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Abstract 

Self healing, ionically crosslinked networks were prepared from poly(acrylic acid) (PAA) and 

poly(triethyl(4-vinylbenzyl)phosphonium chloride (P-Et-P) and their properties were studied. 

Three different ratios of PAA/P-Et-P were incorporated into the networks by varying the 

addition orders of the components. Swelling of the networks increased with increasing NaCl 

concentration when they were immersed in aqueous solution. All networks retained their 

structural integrity in 0.1 M NaCl. Studies of the rheological and tensile properties of the 

networks swelled in 0.1 M NaCl showed that PAA>P-Et-P exhibited high elongation and 

viscoelastic properties suitable for self-healing with a relaxation time of ~30 s, whereas the other 

networks exhibited predominantly elastic behavior. The moduli were similar to those of soft 

tissues. Self-healing of PAA>P-Et-P in 0.1 M NaCl was demonstrated through repair of a 0.5 

mm diameter puncture in the material whereas healing was incomplete for the other networks 

and also for PAA>P-Et-P in the absence of NaCl. Healing after completely severing a tensile 

testing sample showed significant recovery of the modulus, strength, and elongation. The 

properties of these materials and their ability to self-heal in low and physiologically relevant salt 

concentrations make them promising candidates for a variety of applications, particularly in the 

biomedical area. 

 
 

Introduction 

 

Self-healing materials are able to renew their structural integrity after damage through dynamic 

processes, making the prospect of renewable or persistent materials and coatings possible.1–4 

Self-healing materials are already used in automotive paints and coatings,5 and are expected to 

have much broader applications in the near future, including the stabilization of  lithium-ion 



 4 

batteries6 and in prolonging the lifetime of medical implants such as bone cements and joint and 

soft tissue replacements.7–9 The development of self-healing materials has often involved the 

incorporation of microcapsules10 or vascular networks11 that contain additives such as 

monomers. The healing was then engaged upon damage of the microcapsule container, leakage 

of the active components, and initiation of the chemical reaction (e.g. polymerization), ultimately 

filling of the damaged area. A limitation of microcapsule- or vascular-based self-healing 

networks is the lack of repeatable self-healing in a given location. An alternative is the use of 

reversibly-crosslinked networks. Cross-linking can involve hydrogen bonding,12 coordination of 

metals,13 ionic bonding,14 or covalent systems such as disulfide-linkages15,16 or Diels-Alder 

adducts.17  

The choice of process that mediates healing is important in order to ensure that the 

network can be repaired in its intended environment. Ionically-crosslinked networks have used 

two-component polymer blends or interpenetrating polymer networks that contain both 

polyanions and polycations.18 For example, networks comprising poly(allylamine hydrochloride) 

(PAH) or poly(diallyldimethylammonium chloride) as polycations, coupled with poly(acrylic 

acid) (PAA) or poly(styrene sulfonate), respectively as polyanions, have been investigated in 

their hydrated state.18,19 These networks involve both physical entanglement of the polymer 

chains, and chemical crosslinking between ionic groups. Polyelectrolyte crosslinks are favoured 

due to the entropic release of water and counterions, but still undergo dynamic exchange in the 

presence of aqueous NaCl.20 Over time, the viscoelastic properties of the network, which are a 

balance between the elastic modulus (solid character) and viscous modulus (fluid character) can 

allow self-healing at the interface, while still allowing the structural integrity of the materials to 

be retained. Self-healing of the PAA/PAH networks required high ionic strength (1.0 -2.5 M 
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NaCl), which may limit their use for in vivo applications.14 Furthermore, the requirement for 

ultracentrifugation to create the PAA/PAH networks may result in challenges for the scaling up 

of the process. However, the ability of salt water to effectively plasticize polyelectrolyte 

complexes has been a key enabler for the processing and reprocessing of polyelectrolyte 

complexes. By analogy with thermoplastics, which can be processed at elevated temperature, 

these materials have been termed “saloplastics” by Schlenoff.21 

Phosphonium salts are particularly attractive for materials science applications because of 

their high thermal and chemical stability as well as their ease of synthesis.22–24  Phosphonium 

cations have different charge densities relative to their ammonium congeners due to the larger 

size and lower electronegativity of the phosphorus atom, leading to differences in the properties 

of materials containing phosphonium relative to ammonium centres. Phosphonium-containing 

macromolecules have been explored in applications such as ionic liquids25 and non-viral gene 

delivery26 and they have often been found to exhibit enhanced performance relative to their 

ammonium analogues.27 Of particular interest are the antibacterial properties of phosphonium-

based materials,28–32 as they can potentially prevent bacterial infection, when incorporated into 

medical devices or implants.  

Very few examples of phosphonium-based ionically-crosslinked networks have been 

reported to date. Supramolecular networks have been prepared by combining phosphonium 

monocations or dications with tetraanions,33 or with PAA34 as well as by combining a 

phosphonium polymers with mono- and dicarboxylic acids.35 The properties of these different 

networks could be tuned based on the chemical structures of their components, but their self-

healing was not studied and the limited valency of the interactions would likely prevent them 

from surviving immersion in aqueous solution. Photoluminescent phosphonium polyelectrolytes 
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have been cast in multilayered films with PAA using a layer-by-layer technique. 36 However, to 

the best of our knowledge, the combination of polymeric phosphonium cations with polymeric 

anions to form ionically-crosslinked networks has not been reported. In this context, we report 

here the combination of polyphosphonium cations with PAA for the preparation of ionically-

crosslinked polymer networks. We demonstrate that the composition and properties of the 

networks can be regulated according to the network preparation method. The rheology of the 

networks in 0.1 M NaCl is described and it is shown that networks with the suitable viscoelastic 

properties exhibit self-healing capabilities under physiologically relevant salt concentrations.  

 

Experimental 

 

General materials  

Triethyl(4-vinylbenzyl)phosphonium chloride (Et-P) and tri-n-butyl(4-vinylbenzyl)phosphonium 

chloride (Bu-P) were prepared as previously reported.29 Deuterated solvents were purchased 

from Cambridge Isotopes Laboratories (Tewksbury, MA, USA). Other solvents were purchased 

from Caledon Laboratory Chemicals (Georgetown, ON, Canada). All solvents used for 

polymerizations were degassed before use by three freeze-dry-thaw cycles and kept under an N2 

atmosphere.  PAA (25 wt% in water, sold as 240 kg mol-1) was purchased from VWR 

(Mississauga, ON, Canada). Phosphines were donated by Solvay-Cytec (Niagara Falls, ON, 

Canada) and used as received.  

 

General methods 
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Differential scanning calorimetry (DSC) was performed on a DSC Q20 from TA Instruments 

(Waters, New Castle, DE, USA) at a ramp rate of 10 °C/min under an N2 atmosphere in an 

aluminum Tzero™ pan using 5-10 mg of sample. Thermogravimetric analysis (TGA) was 

completed on a Q600 SDT TA Instrument and analyzed at a ramp rate of 10 °C min-1 up to 

600 °C using a ceramic pan with 2-4 mg of sample. Nuclear magnetic resonance spectroscopy 

(NMR) was performed on a Varian Inova 400 MHz Spectrometer. 1H NMR chemical shifts (δ) 

relative to tetramethylsilane were referenced using residual solvent peaks (CDCl3: 7.26 ppm, 

CD3OD: 3.31 ppm). 31P NMR was externally referenced to H3PO4 (δ = 0). Size exclusion 

chromatography (SEC) of the phosphonium polymers was performed using a Malvern 

VISCOTEK GPCmax instrument equipped with a VISCOTEK VE 3580 RI Detector and two 

Inert series columns (P101609 and Q10183) at a constant temperature of 50 °C. The eluent was 

0.4 M tetrabutylammonium triflate in N, N-dimethylformamide (DMF) with a flow rate of 1 mL 

min-1. Calibration was performed using poly(methyl methacrylate) (PMMA) standards to 

determine the number-average molar mass (Mn) and dispersity (Đ). SEC of PAA was performed 

using a Waters 2695 Separations Module equipped with a Waters 2414 refractive index detector, 

PL Aquagel-OH 8 µm 30, 40, and 50 columns and a PL Aquagel-OH guard column, using H2O 

with 0.1 M NaN3 with a flow rate of 1 mL min-1. Calibration was performed using PEO 

standards. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-

EDX) was performed using a Hitachi S-3400N Variable Pressure Microscope with a 

Turbomolecular pump. Samples were analyzed at an accelerating voltage of 20 kV, and analyzed 

by EDX analysis using an INCA EDAX system and software. Samples were cut into pieces 

approximately 1 mm x 1 mm with a thickness of 1 mm and dried overnight in a vacuum oven, 

then mounted on carbon tabs and coated with 5 nm of osmium prior to analysis.   
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Synthesis of poly(triethyl(4-vinylbenzyl)phosphonium chloride (P-Et-P) 

Et-P29 (26.1 g, 96.6 mmol), azobisisobutyronitrile (AIBN) (20 mg,  0.12 mmol) and dimethyl 

sulfoxide (DMSO) (130 mL) were combined in a round bottom flask with a stir bar and the flask 

was sealed with a rubber septum and Teflon tape. N2 was bubbled through the solution using a 

needle with stirring at room temperature for 30 min to degas the reaction mixture. The reaction 

mixture was then heated at 80 °C for 16 h. The solvent was then removed in vacuo at 100 °C and 

the polymer was purified by precipitation from 2-propanol into THF twice, yielding a white 

solid. Yield = 13.6 g, 52%; 1H NMR (400 MHz, D2O): d = 6.99 (br s, 2H, Ar-H), 6.33 (br s, 2H, 

Ar-H), 3.50 (br s, 2H, Ar-CH2P), 1.93 (s, 6H, CH2P and backbone CH), 1.34 (br s, 2H, backbone 

CH2), 0.86 (s, 9H, CH3); 31P-NMR (161 MHz, D2O, d): 36.8 (s). Tg = 225 °C; To = 335 °C; SEC: 

Mn = 240 kg mol-1; Đ = 2.4. 

 

Synthesis of poly(tri-n-butyl(4-vinlbenzyl)phosphonium chloride (P-Bu-P) 

Bu-P29 (1.05 g, 2.02 mmol), AIBN (1.0 mg, 6.1 µmol) and CH3CN (7 mL) were combined in a 

Schlenk flask with a stir bar and a Suba Seal septum. The solution was degassed with a flow of 

N2 through the solution using a needle at 0 °C for 30 min. The resulting mixture was then heated 

at 80 °C for 16 h. The solvent was removed in vacuo, and the resulting solid was dissolved in 

minimal CH2Cl2 (~3 mL), and precipitated by the addition of tetrahydrofuran (50 mL) with 

vigorous stirring. The precipitation procedure was repeated, resulting in a white solid. Yield = 

0.96 g, 91%. 1H NMR (400 MHz, CDCl3)*: d = 7.35 (broad, Ar-H), 6.29 (broad, Ar-H), 4.37 

(broad, Ar-CH2P), 2.36 (broad, P-CH2-(CH2)2-CH3), 1.95 (broad, backbone CH), 1.39 (broad, P-



 9 

CH2-(CH2)2-CH3 and backbone CH2), 0.84 (broad, CH3); 31P{1H} NMR (161.82 MHz, CDCl3, 

d): 32.09; Tg = 165 °C; To = 300 °C; SEC: Mn = 320 kg/mol, Đ = 2.6. 

*Peaks corresponding to the styrenic backbone and adjacent to the phosphonium were very 

broad and did not integrate accurately (at 1H NMR delay time set to 10 s), likely due to slow 

proton relaxation, so peak integrations are not included.  

 

Preparation of ionic networks	

The polyphosphonium and PAA were dissolved separately in deionized (DI) water (pH 8), at 

concentrations of 0.1 M in terms of the ions. With vigorous stirring, the solutions were combined 

slowly in a large beaker, adding one solution to the other to produce non-stoichiometric polymer 

networks PAA>P-Et-P or PAA<P-Et-P, or both solutions simultaneously into a new beaker to 

produce the network PAA≈P-Et-P. The liquid was decanted and the network was then soaked in 

0.25 M NaCl for 2 h. The resulting swelled solid was manually combined into a sphere and then 

immersed in 0.25 M NaCl for 2 h. The polymer network was then pressed between Teflon sheets 

to 1-4 mm thickness using a melt press at 50 °C for one hour. The polymer network sheets were 

then separated from the Teflon. Often, the networks adhered to the Teflon sheets and were 

placed in a freezer overnight to allow for easier removal. Finally, the networks were conditioned 

in 0.1 M NaCl overnight before any mechanical testing or healing experiment.  

 

Determination of swelling 

Freshly pressed sheets were cut into 0.5 cm x 0.5 cm squares (1 mm thickness) and were soaked 

in DI water overnight to ensure removal of all residual NaCl ions. The networks were then dried 

in vacuo overnight. The samples were then place in the appropriate concentration of NaCl 



 10 

solutions for 24 hours. The solutions were decanted, and the remaining solid was dried by 

dabbing with a Kimwipe and then weighed. Triplicate samples were evaluated. Mass swelling % 

was calculated by the following equation: 

𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔% = 100%	x	
𝑚𝑎𝑠𝑠	𝑜𝑓	𝑠𝑤𝑒𝑙𝑙𝑒𝑑	𝑛𝑒𝑡𝑤𝑜𝑟𝑘 − 𝑚𝑎𝑠𝑠	𝑜𝑓	𝑑𝑟𝑖𝑒𝑑	𝑛𝑒𝑡𝑤𝑜𝑟𝑘

𝑚𝑎𝑠𝑠	𝑜𝑓	𝑑𝑟𝑖𝑒𝑑	𝑛𝑒𝑡𝑤𝑜𝑟𝑘  

 

Rheology  

Rheological measurements were carried out at 21 °C on an AR1500ex stress-controlled 

rotational rheometer (TA Instruments) with a 2.5 cm diameter parallel-plate tool.  Small-

amplitude oscillatory shear measurements were performed over the frequency range 0.01-100 rad 

s-1 with a stress amplitude of 250 dyne cm-2. Samples were conditioned in 0.1 M NaCl overnight, 

and cut into disks with a 3 cm diameter and thickness of ~1 mm, measured using a Vernier 

caliper.  The gap between the plates of the rheometer tool was initially set equal to the measured 

thickness of the gel sample, then the tool was lowered to decrease the gap by 20 µm. The sample 

was then allowed to relax for a few minutes before measurements were started. Samples were 

run in duplicate.  

 

Tensile testing 

Tensile measurements were conducted on an Instron 5943 with serrated callipers using to a 

closing pressure of 10 PSI and a strain speed of 500 mm min-1. Sheets of the networks 

(preconditioned in 0.1 M NaCl) with 1-4 mm thickness, measured accurately with a caliper, were 

cut using a dog-bone-shaped cutter according to ASTM standard D638-14 Type V. Triplicate 

samples of each network were evaluated. 
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Healing experiments 

For the puncture tests, networks were punctured with an 18-gauge needle and the material was 

removed to create a 0.5 mm diameter hole. Damaged networks were then soaked in 0.1 M NaCl 

or deionized water and imaged using a stereomicroscope at 20x magnification in transmission 

mode at t = 0 h, 1 h, 2 h, 3 h, 6 h, 11 h, and 24 h. For the tensile testing after healing, the dog 

bone shaped network samples were cut in half with a scalpel, manually pressed back together for 

1 min, and then incubated in 0.1 M NaCl for 24 h. Tensile testing was then performed as 

described above. The experiment was performed in triplicate. 

 

 

Results and Discussion 

 

Synthesis and characterization of the polyphosphonium 

Et-P and Bu-P were prepared as previously reported.29 As shown in Scheme 1, polymerization 

of these monomers was then performed using AIBN in DMSO at 80 °C to afford P-Et-P and P-

Bu-P. A reaction time of 18 h resulted in greater than 80% monomer conversion. Complete 

conversion was not observed, even at longer polymerization times and therefore, purification of 

the final product from the remaining monomer was required. Two precipitations from 2-propanol 

into tetrahydrofuran (THF) yielded the polymers as white powders. The 1H NMR spectra of the 

polyphosphonium salts exhibited broad signals that were consistent with the proposed structures 

(Figure S1-S2) and the corresponding 31P{1H} NMR spectra had single broad peaks 

characteristic of the phosphonium ions (Figure S3-S4). Thermogravimetric analysis showed that 

P-Et-P and P-Bu-P had onset decomposition temperatures (To) of 335 °C and 300 °C, 
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respectively and glass transition temperatures (Tg) of 225 °C and 165 °C, respectively (Figures 

S5-S8).  

 

Scheme 1. Synthesis of the polyphosphoniums and their combination with PAA to form ion 

pairs. 

 SEC was performed in DMF containing 0.4 M tetrabutylammonium triflate. Relative to 

PMMA standards, P-Et-P and P-Bu-P had Mn values of 240 kg mol-1 and 320 kg mol-1, 

respectively and Đ values of 2.5 and 2.6, respectively (Figure S9-S10). Controlled radical 

polymerization methods such as reversible addition-fragmentation chain-transfer polymerization 

(RAFT) were also explored, as these have previously been used for the preparation of 

polyphosphonium materials.29  However, it was found that the conventional free radical 

polymerization could more easily provide high molar mass polymers on a large scale and any 

potential advantages from having a polyphosphonium with lower Đ could be offset by the 

relatively broad Đ of the commercial PAA. Although the PAA had a reported Mn of 240 kg mol-

1, aqueous SEC analysis revealed a bimodal distribution with Mn values of 80 kg mol-1 (Đ = 

1.05) and 2 kg mol-1 (Đ = 1.62) relative to poly(ethylene oxide) (PEO) standards (Figure S11). 

The large molar mass dispersities of the polymers may influence the self-healing properties of 

the resulting networks, due to the effects of different polymer chain lengths on chain mobility 

R3P

O O
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R3P

AIBN, 80 °C, 18 h

Cl Cl

Na

R3P

O O

NaCl

Et-P  (R = Et)
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network formation
in water
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and relaxation at the site of healing. Although it will not be explored in the current work, 

previous research has suggested that the effects of lower molar mass chains may facilitate chain 

mobility, which is important for self-healing.37  

 

Preparation and characterization of ionic networks 

To prepare the networks from PAA and P-Et-P, the polymers were separately dissolved in 0.1 M 

aqueous NaCl at a concentration of 0.1 M (of carboxylate or phosphonium content) and the pH 

was adjusted to 8.0 using NaOH. Equivalent volumes of each polyion solution were then 

combined to yield an insoluble polymer network. Excess liquid was decanted, the material was 

swelled in 0.25 M NaCl, and then manually worked into a sphere. The network could then be 

pressed at 50 °C for 1 h between Teflon sheets to afford a sheet of material. The sheet was then 

immersed in 0.1 M NaCl to equilibrate the system before cutting it to the desired shape. It is 

noteworthy that no centrifugation and or high NaCl concentrations were required in either the 

network preparation or in its isolation. PAA/P-Bu-P networks were also prepared, but these 

networks swelled extensively, exhibited predominantly fluid-like behaviour, and consequently 

could not be processed for further study. This can likely be attributed to the steric bulk and/or the 

hydrophobicity of the butyl groups mitigating the extent of ionic crosslinking. All experiments in 

the subsequent discussion focus on the PAA/P-Et-P networks. 

  It has been established that the order of addition of the polyions to yield the ionically 

cross-linked network affects the ratio of the components within the network, even when 

combining stoichiometrically equivalent amounts of each ion.19 Therefore, in the current work, 

three networks with different ratios of PAA and P-Et-P were prepared using different addition 

protocols. To obtain more carboxylate anions relative to phosphonium cations in the networks 
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(PAA>P-Et-P), the P-Et-P solution was added to the PAA solution by slow, dropwise addition 

(Figure 1a). Networks with approximately equal numbers of carboxylate anions and 

phosphonium cations (PAA≈P-Et-P) were produced by fast, simultaneous addition of the two 

solutions (Figure 1b). Networks with more phosphonium cations than carboxylate anions 

(PAA<P-Et-P) were prepared by slow, dropwise addition of the PAA solution into a P-Et-P 

solution (Figure 1c). The difference in component ratios from these different methods arises 

from ionic bonding between the polyanion/cation pair occurring with an excess of one 

component in solution. Polymer chain overlap occurs during the initial crosslinking, which 

inhibits polymer chain matching.19  

 

  

Figure 1. SEM-EDX analyses of ionic networks: A)  PAA>P-Et-P, B) PAA≈P-Et-P, and C) 

PAA<P-Et-P along with schematics illustrating their methods of preparation and corresponding 

ratios of carboxylate:phosphonium calculated from the atomic % of P relative to C.  



 15 

 

Thermal analysis of the PAA/P-Et-P networks after incubation in pure water to remove 

salts, followed by drying, showed that they exhibited a two-stage decomposition with the first 

stage having To  ~ 200 °C, corresponding to decomposition of  the PAA, and the second stage 

having To ~ 350 °C, corresponding to the P-Et-P (Figure S12). This indicates that the thermal 

stability is limited by the PAA rather than the polyphosphonium. The DSC thermogram showed 

a weak transition at (106 °C), and is likely a result of discrete domains of PAA within the bulk 

material (Figure S13). In contrast, networks composed of phosphonium dications and PAA had 

Tg values ranging from -40 to 8 °C,34 showing the importance of the polyphosphonium cation in 

determining the thermal properties of the network.   

PAA>P-Et-P, PAA≈P-Et-P, and PAA<P-Et-P networks were also analyzed after 

desalting and drying using SEM-EDX to determine the relative amounts of carbon and 

phosphorus in the networks. Phosphorus atomic % values (relative to carbon) for PAA>P-Et-P, 

PAA≈P-Et-P, and PAA<P-Et-P were measured to be 3.5 ± 1.4, 4.6 ± 0.3, and 5.5 ± 0.8, 

corresponding to carboxylate:phosphonium ratios of 4.2:1, 1.9:1, and 0.73:1, respectively 

(calculation in supplementary information). 31P{1H} NMR spectroscopy with triethylphosphine 

oxide as an internal standard was also performed on the networks that were swelled with 

saturated NaCl solution. Although the results cannot be used to determine the exact 

phosphonium content due to differences between the crosslink densities and swelling properties 

of the three networks, the data indicate a trend of increasing phosphonium content for PAA>P-

Et-P, PAA≈P-Et-P, and PAA<P-Et-P, which is in agreement with the SEM-EDX analysis 

(Figure S14). It is reported that 1:1 stoichiometric equivalents of carboxylate and ammonium 

could be incorporated into ionic networks by the simultaneous addition of the two polymers.19 
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We hypothesize that the tendency towards higher PAA content for the current system is related 

to the larger size of the phosphonium monomers as compared to the previously investigated 

ammonium monomers.  

To understand how the ionic crosslinks behaved as a function of the ionic strength of the 

solution, an experiment was performed to determine the effect of NaCl concentration on the 

swelling and structural integrity of the networks. The networks were dried, weighed, then 

immersed in 0 M, 0.1 M, 0.25 M, and 0.5 M aqueous NaCl solutions and reweighed. As shown 

in Figure 2, in pure water and 0.1 M NaCl, all networks swelled resulting in mass increases to 

~200% of their initial masses. At 0.1 M NaCl, the structural integrity of the networks was 

retained for at least 2 months. At 0.25 M NaCl, PAA≈P-Et-P and PAA<P-Et-P did not swell 

further, whereas PAA>P-Et-P swelled to almost 400% its initial mass. At 0.5 M NaCl, all three 

networks exhibited increased swelling, with the degree of swelling increasing with the 

carboxylate content of the networks. At this concentration the structural integrity of the networks 

decreased, as they were observed to flow and were mechanically very weak. On the basis of 

these results, a salt concentration of 0.1 M NaCl was selected for more detailed experiments on 

self-healing as well as rheological and mechanical properties.  
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Figure 2. Swelling of polymer networks at different NaCl concentrations, as indicated by their 

mass increase upon adsorption of the aqueous solution (% initial mass).  

 

Rheological and mechanical properties 

Rheological measurements of dynamic polymer networks provide information on the 

mechanisms and time scales for network relaxation, and can help to determine if the networks 

have the properties required for self-healing behavior. Measurements of the elastic (G’) and 

viscous (G’’) moduli of the networks, preconditioned in 0.1 M NaCl, for frequencies from 0.01 

to 100 rad s-1 are shown in Figure 3. The moduli of the PAA>P-Et-P network were similar in 

magnitude, with G’ slightly larger than G’’ at high frequencies. The moduli cross over at a 

frequency wc » 0.03 rad s-1, corresponding to a relaxation time of 1/wc ~ 30 s.  The PAA≈P-Et-P 

network had moduli approximately an order of magnitude higher than those of the PAA>P-Et-P 

network, and a crossover frequency lower than the minimum frequency studied, implying a 

relaxation time greater than 100 s. The moduli for the PAA≈P-Et-P networks showed a similar 

frequency dependence to PAA>P-Et-P at frequencies less than 0.1 rad s-1, but tended to flatten 

out at higher frequencies as the PAA≈P-Et-P network entered into a rubbery plateau.  
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Figure 3. Comparison of the rheology frequency sweep data of PAA/P-Et-P networks 

preconditions in 0.1 M NaCl.  

 

The elastic modulus of the PAA<P-Et-P networks was strongly dominant at frequencies 

up to 100 rad s-1 (Figure 3), indicating extremely slow chain-scale relaxation. The viscous 

modulus increased with increasing frequency however, and became greater than the elastic 

modulus at about 200 rad s-1, suggesting that relaxation of short chain segments is the dominant 

relaxation process in this network. The relatively constant elastic modulus and low viscous 

modulus is typical of gels, and  has been observed for crosslinked networks that exhibit no 

relaxation by reptation.38 This could indicate low mobility of P-Et-P in these networks due to its 

high molar mass and high Tg. In contrast, the networks containing more PAA may be more 

mobile due to the lower molar mass of the PAA.  

In agreement with the current results, PAA/PAH networks with a stoichiometric balance 

of charges also gave the stiffest networks. This was attributed to a higher density of crosslinking 

compared other compositions.19 The elastic-viscous crossover frequency was lower for the 

stoichiometric PAA/PAH networks than for non-stoichiometric networks, meaning that the 
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relaxation time was longer.19 The behavior observed in our PAA/P-Et-P networks is different, 

with the relaxation time increasing as the fraction of PAA decreased.  In general the viscous and 

elastic moduli of our networks swelled in 0.1 M NaCl were similar in magnitude to those of  

networks prepared from PAA and phosphonium dications in the dry state.34 This illustrates the 

importance of highly-multivalent ionic interactions in determining the rheological properties of 

the networks. The fast relaxation of the PAA>P-Et-P networks suggest that they are good 

candidates for self-healing, whereas the networks with higher P-Et-P content may be better 

suited for other applications such as stimuli-responsive gels for drug delivery or degradable 

polymer networks.39 Thus, further discussion will focus on the PAA>P-Et-P network with 

additional information on the other networks included in the supporting information (Figure S15, 

Table S1). 

 To further evaluate the mechanical properties of the PAA>P-Et-P networks, tensile 

testing was performed. This network, preconditioned in 0.1 M NaCl, exhibited a high elongation 

at break of 1330%, but underwent plastic deformation and started necking before breakage 

(Table 1, Figure 4). The ultimate tensile strength was 33 ± 9 KPa. The measured Young’s 

modulus was 15 ± 2 KPa, which is comparable to some soft tissues and organs such as the 

human aorta.40 Overall, the phosphonium-based material has an elongation of similar magnitude 

but significantly lower Young’s modulus and ultimate tensile strength than the analogous 

PAA/PAH network.14  
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Figure 4. Tensile properties of PAA/P-Et-P networks preconditioned in 0.1 M NaCl prior to and 

after healing in 0.1 M NaCl following complete severing of the sample. A dog bone structure 

was used in accordance with ASTM D638 14. 

 
Table 1. Summary of the tensile properties of PAA>P-Et-P networks preconditioned in 0.1 M 

NaCl. 

Network Young’s Modulus 

(KPa) 

Elongation at 

break % 

Ultimate tensile stress 

(KPa) 

PAA>P-Et-P 15 ± 2 1330 ± 250 33 ± 9 

PAA>P-Et-P 

(after severing and 

healing) 

5 ± 3 740 ± 160 10 ± 1 

 

 

Self-healing 

The ability of PAA>P-Et-P networks to self-heal was first studied qualitatively. Networks of ~4 

mm thickness were damaged by boring a ~0.5 mm diameter hole. The networks were then 
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incubated in either 0.1 M NaCl or pure water.  The hole in the network in 0.1 M NaCl healed 

completely over 24 h and no significant healing was observed in pure water (Figure 5). This is 

consistent with ionic exchange being required to achieve dynamic properties in the network. 

Consistent with their rheological properties, incomplete healing was observed for PAA<P-Et-P 

and PAA≈P-Et-P networks under these conditions (Figure S16), and under higher salt 

concentrations the networks lost their structural integrity as noted above.  

 

 

Figure 5. Digital images of a PAA>P-Et-P network damaged by a 0.5 mm diameter hole self-

healing over 24 h in 0.1 M NaCl (right-hand column) versus a similar network in pure water 

(left-hand column), where no significant healing was observed.  

 

To probe more quantitatively the self-healing capabilities of PAA>P-Et-P, a sample of 

the network was completely severed, pressed together manually for 1 min, incubated for 24 h in 

0.1 M NaCl, and then subjected to tensile testing. This test can provide information on the ability 

of the network to repair extensive damage across a large area. As shown in Figure 4 and Table 1, 

the healed networks recovered ~ 55% of their initial elongation at break and ~33% of their initial 

Young’s modulus and ultimate tensile strength. Based on previous work with PAA/PAH 
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networks,14 the ability of PAA>P-Et-P networks to recover their original tensile properties could 

likely be enhanced by increasing the time during which the severed portions were pressed 

together or by tuning their chemical structures. However, the ability of the current networks to 

heal under low salt concentrations is a significant advantage, as mending did not occur at 0.15 M 

for the PAA/PAH system and much higher salt concentrations (³ 1 M) were required to achieve 

significant recovery of tensile properties.14  

  

The mechanism of healing is presumed to involve the interdiffusion of chains across the 

cut as NaCl is able to break interpolymer crosslinks, providing the required mobility. In contrast, 

in the absence of NaCl, polymer mobility is very low, and interchain crosslinks remain intact, 

making healing impossible. The lower salt concentrations required for healing in the PAA/P-Et-

P networks compared to the analogous ammonium networks14 likely results from the weaker 

ionic bonding between the phosphonium and carboxylate ions than between the ammonium and 

carboxylate ions in the PAA/PAH networks. This may be attributed to the more sterically-

hindered nature of the quaternary phosphonium compared to the primary ammonium and to the 

lower charge density on the larger phosphonium ion.  

Conclusions 
 
 
New ionic networks based on PAA and polyphosphonium cations were investigated as self-

healing materials. While the P-Bu-P networks exhibited predominantly fluid-like behavior and 

very poor mechanical properties, P-Et-P networks exhibited viscoelastic behaviour that could be 

tuned according to their method of preparation and consequently the ratio of PAA to P-Et-P in 

the networks. PAA>P-Et-P, which was prepared by the addition of P-Et-P to a solution of PAA, 
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had an intermediate tensile strength and Young’s modulus and the highest elongation at break 

among the three studied networks, but most importantly exhibited sufficient dynamic behavior, 

with a relaxation time on the order of ~30 s, to be suitable for self-healing. Studies in 0.1 M 

NaCl demonstrated that PAA>P-Et-P could heal, whereas the PAA≈P-Et-P and PAA<P-Et-P 

networks, which had predominantly elastic behavior, did not heal well. PAA>P-Et-P did not 

heal in pure water, confirming that the presence of salt is necessary for the dynamic exchange of 

crosslinks in the healing mechanism. Tensile testing on healed networks showed that they were 

able to recover a significant fraction of their strength, modulus, and elongation, though further 

improvements would be desirable through tuning of the chemical structure of the polymers and 

in turn their rheology or by optimizing the healing conditions. These phosphonium networks 

exhibit mechanical properties and healing behaviour significantly different from the PAA/PAH 

networks studied previously. Most notably, the present materials undergo self-healing at salt 

concentrations similar to those encountered in physiological conditions. This makes 

phosphonium ionic networks of particular interest for biomedical applications. Future work will 

explore the potential for tuning the mechanical properties and healing behaviour of the networks 

by changing the chemical structures of the polymers such as by decreasing the steric bulk around 

the phosphonium centre using a trimethylphosphonium analogue or by changing the polyanion.  

 

Supporting Information 

NMR spectra, TGA and DSC data, SEC traces, calculations of network phosphorus content, 

additional tensile and self-healing data. 
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