.
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Related Work

This chapter begins with an overview of traditional energy forecasting methods. Next, various

strategies for generating synthetic data and methods for evaluating the quality of the generated

data are examined. Following that, online machine learning approaches are presented and,

finally, various synchronous and asynchronous federated learning techniques are discussed.

3.1 Conventional Load Forecasting Models

Many approaches have been introduced for energy forecasting problems (e.g., physics, statis-

tics, and machine learning-based) [29] but this section focuses on ML-based models as our

work belongs to this category.

Alobaidi et al. [30] proposed an ensemble-based framework to predict day ahead aver-

age household consumption. The framework employs Artificial Neural Networks (ANNs) as

the base learners and combines them using multiple linear regression. Their results showed

improvement in the generalization ability compared to stand-alone ANN and ANN-based bag-

ging ensemble. Singh et al. [31] introduced a hybrid ARIMA-ANN technique for wind power

forecasting. The hybrid approach achieved better accuracy than the two models, ARIMA and

ANN, working separately. Grolinger et al. [32] introduced an approach based on Support

Vector Regression (SVR) and local learning for load forecasting with big data. Their method

19
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partitions the training set through clustering and then trains a separate SVM model for each

cluster. Local learning with SVR improved the load forecasting accuracy while achieving or-

der or magnitude shorter training time than the stand alone SVR.

Deep learning algorithms have been popular in load forecasting because of their ability to

capture complex patterns in data; specifically, recurrent neural network architectures have been

frequently used as they can capture temporal dependencies [33, 15]. Gao et al. [34] proposed

a short-term electricity load forecasting based on an Empirical Mode Decomposition Gated

Recurrent Unit with Feature Selection (EMD-GRU-FS). The original series is decomposed

into sub-series with empirical mode decomposition and the correlation between sub-series and

the original series is determined with the Pearson correlation. Finally, the GRU network is

trained with the original series and the sub-series with a high correlation. Bouktif et al. [35]

paired standard Long-Short Term Memory (LSTM) with a Genetic Algorithm (GA) for short to

medium term aggregate load forecasting. In their approach, LSTM carries out the forecasting

while GA is responsible for finding the optimal time lags and the number of layers for LSTM.

Han et al. [36] proposed a prediction model that combines copula function and LSTM

network for the estimation of mid-to-long term wind and photovoltaic power generation. First,

the copula function is used to extract the key meteorological factors that affect wind and pho-

tovoltaic power generation. Then, joint prediction models of wind and photovoltaic power

generation based on LSTM performed the forecasting. Long Short-Term Memory (LSTM), a

type of RNN, was combined with Support Vector Machine, Random Forest, and a data prepro-

cessing technique to create a multi-step forecasting strategy capable of improving forecasting

accuracy [37].

Sehovac et al. [15] proposed Sequence to Sequence Recurrent Neural Network (S2S RNN)

with attention for electrical load forecasting. Their approach adapts the sequence to sequence

architecture from language translation to improve time modeling by combining two RNNs:

encoder and decoder. The attention mechanism eases the connection between the encoder and

the decoder.
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Tian et al. [38] also used S2S RNN, but they focused on scaling load forecasting for a large

number of smart meter and proposed Similarity-based Chained Transfer Learning (SBCTL). In

SBCTL, the model for the first meter is trained in a traditional manner while all other models

employ transfer learning to take advantage of the already trained models according to similar-

ities between energy consumption patterns in smart meters data.

Fan et al. [39] examined various deep recurrent neural network strategies for short-term

load forecasting. Their results confirmed that RNNs are well suited for short-term forecasting

and demonstrated that LSTM cells perform better than vanilla RNNs. Somu et al. [40] also

proposed a solution based on LSTM: they improved the forecasting accuracy by tuning LSTM

hyperparameters with Improved Sine Cosine Optimization Algorithm (ISCOA).

Zainab et al. [41] proposed a framework for training in parallel individual models on smart

meter data to reduce training time. A parallel pre-processing stage is performed on individual

smart meter data sets, and then a single model is trained for each dataset concurrently. The

framework employed a variety of ML algorithms as the base learners in order to examine

trade-offs between model accuracy and execution time.

Although the reviewed models have shown great results in load forecasting, they are all

offline approaches: they are trained with a static data set and, to learn from new data, they need

to be re-trained. However, the energy consumption data are arriving continuously and new data

may have different patterns. To acquire knowledge from new data without re-training, our study

proposes an online approach where the model adapts itself to newly arriving data. Moreover,

reviewed ML techniques may require data transfer to the cloud or another centralized location

for model training. This not only exposes data to privacy and security risks but also, with a

large number of smart meters, increases network traffic. We proposed federated learning which

has a potential to alleviate mentioned concerns by training a single ML model in a distributed

manner without requiring participants to share their data.
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3.2 Generating Synthetic Data

ML applications typically require significant quantities of data; however, the data may not be

readily available because of challenges and costs associated with collecting data, privacy and

security concerns, or other reasons. When it comes to evaluating the online algorithm, the

availability of large and diverse data streams is required. Recently, synthetic data has gained

popularity since it promises to fulfill the need for large quantities of data without infrastructure

or privacy concerns associated with real data. Although different stochastic processes have

been introduced to generate data [42], an approach is needed for generating data streams with

characteristics and diversity of electricity load data.

Amasyali and El-Gohary [42] surveyed energy forecasting studies: 67% of reviewed stud-

ies used real data, 19% simulation data, and 14% public benchmark data. This dominance of

real data sets demonstrated the importance of historical data and illustrated the need for new

and/or larger energy forecasting data sets. While some of the real data used for forecasting are

pubic [38], a number of studies deal with private [43] real-world data sets.

In the same work [42], Amasyali and El-Gohary point out that physical models includ-

ing simulation software such as EnergyPlus, eQuest, and Ecotect, calculate building energy

consumption based on detailed building and environmental parameters, but such detailed in-

formation may not always be available. On the other hand, data driven approaches do not

require such details about the simulated building, but they require sensors for data collection.

From their survey [42], it can be observed that simulation is often used in the design stage

while data driven approaches are common in demand and supply management. Physics and

data driven approaches do not replace each other; they are applied in different scenarios based

on their advantages and disadvantages.

Deb et al. [44] reviewed time series techniques for building energy consumption. They

observed that simulation and energy modeling software such as EnergyPlus, IES, eQuest, and

Ecotect have been greatly successful in energy modeling of new buildings. For energy fore-

casting, when historical data is not available, computer simulations are very effective [44].
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However, many factors govern energy consumption including physical properties of building

materials, weather, and occupants’ behaviors. Due to complexity of those factors and their in-

teractions, accurate energy forecasting through simulations is challenging [44]. Deb et al. [44]

noted that for existing buildings, when historical data are available, data driven techniques such

as those based on machine learning and statistics have been more accurate than simulations.

Lazos et al. [45] investigated approaches for incorporating weather conditions into energy

forecasting. The three categories of forecasting approaches were considered: statistics, ma-

chine learning, and physics(numerical)-based models. While physics models do not require

historical data and are able to provide explanations for the forecasts, they are often highly

complex and require extensive details about structural characteristics, thermodynamic, operat-

ing schedule, and other properties. Lazos et al. [45] also noted that it is challenging to model

occupants’ behaviors in physics-based systems. In contrast, data driven approaches do not re-

quire such details about the buildings and are capable of capturing some of occupants’ behavior

from historical data, but require significant amounts of data.

According to the reviewed studies [42, 44, 45], simulation can be used for energy fore-

casting, but machine learning models trained with historical data are much more common.

Moreover, synthetic building energy consumption data is especially hard to generate because,

in addition to the building properties, use type, and operating schedule, energy consumption

also depends on human behavior. Pillai et al. [46] proposed an approach for generating syn-

thetic load profiles using available load and weather data. While Pillai et al. aim to create

benchmark profiles, our work generates data for ML. Ngoko et al. [47] generated solar radi-

ation data using Markov models; in contrast, our study is concerned with generating data for

energy forecasting.

In recent years, Generative Adversarial Networks (GANs) have seen great progress and

received increased attention because of their ability to learn high-dimensional distributions.

Originally, GANs were designed for images, and today, the most common use of GAN is in

tasks that involve images. For example, works of Mao et al. [19], Denton et al. [20], and
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Karras et al. [21] deal with generating high quality images: Mao et al. [19] focus on vanishing

gradient problem, Denton et al. [20] propose the Laplacian pyramid of adversarial networks for

generating high-resolution images, and Karras et al. [21] improve the human-face generation

by using style-based generator. StackGAN [17] synthesizes high-quality images from text

descriptions by using a two-stage process: first, a low resolution image is created from text

descriptions, and then this image with text goes through a refinement process to create photo-

realistic details. SRGAN, a GAN for image superresolution (SR) [48] is capable of inferring

photo-realistic images with 4× upscaling factors. Zhang et al. [49] used GANs for image de-

raining (removing rain from images), consequently improving the visual quality and making

images better suited for vision systems.

While the reviewed works [17, 19, 20, 21, 48, 49] deal with images, our study is concerned

with time series data in the energy domain. The possibility to apply GANs with sequential and

time-series data has been recognised, and GAN-based approaches have been proposed in dif-

ferent domains and for different tasks. Continuous Recurrent Neural Networks with adversarial

training (C-RNN-GAN) [50] have been used for music generation and SeqGAN [51] for text

generation. While those works [50, 51] deal with discrete sequence generation, the majority of

data in the energy domain is real-valued and thus our work is concerned with real-valued data.

Esteban et al. proposed a Recurrent GAN [52] for generating realistic real-valued multi-

dimensional time series data focusing on the application to medical data. Similar to our study,

the work of Esteban et al. also uses recurrent neural networks for both the generator and

discriminator. In contrast to the work of Esteban et al. which uses a GAN similar to the

original Goodfellow et al. GAN [16], our approach applies Wasserstein GAN. Moreover, we

take advantage of Metropolis-Hastings GAN (MH-GAN) [24] approach for generating new

data. The same work [52] proposed “Train on Synthetic, Test on Real” (TSTR) approach for

evaluating GANs. TSTR is applicable when a supervised task can be defined over the training

data: the basic idea is to use synthetic data generated by GAN to train the model and then test

the model on a held-out set from the real data. Our study also employs TSTR as a part of the
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evaluation process.

EEG-GAN generates electroencephalographic (EEG) brain signal using Wasserstein GANs

with gradient penalty (WGAN-GP) [53]. While EEG-GAN employs a Convolutional Neural

Network (CNN), our work replaces CNN with RNN because of its ability to model temporal

dependencies.

To deal with learning from imbalanced datasets, Douzas and Bacao [54] applied GANs to

generating artificial data for the minority classes. Their experiments show an improvement in

the quality of data when GANs are used in place of oversampling algorithms such as SMOTE.

MISGAN, a GAN-based framework for learning from complex, high-dimensional incomplete

data [55], was proposed for the task of imputing missing data. VIGAN [56] also deals with

imputation, but in this case with scenarios when certain samples miss an entire view of data.

While Douzas and Bacao [54], Li et al. [55], and Shang et al. [56] generate specific part of

data (imbalanced classes or missing data), our work deals with generating new energy data

samples for training ML models.

Another category of works important to discuss here consists of those related to the GAN

evaluation. With image GANs, evaluation often involves visual inspection of the generated

sample; however, this is more difficult to do with time-series data. Inception score (IS) has

been proposed for evaluating image generative models [57]; IS uses Inception network pre-

trained on ImageNet data set to calculate the score. Nevertheless, not only is IS not applicable

for non-image data, it is also incapable of detecting overfitting [58].

Sajjadi et al. [59] proposed precision and recall for distributions. Precision measures how

much of distribution Q can be generated by a part of reference distribution P while recall

measures how much of P can be generated by a part of Q. By using a two-dimensional score,

they are able to distinguish between the quality of generated images from the coverage of the

reference distribution. Still, their study [59] was primarily concerned with images.

Theis et al. [60] compared different evaluation approaches and concluded that different

metrics have different trade-offs and favour different models. They highlight the importance of
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matching training and evaluation to the target application. As the main objective of our work

is to generate electricity data suitable for training machine learning models, the evaluation is

performed in the context of the application by assessing the suitability of the generated data for

ML task. Specifically, this is done by training the prediction model on the generated data and

testing it on the real data.

3.3 Online Machine Learning

In recent years, Deep Learning (DL) approaches have demonstrated great success in many

applications including load forecasting. They can learn feature representations, have strong

generalization capabilities, and are able to model complex relationships present in data.

However, several challenges remain open regarding DL techniques for load forecasting.

The conventional offline models are trained once by repeatedly passing all training data through

the model; one pass is referred to as an epoch. Then, the model is used to infer future loads.

This approach is missing out on the information that new data could provide. Of course, the

model can be re-trained occasionally using all old data together with new data, but this is very

computationally expensive as each time, the model is re-trained from scratch. Ideally, the

model would learn from new data as they become available, without the need to re-train or to

retain old data. Besides, the data distributions in the energy domain change over time, produc-

ing what is known as concept drift [9]. For example, installing new appliances or changing

behavioral patterns in a house will result in different energy consumption profiles. Depend-

ing on the factors affecting the data, concept drift can occur within a short time (abrupt drift),

gradually over a period of time (gradual drift), steady and slow change in the data distributions

(incremental drift), or reoccur after some time (recurrent drift) [61]. In the presence of concept

drift, conventional machine learning models experience weak and degrading predictive perfor-

mance [62]. Online learning has the potential to address these challenges as online models

learn from data streams by updating the model as data become available. A few studies have
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been conducted for energy consumption forecasting using online methods.

Online machine learning approaches can be classified into three main categories: optimization-

based, model-based, and hybrid approaches. Optimization-based approaches are various ex-

tensions of the gradient descent algorithm to enable updates of the model’s parameters as new

data become available without changing the model architecture. Defazio et al. [63] introduced

SAGA, an incremental gradient-based optimization approach with fast linear convergence rates

for non-strongly convex problems. Johnson and Zhang [64] proposed stochastic variance re-

duced gradient (SVRG), a variance reduction method for Stochastic Gradient Descent (SGD).

At each step, SVRG keeps a version of estimated parameters and the average gradient and then

uses those values in the update rule to reduce the variance of SGD. This approach achieves

fast convergence rates for smooth and strongly convex functions. Stream SAGA (STRSAGA)

[65] and Streaming SVRG (SSVRG) [66] are extensions of SAGA and SVRG with improved

performance.

The model-based approaches modify the model architecture and/or change the number of

parameters to achieve a gradually updated model with faster convergence. Sánchez-Medina

et al. [67] proposed adaptive incremental linear regression for wind forecasting. The model

learns gradually as new observations arrive and, when concept drift is detected, the older ob-

servations are removed from the model. As this approach is grounded on linear regression,

this approach is not suited for non-linear problems such as load forecasting. Vexler et al. [68]

devised a real-time architecture for energy consumption forecasting by combining LSTM and

online density estimation with Hoeffding trees. Liang et al. [69] presented an LSTM-based

approach for energy forecasting in the smart grid with the model located at the network edge.

As new data arrive, the model is continually trained on the small subsets of arriving data reduc-

ing computation and training time. Spiral RNN [70] is an RNN architecture that combines a

trainable hidden recurrent layer with the Echo State Neural Network (ESN) for online learning.

In experiments, Spiral RNN demonstrated stable performance and fast convergence.

The hybrid models combine techniques from optimization and model-based solutions; they



28 Chapter 3. RelatedWork

benefit from continuous parameter updates, a modified architecture, and various pre- and post-

processing techniques, which leads to a simpler model and faster convergence. Guo et al. [71]

presented Weighted Gradient Learning (WG-Learning) for RNNs to learn from online time se-

ries in the presence of anomalies and change points. The local properties of the newly available

time series data are exploited to weight the gradients. Madireddy et al. [72] proposed a hybrid

model combining the two components: an online Bayesian change point detection method to

detect the location of the concept drift and a moment-matching transformation technique to

convert the data collected before the concept drift to be useful for re-training after the con-

cept drift. Fields et al. [73] investigated the sensitivity of various neural networks to concept

drift: flavors of RNN, LSTM, and GRU, were less sensitive than the other types of NNs. Ceci

et al. [74] combined the online adaptive training, entropy-based error measure, and spatial

autocorrelation for wind power generation forecasting.

Reviewed optimization-based approaches are well suited for smooth and convex problems.

However, neural network training is a non-convex optimization problem, and the optimizer can

get stuck in a spurious local optimum, especially when dealing with complex models such as

those common in RNNs [75]. Additionally, these models are not designed to handle concept

drift [65].

Model-based approaches also do not consider concept drift except for adaptive incremental

linear regression [67] which can handle concept drift but is suitable only for linear problems.

As non-linearities are present in energy consumption data, adaptive incremental linear regres-

sion is not suitable for load forecasting. In contrast, our solution is non-linear and can handle

concept drift.

Reviewed approaches from the hybrid category deal with concept drift, but most are in very

different domains such as application performance modeling [72] and network traffic [71]. In

contrast, our study specifically considers residential load forecasting for individual households

which is a difficult forecasting problem due to high load variability and frequent concept drift.

Also, in research studies, concept drift is often simulated [73] while we use real-world data.
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Online learning approaches proposed by Vexler et al. [68] and Liang et al. [69] focus on

load forecasting. They handle concept drift by transforming the data before feeding the model

while our work adjusts the model by tuning the model’s parameters as needed. Our online

model tuning increases accuracy and improves concept drift handling. The work of Ceci et al.

[74] is also in the energy domain: to achieve the model updates, they fully re-train the neural

network at the end of each day using all historical data. In contrast, our work updates the model

as new data arrive without re-training and without the need to retain historical data.

It is also important to mention the five common online algorithms:

1. Multi-Layer perceptron (MLP) Regressor [76] learns by incrementally fitting the MLP

on batches of samples with SGD as the optimizer.

2. Online linear regression [77] updates the regression weights with SGD in each learning

step.

3. Online Passive-Aggressive (PA) algorithms [78] are a family of online margin-based al-

gorithms: similar to SVR, they aim to maximize the margin. If arriving data are from the

same distribution, the algorithm will keep learning, but if the data distribution changes,

the weights will slowly forget the previous distribution and learn the new one.

4. The online version of bagging [79] process each data point as it arrives without a need to

store it or reprocess while maintaining the current state of the model.

5. The online KNN for regression is a combination of a conventional KNN regression al-

gorithm and the weighted sliding windows.

These algorithms vary in complexity, ability to capture non-linear relations, as well as ca-

pability to handle time dependencies. As will be shown in the evaluation, our Online Adaptive

RNN outperforms those five algorithms.
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3.4 Federated Learning

The reviewed conventional and online load forecasting works achieved good accuracy in load

forecasting studies; however, they all train an individual ML model for each smart meter or

a group of meters which becomes computationally very expensive when the number of smart

meters grows. Also, these techniques train the ML models on a centralized system and, thus,

require transferring all data from all smart meters to that server, which results in increased

network traffic and latencies. These centralized solutions are also associated with security and

privacy vulnerabilities due to sharing and transmitting data from smart meters to the central

server.

FL is a burgeoning learning paradigm that has shown promising potential in various fields

such as health care [80, 81], autonomous vehicles [82], text analysis [83], and image process-

ing [84], to name but a few [85]. Leroy et al. [86] proposed an approach based on federated

learning for training speech-based models on mobile devices. They used an adaptive averaging

strategy in place of weighted averaging to reduce the number of communication rounds re-

quired to reach the target performance. This method achieved competitive accuracy compared

to the centralized approaches.

Liu et al. [87] introduced FedVision, a visual object detection platform enabled by Con-

volutional Neural Network (CNN) and FL for training a shared model through a collaboration

of multiple clients. Since parameters from diverse local models can have different contribu-

tions towards the shared model performance, FedVision applies a compression technique to

prune less useful weights while preserving model performance. This results in reduced neural

network size and faster transmission.

To enable training personalized ML models with health information without compromising

privacy, Yiqiang et al. [88] proposed FedHealth. Knowledge from data is aggregated though

FL and, then, the local models are personalized by transfer learning. FedHealth adopts the

FL paradigm [89] to aggregate the local models; however, rather than just replacing the local

model with the aggregated one, transfer learning is used to personalize the global model for
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each user.

Briggs et al. [90] combined FL with hierarchical clustering (FL+HC). The FL+HC training

process consists of three steps. First, a typical FL model is trained with the clients local data

for a few training rounds. Next, a hierarchical clustering algorithm is employed to iteratively

compare and merge the clients with similar weights (grouping similar clients). Once clusters

are determined, each cluster trains its specialized model independently.

In the presence of highly skewed non-IID (independent and identically distributed) data,

the accuracy of FL can reduce significantly. To address this problem, Zhao et al. [91] sug-

gested sharing a small subset of data among all nodes. Although this method has shown the

accuracy increase, sharing data introduces security and privacy concerns. Agnostic Federated

Learning proposed by Mohri et al. [92] updates the shared model using a weighted average

of the clients’ gradients and a new optimization method. Their study shows that the proposed

approach contributes to fairness and reduces bias. Smith et al. introduced MOCHA [93], a fed-

erated paradigm that combines multi-task learning [94] with FL. Each node in FL may observe

data with a distinct distribution, so it is intuitive to fit a separate model for each local node;

however, these separate models have relationships and exhibit similarities. MOCHA applies

multi-task learning techniques to fit separate weight vectors for each node. Yeongwoo et al.

[95] introduced dynamic clustering into the FL framework. On the server side, the framework

employs ClusterGAN and HypCluster to dynamically group clients into the clusters accord-

ing to their loss. The aggregation is carried out individually for each cluster, and the updated

parameters are sent to clients that are part of the same cluster.

The reviewed FL works [86, 87, 88, 89, 90, 92, 93] propose FL techniques and address

challenges in diverse domains; however, they have not been applied for load forecasting, and

their capabilities for load forecasting need to be investigated. Diversity of distributions and

load patterns observed by individual smart meters imposes challenges and may degrade the

accuracy of the single global model created through FL. To address these issues, Taı̈k et al.

[96] examined the use of federated averaging for short-term load forecasting. The proposed
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method employs federated averaging architecture with the weighted averaging as the aggrega-

tion technique and LSTM as the global model. Their initial results show that FL is a promising

approach for an hour ahead forecasting. Similarly, Li et al. [97] also took advantage of the FL

with the weighted averaging; however, their study focused on the security aspect rather than

the forecasting accuracy, and, as a result, the model’s time complexity was high as it included

encryption and decryption time. Yuris et al. [98] proposed a hybrid of FL and clustering to pre-

dict electric vehicle charging station demand on the power grid. The charging stations are first

clustered based on their location and then federated averaging approach is applied individually

on each cluster. FL with clustering achieved the forecasting accuracy very similar to stan-

dalone FL. Zhang et al. [99] proposed a probabilistic model for solar irradiation forecasting

based on deep learning, variational Bayesian inference, and FL. Although the results showed

competitive performance, the main drawback is that the model does not support non-IID data.

Reviewed studies on FL for load forecasting [96, 97, 98] present initial attempts to intro-

duce FL in this domain; however, there is a need for deeper understanding of FL capabilities

and limitations. Our study investigates FL with smart meter data, but does not assume clients

similarity, and examines FL in presence of clients with different data distributions. Moreover,

our work compares two FL techniques, FedSGD and FedAVG, and examines the behaviour of

the FL system when some clients join the federation upon the completion of training.

3.5 Asynchronous Federated Learning

One of the main constraints of the standard FL models is that they require high device availabil-

ity. Synchronous FL requires that all clients selected for training in a specific training round

be available and the server waits for updates from all selected clients before the aggregation.

Nevertheless, in IoT systems, it is common for sensors to be disconnected for a period of time.

This restriction has a considerable effect on the learning process as it can degrade the predic-

tion capacity of the FL model. Also, this highlights the need to develop asynchronous learning
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approaches capable of handling node disconnects from the FL network.

FL approaches discussed in Section 3.4 have achieved good results in various application

and some are even well suited for non-IID data [92, 93, 95, 100]; however, they are syn-

chronously trained and, thus, unfit for heterogeneous devices and unreliable networks. Chen

et al. [101] proposed an asynchronous online FL framework (ASO-Fed), in which clients

perform online learning from local streaming data. ASO-Fed uses a feature Representation

learning method on the server to extract cross-device attributes from the clients’ updates. Fleet

[102] is another online FL framework: it introduced AdaSGD, an asynchronous learning algo-

rithm robust to stale updates (updates that are arriving with delay). For calculating similarities

among clients, some labeled data must be shared with the server what creates potentials for

privacy leakage. Additionally, AdaSGD has a limited capacity for dealing with non-IID data.

FedAsync [103], an asynchronous FL algorithm, applies regularization on the local clients

and uses a weighted average to update the global model. While FedAsync demonstrated some

staleness tolerance, for large staleness, FedAsync performs similarly to synchronous FL. Sim-

ilarly, federated adaptive weighting [104] aims to improve the FL performance in presence of

non-IID data through assigning different weights for the participating nodes when updating the

global model.

Asynchronous FL works [101, 102, 103, 104] introduced different techniques; however,

asynchronous FL is an emerging topic and needs to be further investigated in diverse settings.

To the best of our knowledge, our proposed method is the first asynchronous FL algorithm for

load forecasting.
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Generating Synthetic Data Streams

The data in the energy sector have a potential to provide insights, support decision making, in-

crease grid flexibility and reliability [105]. Machine Learning (ML) has been used for various

smart grid tasks because of its ability to learn from data, detect patterns, provide data-driven

insights and predictions. Examples include short and long term demand forecasting for aggre-

gated and individual loads [38], anomaly detection [106, 107], energy disaggregation [108],

state estimation, generation forecasting encompassing solar and wind, load classification, and

intrusion detection.

All ML applications are dependent on the availability of sufficient historical data. This

is especially heightened in the case of complex models such as those found in deep learning

(DL) as large data are required for training DL models. Although a few anonymized data sets

have been made publicly available [109, 110], many power companies are hesitant to release

their smart meter and other energy data due to privacy and security concerns [6]. Moreover,

risks and privacy concerns have been identified as key issues throughout data driven energy

management [105].

This chapter proposes Recurrent Generative Adversarial Networks (R-GAN), an approach

for generating synthetic energy data streams based on GANs. The methodology consists of a

pre-processing system, feature generation, and the recurrent generative model. The evaluation

34
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process for measuring the quality of generated data is presented and the performance of the

proposed R-GAN is examined.

4.1 Recurrent Generative Adversarial Networks for Gener-

ating Energy Data

This section proposes a Recurrent Generative Adversarial Network (R-GAN) for generating

realistic energy consumption data by learning from real data samples. The focus is on gener-

ating data for training ML models in the energy domain, but R-GAN can be applied for other

tasks and with different time-series data. Both the generator and discriminator are Stacked Re-

current Neural Networks (RNNs) to enable capturing time dependencies present in energy con-

sumption data. R-GAN takes advantage of Wasserstein GANs (WGANs) [23] and Metropolis-

Hastings GAN (MH-GAN) [24] to improve training stability, overcome the mode collapse,

and, consequently, generate more realistic data.

Fig. 4.1 depicts the overview of the proposed R-GAN approach. As R-GANs use RNNs for

the generator and discriminator, data first needs to be pre-processed to accommodate the RNN

architecture. Accordingly, next section first describes data pre-processing consisting of feature

engineering (ARIMA and Fourier transform), normalization, and sample generation (sliding

window). Then, R-GAN is described and the evaluation process is introduced.

4.1.1 Data Pre-processing

In this research, the term core features refers to energy consumption features and any other

features present in the original data set (e.g. reading hour, weekend/weekday). In the data

pre-processing step, these core features are first enriched through feature engineering using

Auto Regressive Integrated Moving Average (ARIMA) and Fourier Transform (FT). Next, all

features are normalized and the sliding window technique is applied to generate samples for

GAN training.
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Figure 4.1: Recurrent GAN for Energy Data.
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Auto Regressive Integrated Moving Average (ARIMA)

Auto Regressive Integrated Moving Average (ARIMA) [111] models are fitted to time series

data to better understand the data or to forecast future values in the time series. The Auto

Regressive (AR) part models the variable of interest as regression of its own past values, the

Moving Average (MA) part uses a linear combination of past error terms for modeling, and

Integrated (I) refers to dealing with non-stationarity.

Here, ARIMA is used because of its ability to capture different temporal structures in time

series data. As this work is focused on generating energy data, the ARIMA model is fitted

to the energy feature. The values obtained from the fitted ARIMA model are added as a new

engineered feature to the existing data set. The RNN itself is capable of capturing temporal de-

pendencies, but adding ARIMA further enhances time modeling and, consequently, improves

the quality of the generated data.

Fourier Transform

Fourier Transform (FT) decomposes a time signal into its constituent frequency domain rep-

resentations [111]. Using FT, every waveform can be represented as the sum of sinusoidal

functions. An inverse Fourier transform synthesizes the original signal from its frequency

domain representations. Because FT identifies which frequencies are present in the original

signal, FT is suitable for discovering cycles in the data.

Like with ARIMA, only the energy feature is used with FT. The energy time series is

decomposed into sinusoidal representations, n dominant frequencies are selected, and a new

time series is constructed using these n constituent signals. This new time series represents

a new feature. When the number of components n is low, the new time series only captures

the most dominant cycles, whereas for a large number of components, the created time series

approaches the original time series. One value of n creates one new feature, but several values

with their corresponding features are used in order to capture different temporal scales.

The objective of using FT is similar to the one of ARIMA: to capture time dependencies
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and, consequently, improve quality of the generated data. The experiments demonstrate that

both ARIMA and Fourier transform contribute to the quality of the generated data.

Feature Normalization

To bring the values of all features to a similar scale, the data was normalized using MinMax

normalization. The values of each feature were scaled to values between 0 and 1 as follows:

x′ =
x − Min(X)

Max(X) − Min(X)
(4.1)

where x is the original value, Min(X) and Max(X) are the minimum and maximum of that

feature vector, and x′ is the normalized value.

Sliding Window

At this point, data is still in a matrix format as illustrated in Fig. 4.2 with each row containing

readings for a single time step. Note that features in this matrix include all features contained

in the original data set (core features) such as appliance status or the day of the week, as well

as additional features engineered with ARIMA and FT.

As the generator core is RNN, samples need to be prepared into a form suitable for RNN.

To do this, the sliding window technique is applied. As illustrated in Fig. 4.2, the first K rows

correspond to the first time window and make the first training sample. Then, the window

slides for S steps, and the readings from the time step S to K + S make the second sample.

Note that in Fig. 4.2, the step is S = 1 although other step sizes could be used. Each sample is

a matrix of dimension K × F, where K is the window length and F is the number of features.
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Figure 4.2: Sliding Window Approach.

4.1.2 R-GAN

Similar to an image GAN, R-GAN consists of the generator and the discriminator as illus-

trated in Fig. 4.1. However, while an image GAN typically uses CNN for the generator and

discriminator, R-GAN substitutes CNN with the stacked LSTM and a single dense layer. The

architectures of the R-GAN generator and discriminator are shown in Fig. 4.3. The stacked

LSTMs were selected because the LSTM cells are able to store information for longer se-

quences than Vanilla RNN cells. Moreover, stacked hidden layers allow capturing patterns at

different time scales.

Figure 4.3: R-GAN generator and discriminator.

Both the generator and discriminator have a similar architecture consisting of stacked
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LSTM and a dense layer (Fig 4.3), but they differ in dimensions of their inputs and outputs

because they serve a different purpose: one generates data and the other one classifies samples

into fake and real. The generator takes random inputs from the predefined Gaussian latent

space and generates time series data. The input has the same dimension as the siding window

length K. The RNN output before the fully connected later has dimension K×c (window length

× cell state dimension). The generated data (generator output) has the same dimensions as the

real data after pre-processing: each sample is of dimension K × F (window length × number

of features).

GELU (Gaussian Error Linear Unit) activation function has been selected for the generator

and discriminator RNNs [112] as it recently outperformed Rectified Linear Unit (ReLU) and

other activation functions [112]. The GELU can be approximated by [112]:

GELU(x) = 0.5x

1 + tanh

√2
π

(x + 0.044715x3)

 (4.2)

Similar to the ReLU (Rectified Linear Unit) and the ELU (Exponential Linear Unit ) ac-

tivation functions, GELU enables faster and better convergence of neural networks than the

sigmoid function. Moreover, GELU merges ReLU functionality and dropout by multiplying

the neuron input by zero or one, but this dropout multiplication is dependent on the input:

there is a higher probability of the input to be dropped as the input value decreases [112]. The

stacked RNN is followed by the dense layer in both the generator and discriminator. The dense

layer activation function for the generator is GELU because of the same reasons explained with

GELU selection in a stacked RNN. In the discriminator, the dense layer activation function is

tanh to achieve real/synthetic classifications.

As illustrated in Fig. 4.1, the generated data together with pre-processed data are passed

to the discriminator which learns to differentiate between real and fake samples. After a mini-

batch consisting of several real and generated samples is processed, discriminator loss is cal-
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culated and the discriminator weights are updated using gradient descent. As R-GAN uses

WGAN, the updates are done slightly differently than in the original GAN. In the original

GAN work [16], each discriminator update is followed by the generator update. In contrast,

the WGAN algorithm trains the discriminator relatively well before each generator update.

Consequently, in Fig. 4.1, there are several discriminator update loops before each generator

update.

Once the generator and discriminator are trained, the R-GAN is ready to generate data. At

this step, typically only the trained generator is used. If the generator was trained perfectly, the

resulting generated distribution, PG, would be the same as the real one. Unfortunately, GANs

may not always converge to the true data distribution, thus taking samples directly from these

imperfect generators can produce low quality samples. However, our work takes advantage

of the Metropolis-Hastings GAN (MH-GAN) approach [24] in which both the generator and

discriminator play roles in generating samples.

Data generation using MH-GAN approach is illustrated in Fig. 4.4. The discriminator,

together with the trained generator G, forms a new generator G′. The generator G takes as

input random samples {z0, z1, ..., zk} and produces time series samples {x′0, x
′
1, ..., x

′
k}. Some of

the generated samples are closer to the real data distribution than the others. The discriminator

serves as a selector to choose the best sample x from the set {x′0, x
′
1, ..., x

′
k}. The final output is

the generated time series sample x.

4.2 Evaluation Process

The main objective of this work is to generate data for training ML models; therefore, the

presented R-GAN is evaluated by assessing the quality of ML models trained with synthetic

data. As energy forecasting is a common ML task, it is used here for the evaluation too. In

addition to Train on Synthetic, Test on Real (TSTR) and Train on Real, Test on Synthetic

(TRTS) approaches proposed by Esteban et al. [52], two additional metrics are employed:
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Figure 4.4: MH-GAN approach.

Train on Real, Test on Real (TRTR) and Train on Synthetic, Test on Synthetic (TSTS).

Train on Synthetic, Test on Real (TSTR)

A prediction model is trained with synthetic data and tested on real data. TSTR was proposed

by Esteban et al. [52]: they evaluated the GAN model on a clustering task using random forest

classifier. In contrast, our study evaluates R-GAN on an energy forecasting task using an RNN

forecasting model. Note that this forecasting RNN is different than RNNs used for the GAN

generator and discriminator, and could be replaced by a different ML algorithm. RNN was

selected because of its recent success in energy forecasting studies [43]. This forecasting RNN

is trained with synthetic data and tested on real data.

Consequently, TSTR evaluates the ability of the synthetic data to be used for training energy

forecasting models. If the R-GAN suffers from the mode collapse, TSTR degrades because the

generated data do not capture diversity or real data and, consequently, the prediction model

does not capture this diversity.

Train on Real, Test on Synthetic (TRTS)

This is the reverse of TSTR: a model is trained on the real data and tested on the synthetic

data. The process is exactly the same as in TSTR with exception of reversed roles of synthetic
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and real data. TRTS serves as an evaluation of GAN’s ability to generate realistic looking data.

Unlike TSTR, TRTS is not affected by the mode collapse as a limited diversity of synthetic data

does not affect forecasting accuracy. As the aim is to generate data for training ML models,

TSTR is a more significant metrics than TRTS.

Train on Real, Test on Real (TRTR)

This is a traditional evaluation with the model trained and tested on the real data (with separate

train and test sets). TRTR does not evaluate the synthetic data itself, but it allows for the com-

parison of accuracy achieved when a model is trained with real and with synthetic data. Low

TRTR and TSTR accuracies indicate that the forecasting model is not capable of capturing vari-

ations in data and do not imply low quality of synthetic data. The goal of the presented R-GAN

data generation is the TSTR value comparable to the TRTR value, regardless of their absolute

values: this demonstrates that the model trained using synthetic data has similar abilities as the

model trained with real data.

Train on Synthetic, Test on Synthetic (TSTS)

Similar to TRTR, TSTS evaluates the ability of the forecasting model to capture variations

in data: TRTR evaluates the accuracy with real data and TSTS with synthetic data. Large

discrepancies between TRTR and TSTS indicate that the model is much better with real data

than with synthetic, or the other way around. Consequently, this means that the synthetic data

does not reassemble the real data.

4.3 Evaluation of R-GAN

This section first introduces the data sets and pre-processing. Next, the quality of synthetic data

is assessed using various methods, and finally, the overall results for each dataset are discussed.
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4.3.1 Data sets and Pre-Processing

The evaluation was carried out on two data sets: UCI appliances energy prediction data set

[113] and Building Data Genome set [109]. UCI data set consists of energy consumption

readings for different appliances with additional attributes such as temperature and humidity.

The reading interval is 10 minutes and the total number of samples is 19,736. Day of the week

and month of the year features were created from reading date/time, resulting in a total of 28

features.

Building Data Genome set contains one year of hourly, whole building electrical meter data

for non-residential buildings. In experiments, readings from a single building were used; thus,

the number of samples is 24 * 365 = 8,760. With this data set, energy consumption, year,

month, day of the year, and hour of the day features were used.

For both data sets, the process is the same. The data set is pre-processed as described in

subsection 4.1.1. ARIMA is applied first to create an additional feature: to illustrate this step,

Fig. 4.5 shows original data (energy consumption feature) and ARIMA fitted model for UCI

data set.

Next, Fourier transform (FT) is applied. FT can be used with a different number of com-

ponents resulting in different signal representations; in the experiments, four transformations

were considered with 1, 10, 100, and 1000 components. The four representations are illustrated

in Fig. 4.6 on UCI data set. It can be observed that one component results in almost constant

values and 10 components capture only large scale trends. As the number of components in-

creases to 100 and 1000, more smaller-scale changes are captured and the representation is

closer to the original data. These four transformations with 1, 10, 100, and 1000 components

make the four additional features.

At this point, all needed additional features are generated (total of 33 features), and the

pre-processing continues with normalization (Fig. 4.1). To prepare data for RNN, the sliding

window technique is applied with the window length K = 60 indicating that 60 time steps make

one sample, and step S = 30 specifying that the window slides for 30 time steps to generate
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Figure 4.5: ARIMA fitted model (UCI data set).

the next sample. This window size and step were determined from the initial experiments.

The model performance is compared with two metrics: Mean Absolute Percentage Error

(MAPE) and Mean Absolute Error (MAE). They were selected as evaluation metrics because

of their frequent use in energy forecasting studies [32, 114]. They are calculated as:

MAPE =
100%

N

N∑
t=1

∣∣∣∣∣yt − ŷt

yt

∣∣∣∣∣ (4.3)

MAE =
1
N

N∑
t=1

|yt − ŷt| (4.4)

where y is the actual value, ŷ is the predicted value, and N is the number of samples.

4.3.2 Experiments

The R-GAN was implemented in Python with Tensorflow library [115]. The experiments were

performed on a computer with Ubuntu OS, AMD Ryzen 4.20 GHz processor, 128 GB DIMM

RAM, and four NVIDIA GeForce RTX 2080 Ti 11GB graphics cards. Training the proposed

R-GAN is computationally expensive; therefore, GPU acceleration was used. However, once

the model is trained, it does not require significant resources and CPU processing is sufficient.

Both discriminator and generator were stacked LSTMs with the hyperparameters as fol-

lows:
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Figure 4.6: The results of Fourier transform with 1, 10, 100, and 1000 components (UCI data
set).
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• Number of layers L = 2

• Cell state dimension size c = 128

• Learning rate = 2e-6

• Batch size = 100

• Optimizer=Adam

The input to the generator consisted of samples of size 60 (to match the window length)

drawn from the Gaussian distribution. The generator output was of size 60×33 (window length

× number of features). The discriminator input was of the same dimension as the generator

output and the pre-processed real data.

Hyperparameters were selected according to the hyperparameter studies, commonly used

settings, or by performing experiments. Keskar et al. [116] observed that performance de-

grades for batch sizes larger than commonly used 32-521. To keep in that range, and to be

close to the original WGAN work [23], batch size 100 was used. For each batch, 100 gener-

ated synthetic samples and 100 randomly selected real samples were passed to the discrimina-

tor for classification. Increasing the cell state dimension typically leads to the increased LSTM

accuracy, but also increases the training time [117]; thus, moderate 128 size was selected.

Greff et al. [117] observed that the learning rate is the most important LSTM parameter

and that there is often a large range (up to two orders of magnitude) of good learning rates. Fig.

4.7 shows generator and discriminator loss for the learning rates (LR) 2e-6, 2e-5, and 2e-4 for

UCI data set and the model with ARIMA and FT features. Similar patterns have been observed

with Building Genome data, therefore, here we only discuss loss for UCI experiments. The

generator and discriminator are competing against each other; thus, improvement in one results

in a decline in the other until the other learns to handle the change and causes the decline of

its competitor. Hence, in the graph, oscillations are observed indicating that the networks are

trying to learn and beat the competitor. For learning rate 2e-6, the generator stabilizes quite
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well, while the discriminator shows fluctuations as it tries to defeat the generator. Oscillations

of the objective function are quite common in GANs, and WGAN is used in this work to help

with convergence. Nevertheless, as the learning rate increases to 2e-5 and 2e-4, the generator

and discriminator are experiencing increased instabilities. Consequently, learning rate 2e-6

was used for the experiments presented in this study. Additional hyperparameter tuning has a

potential to further improve archived results.

All experiments were carried out with 1500 epochs to allow sufficient time for the system

to converge. As can be seen from Fig. 4.7, for learning rate 2e-6, the generator largely sta-

bilizes after around 500 epochs and experiences very little change after 1000 epochs. At the

same time, the discriminator experiences similar oscillation patterns from around 400 epochs

onward. Thus, training for 1000 epochs might be sufficient; nevertheless, 1500 epochs allow a

chance for further improvements.

Figure 4.7: Generator and discriminator loss for LR=2e-6, 2e-5, and 2e-4 (UCI data set).

R-GAN was evaluated with the four models corresponding to the four sets of features:

• Core features only.

• Core and ARIMA generated features.

• Core and FT generated features.
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• Core, ARIMA, and FT generated features.

As described in section 4.2, ML task, specifically energy forecasting, was used for the eval-

uation with TRTS, TRTR, TSTS, and TSTR metrics. Forecasting models for those evaluations

were also RNNs. Forecasting model hyperparameters for each experiment were tuned using

the expected improvement criterion according to Bergstra et al. [28], which results in differ-

ent hyperparameters for each set of input features. This way, we ensure that the forecasting

model is tuned for the specific use scenario. The following ranges of hyperparameters were

considered for the forecasting model:

• Hidden layer sizes: 32, 64, 128

• Number of layers: 1, 2

• Batch sizes: 1, 5, 10, 15, 30, 50

• Learning rates: continuous from 0.001 to 0.03

For each of R-GAN models, 7200 samples were generated and then TSTR, TRTS, TRTR,

an TSTS approaches with an RNN prediction model were applied.

4.3.3 Results and Discussion - UCI data set

This subsection presents results achieved on UCI data set and discusses findings. MAPE and

MAE for the four evaluations TRTS, TRTR, TSTR, and TSTS are presented in Table 4.1. For

the ease of the comparison, the same data is presented in a graph form: Fig. 4.8 compares

models based on MAPE and Fig. 4.9 based on MAE.

As we are interested in using synthetic data for training ML models, TSTR is a crucial

metric. In terms of TSTR, addition of ARIMA and FT features to the core features reduces

MAPE from 18.67% to 10.12% and MAE from 62.74 to 52.54. Moreover, it can be observed

that for all experiments adding ARIMA and FT features improves the accuracy in terms of both

MAPE and MAE.
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Table 4.1: TRTS, TRTR, TSTR, and TSTS accuracy for R-GAN (UCI data set)

MAPE(%) MAE

Features TRTS TRTR TSTR TSTS TRTS TRTR TSTR TSTS

Core features 13.60% 17.98% 18.67% 18.80% 54.26 63.82 62.74 90.90
Core and ARIMA features 8.65% 11.43% 11.37% 8.92% 48.14 62.67 54.00 80.00
Core and FT features 9.07% 15.84% 17.79% 15.10% 48.99 63.12 61.74 90.67
Core, ARIMA and FT features 5.28% 10.81% 10.12% 6.80% 46.41 62.27 52.54 78.35

Figure 4.8: MAPE(%) comparison between TRTS/TSTS and TSTR/TRTR (UCI data set).

Figure 4.9: MAE comparison between TRTS/TSTS and TSTR/TRTR (UCI data set).

Because forecasting models always result in some forecasting errors even when trained

with real data, it is important to compare the accuracy of the model trained with synthetic

data with the one trained with the real data. TRTR evaluates the quality of the forecasting

model itself. As can be observed from Table 4.1, TSTR accuracy is close to TRTR accuracy

for all models irrelevant of the number of features. This indicates that the accuracy of the

forecasting model trained with synthetic data is close to the accuracy of the model trained with

real data. When the model is trained with real data (TRTR), the MAPE for the model with
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all features is 10.81% whereas when trained with synthetic data (TRTS) MAPE is 10.12 %.

Consequently, comparable TSTR and TRTR values demonstrate the usability of synthetic data

for ML training.

The accuracy of TSTR is higher than the accuracy of TRTS in terms of both MAPE and

MAE for all experiments. Good TRTS accuracy shows that the predictor is able to generalize

from real data and that generated samples are similar to real data. However, higher TSTR errors

than TRTS errors indicate that the model trained with generated data does not capture the real

data as well as the model trained on the real data. A possible reason for this is that, in spite of

using techniques for dealing with mode collapse, the variety of generated samples is still not

as high as the variety of real data.

Visual comparison cannot be done in a similar way as in image GANs, but Fig. 4.10 shows

examples of two generated samples compared with the most similar real data samples. It can

be observed that the generated patterns are similar, but not the same as the real samples; thus,

data looks realistic without being a mere repetition of the training patterns. Although Fig.

4.10 provides some insight into generated data, already discussed TSTR and its comparison to

TRTR are the main metrics evaluating the usability of generated data for ML training.

Figure 4.10: Two examples of generated data samples compared to real data.

To further compare real and synthetic data, statistical tests were applied to evaluate if there

is a statistically significant difference between the generated and real data distributions. The

Kruskal-Wallis H test also referred to ”one-way ANOVA on ranks”, and the Mann-Whitney
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U test were used because both of them are non-parametric tests and do not assume normally

distributed data. The parametric equivalent of the Kruskal-Wallis H test is one-way ANOVA

(analysis of variance). The null hypothesis for the statistical tests was: the distributions of

the real and synthetic populations are equal. The H values and U values together with the

corresponding p values for each test and for each of the GAN models are shown in Table 4.2.

Each test compares the real data with the synthetic data generated with one of the four models.

The level of significance α = 0.05 was considered.

As the p value for each test is greater than α = 0.05, the null hypothesis is not rejected: for

each of the four synthetic data sets, irrelevant of the number of features, there is little to no evi-

dence that the distribution of the generated data is statistically different than the distribution of

the real data. H and U tests provide evidence about the similarity of distributions; nevertheless,

TSTR and TRTR remain the main metrics for comparing among the GAN models.

Note the intuitive similarity between reasoning behind R-GAN and a common approach

for dealing with the class imbalance problem, SMOTE (Synthetic Minority Over-sampling

Technique) [118]. SMOTE takes each minority class sample and creates synthetic samples on

lines connecting any/all of the k minority neighbors. Although R-GAN deals with the regres-

sion problem and SMOTE with classification, both create new samples by using knowledge

about existing samples. SMOTE does so by putting new samples between existing (real) ones

whereas R-GAN learns from the real data, and then it is able to generate samples similar to the

real ones. Consequently, R-GAN has a potential to be used for class imbalance problems.

Overall, the results are promising as the forecasting model trained on the synthetic data

is achieving similar forecasting accuracy as the one trained on the real data. As illustrated in

Table 4.1, both MAPE and MAE for the model trained on the synthetic and tested on the real

data (TSTR) are close to MAPE and MAE for the model trained and tested on the real data

(TRTR).
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Table 4.2: Kruskal-Wallis H Test and Mann-Whitney U test (UCI data set)

Kruskal-Wallis H Test Mann-Whitney U test

Model (Real vs. Synthetic) H value p value U value p value

Core features 416.50 0.312 0.247 0.619
Core and ARIMA features 428.00 0.375 0.107 0.744
Core and FT features 390.50 0.191 0.775 0.375
Core, ARIMA, and FT features 380.50 0.180 0.885 0.355

4.3.4 Results and Discussion - Building Genome data set

This subsection presents the results achieved with Building Genome data. MAPE and MAE

for the four evaluations TRTS, TRTR, TSTR, and TSTS are presented in Table 4.3. The same

data is displayed in a graph form for ease of comparison: Fig. 4.11 compares models based on

MAPE and Fig. 4.12 based on MAE.

Similar to the UCI data set, TSTR accuracy is close to TRTR accuracy in terms of both,

MAPE and MAE, for all models, irrelevant of the number of features. As in the UCI experi-

ments, this indicates that the accuracy of the forecasting model trained with synthetic data is

close to the accuracy of the model trained with real data. The best model was with core and

FT features: it achieved the MAPE of 4.86% when trained with real data (TRTR) and 5.49%

when trained with synthetic data (TSTR).

While with UCI data set, the model with FT and ARIMA features achieved the best results,

with Building Genome data, the model with FT (without ARIMA) achieved the best result

over all metrics. Note that this is the case even when the model is trained and tested on the

real data (TRTR), thus indicating the model behavior and not the data generation character-

istics. For Building Genome data, the Pearson-Correlation between energy consumption and

the ARIMA feature was 0.987 indicating a high linear correlation between the two. Because

of this multicollinearity, the forecasting model achieved better accuracy without the ARIMA

features, irrelevant if trained with real or synthetic data.

As with UCI data set, TSTR errors are higher than TRTS errors in terms of both, MAPE
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and MAE, for all experiments. As noted with UCI exepriments, this could be caused by the

variety of generated samples not being as high as the variety of real data.

Figure 4.11: MAPE(%) comparison between TRTS/TSTS and TSTR/TRTR (Building Genome
data set).

Figure 4.12: MAE comparison between TRTS/TSTS and TSTR/TRTR (Building Genome data
set).

Two statistical tests, the Kruskal-Wallis H test and the Mann-Whitney U test, were applied

to evaluate if there is a statistically significant difference between the synthetic and real data.

Again, the null hypothesis was: the distributions of the real and synthetic populations are equal.

Table 4.4 shows H values and U values together with the corresponding p values for each test

Table 4.3: TRTS, TRTR, TSTR, and TSTS accuracy for R-GAN (Building Genome data set)

MAPE(%) MAE

Features TRTS TRTR TSTR TSTS TRTS TRTR TSTR TSTS

Core features 6.16% 5.13% 6.48% 4.65% 48.98 46.88 49.00 45.54
Core and ARIMA features 10.37% 10.54% 11.89% 9.84% 61.38 62.15 64.16 59.2
Core and FT features 4.16% 4.86% 5.49% 3.88% 44.13 44.46 45.12 43.84
Core, ARIMA and FT features 6.76% 6.77% 7.37% 6.5% 50.03 50.83 51.33 50.00
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Table 4.4: Kruskal-Wallis H Test and Mann-Whitney U test (Building Genome data set)

Kruskal-Wallis H Test Mann-Whitney U test

Model (Real vs. Synthetic) H value p value U value p value

Core features 430.0 0.387 0.087 0.767
Core and ARIMA features 434.00 0.409 0.056 0.813
Core and FT features 403.50 0.248 0.473 0.492
Core, ARIMA, and FT features 433.00 0.404 0.063 0.802

and for each of the GAN models. The same level of significance α = 0.05 was considered.

For Building Genome experiments, same as for UCI experiments, the p value for each test

is greater than α = 0.05 and the null hypothesis is confirmed: for each of the four synthetic

data sets, irrelevant of the number of features, there is little to no evidence that the distribution

of the generated data is statistically different than the distribution of the real data.

Overall, the results for both data sets, UCI and Building Genome data set, exhibit similar

trends. As illustrated in tables 4.1 and 4.3, accuracy measures, MAPE and MAE, for the models

trained on the synthetics data and tested on the real data (TSTR) are close to MAPE and MAE

for the model trained and tested on the real data (TRTR) indicating suitability of generated data

for training ML models.

4.4 Discussion

This study investigates generating energy data for machine learning taking advantage of Gen-

erative Adversarial Networks (GANs) typically used for generating realistic-looking images.

Introduced Recurrent GAN (R-GAN) replaces Convolutional Neural Networks (CNNs) used

in image GANs with Recurrent Neural Networks (RNNs) because of RNNs ability to capture

temporal dependence in time series data. To deal with convergence instability and to improve

the quality of generated data, Wasserstein GANs (WGANs) and Metropolis-Hastings GAN

(MH-GAN) techniques were used. Moreover, ARIMA and Fourier Transform were applied to

generate new features and, consequently, improve the quality of generated data.
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To evaluate the suitability of data generated with R-GANs for machine learning, energy

forecasting experiments were conducted. Synthetic data produced with R-GAN was used to

train the energy forecasting model and then, the trained model was tested on the real data.

Results show that the model trained with synthetic data achieves similar accuracy as the one

trained with real data. The addition of features generated by ARIMA and Fourier transform

improves the quality of generated data.
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Online Deep Learning

DL techniques, especially RNNs, greatly advanced load forecasting and improved its accuracy;

however, several forecasting challenges remain: (1) The conventional offline models are trained

once by repeatedly passing all training data through the model; one pass is referred to as epoch.

Then, the model is used to infer future loads. This approach is missing out on the information

that new data could provide. (2) The data distributions in energy domain change over time,

producing what is known as concept drift [9]: for example, installing high-efficiency equip-

ment will reduce energy consumption. In the presence of concept drift, conventional machine

learning models experience weak and degrading predictive performance [10].

A different approach in terms of architecture and learning is needed in order to embrace

the changes in data, enable the model to adapt itself quickly, and capture the new revealing

patterns. Online learning has the potential to address these requirements as online models

learn from data streams by updating the model as data become available. The data can be

discarded after they are consumed by the model. The online models dynamically adapt to new

patterns in the data making them well suited for load forecasting.

Consequently, this chapter proposes Online Adaptive RNN, a load forecasting approach ca-

pable of continuously learning from new data as they arrive. The model adopts online prepro-

cessing techniques to prepare the data for the RNN model, which is responsible for capturing

57
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time dependencies. The performance is tracked, and if it starts to deteriorate, a Bayesian tuning

mechanism is activated to adjust the model hyperparameters (learning rates) and improve the

accuracy. The buffering mechanism is employed to handle especially difficult patterns and to

improve forecasting in the presence of concept drift.

The proposed Online Adaptive RNN is better suited for the real-world applications of en-

ergy forecasting than the traditional batch learning because it does not require periodical re-

training and adapts to new patterns quickly. In practice, energy consumption patterns change,

and the proposed approach continuously learns from these newly arriving patterns. Moreover,

as the re-training on the complete data set is not required, Online Adaptive RNN reduces com-

putational time in comparison to the batch learning approaches.

5.1 Online Adaptive RNN

This section presents Online Adaptive RNN, a load forecasting system that dynamically learns

from continuously arriving data and adapts to new patterns in the data. The approach uses

batch-normalized RNN (BNRNN) as the base learner and combines Bayesian optimization,

performance monitoring, and buffering to tune the BNRNN model on the fly. Online Adaptive

RNN is depicted in Fig. 5.1 and Algorithm 2, while details of each component are described

in the following subsections.

5.1.1 Prepossessing Module

As over time data from smart meters or other sensors become available, they are passed to the

preprocessing module that transforms them into a suitable form for RNNs. These continuously

arriving data are represented in line 3, Algorithm Algorithm 2. The preprocessing consists of

two components: the sliding window and online normalization.
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Figure 5.1: Online Adaptive RNN: components and the processing flow
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Algorithm 2 Online Adaptive RNN
1: Input : Data : D,Hyperparameter Search Space : S ,Early Stopping Size :
∆,MaxEpochs : N
// Initialize the weights w and learning rate η

2: Initialization : w = w0, η = η0

3: while data are available do
4: B← S lidingWindow(D, batch size,window size)
5: BF ← Get data from Buffer

//Merge current batch and buffer data
6: Q← B∪ BF

7: QN ← IncrementalMinMaxNormalization(Q)
//Make prediction with BNRNN

8: Predicted ← BNRNN(QN ,w, η)
9: Predicted ← De-normalize(Predicted)

// Calculate MAE and compare with threshold
10: if MAE(Predictedprev,Q) > tuningThresh then
11: Store current batch B in the Buffer

// Calculate IMAE, b is the current batch index
12: IMAEb =

IMAEb−1+MAEb
b

13: if IMAE > bu f f eringThresh then
14: Memorize Weights

// Tune learning rate η
15: η← BO(wt−1, S ,Optimizer,Q)
16: Restore Weights
17: for t = 1, 2, 3, ...,N do

// Train with QN and new learning rate η
18: wt ← Train(QN ,wt−1, η)
19: losst ← TrainLoss(wt, η)
20: if exp(losst − losst−∆) > u then //Check trend
21: Break
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Sliding Window

The sliding window technique (Algorithm 2, line 4) is illustrated in Fig 5.2. The first W

readings correspond to the first window and make the first training sample. Then, the window

slides for S steps, and the readings from the time step S to S + W make the second sample

and so on. Each sample is a matrix of dimension W × F, where W is the window length and F

is the number of features. With S<W, there is an overlap between the sliding windows, and a

reading from a single time step belongs to multiple windows.

Next, bn consecutive samples generated by the sliding windows technique are placed in a

group referred to as the batch. Once the batch is created, the data move through the remaining

modules of Online Adaptive RNN one batch at the time and the learning takes place one batch

at the time.

Figure 5.2: Sliding window technique

Online Normalization

Normalization is a standard preprocessing technique for bringing the values of all features to a

common scale with the objective of reducing large feature dominance and improving conver-
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gence. Min-Max normalization is a strategy which linearly transforms X to X′ as follows:

x′ =
x − Min(x)

Max(x) − Min(x)
(5.1)

where x is the original feature value, Min(x) and Max(x) are the minimum and maximum of

that feature, and x′ is the normalized value.

In offline learning, all training data are available before the training starts, hence, the nor-

malization can be performed using minimum and maximum values of the complete training

set. In the online setting, data must be processed as they arrive and the compete training set is

not available as the training starts; thus, minimum and maximum values cannot be calculated

in the same way.

To address this challenge, the proposed approach carries out Incremental Min-Max Nor-

malization. In the main Online Adaptive RNN Algorithm 2, line 7 performs this normal-

ization while the details are presented in Algorithm 3. The maximum and minimum values

of the features from the beginning until the current batch are tracked with globalMax and

globalMin. For each new batch, the procedure finds the max and min values for that batch as

shown in Algorithm 3, lines 2 and 3. If the batch max is larger than the current global maxi-

mum globalMax (Algorithm 3, line 4), the globalMax is updated (line 5). The same process

happens for globalMin, lines 6 and 7. Finally, the values from the current batch are normalized

using the current globalMax and globalMin: Algorithm 3, line 8.

Algorithm 3 Incremental Min-Max Normalization
1: while next batch B is available do
2: max : Maximum value for B
3: min : Minimum value for B
4: if max > globalMax then
5: globalMax = max
6: if min < globalMin then
7: globalMin = min
8: Normalized B =

MinMaxNormal(B, globalMax, globalMin)
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5.1.2 Batch Normalized RNN

The RNN was selected as the core learner because of its ability to model temporal dependencies

present in the load data. To handle internal covariate shift and reduce training time, batch

normalization described in section 2.3 is used. Batch normalization also reduces sensitivity

to changes in the learning rate and, consequently, assists the tuning module in dynamically

adjusting the learning rate to better capture new data. The BNRNN module consists of three

components: prediction, online de-normalization, and model training.

Prediction: When a new batch is preprocessed and passed to the BNRNN, the buffer is checked

for the data availability (Algorithm 2, line 5). If there are batches in the buffer, those batches

are merged with the current batch (line 6) and normalized (line 7). Next, BNRNN makes the

predictions as shown in Algorithm 2, line 8. For each sample (window of length W) within a

single batch, the model predicts the load for the next p time steps. At the start of the online

learning with the first batch, the buffer is empty and the predictions are poor as the BNRNN is

just initialized and will start to learn from this first batch.

Online De-Normalization: As the data are normalized before being passed to the BNRNN,

the outputs of the BNRNN model, electricity load values, are between 0 and 1. These predicted

load values must be transformed back to the original domain to obtain the final predicted load

and enable the comparison with the actual values for error evaluation in the following steps.

The BNRNN outputs are de-normalized (Algorithm 2 line 9) as follows:

y′ =(PredictedValue ∗ (globalMax[load] − globalMin[load])) + globalMin[load] (5.2)

where y′ is the de-normalized output, PredictedValue is the output of the BNRNN model,

globalMin[load] and globalMin[load] are the global maximum and minimum values for the

load feature, which were determined during the online normalization step (Section 5.1.1).

These de-normalized values are passed to the tuning module for further processing.
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Model Training: The model is always trained only on the current batch and the batches from

the buffer. When the batch is consumed once for training, it is discarded unless the buffering

module determines that it should be stored in the buffer. As indicated in Algorithm 2, line 17,

the training is repeated for up to N epochs. The model is trained with the learning rate obtained

from the tuning module ( Algorithm 2, line 18): this training results in updated weights w. The

training loss for the current epoch is determined in line 19, Algorithm 2.

Next, the accuracy trend is examined (Algorithm 2, line 20) to determine if the training

should continue. This prevents the algorithm from overfitting and reduces the training time.

As the training here happens only with the current batch and any batches from the buffer, it is

important to stop the training before the model fits the current data too closely and forgets the

patterns previously learned from other batches. To do this, the loss at the current epoch t is

compared to the loss at epoch t − ∆. If the exponential function of this loss difference between

epochs t and t−∆ is greater then the small constant u, the training stops (Algorithm 2, line 20).

5.1.3 Buffering Module

The purpose of the buffering module is to identify and temporally store batches, where the

model could not perform well. This module helps Online Adaptive RNN in terms of gener-

alization and impedes it from being biased towards more repetitive and easy to learn batches.

As the system employs online learning, the model has only one pass over each batch and, with

the arrival of new batches, the model performance on less repetitive patterns degrades. The

buffering module assists with this by temporally storing challenging batches. As the buffer

only stores a small number of batches at a time, it is maintained in the memory.

This module is also important in the presence of concept drift as it enables the model to

repeatedly see the batches with drift; consequently, the model accuracy in presence of concept

drift is improved. Note that the knowledge is retained in the weights of the neural network, and

the buffer only assists the model by enabling it to see difficult patterns more than once.

The buffering mechanism starts with determining the Mean Absolute Error (MAE) for the
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current batch: the actual load values from the current batch are compared with the predic-

tion values obtained in the previous step (Algorithm 2, line 10). If the MAE is higher than

the buffering threshold, the batch is considered challenging and thus, the batch data with the

corresponding MAE are stored in the buffer (Algorithm 2, line 11).

The buffer size is limited and with the presence of concept drift in the data, the buffer is

expected to fill up quickly. If the buffer is full, the batch in the buffer with the lowest error is

replaced by the incoming batch. This ensures that the BNRNN sees the challenging batches in

several training iterations.

Repeatedly training the model on the batches that have been in the buffer for a long time

may cause performance deterioration as an old batch may become irrelevant due to concept

drift or other changes in the data. Therefore, batches are removed from the buffer upon expira-

tion of the preset lifespan.

5.1.4 Tuning Module

The tuning module is a crucial element of the proposed Online Adaptive RNN as it adapts

models hyperparameters to new data. As already mentioned, well selected hyperparameters are

essential for achieving highly accurate deep learning models; however, offline hyperparameter

tuning requires several passes over a complete training dataset and, therefore, cannot be applied

in the online setting. Nevertheless, due to drastic changes in load data including concept drifts,

the hyperparameters still need to be tuned as new data arrive.

For online learning, tuning structural parameters such as the number of layers and the

hidden layer size is not suitable because such changes add new network weights and, thus,

require complete re-training. However, other parameters, such as the learning rate and batch

size, do not require re-training since they do not change the architecture and, therefore, the

weights representing the acquired knowledge can be re-used after tuning.

Tuning after each sample or even after each batch is computationally expensive and time

consuming. Consequently, Online Adaptive RNN uses Incremental MAE (IMAE) to determine
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if the model needs to be tuned. The IMAE Error is the average error over the batches since the

beginning of training and is updated as new batches arrive. It is calculated as follows:

IMAEb =
IMAEb−1 + MAEb

b
(5.3)

where b is the current batch index, MAEb is the MAE error for the batch b, and IMAEb−1 is

the IMEA after the batch b − 1. This evaluation occurs after the actual load value for batch b

are available.

As shown in Fig. 5.1, if the IMAE is not over the tuning threshold (Algorithm 2, line 13),

the BNRNN is trained with the current batch without the learning rate change. If the IMAE is

over the tuning threshold (Algorithm 2, line 13), the Bayesian optimizer (BO) is activated to

find a new learning rate for the model (Algorithm 2, lines 14 to 16). Here only the learning rate

is considered for the tuning, as it has been shown that the learning rate is the most important

RNN parameter [117]; however, other non-structural parameters could be tuned using the same

approach.

If tuning is required, as illustrated in Fig. 5.1, the weights (parameters) are first preserved

(Algorithm 2, line 14) so that they can be restored after the BO process. In offline learning, this

preserving is not needed as the optimizer can use all data in all iterations: the BO initializes the

model weights with random values every time it evaluates the model hyperparameters causing

the model to forget what it has previously learned. In offline learning, this is not a problem as

the model will re-learn in the next pass over the same data. In online learning, the model has the

access only to a small data segments (batches) at a time, and as parameters are representations

of what the model has learned, parameters cannot be forgotten. Because weights represent

what the model has learned so far, they are memorized in the parameter preservation step so

that they can be restored after the BO changes them during tuning.

Next, Bayesian learning is carried with the current batch and batches from the buffer to find

the new learning rate (Algorithm 2, line 15). When the new learning rate is determined, the
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weights are restored to their values before BO (Algorithm 2, line 16). Finally, the new learning

rate is passed to the BNRNN, and the training is carried out with the new learning rate and the

current batch. Note that the old batches, except for those from the buffer, are not reused. This

is possible because the knowledge from old buffers is contained in the restored weights. With

the next batch, this newly trained model is used for prediction.

5.2 Evaluation Methodology

The metrics and the design of experiments for assessing the quality of online learning models

are more challenging than those for the offline models because (1) the data are continuously

arriving, (2) models evolve over time rather than being static, and (3) the data may be from non-

stationary distributions instead of stationary ones (concept drift) [119]. Two possible ways of

evaluating online models are holdout and prequential methodologies.

Holdout [119] for online learning is a periodic evaluation method in which a static test set

Figure 5.3: Online evaluation: a) holdout evaluation b) prequential evaluation.
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is created from unseen samples throughout data stream as illustrated in Fig. 5.3-a. The model

is trained on batches or samples as they arrive and evaluated on the test set at regular intervals

expressed in terms of time, batches, or samples. For example, after every b batches, the model

is evaluated on the test set. The holdout error He at the time step i, for the current number of

the test set samples M is calculated as:

He(i) =
1
M

M∑
k=1

E(yk, ŷk) =
1
M

M∑
k=1

ek. (5.4)

where yk is the target value, ŷk is the predicted value, E is a error function, and ek is the error.

The main drawback of the holdout method comes from the concept drift presence in the

data [120]. If the data contains time-evolving concepts, using a static test set to evaluate the

model will not provide a good error estimate as the error will change if a different test set is

selected.

Predictive Sequential (Prequential) [119] evaluation, as illustrated in Fig. 5.3-b, is an

interleaved test-then-train method in which each sample serves two purposes: test and train

purposes. As a sample arrives, the model is first tested with this new sample as the input and

the error is calculated. Next, the model is trained on this sample. The prequential error Pe, at

time i, is calculated as:

Pe(i) =
1
i

i∑
k=1

L(yk, ŷk) =
1
i

i∑
k=1

ek. (5.5)

where yk, ŷk, and L are the same as in Equation 5.4. Note that this is the same as Equation

5.4 for holdout error; the only difference is that here the summation is over all samples up

to sample i, and in a holdout, it only includes the sample from the test set. By including all

samples in the error evaluation, the prequential approach avoids test set selection bias.

The prequential approach has the advantage over holdout as it does not depend on the test
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set selection, and it provides more reasonable error estimates in the presence of concept drift;

therefore, we use it in this research for a comparison of the proposed Online Adaptive RNN

with other online approaches.

However, this approach is not suitable for comparing online and offline learning algorithms.

The prequential evaluation involves interleaved test-then-train employing all data points for

both train and test purposes, which is not applicable for offline learning when training is re-

peated several times over the whole training data set. Offline learning evaluation requires a

separation between data used for training and testing. The holdout approach could be used for

offline approaches, but it is not well suited for online approach-es, especially in the presence of

concept drift, as already mentioned. Consequently, to compare online and offline approaches,

we propose Prequential-Holdout.

Prequential-Holdout technique combines offline holdout and online prequential techniques

for the comparison of online and offline models as shown in Fig. 5.4. The evaluation process

consists of the following steps:

• The dataset is divided into the training set and test set. Last k samples belong to the test

set and the rest make up the training set.

• The online model is trained on the train set by one pass over the data and is evaluated on

the test set by applying the prequential method within the test set.

• The offline model is evaluated using a traditional holdout in which the model is trained

on the training set and evaluated on the test set.

This way, both online and offline approaches are evaluated on the same samples. As the

offline approaches have the advantage of doing several passes over the training set, the online

approaches may not be able to achieve comparable accuracy as they only have one pass over

the training data. However, the online approaches continue to learn on the test set and, thus,

should be better if concept drift is present in the test portion of the data.
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Figure 5.4: Prequential-Holdout evaluation.

To compare online models, we use the prequential technique and to compare between On-

line Adaptive RNN and offline models, we use prequential-holdout technique. The metrics

applied with both techniques are the Mean Square Error (MSE) and the Mean Absolute Error

(MAE):

MSE =
1
N

N∑
t=1

(yt − ŷt)2 (5.6)

MAE =
1
N

N∑
t=1

|yt − ŷt| (5.7)

where N is the number of sampled in the test set, and yk, and ŷk are the same as in Equation

5.4.

5.3 Evaluation of Online Adaptive RNN

This section first introduces the data set and presents the preliminary analysis. Next, the pro-

posed Online Adaptive RNN is compared with offline LSTM and with five other online learn-
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ing algorithms. Then, the impact of different modules in Online Adaptive RNN is examined,

the effect or the buffer size is evaluated, and training time is analyzed. Finally, findings are

discussed.

5.3.1 Dataset and Preliminary Analysis

The proposed approach was evaluated on the real-world data from five residential consumers

provided by London Hydro, a local electrical distribution utility involved with this project.

Data was obtained through Green Button Connect My Data (CMD) environment, the first

cloud-based CDM platform London Hydro developed to provide secured data sharing with

the customer’s consent. Each household dataset contained three years of smart meter data in

one-hour intervals for a total of 25,559 readings. Each reading includes energy consumption

and the corresponding date and time. As this data from smart is also used for billing, the high

quality is expected. Meteorological information was added including temperature, wind speed

and direction, pressure, and humidity. To assist with handling weekly and daily patterns, addi-

tional features were extracted from reading date/time including the day of the week and hour

of the day. After these additions, the data set consisted of 12 features including five meteo-

rological (temperature, wind speed, wind direction, pressure, humidity), six temporal (month,

day of the year, hour of the day, week number, day of the week, season ), and the target feature

hourly load.

To examine the temporal characteristics of the datasets, two preliminary analyses were

conducted: stationarity and concept drift analysis.

Stationary Analysis

A non-stationary time series changes properties over time and, therefore, imposes difficulties

for load forecasting. To evaluate if the series are stationary, Augmented Dickey Fuller (ADF)

and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests were conducted.

ADF determines if the series is stationary or not by observing the presence of a unit root.
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Table 5.1: ADF Test

Dataset Test
Statistic

CV

α= 1% α=5% α=10%

House 1 load -10.3306 -3.4306 -2.8616 -2.5668
House 2 load -11.8989 -3.4306 -2.8616 -2.5668
House 3 load -13.2413 -3.4306 -2.8616 -2.5668
House 4 load -11.9328 -3.4306 -2.8616 -2.5668
House 5 load -10.3135 -3.4306 -2.8616 -2.5668

The null hypothesis for this test is: The series has a unit root - it is non-stationary. In the ADF

test, if the test statistic value is less than the critical value (CV), the null hypothesis is rejected,

which means that the series is stationary.

KPSS determines if a time series is stationary (or not) around a deterministic trend (trend

stationery). The null hypothesis is: The series is trend stationary. In the KPSS test, if the test

statistic is greater than the critical value, the null hypothesis is rejected indicating that the series

is not stationary.

Table 5.1 and Table 5.2 show the ADF and KPSS test results respectively for the load from

the five homes. The ADF test statistics are lower than the critical values for all home and

all significance levels α, indicating that the series are stationary. The KPSS test statistics for

all home are greater than the critical values, indicating that the series are non-stationary. The

ADT test only checks for one type of non-stationarity, a unit root non-stationarity, which is a

possible reason for different results from the two tests. Nevertheless, the possible presence of

non-stationarity makes the modeling more difficult and imposes challenges on load forecasting.

Concept Drift Analysis

The major advantage of the online models in load forecasting is their ability to adapt to changes

in data patterns. Thus, the data sets from the five houses are first examined for the presence of

concept drift. Three concept drift detection methods have been applied Adaptive Windowing
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Table 5.2: KPSS Test

Dataset Test
Statistic

CV

α= 1% α=5% α=10%

House 1 load 1.1650 0.3470 0.4630 0.5740 0.7390
House 2 load 3.0379 0.3470 0.4630 0.5740 0.7390
House 3 load 14.9290 0.3470 0.4630 0.5740 0.7390
House 4 load 11.6656 0.3470 0.4630 0.5740 0.7390
House 5 load 4.6686 0.3470 0.4630 0.5740 0.7390

(ADWIN) [121], Page-Hinkley (PH) [122], and Drift Detection (DDM) [123]:

• ADWIN method uses sliding windows of variable size according to the changes observed

from the data. If the difference between the statistics observed in the windows surpasses

the threshold, concept drift is detected.

• PH method continuously monitors the difference between the time series values and the

current mean. The difference greater than the threshold indicates the concept drift.

• DDM is based on the idea that as long as the data distribution is stationary, the learner’s

error rate does not increase. This approach monitors the online error of the algorithm,

and when this error increases, concept drift is detected.

Figures 5.5 and 5.6 depict the results of the three aforementioned concept drift detection

methods for homes one and four. In ADWIN and PH graphs, the vertical lines indicate the

points in which concept drifts have taken place. In the DDM graph, the colorful sections

indicate the data with similar distributions and statistics, and, therefore, different sections show

different concept drifts occurrences.

It can be observed that the three algorithms detect a different number of concept drift oc-

currences at different locations in the time series. Nevertheless, all algorithms indicate the

extensive presence of concept drift, and changes in load patterns are notable even from the vi-

sual observations of the loads. The existence of concept drift is especially pronounced in house
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Figure 5.5: The electricity load and the concept drift occurrences detected with ADWIN, PH,
and DMM: house 1.
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Figure 5.6: The electricity load and the concept drift occurrences detected with ADWIN, PH,
and DMM: house 4.
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four with the DDM method: a high number of diversely colored segments indicate different dis-

tributions thought the series. Such a high presence of concept drift in load data hugely degrades

the accuracy of the offline models and imposes challenges for online models as they need to

continuously adapt to new patterns. Consequently, for household-level load forecasting, it is

critical to use online models capable of handling such changes.

5.3.2 Comparison with offline LSTM

This subsection compares the proposed Online Adaptive RNN with conventional offline LSTM.

Online and offline approaches are intrinsically different and cannot be directly compared; how-

ever, it is still important to compare them as both are used for load forecasting. The comparison

is carried out here with the Prequential-Holdout approach proposed in Section 5.2: the first 70%

of data was used for training and the last 30% for testing. This remainder of this subsection

first describes experiments and then presents results.

Experiments

In Online Adaptive RNN, the core learner, BNRNN, can be implemented with different re-

current cells: experiment presented here used LSTM cells as these cells can handle longer

sequences than vanilla RNN cells. As the online model employed LSTM cells, the comparison

offline model is also an LSTM network. Both Online Adaptive RNN and offline LSTM were

tuned with BO: while offline LSTM applies the traditional BO tuning process, Online Adap-

tive RNN employs BO as described in Section 5.1.4. The following ranges of hyperparameters

were considered for offline LSTM:

• Hidden layer sizes: 64 , 128, 256 , 512, 1024

• Number of layers: 1, 2

• Batch sizes: 5,10,25,50,100,200,250



5.3. Evaluation of Online Adaptive RNN 77

• Learning rates: continuous from 0.000001, 0.2

In Online Adaptive RNN, as described in Section 5.1.4, the BO tuning happens online;

therefore, only the learning rate was tuned. The batch size was 5, and the buffer size was 10

batches for all Online Adaptive RNN experiments. Further tuning the batch size and buffer size

could potentially improve the accuracy, but would incur extensive computation cost. Moreover,

a very large buffer would make the proposed approach similar to the offline model as many

samples would be reused in each training step. Thresholds for tuning and buffering modules

were tuned for individual households.

The load forecasting accuracy is highly dependent on the forecasting horizons: shorter

horizons typically lead to higher accuracy. Moreover, the model’s forecasting accuracy on one

horizon does not necessarily directly translate to its performance on another horizon. Con-

sequently, Online Adaptive RNN and offline LSTM were evaluated for four load forecasting

horizons: 1 hour ahead, 50 hours ahead, 100 hours ahead, and 200 hours ahead.

Results

The offline model has a great advantage of several passes over the complete test set, while with

online approaches, data are discarded once processed by the model. These multiple passes

over data can lead to higher accuracy of the offline models. However, the online models do not

require storing all data, nor do they require re-training to capture new patterns, which makes

online models more desirable. Consequently, we consider the online model successful when it

archives similar or higher accuracy than the offline LSTM.

Fig. 5.7 compares the accuracy of Online Adaptive RNN and the traditional LSTM in

terms of MAE and MSE for the four prediction horizons. As the scale of the errors for the

LSTM and Online Adaptive RNN are different, the figure has two vertical axes: the left one is

for Online Adaptive RNN and the right one is for the offline LSTM. Moreover, the accuracy

values are displayed with each data point. Although the offline LSTM hyperparameters were

tuned, the MAE and MSE errors are relatively high. The main reason for this is the presence
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of the concept drift. Data distribution and load patterns change over time, resulting in the low

predictive power of the static offline model. The accuracy of the online approach is much

higher as the model adapts to the changes in data patterns as they arrive.

From Fig. 5.7, it can be observed that the accuracy varies greatly among houses, prediction

horizons, as well as between measures (MAE and MSE). For offline LSTM, house 5 consis-

tently has the highest forecasting errors for all horizons and both metrics. Similarly, houses 1

and 3 have the lowest errors. In the case of Online Adaptive RNN, MSE for house 3 is lower

than for other houses, while in terms of MAE, this house is among two with the lowest error.

Possible reasons for this are fewer or weaker concept drifts in the house 3 data.

5.3.3 Comparison with online models

This subsection compares the proposed approach with the five standard online models: MLP,

linear regression, passive-aggressive, bagging, and KNN regression. As all compared models

are online, prequential evaluation described in related works chapter.

Experiments

For Online Adaptive RNN, the same setup and tuning have been applied as described in Sec-

tion 5.3.2 for the comparison with offline models. To keep the comparison fair, parameters

for the five competition models were also tuned with BO. The following configurations were

considered for tuning:

• Online MLP regression: SGD and Adam optimizers, the hidden layer sizes of 50, 100,

250, 500 neurons.

• Online linear regression: SGD and Adam optimizers, the learning rate in a range of

[0.000001, 0.2].

• Online KNN: the window sizes of 25, 50, and 100, and the number of neighbors 3, 5,

and 10.
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(a) The MAE error for 1 hour ahead. (b) The MSE error for 1 hour ahead.

(c) The MAE error for 50 hours ahead. (d) The MSE error for 50 hours ahead.

(e) The MAE error for 100 hours ahead. (f) The MSE error for 100 hours ahead.

(g) The MAE error for 200 hours ahead. (h) The MSE error for 200 hours ahead.

Figure 5.7: The MAE and MSE errors for offline LSTM and Online Adaptive RNN
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• Online bagging regression: a linear regression as the base model, and the number of the

base models 5 and 10.

• Online passive-aggressive regression: Epsilon insensitive loss function, aggressiveness

in a range of [0.01, 10].

The same forecasting horizons were examined as in comparison with offline models: 1, 50,

100, and 200 hours ahead.

Results

Fig. 5.8 shows the results of the experiments in terms of MAE and MSE for different prediction

horizons. It can be observed that for one hour ahead prediction, Fig. 5.8 a and b, the lowest

error was achieved with the online KNN for all households. The KNN predicts based on the

similarity of the target to its nearest neighbors and, for one hour ahead prediction, the training

data points, and the target are adjacent enough for the KNN to perform well. Nevertheless, the

accuracy of Online Adaptive RNN is very close to the KNN.

When the prediction length is increased to 50 hours, the adjacency level of the training

data points becomes weaker especially in the presence of concept drifts. For this reason, the

error rates for the MLP, Linear, and PA regression models increased significantly as shown in

5.8 c and d. Errors for the KNN and bagging models slightly decreased in comparison to the

one hour ahead prediction. For this prediction length, Online Adaptive RNN achieved better

accuracy than the remaining five algorithms for all homes.

For 100 hours ahead, Fig. 5.8 e and f, the proposed Online Adaptive RNN remains better

than the other models. For 200 hours ahead Online Adaptive RNN outperforms others for all

but one household: for house 1, bagging achieves slightly better accuracy than Online Adaptive

RNN. However, bagging performs very poorly on household 4 making Online Adaptive RNN

an overall better model.

Fig. 5.8 compared the average error for the considered algorithms, but we are also inter-

ested in the variability of the error as a model with more consistent prediction is more desirable.
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Consequently, Fig. 5.9 examines error intervals for Online Adaptive RNN and the five online

algorithms. The error intervals have been calculated based on the error for all households and

average, minimum, maximum, first and the third quartile are shown in the figure.

As in Fig. 5.8, in Fig. 5.9, for 1 hour ahead KNN achieved the best average accuracy.

From Fig. 5.9 a and b, it can also be observed that error ranges for KNN are among the lowest.

Again, performance of Online Adaptive RNN is close to KNN.

For 50, 100, and 200 hours ahead, Online Adaptive RNN achieved the best accuracy with

small error intervals. In terms of MSE, the error interval for Online Adaptive RNN is visibly

smaller than for the other approaches. The box plot reveals the drawback of some approaches:

for example, bagging achieved a similar accuracy to Online Adaptive RNN for 200 hours ahead

forecasting, but it has a large error range, which makes bagging an undesirable solution. Over-

all, Online Adaptive RNN achieves lower accuracy than the other online models for 50 or more

hours ahead prediction and it exhibits low error variability indicating the model consistency.

5.3.4 Analysis of modules impact

Experiments presented so far compare the performance of Online Adaptive RN with other mod-

els, offline LSTM, and five online models. This section examines the impact of the modules

within Online Adaptive RNN on the forecasting accuracy; specifically, the impact of buffering

and tuning modules is investigated. As different variants of the proposed online approach are

compared, the prequential evaluation described in Section 5.2 is used.

Experiments

Experiments compare four Online Adaptive RNN variants:

• with buffering and tuning modules

• only with buffering module

• only with tuning module



82 Chapter 5. Online Deep Learning

(a) The MAE errors for 1 hour ahead. (b) The MSE errors for 1 hour ahead.

(c) The MAE errors for 50 hours ahead. (d) The MSE errors for 50 hours ahead.

(e) The MAE errors for 100 hours ahead. (f) The MSE errors for 100 hours ahead.

(g) The MAE errors for 200 hours ahead. (h) The MSE errors for 200 hours ahead.

Figure 5.8: Comparison of Online Adaptive RNN with five online regression algorithms: MLP,
liner, passive-aggressive, bagging, and KNN regression.
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(a) The MAE error intervals for 1 hour ahead. (b) The MSE error intervals for 1 hour ahead.

(c) The MAE error intervals for 50 hour ahead. (d) The MSE error intervals for 50 hour ahead.

(e) The MAE error intervals for 100 hour ahead. (f) The MSE error intervals for 100 hour ahead.

(g) The MAE error intervals for 200 hour ahead. (h) The MSE error intervals for 200 hour ahead.

Figure 5.9: Comparison of error intervals for Online Adaptive RNN and the five online regres-
sion algorithms: LP, liner, passive-aggressive, bagging,and KNN regression
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• Online Adaptive RNN without buffering and tuning modules

The same setup and tuning have been applied as described in Section 5.3.2; however, note

that for the models without the tuning module, there is no tuning. Again, the same forecasting

horizons are considered: 1, 50, 100, and 200 hours ahead.

Results

Fig. 5.10 shows the impact of the buffering and tuning modules on the accuracy of Online

Adaptive RNN. It can be observed that for all the households, the model with the buffering and

tuning modules results in the lowest MAE error, and the model without the two modules leads

to the highest errors. This figure also shows that the tuning module has a larger impact on the

accuracy than the buffering module as error drops mode when the tuning module is added than

when the buffering module is added. This highlights the need to tune network hyperparameters,

specifically the learning rate, as new data arrive.

5.3.5 Analysis of the buffer size impact

The previous section demonstrated the impact of the buffering and tuning modules on the per-

formance of Online Adaptive RNN. This subsection further investigates the buffering module

and examines the impact of the buffer size on the model accuracy and training time. Since this

involves comparing online learning models, Online Adaptive RNNs with different buffer sizes,

the prequential evaluation described in Section 5.2 is used.

Experiments

For these experiments, the same setup and tuning process have been applied as described in

Subsection 5.3.2: LSTM cells are used and the same ranges of parameters are considered in

the online tuning. The difference is that here experiments are conducted without buffer and

with buffer sizes of 5, 10, 15, 30, and 50 batches.
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(a) The impact of buffering and tuning modules: 1 hour ahead.

(b) The impact of buffering and tuning modules: 50 hours ahead.

(c) The impact of buffering and tuning modules: 100 hours ahead.

(d) The impact of buffering and tuning modules: 200 hours ahead.

Figure 5.10: The impact of buffering and tuning modules on the forecasting accuracy.
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Results

Fig. 5.11 shows the impact of the buffer size on the accuracy of Online Adaptive RNN for 50

hours forecasting horizon. For houses with a high presence of concept dirt, such as houses 4

and 5, a smaller buffer size (5 batches) results in a lower error. The reason for this is that a

larger buffer retains more batches, some of which may be older, therefore causing the model to

pay attention to those older batches which may not reflect the current situation when there is a

high presence of concept drift.

For houses with a lower presence of concept drift, such as houses 1 and 3, the buffer sizes

10 and 15 have the best performance, with size 15 having just slightly better performance

than size 10. As the concept drift is not as prominent, having a medium-size buffer improves

accuracy as the model sees difficult patterns several times. House 2 is somewhat similar to

houses 1 and 3; lower errors are achieved for buffer sizes 5 and 10. It can be observed that for

all houses, irrelevant to the degree of concept drift, large buffer sizes, such as 30 and 50, lead

to performance degradation.

Fig. 5.12 examines the impact of the buffer size on the computation time: it shows the

average training time per day for each of the considered buffer sizes. As expected, increasing

the buffer size results in longer training time. Overall, buffer size 10 achieves good results

for all houses (although not the best for all houses) irrelevant of concept drift presence while

requiring only slightly longer training time than lower batch sizes.

5.3.6 Training time analysis

One of the common ML approaches for dealing with new data and changing patterns is to re-

train the model daily or weekly with all data [74]. Assuming that changes between consecutive

days or weeks are small, this approach can lead to good accuracy, but the computation burden

is extensive.

This section compares the computation time needed for daily re-training a conventional

offline model with the training time of the proposed Online Adaptive RNN. Although experi-
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Figure 5.11: The impact of the buffer size on model’s accuracy.

Figure 5.12: Average training time for different buffer sizes.
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ments were conducted with a relatively small number of readings, they illustrate the advantages

of the proposed approach. Nevertheless, with an increased number of readings, the training

time for offline LSTM will increase with each day, while the time for Online Adaptive RNN

will remain quite consistent.

The RNN and Tuner are the most computationally expensive components of the online

adaptive RNN model. The computation time of the tuner module is dependent on the number

of times the concept drift appears, despite the fact that the Bayesian method has a high time

complexity. For data with a low number of concept drift occurrences , the tuner is called fewer

times, resulting in a faster computation time.

Experiments

As we are comparing the proposed approach with the LSTM daily re-training, experiments

compare the training time per day. Two sets of experiments were conducted:

• Starting with 1000 samples. First, both offline LSTM and Online Adaptive RNN are

trained with those 1000 samples. Then, as offline LSTM training is conducted daily will

all data, the offline LSTM is trained with 1024, 1048, and 1096 on consecutive days.

Online Adaptive RNN just continues training as new data arrive.

• Starting with 2000 samples. This is the same process as the previous set of experiments

but it starts with 2000 samples.

As the diversity of data among homes can result in different training times, the experiments

were repeated five times with different homes, and the averages are reported. Two variants of

the offline LSTM training were considered: with and without tuning. The hyperparameters

considered for tuning and the tuning approach are the same as in subsection 5.3.2.

The variant with tuning leads to higher accuracy, but re-tuning each day is extremely com-

putationally intensive while it may not always be necessary. Consequently, results without

tuning are also reported. As described in Section 5.1, Online Adaptive RNN is tuned as needed.
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The experiments were performed on a computer with Ubuntu OS, AMD Ryzen 4.20 GHz

processor, 128 GB DIMM RAM, and four NVIDIA GeForce RTX 2080 Ti 11GB graphics

cards.

Results

Figure 5.13 depicts the average training time for conventional LSTM with tuned hyperparam-

eters and Figure 5.14 shows the average training time for the same model but without tuning.

The horizontal axis represents the increment in the number of samples and each data point

represents the training time for a specific day. It can be observed that starting from 2000 sam-

ples results in at least double the training time compared to starting from 1000, which is to

be expected as the offline LSTM is re-trained each day with complete data set. Examining

consecutive days (0, 24, 48, and 96 on the horizontal axis), the slow gradual increase can be

observed for each starting point and for training with and without tuning. As expected, training

times for tuned models are a magnitude larger than for models without tuning.

For Online Adaptive RNN, the training time for each batch will differ depending if the

tuning was triggered for that batch. The average training time per batch is 0.0031 minutes

what with the batch size 5 equates to an average of 0.0149 minutes per day.

As the variations among days are minimal, there is no need to show this in the plot. Com-

paring daily training time of Adaptive Online RNN (0.0149 minutes) with time for the offline

LSTM presented in figures 5.13 and 5.14, it can be observed that Adaptive Online RNN takes

only a fraction of time needed by the offline models. This further demonstrates the benefits of

the proposed approach.

5.4 Discussion

Overall, Online Adaptive RNN outperformed the traditional offline LSTM as well as five other

online algorithms. Although Online Adaptive RNN employs a traditional LSTM as its base



90 Chapter 5. Online Deep Learning

Figure 5.13: Average training time for conventional LSTM with hyperparameter tuning

Figure 5.14: Average training time for conventional LSTM without hyperparameter tuning
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learner, the unique architecture makes it capable of learning in an online manner and enables

it to achieve higher forecasting accuracy than the LSTM itself. Moreover, online learning

makes the proposed approach well suited for practice because there is no need for periodical

re-training with new data, which is required for offline models.

For each of the five considered homes, Online Adaptive RNN performed better than LSTM

(Fig. 5.7): the conventional LSTM was not able to learn well in the presence of concept drift.

This highlights the need to evaluate the ability of load forecasting algorithms to handle concept

drift. Variability of accuracy among homes demonstrates the necessity of considering different

data sets when comparing machine learning approaches for energy forecasting.

With respect to other online algorithms, Online Adaptive RNN achieved better forecasting

accuracy for the majority of prediction horizons. For one hour ahead, KNN accuracy was

slightly better because it was able to take advantage of strong adjacency between the target

and training data points. However, when the forecasting horizon increases to 50, 100, and 200

hours ahead, this adjacency advantage decreases and Online Adaptive RNN achieves higher

accuracy than KNN.

In offline learning, especially with neural networks, hyperparameter tuning is essential for

achieving high accuracy. Our approach adds the hyperparameter tuning capability to the online

model through the addition of the tuning module. The experiments show that this online tuning

significantly improves forecasting accuracy as illustrated in Fig. 5.10.

While the proposed approach outperformed other online models, there is still space for

further improvements. The tuning module could potentially employ a more sophisticated way

of tracking accuracy trend, but that would add to computational complexity. There is also a

need to explore a relationship between the model behavior and the concept drift occurrence as

detected through concept drift detection algorithms.
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Synchronous Federated Learning for

Load Forecasting

Although conventional centralized solutions have shown great results, they require transferring

all data to a centralized location, which results in significant network traffic [96]. Moreover,

a centralized ML not only requires sharing local data with the centralized systems imposing

security and privacy concerns, but also makes complying with stringent data regulations [12].

As the number of smart meters grows, training an individual ML model for each smart meter

becomes computationally expensive and even infeasible.

Federated Learning (FL) [124] presents a possible solution to these challenges by decou-

pling the ability to do train the ML model from the need to store the data on the cloud or

another centralized system. In FL, a global ML model is shared across many devices: each

device receives a copy of the global model and improves it by learning from local data. Then,

instead of raw data, the updated parameters of the local models are sent to the server to be

aggregated and incorporated into the global model. FL is a major shift from a costly central

ML system to a distributed ML approach that can exploit numerous distributed computational

resources. This learning technique enhances data privacy because the data stay on the local

devices and reduces network traffic by only exchanging model updates as opposed to raw data

92
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[125]. However, FL assumes that a single model can capture patterns across diverse clients. In

load forecasting, this approach would entail a single global model capable for generating in-

dividual load forecasts for each smart meter. As a diversity of patterns among meters is large,

a single model may encounter difficulties in capturing this diversity and may lead to inferior

forecasts.

Consequently, this section proposes FL for load forecasting with smart meter data. Two

different FL techniques are examined: Federated Stochastic Gradient Descent (FedSGD) and

Federated Averaging (FedAVG). Moreover, we examine a dynamic environment in which some

devices join the federation after the training and only use the already trained model for fore-

casting without participating in the training.

6.1 Federated Learning for Load Forecasting

Conventional ML for load forecasting collects the readings from individual smart meters in a

data center or another centralized system and then trains ML models on that centralized sys-

tem. In contrast, Federated Learning (FL) trains an ML model across multiple data holders

such as decentralized nodes and edge devices while keeping data local and transfers only the

model updates to the central server. Consider K data holders F1, ...FK wishing to train a single

ML model by consolidating their respective data D1, ...,DK . A centralized method brings all

data together in the centralized location and uses D = D1,∪ · · · ∪,DK to train a single model.

In federated learning, data holders F1, ...FK collaboratively train a model MFED without data

holders Fi sharing their data Di with others, under the condition that the performance of fed-

eration PFED remains very close to the performance of the single central model PS UM. This

condition can be stated as:

|PFED − PS UM | ≤ ω (6.1)

where ω is a small non-negative real number [125].
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For load forecasting, we train a deep neural network with multiple smart meter data dis-

tributed over the network without explicitly exchanging data samples with the central server.

None of the local data are ever transmitted between parties; only model-related parameters are

shared. The federated learning process is described in the next subsection, followed by the

local preprocessing and the considered FL algorithms.

6.1.1 Federated Learning Process

Fig. 6.1 depicts FL process for load foresting: a single model is trained collaboratively over

distributed smart meter data. LSTM model has shown great successes in load forecasting;

therefore, it is used here as well. While we consider two FL strategies, FedSGD and FedAVG,

the overall FL process is the same with one round of training consisting of the following steps:

Step 1: If this is the first training round, the server initializes the global LSTM weights; oth-

erwise, the server proceeds with the weights obtained from the previous training round. A

random subset of the smart meter devices is selected for the current training round, and the

server sends a copy of the global model to those selected devices. Only a subset of devices

participate in each training round as this improves convergence [125].

Step 2: The devices receive a copy of the global model and train it using only the local data.

To enable training with LSTMs, this local data is preprocessed and transformed into a suitable

form: as described in Subsection 6.1.2, the preprocessing is the same for both algorithms

FedSGD or FedAVG. On the other hand, specifics of the local training depend on the type of

FL, FedSGD or FedAVG.

Step 3: The devices that participated in the local training send the updated model parameters to

the server. As each device trained the model with different local data, the updated parameters

are different among devices.

Step 4: The server receives the local model parameters and aggregates them to construct an

improved global model. In this study, we consider two main aggregation approaches, FedAVG
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and FedSGD. The process repeats from step 1 until convergence.

Step 5: After the model converges, the server sends the trained global model to all participants.

Step 6: The participants replace the out-of-date local models with the updated one received

from the server and are now ready to carry our load forecasting. Note that when the trained

model is used for forecasting, local data is still prepared with the same preprocessing technique

as the one used during the model training in Step 2.

Figure 6.1: Federated Learning for Load Forecasting

Conventional ML typically assumes independent and identically distributed (IID) variables

[126, 97, 127]; however, data collection in the FL setup violates this assumption. The non-

IID data in load forecasting are caused by the smart meters corresponding to particular users

or groups of users with different preferences and behavioral patterns. Alternatively stated,

smart meters typically collect data in different contexts, leading to significant differences in

the data distributions and patterns among them. Although this imposes challenges for ML

training, the proposed FL for load forecasting achieves better accuracy than the conventional

ML approaches as will be shown in the evaluation.
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6.1.2 Local Preprocessing

Steps 2 and 6 of the federated learning process, as mentioned in Subsection 6.1.1, both involve

preprocessing. The preprocessing is significant in conventional ML, but it is even more impor-

tant in federated setting as data at the local nodes may contain different distribution, patterns,

and data scales, which makes the training process more difficult.

In conventional ML, data are scaled to reduce the large features dominance and improve

the convergence; however, while conventional ML scales after aggregating all data, here we

scale data individually on each node. If smart meters observe similar patterns but with different

magnitudes, this individual scaling will make these load profiles more similar to each other and

facilitate training. Specifically, Min-Max normalization is applied at each node individually. It

transforms x to x′ without distorting differences in the ranges of values as follows:

x′ =
x − Min(x)

Max(x) − Min(x)
(6.2)

where x is the original feature value, Min(x) and Max(x) are the minimum and maximum of

that feature on the considered node, and x′ is the normalized value in the range of 0 to 1 [128].

Next, data must be transformed into a form suitable for modeling temporal dependencies

and for use with LSTMs. As common when RNNs are used with sensor data, the sliding

window technique is applied [128]: it converts time-series data into windows of size w × f

where w is the number of time steps contained in the window and f is the number of features.

The first window contains the first w smart meters readings. Then, the window slides for s

times steps, and the second window contains readings from s + 1 to s + w, and so on.

Here, features include the load data reading from smart meters and any other features gen-

erated from the reading date/time or from meteorological information. In experiments, we

include features such as the day of the week, the hour of the day, and the day of the year. Al-

though sequential models, such as LSTM, are able to extract temporal patterns, these additional

features assist the model with capturing the date and time-related patterns.
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6.1.3 Federated Learning Algorithms

In general, the federated learning objective for K devices can be described in a form of the

optimization problem:

min
w
ℓ(w) =

K∑
k=1

nk

n
Lk(w) (6.3a)

where Lk(w) =
1
nk

∑
i∈Pk

ℓi(w) (6.3b)

where ℓ(w) is the global model’s loss function, Lk(x) is the loss of the kth device, and ℓi(w) is

the loss for sample i. Pk, k ∈ {1, ...,K} denotes a partition of data points stored on the device k,

nk = |Pk| is the size of Pk, and n =
∑K

k=1 nk is the size of all data on all devices. The objective

is to find w which minimizes the loss l(w) over the distributed data P with the assumption that

Pi may be very different from P j for devices i,j.

Here, we consider two ways of solving this optimization problem: Federated Stochastic

Gradient Descent and Federated Averaging.

Federated Stochastic Gradient Descent (FedSGD): In FedSGD [129], a distributed stochas-

tic gradient descent algorithm is applied in the federated setting to optimize the model collabo-

ratively: Algorithm 4 depicts the steps of FedSGD. For each communication round (Line 3), a

subset of devices S t is selected randomly (Line 4) to receive a copy of the global model (Line

5). Then, each client device k from S t (Line 6) takes one step of the gradient descent g locally

on the current model wt using its local data (Line 7). Procedure GradientS tep (Line 11) is

executed on clients: it calculates the gradient ▽ over local data Pk and returns it to the server.

Then, the server aggregates the received gradients by taking the weighted average of the clients

gradients proportional to the number of training samples and the global model is updated using

this weighted average and learning rate η, as shown in Line 8. The process repeats from Line
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Algorithm 4 Federated Stochastic Gradient Descent (FedSGD)
1: Server Execution:
2: Initialize global model weights w0, and learning rate η
3: for each round t=1,2,... do
4: S t ← random set of m clients
5: Send global model to S t clients
6: for each client k ∈ S t in parallel do
7: gk

t+1 ← GradientStep(k,wt)

8: wt+1 ← wt − η
∑

k∈K
nk
n gk

t

9: Send the model to all participants

10: Client Execution:
11: procedure GradientStep(k,w)
12: g← ▽ℓ(w) over Pk

13: return g to server

3 until convergence. Finally, the trained model is broadcasted to all participants (Line 9).

Federated Averaging (FedAVG). Like FedSGD, FedAVG also solves the defined FL optimiza-

tion problem. In contrast to FedSGD, in which the local clients take one step of the gradient

descent and exchange the gradients without applying them to the local models, FedAVG allows

the devices to update the local model by iterating through weight updates w ← w − η ▽ ℓ(w)

multiple times before sending the updated model weights to the server. Algorithm 5 presents

the FedAVG process. Each round of FedAvg starts the same as FedSGD by randomly selecting

a subset of devices S t and broadcasting the model to the chosen devices (lines 4 and 5). The se-

lected devices train in parallel their local models with the local data for multiple epochs (Line

7). Procedure ClientU pdate, Line 11, shows the local model update process: the local data

Pk are divided into the batches B of size sb (Line 12) and the local device trains the received

model for multiple epochs with created batches as shown in Lines 13 to 15. Each device from

S t sends the new local weights to the server (Line 16), and the server updates the global model

by calculating the weighted average of the received local weight as shown in Line 8. As in

FedSGD, the process is repeated from Line 3 until convergence and, finally, the trained model

is broadcasted to all participants (Line 9).

FedSGD is an efficient method that guarantees the convergence in FL settings and is barely
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Algorithm 5 Federated Averaging (FedAVG)
1: Server Execution:
2: Initialize global model weights w0

3: for each round t=1,2,... do
4: S t ← random set of m clients
5: Send global model to S t clients
6: for each client k ∈ S t in parallel do
7: wk

t+1 ← ClientUpdate(k,wt)

8: wt+1 ←
∑

k∈K
nk
n wk

t

9: Send the model to all participants

10: Client Execution:
11: procedure ClientUpdate(k,w)
12: B← split Pk into batches of size bsB
13: for each local epoch e < E do
14: for batch b ∈ B do
15: w← w − η ▽ ℓ(w)
16: return w to server

influenced by the non-IID problem under adequate training parameters [130]; however, it re-

quires a large number of training rounds to produce good results [129]. FedAvg is an FedSGD

alternative that shows significant improvement in communication and time efficiency [130].

The basic idea behind FedSVG is that if all local devices start from the same initialization pa-

rameters, averaging the weights is strictly equivalent to averaging the gradients and, therefore,

does not necessarily harm the averaged model performance. Nevertheless, it is shown that het-

erogeneity of data slows down the convergence of FedAVG [131]. Xiang et al. [131] proved

that by having an adaptive learning rate, the model can converge on non-IID data; consequently,

we use adaptive learning rate as well.

Heterogeneity of smart meter data is high as these data are collected in different contexts

and influenced by diverse human behaviour resulting in different load patterns and distribu-

tions. FedSGD is well suited for this context as it has shown promising results in learning

from heterogeneous data [130]; therefore, it is examined here with respect to load forecasting.

To reduce communication rounds and time complexity, we examine FedAVG, but the standard

SGD is replaced with an Adam optimizer which embraces adaptive learning rate to accelerate
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convergence and improve the learning capability on non-IID data [131].

6.2 Evaluation

This section first introduces the dataset and evaluation metrics. Next, the performance of the

proposed FL methods is compared with central training and individual LSTM models. Then,

we examine a dynamic environment in which some devices do not participate in training, but

use the trained model for local load forecasting. Finally, FedSGD and FedAVG are compared

in terms of convergence, and the overall results are discussed.

6.2.1 Dataset and Evaluation Metrics

This study is performed in collaboration with London Hydro, a local electrical distribution

utility. Federated learning for load forecasting will enable London Hydro to provide large-

scale forecasting services to its residential consumers and, consequently, increase return on

investment from the smart meter infrastructure. London Hydro provided real-world data for

the evaluation of the presented approaches through Green Button Connect My Data (CDM),

a platform for secured sharing of energy data with the consumer’s consent. The evaluation

was conducted with 19 residential consumers, each one containing hourly energy consumption

for three years, resulting in 25,560 readings per households, or 485,640 readings in total. As

these readings are also used for the billing purposes, they are highly reliable and have the same

reading frequency and the number of samples for each household.

Additional features including the day of the year, the day of the month, the week of the

year, the day of the week, and the hour of the day were devised from the load reading date/time

to assist with modelling daily, monthly, and weekly patterns.

Diversity among consumers in terms of load profiles is large: for illustration, Fig. 6.2

depicts the load data for the three households. It can be observed that load patterns, as well

as load magnitudes, vary greatly among consumers. This diversity makes it difficult for a
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single model to capture all patterns among consumers. Therefore, many studies train a single

model per consumer [38]; however, here we examine devising a single model for all consumers

through federated learning.

For the evaluation, each individual household dataset is split into 70% for training and

30% for testing. This split remains the same for federated learning experiments as well as for

conventional ML experiments, centralized and individual models for each meter, conducted for

the purpose of comparison.

Figure 6.2: Electricity load examples for Home 1, Home 10, and Home 15
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The model performance is compared with two metrics: Root Mean Square Error (RMSE)

and Mean Absolute Percentage Error (MAPE). RMSE measures the deviation of the residu-

als (prediction errors); in other words, it measures how far the predicted values are form the

observed (actual) values. MAPE is expressed as follows:

RMSE =

√√
1
N

N∑
t=1

(yt − ŷt)2 (6.4)

where yt are the actual values, ŷt are the corresponding predicted value, and N is the number of

observations.

The MAPE metric measures the average absolute error and is calculated as follows:

MAPE =
1
N

N∑
t=1

|yt − ŷt|

yt
(6.5)

Note that RMSE is a scale dependent error metrics: the same RMSE value has a different

meaning for different data magnitudes. On the other hand, MAPE expresses errors in terms of

percentages and, thus, is better suited for comparison among data sets.

6.2.2 Comparison of FedAVG and FedSGD with Individual LSTMs and

Central Model

In this subsection, the proposed FedAVG and FedSGD for load forecasting are compared to the

individual LSTMs and the central model. The individual LSTMs approach refers to training

an individual LSTM for each household. This approach does not require any exchange of

data with the central server, but the drawback is that there is a large number of models that

need to be maintained individually. As individual models are trained for a specific client, they

are personalized models and, thus, are good at capturing intricacies of the specific clients.

A comparison of FedAVG and FedSGD with individual LSTM will examine how good the

federated learning strategies are in training a single model to capture diversities among clients.

In the central model, data from all households are combined to form a coherent dataset used
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to train a single LSTM. In this approach, all data must be transferred to the central location. By

comparing FL strategies to the central model, the ability of the proposed FL models to learn

from heterogeneous data will be determined.

To keep the comparison fair, all models, federated, central, and individual, use the same

architecture consisting of one layer LSTM with 32 hidden units. Tuning hyperparameters

individually for each of the considered models has a potential to increase accuracy; however,

this would result in massive computational cost. Moreover, in FL, hyperparameter tuning is still

an open challenge [126] because of the distributed environment, FL-specific hyperparameters,

and the network traffic associated with tuning.

For the federated learning strategies, FedAVG and FedSGD, six clients participate in each

round of training. This number was selected as it allows for diversity of clients in each round

while still including less then one third of clients per round. In FedAVG, one round of training

on the client consists of five epochs, thus allowing clients to make reasonable learning steps

before aggregation. Further tuning could improve federated learning results, but would select

the parameters only for this specific combination of clients.

Forecasting one hour ahead

Table 6.1 shows the average test error in terms RMSE and MAPE for FedSGD, FedAVG,

individual LSTMs, and the central model for one hour ahead forecasts. The two federated

learning strategies, FedSGD and FedAVG, achieved lower errors than individual LSTMS and

the central model. FedSGD achieved the lowest RMSE test error while FedAVG obtained the

lowest MAPE test error. As RMSE for FedAVG is very close to RMSE for FedSGD, the overall

better model is FedAVG because of its low MAPE.

Table 6.1 examines the average accuracy for all households, but we also need to investigate

how models perform for individual households. Fig. 6.3 depicts MAPE errors obtained by

the four approaches, for each house individually. It can be observed that FedAVG outperforms

others approaches for all but 5 households. For those 5 households, the central model achieves
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only slightly better accuracy; however, the central model performs worse in most households

making FedAVG an overall better model. It is also worth noting that FedSGD performance

is very similar to that of the central model, with almost the same MAPE error. This confirms

the findings from Table 6.1 with FedSGD obtaining very close average MAPE to the central

model.

While Fig. 6.3 compares the accuracy of the considered algorithms in terms of MAPE, Fig.

6.4 does so in terms of RMSE. In terms of RMSE, all algorithms achieve similar accuracy for

most houses, and there is no clear winner. Nevertheless, federated algorithms achieve similar

accuracy to conventional ML while not requiring data sharing.

RMSE measures the standard deviation of errors (Equation 6.4) and because of squaring,

it imposes high penalty on larger errors and is sensitive to outliers. In contrast, MAPE calcu-

lates the average percentage error (Equation 6.5). Moreover, MAPE expresses the error as a

percentage while RMSE is scale dependent with the same unit as the measured value. Because

magnitude of the energy consumption varies among houses, MAPE is better suited when com-

paring among houses. In terms of MAPE, FedSGD achieves better accuracy than the remaining

algorithms as observed in Table 6.1 and Fig. 6.3.

An example of predicted versus actual values is shown in Fig. 6.5: it depicts the forecasts

obtained by each of the four approaches for house 13. It can be observed that for the shown

segment, the predicted values better match the actual values for FedAVG than for the other

approaches. The remaining approaches, central model, individual LSTMs, and FedSGD, ap-

pear to obtain reasonable load forecasts but no distinction can be made regarding which one

is better. Nevertheless, for this example, the best predictions are obtained by FedAVG, which

corresponds to the observation seen with MAPE metrics shown in Table 6.1 or Fig. 6.3.



6.2. Evaluation 105

Table 6.1: Average RMSE and MAPE errors for all 19 houses: one hour ahead prediction

Error FedAVG FedSGD LSTM Central
Model

MAPE 14.7522 16.7775 19.3123 16.8851
RMSE 0.6138 0.6084 0.6303 0.6200

Figure 6.3: MAPE errors for FedAVG, FedSGD, LSTMs, and Central Model: one hours ahead
prediction

Figure 6.4: RMSE errors for FedAVG, FedSGD, LSTMs, and Central Model: one hours ahead
prediction
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Figure 6.5: Actual versus predicted load for House 13: one hour ahead forecast

Forecasting 24 hours ahead

While Table 6.1, and figures 6.3 and 6.4 show results for one hour ahead prediction, Table 6.2

and figures 6.6 and 6.7 show results for 24 hours ahead forecasting. It can be observed from
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Table 6.2: Average RMSE and MAPE errors for all 19 houses: 24 hours ahead forecast

Error FedAVG FedSGD LSTM Central
Model

MAPE 17.3870 31.2705 20.5328 55.2167
RMSE 0.6868 0.6842 0.6439 0.6554

Table 6.2 that FedAVG achieved the best average accuracy in terms of MAPE while in terms of

RMSE, the accuracy of FedAVG, FedSGD, LSTMs, and the central model was similar. Thus,

FedAVG can be considered the best model for 24h ahead forecast. Comparing accuracy of 24h

ahead forecasts, Table 6.2, with one hour ahead, Table 6.1, the average error is lower for shorter

forecasting horizon, which is expected as it is, in general, easier to predict fewer hours ahead.

Fig. 6.6 shows MAPE values for each houses individually, for each of the four approaches.

It can be observed that FedAVG and individual LSTMs achieve lower accuracy than the other

two methods for most of the houses. For a few houses, individual LSTMs achieved lower

errors, but overall, FedAVG is better as its average MAPE is lower than for other approaches

as can be seen from Table 6.2.

Comparing 24 hours ahead forecasting in terms of RMSE, Fig. 6.7, all four algorithms

show similar accuracy for all houses. This matches the observation from Table 6.2, where

all four algorithms have similar average RMSE. Nevertheless, as MAPE is better suited for

data sets with different magnitudes, and FedAVG outperformed other approaches in terms of

MAPE, FedAVG is the preferred algorithm.

Fig. 6.8 shows an example for 24 hours ahead forecast. For this house and for the shown

forecasting segment, FedAVG gives predictions closer to actual values. This confirms the

findings from MAPE comparison in Table 6.2: FedAVG achieves better accuracy then the

other approaches for 24 hours ahead forecasts.
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6.2.3 Evaluation in Dynamic Environment

This subsection examines if the model trained with federated learning can be used for the smart

meters that did not participate in training. This represents a dynamic environment where some

smart meters join the federation after the training is complete and only use an already trained

Figure 6.6: MAPE errors for FedAVG, FedSGD, LSTMs, and Central Model: 24 hours ahead
forecast

Figure 6.7: RMSE errors for FedAVG, FedSGD, LSTMs, and Central Model: 24 hours ahead
forecast
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model for forecasting.

For these experiments, the houses are divided into three groups: first 6 houses, second 6,

Figure 6.8: Actual versus predicted load for House 17: 24 hours ahead forecast
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and remaining 7 houses. The ML model is first trained without the first group of houses. Then

this model is evaluated of the first group of houses and results are compared to the accuracy

achieved when all houses participating in training. The same is repeated for the second and

the third group of houses. Figures 6.9 and 6.10 show the results in terms of MAPE and RMSE

for one hour ahead forecasts. ”Absence” indicates that the specific group of houses did not

participate in training, while presence signifies that all houses participated in training. Note

that an individual LSTM cannot be considered here as it requires the use of the target house

data for training. Also, for each group of houses, the evaluation is always performed only on

that group of houses, although other houses participated in training. This is somewhat similar

cross-validation, but instead of randomly selecting the validation set samples, a group of houses

is assigned to the validation set.

In terms of MAPE, Fig. 6.9, all algorithms achieved better accuracy when all data are

used for training, which is to be expected. However, even when a group of houses did not

participate in training, the model was able to achieve the accuracy close to that of the model

trained with all data. For the last 7 houses, FedSGD and FedAVG achieved almost exactly the

same accuracy when those houses participated and did not participate in the training.

In terms of RMSE, Fig. 6.10, there was hardly any difference if the group of houses partic-

ipated in the training or not. This demonstrates that for one hour ahead forecasting, federated

learning strategies are successfully even for smart meters that did not participate in training.

Figures 6.11 and 6.12 examine federated learning for 24 hours ahead forecasting in a dynamic

environment: Fig. 6.11 shows MAPE while 6.12 shows RMSE metrics. As before, federated

learning strategies do not exhibit overall performance degradation when some groups of houses

do not participate in training.

6.2.4 Convergence and Computation Cost

In this subsection, the proposed FedAVG and FedSGD algorithms are assessed in terms of con-

vergence. In general, the system converges if further training does not significantly improve
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Figure 6.9: Dynamic environment: MAPE errors for FedAVG, FedSGD, and Central models:
one hour ahead forecast

Figure 6.10: Dynamic environment: RMSE errors for FedAVG, FedSGD, and Central models:
one hour ahead forecast

the model performance. For neural networks, convergence is examined in respect to epochs;

however, in FL we are interested in the training rounds as they drive the communication be-

tween clients and the server. In FedSGD, each client performs only a single step of gradient

descent in one training round. In contrast, FedAVG carries out several gradient descent steps

on the client before communicating the updates back to the server.

To examine convergence, the same setup has been used as described in Subsection 6.2.2.

The training errors for up to 150 rounds for the two algorithms, FedSGD and FedAVG, are

shown in Fig. 6.13. As expected, both converge to similar errors, but FedSGD takes many

more rounds to converge than FedAVG as FedAVG performs multiple steps in a single round.
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Figure 6.11: Dynamic environment: MAPE errors for FedAVG, FedSGD, and Central models:
24 hours ahead forecast

Figure 6.12: Dynamic environment: RMSE errors for FedAVG, FedSGD, and Central models:
24 hours ahead forecast

These training rounds are indicators of the communication and, therefore, it can be concluded

that the network traffic in FedAVG is much lower than in FedSGD.

Furthermore, FedAVG computation is compared to that of the central model and individual

LSTMs. With five epochs in each training round, FedAVG converged after the fifth epoch as

can be seen from Fig. 6.14. The centralized model converged around the eleventh epoch, Fig.

6.15, while the convergence of individual models varied among different houses, Fig. 6.16,

with majority converging before 15th epoch; thus, 15 epochs are considered for computation

analysis. Note that convergence for the central model and individual LSTMs is shown in re-

spect to epochs while for FedAVG, training rounds are used. This is because in FL, training
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Table 6.3: Computation Comparison between FedAVG, Central Model, and Individual LSTMs

Algorithm Batches/Epoch Rounds Clients Epochs Total Time(sec)

FedAVG 80 5 6 5 12000 61.98
Central Model 80 N/A 19 15 22800 117.77
Individual LSTMs 80 N/A 19 15 22800 119.99

rounds represent the steps of the training process.

Table 6.3 compares the training computation of FedAVG, the central model, and individual

LSTMs. Each approach has the same quantity of data available and uses the same batch size

of 250. Therefore, each one processes 80 batches per epoch. For FedAVG, five rounds are

needed, each one with six clients executing five epochs. This results in 80 batches×5rounds×

6 clients × 5 epochs = 12, 000 runs over batches. For the central model and individual LSTM

the concept of training rounds does not apply and we assume that 15 epochs are sufficient

as the central model and most individual LSTMs converge with 15 epochs (figures 6.15 and

6.16). Each of these two approaches has to process data from 19 houses resulting in a total of

80 batches × 19 houses × 15 epochs = 22, 800 runs over batches.

Architectures for all models have the same structure: LSTM with the same number of

layers and the same number of parameters. Therefore, the time to process a single batch is

Figure 6.13: The training loss for FedAVG and FedSGD for 50 training rounds.
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Figure 6.14: MSE for each FedAVG training round

Figure 6.15: MSE for each epoch: central model

Figure 6.16: MSE for each epoch: three examples of individual LSTMs
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similar across all morels. As FedAVG needs 12,000 runs while the other two approaches need

approximately 22,800 runs, FedAVG will be significantly faster. Note that this ignores the fact

that in FedAVG, in each training rounds, clients train in parallel reducing the computation time.

With individual LSTMs, parallelization is possible while the central model requires sequential

processing.

However, the main benefit of FL is that it achieves better accuracy than the other approaches

while not requiring the clients to share their local data. Moreover, the clients can join the

federation after the training is complete and FedAVG still achieves good forecasting accuracy

as shown in Section 6.2.3.

6.3 Discussion

With increasing concerns regarding security and privacy, it is becoming more important to

develop ML techniques capable of training ML models without requiring participants to share

their local model. Federated learning is a step in this direction although it is still in its early

stages, and it requires further improvements and examinations in different contexts. This study

investigates the abilities of the FedSGD and FedAVG approaches in load forecasting.

Both algorithms, FedSGD and FedAVG, achieved comparable or better accuracy than a

single central model or individual local models for one hour ahead forecasts, as shown in Table

6.1. For 24 hours ahead, FedAVG outperformed other algorithms in terms of MAPE while in

terms of RMSE there was very little difference among algorithms. Overall, FedAVG was the

best algorithm as it is able to achieve high accuracy without requiring the clients to share their

local data.

In addition to examining the overall error, it is important to consider performance on indi-

vidual houses. It terms of MAPE, FedAVG performed better than FedSGD for one hour and

24 hour ahead forecasting, as observed from figures 6.3 and 6.6. Moreover, FedAVG required

fewer training rounds than FedSGD (Fig. 6.13).
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Our experiments from Subsection 6.2.3 also show that the trained model can be used with

a good success for smart meters that did not participate in the training. This is important in

scenarios when new smart meters are added to the federation or when there are very little data

from some meters.

RNN-based models, including LSTMs, have been outperforming other architectures for

load forecasting on individual smart meters [8, 15] and this study demonstrated that FedAVG

achieves similar or better results than individual LSTMs. Moreover, with individual models,

there must be sufficient data from each individual household to train the model. In contrast,

FedAVG is even successful for households that did not participate in training as shown in

Subsection 6.2.3.

To further examine the performance of FedAVG, we compare it to simple shifting and the

FL approach proposed by Taı̈k et al. [96] in Table 6.4. Simple shifting for one hour ahead

forecasting uses the consumption at the current time step t as the forecast for the next time

step t + 1. For 24 hours ahead forecasting, values from last 24 hours serve as the forecasts for

the next 24 hours. The work of Taı̈k et al. [96] is the most related work to ours, as it also

employs federated learning for load forecasting. Similar to our work, they use the FedAVG

aggregating strategy, but, while we employ an adaptive learning rate, they use a fixed learning

rate. Moreover, their study only considers one hour ahead forecasting.

As seen from Table 6.4, our FedAVG technique achieved better results than Taı̈k et al. [96]

in terms of MAPE and RMSE for both one hour ahead and 24 hours ahead forecasting. Simple

shifting archived better accuracy than FedAVG for one hour ahead forecast; however, for 24

hours ahead, simple shifting achieved very poor results in comparison to our FedAVG or the

work of Taı̈k et al. [96]. Consequently, FedAVG is an overall better approach.
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Table 6.4: MAPE and RMSE for FedAVG, Simple Shifting, and Taı̈k et al.: one hour ahead
and 24 hours ahead prediction

MAPE(%) RMSE

Algorithm one hour
ahead

24 hours
ahead

one hour
ahead

24 hours
ahead

FedAVG 14.7522 17.3870 0.6138 0.6868
Taı̈k et al. [96] 19.7516 21.9798 0.6569 0.7358
Simple Shifting 13.0784 42.5700 0.5555 1.6719



Chapter 7

Asynchronous Adaptive Federated

Learning for Load Forecasting

FL represents a shift from centralized to distributed ML, nevertheless, traditional FL employs

a synchronous protocol [132]: at each iteration, the server distributes the global model to a

subset of clients and then waits for all clients to complete their training before collecting all

updates and aggregating them. This is a hindrance due to device heterogeneity and network

unreliability. Asynchronous FL is a newly emerged FL method that allows the server to aggre-

gate parameters without waiting for the lagging devices [101]; however, it is still in its early

stages.

Another FL challenge is non-IID data (independent and identically distributed). Smart

meters collect data corresponding to users with different preferences and behaviours leading

to significant differences in the data distributions and patterns. The presence of non-IID data

degrades the FL performance, brings instability to the training process, and results in a higher

number of rounds required for convergence [104].

Consequently, this chapter proposes FedNorm, a novel asynchronous FL strategy for load

forecasting with smart meters data under a non-IID setting. To deal with staleness and non-IID

data, FedNorm measures the contribution of participating nodes taking into consideration the

118
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similarity between local and global model weights as well as the magnitude of local objective

functions. Then, the global model is updated based on the client’s contributions. The proposed

approach accelerates the training loss reduction in each communication round and, therefore

accelerates convergence.

7.1 FedNorm

This section describes the proposed FedNorm, an asynchronous approach for learning from

distributed smart meter data when some of the clients are unable to participate in the training

process due to network instability or when the lagging clients do not complete their training

timely. As seen in Fig. 7.1, clients’ updates are merged into the global model at different time

steps; for example, Client 1 changes are merged at t1 while Client 2 changes are added at t2. The

theoretical analysis shows that the diversity of the node contributions in FL convergence can

be measured by the local gradient of each node and the global gradient [104]. This motivates

us to measure the contribution of participating nodes by assigning the weights for participating

nodes based on the similarity between local weights wi and global weight w together with the

magnitude of local objective functions ψk(w). An intuitive weighting design should follow

the notion that nodes with larger contributions in reducing the global objective function L(w)

deserve higher impact in each global round. Therefore, our process for assigning adaptive

weights includes three steps:

1) Determining Node Contributions We specifically measure each node’s contribution at

each global round using contribution λ, which is defined as:

λk =

αk︷    ︸︸    ︷
∥w − wk∥ ∗

βk︷                   ︸︸                   ︷
(ψk(w) −

K∑
k=1

ψk(w)
K

) (7.1)

Here, αk represents the degree of similarity between the global and local models, while βk

defines loss contribution of each client including contribution direction. The αk is calculated
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Figure 7.1: Asynchronous federated learning.

as the sum of the absolute vector values, where the vectors are weight differences between the

global model and the local models. In FL, the direction of minimizing local objective ψk(w)

might not align with the direction of minimizing global objective L(w) even though they have

similar weights [104]. Therefore, we need βk as a difference between local objectives and the

global objective to define the alignment direction. If βk is positive, it has an opposite direction

to the global aggregation. In contrast, when βk is negative, the local node positively contributes

to the global aggregation.

2) Scaling Node Contributions Since αk has no upper bound, the λk = αk ∗ βk swings

over a broad range of negative and positive values amplifying the difference between large

positive and negative values. This wide difference between the large positive and negative

values causes the weighting function to be skewed toward large numbers. To solve this issue

and reduce the impact of large λk, we scale node contributions using a non-linear mapping

based on the Gaussian function:

f (λk) = ae−
(λk−µ)2

2σ2 (7.2)
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where a is the maximum, µ is the mean, and σ is the standard deviation of λk. The designed

mapping function gives local nodes with positive impact in the aggregation more weights and

reduce the effect of less effective participants while controlling the impact of large λk values.

3) Calculating Client Contribution Ratios After determining node contributions and scal-

ing them to handle the participants with large values, we use Softmax (equation 7.3) function

to calculate the ratio of each participating node in the global model aggregation as follows:

ξk(wk) =
e f (λk)∑K
j=1 e f (λ j)

(7.3)

Softmax is a mathematical function that transforms a vector of numbers into a vector of prob-

abilities, with the probability of each value proportional to the vector’s relative scale.

Algorithm 6 presents the FedNorm process. FedNorm employs LSTM, a variant of RNN,

as the base learner because LSTM can capture temporal dependencies and has been very suc-

cessful in load forecasting [128]. First, the global LSTM model is initialized with random

weights, Line 2. Each round of FedNorm training starts by randomly selecting a subset of de-

vices S t and broadcasting the model to the chosen devices, lines 4 and 5. The selected devices

then train their local models in parallel with their local data for multiple epochs, Line 7.

Procedure AsyncClientU pdate, Line 15, shows the local model training process: the local

data Pk are divided into the batches B of size bs (Line 16) and the local device trains the

received model for multiple epochs with created batches as shown in lines 17 to 19. The

clients from S t that have completed their training send their new local weights back to the

server for aggregation, Line 20, and the server updates the global model by calculating the

weighted average of the received local weights as shown in lines 9-11. These three lines 9-11

are the core of FedNorm and correspond to the three steps described above and represented

with equations 7.1-7.3. Note that the server does not wait to receive updates from all clients,

but aggregates the global model as client’s updates arrive. Next, the updated global model

is sent back to all non-running clients, Line 12. The process is repeated from Line 3 until
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Algorithm 6 FedNorm
1: Server Execution:
2: Initialize global model weights w0

3: for global iterations t=1,2,..., T do
4: S t ← random set of m clients
5: Send global model to S t clients
6: for each client k ∈ S t in parallel do
7: wk

t+1 ← AsyncClientUpdate(k,wt)

8: Receiving parameters from clients
9: λk = ∥w − wk∥ ∗ (ψk(w) −

∑K
k=1

ψk(w)
K )

10: ξk(wk) = e f (λk )∑K
j=1

n j
N e f (λ j)

11: wt+1 ←
∑

k∈K ξk(wk)wk
t

12: Send the model to all non-running participants
13: Send the model to all participants

14: Client Execution:
15: procedure AsyncClientUpdate(k,w)
16: B← split Pk into batches of size bs

17: for each local epoch e < E do
18: for batch b ∈ B do
19: w← w − η ▽ ℓ(w)
20: return w to server

convergence and, finally, the trained global model is broadcasted to all participants, Line 13.

7.2 Evaluation Methodology

This section presents the dataset and evaluation metrics, followed by experimental setup and

benchmark algorithms.

7.2.1 Dataset and evaluation Metrics

The FedNorm evaluation is conducted with the real-world residential consumers dataset pro-

vided by London Hydro, a local electrical distribution utility. Each consumers’ dataset contains

hourly energy consumption for three years, resulting in 25,560 readings per household. Addi-

tional features, including the day of the year, the day of the month, the week of the year, the
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Figure 7.2: Electricity load examples for eight houses

day of the week, and the hour of the day, were devised from the load reading date/time to assist

with modeling daily, monthly, and weekly patterns. The study included 19 consumers. Fig.

7.2 depicts a part of the load data for eight example households. It can be observed that load

patterns, as well as load magnitudes, differ greatly among households.

Each household with its own data is treated as a local node in FL scenarios. For the pur-

pose of experimental evaluation, each household dataset is divided into 70% training and 30%

testing set. This divide remains the same for all FL and non-FL experiments. A single-layer

LSTM followed by a fully connected layer is used as the base model. Root Mean Square Error

(RMSE) and Mean Absolute Percentage Error (MAPE) are common error metrics considered

for load forecasting [100]; therefore, they are used here as well. It is important to note that

RMSE is a scale-dependent error metric, which means that the same RMSE values have differ-

ent meanings depending on the magnitude of data. MAPE, on the other hand, expresses errors

as percentages; thus, it is better suited for comparison among datasets.

The algorithms were implemented in PyTorch and all experiments were conducted with

AMD Ryzen 4.20 GHz processor and NVIDIA GeForce RTX 2080 Ti graphics card.
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7.2.2 Experimental Setup

To simulate the asynchronous setting, in each round of FL, a fraction of clients is randomly

selected, and, then, the selected clients are again randomly divided into two groups, (1) those

that complete training in the current round (without delay) and (2) those that need additional

time to complete training (with delay). The first group is aggregated with the global model

immediately after finishing their training, and the second group waits for the next rounds to be

aggregated.

Fig. 7.3 illustrates the simulation process. In Step S 1, a fraction F (in figure five clients) of

the clients is selected to train their local models. In step S 2, the selected clients are randomly

divided into two groups C without delay and R1 with delay. The clients in C finish their training

in the current round and are aggregated into the global model in Step S 3 but R1 clients are still

training their local models. In Step S 4, all clients except R1s receive a copy of the updated

global model. In the next round of training S 5, again a fraction of the clients is selected;

however, the size of the fraction is equal to F′ = F − count(R1). In S 6, similar to S 2, the F′

Figure 7.3: Asynchronous settings simulation.
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is divided into two groups: without and with delays, C and R2 respectively. Thus, in Step 6,

the delayed clients R1 from the previous round and some clients from round two complete the

training, as indicated with C in the figure, while R2 clients are still running and will complete

training in the next round. Clients C are aggregated into the global model in Step S 7. This

process continues until the model converges.

7.2.3 FL Techniques Included in Comparison

The proposed FedNorm is compared to the following synchronous and asynchronous FL tech-

niques:

• FedSGD: Federated stochastic gradient descent is the first proposed FL method. In this

approach, the server averages the local clients’ gradients to make a gradient descent step

on the global model [133].

• FedAvg: This is a widely used generalization of FedSGD [129], in which the local nodes

train for several epochs and then exchange the weights rather than the gradients.

• FedAdam, FedYogi, FedAdaGrad [134]: These approaches are an adaptive variants of

the stochastic gradient (FedSGD) method. The adaptive optimizers ADAM, YOGI, and

AdaGrad are applied on the server to address the issues of client drift.

• FedProx: This FL framework adds a proximal term on the FedSGD’s local objective

function to mitigate the data heterogeneity problem and to improve the model stability

[135].

• FedAsync: This approach uses a weighted average to update the server model. [103].

All listed algorithms are synchronous, except for FedAsync which is asynchronous. Compar-

ing FedNorm against these algorithms allows us to examine the performance from several per-

spectives. The comparison with the commonly used FedSGD and FedAVG algorithms shows
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the difficulties of load forecasting in FL settings and in the presence of heterogeneous data.

AdaGrad, ADAM, and YOGI show the efficiency of various adaptive federated optimizers in

the face of heterogeneous data while FedProx improves handling heterogeneous data by gen-

eralization and re-parametrization of FedAvg. Thus, comparing FedNorm to those algorithms

examines behaviour in presence of heterogeneities. Finally, FedAsync, asynchronous FL, is

needed to show tolerance to staleness.

7.3 Results and Analysis

This section presents comparison results, investigates the statistical significance, and examines

convergence.

7.3.1 Predictive Performance Comparison

The proposed FedNorm is compared to five other FL methods on the task of predicting load

demand eight hours and sixteen hours ahead. The average predictive performance of each

algorithm for the two forecasting horizons is shown in Table 7.1. In terms of both evaluation

metrics, MAPE and RMSE, FedNorm achieves the lowest error for both forecasting horizons.

Table 7.1: Average MAPE and RMSE for 8 and 16 hours ahead forecast

MAPE RMSE

Methods 8
Hours
ahead

16
Hours
ahead

8
Hours
ahead

16
Hours
ahead

FedNorm 4.14 3.11 0.0773 0.0754
FedAvg 5.67 5.85 0.1115 0.1124
FedProx 5.86 5.92 0.1132 0.1151
FedSGD 8.30 8.71 0.1167 0.1427
FedAdagrad 8.81 12.60 0.1183 0.1556
FedAdam 6.68 7.51 0.1076 0.1153
FedYogi 6.38 8.11 0.1188 0.1139
FedAsync 5.94 5.78 0.1132 0.0971
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In terms of MAPE error, FedAvg, FedProx, and FedAsync show a similar performance while

FedSGD and FedAdagrad exhibit large errors. In terms of RMSE, FedNorm performs the best,

while there is little difference among other models.

As households differ greatly in their consumption patterns, it is important to examine the

performance for individual houses. Thus, figures 7.4 and 7.5 depict MAPE and RMSE obtained

by each algorithm for eight hours ahead prediction, for each house individually. Overall, Fed-

Norm performs better than other approaches. While for a few houses, such as House 6, other

approaches achieve slightly lower error than FedNorm, for most houses FedNorm performs

much better.

Figures 7.6 and 7.7 show the same metrics, MAPE and RMSE, for sixteen hours ahead

prediction. Again, FedNorm performs the best for most houses, and for those houses for which

it is not the best, it achieves the error very close to the lowest one.

Fig. 7.8 depicts an example of actual and predicted loads for House 3 and eights hours

forecasting horizon. Specifically, forecasts obtained by the top three algorithms (FedNorm,

FedAvg, FedProx) according to MAPE are shown. It can be observed that the predicted values

better match the actual values for FedNorm than for the other approaches, which supports the

results observed in Table 7.1.

7.3.2 Statistical Significance

Standard metrics such as MAPE and RMSE compare models, but they do not consider whether

the differences between the models are significant. Diebold-Mariano test [136] can be used to

determine if forecasts are significantly different. For two forecasts f1, . . . , fn and g1, . . . , gn, for

a time series y1, . . . , yn, the Diebold-Mariano test is defined as follows:

DM =
d̄√

[γ0 + 2
∑n

1
3 +1

k=1 γk]n−1

(7.4)

where γk =
1
n

∑n
i=1(di− d̄)(di−k− d̄) is autocovariance at lag k, di = e2

i −r2
i is the loss differentials
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where ei = yi− fi and ri = yi−gi are the residuals (errors) for the two forecasts, and d̄ = 1
n

∑n
i=1 dt

is the sample mean loss differential.

Because DM is a statistical test, when the DM value falls outside the range [-1.96 1.96], the

null hypothesis (the difference between two model’s performance is not significant) is rejected

Figure 7.4: MAPE errors for eight hours ahead prediction.

Figure 7.5: RMSE errors for eight hours ahead prediction.
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at a 5% confidence level. Fig. 7.9 shows DM values for FedSGD, FedAvg, FedAdam, FedAda-

grad, FedYogi, FedProx, FedAsync contrasted to the proposed FedNorm for each house. As the

goal is to evaluate the proposed FedNorm against other algorithms, rows in the figure compare

FedNorm to each of the other algorithms. It can be observed that the outcome of the Diebold-

Figure 7.6: MAPE errors for 16 hours ahead prediction.

Figure 7.7: RMSE errors for 16 hours ahead prediction.
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Figure 7.8: Actual and predicted load: House 3, eight hours ahead forecast

Mariano test indicates that the forecasts obtained by the proposed FedNorm are significantly

different from all other considered approaches.

7.3.3 Analysis of Convergence

The performance of FL depends on its convergence characteristics. For the convergence anal-

ysis, in each round of training, the clients are first trained and then tested, recording the test

error for each individual house. To analyze overall model convergence across all houses, we



7.4. Discussion 131

Figure 7.9: Diebold-Mariano test: DM values for 19 houses.

report the median, 25th and 75th percentile, maximum, and minimum of errors.

Fig. 7.10 shows the error distributions for all FL methods and the first 20 training rounds.

It can be observed that FedNorm converges very fast, and after the third round, it converges.

Additionally, the error ranges are small, which means that the FedNorm performance for dif-

ferent houses is very similar and with a low error. FedProx takes longer to converge, with large

error ranges in early rounds and smaller in later rounds. Although FedAvg converges after the

third round as our approach, error ranges for FedAvg are large, which indicates inconsistencies

among houses. FedSGD takes longer to converge; at first, the error range is large, but after 12

rounds, the error range is reduced. Errors for FedYogi, FedAdam, FedAsync, and FedAdagrad

vary over training rounds, and there is no clear indication of convergence. Overall, FedNorm

converges faster than other approaches, and its performance among homes is more consistent.

7.4 Discussion

This chapter proposes FedNorm, an asynchronous FL approach for load forecasting with smart

meter data, which does not require participants to share their local data. FedNorm updates

the global model asynchronously without waiting for all client devices to complete their train-

ing. The contributions of each client node are determined based on the similarity of local
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Figure 7.10: Errors (median, 25th Percentile, 75th Percentile, maximum, and minimum) over
iterations for each of the seven algorithms

model weights with the global model weights while taking into account the magnitude of the

local objective function. The experiments show that FedNorm achieves higher accuracy than

seven other FL approaches FedSGD, FedAvg, FedAdam, FedYogi, FedAdagrad, FedProx, and

FedAsync for eight and sixteen hours forecasting horizons. The main reason for this is that

FedNorm pays more attention to the local models which are more similar to the global model.

Statistical tests showed that the difference between FedNorm and other approaches is signif-

icant while examination of performance on individual houses demonstrated high consistency

and low error rates.
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Conclusion and Future Work

This chapter first summarizes the main findings for the proposed Recurrent Generative Ad-

versarial Networks, Online Adaptive RNN, and Federated learning techniques in Conclusion

subsection. Next, the possible extensions of the work are discussed in the Future Work section.

8.1 Conclusion

Energy drives economies and societies, but it has also been the biggest contributor to global

warming and accounts for about two-thirds of greenhouse gas emissions [137]. An efficient

energy management will be critical in combating environmental challenges and lowering en-

ergy production’s side effects. Improved energy management also leads to financial benefits for

the end consumers by lowering energy costs and operating expenses. Load forecasting is es-

sential in energy management because it helps with power infrastructure planning, generation

scheduling, demand and supply balance, and energy budgeting. Thanks to advanced meter-

ing infrastructure and widespread deployments of smart meters, utility providers can measure

and record energy consumption for particular buildings or even individual residences. Massive

amount of smart meter data has paved the way for new, more in-depth insights into energy

usage trends, as well as large-scale load forecasts at the individual consumer level. Sensor-

based load forecasting techniques train machine learning models by using historical load data

133



134 Chapter 8. Conclusion and FutureWork

gathered by these smart meters or similar technologies, often combined with meteorological

data.

Conventionally, smart meter data are transmitted to a data centre or other centralized sys-

tems for storage and for training machine learning models. Although these centralized solu-

tions have shown great results, they require transferring all data to a centralized location, which

results in significant network traffic [96]. Moreover, a centralized ML not only requires sharing

local data with the centralized systems imposing security and privacy concerns, but also makes

complying with stringent data regulations challenging. As the number of smart meters grows,

training an individual ML model for each smart meter becomes computationally expensive and

even infeasible. Furthermore, batch (offline) learning requires all data to be available at the

start of training, whereas online models learn as new data is received without the need to store

all data.

Consequently, this thesis provides a solution composed of four parts.

1) Recurrent Generative Adversarial Networks (R-GAN) generates realistic energy con-

sumption data by learning from real data samples. Introduced R-GAN replaces Convolutional

Neural Networks (CNNs) used in image GANs with Recurrent Neural Networks (RNNs) be-

cause of RNNs ability to capture temporal dependence in time series data. To deal with conver-

gence instability and to improve the quality of generated data, Wasserstein GANs (WGANs)

and Metropolis-Hastings GAN (MH-GAN) techniques were used. Moreover, ARIMA and

Fourier Transform were applied to generate new features and, consequently, improve the qual-

ity of generated data.

To evaluate the suitability of data generated with R-GANs for machine learning, energy

forecasting experiments were conducted. Synthetic data produced with R-GAN was used to

train the energy forecasting model and then, the trained model was tested on the real data.

Results show that the model trained with synthetic data achieves similar accuracy as the one

trained with real data. The addition of features generated by ARIMA and Fourier transform

improves the quality of generated data.
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2) Online Adaptive Recurrent Neural Network is an online learning approach for load

forecasting where the model is continuously updated as new data arrive. The base learner is a

recurrent neural network in order to capture temporal dependencies, while continuous learning

is carried out with the addition of preprocessing, buffering, and tuning modules. The prepro-

cessing module prepares data for online learning, the tuning module adapts neural network

hyperparameters to newly arriving patterns, and the buffering module facilitates learning from

especially difficult patters and assists in handling concept drift.

The evaluation was carried out with five individual households. The proposed approach

achieved higher accuracy than the traditional offline long short term memory neural network

for all five households for all forecasting lengths. Comparing to five online algorithms, Online

Adaptive RNN achieved higher accuracy than the four algorithms for all forecasting horizons.

The fifth algorithm, online K Nearest Neighbor, archived slightly better accuracy for one hour

ahead forecasting, but Online Adaptive RNN outperformed KNN for 50, 100, and 200 hours

ahead. Moreover, training time for the proposed approach is an order of magnitude shorter

than that of the traditional offline LSTM.

3) Federated learning (FL) approach was proposed for load forecasting with smart meters

capable of training a machine learning model in a distributed manner, without requiring the

participant to share their local data. In the proposed FL approach, a global ML model is shared

across independent devices corresponding to individual smart meters and each device updates

its local copy of the shared model using local data. Then, these local updates are sent to

the server to be aggregated and merged into the global model. As recurrent neural networks

can capture temporal dependencies and have been very successfully in load forecasting, the

proposed approach employs LSTM, a variant of RNN, as the base learner. Two strategies,

FedSGD and FedAVG, have been examined: they differ in the way they train the local model

and in the frequency of sending the model updates to the server.

The experiments show that both, FedAVG and FedSGD approaches achieve higher accu-

racy than the individual LSTMs and central models for one hour forecasting horizon. For this
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horizon, FedAVG achieved slightly better accuracy than FedSGD. For 24 hours ahead, Fe-

dAVG outperformed all other approaches while FedSGD experienced conversion difficulties

and exhibited higher errors than individual LSTMS. Also, the proposed approach was evalu-

ated in a dynamic environment where some smart meters join the federation after the training

is complete and use the already trained model for load forecasting. The results demonstrate

that even in this scenario, the FedAVG and FedSGD achieve high accuracy.

4) FedNorm proposes an asynchronous FL approach for load forecasting with smart meter

data, which does not require participants to share their local data. FedNorm updates the global

model asynchronously without waiting for all client devices to complete their training. The

contributions of each client node are determined based on the similarity of local model weights

with the global model weights while taking into account the magnitude of the local objective

function. The experiments show that FedNorm achieves higher accuracy than seven other FL

approaches FedSGD, FedAvg, FedAdam, FedYogi, FedAdagrad, FedProx, and FedAsync for

eight and sixteen hours forecasting horizons. The main reason for this is that FedNorm pays

more attention to the local models which are more similar to the global model. Statistical

tests showed that the difference between FedNorm and other approaches is significant while

examination of performance on individual houses demonstrated high consistency and low error

rates.

8.2 Future Work

FL techniques successfully learn from distributed smart meter data without requiring to transfer

data to a centralized system which confirmed that it can be leveraged to achieve the challenging

tasks of load forecasting. Moreover, the propose online learning technique demonstrates the

the ML model can learn from streaming data. These works have opened the doors for further

investigation. Consequently, future work will include the following:

• Evaluate FL on the larger and more diverse datasets. This theses examined FL with
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residential consumers, and further investigation is needed to explore its behaviour with

other consumer types such as industrial or commercial consumers.

• Examine other techniques for merging weights on the server with objective of improv-

ing overall FL accuracy and convergence. In this thesis, we proposed node contribution

method; however, other approaches including muti-task learning and aggregation em-

ploying an attention method can be explored.

• Examine the proposed Asynchronous FL approach on other time series data. The en-

ergy domain shares many characteristics with other IoT domains and time-series data;

therefore, the proposed FL techniques developed in this research has the potential to be

expanded to benefit other learning tasks in different time-series domains.

• Measuring the effects of non-Identical data distribution on federated global model. Given

their distributed nature, the statistics of the data across various devices is likely to dif-

fer significantly. Consequently, it is necessary to investigate how different degrees of

heterogeneity affect FL.

• Merge online and FL methods where the local devices perform online learning with

continuous streaming local data and a central server aggregates model parameters from

local clients.

• Personalization has been suggested in asynchronous FL: each client trains their own

local models while also contributing to the global model. It is necessary to derive a

generalisation bound for a mixture of local and global models, as well as to determine

the best mixing parameter.

• Another possible solution to deal with hetoregeinity is multi-center aggregation mecha-

nism. It learns multiple global models from data, and simultaneously derives the optimal

matching between users and centers. This approach can be examined and compared with

our proposed technique in terms of performance.
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• The work described in this thesis on online learning touches on concept drift; however,

more research and improvements are needed to better address concept drift.

With transitions to Smart Grids, energy forecasting is becoming even more important espe-

cially on the individual consumer level. While this thesis contributed to the load forecasting,

as mentioned, there are numerous direction for further investigation.
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