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Abstract

It is well known that cable-supported bridges, like suspension bridges and cable-stayed
bridges, are structures that are highly sensitive to wind. This is why there has been an
important research effort over the past decades on aeroelastic instability phenomena in
bridges like flutter. This has allowed the safe design of long-span bridges with respect to
wind effects. Nonetheless, the analysis methods that have become the norm in the field of
bridge engineering, such as flutter analysis and wind tunnel tests, rely on some simplifications
to facilitate analysis. For example, they assume a linear structural behavior of the bridge
structure. Therefore, this research project aims at developing a better understanding of the
effect of structural nonlinearities on the wind stability of these bridges. To do so, a new
experimental approach able to account for structural nonlinearities of bridges is elaborated
for wind tunnel tests. First, a numerical method based on large-displacement finite element
analysis is developed to characterize the nonlinear structural behavior of cable-supported
bridges. The research focuses on geometric nonlinearities, which are more of a concern
for these bridges. It is found that single-span suspension bridges behave more nonlinearly.
Secondly, it is shown that the nonlinear behavior obtained from the numerical method can
be scaled to be utilized for dynamic section model tests in the wind tunnel that account for
the nonlinear structural behavior of the bridge. This led to the development of a springing
system able to mechanically reproduce this nonlinear behavior in the wind tunnel. A new
experimental apparatus for section model tests was designed and fabricated for this purpose.
This section model test rig was utilized at the Boundary Layer Wind Tunnel Laboratory
(BLWTL) of the University of Western Ontario. This proved the possibility of accounting for
structural nonlinearities when conducting dynamic section model tests. It is demonstrated
that structural nonlinearities have an effect on the dynamic response as well as on the critical
velocity for flutter. This research project therefore provides to bridge designers an effective
tool for the assessment of the influence of structural nonlinearities on the aeroelastic stability
of cable-supported bridges.

Keywords
Cable-supported bridge, Suspension bridge, Structural nonlinearities, Geometric nonlineari-
ties, Bridge aeroelasticity, Section model tests, Instabilities, Flutter.
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Summary for Lay Audience

Cable-supported bridges, such as suspension bridges and cable-stayed bridges, are commonly
used in our modern road networks for the crossing of major obstacles. These structures can
be very long, and it is not uncommon to have bridges spanning distances over 1 km. These
bridges are therefore very flexible, what makes them vulnerable to wind actions. In order
to ensure the safety of such long bridges, engineers utilize techniques that can be either
run on a computer using a numerical representation of a bridge or performed in a wind
tunnel using scale models of bridges. The stability of bridges when subjected to wind is
one of the main concerns for which engineers have utilized these methods. The approaches
rely on some simplifications that ease their utilization, especially pertaining to how the
bridge structure behaves. Consequently, this project aims at developing a new approach for
studying the stability of bridges for which the structural behavior is modeled accurately. At
first, a numerical approach is elaborated to characterize with good accuracy the behavior of
cable-supported bridges. Then, the results of this new numerical techniques were utilized
for the development of a new method for testing bridges in the wind tunnel. By comparing
it to typical wind tunnel tests for bridges, this new innovative wind tunnel test approach is
utilized to demonstrate the effect of accounting for an accurate bridge structural behavior on
the stability of bridges. It is believed that this research will eventually lead to safer bridge
designs against wind.
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Les recherches connues sur les lois du choc

et de la résistance des fluides n’offrent pas

les moyens d’apprécier, avec l’exactitude qui

serait à désirer, l’action des vents sur les ponts

suspendus.

–Claude-Louis Navier, 1830
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Preface

Being raised in a small town that is home of the Pont Perrault, the second longest covered
bridge in Canada, I believe that it was meant for me to study and work in the field of bridge
engineering. Not too far away at about 100 km northwest of this covered bridge can be
found two major structures that have kept impressing me by their sheer size and beauty.
The first one, the Pont de Québec, will certainly always fascinate me with its history and
for having the world’s longest span for a cantilever bridge. The other structure is the Pont

Pierre-Laporte, the longest suspension bridge in Canada. Its elegance that originates from
the slenderness and apparent lightness of its suspension system was the triggering point for
my interest in cable-supported bridges, which are undoubtedly the “sexiest” bridges ever
built.

Unknowingly in 2010, I began my civil engineering studies at the Université de Sherbrooke,
where one of the only researchers in Canada specialized in cable-supported bridges was
professor at the time. His name is Dr. Frédéric Légeron, and in 2012, he gave me my first
chance to work on such bridges when I was an undergraduate researcher. This brought me to
do a master’s about the aeroelastic stability of long-span bridges. Inevitably, this also led me
to write this Ph.D. thesis on the same subject at the University of Western Ontario. My Ph.D.
experience has brought me even closer to my little boy’s dream of designing cable-supported
bridges.

Being at the junction of structural engineering, bridge engineering and wind engineering,
the research presented in this thesis is relevant to any bridge engineers, wind engineers and
researchers interested in very long cable-supported bridges, either suspension bridges or
cable-stayed bridges. More specifically, anyone with experience with nonlinear analysis of
cable-supported bridges, bridge aeroelasticity and wind tunnel testing of bridges should find
information and conclusions of interest in this Ph.D. thesis.
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1

Chapter 1

Introduction

1.1 Context

Cable-supported bridges, like suspension bridges and cable-stayed bridges, are important
elements of our modern transportation networks that have developed over the years. Due to
the great distances that cable-supported bridges can span, they are utilized for the crossing
of major obstacles such as rivers, fjords and valleys. This is made possible, technically and
economically, by the inherent lightness of cable structures as these structures provide an
effective utilization of material. This is explained by the fact that these bridges mostly carry
loads using cables, which are good in tension, the most effective way for a structural element
to resist an external force. The use of cables in long-span bridges and their slenderness,
originating from their length, make them very flexible. From this fact, cable-supported
bridges are quite effective at resisting earthquakes. Conversely, their flexibility makes them
sensitive to the actions of wind. From being able to span great distances, these structures are
usually located in open locations where strong winds are often encountered. Consequently,
it is of paramount importance to account for wind effects in the design of the complex
structures that are cable-supported bridges.

Early in the development of modern suspension bridges at the beginning of the 1800s, it was
clear that long-span bridges were seen as complex structures. Engineers relied on empirical
approaches and experience for their design as accurate design methods were not available
[1]. This had inevitably led to collapses of many early suspension bridges mainly due to
brittle material, overloading and dynamic wind actions. In the 1820s, Claude-Louis Navier,
a famous French engineer mostly known for the Navier-Stokes equations, was mandated
to study the suspension bridge system after the failure of the Pont des Invalides, crossing
the River Seine in Paris [2]. In his report to the Direction générale des Ponts et Chaussées

et des mines, Navier was the first to develop a mathematical model for suspension bridges,
more specifically for the unstiffened suspension bridge. However, at the time, the equations
of his model could not be utilized for the purpose of designing a modern suspension bridge
having a stiffening girder, i.e., a stiffened suspension bridge. It is worth mentioning that, in
his report [2], Navier recommends that cable-stayed bridges should be avoided. He made
this recommendation based on the numerous collapses as well as on the observation that this
structural system cannot be calculated using the mathematical tools available at that time.



2

Because of Navier’s recommendation, it was needed to wait until the 1950s before seeing
modern cable-stayed bridges being built again.

Additionally, in his report [2], Navier mentions that the analytical approaches that had
been available for the analysis of suspension bridges could not account for the complicated
dynamic actions of wind. This is why, until almost the end of the 1800s, the design of
suspension bridges had been done through experience. For example, John A. Roebling
designed the Brooklyn Bridge, which opened in 1883, using simplified calculations and
physical scale models [3]. It is only towards the end of the nineteenth century with the
development of the elastic theory and deflection theory of suspension bridges that analytical
design approaches became predominant [4]. At the beginning of the twentieth century, the
adoption of the deflection theory, originally developed by Josef Melan and made available
for design purposes by David B. Steinman [5], had led to a rapid increase in span length and
slenderness for cable-supported bridges. This is when dynamic wind oscillations started
to be encountered again in suspension bridges. Unlike their predecessors who had relied
on empirical rules and experience, the engineers of this era had used analytical methods,
and they had somehow been overconfident of their designs determined by analysis. This
was especially the case with regard to dynamic wind effects as only static wind forces were
considered at the time [3]. The George Washington Bridge, designed by Othmar Ammann,
was one of those wind-sensitive bridges.

After modifying the deflection theory to include the effect of horizontal wind forces, Leon
S. Moisseiff showed that the main cables in a suspension bridge contribute to the lateral
stiffness of a bridge and help resist horizontal wind loads [6]. This had led to a further
increase in slenderness that culminated with the Tacoma Narrows Bridge. It is well known
that, during its short life, the Tacoma Narrows Bridge had experienced dynamic vertical
oscillations for being too flexible and having an H-shaped bridge-deck cross section prone
to wind-generated vortices. The Tacoma Narrows Bridges eventually collapsed in 1940 due
to torsional flutter [7, 8]. This led Prof. F. Burt Farquharson to develop modern wind tunnel
testing approaches for long-span bridges as he was involved in the engineering investigation
for Tacoma [9]. As a result, wind tunnel tests have then been utilized in the design process
of cable-supported bridges.

Since the collapse of Tacoma, important research efforts have been dedicated to understand-
ing dynamic wind effects in cable-supported bridges. Nowadays, the standard approaches
for checking the dynamic response of bridges under turbulent wind originate from the
frequency-domain buffeting theory developed by Prof. Alan G. Davenport [10]. Regarding
aeroelastic stability, the flutter derivative technique originally elaborated by Prof. Robert H.
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Scanlan [11] is still central to the analytical techniques utilized to predict flutter, an instabil-
ity phenomenon characterized by large dynamic oscillations and caused by aerodynamic
self-excited forces. These analytical techniques and wind tunnel approaches have made
possible the safe construction of long suspension bridges, like the Great Belt Bridge [12] and
Akashi Kaikyo Bridge [13], as well as long cable-stayed bridges, like the Pont de Normandie

[14] and Russky Bridge [15]. Now, even longer spans are possible by using vented-box
girders made out of multiple longitudinal boxes with airfoil-shaped cross sections that are
interconnected with crossbeams, an idea of William C. Brown. The bridge deck of the
Çanakkale Bridge [16], the longest suspension bridge in the world with a main span of
2023 m, is an example as it is equipped with a twin-box girder. A triple-box girder was
considered for the Messina Strait Bridge, which, with a main span of 3300 m, is the longest
proposed suspension bridge for which a detailed design exists [17].

As discussed in the previous paragraph, main spans for cable-supported bridges are getting
longer, which makes the issue of aeroelastic stability even more important in order to
ensure safe and reliable bridge structures for the public. The analytical approaches and
wind tunnel techniques utilized nowadays in bridge engineering assume a linear behavior
for cable-supported bridges. This appears reasonable for most cable-supported bridges,
but this might be inappropriate for bridges with very long main spans. This is because
very long-span bridges are intrinsically nonlinear due to their cable system as it is known
that the cable system dominates the structural behavior of a bridge for longer spans [17].
Considering that cables have a greater influence on the structural behavior in the case of
very long cable-supported bridges, it seems reasonable to think that their aeroelastic stability
could be impacted, and such nonlinear effects should be accounted for in the prediction of
instabilities in the case of very long bridges.

1.2 Definition of Research Project

Indeed, there is a possibility that a stronger nonlinear behavior in cable-supported bridges
has an effect on the predicted critical wind speed for an instability. In other words, the
structural nonlinearities in long-span bridges could change the onset of flutter, and neglecting
them could lead to erroneous stability predictions in the case of bridges with very long main
spans. Not only that the critical velocity could be impacted by structural nonlinearities, but
these nonlinearities could trigger nonlinear structural dynamic phenomena that have never
been observed in bridges. If such nonlinear dynamic phenomena are possible, it would be
relevant to ask whether they could interact with aerodynamic and aeroelastic effects.
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Similar to what happened when dynamic wind actions were not considered in the design of
suspension bridges, instability predictions for long-span bridges are currently carried out
without including structural nonlinearities. Therefore, this doctoral research project aims
at providing an assessment of the effect of structural nonlinearities on flutter instability of
long cable-supported bridges. This research focuses on geometric nonlinearities, which are
more of a concern for long cable-supported bridges. This project begins with an assessment
of structural nonlinearities in cable-supported bridges using numerical analysis in order
to find bridges that are more critical to nonlinear effects. From there, it is believed that
an experimental approach is the most convenient way to assess the effect of structural
nonlinearities due to the difficulty to analytically represent aerodynamic forces involved in
flutter for large bridge-deck amplitudes of vibration. Consequently, following theoretical
developments for a new experimental approach in the wind tunnel able to account for
structural nonlinearities, it is required to develop a new experimental apparatus for this new
method. By testing bridges that exhibit a stronger nonlinear behavior using this experimental
approach, it will be possible to determine whether the aeroelastic stability of cable-supported
bridges can be impacted by structural nonlinearities.

1.3 Objectives of Research Project

This research project has four main objectives which are as follows:

1. Quantify structural nonlinearities in cable-supported bridges in terms of dynamic
properties using nonlinear finite element analysis;

2. Develop the theory required to account for structural nonlinearities when conducting
wind tunnel tests of bridges;

3. Design an experimental apparatus for wind tunnel tests of bridges able to represent
the nonlinear structural behavior of a cable-supported bridge;

4. Conduct nonlinear wind tunnel tests in order to study the effect of structural nonlinear-
ities on the aeroelastic stability of cable-supported bridges experimentally.

1.4 Original Contributions

From this research project, six original contributions will be produced:

1. Numerical approach to quantify structural nonlinearities in cable-supported bridges;
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2. Assessment of structural nonlinearities for suspension bridges and cable-stayed bridges
of various span lengths;

3. Theoretical approach for section model tests in the wind tunnel for cable-supported
bridges able to account for the nonlinear structural behavior;

4. Numerical method for the calibration of a mechanical device for nonlinear section
model tests able to model the nonlinear structural behavior of a cable-supported bridge;

5. Experimental rig for nonlinear section model tests in the wind tunnel for cable-
supported bridges;

6. Assessment of the influence of structural nonlinearities on the aeroelastic stability of
long-span bridges using nonlinear section model tests.

1.5 Thesis Structure

This integrated-article format thesis is comprised of a literature review chapter, four main
research chapters, a concluding chapter and three appendices. In chapter 2, a literature review
pertaining to this research project is made in order to demonstrate the gap in knowledge with
respect to the effect of structural nonlinearities on the aeroelastic stability of bridges.

1.5.1 Nonlinear Structural Vertical-Torsional Coupling

Chapter 3 presents a preliminary investigation of structural nonlinearities in long-span
bridges, more specifically for nonlinear vertical-torsional coupling. This is done using a
simplified practical approach. The approach relies on nonlinear pushover analyses that are
conducted for the geometrically nonlinear finite element models of five suspension bridges
and two cable-stayed bridges. This approach allows determining the nonlinear stiffness
parameters of equivalent systems having between one and three degrees of freedom (lateral,
vertical and torsional). It provides an effective method to determine bridges that are more
nonlinear and are likely more critical for their flutter response to be impacted by the nonlinear
structural behavior. Since the proposed technique relies on the modes of vibration and can
account for the interaction between the vertical and torsional effects, it can also be used
to judge which ones of the bridges considered are the most susceptible to nonlinear mode
coupling under wind loads.
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1.5.2 Theory for Nonlinear Section Model Tests

Chapter 4 presents the theoretical developments for a new type of section model test for
bridges that accounts for geometric nonlinearities of the bridge structure. This theory for
nonlinear section model tests starts from two-mode nonlinear generalized stiffness parameters
obtained using nonlinear pushover analysis, which need to be scaled using a specifically
developed procedure. Using eleven numerical models of cable-supported bridges (nine
suspension bridges and two cable-stayed bridges), the assumptions made in the theory for
nonlinear tests are then validated. The proposed scaling procedure is also tested.

1.5.3 Design of Test Rig for Nonlinear Section Model Tests

Chapter 5 discusses the development of a new experimental apparatus for nonlinear section
model tests that will allow studying the interaction between nonlinear structural effects and
aeroelastic effects. After reviewing the theoretical developments for nonlinear section model
tests, a numerical procedure to determine the parameters of a mechanical system able to
model the nonlinear structural behavior for section model tests is developed. The procedure
was tested for four single-span suspension bridges with main spans ranging from 1.2 km to
3.0 km. Following a discussion on the characteristics needed for a nonlinear section model
test rig, a design of such a test rig is briefly presented.

1.5.4 Nonlinear Section Model Tests

Chapter 6 presents an experimental assessment of the effect of structural nonlinearities on the
aeroelastic stability and wind response of cable-supported bridges. This is achieved by using
nonlinear section model tests, which account for the nonlinear structural behavior of the
bridge under consideration. First, the theoretical developments required for nonlinear section
model tests of bridges are briefly reviewed. Then, the experimental apparatus utilized for
nonlinear wind tunnel tests is described, which includes a short description of the calibration
procedure used for the mechanical device required for nonlinear tests. Three different
suspension bridge configurations are tested. The first is for a single-box girder suspension
bridge, and the second and third are for two twin-box girder suspension bridges having
different span lengths. By comparing the results of linear tests to those of nonlinear tests, it
is possible to assess the effect of structural nonlinearities.
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1.5.5 Appendices

Following the concluding chapter, where the main conclusions and recommendations are
discussed, can be found three appendices in which additional information regarding this
project is given. Firstly, a detailed description is presented in appendix A for the eleven
cable-supported bridges utilized for this research as well as for the corresponding finite
element models. Secondly, appendix B discusses an assessment of nonlinear structural
vertical-torsional coupling for non-analogous modes of vibration in suspension bridges. This
is done in order to validate that nonlinear structural coupling in cable-supported bridges
is stronger in the case of analogous modes, therefore confirming that an assessment of the
effect of structural nonlinearities on the aeroelastic stability of bridges should focus on
analogous modes. Lastly, the validation of the new experimental rig for section model tests
is presented in appendix C. This is achieved by comparing wind tunnel test results for the
existing experimental rig to those of the new one.
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Chapter 2

Literature Review

The main function of bridge decks in suspension bridges and cable-stayed bridges is to carry
the gravity loads from vehicles, which are eventually transferred to the ground through the
tower foundations and abutments. This is achieved through a cable system. As mentioned
before, the efficiency of cable systems allows cable-supported bridges to span great distances,
but it has the inconvenience of making these structures sensitive to wind actions due to their
flexibility. Considering that they are often located where high winds can be encountered, it
is therefore of paramount importance to adequately study the aerodynamic and aeroelastic
behavior of cable-supported bridges.

2.1 Aerodynamic and Aeroelastic Phenomena

Obviously, the bridge deck of a cable-supported bridge is one of the critical structural
elements with regard to the actions of wind. This is why it is important to characterize
aerodynamic forces caused by wind on it. It is of common practice to separate the actions
of wind on bridge decks into three components: mean aerodynamic forces or static forces,
buffeting forces and self-excited forces. Buffeting forces correspond to forces relative to
wind fluctuations, whereas self-excited forces are aerodynamic forces associated with the
motion of the bridge deck. It is worth noting that this separation of wind effects on bridge
decks is relevant for linear aerodynamic force models as individual aerodynamic effects
are not as easily distinguishable in the case of nonlinear force models. Mean aerodynamic
forces, buffeting forces and self-excited forces need to be accounted for in the assessment of
the dynamic response of a bridge subjected to turbulent wind, i.e., the buffeting response.
These aerodynamic forces induce straining actions in a bridge, but they can also lead to other
static and dynamic phenomena, especially instabilities.

2.1.1 Static Phenomena

Static instabilities due to wind in bridges are phenomena that are analogous to column
buckling. Such instability happens when the effective stiffness, the cumulative effect of
structural stiffness and aerodynamic stiffness, of a bridge becomes nil. Any further increase
of the mean aerodynamic forces will therefore lead to very large bridge-deck displacements
and likely to bridge collapse. This phenomenon is referred to as an aerostatic instability
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[18–20]. This instability happens due to the variation of the mean aerodynamic forces with
the angle of attack. A special case of aerostatic instability is torsional divergence, which
occurs when any additional static torsional moment is greater than what can be resisted by
the torsional stiffness of the bridge [21].

2.1.2 Dynamic Phenomena

The dynamic phenomena of greater concern for the decks of cable-supported bridges are
vortex-induced vibration (VIV), galloping and flutter. VIVs are caused by forces associated
with the periodic shedding of vortices on a structural element like a bridge deck. Resonance
occurs when the shedding frequency of vortices is close to one of the natural frequencies of
the bridge [21]. In the vicinity of the natural frequencies, the bridge-deck motion causes the
airflow to interact vigorously with the structure. Consequently, vortex shedding synchronizes
with the vibrational frequency of the bridge deck. In this case, the shedding of vortices is
governed by the bridge-deck movement. This phenomenon is known as lock-in. Because
the amplitudes of motion are limited for VIVs in bridges, they are unlikely to lead to bridge
collapse, but they can cause fatigue problems [22].

Galloping is an aeroelastic instability that produces bridge-deck vibrations of large ampli-
tudes mainly in a direction perpendicular to the mean wind flow [22]. The phenomenon
is caused by the interaction between the airflow and the motion of the bridge deck. This
instability is not typical of long cable-supported bridges as its critical wind speed is typically
much more than the one for flutter.

Flutter is an aeroelastic instability characterized by large amplitudes of motion caused by
the extraction of oscillatory energy by the bridge deck from the airflow it is subjected to
[23]. Flutter can therefore be described as a self-excited instability. In the case of bridges,
torsional flutter and coupled flutter are the most common types of flutter [22]. Torsional
flutter involves one torsional mode of vibration causing large torsional rotations of the bridge
deck, whereas coupled flutter involves the aeroelastic coupling of one vertical mode of
vibration and one torsional mode. If a bridge is subjected to wind with a speed greater than
or equal to its critical flutter wind speed, this will result in major structural damage and even
bridge collapse.

Typically, bridge decks experience VIVs over a small range of relatively low wind speeds
as illustrated in fig. 2.1 [24]. Passed this range of wind speeds, buffeting of the bridge
deck is the phenomenon of importance until the wind speed is high enough to trigger a
divergent-type instability like an aerostatic instability, galloping or flutter. Typically, flutter
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Figure 2.1: Typical wind response of a cable-supported bridge

is the critical phenomenon since its critical wind speed is usually less than those for an
aerostatic instability and galloping. Due to the large amplitudes of vibration in the vicinity of
the flutter wind speed, structural nonlinearities could impact the flutter behavior of a bridge.

For this reason, the following sections in this literature review chapter will focus on flutter
and structural nonlinearities in cable-supported bridges. The tools utilized for flutter analysis
and their recent evolution are discussed. Section 2.2 quickly reviews wind tunnel testing
techniques with an emphasis on flutter and structural nonlinearities. Then, a discussion
regarding the force modeling of self-excited forces, which are utilized in flutter analysis
approaches is presented in section 2.3. In section 2.4, flutter analysis procedures for bridges
are discussed. Finally, a discussion on structural nonlinearities in cable-supported bridges is
presented in section 2.5.

2.2 Wind Tunnel Tests

The use of wind tunnel tests played an important role in the investigation of the collapse
of the Tacoma Narrows Bridge [9, 25]. Since this bridge collapse, wind tunnel tests have
been an essential tool for bridge engineers in the design of cable-supported bridges. His
involvement with the Tacoma Narrows Bridge had led Prof. F. Burt Farquharson, one of the
pioneers for wind tunnel testing of bridges, to develop the two most common types of wind
tunnel tests, which are full-aeroelastic model tests and section model tests [9]. Examples of
these types of tests are presented in fig. 2.2.

2.2.1 Dimensional Analysis and Similitude

For practical reasons, wind tunnel tests are conducted on scale models of cable-supported
bridges. It is therefore required to satisfy similitude requirements based on dimensional anal-
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(a) Full-aeroelastic model [26] (b) Section model [27]

Figure 2.2: Wind tunnel tests for bridges

ysis so that wind tunnel test results are representative of the full-scale bridge. Consequently,
aerodynamic and structural parameters must be scaled appropriately.

Scaling Parameters

Since air at atmospheric pressure is typically utilized in wind tunnel tests [21], the density
scale λρ is unity. According to [21], the geometric scale λL, velocity scale λU and frequency
scale λ f are expressed as:

λL =
Lm

Lp
λU =

Um

Up
λ f =

fm

fp
(2.1)

where subscript m refers to the model; subscript p refers to the prototype or full-scale bridge;
L is a characteristic dimension; U is the mean wind speed; f is the frequency. To account
for the effect of time appropriately, dimensional analysis dictates that the reduced frequency
similitude (or Strouhal number similitude) must be satisfied [21]. The reduced frequency
similitude is expressed mathematically as:

(
Lm fm

Um

)
=

(
Lp fp

Up

)
(2.2)

From eq. 2.2, it is concluded that λ f = λU/λL. When gravity effects are important for the
dynamic behavior of a bridge, e.g., in the case of a full-aeroelastic model of a suspension
bridge, it is required to satisfy the Froude number similitude, with the Froude number defined
as:



12

Fr =
U2

Lg
(2.3)

where Fr is the Froude number; g is the gravitational acceleration. When the Froude number
similitude is respected, it can be demonstrated that λU =

√
λL and λ f = 1/

√
λL. Additionally,

it is worth mentioning that it is not possible to meet the Reynolds number similitude for
wind tunnel tests satisfying the Froude number similitude [21]. In the Reynolds number
similitude, the Reynolds number is defined as:

Re =
ρUL
µ

(2.4)

where Re is the Reynolds number; ρ is the density of air; µ is the dynamic viscosity of
air. The violation of the Reynolds number is typical for wind tunnel tests of bridges. To
minimize the effect of this violation, the scale model should be as large as possible [22].

Structural Parameters

Similarly, the structural parameters of the prototype bridge, such as the mass, mass moment
of inertia and damping ratio, must be scaled. Therefore, the following equations must be
satisfied [22]:

mm

mr
= λ2

L
MMIm

MMIr

= λ4
L

ξm

ξr
= 1 (2.5)

where m is the mass per unit length; MMI is the mass moment of inertia per unit length; ξ
is the damping ratio. Similar equations can be derived for the stiffness parameters (axial,
bending and torsional). It is also possible to derive scaling equations for the force per unit
length f and moment per unit length M [28]:

f m

f r

= λ2
UλL

Mm

Mr

= λ2
Uλ

2
L (2.6)

2.2.2 Full-Aeroelastic Model Tests

Full-aeroelastic model tests are performed using a scale model of the entire bridge that
includes the most important structural elements like the towers, bridge deck and cable
system [29]. The scale model required for these tests is flexible and can reproduce the most
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important modes of vibration of the bridge prototype. The calibration of a full-aeroelastic
model is made using a finite element model of the bridge prototype [22]. As shown in
fig. 2.2a for the model of the Akashi KaiKyo Bridge, a full-aeroelastic model stands on the
floor of the wind tunnel. For these tests, the bridge model can be subjected to a smooth
flow or a turbulent atmospheric boundary layer flow. They are able to account for three-
dimensional effects of the flow conditions and modes of vibration. These tests are utilized
for obtaining the dynamic response of a bridge subjected to wind as well as for assessing
its stability. Due to their size and complexity, full-aeroelastic model tests are expensive
[21]. This is why they are generally utilized toward the end of the design process of a
cable-supported bridge in order to validate its aerodynamic and aeroelastic behavior [22].

As long as the Froude number scaling is satisfied, full-aeroelastic models are able to model
geometric nonlinearities of the structure because all the important bridge elements are
included and gravity effects are appropriately scaled. However, it should be noted that it is
not physically possible for the towers and bridge deck in cable-supported bridges to have the
correct scaled axial stiffness at the same time as the correct scaled bending stiffness. For
these structural elements, the standard practice is to scale them to match the scaled bending
stiffness. It follows that the geometric stiffness is erroneous for these structural elements.
Only the geometric stiffness of cables is properly modeled since only the correct scaled
axial stiffness is needed for cables as they have negligible bending stiffness. Considering the
cost of full-aeroelastic models and the fact that they cannot properly account for geometric
nonlinearities in their current form, it appears that full-aeroelastic model tests are not suitable
for an initial experimental study on the effect of structural nonlinearities on the aeroelastic
stability.

2.2.3 Section Model Tests

Section model tests are performed using a rigid segment of a bridge deck, which is attached
to an experimental rig at its ends [30]. An example of a section model is given in fig. 2.2b.
For static tests, the section model is attached to a rigid experimental rig equipped with load
cells in order to be able to measure the static force coefficients. In the case of dynamic
tests, the section model is suspended by a springing system at its ends. Since the stiffness
is provided through an external adjustable springing system, the Froude number scaling is
not required, and only the reduced frequency similitude has to be met for dynamic section
model tests. It is also worth noting that section models can be fabricated at larger scales in
comparison to full-aeroelastic models, therefore reducing Reynolds number effects.

Smooth flow or grid-generated turbulent flow can be utilized for section model tests [31].
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Typically, only one vertical mode and one torsional mode can be modeled in dynamic section
model tests. In some studies [32, 33], a lateral mode has also been included. Moreover to
the static force coefficients, section model tests can also be utilized to measure the flutter
derivatives [11] and aerodynamic admittance functions [34], measure the wind and motion-
induced surface pressures using pressure taps [28, 35], assess the stability [30] and predict
the dynamic response of the bridge deck [31]. From this, the versatility of section model tests
appears evident. Supplemental to their versatility, their simplicity and relative affordability
have made this type of wind tunnel tests the most common approach for testing bridges.

Despite their simplicity, there have been some improvements made to how section model
tests are conducted. A dynamometric section model was developed in order to be able
to effectively measure the aerodynamic forces [36]. Such a section model is especially
interesting for the measurements of flutter derivatives using forced-vibration tests. Since a
dynamic movement is imposed to the section model for these tests, using a dynamometric
section model makes it easier to differentiate the aerodynamic forces from the inertial forces
by minimizing the initial forces that are measured. Additionally, an innovative section model
test rig that can be used to study the dynamic response and flutter as well as measure the
flutter derivatives using the free- and forced-vibration approaches was developed [33, 37–39].
In [40, 41], another forced-vibration rig is discussed, but its particularity is that it can be
used for arbitrary motion. Also, an approach to determine the center of rotation to be used
for section model tests is analyzed in [42, 43]. This is especially of interest for bridges
exhibiting lateral-torsional modes of vibration like simple suspension bridges often utilized
for pedestrians.

Section model tests for bridges assume a linear structural behavior. However, a slight
nonlinear structural behavior in torsion for large rotations greater than 15° is observed for
the section model test rig in [44–46]. The nonlinear torsional behavior comes from the
kinematics of the mechanisms utilized for this section model test rig, and it is consequently
not representative of an actual cable-supported bridge. Nevertheless, considering that
it allows large amplitudes of vibration, this rig is interesting for studying aerodynamic
nonlinearities and nonlinear flutter. Another example of a section model test rig able of large
displacements is the one in [47, 48]. As this rig has a linear structural behavior, it is relevant
for the study of aerodynamic nonlinearities. In a different civil engineering application of
section model tests, a pendulum system is utilized to represent the swaying stiffness of a
transmission line conductor [49]. This makes this experimental rig geometrically nonlinear.

Unlike in the field of bridge engineering, there have been different section model test studies
accounting for nonlinear structural behavior for airfoils in the field of aeronautics. Different
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types of nonlinearities have been tested, which include freeplay nonlinearity [50–53], bilinear
behavior [50, 54–56], parabolic behavior [51] and cubic behavior [57, 58]. Among these
studies, it should be noted that Schwartz et al. [54] demonstrated that the flutter velocity of
an airfoil for a hardening bilinear structural behavior is less than for the linear case. It is
worth noting that there was only a difference of 14 % between the two stiffness values of
the bilinear system used in [54]. Additionally, for these nonlinear experimental studies on
airfoils, it appears that the nonlinear structural behavior utilized for the wind tunnel tests
does not seem to have been calibrated with respect to the behavior of actual aircraft structural
elements.

The versatility offered by the section model test procedure and its affordability make this
testing approach very interesting for an experimental study on the effect of structural
nonlinearities on flutter. Indeed, the flexibility offered by the possibility to easily adjust
the experimental rig at the ends of the section model could allow accounting for structural
nonlinearities. This would be done by developing a nonlinear mechanical device as similarly
done in the aeronautics studies discussed at the end of the previous paragraph. However, in
this case, a nonlinear structural behavior representative of the prototype bridge would have
to be mechanically modeled.

2.2.4 Other Wind Tunnel Test Approaches

Taut-strip models, which are intermediate between section and full-aeroelastic models, are
sometimes used [59]. For such models, only the bridge deck is considered, and the stiffness
of the model is provided using taut wires or tubes. These tests can reproduce the three-
dimensional effects on the bridge deck. However, it would be difficult to consider taut-strip
model tests for a study on the effect of structural nonlinearities on flutter. This is because
the taut wires or tubes utilized for these tests already possess their own nonlinear behavior,
which is likely to be different than the one for a cable-supported bridge.

More recently, a multi-supported aeroelastic model was developed to study VIVs for vertical
modes [60], but such an approach is not suitable for assessing flutter. This is because only
vertical modes can be properly scaled in such a model since it is only supported along its
length with vertical flexible spring supports. Moreover, real-time hybrid tests, similar to
what is used in structural engineering, are currently under development [61, 62]. In such
tests, the aeroelastic system would be partially modeled in the lab and partially represented
in a numerical model. For these hybrid tests, the nonlinear structural behavior could be
simulated, but the development of this method is not completed, and once completed, it is
likely that such an experimental approach will be expensive and complicated to use.
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2.2.5 Computational Fluid Dynamics (CFD)

Because of today’s computational capabilities, computational fluid dynamics (CFD) is
becoming very interesting for bridge engineering applications (e.g. [63–68]). For example,
static coefficients, flutter derivatives, pressure distributions and flow visualization for bridge
decks can be obtained using CFD. Nevertheless, CFD results should be validated using
wind tunnel tests [22, 26]. Therefore, wind tunnel experiments are still important for the
assessment of the aeroelastic stability of bridges.

2.3 Force Modeling for Flutter Analysis

Flutter assessment for bridges requires the study of motion-induced aerodynamic forces,
commonly called self-excited forces. In the aeronautical field, theoretical formulations (e.g.
[69]) are available while bridge aeroelasticity relies on force models based on experimental
coefficients or functions measured using wind tunnel tests or CFD.

2.3.1 Linear Approaches

For flutter analysis, linear formulations of self-excited forces are usually employed. Scanlan’s
approach based on flutter derivatives [11, 70] is the standard approach for modeling these
forces in bridge engineering. Mathematically, Scanlan’s approach is expressed as follows:
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where Dse(t), Lse(t) and Mse(t) are respectively the self-excited drag force, self-excited lift
force and self-excited moment per unit length; t is the time; ρ is the density of air; U is the
mean wind speed; B is the bridge-deck width; K = ωB/U is the reduced frequency; ω = 2π f

is the angular frequency of oscillation; P∗i , H∗i and A∗1 (i = 1, ..., 6) are the flutter derivatives,
which are functions of the reduced velocity UR = U/( f B); f is the frequency of oscillation;
p = p(t), h = h(t) and α = α(t) are the horizontal, vertical and torsional displacements; the
overdot denotes the time derivative. This model is utilized in the frequency domain since
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the flutter derivatives are frequency dependent. It should be noted that it can only predict
the stability limit, i.e., the post-flutter response cannot be obtained. The identification of
flutter derivatives is well established. They can either be measured using free-vibration tests
[11, 27, 70] or forced-vibration tests [36, 71].

In the time domain, the linearized quasi-steady approach is the simplest model [72]. Unlike
Scanlan’s formulation, the unsteady effects of the self-excited forces are not considered in
this model. Therefore, it is not suitable for the flutter analysis of bridges. To take into account
the unsteady effects in the time domain, convolution formulations were proposed. Either the
indicial functions [73–75] or rational functions [76–78] could be employed. These functions
are usually identified indirectly from the flutter derivatives using a least-squares approach
(e.g. [79]). Direct measurement of indicial functions [80] were shown to be possible, but the
experimental approach required is complicated. It is worth nothing that the identification of
such functions may be difficult for bluff deck sections [81]. Additionally, Wu and Kareem
[82] mention that neither the indicial function approach nor the rational function approach is
superior as both are able to provide reliable flutter predictions.

Equations 2.7–2.9 consider the superposition of the contributions from the different displace-
ment components to the self-excited forces. When used for buffeting analysis, the linear
models discussed in this section also assume the superposition of the self-excited forces
at different frequencies. For limited amplitudes of motion, it was demonstrated that the
superposition holds very well for the self-excited lift force and moment of a single-box girder
deck, whereas discrepancies were observed for the drag force due to its small magnitude
[83].

2.3.2 Aerodynamic Nonlinearities

The conclusions in [83] indicate that linear self-excited force models are sufficient for
buffeting analysis and predicting the stability limit as long as the amplitude of motion is not
loo large. For larger amplitudes, the self-excited forces behave nonlinearly as demonstrated
by the dependence of flutter derivatives with respect to the amplitude of motion [84–91].
Nonlinearities with respect to the frequency of oscillation [87] and the velocity of the bridge
deck [38] were also observed. Studies in [92–96] demonstrated the hysteretic behavior of
aerodynamic force coefficients when the self-excited effects are included.

Additionally, many experimental studies have been conducted on the nonlinear flutter
response of bridges [67, 90, 95, 97–101]. For a typical flutter response, the bridge motion
becomes divergent at the critical wind speed. This has been described as hard flutter in
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the literature. In comparison, nonlinear flutter behavior is characterized by limit-cycle
oscillations, i.e., the amplitude of motion of the bridge deck stabilizes at a specific value
for a specific wind speed. The amplitude of motion for the post-flutter response increases
gradually as the wind speed is increased. This type of flutter response is qualified as soft
flutter. This behavior is caused by the aerodynamic nonlinearities related to the amplitude of
motion, especially in rotation.

It is worth noting that these experimental studies have only focused on aerodynamic nonlin-
earities, and structural nonlinearities have not been discussed. In these studies, structural
nonlinearities are only mentioned with regard to verifications that stiffness and damping
nonlinearities of the section model test rig are small and negligible compared to aerody-
namic nonlinearities [90, 102–104]. It should also be noted that there has never been an
experimental assessment considering a nonlinear structural behavior representative of a
cable-supported bridge.

2.3.3 Nonlinear Approaches

In order to consider the nonlinearities of self-excited forces, nonlinear force models are
required. The simplest nonlinear model is the nonlinear quasi-steady approach [72]. Since
it neglects the unsteady effects, more advanced models should be used such as the band
superposition method [105–109]. This method separates the evaluation of the aerodynamic
forces into low-frequency and high-frequency components. It considers the large amplitude
nonlinearities and unsteady effects. For the low-frequency forces, a quasi-steady approach
is used to consider the large amplitude effect. For the high-frequency contribution, the
forces are evaluated at the low-frequency effective angle of attack employing an unsteady
force model (e.g. rational functions or rheological models). This means that the coefficients
or functions of the unsteady force model are required at multiple angles of attack, which
demands many wind tunnel tests.

Guo et al. [89] and Wu et al. [110] developed nonlinear amplitude-dependent flutter
derivatives, which can be used to predict the post-flutter amplitude, but this force model
cannot give the time history of the response. Zhang [111] proposed multistage indicial
functions to represent amplitude nonlinearities. Being a time-domain model, the time history
can be calculated as well as the post-flutter amplitude. Also, nonlinear convolution models
relying on Volterra series were proposed for a representation of the self-excited forces in the
time domain [112–114] and in the frequency domain [115], but they are advanced models.

A nonlinear approach relying on hysteresis loops of dynamic aerodynamic coefficients, which
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include the contribution of self-excited forces, was proposed [116, 117]. Its effectiveness
at representing nonlinearities is questionable since it lumps the nonlinear effects from
different sources (e.g. large amplitude, turbulence and deck motions) into one single
parameter. Additionally, time-domain models using artificial intelligence are presented in
[118, 119]. Such models make it difficult to analyze the model parameters, and they have
the inconvenience of losing the physical interpretation of the phenomena involved.

Furthermore, a generalized nonlinear aerodynamic force model was developed to predict
nonlinear flutter [93, 94, 120]. It accounts for the static aerodynamic effects, dynamic
aerodynamic effects caused the motion of the bridge deck, aerodynamic added mass effects
and unsteady effects. Its calibration appears to be a challenging process since it is needed to
determine over 400 parameters.

In the study of limit-cycle oscillations associated with torsional flutter for bluff bridge-
deck sections, Gao et al. [103, 121] came up with an elegant way to model the nonlinear
self-excited moment by adding to the flutter derivative approach cubic terms relative to
the rotation and rotational velocity of the bridge deck. However, as this mathematical
formulation only consider one degree of freedom (DOF), it is only suitable for the study of
torsional flutter. Gao et al. [122] reutilized this idea of adding nonlinear contributions to the
flutter derivative model, but in this case, accounting for two DOFs, which are the vertical
displacement and torsional rotation. By considering two DOFs, it makes the calibration
process more difficult in comparison to the one-DOF case.

From this brief overview of the different modeling techniques for the nonlinear aerodynamic
forces involved in flutter, it is evident that nonlinear force models to study flutter are more
difficult to implement. It should also be noted that this is still a field in development.

2.4 Flutter Analysis

2.4.1 Modeling Approaches

For the flutter analysis of bridges, different modeling approaches are available. As a
first estimate, empirical simplified formulas can be employed [123, 124]. For a better
understanding of the phenomenon, two-dimensional analysis can be used. In this case,
a three-DOF system (horizontal, vertical and torsional) representing the bridge deck is
considered (fig. 2.3). However, it is typical to neglect the effect of the lateral displacement
and drag force. Dynamic properties of this simplified model are set according to the modes of
vibration of the full bridge. Such models are useful to assess the most important aerodynamic
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coefficients for flutter. For 2D analysis using the flutter derivatives, a complex eigenvalue
analysis (CEVA) [125], the step-by-step approach [126, 127] or the system decoupling
approach [128] can be used. For 2D flutter analysis in the time domain, numerical integration
is required.

Figure 2.3: Two-dimensional flutter analysis

To consider the structural behavior of the full bridge on flutter, three-dimensional models
are needed. For 3D flutter analysis, some researchers have used the finite-strip method
[129, 130], but the finite element method is much more common. Using the finite element
method, a fishbone model, where the bridge deck is modeled using frame elements connected
to the cable system through rigid links (fig. 2.4), is typically employed for flutter analysis
(e.g. [131–133]). Using the flutter derivatives, the flutter wind speed can be obtained using
two equivalent approaches: CEVA (e.g. [131]) and determinant method (e.g. [134]). It is
possible to use a multi-mode analysis [131, 134, 135] or a full-model analysis [136, 137].
The difficulty with the multi-mode method is to decide how many and which modes of the
bridge are important for a good flutter prediction. Numerical integration is again used in the
time domain [78, 138], which is more computationally intensive than a frequency-domain
analysis.

Figure 2.4: Fishbone model of a bridge [130]
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2.4.2 Nonlinear Flutter Analysis

Limited studies have been conducted on nonlinear 3D flutter analysis. Chen and Kareem
[105] presented flutter analyses using the band superposition method, which means aero-
dynamic nonlinearities were considered. However, a linear structure was assumed. For the
case tested, the effect of aerodynamic nonlinearities on the critical flutter velocity is small.
Similarly, a generalized nonlinear aerodynamic force model was utilized for time-domain
analysis to study the effect of aerodynamic nonlinearities [93, 94]. Zhang [111] also demon-
strated that the effect of aerodynamic nonlinearities on the critical velocity is much less
important than the effect of the mean aerodynamic forces, which changes the angle of attack
leading to different aerodynamic parameters for the self-excited forces along the bridge deck.

Some analyses have been carried out considering the geometric nonlinearities of the bridge.
First, the static equilibrium under the dead loads and mean aerodynamic loads is determined
by conducting a nonlinear static analysis. This deformed configuration under static loads is
considered for the evaluation of the stiffness matrix (mechanical and geometric contributions)
used in the flutter analysis. Then, the flutter analysis can be performed using the flutter
derivatives and CEVA [133, 139–141]. Instead, Salvatori and Borri [142] conducted an
analysis in the time domain using indicial functions, but the bridge was linearized at the
deformed state under static loads. Thus, the previous studies do not consider the geometric
nonlinearities in the dynamic analysis of flutter. Using a simplified model of a bridge
and indicial functions, Salvatori and Spinelli [143] conducted a flutter analysis taking into
account geometric nonlinearities for the static and dynamic analyses. Because of that, the
post-flutter response or limit-cycle oscillations can be obtained. Similar results based on
finite element analysis were obtained in [111, 144]. Arena et al. [145, 146] presented similar
conclusions using a nonlinear continuum formulation of a suspension bridge.

Employing indicial functions, Chobsilprakob et al. [144] carried out a flutter analysis of
a suspension bridge considering the geometric and material nonlinearities, but important
simplifications were used. The effect of mean wind loads were neglected, and the aerody-
namic properties of a rectangular section were assumed for the bridge deck. The initial force
applied in the analysis was chosen to ensure an excursion in the material nonlinear range,
which is not representative of a real wind event. For these specific conditions, it was shown
numerically that the structural nonlinearities decrease the flutter wind speed.

Numerical studies for nonlinear 3D flutter analysis accounting for aerodynamic and structural
nonlinearities are difficult due to the fact that the simulation of structural nonlinearities is
more adapted to time-domain analysis. However, the nonlinear time-domain aerodynamic
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models are more challenging to utilize. It is also worth noting that nonlinear 3D flutter
analyses accounting for structural nonlinearities have never been verified experimentally.

2.5 Structural Nonlinearities in Long-Span Bridges

For the analysis of cable-supported bridges, it is important to account for geometric non-
linearities (P-∆, cable sag and large displacement effects) [147], and to assess the collapse
load, material nonlinearities should also be modeled (e.g. [148]). Nevertheless, geometric
nonlinearities are more important for long-span bridges due to the fact that their cable
systems are designed to remain elastic [149]. For very long cable-supported bridges like
the Messina Strait Bridge [17], nonlinear geometric analysis could be utilized for some
critical load cases in order to check the static structural performance. Additionally, for
slender towers, geometric nonlinearities have a non-negligible effect on the tower moment
distributions [149, 150]. Even the nonlinear concrete behavior in the case of concrete towers
has an influence on the moment distributions [151]. Another source of nonlinearities in
cable-supported bridges comes from the longitudinal hydraulic buffers, whose function is to
limit longitudinal deck motions [12, 17, 151].

For the static analysis of cable-stayed bridges for vertical loads, large displacement effects
are more important than the other geometric nonlinearities on the behavior of the bridge
deck [152]. However, when geometric and material nonlinearities are accounted for, the
material nonlinear effects appear first and geometric nonlinearities are small [148], even
for a 1400 m cable-stayed span [153]. Similar conclusions were obtained for a cable-
stayed suspension bridge subjected to vertical loads [154]. This is explained by the in-plane
structural effectiveness of the cable-stayed system [149]. Similarly, Brownjohn [155] showed
that the geometric nonlinear effect on the bridge deck is also small in the case of static vertical
loads on a suspension bridge. For static wind loads, it has been shown by some researchers
that geometric nonlinearities affect the aerostatic stability of cable-stayed and suspension
bridges [18–20, 153]. For a suspension bridge having for cross section a stiffening truss, it
was demonstrated that material nonlinearities can also affect the aerostatic stability [156].
This is due to the large drag forces on stiffening trusses.

In dynamic analyses, material nonlinearities slightly reduce the response of long-span bridges
to earthquakes [157]. For geometric nonlinearities, Brownjohn [155] mentions that they are
negligible for common level of dynamic response. However, using continuum formulations,
some researchers in mathematics and engineering demonstrated that nonlinear dynamic
effects related to the geometric nonlinearities, such as internal resonance, could lead to large
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oscillations. For cable-stayed bridges, some researchers were able to simulate a nonlinear
interaction between the deck and cables [158–162]. Suspension bridges with inclined main
cables are also susceptible to nonlinear dynamic phenomena [163–165]. Furthermore, due
to nonlinear dynamic effects, it has been demonstrated that vertical energy in a suspension
bridge can be transferred to torsional modes causing large torsional vibrations [166–169].
These large torsional vibrations associated with nonlinear vertical-torsional coupling are
possible if a certain energy threshold is respected [169]. Using a continuum model of a
narrow 1400 m suspension bridge, Capsoni et al. [170] demonstrated that aeroelastic effects
and such resonance can lead to unexpected unstable conditions in specific cases.

It seems that such nonlinear dynamic effects have never been experienced on an actual
structure. However, a transition from an antisymmetric instability mode to a symmetric
instability mode was observed in the case of a full-aeroelastic model of a double-main-span
suspension bridge [171]. According to [172, 173], it would be caused by internal resonance
due to the nonlinearities of the aeroelastic system. This phenomenon would be different than
the flutter mode transition of [174] associated with two flutter instability modes having the
same critical wind speed. The phenomenon discussed in [171–173] has led to recent studies
on aerodynamic nonlinearities and nonlinear flutter that were discussed in sections 2.3.2
and 2.3.3.

2.6 Summary on Flutter and Structural Nonlinearities

Until now, the research carried out on nonlinear flutter considering structural nonlinearities
has mainly been about the evaluation of the flutter wind speed for the nonlinear static deck
deflection and the simulation of the nonlinear dynamic post-flutter response. This has
been done in the case of long-span bridges with main spans between 1 km to 2 km. It has
aimed at assessing the stiffening or softening effects associated with geometric nonlinearities
on flutter. Regarding nonlinear structural dynamic effects such as internal resonance and
nonlinear vertical-torsional coupling, the research has mostly been theoretical, and it has been
conducted for suspension bridges with a maximum span length of 1.4 km. Consequently,
for long-span bridges with main spans greater than 2 km, it is not known to what extent the
nonlinear structural behavior can influence the flutter onset and flutter nonlinear dynamic
response.

Similar to what happened when dynamic wind actions were not considered in the design of
suspension bridges due to a gap in knowledge, the influence of structural nonlinearities on the
stability of cable-supported bridges under wind actions is not well understood. Considering
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that even weakly nonlinear systems can exhibit nonlinear dynamic phenomena [175], it
seems relevant to develop a better comprehension of the interaction between structural
nonlinearities and aeroelastic effects. This is especially the case for very long bridges as they
could be more susceptible to nonlinear vertical-torsional coupling since their torsional-to-
vertical frequency ratio decreases significantly as their span lengths increase [176]. This can
be achieved by using numerical analysis to characterize the nonlinear structural behavior
of long cable-supported bridges. This nonlinear structural behavior obtained numerically
can then be utilized for an experimental study of the interaction between aeroelastic and
nonlinear structural effects using the section model testing procedure, what has never been
realized.
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Chapter 3

Nonlinear Structural Vertical-Torsional Coupling

3.1 Introduction

Due to their flexibility, cable-supported bridges are quite effective at resisting earthquakes,
but they are vulnerable to wind actions. Even though this fact had been learned by experience
by suspension bridge designers of the 1800s, it had been somehow forgotten even by noted
bridge engineers like Othmar Amman and Leon Moisseiff [1, 3]. Both designed by Amman,
one of the greatest engineers of New York City bridges, the Bronx-Whitestone Bridge and
the George Washington Bridge in its single deck configuration had suffered from vertical
oscillations due to wind. On November 7, 1940, Moisseiff’s infamous Tacoma Narrows
Bridge collapsed due to dynamic wind actions. In the bridge engineering community, it
is generally accepted that torsional flutter was responsible in the case of Tacoma [7, 8,
11]. However, using Tacoma as case study, mathematicians have shown that dynamic
vertical forcing can lead to large torsional oscillations due to nonlinear vertical-torsional
mode coupling associated with geometric nonlinearities [166–169]. For simulating this
structural dynamic instability, simplified models or continuum models based on systems
of nonlinear partial differential equations were used. Using a continuum model, it was
demonstrated that flutter was likely responsible for Tacoma [170]. Nevertheless, the authors
of [166–169] raise a point not considered in the wind design of long-span bridges, i.e.,
possible large oscillations caused by structural coupling between the modes of vibration
because of structural nonlinearities. The nonlinear effect described previously seems to
be attributed to internal parametric resonance, a dynamic instability [170]. The possible
occurrence of internal resonance has also been demonstrated in cable-stayed bridges [160–
162]. Additionally, suspension bridges with inclined main cables can exhibit nonlinear
dynamic phenomena such as internal resonance [163–165].

To the author’s knowledge, such large torsional oscillations from a vertical forcing because
of nonlinear structural effects have never been demonstrated experimentally. However, a
transition from an antisymmetric flutter mode to a symmetric flutter mode was observed on
a full-aeroelastic model of a double-main-span suspension bridge [171]. This phenomenon
seems to be different than the flutter mode transition described in [174] which was explained
by the fact that the antisymmetric and symmetric flutter modes have the same critical wind
speed. It appears that the flutter mode transition of [171] would be internal resonance caused
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by the aerodynamic and/or structural nonlinearities of the aeroelastic-structural bridge system
[172].

For cable-supported bridges, structural nonlinearities can arise from different sources. There
are geometric nonlinearities (P-∆, cable sag and large displacement effects) and material non-
linearities (e.g. steel yielding and nonlinear concrete behavior) [147]. Material nonlinearities
are more important for small- and medium-span bridges especially in the case of seismic
excitation. For bridges with longer spans, nonlinear geometric effects are generally of greater
concern. For example, the geometric stiffness contribution of the main cables in suspension
bridges evolves nonlinearly, and for very long-span bridges like the Messina Strait Bridge
[17], it could be relevant to check the static structural performance for some of the critical
load cases using nonlinear geometric analysis. Another example when geometric nonlinear-
ities should be considered for long-span bridges occurs with bridges having very slender
towers [149, 150]. Furthermore, the nonlinear concrete behavior should also be accounted
for in the case of concrete towers [151]. For static wind loads on cable-supported bridges,
it has been shown that the critical wind speed for aerostatic instability, an aerodynamic
instability analogous to column buckling, can significantly be reduced due to geometric
nonlinearities when compared to linear analysis [18–20].

As discussed in the previous paragraph, it is relatively common to utilize nonlinear analysis
to determine the static behavior of long-span bridges. For dynamic analysis, the structural
response is usually obtained considering the linearized stiffness about the dead-load con-
figuration of the bridge, which is determined using large displacement analysis. Nonlinear
dynamic analysis is utilized in specific cases, e.g., for the seismic response of long-span
bridges having hydraulic buffers since buffers behave like nonlinear springs under rapidly
varying dynamic actions [12, 17, 151]. Unlike for seismic analysis, dynamic analyses for
wind effects typically consider a linear structure since frequency-domain analysis procedures
are generally employed in the design process for assessing phenomena such as buffeting
(e.g. [10, 31]) and flutter (e.g. [134, 136, 139, 140]). Time-domain approaches for buffeting
analysis are sometimes used (e.g. [177]), but they are demanding in terms of computational
time compared to frequency-domain analysis. To the author’s knowledge, such time-domain
analyses are carried out assuming a linear behavior for the bridge when used by bridge
designers.

Similar to what happened when dynamic wind actions were not considered in the design of
suspension bridges, wind analyses of long-span bridges are currently carried out without
including the structural nonlinearities. Considering the results obtained by mathematicians
regarding large torsional response caused by nonlinear structural coupling between the
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modes of vibration [166–169], it appears that further research is needed on the possible
interaction between structural nonlinearities and wind phenomena such as buffeting and
flutter. Having a better understanding of nonlinear structural phenomena in long-span bridges
is of practical engineering value considering the very long spans of recent projects like the
Çanakkale Bridge and Messina Strait Bridge.

Thus, this chapter presents an initial investigation based on static analysis of the nonlinear
vertical-torsional coupling in long-span bridges. The main objective of this study is to
provide an analysis procedure that can be used to compare the level of nonlinear structural
coupling and structural nonlinearity for different bridge structures. The proposed approach
relies on nonlinear finite element analysis, an engineering tool which can model complex
structures, such as cable-supported bridges, accurately unlike continuum models.

First, the theoretical development for the calculation of nonlinear generalized stiffness
parameters that accounts for nonlinear vertical-torsional coupling is made. Then, through
static pushover analysis, the nonlinear generalized stiffness parameters are calculated for
five suspension bridges and two cable-stayed bridges. Nonlinear vertical and torsional
stiffness parameters are obtained individually and in a coupled manner. Comparing the
nonlinear generalized stiffness parameters for each bridge allows identifying the bridges with
the strongest nonlinear structural coupling that are likely more susceptible to a structural
dynamic instability.

3.2 Nonlinear Generalized Stiffness

In the case of static analysis, the displacement at a specific location on the bridge (e.g. at
midspan), can be used as a nonlinearity measure by comparing linear and nonlinear static
responses. Such an approach was used in [148] for a cable-stayed bridge subjected to live
loads. For dynamic analysis, the displacement time history at a specific location can still be
used to compare linear and nonlinear responses, but it does not provide synthetic information
about the potential vertical-torsional mode coupling in long-span bridges. Nonlinear normal
modes [178, 179] could provide a way to assess this nonlinear coupling in a more synthetic
manner, but nonlinear normal mode calculations are not readily available in finite element
codes, especially commercial codes, and therefore would require a specific development.

However, it is possible to make use of the linear modes of vibration to study the nonlinear
vertical-torsional mode coupling in cable-supported bridges. Using the modes of vibration
and nonlinear static analysis, which are available in most finite element codes, nonlinear
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generalized stiffness parameters can be calculated as shown in the following subsections.
The idea of using the linear modes of vibration for studying the nonlinear behavior of
cable-supported bridges was initially developed in [155], but was limited to mode-by-mode
analysis. Therefore, in the following subsections, a method inspired by the work in [155] is
developed to account simultaneously of one vertical mode and one torsional mode, which
allows the coupling between the selected modes. A generalization of the proposed method
for more than two modes is also presented.

Additionally, it should be mentioned that, in this study, only geometric nonlinearities are
considered for the assessment of nonlinear vertical-torsional coupling. This choice is made
because material nonlinearities are unlikely to happen, especially under wind loads, in
a properly designed structure. This assumption is reasonable considering that the main
structural component in suspension and cable-stayed bridges, the cable system, is designed
elastically due to the fact that the breaking strain of steel cable wires is very small with a
typical value of 4 % [149]. Therefore, only nonlinear geometric analysis is required in the
proposed method.

3.2.1 One-Mode Analysis

Before developing the approach to calculate the two-mode nonlinear generalized parameters
for cable-supported bridges, a rectified and improved version of the one-mode method of
[155] is presented.

The method relies on the application of a static load proportional to one of the modes of
vibration of the bridge finite element model under consideration. This is done in order to
quantify the nonlinear behavior in terms of dynamic properties. However, at first, let us
consider the static application of a modal load to a linear bridge structure as follows:

Ku = p j with p j = a jω
2
jMϕ j (3.1)

where K and M are respectively the stiffness matrix and mass matrix of the bridge obtained
using the finite element method; u is the displacement vector; a j is a real coefficient; ω j =

2π f j is the natural angular frequency of mode ϕ j calculated at the dead-load configuration; f j

is the natural frequency of mode ϕ j. For a cable-supported bridge, we have that K = KS +KG

where KS and KG are respectively the elastic and geometric stiffness matrices linearized
about the dead-load configuration.

Mode ϕ j is normalized such that the maximum displacement/rotation of the bridge deck
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is unity. The maximum displacement is used for horizontal and vertical modes, whereas
rotation is considered for torsional modes. Because Kϕ j = ω2

jMϕ j, it follows that the
displacement vector in eq. 3.1 is u = a jϕ j. Therefore, it is concluded that a j corresponds to
the maximum linear deck displacement caused by the load vector p j as defined in eq. 3.1.
This physical interpretation facilitates choosing the range of values for a j to be used in
the analysis. This is not possible for the procedure in [155] because a j has no physical
interpretation due to the usage of mass-normalized modes.

The displacement vector u can be written in terms of the modal coordinates using eq. 3.2:

u =
n∑

k=1

ϕkzk = Φz (3.2)

By substituting eq. 3.2 into eq. 3.1 then premultiplying both sides of eq. 3.1 by ΦT, n

uncoupled static equations are obtained. Due to the orthogonality properties of M and the
fact that p j is a modal load vector proportional to the mass matrix, only one uncoupled
equation has to be considered since the other equations have generalized loads equal to zero.
Therefore, the solution of eq. 3.1 in terms of the modal coordinates is:

k̃ jz j = p̃ j and u = ϕ jz j (3.3)

where k̃ j = ϕ
T
j Kϕ j = ω2

jm̃ j is the generalized stiffness; z j is the generalized coordinate;
p̃ j = a jω

2
jm̃ j is the generalized load; m̃ j = ϕ

T
j Mϕ j is the generalized mass. Rearranging

eq. 3.3 provides an indirect way of calculating the generalized stiffness k̃ j from linear static
analysis without using the stiffness matrix directly:

k̃ j =
p̃ j

z j
(3.4)

A similar approach can be used for characterizing in a practical manner a nonlinear general-
ized stiffness for a nonlinear geometric system:

fS G(unl) = p j with p j = a jω
2
jMϕ j (3.5)

where fS G(unl) is the internal force vector of the nonlinear geometric system; unl is the
nonlinear displacement vector obtained from nonlinear static analysis using the Newton-
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Raphson method, for example.

However, for the nonlinear case shown in eq. 3.5, the displacement vector is not exactly pro-
portional to ϕ j since distortions will be caused by the geometric nonlinearities. Considering
that the displacements that will be considered are significantly smaller than the span length,
the nonlinear displacement vector can be reasonably approximated as:

unl ≈ ϕ jz j (3.6)

Premultiplying both sides of eq. 3.6 by ϕT
j M, the generalized coordinate for the displacement

vector caused by p j is obtained:

z j =
ϕT

j Munl

m̃ j
(3.7)

Using the mass matrix in eq. 3.7 allows having consistent units in the procedure as explained
in more detail in section 3.2.3. Then, the tangent nonlinear generalized stiffness k̃t

j as a
function of z j is calculated as:

k̃t
j(z j) =

dp̃ j

dz j
= ω2

jm̃ j
da j

dz j
(3.8)

By using different values for the coefficient a j, the nonlinear relationship p̃ j vs z j can be
calculated, and then, using finite differences, k̃t

j is evaluated. It should be mentioned that,
due to the normalization used for the modes, the generalized coordinate z j is equal to the
maximum deck displacement in the direction under consideration in the nonlinear geometric
case.

The derivative da j/dz j in eq. 3.8 can be interpreted as a relative measure of the nonlinear
contribution of k̃t

j(z j) with respect to the linear generalized stiffness k̃ j because:

da j

dz j
=

k̃t
j

ω2
jm̃ j
=

k̃t
j

k̃ j
(3.9)
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3.2.2 Two-Mode Analysis for Vertical and Torsional Modes

The calculation of the nonlinear generalized stiffness can also be extended to two modes.
This is done in order to assess the nonlinear vertical-torsional mode coupling. Therefore,
in this section, we are interested in one vertical mode ϕV and one torsional mode ϕθ. This
choice is also justified from the fact that vertical and torsional effects are the most important
regarding the wind response and stability of bridges. In this case, the nonlinear static
equation to solve is:

fS G(unl) = pVθ (3.10)

pVθ = pV + pθ = aVω
2
VMϕV + aθω2

θMϕθ (3.11)

The nonlinear displacement vector (i.e. the solution of fS G(unl) = pVθ) is approximated as:

unl ≈ ϕVzV + ϕθzθ = ΦVθzVθ (3.12)

where ΦVθ = [ϕV ϕθ] and zVθ = [zV zθ]T. By premultiplying eq. 3.12 by ΦT
VθM, the

generalized displacements can be calculated due to the orthogonality property of the modal
matrix ΦVθ with respect to M:

(
ΦT

VθMΦVθ

)
zVθ = Φ

T
VθMunl (3.13)

zV =
ϕT

VMunl

m̃V
and zθ =

ϕT
θMunl

m̃θ

(3.14)

Then, the two-mode nonlinear generalized stiffness matrix K̃t
Vθ, which is a function of zVθ,

can be evaluated:

K̃t
Vθ(zVθ) =

∂p̃Vθ

∂zVθ
=

∂p̃V
∂zV

∂p̃V
∂zθ

∂p̃θ
∂zV

∂p̃θ
∂zθ

 (3.15)

It should be noted that p̃Vθ = Φ
T
VθpVθ = [p̃V p̃θ]T = [aVω

2
Vm̃V aθω2

θm̃θ]T. By varying aV

and aθ, the relationship for p̃Vθ as a function of zVθ can be determined. K̃t
Vθ can be thought
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as the stiffness matrix of an equivalent two-degree-of-freedom system. It should be noted
that the fact of considering two modes in the modal load allows studying the nonlinear mode
coupling as demonstrated by the off-diagonal terms in eq. 3.15.

3.2.3 Verification of Nonlinear Distortion for unl

By expressing the mass matrix by its Cholesky factorization, i.e., M = UT
MUM where UM is

an upper-triangular matrix, eq. 3.13 becomes:

(UMΦVθ)T (UMΦVθ) zVθ = (UMΦVθ)T (UMunl) (3.16)

Equation 3.16 can be viewed as the least squares solution of:

[
UMϕV UMϕθ

] zV

zθ

 = UMunl (3.17)

Therefore, the uncentered coefficient of determination R2 for eq. 3.17 can be used for judging
whether unl is not too distorted in comparison with the linear combination of the modes, i.e,
the nonlinear distortions are sufficiently small such that the use of eq. 3.12 is reasonable.
Consequently, the closer R2 is to 1, the better is the approximation utilized in eq. 3.12.

Also, it is worth noting that the units are consistent (M1/2L) in eq. 3.17 even though unl

contains displacements and rotations when frame elements are considered in the finite
element model. Thus, eqs. 3.14 and 3.17 are preferred to a direct least squares solution of
eq. 3.12. For one-mode analysis, eq. 3.7 can be modified to obtain an equation analogous to
eq. 3.17 from which R2 can be calculated.

3.2.4 Calculation of Derivatives in K̃t
Vθ

For two-mode analysis, the derivatives in the tangent stiffness matrix K̃t
Vθ cannot be calcu-

lated directly. This is because the generalized displacements zV and zθ are not distributed
across a uniform grid as shown in fig. 3.1. The reason is that the loads are controlled in the
proposed approach using the coefficients aV and aθ and not the generalized displacements.
However, it is considered that the generalized loads p̃V and p̃θ are defined across a uniform
grid.

Each point (zV , zθ) in fig. 3.1 corresponds to different combinations of p̃V and p̃θ. We define
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Figure 3.1: Normalized generalized displacement grid for two-mode analysis

the curved coordinates sV and sθ in the plane formed by the normalized quantities zV/LV and
zθ/Lθ where LV = zVmax − zVmin and Lθ = zθmax − zθmin. The coordinate sV corresponds to a
path in the plane zV/LV-zθ/Lθ when p̃V is increased and p̃θ is kept constant. Similarly, sθ is
the curved coordinate when p̃θ is increased and p̃V is constant. The curved paths s(i)

V and s(i)
θ

can be calculated incrementally using:

s(i)
V =

∑ √√∆z(i)
VV

LV

2

+

∆z(i)
θV

Lθ

2

(3.18)

s(i)
θ =

∑ √√∆z(i)
Vθ

LV

2

+

∆z(i)
θθ

Lθ

2

(3.19)

where ∆z(i)
VV and ∆z(i)

θV are the increments in zV and zθ between two consecutive points along
s(i)

V ; ∆z(i)
Vθ and ∆z(i)

θθ are the increments in zV and zθ along s(i)
θ . Doing so, the curved coordinates

can be calculated for each point (zV , zθ) corresponding to different combinations of p̃V and
p̃θ.

For calculating the first row in K̃t
Vθ, the chain rule is employed:

∂ p̃V

∂sV
=
∂ p̃V

∂zV

∂zV

∂sV
+
∂p̃V

∂zθ

∂zθ
∂sV

∂ p̃V

∂sθ
=
∂ p̃V

∂zV

∂zV

∂sθ
+
∂ p̃V

∂zθ

∂zθ
∂sθ

(3.20)
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Solving for ∂p̃V/∂zV and ∂ p̃V/∂zθ in eq. 3.20, the following equation is obtained for calcu-
lating the first row in K̃t

Vθ. In eq. 3.21, ∂ p̃V/∂sθ is zero by definition.

∂p̃V
∂zV
∂p̃V
∂zθ

 =  ∂zV
∂sV

∂zθ
∂sV

∂zV
∂sθ

∂zθ
∂sθ

−1 ∂p̃V
∂sV
∂p̃V
∂sθ

 (3.21)

The derivatives on the right-hand side of eq. 3.21 can be evaluated by finite differences. The
same procedure can be used to obtain the second row of K̃t

Vθ. Doing so for each point (zV , zθ),
the relationship for K̃t

Vθ vs zVθ is obtained.

3.2.5 Generalization for More Than Two Modes

The calculation of nonlinear generalized stiffness parameters can be generalized to any
combination of modes. In this case, the nonlinear static equation is solved for a modal load
that accounts for m selected modes:

fS G(unl) = pm with pm =

m∑
k=1

akω
2
kMϕk (3.22)

The following equation is used to approximate the displacement vector unl:

unl ≈

m∑
k=1

ϕkzk = Φmzm (3.23)

Premultiplying eq. 3.23 by ΦT
mM yields:

zk =
ϕT

k Munl

m̃k
for k = 1, 2, . . . ,m (3.24)

Equation 3.24 represents the least squares solution of the following equation:

[
UMϕ1 UMϕ2 . . . UMϕm

]

z1

z2
...

zm


= UMunl (3.25)

The coefficient of determination R2 for eq. 3.25 can be determined to check the validity of
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the approximation utilized in eq. 3.23. By varying the modal load vector by changing the
coefficients ak, the generalized load vector p̃m can be determined:

p̃m = p̃m(zm) = ΦT
mpm =


p̃1

p̃2
...

p̃m


=


a1ω

2
1m̃1

a2ω
2
2m̃2
...

amω
2
mm̃m


(3.26)

Then, the nonlinear generalized stiffness matrix K̃t
m is obtained by taking the derivative of

p̃m with respect to zm:

K̃t
m =

∂p̃m

∂zm
=



∂p̃1
∂z1

∂p̃1
∂z2

. . . ∂p̃1
∂zm

∂p̃2
∂z1

∂p̃2
∂z2

. . . ∂p̃2
∂zm

...
...

. . .
...

∂ p̃m
∂z1

∂ p̃m
∂z2

. . . ∂ p̃m
∂zm


(3.27)

To calculate the derivatives of the stiffness matrix K̃t
m, a similar procedure as the one

presented in section 3.2.4 is utilized when more than two modes are considered. In this case,
the curved paths as shown in fig. 3.1 must be calculated for an m-dimensional grid, and the
chain rule in eq. 3.20 must account for m curved coordinates.

3.3 Numerical Models of Cable-Supported Bridges

The study presented in [155] was limited to three suspension bridges having main span
lengths between 1 km and 1.5 km, which is a limited range of span lengths. In this chapter,
five suspension bridges with main span lengths between 1550 m and 4140 m are used in the
nonlinear generalized stiffness analyses. Such a wide range for the span lengths was chosen
to be able to identify a potential span length effect on the nonlinear generalized stiffness
parameters. In addition to the five suspension bridges, two cable-stayed bridges with main
spans close to 1 km are considered in order to compare in terms of geometric nonlinearities
the two most common structural systems used for long-span bridges. Information about
these bridges is presented in table 3.1. For each bridge, the table shows the type of structural
system, the main span length, whether the bridge has longitudinal hydraulic buffers and an
elevation view.

It should be mentioned that all the bridges considered in this study with the exception of
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Table 3.1: Description of cable-supported bridges

Bridge Type Main span Buffers? Elevation view
(m)

SU1
Three-span suspension

Continuous girder 1550 Yes

SU2
Three-span suspension

Continuous girder 1624 Yes

SU3a
Three-span suspension

Partially continuous girder 2460 Yes

SU3b
Three-span suspension

Partially continuous girder 3300 Yes

SU3c
Three-span suspension

Partially continuous girder 4140 Yes

CS1
Cable-stayed

Rigid deck-tower connection 856 No

CS2
Cable-stayed

Continuous girder 1018 Yes

bridges SU3a and SU3c are existing structures or existing detailed designs. Bridges SU3a
and SU3c are modified designs based on bridge SU3b, but with different main span lengths.
They are preliminary designs for which the bridge deck properties and hanger spacing are
kept the same as in bridge SU3b, but the main cables and towers were redesigned considering
the new span lengths. Bridges SU3a, SU3b and SU3c have all the same sag-to-span ratio.
Since the three bridges are based on the same design concept but have different span length,
they provide a reliable manner to assess the span length effect. Detailed information about
these bridges can be found in appendix A.

The finite element models of the bridges presented in table 3.1 were developed using the
open-source finite element software Code Aster [180]. The procedure to calculate the
nonlinear generalized stiffness parameters was automatized with a specific development
within Code Aster using the Python programming language. Table 3.2 presents information
about the finite element models of the seven cable-supported bridges used to assess the
nonlinear generalized stiffness parameters. The number of elements for each model is shown
as well as the natural frequencies of the mode shapes utilized in the nonlinear generalized
stiffness analyses. The frequencies shown are for inactive buffers. Additionally, table 3.2
also presents typical computational times for the nonlinear generalized stiffness analyses
discussed in section 3.5 when run as serial jobs on Compute Canada’s cluster Graham
equipped with 2.1 GHz processors.

3.3.1 Modeling Approach of Suspension Bridges

All suspension bridges for this study were modeled using the fishbone modeling approach
where the deck is represented by Timoshenko beam elements connected to the cable system
through rigid elements. Timoshenko beam elements are also used for the towers. Tension-
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Table 3.2: Description of finite element models of cable-supported bridges (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric, 1MA: one-mode analysis, 2MA: two-
mode analysis, 3MA: three-mode analysis)

Bridge Model Number of Natural frequencies CPU time
elements (Hz) (min)

SU1
Truss: 410
Beam: 462

Sym. Antisym. Sym.
LS1: 0.053 LA1: 0.124 LS2: 0.207
VS1: 0.090 VA1: 0.107 VS2: 0.133
θS1: 0.256 θA1: 0.274 θS2: 0.402

1MA: 0.2
2MA: 18
3MA: 322

SU2
Truss: 432
Beam: 370

Sym. Antisym. Sym.
LS1: 0.051 LA1: 0.116 LS2: 0.188
VS1: 0.097 VA1: 0.080 VS2: 0.131
θS1: 0.279 θA1: 0.358 θS2: 0.411

1MA: 0.2
2MA: 15
3MA: 289

SU3a
Truss: 448
Beam: 1443

Sym. Antisym. Sym.
LS1: 0.037 LA1: 0.078 LS2: 0.143
VS1: 0.095 VA1: 0.065 VS2: 0.127
θS1: 0.130 θA1: 0.105 θS2: 0.170

1MA: 0.4
2MA: 34
3MA: 500

SU3b
Truss: 588
Beam: 1835

Sym. Antisym. Sym.
LS1: 0.030 LA1: 0.056 LS2: 0.083
VS1: 0.080 VA1: 0.058 VS2: 0.107
θS1: 0.100 θA1: 0.081 θS2: 0.133

1MA: 0.5
2MA: 41
3MA: 583

SU3c
Truss: 732
Beam: 2227

Sym. Antisym. Sym.
LS1: 0.027 LA1: 0.047 LS2: 0.062
VS1: 0.070 VA1: 0.052 VS2: 0.093
θS1: 0.083 θA1: 0.067 θS2: 0.109

1MA: 0.7
2MA: 50
3MA: 687

CS1
Truss: 1908
Beam: 432

Sym. Antisym. Sym.
LS1: 0.138 LA1: 0.338
VS1: 0.215 VA1: 0.271 VS2: 0.361
θS1: 0.693

1MA: 0.5
2MA: 31
3MA: 601

CS2
Truss: 1792
Beam: 1218

Sym. Antisym. Sym.
LS1: 0.157 LA1: 0.393
VS1: 0.198 VA1: 0.240 VS2: 0.302
θS1: 0.428 θA1: 0.587

1MA: 0.5
2MA: 39
3MA: 595
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only truss elements are considered for the main cables and hangers. Cable pretensions are
applied using temperature loads. The suspension bridge models are analyzed considering
geometric nonlinearities as mentioned previously.

3.3.2 Modeling Approach of Cable-Stayed Bridges

For the cable-stayed bridges, the modeling approach for the deck and towers is the same as
described in section 3.3.1. The stay cables are subdivided into 8 to 12 tension-only truss
elements. When combined to large displacement analysis, this multi-link approach for the
stay cables allows the cable sag effect to be represented adequately without the need to use
an effective modulus of elasticity, i.e., Ernst’s modulus [181].

Two different approaches are utilized to model the cable mass. In the first approach, the mass
is uniformly distributed along each stay cable. For the second approach, 50 % of the mass
for each stay cable is lumped at both ends. In order to have the correct geometric stiffness
for the stay cables, the cable self-weight is applied as a uniformly distributed load. Doing
so, cables modes and deck-cable modes are disregarded in the second method unlike the
first one, which facilitates analysis. The frequencies in table 3.2 for bridges CS1 and CS2
correspond to the lumped cable mass approach.

3.4 Reference Displacements for Nonlinear Generalized

Stiffness Parameters

Before presenting the nonlinear generalized stiffness parameters for the bridges of table 3.1,
reasonable displacement bounds to be used for the presentation of the results are determined.
To do so, the nonlinear static response under mean wind loads are obtained for each bridge
using the procedure in [19]. Mean wind loads were applied to the bridge deck, towers and
cables, and the hydraulic buffers were considered to be inactive. Simulations were made
for three different angles of attack. Figure 3.2 shows a typical nonlinear static response
at midspan for bridge SU2 for an increasing wind speed. In fig. 3.2, a good agreement is
obtained for the lateral displacement at a wind speed of 37.6 m/s when compared to the
wind tunnel results (WT) and the numerical simulation made by the bridge designers (Des.).

For defining the reference displacements, the midspan displacements for a wind speed at
deck height of 60 m/s are considered. They are presented for each bridge in table 3.3 for
three angles of attack. The corresponding normalized quantities are also shown, i.e., the
normalized lateral displacement uy/Lspan, the normalized vertical displacement uz/Lspan and
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Figure 3.2: Midspan displacements under mean wind loads for bridge SU2 (U: mean wind
speed, αs: angle of attack, uy: lateral displacement, uz: vertical displacement, θx: torsional
rotation)

the normalized rotation θxbcl/Lspan where Lspan is the main span length and bcl is half of
the distance between the cables at deck level. From this table, it is clear that the bridge-
deck cross section considered for bridges SU3a, SU3b and SU3c has better aerodynamic
properties vertically and torsionally than those of bridges SU1 and SU2. It is reasonable
to say that bridges SU3a, SU3b and SU3c would have much greater displacements if a
less-aerodynamically effective bridge deck was considered. For this reason, the displacement
bounds for the presentation of the results for the five suspension bridges are based on the
average of the normalized displacements for bridges SU1 and SU2. Furthermore, some
allowance is also included in the reference displacements for the dynamic wind effects which
were estimated from wind tunnel results for full-aeroelastic or taut-strip models. A similar
approach was used for the cable-stayed bridges.

Table 3.4 shows the displacement bounds that are utilized in the presentation of the nonlinear
generalized stiffness parameters in section 3.5. As shown in the table, the same normalized
displacements are used for all suspension bridges. For both cable-stayed bridges, the
normalized displacements are also the same, but different than the ones for the suspension
bridges. The corresponding physical displacements are also shown in the table. It should be
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Table 3.3: Midspan displacements under mean wind loads at 60 m/s

Bridge αs uy uz θx uy/Lspan uz/Lspan θxbcl/Lspan

(°) (m) (m) (°) (10−3) (10−3) (10−3)

SU1
−3 5.25 −4.16 −3.82 3.39 −2.68 −0.65
0 5.37 −1.89 −1.09 3.46 −1.22 −0.19
3 5.72 0.45 1.30 3.69 0.29 0.22

SU2
−3 4.29 −1.25 −1.15 2.64 −0.77 −0.17
0 5.12 0.43 0.66 3.15 0.26 0.10
3 5.25 2.28 2.48 3.23 1.41 0.36

SU3a
−3 10.53 −0.79 −0.38 4.28 −0.32 −0.07
0 10.08 −0.45 −0.17 4.10 −0.18 −0.03
3 10.96 −0.09 −0.01 4.45 −0.04 −0.00

SU3b
−3 13.64 −0.93 −0.60 4.13 −0.28 −0.08
0 13.05 −0.54 −0.34 3.96 −0.16 −0.05
3 14.01 −0.12 −0.17 4.25 −0.04 −0.02

SU3c
−3 15.06 −1.01 −0.61 3.64 −0.24 −0.07
0 14.47 −0.59 −0.34 3.49 −0.14 −0.04
3 15.40 −0.15 −0.17 3.72 −0.04 −0.02

CS1
−3 1.31 −1.41 −0.26 1.53 −1.65 −0.06
0 1.48 −0.59 0.55 1.73 −0.69 0.12
3 1.61 0.02 0.80 1.88 0.03 0.17

CS2
−3 0.67 −0.47 0.05 0.65 −0.46 0.02
0 0.70 −0.13 0.24 0.69 −0.13 0.10
3 0.73 0.16 0.43 0.71 0.16 0.18

noted that the same normalized displacements for all bridges of each structural system are
considered in order to be able to compare bridges with different main span lengths.

Although the reference displacements of table 3.4 are derived from the midspan displace-
ments, they appear to be reasonable maximums of the generalized displacements for the
purpose of result presentation in section 3.5. In order to facilitate the comparison of the non-
linear generalized stiffness parameters for different modes, the same displacement bounds
can be considered for fundamental and higher modes, but the results must be interpreted
appropriately for higher modes as done in the following sections. This is because higher
modes usually have a lesser contribution to the total dynamic response compared to the
fundamental modes and consequently smaller generalized displacements. Therefore, the
procedure used for determining the reference displacements is deemed sufficient in the
context of comparing the nonlinear generalized stiffness parameters of different bridges.
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Table 3.4: Reference displacements for the presentation of nonlinear generalized stiffness
parameters

Bridge uy uz θx uy/Lspan uz/Lspan θxbcl/Lspan

(m) (m) (°) (10−3) (10−3) (10−3)
SU1 6.20 3.10 2.95 4.00 2.00 0.50
SU2 6.50 3.25 3.45 4.00 2.00 0.50
SU3a 9.84 4.92 2.71 4.00 2.00 0.50
SU3b 13.20 6.60 3.64 4.00 2.00 0.50
SU3c 16.56 8.28 4.56 4.00 2.00 0.50
CS1 1.71 1.71 1.39 2.00 2.00 0.30
CS2 2.04 2.04 0.70 2.00 2.00 0.30

3.5 Results for Nonlinear Generalized Stiffness Analy-

sis

In this section are presented the most important results for the nonlinear generalized stiffness
analysis of the seven bridges of table 3.1. Since the same conclusions regarding the nonlinear
generalized stiffness analysis can be obtained from the results of the dead-load case or the
case under mean wind loads and for active or inactive buffers, the presentation is limited to
the results of the dead-load configuration with inactive hydraulic buffers. This is because the
mean aerodynamic loads and buffers only slightly affect the nonlinear generalized parameters
as shown in sections 3.5.1 and 3.5.2 and discussed in section 3.6.1.

Even though the present discussion mainly focuses on the interaction caused by geometric
nonlinearities between vertical and torsional effects, it is of interest to start with a mode-by-
mode assessment in sections 3.5.3 and 3.5.4 to gain more insight. Unlike in [155] where
only the vertical modes were considered, herein, vertical and torsional modes are utilized for
one-mode analysis as well as lateral modes for the sake of completeness. Then, two-mode
analysis results are presented in sections 3.5.5 and 3.5.6. Section 3.5.7 shows the effect of
lateral modes on nonlinear structural vertical-torsional coupling.

For one-mode analysis, each nonlinear generalized stiffness curve was obtained using
81 points for which the nonlinear generalized loads are distributed uniformly. For two-mode
analysis, an 81×81 uniform grid with a total of 6561 points was utilized. A grid of 41×41×41,
for a total of 68 921 points, was used in the calculation of nonlinear generalized-stiffness
parameters for three-mode analysis. The typical computational times shown in table 3.2
correspond to these analysis parameters. The ranges of values for the load coefficients a j

(used in the load p j) were chosen such that the nonlinear behavior and nonlinear vertical-
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Figure 3.3: Effect of mean aerodynamic loads on one-mode nonlinear generalized stiffnesses
of bridges SU1 and SU2

torsional coupling can be observed. However, the presentation of the results in the following
sections are limited to the reference displacements as mentioned in section 3.4.

In order to facilitate the comparison of bridges with different span lengths, most of the results
in this section are presented in a normalized form. They are presented in terms of the ratio
of the nonlinear generalized stiffness to the linear generalized stiffness as a function of the
normalized generalized displacements zL/Lspan, zV/Lspan or zθbcl/Lspan where Lspan is the
main span length and bcl is half of the distance between the cables at deck height. Also, in
the result presentation, the coefficient of determination R2 is shown in order to judge whether
the nonlinear distortions are small such that eqs. 3.6 and 3.12 are valid.

3.5.1 Effect of Mean Aerodynamic Loads

To assess the effect of the mean aerodynamic loads on the nonlinear generalized stiffnesses,
the natural frequencies and mode shapes calculated considering the tangent stiffness matrix
for the static response under mean wind loads at 60 m/s and an angle of attack of 0° were
considered in the nonlinear generalized stiffness analysis procedure. Analyses were made
from the configuration at 60 m/s. This was done for one-, two- and three-mode analysis.
Since the influence is small, only selected results for one-mode analysis are presented in
fig. 3.3 for bridges SU1 and SU2. This figure compares results for the dead-load scenario
to the case of a mean wind speed of 60 m/s. In the figure, the dashed-dotted vertical lines
correspond to the reference displacements of table 3.4. Due to fact that the effect of mean
wind loads is small, the following sections refer to the dead-load configuration as mentioned
previously.
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Figure 3.4: Effect of hydraulic buffers on one-mode nonlinear generalized stiffnesses of
bridge SU3b

3.5.2 Effect of Hydraulic Buffers

Since all the bridges considered for this study except bridge CS1 have hydraulic buffers used
to limit the longitudinal deck motions, all analyses were conducted with active and inactive
buffers for comparison where applicable. It was found that buffers have a small effect on
the nonlinear generalized stiffness and can be neglected. As an example, fig. 3.4 shows the
effect of buffers for bridge SU3b. The first case included in the figure is for inactive buffers
(free). For the second scenario (fixed), the deck is rigidly connected to the towers in the
longitudinal direction. For the last scenario (buffers), the buffers are active, i.e., they are
modeled as nonlinear truss elements having a bilinear material model. Due to the small
influence of buffers as shown in fig. 3.4, only the results for inactive buffers are presented
from now on. A more detailed discussion can be found in section 3.6.1 about the effect of
buffers.

3.5.3 One-Mode Analysis of Suspension Bridges

The normalized results of the mode-by-mode procedure for the five suspension bridges are
presented in fig. 3.5 for the modes of vibration corresponding to the natural frequencies
shown in table 3.2. Results for lateral, vertical and torsional modes are presented.

3.5.4 One-Mode Analysis of Cable-Stayed Bridges

Similar to the suspension bridges, one-mode analyses were made for the two cable-stayed
bridges in the case of the lateral, vertical and torsional modes presented in table 3.2. Fig-
ure 3.6 shows the one-mode nonlinear generalized stiffness results in normalized form for
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(a) Lateral modes

(b) Vertical modes

(c) Torsional modes

Figure 3.5: One-mode nonlinear generalized stiffness analysis of suspension bridges
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both cable-stayed bridges. Both modeling approaches described in section 3.3.2, i.e., dis-
tributed cable mass (DCM) and lumped cable mass at both cable ends (LCM), are compared.

3.5.5 Two-Mode Analysis of Suspension Bridges

Then, two-mode analyses were conducted considering one vertical mode and one torsional
mode having analogous shapes. The rationale of this choice is that flutter instability is caused
by the coupling due to aeroelastic effects of analogous vertical and torsional modes. Hence, it
is of interest to see whether similar coupling is possible due to geometric nonlinearities. This
is also justified to consider analogous modes from the fact that nonlinear structural coupling
is weaker for non-analogous modes in comparison to analogous modes (see appendix B).

In order to form the different pairs of vertical and torsional modes, the mode shapes are
compared visually such that the vertical deck displacement of the vertical mode is similar
to the torsional deck rotation of the torsional mode. As a second verification, the Modal
Assurance Criterion (MAC) [182] was used to measure the similarity or correlation between
vertical and torsional modes:

MACVθ =

(
χT

Vχθ
)2(

χT
VχV

) (
χT
θχθ

) (3.28)

where MACVθ is the modal assurance criterion varying between 0 (no correlation) and 1 (full
correlation); χV is a vector containing the vertical displacements of the deck extracted from
a vertical mode ϕV ; χθ is a vector of the torsional rotations of the deck for a torsional mode
ϕθ. Then, by calculating the MAC for different combinations of vertical and torsional modes,
it is possible to create a MAC matrix from which the pairs ϕV-ϕθ can be determined based
on the largest MAC values. Using this two-step procedure, the pairs ϕV-ϕθ for the bridges
of table 3.2 were obtained. In this table, each sub-column of the natural frequency column
represents the mode pairings. It should be noted that the same mode pairings would have
been obtained using modal integrals [183] instead of the MAC, but the MAC was preferred
herein due to its independence with respect to the mode normalization, which makes its
interpretation easier.

In figs. 3.7–3.9 are presented typical results of the two-mode nonlinear generalized loads and
stiffnesses for bridges SU2 and SU3b. For bridge SU2, results are shown for the symmetric
modal pair VS1-θS1 whereas the symmetric modal pair VS1-θS1 and antisymmetric modal
pair VA1-θA1 are presented for bridge SU3b. In these figures, colormaps are used to show
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(a) Lateral modes

(b) Vertical modes

(c) Torsional modes

Figure 3.6: One-mode nonlinear generalized stiffness analysis of cable-stayed bridges
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(a) Generalized loads (b) Generalized stiffnesses

Figure 3.7: Two-mode nonlinear generalized stiffness analysis of bridge SU2 for modes VS1
and θS1

the coefficient of determination R2 in order to judge on the validity of eq. 3.12. It should
be noted that the generalized stiffnesses are not normalized in figs. 3.7–3.9. Also, the
generalized displacements are limited to the values of table 3.4.

The two-mode analysis results for the five suspension bridges are compared in figs. 3.10
and 3.11. In fig. 3.10, the diagonal terms of the nonlinear generalized stiffness matrix K̃t

Vθ

are compared in normalized form in terms of the normalized generalized displacements.
For the presentation of the off-diagonal terms of the nonlinear generalized stiffness matrix
in fig. 3.11, the normalized quantities (k̃t

Vθ/bcl)/k̃V and (k̃t
θVbcl)/k̃θ are used since the off-

diagonal terms k̃t
Vθ and k̃t

θV have different units than the linear generalized stiffnesses k̃V and
k̃θ. The quantity k̃t

Vθ/bcl can be interpreted as a vertical generalized stiffness at the location
of the cable connections to the deck. The quantity k̃t

θVbcl represents an equivalent torsional
generalized stiffness. For these figures, the normalized generalized displacements are limited
to the values of table 3.4.

3.5.6 Two-Mode Analysis of Cable-Stayed Bridges

The two-mode nonlinear generalized stiffness parameters were obtained similarly for the
cable-stayed bridges. From here, only the results for the LCM modeling approach are shown
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(a) Generalized loads (b) Generalized stiffnesses

Figure 3.8: Two-mode nonlinear generalized stiffness analysis of bridge SU3b for modes
VS1 and θS1

(a) Generalized loads (b) Generalized stiffnesses

Figure 3.9: Two-mode nonlinear generalized stiffness analysis of bridge SU3b for modes
VA1 and θA1



49

(a) Modes VS1 and θS1 (b) Modes VA1 and θA1 (c) Modes VS2 and θS2

Figure 3.10: Comparison of diagonal nonlinear generalized stiffness terms for suspension
bridges
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(a) Modes VS1 and θS1 (b) Modes VA1 and θA1 (c) Modes VS2 and θS2

Figure 3.11: Comparison of off-diagonal nonlinear generalized stiffness terms for suspension
bridges
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(a) Generalized loads (b) Generalized stiffnesses

Figure 3.12: Two-mode nonlinear generalized stiffness analysis of bridge CS1 for modes
VS1 and θS1

as it is more reliable as explained in section 3.6.3. Figure 3.12 illustrates typical results
for bridge CS1 for the modal pair VS1-θS1, which are not normalized. A comparison of
the diagonal nonlinear generalized stiffness terms for both cable-stayed bridges is made
in fig. 3.13. Also, the normalized off-diagonal generalized stiffness terms are shown in
fig. 3.14.

3.5.7 Effect of Lateral Modes on Vertical-Torsional Coupling

In this section, we are interested in the influence of lateral modes on the vertical-torsional
coupling. Therefore, following the procedure in section 3.2.5, nonlinear generalized stiffness
analyses were carried out considering three modes, i.e., one lateral mode, one vertical mode
and one torsional mode having analogous shapes. The mode pairings are shown in table 3.2
as sub-columns of the natural frequency column and were determined using eq. 3.28 and
visual inspection.

In fig. 3.15, the nonlinear generalized stiffnesses corresponding to the vertical and torsional
modes are compared for two different values of the lateral generalized displacement. It
should be noted that only one off-diagonal term is presented due to the symmetry of the
nonlinear generalized stiffness matrix as discussed in sections 3.6.4 and 3.6.5. The effect
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(a) Modes VS1 and θS1 (b) Modes VA1 and θA1

Figure 3.13: Comparison of diagonal nonlinear generalized stiffness terms for cable-stayed
bridges

(a) Modes VS1 and θS1 (b) Modes VA1 and θA1

Figure 3.14: Comparison of off-diagonal nonlinear generalized stiffness terms for cable-
stayed bridges
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of mode LS2 on K̃t
Vθ for the modal pair VS2-θS2 is shown for suspension bridges SU1 and

SU3b. Also, the effect of mode LS1 on K̃t
Vθ relative to modes VS1 and θS1 is presented for

bridge CS1.

3.6 Discussion

3.6.1 Influence of Mean Aerodynamic Loads and Buffers on Nonlin-

ear Generalized Stiffness Parameters

Theoretically, the mean aerodynamic loads could have an effect on the results of the nonlinear
generalized analysis from the fact that they can modify the natural frequencies and mode
shapes. However, it was observed that the modal properties at a wind speed of 60 m/s for
the bridges used in this study are very close to the ones of the dead-load configuration. The
variations of the natural frequencies for the modes of table 3.2 were less than 1 % with the
exception of bridge SU1 with an average difference of 3 %. The greater variation for bridge
SU1 could be explained by the greater static displacements at 60 m/s compared to the other
bridges as shown in table 3.3. Similar observations were made in [184] about the small
influence of mean wind loads on the natural frequencies since important frequency variations
were only seen at the onset of aerostatic instability. This small influence on the modal
parameters explains why the normalized nonlinear generalized stiffnesses for one-mode
analysis in fig. 3.3 are practically the same for the dead-load configuration and for a wind
speed of 60 m/s. Similar observations were made for two-mode and three-mode analysis.

Similarly, the buffers can alter the modal properties, but this effect is also small. This
explains why the one-mode nonlinear generalized stiffness parameters in fig. 3.4 are not so
much impacted by the buffers. The effect is slightly more pronounced for lateral modes, but
this generally occurs for generalized displacements greater than the reference displacements
of table 3.4. The effect of buffers was also small for two-mode and three-mode analysis.

3.6.2 One-Mode Analysis of Suspension Bridges

As it can be seen in the upper parts of the graphs in fig. 3.5 for the one-mode analysis of
suspension bridges, the coefficient of determination R2 is in general very close to 1.0 with
some exceptions outside the displacement bounds that will be explained in the following
paragraphs. This indicates that the nonlinear distortions are not significant in most cases for
suspension bridges and that eq. 3.6 is a reasonable approximation.
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(a) Bridge SU1 for modes VS2 and θS2

(b) Bridge SU3b for modes VS2 and θS2

(c) Bridge CS1 for modes VS1 and θS1

Figure 3.15: Effect of lateral modes on two-mode nonlinear generalized stiffnesses
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Figure 3.5 shows that the one-mode nonlinear generalized stiffnesses for the suspension
bridges are more nonlinear for the vertical modes. Within the reference bounds of table 3.4,
there is a maximum variation of approximately ±20 % when compared to the linear gen-
eralized stiffness. It is interesting to note that all bridges for mode VS1 follow a similar
trend when presenting the results in normalized form. For k̃t

VS 2, bridges SU1 and SU2 have
similar results. The VS2 nonlinear generalized stiffnesses for bridges SU3a, SU3b and SU3c,
which have a similar behavior, are significantly more nonlinear compared to bridges SU1
and SU2. This difference between the first two bridges and the last three bridges could be
attributed to the fact that bridges SU1 and SU2 have must longer side spans in comparison
to bridges SU3a, SU3b and SU3c. Because of the very short side spans of the last three
suspension bridges with respect to their main spans, their behavior is similar to a single-span
suspension bridge. It is also possible to see that the nonlinear behavior is less important
for the first antisymmetric vertical mode when compared to the symmetric modes with the
exception of bridge SU1 for which symmetric and antisymmetric modes have a similar level
of nonlinearities. The reason why symmetric vertical modes are more nonlinear is explained
by the fact that symmetric vertical cable modes involve a change of cable tension leading
to a variation of the geometric stiffness, which is a nonlinear process [185]. Therefore, a
positive value (upwards) for zVS 1 or zVS 2 leads to a reduction in cable tension causing a
softening behavior while a negative generalized displacement (downwards) for modes VS1
and VS2 causes a stiffening effect due to an increased cable tension.

For the lateral modes, except for mode LS2 for bridges SU1 and SU2, the nonlinear con-
tribution to the generalized stiffness is only of 0 % to 2 % for generalized displacements
within the displacement bounds. When zLS 2 becomes very large for these bridges, there is
a steep stiffness decrease that is explained by the fact that the lateral modal load for mode
LS2 induces vertical displacements to the bridge deck and main cables, which activates the
nonlinearities of the main cables in the vertical direction. For the same reason, R2 values for
bridge SU3a are much less than 1.0 since the nonlinear distortions cannot be represented
by the linear mode of vibration. However, this occurs for generalized displacements much
greater than the reference displacements.

For the results of the torsional modes, the variation of the nonlinear generalized stiffness is
limited for displacements smaller than the reference displacements. Outside the displacement
bounds, the stiffness degradation observed for modes θA1 and θS2 for bridges SU1 and
SU2 is caused by hanger slackening near the towers as shown in figs. 3.16a–3.16c. For
these bridges, hanger slackening occurs near the towers since, for modes θA1 and θS2, the
torsional deck rotation is relatively large at the towers as sketched at the bottom of table 3.2.
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(a) Bridge SU1 for mode θS2 (zθS 2 ·bcl/Lspan = 1.2 × 10−3)

(b) Bridge SU2 for mode θA1 (zθA1 ·bcl/Lspan = 1.0 × 10−3)

(c) Bridge SU2 for mode θS2 (zθS 2 ·bcl/Lspan = 1.0 × 10−3)

(d) Bridge CS2 for mode θA1 (zθA1 ·bcl/Lspan = 1.0 × 10−3)

Figure 3.16: Hanger and stay cable tensions for one-mode nonlinear generalized stiffness
analysis

There is a non-zero rotation at the towers because the bridge decks of bridges SU1 and SU2
are continuous and free to rotate about the longitudinal bridge axis at the towers. Hanger
slackening also explains the low values of R2 observed in these cases. Since this occurs
for generalized displacements much larger than the reference displacements, such effect is
unlikely to be seen on a bridge designed properly.

By comparing the different curves for bridges SU3a, SU3b and SU3c in fig. 3.5, it is possible
to conclude that the span length only has a slight influence on the one-mode nonlinear
generalized stiffness when the results are presented in normalized form. This result is
surprising especially for the most nonlinear modes, i.e., modes VS1 and VS2 for which these
bridges yield practically the same nonlinear evolution. In order to have more insight, the
non-normalized results for the vertical modes for these bridges are presented in fig. 3.17. For
modes VS1 and VS2, it is clear that the different curves are scaled versions of each other,
confirming the observations made previously with regards to the normalized results.
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Figure 3.17: One-mode nonlinear generalized stiffness for bridges SU3a, SU3b and SU3c
(vertical modes)

3.6.3 One-Mode Analysis of Cable-Stayed Bridges

According to fig. 3.6, the LCM modeling approach of cable-stayed bridges is more reliable
compared to the DCM approach for calculating the nonlinear generalized stiffness parameters
as demonstrated by higher values for R2 and more uniform results. For example, R2 values
for the generalized stiffness k̃t

LA1 of bridge CS1 are very close to 1.0 for the LCM approach,
but values less than 0.7 were obtained for the DCM technique. Since the modal load used
in the nonlinear generalized stiffness analysis includes loads on the stay cables when the
DCM approach is utilized, there are significant displacements of the cables which cannot
be represented accurately by the linear modes of vibration because the cable displacements
evolve nonlinearly. This is also the explanation why both modeling approaches yield
different nonlinear generalized stiffness curves, e.g., for k̃t

LA1, k̃t
VS 2, k̃t

θS 1 and k̃t
θS 2. Therefore,

the analysis in this section focuses on the LCM results.

Within the displacement bounds, cable-stayed bridges have a stronger nonlinear behavior for
the vertical modes. In fig. 3.6a for mode LS1, a slight stiffening effect is observed for bridge
CS1. It is explained by the fact that the deck of bridge CS1 is not free to move longitudinally
due to the rigid deck-tower connection, which causes a reduced compression in the deck due
to nonlinear geometric effects. This is not observed for bridge CS2 because of a different
structural system at the deck-tower junction.

For mode VS1, both cable-stayed bridges exhibit a similar behavior, i.e., a relatively constant
stiffness for negative generalized displacements (downwards) and a softening for positive
generalized displacements (upwards). This reduction in stiffness for mode VS1 is caused by
an increased sag of the stay cables as the bridge deck moves upwards. It should be noted
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that, in order to obtain a significant softening, large displacements were required. For k̃t
VA1

and k̃t
VS 2, bridges CS1 and CS2 behave differently. This could be explained by the fact that

bridge CS1 has crossties that stiffen the cable system, which is not the case for bridge CS2.

Within the displacement bounds, torsional modes behave linearly, but for greater displace-
ments, there is some nonlinear effect. They can be explained by an increased cable sag due
to a decrease of the stay cable tensions as shown in fig. 3.16d.

3.6.4 Nonlinear Vertical-Torsional Coupling in Suspension Bridges

According to the colormaps in figs. 3.7–3.9, R2 is very close to a value of 1.0 confirming the
validity of eq. 3.12 for bridges SU2 and SU3b. This is also the case for the other suspension
bridges and other vertical-torsional modal pairs.

As it can be observed in figs. 3.7–3.9, the non-zero off-diagonal stiffness terms of the matrix
K̃t

Vθ prove the existence of nonlinear vertical-torsional mode coupling in suspension bridges.
Additionally, it can be seen that the matrix K̃t

Vθ is symmetric since the off-diagonal stiffness
terms are equal. From the different nonlinear generalized stiffness analyses of the suspension
bridges, it is concluded that the nonlinear vertical-torsional coupling is stronger for the
symmetric modal pairs than the antisymmetric ones. For example, this can be seen by
comparing the generalized loads for symmetric and antisymmetric modes in figs. 3.7–3.9,
e.g., comparing fig. 3.8a to fig. 3.9a. Furthermore, the diagonal generalized stiffness terms
mostly follow the nonlinear trend obtained for the corresponding one-mode analysis, but a
more pronounced effect of a second generalized displacement can be seen for the torsional
diagonal stiffness terms.

Even though the coupling is mainly expressed by the existence of non-zero off-diagonal
stiffness terms, the diagonal terms of K̃t

Vθ are also affected by the application of a second
generalized load. Figure 3.10 confirms that this effect is generally small for the five suspen-
sion bridges. For the diagonal terms relative to the vertical modes, the variation is less than
1 % for the nonlinear generalized stiffness when zθ varies and zV is kept constant. For the
torsional diagonal terms of bridges SU1 and SU2, a maximum variation of 3 % is observed
over the range of zV/Lspan considered in fig. 3.10 for a constant value of zθbcl/Lspan. However,
this effect is more pronounced for bridges SU3a, SU3b and SU3c with a maximum variation
of 20 % of the torsional diagonal stiffness terms. Also, there is a span length effect of the
diagonal terms for bridges SU3a, SU3b and SU3c.

In fig. 3.11, it can be observed that off-diagonal generalized stiffness terms are more important
for symmetric modes than antisymmetric modes. This also shows that higher symmetric
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modes have a stronger nonlinear coupling. For the same generalized displacements, there
is a stronger maximum effect of about 8 % for the second symmetric mode compared to
the first symmetric mode with 5 %. However, it should be kept in mind that higher modes
are less excited dynamically than fundamental modes as mentioned in section 3.4. For the
antisymmetric modal pair, the span length effect does not influence the nonlinear coupling.
However, for the symmetric modal pairs, there is a span length effect, which is more
noticeable for k̃t

VS 2,θS 2 and k̃t
θS 2,VS 2. Of the five suspension bridges, bridges SU3a, SU3b and

SU3c have stronger nonlinear coupling.

Regarding the impact of lateral modes on the nonlinear vertical-torsional coupling of suspen-
sion bridges, it can be seen in figs. 3.15a and 3.15b that diagonal stiffness terms for modal
pair VS2-θS2 of bridges SU1 and SU3b are only slightly influenced. Similar observations
were made for the three other suspension bridges and the other modal pairs. With the ex-
ception of bridges SU1 and SU2 for modes VS2 and θS2, the off-diagonal vertical-torsional
stiffness terms are lightly affected by the simultaneous application of a lateral mode (e.g.
fig. 3.15b). For bridges SU1 and SU2 for modes VS2 and θS2, the effect is more important as
shown for bridge SU1 in fig. 3.15a. From these observations, it is possible to conclude that
the lateral effects are in most cases negligible on the nonlinear vertical-torsional coupling of
suspension bridges.

3.6.5 Nonlinear Vertical-Torsional Coupling in Cable-Stayed Bridges

Within the reference displacement bounds, values of R2 close to 1.0 were obtained for the
two-mode analysis for the cable-stayed bridges as shown in fig. 3.12 for bridge CS1. As
with the suspension bridges, the matrix K̃t

Vθ is symmetric as shown in fig. 3.12.

The influence of a second generalized displacement on the diagonal stiffness terms can be
seen in fig. 3.13. For the vertical diagonal stiffness terms, there is a negligible variation when
zV is kept constant and zθ varies. In the case of the torsional diagonal terms, a maximum
variation of 10 % is observed in fig. 3.13 for a constant zθ and a varying zV . Figure 3.14
shows that the off-diagonal terms are generally small, but can reach values around 5 % of
the diagonal terms for large generalized displacements.

Similar to the suspension bridges, the lateral modes only slightly modify the diagonal terms
of the vertical-torsional stiffness matrix. This is shown in fig. 3.15c for bridge CS1. However,
the off-diagonal stiffness terms are more impacted by the lateral effects.
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3.6.6 Suspension Bridges vs Cable-Stayed Bridges

First, it should be mentioned that R2 values are generally lower for cable-stayed bridges
compared to suspension bridges. This is explained by the fact that the nonlinear displacement
vector utilized in the nonlinear stiffness analysis is difficult to be expressed in terms of the
linear modes of vibration in some cases. This is caused by the local nonlinear behavior of the
stay cables. Therefore, it is concluded that nonlinear generalized stiffness analysis procedure
is more adapted to suspension bridges, but it should be mentioned that it is also possible to
obtain good results for cable-stayed bridges for reasonable generalized displacement values.

As discussed previously, the one-mode generalized stiffness parameters for suspension and
cable-stayed bridges are more nonlinear for the vertical modes. Comparing the nonlinear
generalized stiffnesses of the symmetric vertical modes in figs. 3.5 and 3.6, it is possible to
say that the suspension system is more nonlinear than the cable-stayed system.

For two-mode nonlinear analyses, the relative importance of the nonlinear structural coupling
is shown to be stronger for suspension bridges than cable-stayed bridges as shown in
figs. 3.10, 3.11, 3.13 and 3.14. Moreover, since it is known that suspension bridges are more
flexible than cable-stayed bridges, suspension bridges are more likely to have an excursion
in the nonlinear range of the nonlinear generalized stiffness parameters. However, further
analysis is required to confirm this.

3.6.7 Nonlinear Generalized Stiffness Parameters and Stability of

Cable-Supported Bridges

Although this chapter has focused so far on assessing and comparing the level of nonlinearity
and the nonlinear structural coupling in cable-supported bridge, it is relevant to discuss
briefly how nonlinear generalized stiffness parameters could eventually give information on
the effect of nonlinear structural coupling on the stability of bridges.

From the results of two-mode stiffness analysis, it is possible to develop an equivalent
two-degree-of-freedom dynamic system representing one vertical mode and one torsional
mode, especially for symmetric modal pairs as they are more nonlinear. The idea of such
equivalent dynamic system is similar in principles to 2D flutter analysis except that the
equivalent system is nonlinear. Including aerodynamic load models into this equivalent
nonlinear system would provide preliminary information about the possibility that wind
loads and nonlinear coupling lead to large torsional vibrations as demonstrated theoretically
by mathematicians using very simple load models. It could be also interesting to see whether
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nonlinear structural coupling could influence the flutter onset. Therefore, this approach
could give information on nonlinear structural dynamic phenomena and potential structural
dynamic instabilities in cable-supported bridges. Such numerical investigations are currently
carried out, and experimental validations are also planned to be undertaken. For these
investigations, bridges SU3a, SU3b and SU3c are of interest as they showed a stronger
nonlinear behavior.

3.7 Conclusions

The nonlinear structural coupling between the modes of vibration, especially vertical-
torsional coupling, could be of importance in the prediction of the dynamic response of
cable-supported bridges under wind loads. Instead of using simplified models or continuum
models relying on nonlinear partial differential equations as used by mathematicians, this
initial investigation of vertical-torsional coupling was based on the use of pushover analysis
in the context of nonlinear geometric finite element modeling. The proposed method makes
use of the static application of modal loads on numerical models of long-span bridges in
order to obtain nonlinear generalized stiffness parameters, which are used to quantify in a
practical manner the level of nonlinearity and the nonlinear vertical-torsional coupling.

The nonlinear generalized stiffness parameters of five suspension bridges and two cable-
stayed bridges were determined for one-mode, two-mode and three-mode analyses. One-
mode analyses indicated that vertical modes are more nonlinear than lateral and torsional
modes. For suspension bridges, symmetric vertical modes show stronger nonlinear be-
havior in comparison with antisymmetric vertical modes. The fact that there are non-zero
off-diagonal terms in the nonlinear generalized stiffness matrix for two-mode analysis
demonstrates the existence of nonlinear structural vertical-torsional coupling in suspension
and cable-stayed bridges. Span length has an influence on the nonlinear vertical-torsional
coupling. Three-mode analysis shows that lateral modes have in general a slight influence
on the nonlinear vertical-torsional coupling with the exception of off-diagonal terms for
specific bridges. In general, the nonlinear generalized stiffness procedure is more reliable for
suspension bridges than cable-stayed bridges. In comparison with the cable-stayed system,
the suspension bridge system exhibits a stronger level of geometric nonlinearity either for
one-mode or two-mode analysis.

The method presented in this chapter is useful for providing a better understanding of
nonlinear geometric phenomena in cable-supported bridges, especially nonlinear vertical-
torsional coupling. Nevertheless, it is not yet possible to associate the potential occurrence
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of large torsional vibrations as described by mathematicians to the level of nonlinear vertical-
torsional coupling measured from nonlinear generalized stiffness analysis such that nonlinear
dynamic analysis would not be required in an initial investigation. Therefore, further research
is required to determine whether large torsional vibrations can be obtained using dynamic
analysis. Moreover, it is still required to determine whether such coupling could influence
the wind response and aeroelastic stability of long-span bridges.
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Chapter 4

Theory for Nonlinear Section Model Tests

4.1 Introduction

Since the collapse of the well-known Tacoma Narrows Bridge in 1940, which is generally
attributed to torsional flutter [8], a large amount of research has been carried out on the
aeroelastic stability of bridges and more specifically on flutter. Since then, wind tunnel tests
have been used in the design process of cable-supported bridges, and nowadays, most of their
wind design can be made using analytical and numerical approaches. However, recourse to
different types of wind tunnel experiments is usually made for characterizing the wind force
models used in the analytical approaches and for validation purposes.

Modern wind tunnel tests for bridges as we know them today started at the University of
Washington in the 1940s when Prof. F. Burt Farquharson conducted tests for the original
Tacoma Narrows Bridge and its replacement [9]. He used what were to become the two
most common types of wind tunnel tests, i.e., full-aeroelastic model tests and section model
tests. From the fact that all the bridge elements are included in full-aeroelastic models
[29], these tests give an accurate response prediction of the full bridge, but the models are
expensive and complicated to fabricate. Furthermore, Froude number scaling, which has
the inconvenience of limiting testing to low wind speeds, needs to be satisfied in these
tests when gravity effects are important (e.g. for suspension bridges). Conversely, section
model tests, where a rigid segment of the bridge deck is suspended by a springing system,
are simple and affordable in comparison to full-aeroelastic model tests [30]. Compared to
full-aeroelastic models, section models can be fabricated at larger scales, therefore reducing
Reynolds number effects. However, dynamic section model tests are only able to simulate
one vertical mode and one torsional mode at a time, although it is also possible to include a
lateral mode [32, 33]. Stability can be evaluated as well as the response of the full bridge to
turbulence with a specific post-processing procedure [31]. Midway between full-aeroelastic
model tests and section model tests are taut-strip model tests [59]. Taut-strip models can be
seen as full-aeroelastic models without towers and cables or as long flexible section models.
Since the stiffness for taut-strip models is provided through taut wires or tubes, they are well
suited for bridges having sinusoidal modes of vibration. More recently, a multi-supported
aeroelastic model was developed to study vortex-induced vibrations [60], but only vertical
modes were considered. Even real-time hybrid tests similar to what is used in structural
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engineering where the aeroelastic system would be partially modeled in the lab and partially
modeled in a numerical model are discussed [61, 62].

As mentioned in the previous paragraph, there have been some developments for different
types of wind tunnel tests for bridges over the years, yet section model tests are by far
the norm in the field because of their low cost, simplicity and versatility. They can be
utilized to measure aerodynamic coefficients (e.g. static coefficients and flutter derivatives),
measure the wind and motion-induced surface pressures using pressure taps and predict the
dynamic response of the bridge deck. There have also been some improvements made to
the procedures used in section model tests. For example, a dynamometric section model
was designed [36]. An innovative section model bridge rig that can be used for free- and
forced-vibration tests [33, 37] was developed. Another forced-vibration rig that can be
used for arbitrary motion [40] was also created. Even though with such advancements in
experimental apparatus, section model tests for bridges still rely on the same simplifications
in terms of aerodynamic and structural behavior from which originate their simplicity. For
example, the aerodynamic contribution of the cables is neglected. Section models can only
represent one mode in each direction at a time (lateral, vertical and torsional) and assume
uniform mode shapes. Additionally, the structure is assumed to behave linearly from the
fact that the modes represented in the wind tunnel originate from linear structural dynamics
theory.

However, it is known that cable-supported bridges can exhibit structural nonlinearities
such as geometric nonlinearities [149, 150], material nonlinearities [147, 151] as well as
localized nonlinearities like hydraulic buffers [12, 17, 151]. Additionally, it is worth noting
that mathematicians have shown that dynamic vertical forcing can lead to large torsional
oscillations due to nonlinear vertical-torsional mode coupling associated with geometric
nonlinearities [166, 168–170]. In [170], these large oscillations caused by structural coupling
between the modes of vibration are referred as internal parametric resonance, a structural
dynamic instability. This instability is solely structural unlike flutter that is an aeroelastic
phenomenon. Nonlinear vertical-torsional coupling in cable-supported bridges was assessed
in chapter 3 by applying modal loads to geometrically nonlinear structures. This research
showed that single-span suspension bridges have a stronger nonlinear coupling than three-
span suspension bridges and cable-stayed bridges. Also, longer spans were shown to be
more nonlinear due to the greater contribution of the cable system to the behavior of the
bridge.

To the author’s knowledge, large oscillations originating from a structural dynamic instability
as described in the previous paragraph have never been demonstrated experimentally for
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a bridge. Nevertheless, transition from an antisymmetric instability mode to a symmetric
instability mode was observed on a full-aeroelastic model of a double-main-span suspension
bridge [171]. Internal resonance caused by the aerodynamic and/or structural nonlinearities
of the aeroelastic-structural system could be responsible [172, 173]. This would be different
than the flutter mode transition of [174]. Such observations have led to many recent studies
on nonlinear flutter and aerodynamic nonlinearities in the case of bridges [90, 96, 100, 101,
120]. However, these studies on bridges have only focused on aerodynamic nonlinearities,
and structural nonlinearities have not been discussed. The only mention of structural
nonlinearities in recent experimental studies for bridges refers to verifications that stiffness
and damping nonlinearities of the section model test rig are small and negligible compared
to aerodynamic nonlinearities [90, 102, 104]. Nevertheless, the section model test rig in [44–
46] shows a slight nonlinear structural behavior for its torsional stiffness for large rotations
that are greater than 15°. The nonlinear geometric behavior in torsional stiffness in [44–46]
originates from the kinematics of the mechanisms utilized for the section model test rig.
Consequently, it is not clear whether this nonlinear structural behavior is representative of an
actual cable-supported bridge. Nonetheless, it should be noted that this rig allows for very
large amplitudes of vibration, which is of interest in the study of aerodynamic nonlinearities
and nonlinear flutter. In [47, 48], another experimental rig able of very large amplitudes
was developed for studying aerodynamic nonlinearities, but its structural behavior is linear.
In a different civil engineering application of section model tests, the swaying stiffness of
a transmission line conductor is provided through a pendulum system, which makes it a
geometrically nonlinear test rig [49].

In the field of aeronautics, section models of airfoils have been tested considering different
types of structural nonlinearities. For example, some wind tunnel test studies have been
performed considering freeplay nonlinearity in rotation [50–53]. In this case, the section
model can rotate freely over a small range of rotations, and outside this range, there is a linear
moment-rotation relationship. For example, this can be achieved using leaf springs for which
one end is able to move freely due to a small gap in a freeplay bracket. Once the free ends of
the leaf springs get in touch with the freeplay brackets, the springs provide stiffness to the
system [50, 53]. A bilinear behavior has also been considered in the case of airfoils [50, 54–
56]. For a hardening bilinear behavior, additional springs are incorporated to the springing
system, but they are only active over a certain displacement threshold. To achieve this, leaf
springs [50] or contact springs [54] can be utilized. Conversely, for a softening behavior,
the additional springs lose tension for displacements over the threshold [55, 56]. Freeplay
and bilinear nonlinearities are piecewise nonlinearities, but some work has also been done
for continuous stiffness nonlinearities like parabolic and cubic nonlinearities [51, 57, 58].
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In [57, 58], a cubic hardening stiffness was achieved using a springing system made of
extension springs, cables and nonlinear cam mechanisms. These different experimental
studies on airfoils have aimed at developing a better understanding of the effect of structural
nonlinearities on the aeroelastic behavior of airfoils, confirming the existence of nonlinear
phenomena predicted numerically as well as validating mathematical models combining
nonlinear structural effects and nonlinear aeroelastic effects. It is interesting to note that
Schwartz et al. [54] demonstrated with wind tunnel tests that the critical velocity for flutter
of an airfoil for a hardening bilinear structural behavior is less than for the linear case. It is
important to mention that the nonlinear system in [54] was weakly nonlinear as there was
only a difference of 14 % between the two stiffness values of the bilinear behavior.

Therefore, considering that even weakly nonlinear systems can exhibit nonlinear dynamic
phenomena [175], it appears of practical engineering value to have a better understanding
of the possible interaction between structural nonlinearities and aeroelastic effects in cable-
supported bridges just like it has been done for airfoils. An experimental approach based
on nonlinear section model tests is believed to be the most suitable way to achieve this
as the simplicity of section model tests would allow an easier interpretation of nonlinear
phenomena in comparison to a full-bridge system. However, in the case of nonlinear tests for
airfoils, the nonlinear structural behavior considered in previous experimental studies does
not appear to have been calibrated with the nonlinear behavior of actual aircraft structural
elements, rather a plausible nonlinear behavior seemed to have been used.

Consequently, this chapter presents the theoretical developments required to take into account
a nonlinear structural behavior representative of a cable-supported bridge when conducting
section model tests in the wind tunnel. This research is in continuity with the research
presented by the author in chapter 3, which was limited to an assessment of structural
nonlinearities in cable-supported bridges. Starting from the nonlinear structural behavior
characterized using the numerical approach in chapter 3, it is demonstrated how this nonlin-
ear behavior can be scaled with the purpose of conducting section model tests that consider a
nonlinear structural behavior representative of a real bridge. Therefore, this examination will
open the way for nonlinear section model tests of bridges. Additionally, it will eventually
allow a better understanding of the interaction between structural nonlinearities and aeroe-
lastic effects. The goal of such tests would not be to replace more advanced experimental
and numerical techniques used for predicting the response of bridges subjected to wind.
Instead, such new experimental tool will help develop a better understanding of structural
nonlinearities in the context of the aeroelastic behavior of bridges.

At first, a method to characterize nonlinear generalized stiffnesses for cable-supported bridges
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is reviewed and applied in the context of nonlinear section model tests. This technique
provides a way to determine the nonlinear structural behavior to be utilized for section
model tests, but it needs to be scaled properly. For this purpose, a scaling procedure of
the nonlinear generalized stiffness parameters is developed by comparing the full-bridge
dynamic equations to those of the section model. The assumptions utilized in the scaling
procedure are validated using eleven finite element models of long-span bridges. These
bridges are also utilized for testing the proposed scaling procedure.

4.2 Section Model Tests for Assessing the Effect of

Structural Nonlinearities

4.2.1 Why Section Model Tests Over Other Testing Approaches?

Theoretically, as long as the Froude number scaling is satisfied, full-aeroelastic model tests
are intrinsically able to represent geometric nonlinearities of the bridge structure since
all bridge elements are modeled. However, the situation is more complicated because
simplifications are still used. For example, even though the axial stiffness of the cables is
appropriately represented due to the negligible cable stiffness in bending, it is not physically
possible to have the correct scaled axial stiffness for the deck and towers at the same
time as the correct scaled bending stiffness. Therefore, the standard practice is to size the
structural members of the model-scale deck and towers to match the scaled bending stiffness.
Consequently, the geometric stiffness for these elements is erroneous, and only the geometric
stiffness originating from the cables is modeled correctly in these tests. Even if these
difficulties were circumvented, it would still be difficult to perfectly match the structural
behavior of the bridge prototype. This is because of a combination of model design factors,
manufacturing precision factors and human factors as demonstrated by the difficulty to
perfectly match the dynamic properties (natural frequencies and mode shapes) with the
target ones in typical full-aeroelastic models. From these facts and the high cost of full-
aeroelastic model tests, they do not appear to be the right approach for an initial experimental
study of structural nonlinearities. Similarly, taut-strip models in their current form would
not be able to include structural nonlinearities. This is because the taut wires or tubes
used in these tests already have their own nonlinear behavior that is not representative of a
cable-supported bridge. Indeed, there is stiffness softening when a cable-supported bridge
moves upwards, whereas a downward displacement is associated with stiffness hardening
(see chapter 3). A taut-strip model would exhibit a hardening behavior in both directions.
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Consequently, it appears that section model tests could be a realistic alternative for an
experimental study of the effect of structural nonlinearities on the wind response of bridges.
First, they are relatively affordable as mentioned previously. They are easy to conduct, and
their use is well established in the field of bridge engineering. They are versatile from the
fact that it is easy to adjust the testing parameters. This is explained by the easy access to
the springing system, damping devices and ballast masses at both ends of the section model.
Nonlinear tests would therefore be possible by the development of a nonlinear mechanical
device that will replace the springing system and from which the section model will be
suspended. However, it should be recognized that only one mode in each direction can be
represented in section model tests, but this is not a problem because nonlinear structural
dynamic phenomena discussed by mathematicians involve specific modes. Therefore,
nonlinear section model tests should focus on nonlinear vertical-torsional behavior for these
critical modes. This fact is discussed in further detail in section 4.4.7.

4.2.2 Role of Section Model Tests in Bridge Design and Research

In the process of determining the wind loads to be utilized for the design of a cable-supported
bridge, it is common practice to utilize an analysis procedure combining wind tunnel tests
and numerical simulations. Section model tests are therefore conducted in a wind tunnel
with the objectives of measuring the static coefficients for the different structural elements as
well as obtaining the flutter derivatives and aerodynamic admittance functions for the bridge
deck. Then, these aerodynamic properties measured experimentally are utilized in a dynamic
analysis through finite element modeling to determine the flutter and buffeting responses
of the bridge under consideration [34, 186–188]. Based on this analysis procedure, section
model tests are typically used in the bridge engineering industry for the measurement of
aerodynamic properties. Nonetheless, section model tests can also be useful for providing
information about dynamic phenomena like vortex-induced vibrations and flutter as well as
for easily allowing improvements to the cross section under consideration in the scenario
that its stability performance is not adequate.

In research, section model tests have been used extensively in the development of dif-
ferent aerodynamic force models (e.g. [117]). As mentioned in section 4.1, they have
also been utilized in recent studies about nonlinear flutter and aerodynamic nonlinearities
[90, 96, 100, 101, 120]. Their popularity in the study of aerodynamic nonlinearities as a
research tool comes from the fact that they are a simplified representation of the full-bridge
aeroelastic system. Therefore, this makes it easier to analyze the effect of aerodynamic
nonlinearities. With the same logic, section model tests seem to be an ideal approach for
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an initial experimental assessment of the effect of structural nonlinearities on the wind
stability of bridges. To achieve such tests, it is first required to determine and scale the
nonlinear structural behavior representative of a full bridge, which is the subject of this
chapter. It is worth noting that such nonlinear section model tests do not aim at replacing
the analysis procedure currently used in the industry that combines section model tests and
numerical simulations. Instead, this chapter proposes an improvement to the section model
test procedure so that section model tests can be used for assessing the effect of structural
nonlinearities on the stability of bridges when subjected to wind.

4.2.3 Structural Nonlinearities vs Aerodynamic Nonlinearities

Before presenting the theoretical developments required for the development of a section
model testing procedure able to account for the nonlinear structural behavior of the bridge
structure, it is worth briefly discussing the differences between structural nonlinearities and
aerodynamic nonlinearities. As mentioned previously, cable-supported bridges can show
structural nonlinearities from different origins, i.e., geometric, material and localized. For
this research on nonlinear section model tests, it appears reasonable to consider inactive
longitudinal hydraulic buffers since they behave as if they are inactive for the mean aero-
dynamic loads on the bridge deck and because they act like energy-dissipating devices for
dynamic actions. Also, it is most likely that the hydraulic buffers will not be effective at
high wind speeds. Additionally, material nonlinearities are unlikely to be experienced in a
properly designed structure because the cable system in a cable-supported bridge, which is
the main structural component, is designed elastically [149]. An analysis for a suspension
bridge presented in section 4.5.1 confirms that material nonlinearities are not a concern for
the wind response of properly designed bridges since the bridge deck keeps a linear material
behavior even for very large displacements.

Another source of structural nonlinearity in cable-supported bridges is structural damping
as it is well known that it is amplitude dependent (e.g. [189]). Damping mechanisms in
cable-supported bridges are complex, and the total structural damping for these structures
comes from different origins such as strain dependent damping, friction damping and
foundation damping. Considering the challenge represented by the accurate characterization
of nonlinear structural damping in cable-supported bridges, it is deemed sufficient for an
initial development of nonlinear section model tests to consider an effective viscous damping,
which is a common practice in structural engineering.

Therefore, among the different structural nonlinearities, only the geometric nonlinearities
are of interest for the development of nonlinear section model tests. However, depending
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on the amplitudes of motion of the bridge deck, the bridge could either behave almost
linearly or have excursions in the nonlinear range. Nevertheless, it should be mentioned
again that even weakly nonlinear systems can be impacted by nonlinear dynamic phenomena
[54, 175]. One way to know whether a bridge can experience structural nonlinearities when
subjected to wind is to conduct section model tests that account for the nonlinear geometric
behavior. The advantage of using such an experimental approach is that it avoids the need to
use advanced nonlinear aerodynamic force models that could be required in the case of a
numerical approach.

Regarding aerodynamic nonlinearities, it is important to recognize that they represent a
separate problem with respect to structural nonlinearities. They are external force nonlinear-
ities that originate from the complex flow behavior around a bridge deck. The amplitude
dependence of flutter derivatives (e.g. [90]) is an example of aerodynamic nonlinearities.
Another demonstration of the nonlinear aerodynamic behavior is the hysteretic behavior
of dynamic aerodynamic force coefficients (e.g. [92]). Since structural nonlinearities and
aerodynamic nonlinearities are two separate problems, the occurrence of the former do not
lead to the occurrence of the latter and vice versa. However, it is reasonable to say that both
sources of nonlinearities would be solicited for sufficiently large amplitudes of vibration.
Therefore, even though this chapter only focuses on structural nonlinearities, it should be
noted that section model tests that account for a geometrically nonlinear structural behavior
would automatically include aerodynamic nonlinearities.

4.3 Nonlinear Generalized Stiffness

Based on research made in aerospace engineering regarding dynamic analysis of geomet-
rically nonlinear systems (e.g. [190]), it is possible to utilize the linear mode shapes to
transform a geometrically nonlinear problem into a nonlinear problem in modal coordi-
nates. To do so, the restoring forces in the geometrically nonlinear problem are written by
separating the linear stiffness contribution and nonlinear stiffness contribution. As for the
linear case, the linear contribution corresponds to the product of the linear stiffness matrix
and displacement vector. The nonlinear contribution is a force vector that is a function
of the displacement vector. After applying a modal transformation using the linear mode
shapes, the usual generalized structural matrices (mass, damping and linear stiffness) are
obtained. For the nonlinear restoring force vector, a nonlinear generalized force vector needs
to be determined. Consequently, each component of the nonlinear generalized force vector
can be written as a combination of parabolic and cubic stiffness terms of the generalized
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displacements. Such a reduced-order modeling approach allows a significant reduction in
the size of the nonlinear structural system to be solved since it was demonstrated that only a
few modes need to be included to get good results [190]. However, because of the nonlinear
modal coupling that exists due to the nonlinear generalized force vector, the equations of the
nonlinear generalized system have to be solved simultaneously.

This idea of reducing a geometrically nonlinear dynamic system will be applied in the
context of section model tests of bridges in section 4.4, but before showing how this can be
done, it is suggested to utilize a different approach to characterize the nonlinear generalized
stiffness. In [190], the nonlinear evolution of the nonlinear generalized restoring forces is
supposed to be quadratic and cubic. However, cable-supported bridges are more complex
than the structures analyzed in [190], and it is unlikely that quadratic and cubic behaviors
are sufficient for such structures. Instead, the procedure developed by the author in chapter 3
will be utilized as it does not presuppose the evolution of the nonlinear generalized forces.
This procedure was originally developed for an assessment of the nonlinear vertical-torsional
coupling in cable-supported bridges. Unlike the approach in [190], the one in chapter 3
combines the linear and nonlinear contributions into the nonlinear generalized restoring
force vector. This is shown in section 4.3.1 where the numerical procedure of chapter 3 is
reviewed for the sake of completeness.

4.3.1 Overview of Numerical Approach

As shown in fig. 4.1, the dynamic system of a bridge section model considered for nonlinear
tests possesses two degrees of freedom (DOF). This system can therefore move in a vertical
mode and in a torsional mode. Unlike for linear tests for which the stiffness of the system
in fig. 4.1 can be determined from the mass properties and natural frequencies, it is needed
to determine a nonlinear force-displacement relationship representative of the full-bridge
behavior in the case of nonlinear tests. As mentioned before, this is achieved by using the two-
mode nonlinear generalized stiffness analysis presented in chapter 3. Nonlinear generalized
stiffness analysis consists in applying static loads proportional to modes of vibration to a
nonlinear finite element model of a cable-supported bridge. This allows quantifying the
nonlinear behavior of the bridge in terms of dynamic properties or more specifically, selected
modes of vibration. As mentioned in section 4.2.3, nonlinear generalized stiffness analysis
in this study will only account for geometric nonlinearities since future nonlinear section
model tests will only take them into account. The reader is referred to chapter 3 for a detailed
presentation of nonlinear generalized stiffness analysis.

As for 2-DOF section model tests, one vertical mode ϕV and one torsional mode ϕθ of
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Figure 4.1: Dynamic system of a bridge section model

analogous shapes are considered for the modal load vector used in the two-mode nonlinear
generalized stiffness procedure. In the approach, the following nonlinear static equation has
to be solved:

fS G(unl) = pm
Vθ (4.1)

pm
Vθ = pm

V + pm
θ = aVω

2
VMϕV + aθω2

θMϕθ (4.2)

where fS G(unl) is the internal force vector of the nonlinear geometric system; unl is the
nonlinear displacement vector obtained from nonlinear static analysis; M is the mass matrix
calculated using the finite element method; aV and aθ are respectively the modal load
coefficients for mode ϕV and mode ϕθ; ωV = 2π fV and ωθ = 2π fθ are respectively the natural
angular frequencies for mode ϕV and mode ϕθ; fV and fθ are the natural frequencies for mode
ϕV and mode ϕθ. In eq. 4.1, the reference state of the bridge numerical model is the dead-load
configuration represented by the static equilibrium after the application of the self-weight of
the bridge. The natural frequencies and mode shapes in eq. 4.2 are also calculated at the dead-
load configuration. To facilitate the physical interpretation of the generalized displacements,
modes are normalized such that the maximum vertical displacement is unity for ϕV and the
maximum torsional rotation is unity for ϕθ. In eq. 4.2, it should be noted that the linear
natural frequencies ωV and ωθ are utilized in the modal load vector as scaling factors. By
doing so and because of the mode normalization considered, the modal load coefficients
aV and aθ can be interpreted as the maximum linear deck displacement or rotation. This
interpretation facilitates the selection of a range of values to be considered for aV and aθ.
This is explained in detail in chapter 3.

The nonlinear displacement vector, i.e., the solution of eq. 4.1, can be approximated using:

unl ≈ ϕVzV + ϕθzθ = ΦVθzVθ (4.3)

where ΦVθ = [ϕV ϕθ] and zVθ = [zV zθ]T; zV and zθ are respectively the vertical mode
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generalized displacement and torsional mode generalized displacement. It is possible to
calculate the generalized displacements by premultiplying eq. 4.3 by ΦT

VθM.

As demonstrated in chapter 3, the premultiplication of eq. 4.3 by ΦT
VθM can be seen as

solving a linear least squares problem for which an uncentered coefficient of determination
R2 can be evaluated. The uncentered coefficient of determination can be used to judge
whether the vector unl is not too distorted in comparison to the linear combination of the
modes, i.e., the linear modes of vibration are able to represent the nonlinear geometric
response of the structure. The analysis performed in chapter 3 for seven different bridge
structures showed that R2 is very close to one. Consequently, the linear modes of vibration
are adequate for modeling the nonlinear geometric response of bridges.

The generalized loads are calculated using the following equation:

p̃m
Vθ = Φ

T
Vθp

m
Vθ =

p̃m
V

p̃m
θ

 = aVω
2
Vm̃V

aθω2
θm̃θ

 (4.4)

where m̃V = ϕ
T
VMϕV and m̃θ = ϕ

T
θMϕθ are the generalized masses for mode ϕV and mode

ϕθ. By using eqs. 4.1 and 4.3 for different values of the modal load coefficients aV and aθ
and calculating the corresponding generalized loads using eq. 4.4, a nonlinear generalized
force-displacement relationship p̃m

Vθ vs zVθ can be obtained. The two-mode tangent nonlinear
generalized stiffness matrix K̃t

Vθ, which is a function of zVθ, is then calculated as follows:

K̃t
Vθ(zVθ) =

∂p̃m
Vθ

∂zVθ
=

∂ p̃m
V

∂zV

∂p̃m
V

∂zθ
∂ p̃m

θ

∂zV

∂p̃m
θ

∂zθ

 (4.5)

K̃t
Vθ(zVθ) can be interpreted as the tangent stiffness matrix of an equivalent 2-DOF system

(fig. 4.1) of the bridge structure which accounts for the nonlinear geometric behavior in a
synthetic manner. From this fact, it is possible to define a generalized restoring force vector
for this equivalent system:

f̃Vθ(zVθ) = p̃m
Vθ =

 f̃V(zV , zθ)
f̃θ(zV , zθ)

 (4.6)

By the same fact, the tangent stiffness matrix can be equivalently defined as:
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K̃t
Vθ(zVθ) =

∂f̃Vθ

∂zVθ
=

∂ f̃V
∂zV

∂ f̃V
∂zθ

∂ f̃θ
∂zV

∂ f̃θ
∂zθ

 (4.7)

Therefore, it is seen that the equivalent nonlinear system of eqs. 4.6 and 4.7 can represent the
individual nonlinear vertical behavior, individual nonlinear torsional behavior and nonlinear
vertical-torsional coupling for the modes under consideration. This is the information that is
needed for nonlinear section model tests.

Since material nonlinearities and hydraulic buffers are not of concern in this study, only
geometric nonlinearities are considered in calculating f̃Vθ(zVθ) and K̃t

Vθ(zVθ) as mentioned
previously. This is reasonable in the context of assessing the wind behavior of cable-
supported bridges. By doing so, the full bridge is therefore a conservative mechanical system
and the same applies to the equivalent 2-DOF nonlinear system represented by eqs. 4.6
and 4.7. This fact will ease the design process of a nonlinear mechanical system to be
utilized in the wind tunnel.

4.3.2 Numerical Models of Cable-Supported Bridges

With the objective of studying the nonlinear structural behavior of bridges using the nonlinear
generalized stiffness analysis procedure of section 4.3.1 as well as developing nonlinear
section model tests, numerical models of eleven cable-supported bridges were created.
The eleven bridges considered in this research, which are nine suspension bridges and
two cable-stayed bridges, are described in table 4.1 (see appendix A for more detail).
Since it was demonstrated that single-span suspension bridges have a stronger nonlinear
behavior (see chapter 3), four preliminary designs of single-span suspension bridges were
developed for this study, i.e., bridges SU4a, SU4b, SU4c and SU4d. The other bridges
in table 4.1 correspond to the seven long-span bridges utilized for developing nonlinear
generalized stiffness analysis, and therefore, more details about them can be found in
chapter 3. Information about the finite element models of the single-span suspension bridges
is presented in table 4.2. This table shows the number of elements of each single-span
suspension bridge as well as the natural frequencies for the dead-load configuration of the
first three lateral, vertical and torsional modes for these bridges. The computational times for
the nonlinear generalized stiffness analyses for these bridges are also included in table 4.2.

For the bridge decks of bridges SU4a, SU4b, SU4c and SU4d, the same steel twin-box girder
was assumed considering that the same hanger spacing was used, but the cable system and
towers were sized based on the different span lengths. The same sag-to-span ratio is utilized
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Table 4.1: Description of cable-supported bridges

Bridge Type Main span Buffers? Elevation view
(m)

SU1
Three-span suspension

Continuous girder 1550 Yes

SU2
Three-span suspension

Continuous girder 1624 Yes

SU3a
Three-span suspension

Partially continuous girder 2460 Yes

SU3b
Three-span suspension

Partially continuous girder 3300 Yes

SU3c
Three-span suspension

Partially continuous girder 4140 Yes

SU4a
Single-span suspension

Girder restrained at towers 1200 Yes

SU4b
Single-span suspension

Girder restrained at towers 1800 Yes

SU4c
Single-span suspension

Girder restrained at towers 2400 Yes

SU4d
Single-span suspension

Girder restrained at towers 3000 Yes

CS1
Cable-stayed

Rigid deck-tower connection 856 No

CS2
Cable-stayed

Continuous girder 1018 Yes

for these preliminary designs. Their designs were inspired by the design of bridge SU3b,
which is an existing design of a three-span suspension bridge with very short side spans that
behaves like a single-span suspension bridge.

All the finite element models of the eleven bridges in table 4.1 were developed using the
open-source finite element program Code Aster [180]. These models were validated using
the commercial finite element software SAP2000 [191]. For these numerical models, the
fishbone modeling approach was utilized. The bridge deck, modeled as Timoshenko beam
elements, is connected to the cable system through rigid elements. The towers are modeled
as Timoshenko beam elements. Tension-only truss elements are considered for the cable
system, for which the cable preloads are applied using temperature loads. For the cable-
stayed bridges, the lumped cable mass approach was utilized, for which half of the mass of
each stay cable is lumped at both ends. In order to account for geometric nonlinearities, all
finite element analyses discussed herein are large displacement ones.

4.3.3 Results for Two-Mode Analysis of Single-Span Suspension

Bridges

To put in context the nonlinear structural behavior that will have to be accounted for in
nonlinear section model tests, it is relevant to present sample results for the two-mode non-
linear generalized stiffnesses of eq. 4.7. This is done for the single-span suspension bridges
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Table 4.2: Description of finite element models of single-span suspension bridges (L: lateral,
V: vertical, θ: torsion, S: symmetric, A: antisymmetric, 1MA: one-mode analysis, 2MA:
two-mode analysis, 3MA: three-mode analysis)

Bridge Model Number of elements Natural frequencies CPU time
(Hz) (min)

SU4a
Truss: 210
Beam: 384

Sym. Antisym. Sym.
LS1: 0.070 LA1: 0.203 LS2: 0.362
VS1: 0.136 VA1: 0.088 VS2: 0.182
θS1: 0.244 θA1: 0.252 θS2: 0.384

1MA: 0.2
2MA: 13
3MA: 199

SU4b
Truss: 310
Beam: 504

Sym. Antisym. Sym.
LS1: 0.045 LA1: 0.110 LS2: 0.196
VS1: 0.109 VA1: 0.074 VS2: 0.145
θS1: 0.178 θA1: 0.168 θS2: 0.257

1MA: 0.2
2MA: 16
3MA: 242

SU4c
Truss: 414
Beam: 624

Sym. Antisym. Sym.
LS1: 0.036 LA1: 0.075 LS2: 0.127
VS1: 0.093 VA1: 0.065 VS2: 0.124
θS1: 0.140 θA1: 0.126 θS2: 0.194

1MA: 0.2
2MA: 19
3MA: 275

SU4d
Truss: 514
Beam: 744

Sym. Antisym. Sym.
LS1: 0.031 LA1: 0.058 LS2: 0.091
VS1: 0.083 VA1: 0.059 VS2: 0.110
θS1: 0.115 θA1: 0.100 θS2: 0.155

1MA: 0.3
2MA: 23
3MA: 315

since such results for the other bridges of table 4.1 can be found in chapter 3. Therefore,
the two-mode nonlinear generalized stiffnesses in a normalized form for bridges SU4a,
SU4b, SU4c and SU4d are presented in fig. 4.2 for the first symmetric and antisymmetric
modes. In this figure, the diagonal terms of the nonlinear generalized stiffness matrix K̃t

Vθ are
normalized with respect to the linear generalized stiffnesses k̃V and k̃θ. For the presentation
of the off-diagonal terms, the normalized quantities (k̃t

Vθ/bcl)/k̃V and (k̃t
θVbcl)/k̃θ are used

since the off-diagonal terms have different units than the linear generalized stiffnesses. In
the expressions for the normalized off-diagonal terms, bcl is half of the distance between the
cables at deck height. These normalized quantities are presented in terms of the normalized
generalized displacements, i.e., zV/Lspan and zθbcl/Lspan where Lspan is the main span length.
The displacement limits considered in fig. 4.2 correspond to realistic values for the wind
response of cable-supported bridges (see chapter 3).

By comparing fig. 4.2a for the first symmetric modes to fig. 4.2b for the first antisymmetric
modes, it is clear that the nonlinear generalized stiffness matrix K̃t

Vθ is more nonlinear for
the first symmetric modes since a linear behavior is observed for the first antisymmetric
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(a) Modes VS1 and θS1

Figure 4.2: Nonlinear generalized stiffness terms for single-span suspension bridges



78

(b) Modes VA1 and θA1

Figure 4.2: Nonlinear generalized stiffness terms for single-span suspension bridges (cont.)
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modal pair. Cable nonlinearity is responsible for the nonlinear behavior observed in fig. 4.2a.
For the generalized displacement limits used, the nonlinear contribution to k̃t

VS 1,VS 1 reaches
±13 %. For bridges SU4c and SU4d, the nonlinear contribution to k̃t

θS 1,θS 1 reaches ±8 %. For
the off-diagonal terms in fig. 4.2a, the maximum nonlinear contribution is about ±4 %. From
this discussion, it appears that nonlinear section model tests would be relevant for the first
symmetric modal pair.

4.4 Theory for Nonlinear Section Model Tests

The nonlinear structural behavior described by eqs. 4.6 and 4.7 that is obtained using the
procedure summarized in section 4.3.1 will be considered for nonlinear section model tests.
Consequently, as it will be discussed in what follows, the section model with a nonlinear
structural behavior can be seen as a reduced-order model.

4.4.1 Modal Equations of Full Bridge

It is now required to determine how to scale the nonlinear stiffness parameters of eqs. 4.6
and 4.7 in order to be able to use them for nonlinear section model tests. This scaling
procedure starts with a comparison of the full-bridge dynamic equations to those of the
section model. This is done in order to determine mode correction factors to be applied to
the nonlinear structural behavior given in eq. 4.6.

For line-like structures like cable-supported bridges, it is common to treat the dynamic
system used for wind analysis as a continuous system [192, 193]. Therefore, the deck
displacements of the full bridge can be expressed in the modal space as follows:

udeck(x, t) =
n∑

j=1

ψ j(x)z j(t) (4.8)

udeck(x, t) =


p(x, t)
h(x, t)
α(x, t)

 ψ j(x) =


ψ

p
j (x)

ψh
j(x)

ψαj (x)

 (4.9)

where udeck(x, t) is the displacement vector of the deck containing functions for the horizontal
displacement p(x, t), vertical displacement h(x, t) and torsional rotation α(x, t); ψ j(x) is a
mode vector containing the functions for the modal horizontal displacement ψp

j (x), modal
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vertical displacement ψh
j(x) and modal torsional rotation ψαj (x); z j(t) is the generalized

coordinate; x is the position along the deck; t is the time. The bridge-deck modal functions
ψ

p
j (x), ψh

j(x) and ψαj (x) can be extracted from the mode shape vector ϕ j obtained from finite
element analysis.

For a modal approach for a linear structure, a system of uncoupled differential equations
having the following form is utilized:

m̃ jz̈ j(t) + 2ξ jω jm̃ jż j(t) + ω2
jm̃ jz j(t) = p̃ j(t) (4.10)

where ξ j is the damping ratio of mode ψ j(x); p̃ j(t) is the generalized force for mode ψ j(x).
Even though only loads on the bridge deck are considered herein, it is required to account
for the entire bridge when calculating the generalized mass since all the structure responds
dynamically to the excitation. Therefore, the generalized mass in eq. 4.10 is defined as:

m̃ j =

∫
Lbr

ψall
j (x)Tm(x)ψall

j (x) dx (4.11)

where Lbr is the length of the bridge; ψall
j (x) = [ψp

j (x) ψh
j(x) ψαj (x) . . . ψp,cable

j (x) ψh,cable
j (x)]T

is a vector similar to ψ j(x) in eq. 4.9 except that it accounts for all structural elements (deck,
towers and cables), which means that ψ j(x) is a subset of ψall

j (x); m(x) is a diagonal matrix
having on its diagonal the mass functions of the different structural elements considered in
ψall

j (x). For modern structural engineering practice, eq. 4.11 is impractical, and it is more
practical to calculate the generalized mass using the following finite element approach:

m̃ j = ϕ
T
j Mϕ j (4.12)

Theoretically, eqs. 4.11 and 4.12 would yield the same values for m̃ j for a sufficiently
discretized finite element model. From this, eq. 4.12 is preferred in this study.

The loads on the cables and towers are neglected, and only the loads applied to the deck are
accounted for. Hence, the generalized force can be expressed as:

p̃ j(t) =
∫

Lbr

ψ j(x)Tp(x, t) dx =
∫

Lbr

[
ψ

p
j (x)D(x, t) + ψh

j(x)L(x, t) + ψαj (x)M(x, t)
]

dx (4.13)
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where p(x, t) = [D(x, t) L(x, t) M(x, t)]T is the external force vector; D(x, t), L(x, t) and
M(x, t) are respectively the lateral force, vertical force and torsional moment per unit length
applied to the bridge deck.

For nonlinear section model tests, the lateral effects are not of concern and can be neglected
as demonstrated by the marginal effect of lateral modes on the nonlinear generalized stiffness
parameters (see chapter 3). Further simplifications are possible by recognizing that most
modes of vibration for the bridges utilized in this research possess negligible bridge-deck
displacement coupling. Therefore, a vertical mode ψV(x) and a torsional mode ψθ(x) having
analogous shapes can be simplified as follows:

ψV(x) =


0

ψh
V(x)
0

 ψθ(x) =


0
0

ψαθ (x)

 (4.14)

Hence, eq. 4.10 can be specialized for a vertical mode ψV(x) and for a torsional mode ψθ(x),
which are of interest for the development of nonlinear section model tests:

m̃V z̈V(t) + 2ξVωVm̃V żV(t) + ω2
Vm̃VzV(t) =

∫
Lbr

ψh
V(x)L(x, t) dx (4.15)

m̃θz̈θ(t) + 2ξθωθm̃θżθ(t) + ω2
θm̃θzθ(t) =

∫
Lbr

ψαθ (x)M(x, t) dx (4.16)

Since it was shown that symmetric vertical-torsional modal pairs are more nonlinear than
antisymmetric ones (see section 4.3.3 and chapter 3), nonlinear section model tests will
focus on the first symmetric modal pair as it is likely the most critical symmetric pair for
causing a structural instability or impacting aeroelastic stability. This means that linear tests
are sufficient for the first antisymmetric modal pair, whereas nonlinear section model tests
would be relevant for the first symmetric modal pair.

It is typically the modes with the lowest natural frequencies that are critical for flutter. For
example, the first symmetric modes of the Akashi Kaikyo Bridge (main span of 1991 m) have
the lowest frequencies, hence they are critical for flutter [194]. For the Messina Strait Bridge
(main span of 3300 m), the first antisymmetric modes are critical as they have frequencies
that are lower than the first symmetric modes [17]. A counterexample to this rule is the
Izmit Bay Bridge (main span of 1550 m) for which the first antisymmetric modes and first
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symmetric modes lead to practically the same flutter wind speed [174]. It is worth noting
that an important factor is also the torsional-to-vertical frequency ratio, which is different for
the antisymmetric modes and symmetric modes. Additionally, for bridges with very long
spans, the natural frequencies are very close to each other, and it is not possible a priori to
know whether the first antisymmetric modes or the first symmetric modes would be critical.
This is because the antisymmetric and symmetric instabilities could have very similar critical
wind speeds for flutter just like for the Izmit Bay Bridge. This is actually the case for some
of the bridges in table 4.1. For example, using 2D flutter analysis in the frequency domain
for bridge SU4c, it was found that the antisymmetric instability has a critical velocity of
88.3 m/s, whereas a flutter wind speed of 92.3 m/s was found for the first symmetric modes.
Both critical velocities are therefore very close. Consequently, it is worth asking whether a
nonlinear structural behavior could trigger the symmetric instability to happen for a lower
wind speed than for the antisymmetric case. Considering the observations made in [54] on
an airfoil, that could be a possibility as the nonlinear structural behavior was shown to lower
the critical velocity in comparison to the linear case.

From this discussion, the theory for nonlinear section model tests would definitely be relevant
for bridges having the first symmetric modes critical for flutter. In the case of bridges that
are found to be critical for the first antisymmetric modes, nonlinear section model tests
would still be of interest in order to check whether the nonlinear structural behavior could
trigger an instability with a critical wind speed lower than what is obtained from a linear
approach. Additionally, it is of interest to mention that nonlinear section model tests could
be of interest for other structural systems than those considered in this research. For example,
nonlinear section model tests could be interesting for double-main-span suspension bridges,
such as the Maanshan Bridge in China [195] and the Chacao Bridge under construction
in Chili. This is because the first antisymmetric modes in these structures would involve
cable nonlinearity from the change in sag of the main cables from the modal displacements
(e.g. see [195]). For these reasons, the theory for nonlinear section model tests of bridges
is developed with the first symmetric modal pair in mind. Therefore, unless specifically
mentioned, the modes that are considered from now on are the first symmetric ones.

4.4.2 Generalized Aerodynamic Forces

It is required to include all the different types of wind loads in this development considering
that the superposition of the structural responses from the different wind effects cannot
be used in the case of nonlinear analysis. Therefore, it is required to take into account of
the mean aerodynamic forces, self-excited forces and buffeting forces for determining the
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Figure 4.3: Displacements and aerodynamic forces for a bridge deck

scaling procedure to be utilized for nonlinear section model tests. As shown in fig. 4.3,
only the vertical force and displacement as well as the torsional moment and rotation are
considered herein. An angle of attack of 0° is also considered.

For this demonstration, we make use of linear wind load models since one of the objectives
of section 4.4 is to find mode correction factors for the nonlinear structural behavior of
eq. 4.6. This choice was made considering the fact that nonlinear force models would make
impossible the mathematical simplifications required to determine mode correction factors.
Doing so appear reasonable according to the observations made in [60] for a comparison in
the case of vortex-induced vibrations between mode correction factors determined experi-
mentally and theoretical factors obtained considering linear force models. Consequently,
the mean aerodynamic forces are expressed using a linearized model accounting for the
effect of the mean static rotation. With regard to the self-excited forces and buffeting forces,
linear force models based on flutter derivatives and aerodynamic admittance functions are
utilized due to their compact mathematical form. Another option would have been to use
time-domain force models relying on convolution integrals and indicial or rational functions,
but doing so has the inconvenience of making the mathematical equations longer. However,
using a similar procedure in the case of the linear time-domain force models, it is easy to
demonstrate that the same mode correction factors are obtained. Therefore, for the sake of
finding the mode correction factors, frequency-domain models are sufficient since, just like
the linear time-domain models, they assume the superposition of the aerodynamic effects.
This is further discussed at the end of section 4.4.7.

The mean aerodynamic forces on the bridge deck of fig. 4.3 are expressed as follows:
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Ls(x) =
1
2
ρU2B

(
CL0 +C′Lαs(x)

)
= Ls0 + L′sαs(x) (4.17)

Ms(x) =
1
2
ρU2B2 (

CM0 +C′Mαs(x)
)
= Ms0 + M′sαs(x) (4.18)

where Ls(x) is the mean aerodynamic lift force per unit length; Ms(x) is the mean aerody-
namic moment per unit length; ρ is the density of air; U is the mean wind speed; B is the
bridge-deck width; CL0 is the lift coefficient at an angle of attack of 0°; C′L is the slope of the
lift coefficient; CM0 is the moment coefficient at an angle of attack of 0°; C′M is the slope of
the moment coefficient; αs(x) is the static rotation of the bridge deck.

It is also reasonable to consider that the static rotation along the bridge deck caused by the
mean aerodynamic loads can be approximated as αs(x) ≈ ψαθ (x)zs

θ with zs
θ being the static

generalized displacement for mode ψαθ (x). This is because the deck rotation of the first
symmetric torsional mode ψαθ (x) for most cable-supported bridges has a half-sine wave shape
in the main span which is similar to the static response under the mean aerodynamic loads.
Thus, the following expression is obtained for the generalized mean aerodynamic lift force:

p̃s
V =

∫
Lbr

ψh
V(x)Ls dx = Ls0

∫
Lbr

ψh
V(x) dx + L′s

(∫
Lbr

ψh
V(x)ψαθ (x) dx

)
zs
θ (4.19)

It is also reasonable to assume that ψh
V(x) ≈ ψαθ (x) considering that the modes of the first

symmetric vertical-torsional modal pair for the bridges considered in this study have analo-
gous shape and that the modes are normalized such that the maximum modal displacement
is unity. Consequently, eq. 4.19 becomes:

p̃s
V = Ls0Γ

h
V + L′sΓ

h
V2zs

θ with Γh
V =

∫
Lbr

ψh
V(x) dx Γh

V2 =

∫
Lbr

[ψh
V(x)]2 dx (4.20)

Similarly, the equation for the generalized mean aerodynamic moment is:

p̃s
θ =

∫
Lbr

ψαθ (x)Ms dx (4.21)

p̃s
θ = Ms0Γ

α
θ + M′sΓ

α
θ2zs

θ with Γαθ =

∫
Lbr

ψαθ (x) dx Γαθ2 =

∫
Lbr

[ψαθ (x)]2 dx (4.22)
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For the self-excited forces, the frequency-domain model relying on flutter derivatives is
used:

Lse(x, t) = H1ḣ(x, t) + H2α̇(x, t) + H3α(x, t) + H4h(x, t)

=
1
2
ρU2B

(
KH∗1

ḣ(x, t)
U
+ KH∗2

Bα̇(x, t)
U

+ K2H∗3α(x, t) + K2H∗4
h(x, t)

B

) (4.23)

Mse(x, t) = A1ḣ(x, t) + A2α̇(x, t) + A3α(x, t) + A4h(x, t)

=
1
2
ρU2B2

(
KA∗1

ḣ(x, t)
U
+ KA∗2

Bα̇(x, t)
U

+ K2A∗3α(x, t) + K2A∗4
h(x, t)

B

) (4.24)

where Lse(x, t) is the self-excited lift force per unit length; Mse(x, t) is the self-excited
moment per unit length; h(x, t) and α(x, t) are respectively the dynamic vertical displacement
and the dynamic rotation; K = ωB/U is the reduced frequency; H∗i and A∗i (i = 1, ..., 4) are
the flutter derivatives, which are functions of the reduced velocity UR = U/( f B); ω = 2π f

is the angular frequency of oscillation; the overdot denotes the time derivative. It should
be noted that non-normalized flutter derivatives are utilized in the first rows of eqs. 4.23
and 4.24, whereas normalized flutter derivatives are considered in the second rows of the
same equations. Equations for the non-normalized flutter derivatives are easily obtained by
comparing the first and second rows of eqs. 4.23 and 4.24. For example, it is possible to find
that H1 = 1/2 ρU2B (KH∗i /U). For the sake of brevity, the non-normalized formulation of
the flutter derivatives is utilized in what follows.

Considering that only one mode for each direction (vertical or torsion) is usually involved in
a structural dynamic instability or flutter, it appears appropriate to have h(x, t) ≈ ψh

V(x)zd
V(t)

and α(x, t) ≈ ψαθ (x)zd
θ (t) where zd

V(t) and zd
θ (t) are the dynamic generalized displacements for

the modal functions ψh
V(x) and ψαθ (x). From this, the generalized self-excited lift force is:

p̃se
V (t) =

∫
Lbr

ψh
V (x)Lse(x, t) dx

=

(∫
Lbr

[ψh
V (x)]2 dx

) [
H1żd

V (t) + H4zd
V (t)

]
+

(∫
Lbr

ψh
V (x)ψαθ (x) dx

) [
H2żd

θ (t) + H3zd
θ (t)

] (4.25)

By recognizing again that ψh
V(x) ≈ ψαθ (x), the following expression is obtained for p̃se

V (t):
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p̃se
V (t) = Γh

V2

[
H1żd

V(t) + H2żd
θ (t) + H3zd

θ (t) + H4zd
V(t)

]
(4.26)

The generalized self-excited moment is obtained in a similar manner:

p̃se
θ (t) =

∫
Lbr

ψαθ (x)Mse(x, t) dx (4.27)

p̃se
θ (t) = Γαθ2

[
A1żd

V(t) + A2żd
θ (t) + A3zd

θ (t) + A4zd
V(t)

]
(4.28)

To be able to simplify eq. 4.25 to eq. 4.26 and eq. 4.27 to eq. 4.28, it is required to assume that
the values of the flutter derivatives are constant along the length of the bridge deck. However,
the mean aerodynamic loads change the angle of attack of the bridge deck, which varies
along the length of the bridge. This indicates that different values of flutter derivatives should
be used for different locations along the bridge deck. Nevertheless, it appears reasonable to
consider the values of the flutter derivatives as independent of the position along the deck
for the sake of determining mode correction factors for the nonlinear structural behavior of
eq. 4.6. This is discussed in more detail in section 4.5.1.

In the case of buffeting forces, the following linear force model is utilized:

Lb(x, t) = Lbuu(x, t) + Lbww(x, t)

=
1
2
ρU2B

(
2CL0χLu

u(x, t)
U
+ (C′L +CD0)χLw

w(x, t)
U

) (4.29)

Mb(x, t) = Mbuu(x, t) + Mbww(x, t)

=
1
2
ρU2B2

(
2CM0χMu

u(x, t)
U
+C′MχMw

w(x, t)
U

) (4.30)

where Lb(x, t) is the buffeting lift force per unit length; Mb(x, t) is the buffeting moment per
unit length; u(x, t) and w(x, t) are respectively the lateral wind fluctuations and vertical wind
fluctuations; CD0 is the drag coefficient at an angle of attack of 0°; χLu, χLw, χMu and χMw

are the aerodynamic admittance functions.

The generalized buffeting lift force can therefore be expressed as:
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p̃b
V(t) =

∫
Lbr

ψh
V(x)Lb(x, t) dx =

∫
Lbr

ψh
V(x)[Lbuu(x, t) + Lbww(x, t)] dx (4.31)

In a similar manner, the generalized buffeting moment is:

p̃b
θ(t) =

∫
Lbr

ψαθ (x)Mb(x, t) dx =
∫

Lbr

ψαθ (x)[Mbuu(x, t) + Mbww(x, t)] dx (4.32)

4.4.3 Full-Bridge Dynamic Equations for a Nonlinear Two-Mode

Aeroelastic System

By replacing ω2
jm̃ jz j(t) by f̃ j(zV(t), zθ(t)) in eqs. 4.15 and 4.16 to account for the nonlinear

geometric behavior, the full-bridge aeroelastic system for the first symmetric modal pair can
be written as:

m̃V z̈V(t) + 2ξVωVm̃V żV(t) + f̃V(zV(t), zθ(t)) = p̃s
V + p̃se

V (t) + p̃b
V(t) (4.33)

m̃θz̈θ(t) + 2ξθωθm̃θżθ(t) + f̃θ(zV(t), zθ(t)) = p̃s
θ + p̃se

θ (t) + p̃b
θ(t) (4.34)

Equations 4.33 and 4.34 can be rewritten in matrix form as:

m̃V 0
0 m̃θ

 z̈d
V (t)

z̈d
θ (t)

 + 2ξVωVm̃V − H1Γ
h
V2 −H2Γ

h
V2

−A1Γ
α
θ2 2ξθωθm̃θ − A2Γ

α
θ2

 żd
V (t)

żd
θ (t)

 +  f̃V (zV (t), zθ(t))
f̃θ(zV (t), zθ(t))


+

−H4Γ
h
V2 −H3Γ

h
V2

−A4Γ
α
θ2 −A3Γ

α
θ2

 zd
V (t)

zd
θ (t)

 =  Ls0Γ
h
V + L′sΓ

h
V2zs

θ

Ms0Γ
α
θ + M′sΓ

α
θ2zs

θ

 +

∫

Lbr
ψh

V (x)[Lbuu(x, t) + Lbww(x, t)] dx∫
Lbr
ψαθ (x)[Mbuu(x, t) + Mbww(x, t)] dx


(4.35)

In eq. 4.35, the following equations for the the generalized displacements were used:

zV(t) = zs
V + zd

V(t) zθ(t) = zs
θ + zd

θ (t) (4.36)

where zs
V and zd

V(t) are respectively the static generalized displacement and dynamic general-
ized displacement for the first symmetric vertical mode; zs

θ and zd
θ (t) are respectively the static

generalized displacement and dynamic generalized displacement for the first symmetric
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torsional mode.

Before continuing, it is worth demonstrating that the restoring forces in eqs. 4.33 and 4.34
or eq. 4.35 can be developed for a linear structure to give the restoring force terms of
eqs. 4.15 and 4.16. For example, linearizing the vertical nonlinear restoring force leads to
the following:

k̃VzV(t) =
∂ f̃V

∂zV
zV(t) = ω2

Vm̃V
∂aV

∂zV
zV(t)

= ω2
Vm̃VzV(t)

(4.37)

where k̃V is the vertical generalized stiffness. In eq. 4.37, it is recognized that ∂aV/∂zθ = 1
for a linear structure because ∂aV/∂zθ is the ratio of the linear generalized displacement to
the nonlinear generalized displacement (see chapter 3). A similar demonstration can be
made in the case of the torsional restoring force.

4.4.4 Nonlinear Dynamic Equations of Full-Scale Section Model

In a similar manner, it is possible to write the equations of motion for a 2-DOF section model
at full-scale (fig. 4.3). In this case, the vertical displacement yV(t) and rotation yθ(t) of the
full-scale section model are defined as:

yV(t) = ys
V + yd

V(t) yθ(t) = ys
θ + yd

θ (t) (4.38)

where ys
V and yd

V(t) are the static and dynamic contributions to the vertical displacement; ys
θ

and yd
θ (t) are the static and dynamic contributions to the rotation. The dynamic equation of

the section model is presented in the following equation:

mV 0
0 mθ

 ÿd
V(t)

ÿd
θ (t)

 + 2ξVωVmV − H1 −H2

−A1 2ξθωθmθ − A2

 ẏd
V(t)

ẏd
θ (t)

 +  f V(yV(t), yθ(t))
f θ(yV(t), yθ(t))


+

−H4 −H3

−A4 −A3

 yd
V(t)

yd
θ (t)

 =  Ls0 + L′sy
s
θ

Ms0 + M′sy
s
θ

 +


∫
Lmp

[Lbuu(x,t)+Lbww(x,t)] dx

Lmp∫
Lmp

[Mbuu(x,t)+Mbww(x,t)] dx

Lmp


(4.39)

It should be noted that this equation is expressed per unit length of the section model. In
eq. 4.39, mV and mθ are respectively the mass per unit length and mass moment of inertia
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(a) Full bridge (b) Section model

Figure 4.4: Comparison of typical mode shapes for a full bridge and a section model

per unit length of the section model; f V(yV(t), yθ(t)) and f θ(yV(t), yθ(t)) are functions to be
determined for the nonlinear restoring vertical force per unit length and nonlinear restoring
moment per unit length; Lmp is the length of the section model at full scale.

Equations to calculate mV , mθ, f V(yV(t), yθ(t)) and f θ(yV(t), yθ(t)), which are required for
designing nonlinear section model experiments, are to be obtained by comparing the full-
bridge equations (eq. 4.35) and the section-model equations (eq. 4.39).

4.4.5 Effective Distributed Mass

As illustrated in fig. 4.4a, the entire bridge reacts dynamically when only the bridge deck
is subjected to wind loads. Consequently, since the section model only includes the bridge
deck (fig. 4.4b), it is needed to account for a contribution from the cable system and towers
to the mass and mass moment of inertia considered for the section model. When responding
dynamically, the section model would consequently have the same effect in terms of inertial
effects and kinetic energy as the full bridge.

Similarly, it is important to recognize that the energy dissipation from structural and aerody-
namic origins must be in the same proportion for the full bridge and the section model. This
means that the ratio between the structural damping forces and aerodynamic damping forces
must be the same for both systems. Theoretically, this will guarantee that instabilities caused
by aeroelastic effects like galloping and flutter occur at the same critical wind speed for the
full bridge and the section model. Such a ratio can be calculated from the coefficients of the
effective damping matrices in eqs. 4.35 and 4.39. As an example, the diagonal coefficient
for the vertical mode is considered, which yields the following equality for the ratio of the
structural damping coefficient to the aerodynamic damping coefficient:

2ξVωVm̃V

H1Γ
h
V2

=
2ξVωVmV

H1
(4.40)

Since the same damping ratio ξV is utilized for the full bridge and the section model, the
following equation can be obtained:
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mV =
m̃V

Γh
V2

=
m̃V∫

Lbr
[ψh

V(x)]2 dx
(4.41)

Equation 4.41 indicates that the effective mass per unit length for the first symmetric vertical
mode to be used for the section model has to be calculated from the generalized mass and its
corresponding mode in order to ensure a realistic prediction of aeroelastic instabilities. In a
similar manner, the effective mass moment of inertia per unit length for the first symmetric
torsional mode is:

mθ =
m̃θ

Γαθ2
=

m̃θ∫
Lbr

[ψαθ (x)]2 dx
(4.42)

Since m̃V and m̃θ are to be calculated using eq. 4.12, the effective distributed mass properties
in eqs. 4.41 and 4.42 therefore account for the mass contributions of all structural elements
including the cable system and towers. It should be noted that effective mass properties
like in eqs. 4.41 and 4.42 have been used in previous section model test research [196, 197].
From eqs. 4.41 and 4.42, we have that m̃V = mVΓ

h
V2 and m̃θ = mθΓ

α
θ2, which can be substituted

into eq. 4.35 to give the following equation after dividing the first row by Γh
V2 and the second

row by Γαθ2:

mV 0
0 mθ

 z̈d
V(t)

z̈d
θ (t)

 + 2ξVωVmV − H1 −H2

−A1 2ξθωθmθ − A2

 żd
V(t)

żd
θ (t)

 +
 f̃V (zV (t),zθ(t))

Γh
V2

f̃θ(zV (t),zθ(t))
Γα
θ2


+

−H4 −H3

−A4 −A3

 zd
V(t)

zd
θ (t)

 =
 Ls0

Γh
V

Γh
V2
+ L′sz

s
θ

Ms0
Γαθ
Γα
θ2
+ M′sz

s
θ

 +


∫
Lbr

ψh
V (x)[Lbuu(x,t)+Lbww(x,t)] dx

Γh
V2∫

Lbr
ψαθ (x)[Mbuu(x,t)+Mbww(x,t)] dx

Γα
θ2


(4.43)

4.4.6 Different Mode Normalization for Full-Bridge Dynamic Equa-

tions

When comparing eqs. 4.39 and 4.43, it is possible to notice additional factors for the constant
term of the mean aerodynamic loads in the case of the full-bridge equation. For the vertical
force, the factor is Γh

V/Γ
h
V2, and the factor Γαθ /Γ

α
θ2 is the moment one. From this fact, it is

interesting to consider a different mode normalization and its corresponding modal integrals
for the full-bridge equations of motion:
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ψ̄h
V(x) = βV ψ

h
V(x) ψ̄θ(x) = βθ ψαθ (x)

Γ̄h
V =

∫
Lbr

ψ̄h
V(x) dx Γ̄h

V2 =

∫
Lbr

[ψ̄h
V(x)]2 dx

Γ̄αθ =

∫
Lbr

ψ̄αθ (x) dx Γ̄αθ2 =

∫
Lbr

[ψ̄αθ (x)]2 dx

(4.44)

where ψh
V(x) and ψαθ (x) are modes normalized such that their maximums are unity; ψ̄h

V(x)
is the first symmetric vertical mode normalized such that Γ̄h

V/Γ̄
h
V2 = 1; ψ̄αθ (x) is the first

symmetric torsional mode normalized such that Γ̄αθ /Γ̄
α
θ2 = 1.

Integrating both sides of the first equation in eq. 4.44 then dividing by Γ̄h
V2 allows determining

the expression for βV . A similar procedure leads to the expression of βθ. Therefore, the
expressions for βV and βθ are:

βV =
Γh

V

Γh
V2

=

∫
Lbr
ψh

V(x) dx∫
Lbr

[ψh
V(x)]2 dx

(4.45)

βθ =
Γαθ

Γαθ2
=

∫
Lbr
ψαθ (x) dx∫

Lbr
[ψαθ (x)]2 dx

(4.46)

For the full bridge, the vertical displacement of the deck can be expressed as h(x, t) =
ψh

V(x)zV(t) and h(x, t) = ψ̄h
V(x)yV(t) = βVψ

h
V(x)yV(t). Similarly, the torsional rotation of the

deck can be obtained using α(x, t) = ψαθ (x)zθ(t) and α(x, t) = ψ̄αθ (x)yθ(t) = βθψ
α
θ (x)yθ(t).

From this, we have that:

zV(t) = βVyV(t) zθ(t) = βθyθ(t) (4.47)

Thus, the following equation can be obtained by substituting eq. 4.47 into eq. 4.43 and
making use of eqs. 4.45 and 4.46:



92

mV 0
0 mθ

 βV ÿd
V(t)

βθÿd
θ (t)

 + 2ξVωVmV − H1 −H2

−A1 2ξθωθmθ − A2

 βV ẏd
V(t)

βθẏd
θ (t)

 +
 f̃V (βV yV (t),βθyθ(t))

Γh
V2

f̃θ(βV yV (t),βθyθ(t))
Γα
θ2


+

−H4 −H3

−A4 −A3

 βVyd
V(t)

βθyd
θ (t)

 =  βV Ls0 + L′sβθy
s
θ

βθMs0 + M′sβθy
s
θ

 +


∫
Lbr

ψh
V (x)[Lbuu(x,t)+Lbww(x,t)] dx

Γh
V2∫

Lbr
ψαθ (x)[Mbuu(x,t)+Mbww(x,t)] dx

Γα
θ2


(4.48)

Considering that ψh
V(x) ≈ ψαθ (x) for the first symmetric modal pair, it is reasonable to assume

that βV ≈ βθ. Therefore, dividing the first row by βV and the second row by βθ in eq. 4.48
gives:

mV 0
0 mθ

 ÿd
V(t)

ÿd
θ (t)

 + 2ξVωVmV − H1 −H2

−A1 2ξθωθmθ − A2

 ẏd
V(t)

ẏd
θ (t)

 +


f̃V (βV yV (t),βθyθ(t))∫
Lbr

ψh
V (x) dx

f̃θ(βV yV (t),βθyθ(t))∫
Lbr

ψαθ (x) dx


+

−H4 −H3

−A4 −A3

 yd
V(t)

yd
θ (t)

 =  Ls0 + L′sy
s
θ

Ms0 + M′sy
s
θ

 +


∫
Lbr

ψh
V (x)[Lbuu(x,t)+Lbww(x,t)] dx∫

Lbr
ψh

V (x) dx∫
Lbr

ψαθ (x)[Mbuu(x,t)+Mbww(x,t)] dx∫
Lbr

ψαθ (x) dx


(4.49)

By comparing eq. 4.39 for the full-scale section model and eq. 4.49 for the full bridge, it is
possible to notice that they are the same with the exception of the restoring force vector and
buffeting force vector. The buffeting force vectors in eqs. 4.39 and 4.49 are different due to
the correlation of the buffeting loads along the bridge deck making further simplifications
not possible in eq. 4.49. However, it is believed that the buffeting load vectors for the
section model and full bridge are reasonably similar. Considering that the components of
the buffeting force vector have expressions similar to joint acceptance functions, this seems
like a reasonable assumption because the section model and full bridge have similar joint
acceptance functions for the first symmetric modes [31]. This assumption is validated in
section 4.5.5.

From eqs. 4.39 and 4.49, it is therefore possible to conclude that the restoring forces per unit
length f V(yV , yθ) and f θ(yV , yθ) to be modeled in nonlinear section model tests are expressed
as:
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f V(yV , yθ) =
f̃V(βVyV , βθyθ)

Γh
V

=
f̃V(βVyV , βθyθ)∫

Lbr
ψh

V(x) dx
(4.50)

f θ(yV , yθ) =
f̃θ(βVyV , βθyθ)

Γαθ
=

f̃θ(βVyV , βθyθ)∫
Lbr
ψαθ (x) dx

(4.51)

In eqs. 4.50 and 4.51, the parameters βV , βθ, Γh
V and Γαθ can be interpreted as mode correction

factors for the restoring forces. This is because the section model has uniform mode shapes,
whereas it is not the case for the full bridge as shown in fig. 4.4.

Additionally, it is worth noting that the mode factors βV and βθ are utilized to calculate
the generalized displacements of the full bridge from the section model displacements as
shown in eq. 4.47. Due to the unity-based normalization used for the modes, eq. 4.47 gives
the maximum displacements of the full bridge directly. It is interesting to note that the
expressions for βV and βθ given in eqs. 4.45 and 4.46 are equivalent to the displacement
correction factors of [60, 197] in the case of linear aerodynamic force models.

4.4.7 Discussion on Nonlinear Modal Dynamic Problem

Before showing how to scale eqs. 4.50 and 4.51, it is appropriate to discuss eq. 4.39 for
the section model and eq. 4.49 for the full bridge. Firstly, these equations account only for
one vertical mode and one torsional mode, i.e., the first symmetric modes since they are of
interest for nonlinear section model tests. This is sufficient in the study of vertical-torsional
dynamic instabilities and flutter since these phenomena involve specific modes as already
mentioned in section 4.2.1.

Secondly, eqs. 4.50 and 4.51 use the idea from [190] for which the dynamic system of a
geometrically nonlinear structure, herein a cable-supported bridge, is represented in the
modal space considering a nonlinear generalized stiffness behavior. Therefore, the nonlinear
modal dynamic systems of eqs. 4.39 and 4.49 can be seen as nonlinear reduced-order models.
This was discussed previously in section 4.3. The assumption that the nonlinear geometric
response of a structure can be represented appropriately using the linear modes of vibration
was validated in [190]. Furthermore, this was also confirmed in chapter 3 for modal loads
similar to those in eq. 4.2 as discussed in section 4.3.1.

It is also worth mentioning again that linear frequency-domain force models were considered
in the development of eqs. 4.39 and 4.49. This choice was made due to their mathematical
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elegance that makes possible an easier interpretation of the different aerodynamic effects.
Doing so also makes it possible to determine mode correction factors for the nonlinear
generalized stiffness as mentioned in section 4.4.2. However, it should be mentioned that
eqs. 4.39 and 4.49 cannot be solved numerically because of the frequency-domain force
models and the nonlinear structural behavior. One option to solve numerically the nonlinear
modal dynamic problem would be to use the time-domain counterparts of the frequency-
domain force models, which rely on convolution integrals and assume a linear aerodynamic
behavior. In order to account for the aerodynamic nonlinearities, it would be needed
to utilize nonlinear aerodynamic models, which are more difficult to use. Nevertheless,
using nonlinear section model tests in the wind tunnel, aerodynamic nonlinearities will be
considered automatically just like the structural nonlinearities.

4.4.8 Scaling of Nonlinear Generalized Stiffness Parameters

It is now needed to determine the scaled parameters for the nonlinear section model tests.
For the mass properties, damping ratios and displacements, the usual scaling equations can
be utilized [193, 198]:

mVm = λ
2
L mV p mθm = λ

4
L mθp (4.52)

ξVm = ξV p ξθm = ξθp (4.53)

yVm = λL yV p yθm = yθp (4.54)

where λL = Lm/Lp is the geometric scale; subscript m refers to the model; subscript p refers
to the prototype or full-scale bridge.

However, it is not possible to directly use the frequency scale for nonlinear tests like it is
the case for linear tests, for which the frequency scale is utilized to determine the scaled
stiffness. Instead for the nonlinear tests, the restoring forces f V(yV , yθ) and f θ(yV , yθ) need
to be scaled. Since the restoring forces are caused by displacements due to external forces
from aerodynamic origins, they can be scaled as follows:
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f Vm(yVm, yθm) = λ2
UλL f V p(yV p, yθp) = λ2

UλL f V p

(
yVm

λL
, yθm

)
(4.55)

f θm(yVm, yθm) = λ2
Uλ

2
L f θp(yV p, yθp) = λ2

Uλ
2
L f θp

(
yVm

λL
, yθm

)
(4.56)

where λU = Um/Up is the velocity scale. By combining eqs. 4.50 and 4.55 as well as eqs. 4.51
and 4.56, it is possible to obtain the equations to convert the restoring forces obtained from
nonlinear generalized stiffness analysis for the full bridge into stiffness parameters to be
used for the scaled section model:

f Vm(yVm, yθm) =
λ2

UλL

Γh
V

f̃V p

(
βV

λL
yVm, βθyθm

)
(4.57)

f θm(yVm, yθm) =
λ2

Uλ
2
L

Γαθ
f̃θp

(
βV

λL
yVm, βθyθm

)
(4.58)

It should be noted that after some experiments, it was found that the modal integrals Γh
V and

Γαθ should be calculated using the absolute values of ψh
V(x) and ψαθ (x). This is also applicable

to the numerators of the expressions for βV and βθ. This is because negative values can
occur for ψh

V(x) and ψαθ (x) in some cases. Therefore, it appears more conservative to use
the absolute values. Furthermore, not using the absolute values in Γh

V , Γαθ , βV and βθ could
lead to values of zero for these parameters in the case of antisymmetric modes. This would
mean that the generalized displacements are also zero because of eq. 4.47, and this is not
realistic since antisymmetric modes can also be dynamically excited in cable-supported
bridges. Therefore, even though this research focuses on the first symmetric modal pair, the
absolute values are considered herein to be consistent with the antisymmetric case. This was
similarly done in [60, 197].

In the case of small displacements, it is interesting to demonstrate that eqs. 4.57 and 4.58
lead to the usual stiffness equations based on the frequency scale. For small displacements,
the off-diagonal stiffness terms are zero, and the model-scale vertical stiffness per unit length
kVm can obtained as follows from eq. 4.57:

kVm =
∂ f Vm

∂yVm
=
λ2

UλL

Γh
V

∂ f̃V p

∂zV p

dzV p

dyVm
(4.59)



96

From the second equation in eq. 4.37, we have that ∂ f̃V p/∂zV p = ω2
V pm̃V p when the gen-

eralized displacements are small. From eqs. 4.47 and 4.54, it is easy to demonstrate that
dzV p/dyVm = βV/λL = Γ

h
V/(Γ

h
V2λL). Using these expressions in eq. 4.59 yields:

kVm = λ
2
Uω

2
V p

m̃V p

Γh
V2

=

(
λU

λL
ωV p

)2

mVm (4.60)

The right-hand side of eq. 4.60 is obtained using m̃V p/Γ
h
V2 = mV p = mVm/λ

2
L, which is

obtained from eqs. 4.41 and 4.52. It is easy to see that the right-hand side of eq. 4.60
corresponds to the usual vertical stiffness equation for linear section model tests relying
on the frequency scale λ f = λU/λL. A similar demonstration can be made for the torsional
stiffness.

4.5 Validation of Assumptions Used in the Theory for

Nonlinear Section Model Tests

It is now needed to verify the assumptions utilized in the scaling procedure of the nonlinear
generalized behavior. In the following subsections, the analysis of five simplifications used
in the theory presented in section 4.4 is made. Firstly, the full-bridge mean wind responses
of the different bridges are analyzed to check whether the static rotation of the bridge deck
is small. Secondly, an analysis is made for the effective distributed mass properties to be
considered for section model tests. The shape similarity between vertical and torsional modes
is also discussed. Then, it is verified that the mean wind response can be approximated from
section model tests. Lastly, a comparison between the buffeting forces for the full bridge
and the section model is presented.

4.5.1 Full-Bridge Mean Wind Response

Since the flutter derivatives for most of the bridges in table 4.1 are only available for an angle
of attack of 0°, it is not possible to use 3D flutter analysis that accounts for the variation of
the flutter derivatives to assess the effect of such variation. Measuring the flutter derivatives
for these bridges at different angles of attack is out the scope of this chapter, which is to
present the theoretical developments required to account for structural nonlinearities in the
section model testing procedure. Instead, an analysis of the full-bridge mean wind responses
is considered with the objective of checking the magnitude of the maximum static rotation of
the bridge deck. This provides an indirect approach to judge whether it is reasonable to use
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Table 4.3: Midspan displacements under mean aerodynamic loads at high wind speed for
an angle of attack of 0° (uy: lateral displacement, uz: vertical displacement, θx: torsional
rotation)

Bridge U uy uz θx

(m/s) (m) (m) (°)
SU1 82.0 11.47 −8.57 −7.03
SU2 74.2 8.03 1.31 1.45
SU3a 100.0 27.03 −0.67 −0.52
SU3b 100.0 35.18 −0.87 −1.06
SU3c 100.0 39.29 −1.06 −1.04
SU4a 100.0 5.55 −1.19 0.60
SU4b 100.0 13.70 −0.14 1.67
SU4c 88.3 15.06 −0.25 1.62
SU4d 74.0 13.37 −0.85 0.93
CS1 100.0 4.14 −0.42 2.09
CS2 100.0 1.98 −0.01 0.80

the flutter derivatives for the same angle of attack along the bridge deck in the development
of the equations for the nonlinear structural behavior to be used for nonlinear section model
tests.

For this verification, the nonlinear static response under the mean aerodynamic loads are
calculated for each bridge using the procedure in [19]. Mean aerodynamic loads were applied
to the bridge deck, towers and cables, and the hydraulic buffers were inactive. The analyses
were conducted by gradually increasing the wind speed until an aerostatic instability was
reached. For each bridge, table 4.3 presents the maximum deck displacements at midspan
for an angle of attack of 0° at what is considered to be high wind speeds. For bridges SU1,
SU2, SU4c and SU4d, the results are shown for their flutter wind speeds determined from
experiments or 2D flutter analysis. For the other bridges, it was not possible to use their
flutter wind speeds since they are greater than what is achievable in dynamic tests and flutter
derivative tests in a wind tunnel. In this case, the displacements in table 4.3 for these bridges
are presented for a high wind speed of 100 m/s, which is deemed sufficient for the sake of
this demonstration. Additionally, since the results in this table come from a finite element
model, a different notation than previously is used for the deck displacements to avoid
confusion with the nonlinear modal system discussed in section 4.4.

In table 4.3, the maximum static rotation of the deck has a maximum value of approximately
2° with the exception of bridge SU1, which has a maximum static rotation at the flutter
wind speed of just over −7°. For bridge SU1, the large rotation is explained by the fact
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that the flutter wind speed is close to the critical wind speed for an aerostatic instability.
Therefore, for almost all these bridges, we have that the rotation along the bridge deck varies
between 0° at the deck supports and a maximum value of 2° at midspan. A variation of 2° of
the angle of attack does not have a significant effect on the flutter derivatives based on the
studies in [139, 195, 199, 200], but it can be more pronounced for other deck cross sections
as in [36]. When this effect is limited, the predicted flutter wind speed is not significantly
impacted as shown in [139], but it is worth mentioning that this is case specific since the
effect of the angle of attack on the flutter derivatives could be more significant for a different
bridge. Nevertheless, from this discussion, it appears reasonable to consider the flutter
derivatives as constant in order to allow simplifications leading to eqs. 4.26 and 4.28. This
makes possible the developments required to find mode correction factors for the nonlinear
structural behavior required for nonlinear section model tests.

It is also of interest to utilize nonlinear static analysis for the mean aerodynamic forces to
confirm that material nonlinearities are not a concern and that only geometric nonlinearities
are relevant for nonlinear section model tests as mentioned in section 4.2.3. This is done by
comparing the nonlinear aerostatic response of bridge SU2 with and without considering
the material nonlinearities. For the finite element model of bridge SU2 with material
nonlinearities, multifiber beam elements with an elastoplastic behavior are considered for
the steel box-girder deck. In this model, the towers and cables are assumed to have an elastic
behavior just like in the model with geometric nonlinearities as it was confirmed that these
elements stay within their elastic limit. In fig. 4.5, the midspan displacements under the
mean aerodynamic loads for an increasing wind speed are presented. Results are shown for
the geometrically nonlinear model (LD) and the geometrically nonlinear model with material
nonlinearities (LDNL). Three angles of attack are considered for the wind. Also, the vertical
line in this figure corresponds to the flutter wind speed for an initial angle of attack of 0°.
As it can be observed in fig. 4.5, both models lead to the same mean wind response, which
confirms that material nonlinearities are not of interest for nonlinear section model tests.

4.5.2 Comparison for Effective Distributed Mass

The effective distributed mass mV and the effective distributed mass moment of inertia mθ to
be considered for section model tests can be calculated using eqs. 4.41 and 4.42. However,
it is of interest to compare this approach to the intuitive approach given by the following
equations:
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Figure 4.5: Midspan displacements under mean aerodynamic loads for bridge SU2 (uy:
lateral displacement, uz: vertical displacement, θx: torsional rotation, Uc: flutter wind speed)

mV = mdeck + 2mcable (4.61)

mθ = MMIdeck + 2
(
mcableb2

cl

)
(4.62)

where mdeck is the mass per unit length of the bridge deck; MMIdeck is the mass moment of
inertia per unit length of the bridge deck; mcable is the mass per unit length for a main cable;
bcl is half of the main cable spacing. When used for cable-stayed bridges, mcable corresponds
to 25 % of the total mass of the stay cables divided by the length of the bridge covered by
stays. One quarter is considered because half the cable mass is assumed to move with the
bridge deck with this mass divided in two for each side of the bridge when there are two
planes of stay cables. The distance bcl between the bridge center line and the cable plane is
measured at the deck level in the case of cable-stayed bridges.

In what follows, the approach of eqs. 4.61 and 4.62 is referred as method A. Method B
corresponds to the procedure of eqs. 4.41 and 4.42, which relies on a modal approach.
During the initial testing of method B for symmetric and antisymmetric modes, it was found
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Table 4.4: Comparison of effective distributed mass properties (first symmetric vertical-
torsional modal pair)

Bridge Method A Method B Method B∗

mV mθ mV mθ m∗V m∗θ
(103 kg/m) (106 kg ·m2/m) (103 kg/m) (106 kg ·m2/m) (103 kg/m) (106 kg ·m2/m)

SU1 24.17 2.920 23.99 2.885 23.65 2.880
SU2 23.06 2.423 23.76 4.406 22.96 2.410
SU3a 45.54 20.098 44.67 34.312 44.04 19.852
SU3b 56.76 27.850 56.78 29.707 55.60 27.902
SU3c 73.54 39.299 74.53 40.037 73.20 39.979
SU4a 30.26 8.703 30.27 8.132 30.07 8.113
SU4b 33.81 10.622 33.94 10.116 33.63 10.104
SU4c 38.05 12.911 38.33 12.554 37.90 12.542
SU4d 44.52 16.392 45.13 16.367 44.49 16.356
CS1 14.66 0.672 14.78 0.677 14.44 0.627
CS2 38.97 12.736 37.89 11.541 37.03 11.118

that it gives results much higher than method A in some cases. For the vertical modes, this is
because some of these modes have some longitudinal displacements (mainly antisymmetric
modes), which is explained by the inactive longitudinal hydraulic buffers. It was also found
that, for some bridges, the torsional modes possess some lateral displacements. Therefore,
the following equations are also tested for the calculation of the effective distributed mass
properties:

m∗V =
m̃∗V∫

Lbr
[ψh

V(x)]2 dx
m∗θ =

m̃∗θ∫
Lbr

[ψαθ (x)]2 dx
(4.63)

where m̃∗V = ϕ
∗
V

TMϕ∗V ; ϕ∗V is a vertical mode shape for which the components corresponding
to the longitudinal degrees of freedom are set to zero; m̃∗θ = ϕ

∗
θ

TMϕ∗θ; ϕ
∗
θ is a torsional mode

shape for which the components corresponding to the lateral degrees of freedom are set to
zero. The approach of eq. 4.63 is referred as method B∗. The results of the three different
methods for calculating the effective distributed mass properties are presented in table 4.4
for the eleven bridges of table 4.1. In this table, the values correspond to full-scale ones.
For the sake of brevity, only the values for the first symmetric vertical mode and the first
symmetric torsional mode are shown.

As it can be observed in table 4.4, there is a very good agreement for mV between methods
A, B and B∗. Similar values are obtained for methods B and B∗ because the first symmetric
vertical modes do not involve significant longitudinal displacements. However, with inactive
hydraulic buffers, the first antisymmetric vertical modes can have non-negligible longitudinal
displacements. In this case, methods B and B∗ give significantly different results. For
example, considering the first antisymmetric vertical mode of bridge SU1, method B gives
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40.21 × 103 kg/m, whereas method B∗ yields 23.73 × 103 kg/m. In this case, method B∗

gives results closer to method A, which has a value of 24.17 × 103 kg/m. For the mass
moment of inertia mθ, a very good agreement is obtained between the three methods except
for bridges SU2 and SU3a, for which method B yields much higher values compared to the
two other methods. This is explained by the fact that the first symmetric torsional modes for
these bridges possess non-negligible lateral displacements.

From this analysis, methods A and B∗ should be preferred over method B since it overes-
timates the mass values to be used for section model tests in specific cases. With inactive
hydraulic buffers, the longitudinal modal displacements for the bridge deck are not restrained,
which can lead to greater values of mV with method B. However, even if they are inactive,
hydraulic buffers can provide some sort of dynamic restraint in the longitudinal direction
through nonlinear energy dissipation. Consequently, it seems reasonable not to include the
longitudinal degrees of freedom when calculating the effective distributed mass, i.e., using
method B∗. For the torsional modes, the lateral modal displacements, when existent, can
also lead to an overestimation of mθ. As lateral effects associated with torsional modes are
difficult to represent in section model tests, it appears reasonable not to account for them
and use method B∗ for calculating the effective mass moment of inertia per unit length.

However, since the nonlinear structural behavior of eqs. 4.50 and 4.51 was obtained in
relation to mV and mθ based on method B, it is needed to account for mass correction
factors in eqs. 4.50 and 4.51 when methods A or B∗ are used. For being more practical than
the intuitive approach of method A, especially for cable-stayed bridges, method B∗ is the
approach preferred for this research. Therefore, eqs. 4.50 and 4.51 need to be modified as
follows:

f
∗

V(yV , yθ) =
m∗V
mV
·

f̃V(βVyV , βθyθ)
Γh

V

(4.64)

f
∗

θ(yV , yθ) =
m∗θ
mθ

·
f̃θ(βVyV , βθyθ)

Γαθ
(4.65)

where f
∗

V(yV , yθ) and f
∗

θ(yV , yθ) are the mass-corrected restoring forces per unit length; mV

and mθ are the mass properties per unit length from method B; m∗V and m∗θ are the mass
properties per unit length from method B∗. The mass correction factors m∗V/mV and m∗θ/mθ

in eqs. 4.64 and 4.65 are required in order to obtain the correct natural frequencies when m∗V
and m∗θ are considered for the mass properties of the section model.
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4.5.3 Shape Similarity for Vertical and Torsional Modes

In the theory developed in section 4.4, some simplifications made are only possible when
the first symmetric vertical mode ψh

V(x) and the first symmetric torsional mode ψαθ (x) are
similar in shape. This is to guarantee that the correction factors for these modes have similar
values. Therefore, this section presents a comparison of the mode correction factors as well
as an analysis of the shape similarity of the modes.

Table 4.5 shows the mode correction factors for the first symmetric vertical-torsional modal
pair. As mentioned in section 4.4.8 and shown in eqs. 4.66 and 4.67, the correction factors
Γh

V , Γαθ , βV and βθ are calculated using the absolute values of the modal functions. For the
sake of completeness, the factors Γh

V2 and Γαθ2 are also presented in table 4.5, which are
defined below:

Γh
V =

∫
Lbr

∣∣∣ψh
V(x)

∣∣∣ dx Γαθ =

∫
Lbr

∣∣∣ψαθ (x)
∣∣∣ dx (4.66)

βV =

∫
Lbr

∣∣∣ψh
V(x)

∣∣∣ dx∫
Lbr

[ψh
V(x)]2 dx

βθ =

∫
Lbr

∣∣∣ψαθ (x)
∣∣∣ dx∫

Lbr
[ψαθ (x)]2 dx

(4.67)

In table 4.5, the relative deviations between the mode correction factors as defined in the
following equations are also included:

∆ΓVθ =

∣∣∣Γh
V − Γ

α
θ

∣∣∣
max

(
Γh

V ,Γ
α
θ

) ∆ΓVθ2 =

∣∣∣Γh
V2 − Γ

α
θ2

∣∣∣
max

(
Γh

V2,Γ
α
θ2

) ∆βVθ =
|βV − βθ|

max (βV , βθ)
(4.68)

Further to comparing the mode correction factors, the shape similarity of the modes is
verified using the Modal Assurance Criterion (MAC) [182]. Since modal functions are
considered herein, the modal assurance criterion MACVθ for ψh

V(x) and ψαθ (x) is calculated
as per eq. 4.69. The MAC varies from 0 to 1, and a MAC value closer to 1 indicates a better
shape similarity. The values of MACVθ for the eleven bridges are also presented in table 4.5,
which were calculated using the following equation:

MACVθ =

(∫
Lbr
ψh

V(x)ψαθ (x) dx
)2(∫

Lbr
[ψh

V(x)]2 dx
) (∫

Lbr
[ψαθ (x)]2 dx

) (4.69)
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Table 4.5: Comparison of mode correction factors (first symmetric vertical-torsional modal
pair)

Bridge Γh
V Γαθ ∆ΓVθ Γh

V2 Γαθ2 ∆ΓVθ2 βV βθ ∆βVθ MACVθ

(m) (m) (%) (m) (m) (%) (m) (m) (%)
SU1 1279.1 1023.2 20.0 845.0 710.0 16.0 1.514 1.441 4.8 0.7910
SU2 1133.4 994.2 12.3 730.6 724.8 0.8 1.551 1.372 11.6 0.7093
SU3a 988.7 1004.9 1.6 650.3 706.4 7.9 1.520 1.423 6.4 0.9665
SU3b 1318.0 1321.7 0.3 886.9 914.2 3.0 1.486 1.446 2.7 0.9917
SU3c 1651.0 1654.2 0.2 1142.7 1145.0 0.2 1.445 1.445 0.0 0.9997
SU4a 472.5 622.7 24.1 315.0 466.5 32.5 1.500 1.335 11.0 0.7524
SU4b 712.4 840.9 15.3 474.9 630.9 24.7 1.500 1.333 11.2 0.8269
SU4c 948.9 1049.1 9.5 639.0 784.6 18.6 1.485 1.337 10.0 0.8939
SU4d 1186.9 1247.8 4.9 803.2 919.8 12.7 1.478 1.357 8.2 0.9417
CS1 280.0 387.8 27.8 186.6 284.2 34.3 1.500 1.365 9.0 0.9404
CS2 329.3 356.3 7.6 218.1 249.4 12.6 1.510 1.429 5.4 0.9925

From table 4.5, it is possible to observe that bridges SU3a, SU3b, SU3c, SU4c and SU4d have
small values for the deviations of the mode correction factors ∆ΓVθ and ∆βVθ. Additionally,
the values of MACVθ for these bridges are generally greater than 0.9. For the suspension
bridges SU1, SU2, SU4a and SU4b, the mode correction factor deviations ∆ΓVθ and ∆βVθ

are slightly more important, especially for ∆ΓVθ for SU1 and SU4a. It is also worth noting
that the values for MACVθ are less than 0.9 unlike the other suspension bridges. A potential
explanation is that bridges SU1, SU2, SU4a and SU4b have main spans shorter than the
other suspension bridges, which means that they have a greater relative contribution from
their bridge deck to the bridge dynamic behavior due to smaller main cables. Additionally,
the contribution from the bridge deck in terms of dynamic behavior is relatively greater for
the torsional modes than the vertical modes as demonstrated by larger natural frequencies
for the torsional modes than for the vertical ones. For example, the torsional-to-vertical
frequency ratios for bridges SU4a, SU4b, SU4c and SU4d are respectively 1.79, 1.63, 1.51
and 1.39. Therefore, this ratio decreases with an increasing span length. The fact that shorter
bridges have larger frequency ratios indicate that their bridge deck contributes more to the
dynamic torsional behavior of the bridge in comparison to the vertical dynamic behavior.
This means that the modal shape function ψαθ (x) is affected differently by the bridge deck
than the vertical function ψh

V(x). All of this leads to slightly different mode correction factors
and smaller values of MACVθ in the case of suspension bridges with shorter span lengths.
For the cable-stayed bridges CS1 and CS2, values for MACVθ are greater than 0.9. The
mode correction factor deviations ∆ΓVθ and ∆βVθ are acceptable except for ∆ΓVθ for bridge
CS1, for which the deviation is more than 20 %. For all the bridges, it is also observed that
the deviations ∆ΓVθ2 are greater than the deviations ∆ΓVθ. However, since Γh

V2 and Γαθ2 do
not intervene directly in the mode correction of the nonlinear restoring forces, this is not
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problematic. From all the previous observations and considering that suspension bridges
with very long spans are more interesting for this research on structural nonlinearities, the
approximations made in section 4.4 that assume that ψh

V(x) ≈ ψαθ (x) and βV ≈ βθ seem
reasonable.

4.5.4 Mean Wind Response from Section Model Tests

In the case of nonlinear tests, the static displacements must also be considered as it influ-
ences the restoring forces and the nonlinear dynamic behavior as demonstrated by eq. 4.49.
Therefore, this section verifies that the mean wind response can be approximated with a
sufficient level of accuracy from section model tests. This is done by comparing the nonlinear
aerostatic response of the full bridge as per [19] to the solution of the following equation for
the section-model case:

 f
∗

V(ys
V , y

s
θ)

f
∗

θ(y
s
V , y

s
θ)

 =  Ls0 + L′sy
s
θ

Ms0 + M′sy
s
θ

 (4.70)

Equation 4.70 is obtained by setting the dynamic displacements to zero in eq. 4.39 and
considering only the mean aerodynamic loads. It should be noted that in eq. 4.70 the
restoring force vector accounts for the mass correction factors of eqs. 4.64 and 4.65. The
static displacements of the section model ys

V and ys
θ are calculated by solving eq. 4.70

using the Newton-Raphson method. From these, eq. 4.47 is utilized to give the generalized
displacements of the full bridge that are used to calculate an approximation of the full-bridge
mean wind response using hs(x) ≈ ψh

V(x)zs
h and αs(x) ≈ ψαθ (x)zs

θ. This procedure was utilized
for the eleven cable-supported bridges in the case of the first symmetric modal pair. An
initial angle of attack of 0° was also considered.

In what follows, selected results are presented for a comparison between the full-bridge mean
wind response from nonlinear aerostatic analysis and the section-model results obtained
using the procedure described in the previous paragraph. Figure 4.6 compares the maximum
bridge-deck displacements at midspan obtained from section-model analysis and full-bridge
analysis for an increasing wind speed. Results for bridges SU2, SU3b and SU4d are shown.
In fig. 4.7, the static displacements along the bridge deck from section-model analysis and
full-bridge analysis are compared for a mean wind speed of 60 m/s. The vertical dotted lines
in fig. 4.7 shows the tower locations. Since bridge SU4d is a single-span suspension bridge,
the tower locations are not illustrated in fig. 4.7c.

As it can be observed in fig. 4.6, the section-model approach provides a better evaluation of
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(a) Bridge SU2 (b) Bridge SU3b (c) Bridge SU4d

Figure 4.6: Maximum bridge-deck displacements under mean aerodynamic loads

(a) Bridge SU2 (b) Bridge SU3b (c) Bridge SU4d

Figure 4.7: Bridge-deck displacement profile for mean aerodynamic loads at 60 m/s

the maximum torsional rotation in comparison to the vertical displacement. This is because,
compared to the rotation, the displacement profile obtained from the vertical mode shape for
the section-model results demonstrates larger differences than the profile obtained for the
full bridge. This can be seen in fig. 4.7. Similar results were obtained for the other bridges.
Consequently, even though the vertical displacements are not approximated as well as for
the torsional rotations in the section model approach, there is only a noticeable difference for
wind speeds over about 60 m/s. As nonlinear section model tests mainly aim at assessing the
nonlinear dynamic behavior of bridges under wind loads, it appears that the static response
is approximated with a sufficient degree of accuracy in section model tests. Also, because of
the relatively small rotations of the bridge deck along its length, it is reasonable to assume
that the same flutter derivatives can be used everywhere along the bridge deck as considered
in section 4.4.2.
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4.5.5 Buffeting Force Vector

The buffeting force vector in eq. 4.39 for the section model and the one in eq. 4.49 obtained
from the full-bridge modal equations have analogous expressions. For the section-model
case, the effective buffeting force per unit length f

b
V,mp(t) and effective buffeting moment per

unit length f
b
θ,mp(t) are:

f
b
V,mp(t) =

∫
Lmp

Lb(x, t) dx

Lmp
(4.71)

f
b
θ,mp(t) =

∫
Lmp

Mb(x, t) dx

Lmp
(4.72)

For the full-bridge case, the following equations give respectively the expression for the
effective buffeting force per unit length f

b
V,br(t) and the effective moment per unit length

f
b
θ,br(t):

f
b
V,br(t) =

∫
Lbr

∣∣∣ψh
V(x)

∣∣∣ Lb(x, t) dx∫
Lbr

∣∣∣ψh
V(x)

∣∣∣ dx
(4.73)

f
b
θ,br(t) =

∫
Lbr

∣∣∣ψαθ (x)
∣∣∣ Mb(x, t) dx∫

Lbr

∣∣∣ψαθ (x)
∣∣∣ dx

(4.74)

To be consistent with the discussion in section 4.4.8 and to avoid a division by zero in the
hypothetical case of antisymmetric modes, the absolute values of the modal functions are
considered in eqs. 4.73 and 4.74.

In order to check whether section model tests can approximate in a satisfactory manner the
buffeting response for the first symmetric modal pair, it is relevant to compare eqs. 4.71
and 4.72 to eqs. 4.73 and 4.74 in the case of a numerically simulated wind field. The
numerical wind time histories were generated using the ergodic spectral representation
method [201] and assuming the spectral representation by Solari and Piccardo [202]. The
simulated wind field was generated every 30 m along the bridge deck for a mean wind speed
of 60 m/s. Longitudinal and vertical turbulence intensities are respectively 10 % and 5 %.

Previously, the buffeting forces were expressed using a frequency-domain model, but for this
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demonstration, a time-domain approach is preferred. This is because the nonlinear behavior
considered for section model tests also evolves in the time domain. Therefore, the buffeting
force and moment in eqs. 4.71–4.74 are expressed as follows considering the dimensionless
time s = Ut/B [203, 204]:

Lb(x, s) =
1
2
ρU2B

∫ s

0

(
2CL0 ϕ

′
Lu(s − σ)

u(x, σ)
U

+ (C′L +CD0) ϕ′Lw(s − σ)
w(x, σ)

U

)
dσ (4.75)

Mb(x, s) =
1
2
ρU2B2

∫ s

0

(
2CM0 ϕ

′
Mu(s − σ)

u(x, σ)
U

+C′M ϕ′Mw(s − σ)
w(x, σ)

U

)
dσ (4.76)

where the prime denotes the derivative with respect to the dimensionless time s; ϕLu, ϕLw,
ϕMu and ϕMw are the buffeting indicial functions. For the sake of this demonstration, it is
sufficient to use the Küssner function in place of the indicial functions. The Küssner function
and its derivative are given below [203]:

ϕ(s) = 1 − 0.500e−0.130s − 0.500e−s (4.77)

ϕ′(s) = 0.065e−0.130s + 0.500e−s (4.78)

where ϕ(s) and ϕ′(s) are the Küssner function and its derivatives. For the sake of brevity, the
terms for the initial conditions in eqs. 4.75 and 4.76 are omitted since ϕ(0) = 0. It should
be noted that the quasi-steady approach has often been utilized for calculating the buffeting
forces, but the inclusion of the frequency dependence through aerodynamic admittance
functions has become common practice in frequency-domain buffeting analysis (e.g. see
[34, 188, 205]). When the admittance functions for the lift and moment are not available,
the Sears function has often been considered in lieu of experimentally measured admittance
functions. This is why herein the Küssner function is utilized as it is the time-domain
counterpart of the Sears function. This was similarly done in [82] to account for the time lag
effect in an approximate manner.

Figure 4.8 presents a comparison of the time histories of the effective buffeting forces of
bridges SU4a, SU4d and CS1 for the full-scale section model and the full bridge. A length
of 160 m is considered for the section model, which corresponds to the full-scale length of
a 1/75 model of typical length tested at the Boundary Layer Wind Tunnel Laboratory at
the University of Western Ontario (BLWTL). In fig. 4.9, the power spectral densities (PSD)
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(a) Bridge SU4a (b) Bridge SU4d (c) Bridge CS1

Figure 4.8: Time histories of effective buffeting forces per unit length

S
b
f V and S

b
f θ of the effective buffeting force per unit length f

b
V(t) and effective buffeting

moment per unit length f
b
θ(t) are compared for the section model and the full bridge. To

obtain the results presented in these figures, a wind field was generated along the bridge
deck. Then, the buffeting forces were calculated at different locations along the bridge
deck using eqs. 4.75 and 4.76. Afterwards, the effective buffeting forces are obtained from
eqs. 4.73 and 4.74 for the full bridge. The same wind field is considered for the section
model, but the integration over the length of the section model in eqs. 4.71 and 4.72 is done
using the wind field around the middle of the bridge. This is justified by the fact that section
model tests aim at predicting the generalized displacements of specific modes, which are
related to the maximum modal displacements occurring in the middle of the bridge for the
first symmetric modes. Therefore, either for the full bridge or the section model, a time
integration at different locations along the bridge deck is utilized to obtain the buffeting
forces at these locations. Then, a span-wise integration is performed to obtain the effective
buffeting forces per unit length.

As it can be seen in fig. 4.8, there is a very good agreement between the section model and
the full bridge for the time histories of the effective buffeting forces. Similarly, the PSDs
agree well in fig. 4.9. It is worth noting that there is a slightly larger discrepancy for bridge
SU4d in fig. 4.9b in comparison to figs. 4.9a and 4.9c. This is explained by the longer span
length of 3000 m in comparison to bridges SU4a and CS1 with span lengths of 1200 m and
856 m respectively. It should be noted that the results for the other bridges in table 4.1 also
agree well.

It is worth noting that the low-frequency content of the wind spectra cannot be modeled
correctly in section model tests when grid-generated turbulence is used. However, the grid-
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(a) Bridge SU4a (b) Bridge SU4d (c) Bridge CS1

Figure 4.9: Power spectral density of effective buffeting forces per unit length

generated turbulence in the frequency range of the natural frequencies of the first symmetric
modal pair is believed to be sufficiently accurate for the sake of this research. From this
demonstration and discussion, it is possible to conclude that the buffeting effects can be
considered in a satisfactory manner to see whether buffeting effects can trigger a nonlinear
dynamic instability in nonlinear section model tests.

4.6 Example and Discussion on Scaled Nonlinear Gen-

eralized Behavior

4.6.1 Example of Scaled Nonlinear Generalized Behavior for Bridge

SU4c

The discussion in section 4.5 confirms the validity of the assumptions utilized in the scaling
procedure of section 4.4 for nonlinear section model tests. Therefore, it is now of interest
to calculate the scaled nonlinear generalized behavior corresponding to the first symmetric
modal pair for the bridges of table 4.1. After calculating the nonlinear generalized stiffness
parameters using the procedure described in section 4.3, they were scaled using eqs. 4.57
and 4.58. As method B∗ is considered in this research to calculate the mass properties of
the section models, mass correction factors were applied to the scaled nonlinear generalized
behavior as shown in eqs. 4.64 and 4.65.

For the sake of brevity and from the fact that similar results are obtained for the different
bridges, scaled nonlinear generalized stiffness parameters are shown in fig. 4.10 only for
bridge SU4c. For this specific case, the scaling factors used are λL = 1/75 and λU = 1/3.75,
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(a) Generalized restoring forces (b) Generalized stiffnesses

Figure 4.10: Scaled nonlinear generalized behavior for bridge SU4c (λL = 1/75 and
λU = 1/3.75)

which are realistic values for the BLWTL. The scaled generalized restoring forces per unit
length f

∗

jm and the scaled generalized stiffnesses per unit length k
t∗
jkm are presented in this

figure. The nonlinear stiffness behavior can be seen for the diagonal terms. Also, the
non-zero off-diagonal terms in fig. 4.10b confirms the nonlinear coupling between vertical
and torsional modes.

4.6.2 Comparison Between Linear and Nonlinear Cases for Bridge

SU4c

In order to better understand the impact of considering a nonlinear structural behavior as
shown in fig. 4.10 on section model tests, it is of interest to make a comparison between the
linear case and the nonlinear case. To do so, the forces per unit length are calculated using
the linear and nonlinear procedures for four different displacement scenarios. The results
of this analysis are presented in fig. 4.11 for bridge SU4c with λL = 1/75 and λU = 1/3.75.
The first scenario is for small displacements of the section model that vary between ±0.02 m
and ±1°. Additionally, for the first displacement scenario, the vertical displacements are
considered to vary linearly with respect to a pseudo-time, whereas the torsional rotations vary
in a sinusoidal manner with respect to the pseudo-time. The results for the first displacement
scenario are shown in fig. 4.11a. Similarly, fig. 4.11b presents the results for the second
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displacement scenario, which considers the same displacement limits as for the first case,
but yVm varies sinusoidally and yθm varies linearly in this case. For the third and fourth
displacement cases shown in figs. 4.11c and 4.11d, large displacements varying between
±0.1 m and ±5° are utilized. For the third scenario, yVm and yθm are respectively linear and
sinusoidal (fig. 4.11c). For the fourth scenario in fig. 4.11d, the vertical displacements are
sinusoidal with respect to the pseudo-time, and the torsional rotations are linear. In each
subfigure of fig. 4.11, the two top graphs are the displacements, and the two bottom graphs
correspond to the vertical force and torsional moment per unit length. In fig. 4.11, the solid
line corresponds to the linear case based on the natural frequencies and mass properties,
whereas the dashed line refers to the nonlinear case based on the approach of section 4.4.

Firstly, in figs. 4.11a and 4.11b, it is interesting to note that for small displacements, the
nonlinear approach gives the same results as for the linear approach that considers the linear
stiffness behavior given by k

∗

Vm = ω
2
Vmm∗Vm and k

∗

θm = ω
2
θmm∗θm. This observation therefore

confirms the validity of the nonlinear approach as it reduces to a linear behavior for small
displacements. It also confirms the demonstration made in eq. 4.60. However, in the case of
large displacements, there are discrepancies between the linear and nonlinear approaches as
shown in figs. 4.11c and 4.11d. These subfigures show that the nonlinear behavior is more
important for the vertical force. It is also possible to see the nonlinear vertical-torsional
coupling in these figures. For example, in fig. 4.11c, the maximum values of the torsional
moment per unit length f

∗

θm are greater for a pseudo-time from 0 to 200 than for a pseudo-
time from 800 to 1000. The nonlinear vertical-torsional coupling is also demonstrated by the
sinusoidal variation of f

∗

θm around the linear case in fig. 4.11d. From this analysis, the effect
of structural nonlinearities seems to be negligible for small displacements, but for larger
displacements they are more apparent. It therefore seems of interest to use an experimental
approach to see whether they could have an effect on the aeroelastic stability of bridges.

4.6.3 Implications of Nonlinear Structural Behavior on Testing Pro-

cedure

Typical experimental rigs for section model tests use vertical springs connected to a torsion
arm as described in [30]. Such an experimental setup has vertical and torsional stiffnesses
that are constant irrespective of the amplitude of vibration, which means that such rig behaves
linearly [104]. Consequently, using a setup consisting of vertical springs, it is not possible to
represent a nonlinear structural behavior similar to the one presented in fig. 4.10. Therefore,
it will be required to use a different experimental approach in order to conduct nonlinear
section model tests for bridges.
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(a) Small displacements (yVm: linear, yθm: sinu-
soidal)

(b) Small displacements (yVm: sinusoidal, yθm:
linear)

(c) Large displacements (yVm: linear, yθm: sinu-
soidal)

(d) Large displacements (yVm: sinusoidal, yθm:
linear)

Figure 4.11: Analysis of nonlinear behavior for the scaled section model of bridge SU4c
(λL = 1/75 and λU = 1/3.75)
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To simulate a nonlinear behavior similar to fig. 4.10 in the wind tunnel, it would be possible to
utilize an active control experimental test rig like the one proposed in [62], which allows real-
time hybrid tests. In such real-time hybrid tests, the aerodynamic forces applied to the section
model are measured from wind tunnel tests. Then, the measured aerodynamic forces are
applied to a numerical model of the dynamic system that accounts for the nonlinear structural
behavior. By solving numerically the dynamic system, the corresponding displacements
of the section model are obtained, which are then imposed to the section model using
electric motors, for example. Such an experimental procedure requires a very sophisticated
experimental apparatus composed of a data acquisition system, electric motors, a control
system for the motors and a computer. The difficulty of such a procedure is undoubtedly its
real-time aspect.

Considering that conducting real-time hybrid wind tunnel tests at the BLWTL would require
substantial developments and investments, it appears that developing a nonlinear mechanical
device would be more reasonable for an initial experimental investigation of the effect of
structural nonlinearities on the aeroelastic stability of bridges. Such a nonlinear device needs
to be able to simulate with sufficient accuracy a nonlinear structural behavior similar to
fig. 4.10. Based on the research in [57], it appears feasible to design a nonlinear mechanical
device for nonlinear section model tests. Currently, different options are being studied for a
nonlinear springing system that can be utilized for nonlinear section model tests of bridges.
This includes springs with varying pitch or diameter, contact springs, inclined springs and
nonlinear cam mechanisms.

4.7 Conclusions

As spans are getting longer in cable-supported bridges, it seems appropriate to develop
a better understanding of the incidence of structural nonlinearities on the aeroelastic and
dynamic stability of these bridges. This is validated by the observations made by math-
ematicians regarding large oscillations in suspension bridges due to nonlinear dynamic
phenomena associated with geometric nonlinearities of the bridge structure. It is believed
that an experimental approach would be an effective way to study the wind response of
bridges when structural nonlinearities are considered. Therefore, in order to eventually
assess the effect of structural nonlinearities on the stability of bridges, the idea of accounting
for geometric nonlinearities when conducting section model tests for bridges is proposed in
this chapter.

After revisiting two-mode nonlinear generalized stiffness analysis of bridges for one vertical
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mode of vibration and one analogous torsional mode, the nonlinear dynamic equations in
the modal space for the full bridge and the section-model equations were derived. Because
of the different shapes of the modes of vibration for the full bridge and the section model,
it was needed to develop expressions for mode correction factors to be applied to the two-
mode nonlinear generalized restoring forces of the full bridge. This was accomplished
by comparing the full-bridge dynamic equations to the section-model equations. It was
also shown how to convert, from full scale to model scale, the mode-corrected two-mode
nonlinear generalized behavior, which is to be used for nonlinear section model tests.

Then, it was required to validate the assumptions made in the development of the theoretical
equations for nonlinear section model tests. Eleven finite element models of cable-supported
bridges were utilized for this purpose. The full-bridge mean wind responses of the different
bridges were analyzed to see whether the static rotation of the bridge deck is small. An
analysis of the effective distributed mass properties to be considered for section model tests
was included. The shape similarity between analogous vertical and torsional modes was
checked, and it was concluded that they have a very good similarity for most of the eleven
bridges. It was verified that the mean wind response of the bridge can be approximated with
a sufficient level of accuracy using section model tests when the first symmetric vertical-
torsional modal pair is considered for the section model. The buffeting forces for the full
bridge and the section model were also compared. A good agreement was found, but it is
important to keep in mind the limitations of the grid-generated turbulence typically utilized
for section model tests. Finally, the scaling procedure of the nonlinear generalized behavior
was tested.

An experimental rig for such nonlinear section model tests is currently being designed, and
wind tunnel tests are expected to be conducted in the near future. The findings and results
of such nonlinear tests will be reported in future publications. Eventually, this research
will allow a better understanding of the interaction between structural nonlinearities and
aeroelastic effects for long span cable-supported bridges.



115

Chapter 5

Design of Test Rig for Nonlinear Section Model

Tests

5.1 Introduction

Even though the use of computational fluid dynamics (CFD) has been more common in the
field of bridge engineering in the past years (e.g. [64]), wind tunnel tests are still today the
norm for assessing the safety of cable-supported bridges under wind loads. The two most
common types of wind tunnel tests are full-aeroelastic model tests and section model tests.
Considering that all structural elements are included in full-aeroelastic model tests, they
provide an accurate prediction of the full-bridge response [29]. However, these tests are
complicated and expensive due to the size and intricacy required for full-aeroelastic models.
Compared to full-aeroelastic model tests, section model tests, where a rigid segment of a
bridge deck is suspended by a springing system, are affordable and relatively straightforward
[30]. In general, section model tests can represent one vertical mode and one torsional
mode, but a lateral mode has also been included in some cases [32]. Some interesting
developments have been made for experimental apparatuses utilized for section model tests
that have expanded their usefulness. For example, a dynamometric section model of the
Messina Strait Bridge was developed [36]. In [37], an innovative section model test rig that
can be utilized for free- and forced-vibration tests was designed. Another example is the
development of a forced-vibration test rig that can be used for arbitrary motion [40]. With the
idea of increasing the number of modes represented in section model tests while keeping the
simplicity of such tests, taut-strip model tests were developed [59]. These tests are suitable
for bridges having sinusoidal modes of vibration since the model stiffness is provided through
taut wire or tubes. Hence, a taut-strip model can be seen as a long flexible section model.
More recently, a multi-supported aeroelastic model was used, but only vertical modes were
considered since the research in [60] focused on vortex-induced vibrations in the vertical
direction. Moreover, similar to what is used in structural engineering, real-time hybrid tests
where the aeroelastic system would be partially modeled in the lab and partially represented
in a numerical model are discussed [61, 62].

Even though there are so many options when it comes to choosing an experimental approach
for testing bridges in a wind tunnel, bridge engineers have often chosen section model
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tests due to their simplicity, versatility and cost effectiveness. Even with the advancements
made over many decades in experimental apparatus, the same simplifications in terms of
aerodynamic and structural behaviors are still used for section model tests in the case of
bridges. For example, these tests neglect the aerodynamic contribution of the cable system.
Only one mode in each direction can be represented at a time in section model tests, which is
assumed to be uniform along the length of the section model. Additionally, since the modes
represented in the wind tunnel originate from linear structural dynamics theory, the bridge
structure is therefore assumed to behave linearly.

However, cable-supported bridges can exhibit structural nonlinearities such as geometric non-
linearities [149, 150], material nonlinearities [147, 151] as well as localized nonlinearities
like hydraulic buffers [12, 17, 151]. Furthermore, using advanced mathematical approaches,
it was shown that dynamic vertical forcing can lead to large torsional oscillations due to
nonlinear vertical-torsional mode coupling associated with geometric nonlinearities [168–
170]. Internal parametric resonance, a structural dynamic instability caused by the nonlinear
structural coupling between modes of vibration, would be responsible for such large oscil-
lations [170]. This instability has a structural origin unlike flutter, which is an aeroelastic
phenomenon. In order to have a better understanding of nonlinear vertical-torsional coupling
in cable-supported bridges, modal loads were applied to geometrically nonlinear structures,
which allowed quantifying the level of nonlinear coupling (see chapter 3). It was shown
that single-span suspension bridges have a stronger nonlinear coupling than three-span
suspension bridges and cable-stayed bridges. The longer spans were also shown to be more
nonlinear due to the greater contribution of the cable system to the bridge structural behavior.

To the author’s knowledge, large oscillations caused by a structural dynamic instability as
described in the previous paragraph has never been seen on an actual structure. Nevertheless,
for a full-aeroelastic model of a double-main-span suspension bridge, a transition from an
antisymmetric instability mode to a symmetric instability mode was observed [171]. What
was observed for this full-aeroelastic bridge model would be caused by internal resonance
associated with the nonlinearities of the aeroelastic system [172, 173]. This phenomenon
is different than the flutter mode transition of [174] associated with two flutter instability
modes having the same critical wind speed. These observations have led to numerous
recent studies on nonlinear flutter and aerodynamic nonlinearities [90, 96, 100, 101, 120].
These studies have only focused on aerodynamic nonlinearities, and in recent experimental
studies for bridges, structural nonlinearities are only discussed in the assessment of stiffness
and damping nonlinearities of the section model test rig [90, 102, 104]. Nonetheless, the
section model test apparatus of [45] demonstrates a weak nonlinear structural behavior
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in torsion for rotations greater than 15°. This nonlinear behavior is caused by the fact
that the test rig in [45] uses a different mechanism than vertical springs to allow for large
amplitudes of motion of the section model. Therefore, it appears unlikely that the nonlinear
torsional behavior in [45] is representative of an actual cable-supported bridge. However, the
experimental rig in [45] is interesting for studying aerodynamic nonlinearities as it allows
for large displacements. Another example of test rig able of large displacements is discussed
in [47], but this rig is only of interest for aerodynamic nonlinearities since it has a linear
structural behavior. In aeronautics, section model tests on airfoils have been conducted
considering different types of structural nonlinearities, including freeplay, bilinear, parabolic
and cubic nonlinearities (e.g. [50, 52, 54, 57]). It is worth mentioning that in the case of an
airfoil with a bilinear behavior, it was observed that the critical velocity is less than in the
case of a linear structural behavior [54]. The nonlinear system in [54] was weakly nonlinear
with a difference of 14 % between the two stiffnesses of the bilinear system.

Considering that even weakly nonlinear systems can exhibit nonlinear dynamic phenomena
[175], it appears appropriate to have a better understanding of the possible interaction
between structural nonlinearities and aeroelastic effects. An appropriate way to achieve
this would be to use an experimental approach. Consequently, this chapter presents the
design of an experimental apparatus for section model tests of bridges able to account for
the effect of structural nonlinearities. At first, a procedure to characterize and scale the
target nonlinear generalized structural behavior of a cable-supported bridge in the context
of nonlinear section model tests is reviewed. Then, a mechanical system able to model the
nonlinear structural behavior for section model tests is discussed as well as a numerical
approach used to calibrate the parameters of the mechanical system. Using four single-span
suspension bridges with main spans ranging from 1.2 km to 3.0 km as case studies, this
calibration procedure is tested to ensure its practicality. After discussing the characteristics
needed for a nonlinear section model test rig, the design of such a test rig is briefly presented.

5.2 Scaled Nonlinear Generalized Structural Behavior

Between full-aeroelastic model tests, section model tests and taut-strip model tests, it is
believed that the section model testing procedure is well suited for an experimental study of
the effect of structural geometric nonlinearities on the stability of bridges when subjected
to wind. This is because, even though full-aeroelastic models are in theory able to account
for geometric nonlinearities, there is still the limitation that only either the bending stiffness
or axial stiffness of a specific structural element of a bridge can be properly scaled. For
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structural elements where both effects are important, their geometric stiffness would be
erroneous in a full-aeroelastic model. This would be the case for the deck of a cable-stayed
bridge that is rigidly connected to the towers like in the case of the Pont de Normandie

in France. Additionally, full-aeroelastic model tests are very expensive, and therefore,
they do not appear to be the right approach for an initial experimental study of structural
nonlinearities. In the case of taut-strip models, the taut wires or tubes used in such models
would not be able to represent the nonlinear behavior of a cable-supported bridge. For a
bridge, an upward displacement leads to stiffness softening and a downward displacement
is associated with stiffness hardening (see chapter 3), whereas a taut-strip model has a
hardening behavior in both directions.

Even though section model tests are only able to account for one mode in each direction,
their affordability and ease of use make them interesting for an assessment of the influence
of structural nonlinearities on the wind response of bridges. The fact that only one mode
in each direction can be represented can be circumvented by recognizing that nonlinear
dynamic instability phenomena involve specific modes. Consequently, nonlinear section
model tests should pay attention to the modes that are more critical for dynamic instabilities.
Additionally, section model tests are versatile due to the easy access to the springing system,
damping devices and ballast masses at both ends of the section model. Because of their
versatility and the fact they represent a simplified representation of the bridge aeroelastic
system, they have become popular in research for the study of the wind behavior of bridges.
They also allow an easier interpretation of the studied phenomenon. Replacing the springing
system by a nonlinear device representing the nonlinear behavior of a bridge and from which
a section model will be suspended will allow nonlinear tests.

In the case of this research, the effect of structural nonlinearities on the wind stability
of bridges is of interest, more specially stiffness nonlinearities. Due to the difficulty to
characterize nonlinear structural damping in cable-supported bridges, an effective viscous
damping is sufficient for an initial development of nonlinear section model tests. The
procedure discussed herein for nonlinear section model tests of bridges does not aim at
replacing the wind analysis procedure used in the industry that combines section model tests
and numerical simulations. This research aims at improving the section model test procedure
so that section model tests can be used for assessing the effect of structural nonlinearities on
the aeroelastic stability of bridges. This research solely focuses on structural nonlinearities,
but it should be recognized that aerodynamic nonlinearities are automatically considered
when conducting section model tests.

Before discussing a mechanical device for such nonlinear tests, it is relevant to review the
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theoretical developments for nonlinear section model tests of bridges. For more details about
the theory, the reader is referred to chapters 3 and 4.

5.2.1 Nonlinear Generalized Stiffness

For nonlinear section model tests, it is assumed that only geometric nonlinearities are of
concern. This appears to be a reasonable assumption since the cable system of a properly
designed cable-supported bridge is the main structural component and it is also designed
elastically [149]. A detailed discussion about the fact that only geometric nonlinearities
are relevant for nonlinear section model tests can be found in chapter 4. Therefore, the
calculation of nonlinear generalized structural behavior for nonlinear tests that is reviewed
in this section will only account for geometric nonlinearities. Longitudinal hydraulic buffers
are also considered as inactive when determining the nonlinear generalized stiffness behavior
of a bridge.

As for typical section model tests, two degrees of freedom (DOF) are considered in the
case of nonlinear tests, which are a vertical displacement yV and a torsional rotation yθ.
Consequently, as shown in fig. 5.1, one vertical mode and one analogous torsional mode can
be represented. However, in the case of nonlinear tests, the stiffness properties of the system
cannot be calculated from the mass properties and natural frequencies. Instead, it is needed
to determine a nonlinear force-displacement relationship representative of the full-bridge
behavior. This is done by considering two-mode nonlinear generalized stiffness analysis
as discussed in chapter 3. By applying static loads proportional to modes of vibration to
a nonlinear finite element model of a cable-supported bridge, it is possible to quantify the
nonlinear behavior of the bridge in terms of selected modes of vibration, which are intrinsic
dynamic properties.

Two-mode nonlinear generalized stiffness analysis begins by solving the following nonlinear
static equation:

fS G(unl) = pm
Vθ (5.1)

pm
Vθ = pm

V + pm
θ = aVω

2
VMϕV + aθω2

θMϕθ (5.2)

where fS G(unl) is the internal force vector of the nonlinear geometric system of a bridge with
inactive hydraulic buffers; unl is the nonlinear displacement vector obtained from nonlinear
static analysis; M is the mass matrix calculated using the finite element method; aV and
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Figure 5.1: Dynamic system of a bridge section model (yV : vertical displacement, yθ:
torsional rotation, B: bridge-deck width, U: mean wind speed, L: vertical force, M: torsional
moment)

aθ are respectively the modal load coefficients for mode ϕV and mode ϕθ; ωV = 2π fV and
ωθ = 2π fθ are respectively the natural angular frequencies for mode ϕV and mode ϕθ; fV

and fθ are the natural frequencies for mode ϕV and mode ϕθ. In eq. 5.1, the dead-load
configuration is utilized as the reference state of the bridge numerical model. The natural
frequencies and mode shapes are also for the dead-load configuration. Modes are normalized
such that the maximum vertical displacement is unity for ϕV , and the maximum torsional
rotation is unity for ϕθ. Doing so facilitates the physical interpretation of the generalized
displacements.

By solving eq. 5.1 considering different values of the modal coefficients aV and aθ, it
is possible to obtain a nonlinear generalized force-displacement relationship that can be
expressed as follows (see chapters 3 and 4):

f̃Vθ(zVθ) =

 f̃V(zV , zθ)
f̃θ(zV , zθ)

 (5.3)

where f̃Vθ(zVθ) is the generalized restoring force vector associated with modes ϕV and mode
ϕθ; zVθ = [zV zθ]T; zV and zθ are respectively the vertical mode generalized displacement
and torsional mode generalized displacement, which are calculated by applying a modal
transformation to unl. From the nonlinear force-displacement relationship of eq. 5.3, a
nonlinear generalized stiffness matrix can be obtained using the following equation:
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K̃t
Vθ(zVθ) =

∂f̃Vθ

∂zVθ
=

∂ f̃V
∂zV

∂ f̃V
∂zθ

∂ f̃θ
∂zV

∂ f̃θ
∂zθ

 (5.4)

where K̃t
Vθ(zVθ) is the two-mode tangent nonlinear generalized stiffness matrix, which is a

function of the generalized displacement vector zVθ. Since only geometric nonlinearities are
accounted for in the process of calculating f̃Vθ(zVθ) and K̃t

Vθ(zVθ), the two-DOF nonlinear
generalized system represented by eqs. 5.3 and 5.4 is therefore a conservative system.

As discussed in chapter 4, eq. 5.3 represents the restoring forces of a reduced-order model
based on linear modes of vibration that accounts for the nonlinear geometric structural be-
havior. This is similar in principle to the approach of [190] utilized in aerospace engineering.
For the reduced-modeling approach of [190], it was shown that a significant reduction in the
size of the geometrically nonlinear dynamic system can be achieved since only a few modes
are required in order to get good results. The dynamic response of a reduced-order model is
solved numerically as shown in [190], but herein, the nonlinear structural behavior given by
eq. 5.3 will be modeled mechanically and the dynamic response of the nonlinear generalized
system will be obtained from section model tests in the wind tunnel. It is possible to see that
eqs. 5.3 and 5.4 can represent the information needed for nonlinear section model tests, i.e.,
the individual nonlinear vertical behavior, the individual nonlinear torsional behavior and
the nonlinear vertical-torsional coupling.

It is also worth noting that nonlinear generalized stiffness analysis as discussed in this section
in the context of nonlinear section model tests is more relevant for the first symmetric vertical
mode and the first symmetric torsional mode, i.e., the first symmetric modal pair. This is
because symmetric vertical-torsional modal pairs were shown to be more nonlinear than
antisymmetric ones (see chapter 3). Consequently, unless specifically mentioned, modes
ϕV and ϕθ from now refer to the first symmetric ones. This indicates that linear tests can be
utilized for the first antisymmetric modal pair, whereas nonlinear tests would be utilized for
the first symmetric modal pair. Even though the first antisymmetric modal pair is typically
critical with regard to flutter for very long suspension bridges, the critical velocities for the
antisymmetric modes and symmetric modes can be similar as observed in [174]. Considering
that, it would be interesting to see whether the nonlinear structural behavior could trigger
the symmetric instability to happen for a lower wind speed than for the antisymmetric case.
This could be possible considering that the nonlinear structural behavior was shown to lower
the critical velocity for an airfoil in [54].
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(a) Full bridge (b) Section model

Figure 5.2: Comparison of typical mode shapes for a full bridge and a section model

5.2.2 Mode Correction Factors for Nonlinear Generalized Stiffness

As exemplified in fig. 5.2, a full-scale bridge has modal displacements that vary along the
length of the bridge; this is unlike the section model for which mode shapes are uniform.
Therefore, by comparing the modal dynamic equations of the full bridge to those of the
section model case, it can be demonstrated that the force-displacement relationship of eq. 5.3
has to be modified with mode correction factors (see chapter 4). These correction factors are
calculated using the following modal integrals:

Γh
V =

∫
Lbr

∣∣∣ψh
V(x)

∣∣∣ dx Γαθ =

∫
Lbr

∣∣∣ψαθ (x)
∣∣∣ dx (5.5)

where Γh
V are Γαθ are the mode correction factors for the generalized restoring forces; ψh

V(x)
is a function for the vertical displacements along the bridge deck of the first symmetric
vertical mode; ψαθ (x) is a function for the torsional rotations along the bridge deck of the first
symmetric torsional mode; x is the position along the deck; Lbr is the length of the bridge.
The modal functions ψh

V(x) and ψαθ (x) can be obtained from the mode vectors ϕV and ϕθ
respectively. Also, it is worth noting that the absolute values of ψh

V(x) and ψαθ (x) are utilized
in eq. 5.5 since the modal displacement functions can have negative values.

Similarly, the generalized displacements also need a mode correction. To do so, the following
modal integrals need to be calculated first:

Γh
V2 =

∫
Lbr

[ψh
V(x)]2 dx Γαθ2 =

∫
Lbr

[ψαθ (x)]2 dx (5.6)

Then, the mode correction factors βV and βθ for the generalized displacements can be
obtained using the following equations:
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βV =
Γh

V

Γh
V2

=

∫
Lbr

∣∣∣ψh
V(x)

∣∣∣ dx∫
Lbr

[ψh
V(x)]2 dx

(5.7)

βθ =
Γαθ

Γαθ2
=

∫
Lbr

∣∣∣ψαθ (x)
∣∣∣ dx∫

Lbr
[ψαθ (x)]2 dx

(5.8)

The mode correction factors of eqs. 5.7 and 5.8 can be used to relate the vertical displacement
yV and torsional rotation yθ of the section model to the generalized displacements zV and zθ.
This is done using the following equations:

zV = βVyV zθ = βθyθ (5.9)

This equation directly gives the maximum displacements of the full bridge because of the
unity-based normalization used for the modes. By dividing the generalized restoring forces
f̃V(zV , zθ) and f̃θ(zV , zθ) by the modal integrals of eq. 5.5 and substituting the generalized
displacements zV and zθ by the expressions of eq. 5.9, the following equations can be obtained
for the mode-corrected generalized restoring forces per unit length f V(yV , yθ) and f θ(yV , yθ),
which are the quantities required for nonlinear section model tests:

f V(yV , yθ) =
f̃V(βVyV , βθyθ)

Γh
V

=
f̃V(βVyV , βθyθ)∫

Lbr
ψh

V(x) dx
(5.10)

f θ(yV , yθ) =
f̃θ(βVyV , βθyθ)

Γαθ
=

f̃θ(βVyV , βθyθ)∫
Lbr
ψαθ (x) dx

(5.11)

5.2.3 Effective Distributed Mass

After showing how to convert the generalized restoring forces into restoring forces per unit
length, it is worth discussing how to convert the generalized masses into the effective mass
and mass moment of inertia per unit length that will be considered for section model tests.
This can be done by dividing the generalized masses by the modal integrals of eq. 5.6:
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mV =
m̃V

Γh
V2

=
m̃V∫

Lbr
[ψh

V(x)]2 dx
(5.12)

mθ =
m̃θ

Γαθ2
=

m̃θ∫
Lbr

[ψαθ (x)]2 dx
(5.13)

where mV is the effective mass per unit length for the first symmetric vertical mode ϕV ; mθ is
the effective mass moment of inertia per unit length for the first symmetric torsional mode
ϕθ; m̃V = ϕ

T
VMϕV and m̃θ = ϕ

T
θMϕθ are the generalized masses for mode ϕV and mode ϕθ.

In chapter 4, it was shown that eqs. 5.12 and 5.13 overestimate the effective mass parameters
in specific cases. Consequently, the following equations were suggested for the effective
distributed mass properties:

m∗V =
m̃∗V∫

Lbr
[ψh

V(x)]2 dx
m∗θ =

m̃∗θ∫
Lbr

[ψαθ (x)]2 dx
(5.14)

where m̃∗V = ϕ∗V
TMϕ∗V with ϕ∗V being a vertical mode shape for which the components

corresponding to the longitudinal degrees of freedom are set to zero; m̃∗θ = ϕ
∗
θ

TMϕ∗θ with ϕ∗θ
being a torsional mode shape for which the components corresponding to the lateral degrees
of freedom are set to zero.

5.2.4 Scaling of Nonlinear Generalized Stiffness

The quantities discussed above have referred to a full-scale bridge. These quantities need to
be scaled in order to be utilized for section model tests. The mass properties, damping ratios
and displacements can be scaled using the usual approach as shown below:

mVm = λ
2
L mV p mθm = λ

4
L mθp (5.15)

ξVm = ξV p ξθm = ξθp (5.16)

yVm = λL yV p yθm = yθp (5.17)

where λL = Lm/Lp is the geometric scale; subscript m refers to the model; subscript p refers
to the prototype or full-scale bridge; ξV and ξθ are the damping ratios. The nonlinear force-
displacement relationship to be considered for nonlinear section model tests that corresponds
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to the generalized restoring forces per unit length f V(yV , yθ) and f θ(yV , yθ) needs to be scaled
as follows:

f Vm(yVm, yθm) = λ2
UλL f V p(yV p, yθp) = λ2

UλL f V p

(
yVm

λL
, yθm

)
(5.18)

f θm(yVm, yθm) = λ2
Uλ

2
L f θp(yV p, yθp) = λ2

Uλ
2
L f θp

(
yVm

λL
, yθm

)
(5.19)

where λU = Um/Up is the velocity scale. By combining eqs. 5.10 and 5.11 with eqs. 5.18
and 5.19, it is possible to obtain the restoring force parameters to be used for the scaled
section model:

f Vm(yVm, yθm) =
λ2

UλL

Γh
V

f̃V p

(
βV

λL
yVm, βθyθm

)
(5.20)

f θm(yVm, yθm) =
λ2

Uλ
2
L

Γαθ
f̃θp

(
βV

λL
yVm, βθyθm

)
(5.21)

5.3 Springing System for Nonlinear Section Model Tests

It is now required to conceptualize a mechanical device able to represent the scaled nonlinear
structural behavior of eqs. 5.20 and 5.21, which is needed for nonlinear section model
tests. Equations 5.20 and 5.21 represent a conservative mechanical system since only the
geometric nonlinearities are considered when calculating the nonlinear generalized stiffness
parameters. Therefore, the structural system to be represented in the wind tunnel is path
independent, depends only on the loads applied on it and does not dissipate energy through
hysteresis loops. After trying different solutions, it was found that a mechanical device for
nonlinear section model tests can be the system of inclined springs shown in fig. 5.3. In this
system, it is considered that the inclined springs have a linear behavior and that their lengths
and inclinations can be adjusted.

5.3.1 Target Scaled Properties for Inclined Spring System

Before determining a procedure to determine the stiffnesses as well the lengths and inclina-
tions of the springs, the equations for calculating the mass properties and nonlinear restoring
forces for a scaled section model of length Lmm are presented. As mentioned in section 5.2.3,
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Figure 5.3: Spring configuration for nonlinear section model tests

the mass properties given in eq. 5.14 are utilized in this research, which leads to the following
equations for the mass properties of the scaled section model:

m∗Vm = m∗VmLmm m∗θm = m∗θmLmm (5.22)

where m∗Vm and m∗θm are respectively the mass and mass moment of inertia of the scaled
section model; m∗Vm and m∗θm are the mass and mass moment of inertia per unit length of the
scaled section model. To obtain the restoring forces for a section model having the mass
properties shown in eq. 5.22, eqs. 5.20 and 5.21 have to be multiplied by the length of the
section model Lmm:

f ∗Vm(yVm, yθm) = Lmm
m∗V
mV

λ2
UλL

Γh
V

· f̃V p

(
βV

λL
yVm, βθyθm

)
(5.23)

f ∗θm(yVm, yθm) = Lmm
m∗θ
mθ

λ2
Uλ

2
L

Γαθ
· f̃θp

(
βV

λL
yVm, βθyθm

)
(5.24)

where f ∗Vm(yVm, yθm) and f ∗θm(yVm, yθm) are the scaled mass-corrected restoring vertical force
and moment. In eqs. 5.23 and 5.24, the mass-correction factors m∗V/mV and m∗θ/mθ need to
be used when the full-scale mass properties from eq. 5.14 are utilized. This is to ensure the
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correct natural frequencies when m∗V and m∗θ are considered for the mass properties of the
section model.

5.3.2 Resultant Forces for Inclined Spring System

To determine a spring configuration able to represent the nonlinear restoring forces of
eqs. 5.23 and 5.24, it is first needed to write the nonlinear equations for the resultant forces
caused by the springs in fig. 5.3. In fig. 5.3, the lever arms dt and db on the torsion arm of
the top springs and bottom springs are solely considered as positive quantities. This also
applies to the vertical distances LV

st and LV
sb for the springs. However, the horizontal distances

LH
st , LH

sb, ast and asb can have positive or negative values. For positive values of LH
st and LH

sb,
the springs are inclined outwards as illustrated in fig. 5.3, whereas negative values indicate
inwardly inclined springs. It is also important to mention that both top springs have the same
stiffness, length and inclination; the same applies to the bottom springs. Additionally, the
springs in fig. 5.3 account for the stiffness at each end of the section model. This means that
half of the calculated spring stiffnesses should be utilized at each end of the model in the
wind tunnel. From the geometry in fig. 5.3, the horizontal distances for the springs are:

LH
st = ast − dt (5.25)

LH
sb = asb − db (5.26)

The first step in developing the equations for the spring resultant forces is to derive equations
for the spring elongations. The spring elongations ∆Lst1 and ∆Lst2 for top spring 1 and top
spring 2 are:

∆Lst1 = Lst1 − Lst + ∆Lp
st (5.27)

∆Lst2 = Lst2 − Lst + ∆Lp
st (5.28)

where Lst is the initial length of the top springs; Lst1 is the final length of top spring 1; Lst2 is
the final length of top spring 2; ∆Lp

st is the displacement prestress of the top springs. It is
required to account for the prestress since nonlinear equations for the springs are developed
herein. The expressions for Lst, Lst1 and Lst2 are:
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Lst =

√(
LH

st
)2
+

(
LV

st

)2
(5.29)

Lst1 =

√(
LH

st1

)2
+

(
LV

st1

)2
with LH

st1 = LH
st + dt − dt cos yθm LV

st1 = LV
st − yVm − dt sin yθm (5.30)

Lst2 =

√(
LH

st2

)2
+

(
LV

st2

)2
with LH

st2 = LH
st + dt − dt cos yθm LV

st2 = LV
st − yVm + dt sin yθm (5.31)

Similarly, the spring elongations for the bottom springs ∆Lsb1 and ∆Lsb2 are:

∆Lsb1 = Lsb1 − Lsb + ∆Lp
sb (5.32)

∆Lsb2 = Lsb2 − Lsb + ∆Lp
sb (5.33)

Lsb =

√(
LH

sb

)2
+

(
LV

sb

)2
(5.34)

Lsb1 =

√(
LH

sb1

)2
+

(
LV

sb1

)2
with LH

sb1 = LH
sb + db − db cos yθm LV

sb1 = LV
sb + yVm + db sin yθm (5.35)

Lsb2 =

√(
LH

sb2

)2
+

(
LV

sb2

)2
with LH

sb2 = LH
sb + db − db cos yθm LV

sb2 = LV
sb + yVm − db sin yθm (5.36)

where Lsb is the initial length of the bottom springs; Lsb1 and Lsb2 are the final lengths of
bottom spring 1 and bottom spring 2; ∆Lp

sb is the displacement prestress of the bottom
springs. As mentioned previously, the springs have a linear behavior:

Fst(∆L) = kst ∆L Fsb(∆L) = ksb ∆L (5.37)

where Fst(∆L) and Fsb(∆L) are the forces in the top springs and bottom springs respectively;
kst and ksb are the stiffnesses of the top springs and bottom springs. Using the free-body
diagram for the torsion arm shown in fig. 5.4 and from equilibrium, the resultant forces for
the nonlinear springing system are:

FH(yVm, yθm) =
LH

st1

Lst1
Fst(∆Lst1) −

LH
st2

Lst2
Fst(∆Lst2) +

LH
sb1

Lsb1
Fsb(∆Lsb1) −

LH
sb2

Lsb2
Fsb(∆Lsb2) (5.38)
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Figure 5.4: Free-body diagram of the nonlinear springing system

FV(yVm, yθm) = −
LV

st1

Lst1
Fst(∆Lst1) −

LV
st2

Lst2
Fst(∆Lst2)

+
LV

sb1

Lsb1
Fsb(∆Lsb1) +

LV
sb2

Lsb2
Fsb(∆Lsb2) + m∗Vmg

(5.39)

Mθ(yVm, yθm) =
LH

st1

Lst1
Fst(∆Lst1) dt sin yθm −

LV
st1

Lst1
Fst(∆Lst1) dt cos yθm

+
LH

st2

Lst2
Fst(∆Lst2) dt sin yθm +

LV
st2

Lst2
Fst(∆Lst2) dt cos yθm

+
LH

sb1

Lsb1
Fsb(∆Lsb1) db sin yθm +

LV
sb1

Lsb1
Fsb(∆Lsb1) db cos yθm

+
LH

sb2

Lsb2
Fsb(∆Lsb2) db sin yθm −

LV
sb2

Lsb2
Fsb(∆Lsb2) db cos yθm

(5.40)

where FH(yVm, yθm) is the horizontal resultant force of the springing system; FV(yVm, yθm)
is the vertical resultant force of the springing system; Mθ(yVm, yθm) is the resultant moment
of the springing system; g is the gravitational acceleration. The spring resultant forces in
eqs. 5.38–5.40 are geometrically nonlinear because of the nonlinear equations for the spring
lengths and elongations (eqs. 5.27–5.36). The equations for the force resultants of the system
in fig. 5.3 were validated using large-displacement analysis using the finite element software
SAP2000 [191]. It is also worth noting that, due to the inclined springs, there is a non-zero
horizontal resultant force as shown in fig. 5.4 when the rotation yθ is not zero. This force has
to be resisted by the experimental rig used for nonlinear section model tests as discussed in
section 5.6.

5.3.3 Prestressing of Inclined Spring System

To determine an equation for the prestress displacements, the equality FV(0, 0) = 0 is used.
When yVm = 0 and yθm = 0, eqs. 5.27 and 5.28 become ∆Lst1 = ∆Lst2 = ∆Lp

st, and eqs. 5.32
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and 5.33 are simplified to ∆Lsb1 = ∆Lsb2 = ∆Lp
sb. Therefore, by setting eq. 5.39 to zero and

rearranging it, it is found that the prestress displacement for the top springs can be written as
follows:

∆Lp
st =

LstLV
sbksb

LV
stLsbkst

∆Lp
sb +

Lst

2LV
stkst

m∗Vg (5.41)

As it can be seen in eq. 5.41, the top spring prestress is dependent on the bottom spring
prestress and the gravity load. It is therefore concluded that the bottom spring prestress ∆Lp

sb

is a parameter to be decided depending on how large the displacements are expected to be
such that the bottom springs are under tension at all times.

5.3.4 Fitting Procedure for Nonlinear Spring Configuration

In order to determine the parameters of the spring configuration shown in fig. 5.3, a nonlinear
least-squares procedure is utilized. The target values are the scaled nonlinear generalized
restoring forces of eqs. 5.23 and 5.24. Consequently, the following error function needs to
be minimized:

JVθ =

N∑
i=1

[ f ∗Vm(yVmi, yθmi) − FV(yVmi, yθmi)
]2
+

[
f ∗θm(yVmi, yθmi)

bclm
−

Mθ(yVmi, yθmi)
bclm

]2
 (5.42)

where bclm is half of the cable spacing at model scale; N is the number of samples of the
nonlinear generalized restoring forces used in the calculation of JVθ. In eq. 5.42, the moment
contribution is divided by bclm such that the error JVθ has consistent units, i.e., force units.
By using half of the cable spacing, this means that the sum of both forces of an equivalent
couple representing the moment is taken into account for the moment contribution to JVθ.
Additionally, half of the cable spacing was preferred to half of the bridge deck width since
the cables provide a large proportion of the torsional stiffness of a cable-supported bridge.

Equation 5.42 is optimized by varying the parameters ast, LV
st, dt, kst, asb, LV

sb, db and ksb. The
constant parameters to be provided as inputs are ∆Lp

sb, m∗Vm and bclm. This nonlinear least-
squares problem is a constrained-optimization problem because of the physical limitations
of the section model experimental rig. Except ast, kst, asb and ksb, all the varying parameters
are bounded from zero to the maximum positive values that the experimental rig can
accommodate. The parameters ast and asb are bounded by the maximum positive and
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negative values possible for the section model test rig. The spring stiffnesses kst and ksb are
bounded by a minimum positive value and maximum positive value chosen from experience
of solving this nonlinear least-squares problem.

It was found that annealing optimization and differential evolution optimization are effective
at finding an optimized solution to eq. 5.42, but the differential evolution method was mostly
utilized for this study. Since the problem in eq. 5.42 is a nonlinear least-squares problem,
there are many local minimums. Therefore, due to the stochastic nature of these optimization
methods, the optimization process is run many times in order to find the global minimum for
the constrained minimization problem of eq. 5.42.

In order to evaluate the goodness of the fit and because the coefficient of determination is
not valid for nonlinear least-squares problems, the standard error of the regression σVθ is
utilized, which is defined as:

σVθ =

√
JVθ

2N
(5.43)

The lower the standard error of the regression is, the better is the fit. To the denominator
of eq. 5.43, 2N is used because of the contributions from the vertical force and moment to
the error function JVθ. The standard error of the regression indicates how wrong the spring
model is on average in terms of the response units, i.e., force units. A lower value for σVθ is
better.

5.4 Steps for Determining Test Parameters for Nonlinear

Section Model Tests

It seems appropriate to summarize the steps to calculate the parameters of the nonlinear
springing system that will allow conducting nonlinear section model tests for a specific
bridge. This nine-step procedure is described below.

1. It is first required to develop a fishbone finite element model of the cable-supported
bridge under consideration. After calculating the static equilibrium for the cable
preloads and dead loads using large displacement analysis, the natural frequencies and
modes of vibration for the dead-load configuration can be calculated.

2. Following the procedure for nonlinear generalized stiffness analysis described in
section 5.2.1, the nonlinear evolution of the nonlinear generalized restoring forces
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f̃V(zV , zθ) for the first symmetric vertical mode and f̃θ(zV , zθ) for the first symmetric
torsional mode is obtained.

3. The mode correction factors Γh
V and Γαθ for the first vertical-torsional modal pair can

be calculated using eq. 5.5. Similarly, eqs. 5.7 and 5.8 are utilized to calculate the
mode correction factors βV and βθ for the first symmetric modes.

4. After calculating the factors Γh
V2 and Γαθ2 given in eq. 5.6, the effective mass properties

per unit length can be calculated using eqs. 5.12 and 5.13 for mV and mθ. If the
modified effective distributed mass properties m∗V and m∗θ are considered as it is the
case in this research, they can be obtained from eq. 5.14. In this case, it is also needed
to evaluate the mass ratios m∗V/mV and m∗θ/mθ.

5. Then, the geometric scale factor λL and velocity scale factor λU have to be chosen
based on the capabilities of the wind tunnel that is utilized.

6. After choosing the scale factors, the scaled mass properties per unit length are obtained
from eq. 5.15, which are used to obtain the mass and mass moment of inertia of a
model-scale section model of length Lmm using eq. 5.22.

7. Using eqs. 5.23 and 5.24, it is now possible to scale the nonlinear evolution of the
nonlinear generalized restoring forces calculated from nonlinear generalized stiffness
analysis in order to obtain the nonlinear force-displacement relationships f ∗Vm(yVm, yθm)
and f ∗θm(yVm, yθm). These are for a scaled model of length Lmm. This is achieved by
applying the mode correction factors Γh

V , Γαθ , βV and βθ as well as the mass correction
ratios m∗V/mV and m∗θ/mθ if applicable.

8. Once f ∗Vm(yVm, yθm) and f ∗θm(yVm, yθm) are determined, it is needed to choose the dis-
placement prestress ∆Lp

sb to be utilized for the bottom springs of the springing system
shown in fig. 5.3. The prestress value is selected based on what is achievable for the
section model test rig as well as based on the maximum expected displacements for
the section model so that the bottom springs stay under tension.

9. Through nonlinear least-squares analysis, the parameters ast, LV
st, dt, kst, asb, LV

sb, db

and ksb of the nonlinear springing system are determined. This is done by minimizing
eq. 5.42 using the differential evolution optimization method. The goodness of the fit
between the nonlinear spring configuration and f ∗Vm(yVm, yθm) and f ∗θm(yVm, yθm) can be
assessed using eq. 5.43.
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Table 5.1: Description of cable-supported bridges

Bridge Type Main span Buffers? Elevation view
(m)

SU4a
Single-span suspension

Girder restrained at towers 1200 Yes

SU4b
Single-span suspension

Girder restrained at towers 1800 Yes

SU4c
Single-span suspension

Girder restrained at towers 2400 Yes

SU4d
Single-span suspension

Girder restrained at towers 3000 Yes

5.5 Nonlinear Spring Configurations for Single-Span

Suspension Bridges

Based on the observations made in chapter 3, it was decided to focus on single-span
suspension bridges in this study since this structural system has a stronger nonlinear behavior.
Therefore, the step-by-step procedure of section 5.4 was utilized to determine the nonlinear
spring configurations for the four single-span suspension bridges described in table 5.1.
These bridges are preliminary designs of suspension bridges with main spans ranging from
1.2 km to 3.0 km. They were inspired by existing bridge designs, and detailed information
about them can be found in chapter 4. The procedure of section 5.4 was utilized for the
bridges of table 5.1 for the first vertical-torsional modal pair.

The main purpose of obtaining these nonlinear spring configurations is to assess the feasi-
bility of using such spring configurations at the Boundary Layer Wind Tunnel Laboratory
(BLWTL) of the University of Western Ontario. Therefore, in determining these initial
spring arrangements, it is considered that the spring attachment points and torsion arm must
be located within a square of 1000 mm, which corresponds to the size of the openings in the
streamlined walls in which the springing system is mounted at the BLWTL. Therefore, when
solving the nonlinear least-squares problem described in eq. 5.42, the dimensions ast and asb

were constrained between −500 mm and 500 mm. Values for dt and db ranges from 0 mm to
500 mm. In order to have sufficient clearance for the vertical motion of the bridge model, LV

st

and LV
sb were constrained between 200 mm and 500 mm. For these bridges, it was found that

good results were obtained when constraining the spring stiffness kst between 500 N/m and
5000 N/m as well as constraining the spring stiffness ksb between 300 N/m and 2000 N/m.
For the bottom spring prestress, it was assumed that ∆Lp

sb = 100 mm.

Following this procedure for bridges SU4a, SU4b, SU4c and SU4d, the spring configurations
presented in fig. 5.5 were obtained. In the fitting process for each bridge, 6561 points were
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considered, i.e., N = 6561. The differential evolution optimization method was run 10 times
to find the spring configurations giving the lowest standard error of the regression. A model
length Lmm of 2.134 m was considered as it corresponds to the typical model length used at
the BLWTL. Also, the velocity scales were chosen such that an instability can be observed in
the wind tunnel. The spring siffnesses shown in fig. 5.5 represent the total stiffness provided
to the section model. Consequently, the stiffnesses to be used in the wind tunnel should
be half of those in fig. 5.5 due to the two springing systems used at the ends of the section
model. Also, it should be noted that the dashed grey lines in fig. 5.5 represent the usable
space for the springs in the case of the BLWTL section model setup (1000 mm by 1000 mm).

In figs. 5.6 and 5.7, bridges SU4c and SU4d are taken as examples for the comparison
between the target scaled nonlinear behavior and the one modeled using a springing system
with inclined springs. In order to facilitate the interpretation of these figures, only every three
points of the target nonlinear generalized results are presented. Figures 5.6a and 5.7a present
the scaled nonlinear generalized restoring forces, whereas figs. 5.6b and 5.7b show the scaled
nonlinear generalized stiffnesses kt∗

jkm. For obtaining the scaled nonlinear generalized stiff-
nesses in these figures, the scaled results for the nonlinear generalized restoring forces were
differentiated as per eq. 5.4. In figs. 5.6 and 5.7, the results are limited within displacement
bounds of ±0.06 m for yVm and ±0.06 rad for yθm, which corresponds to ±3.44°. These limits
are seen as reasonable maximum displacements to be encountered during section model
tests. For these displacement values, the inclined springs are always under tension. These
displacement limits were only used for visualization purposes since the fitting procedure
was run using results for displacements three times larger than these limits.

As it can be seen in figs. 5.6 and 5.7, there is a good agreement between the target nonlinear
behavior and the behavior modeled using inclined springs. There are reasonable discrepan-
cies in figs. 5.6b and 5.7b for the off-diagonal terms. Similar observations were made for
bridges SU4a and SU4b. The good fit of the inclined spring setup with the target nonlinear
behavior is confirmed by the small values of the standard error of the regression shown in
fig. 5.5 in comparison to the magnitude of the forces in figs. 5.6a and 5.7a. Therefore, based
on the visual inspection of figs. 5.6 and 5.7 and the small values for the standard error of
the regression, it is concluded that a springing system with inclined springs is suitable for
nonlinear section model tests. This is also confirmed by the fact that the spring configurations
are physically realistic because they fit within a square of 1000 mm as shown in fig. 5.5.
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(a) Bridge SU4a (λL = 1/75, λU = 1/5.5 and
σVθ = 1.54 N)

(b) Bridge SU4b (λL = 1/75, λU = 1/4.5 and
σVθ = 0.85 N)

(c) Bridge SU4c (λL = 1/75, λU = 1/3.75 and
σVθ = 1.06 N)

(d) Bridge SU4d λL = 1/75, λU = 1/3.5 and
σVθ = 1.36 N)

Figure 5.5: Nonlinear spring configurations for the single-span suspension bridges
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(a) Generalized restoring forces (b) Generalized stiffnesses

Figure 5.6: Comparison between target and spring-modeled scaled nonlinear generalized
behavior for bridge SU4c

(a) Generalized restoring forces (b) Generalized stiffnesses

Figure 5.7: Comparison between target and spring-modeled scaled nonlinear generalized
behavior for bridge SU4d
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5.6 Discussion on Requirements Needed for a Nonlinear

Section Model Test Rig

In order to achieve nonlinear spring configurations like those of section 5.5, a new dynamic
test rig for section model tests is required. Consequently, the next step in this research was
to design an experimental apparatus able to be utilized for nonlinear section model tests. It
is therefore relevant to discuss briefly the desirable characteristics for such a test rig.

A bridge rig for nonlinear tests is required to be easy to adjust. Indeed, it needs to have
an efficient and fast way to change the vertical and horizontal positions of the attachment
points for the inclined springs. This will facilitate the adjustments of the inclinations of the
springs. Furthermore, the nonlinear rig must have the capability to have intersecting springs
as shown in fig. 5.5. This can be achieved by having the possibility to arrange the springs
on two different vertical planes. Additionally, the adjustment of the springs includes their
pretensioning. Therefore, it would be practical for the rig to be equipped with load cells in
order to measure the spring pretension forces.

Such a rig needs to be able to represent the structural coupling between the vertical and
torsional behaviors as expressed in eqs. 5.23 and 5.24 as well as exemplified in figs. 5.6
and 5.7. This is achieved by utilizing the same springs to provide the vertical stiffness and
torsional stiffness as it is the case for the inclined spring configuration in fig. 5.3. Due to the
inclination of the springs, there is a non-zero horizontal resultant force given by eq. 5.38
and shown in fig. 5.4. Consequently, a rig for nonlinear tests must be able to resist this force
while allowing the bridge model to move vertically and in rotation. As for typical section
model tests, the drag force on the section model must also be withstood by the bridge rig.

The nonlinear rig must be designed in a way that facilitates the adjustment of mass and
damping properties. Damping should also be as linear as possible, i.e., it should be as
close as realistically achievable to viscous damping. This is to ensure that only the effect
of structural nonlinearities will be assessed when comparing linear section model tests to
nonlinear tests. It is also worth noting that a nonlinear section model test rig should be easily
utilized for conducting linear section model tests. This is because nonlinear tests are of
interest in the study of the dynamic response and stability, but linear tests are also relevant
for the extraction of flutter derivatives or for bridges that behave linearly.
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Figure 5.8: Three-dimensional model of new section model test rig

5.7 Design of New Section Model Test Rig

Based on the requirements discussed in the previous section for a nonlinear section model
test rig, a design for a new section model test apparatus was developed. The design was
elaborated considering that future nonlinear section model tests will be conducted at the
BLWTL of the University of Western Ontario. The three-dimensional model of the new
bridge rig is shown in fig. 5.8. Since the existing streamlined walls used at the BLWTL for
section model tests can also be utilized in combination with the new bridge rig, fig. 5.8 only
shows the two units of the bridge rig to which the section model is attached. Each unit of the
rig has to be inserted into the openings of the streamlined walls. It should also be noted that,
for the sake of clarity, the figures in this section show the new section model test rig in a
linear test configuration, i.e., with vertical springs.
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As shown in fig. 5.8, the bridge rig consists of two identical units located at both ends of
the section model. A detailed description of a typical unit is presented in fig. 5.9. Both
units of the nonlinear section model test rig are 1065 mm wide and 1065 mm high. Each
unit consists of an external aluminum frame made of two horizontal angles and two vertical
T-slot extrusions. Two additional horizontal T-slot aluminum extrusions are fastened to
the vertical extrusions of the external aluminum frame, one near the top of the frame and
the other near the bottom. The springs, which support a moving cart, are attached to these
horizontal extrusions. In order to have more flexibility, it is possible to attach springs on both
side of the horizontal extrusions, i.e., it is possible to have springs on two different vertical
planes. This will allow intersecting springs in the case of nonlinear tests as discussed in
section 5.6. For this purpose, the front spring attachment pivots and back spring attachment
pivots need to be utilized. Each unit also includes a magnetic damping system. Additionally,
laser displacement sensors will be utilized for measuring the motion of the section model,
and each spring connects to a load cell in order to measure the spring forces.

As illustrated in fig. 5.10, the vertical positions of the horizontal T-slot aluminum extrusions
can be adjusted, which is done by untightening T-slot bolts. Similarly, the spring mounts
on the front and rear faces of the horizontal extrusions can be moved horizontally along
the extrusions. This ability to move the spring attachment points is essential in order to
be able to obtain the appropriate spring lengths and inclinations in the case of nonlinear
tests. Due to the inclination of the springs in nonlinear tests, the spring mounts on the
horizontal extrusions and torsion arm are free to rotate from the usage of bearings. This is
why they are referred as the spring attachment pivots. Their free rotation is essential because,
with inclined springs, a vertical displacement of the bridge model leads to a change in the
spring inclinations, which requires a free rotation of the ends of the springs. In fig. 5.10,
it is also worth noting that the laser displacement sensors can be moved horizontally and
vertically. This is useful as the ballast masses added to the torsion arm could interfere with
the laser sensors in specific cases and having the possibility to move them would resolve
such interference. Figure 5.10 also illustrates how the displacements are measured using
laser displacements sensors and laser targets.

As shown in fig. 5.11, the moving parts of the bridge rig allowing the bridge model to move
vertically and torsionally consist of a torsion arm (fig. 5.12) and a moving cart (fig. 5.13).
These components of the rig are mainly made out of carbon fiber composite in order to be
light and stiff. By using a ball bearing located at the center of the moving cart, the torsion
arm can rotate about the aluminum shaft located at the middle of the arm. A self-aligning
ball bearing is considered to avoid the transfer of a bending moment to the vertically moving
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(a) Front view

(b) Rear view

Figure 5.9: Description of new section model test rig
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Figure 5.10: Possible adjustments for the new section model test rig

cart. This is important to avoid exceeding the capacity of the air bushings shown in fig. 5.13
that are used for the vertical motion of the cart. This is also at the end of this aluminum shaft
that the section model is mounted.

As illustrated in fig. 5.11, the air bushing cart slides along stainless steel shafts. To provide
dry compressed air to the air bushings, the tubing system identified in fig. 5.9 is required.
An air bushing system was considered because the horizontal resultant force caused by the
inclined springs has to be resisted while allowing the section model to move vertically. The
bushings also have to resist the drag force coming from the section model. The size of the air
bushings considered was chosen such that the specified maximum radial load can withstand
the horizontal resultant force from the inclined springs and the drag force.

For the new bridge rig, a magnetic damping system is utilized. The two main components of
this system are magnets and conducting plates. When a magnet that is close to a conducting
plate moves in a plane parallel to the plate, electromagnetic forces are exerted on the magnet
due to eddy currents occurring in the plate. These forces can be used to dampen a bridge
model as they occur to be theoretically proportional to the velocity, i.e., they behave like
viscous damping forces . To have a system that is light, it was decided to consider permanent
rare-earth magnets made of neodymium due to their strongness and lightness. As shown in
figs. 5.12 and 5.13, the prismatic neodymium magnets are placed in 3D-printed magnet trays.
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Figure 5.11: Mechanism of new section model test rig

The number of magnets utilized can be easily adjusted by adding or removing magnets. For
the conducting plates, aluminum is considered due to its good electrical conductivity. The
damping subsystem located at the ends of the torsion bar mainly provides damping for the
torsional mode, but also contributes to the vertical damping in a limited manner. The vertical
damping can then be adjusted using the magnet trays of the air bushing cart (fig. 5.13) and
the conducting plate located between the stainless steel shafts. If needed, it will be possible
to add more magnets using the damping tray attached to the small arm that is perpendicular
to the torsion arm.

The next step in this research is to fabricate this new section model test rig that can be used
for nonlinear tests as well as linear tests. By comparing the linear test results to the nonlinear
ones, it will be possible to know whether geometric nonlinearities can have an adverse effect
on the stability and dynamic performance of long-span bridges.

5.8 Conclusions

For very long cable-supported bridges, especially suspension bridges, it appears that a better
understanding of the interaction between structural nonlinearities and aerodynamic effects
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(a) Front view (b) Rear view

Figure 5.12: Torsion arm of new section model test rig

(a) Front view (b) Rear view

Figure 5.13: Air bushing cart of new section model test rig
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is needed. In this chapter, an experimental technique relying on section model tests was
proposed to study such interaction. This approach will make possible the inclusion of
geometric nonlinearities when conducting section model tests for bridges.

Starting from the scaled nonlinear generalized structural behavior of a cable-supported bridge,
it was found that a springing system consisting of inclined springs can represent this nonlinear
behavior. It was demonstrated that the inclined spring configuration can be obtained by
solving a nonlinear least-squares problem for which the target values correspond to the scaled
nonlinear generalized structural behavior. To determine the spring parameters, stochastic
optimization methods are used in the fitting procedure. The annealing optimization method
and differential evolution optimization method were shown to be effective at determining the
optimal inclined spring configuration. In order to validate the practicality of using inclined
springs for section model tests, the procedure was tested for four single-span suspension
bridges having main spans of 1.2 km, 1.8 km, 2.4 km and 3.0 km. Good agreement was
observed between the structural behavior modeled using inclined springs and the target
results. It was also demonstrated that the inclined spring configurations for these bridges are
physically realistic for the wind tunnel at the University of Western Ontario.

A design was developed for a new bridge rig suitable for nonlinear section model tests.
For the proposed bridge rig, it would be easy to make adjustments to the inclined spring
configuration. This new bridge rig relies on air bushings and magnetic damping. This bridge
rig for nonlinear section model tests is currently being fabricated, and nonlinear section
model tests are planned for the near future. The findings and results of a comparison between
linear and nonlinear section model tests will be reported in future publications. It is expected
that this research will lead to a better understanding of the interaction between structural
nonlinearities and aeroelastic effects for very long cable-supported bridges.
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Chapter 6

Nonlinear Section Model Tests

6.1 Introduction

Considering the computational resources available today and the advancement made in the
field of computational fluid dynamics (CFD), virtual wind tunnel tests (e.g. [64]) have been
more common in the field of bridge engineering. This is because CFD can easily provide
initial information about the aerodynamic behavior of a bridge. This is especially interesting
in the early stages of a bridge design project. Nevertheless, wind tunnel tests are still the
preferred method when it comes to assessing the behavior and safety of cable-supported
bridges subjected to wind. The two most common wind tunnel testing techniques utilized in
the industry are full-aeroelastic model tests and section model tests.

Full-aeroelastic model tests [29] are useful in the determination of the full-bridge response
under wind loads since a scale replica of a bridge that include all important structural
elements is utilized. However, they are complicated and expensive due to the size and the
level of detail required for full-aeroelastic models. In comparison, a rigid segment of a bridge
deck is suspended by a springing system in the case of section model tests [30]. This makes
section model tests more affordable and less complicated. Even though a lateral mode has
sometimes been considered (e.g. [32]), section model tests typically account for one vertical
mode and one torsional mode. The practicality of section model tests has been extended
by some interesting developments in terms of experimental apparatuses. Examples of such
developments include a dynamometric section model for the Messina Strait Bridge [36].
Also, the development of an innovative section model test rig that can be utilized for free-
and forced-vibration tests is discussed in [37]. In [40], another test rig for forced-vibration
tests is mentioned, but this one can also be used for arbitrary motion.

With the objective of including more modes of vibration in section model tests without
having the added complexity of full-aeroelastic model tests, taut-strip model tests were
elaborated [59]. Considering that the model stiffness is provided through taut wires or tubes,
this testing procedure is well adapted to bridges exhibiting sinusoidal modes of vibration.
More recently, a multi-supported aeroelastic model was developed for the assessment of
vortex-induced vibrations in bridges [60]. This modeling technique is limited to the study
of the dynamic vertical response as only vertical modes can be properly represented. Even
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frameworks for real-time hybrid tests are discussed in [61, 62]. Similar to the procedure
utilized in structural engineering, the aeroelastic system of a cable-supported bridge would
be partially modeled in the lab and partially represented in a numerical model.

Although there are many options when it comes to wind tunnel testing of bridges, section
model tests have become the standard approach in the field of bridge engineering. This
is mainly explained by their versatility as they can be utilized to measure aerodynamic
coefficients, measure aerodynamic pressures as well as determine bridge-deck dynamic
responses. Another advantage of section model tests is their simplicity; but from it arises
some limitations and assumptions regarding the aerodynamic and structural behaviors. One
of them is that the aerodynamic contribution of the cable system is typically neglected. For
the structural behavior, the modes of vibration are assumed as uniform, and only one mode
in each direction can be accounted for. It is also worth mentioning that section model tests
assume a linear structural behavior of the bridge since the modes represented in such tests
and their corresponding modal properties originate from linear structural dynamics theory.

However, cable-supported bridges can exhibit structural nonlinearities from different origins.
This includes geometric nonlinearities [149, 150], material nonlinearities [147, 151] and
localized nonlinearities like those caused by hydraulic buffers [12, 17, 151]. For suspension
bridges, mathematicians and engineers [168–170] have also demonstrated that dynamic
vertical forcing can lead to large torsional oscillations as a result of structural nonlineari-
ties, i.e., there is nonlinear vertical-torsional coupling due to the geometric nonlinearities.
The phenomenon at cause would be internal parametric resonance, a structural dynamic
instability [170]. Compared to flutter which is caused by the coupling between the air-
flow and the structure, this instability arises from a nonlinear structural coupling between
modes of vibration. A practical approach to assess nonlinear vertical-torsional coupling
in cable-supported bridges was proposed in chapter 3. It relies on applying modal loads
to geometrically nonlinear bridge structures. Using this approach, it was demonstrated
that single-span suspension bridges have a stronger nonlinear coupling when compared to
three-span suspension bridges and cable-stayed bridges. Since the cable system contributes
more to the bridge structural behavior for longer spans, it was found that the bridges with
greater spans are more nonlinear.

To the author’s knowledge, the structural instability described in the previous paragraph has
never been witnessed on an actual bridge. Nevertheless, a transition from an antisymmetric
instability mode to a symmetric instability mode was experienced on a full-aeroelastic model
of a double-main-span suspension bridge [172, 173]. It appears that it would not be caused
by a flutter mode transition as observed in [174], which occurs between flutter instability
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modes having the same critical wind speed. Instead, internal resonance associated with
the nonlinearities of the aeroelastic system would be responsible. This has led to many
recent experimental studies on nonlinear flutter and aerodynamic nonlinearities for bridge
decks [90, 96, 100, 101, 120]. However, in these studies on bridges, the effect of struc-
tural nonlinearities was not assessed experimentally. In these experimental investigations,
structural nonlinearities have only been discussed with regard to the intrinsic nonlinear
behavior in stiffness and damping of the experimental apparatus used for section model tests
[90, 102, 104]. This was done to ensure that these effects are small compared to aerodynamic
nonlinearities, which is the subject of interest of these studies.

Nevertheless, the section model test rig used to test bridges in [45] shows a slight nonlinear
structural behavior in torsion for large rotations greater than 15° due to the kinematics of
the rig mechanism. Considering that the research in [45] aims at assessing aerodynamic
nonlinearities at large amplitudes of vibration, it is unlikely that this nonlinear torsional
behavior is representative of the nonlinear structural behavior of a cable-supported bridge.
The experimental apparatus utilized in [47] is also capable of large displacements as it is used
to study aerodynamic nonlinearities, but its structural behavior is linear. In the case of section
model tests for airfoils, different experimental studies have been conducted considering
a nonlinear structural behavior in stiffness such as freeplay, bilinear, parabolic and cubic
nonlinearities [50, 52, 54, 57]. It is worth noting that the flutter wind speed of an airfoil
with a slight bilinear behavior was shown to be less than the linear flutter wind speed [54].
Therefore, it seems that supplemental investigations are required in order to understand the
influence of structural nonlinearities on the aeroelastic stability of cable-supported bridges.
This appears of practical engineering value considering that even weakly nonlinear systems
can experience nonlinear dynamic phenomena [175].

Consequently, this chapter presents an experimental assessment of the effect of structural
nonlinearities on the aeroelastic stability and wind response of cable-supported bridges.
To achieve this, a new experimental procedure for wind tunnel tests of bridges is utilized.
Indeed, the section model test procedure is modified so that the nonlinear structural behavior
of cable-supported bridges can be modeled. First, the theoretical developments required for
such nonlinear section model tests of bridges are briefly reviewed. This is followed by a
description of the experimental apparatus utilized for nonlinear section model tests, which
was specifically developed for this purpose. The calibration procedure for the mechanical
device required for nonlinear tests is also briefly discussed. This testing procedure was tested
for three suspension bridges having main spans of 1624 m, 2400 m and 3000 m. The first one
is a single-box girder bridge, whereas the two others are suspension bridges with twin-box
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girders. A comparison between the results for linear tests and those for nonlinear tests is
made in order to understand the effect of structural nonlinearities on the wind behavior of
bridges.

6.2 Overview of Theory for Nonlinear Section Model

Tests

For this study on the effect of structural nonlinearities on flutter, full-aeroelastic model tests
are not considered due to their cost and the fact that the scaled axial and bending stiffnesses
cannot be simultaneously taken into account for the different structural elements in these
tests. In their current form, taut-strip models are also not of interest for this research as
the taut wires or tubes utilized for these tests already possess their own nonlinear behavior,
which is not representative of a cable-supported bridge. Instead, section model tests are
considered herein because of the flexibility they offer since it is easy to adjust the structural
parameters at the ends of the section model. Hence, a nonlinear device representative of the
nonlinear structural behavior can be utilized in place of a typical springing system; this will
allow nonlinear section model tests. This represents an improvement of the section model
test procedure in comparison to the standard linear approach. The fact that section model
tests allow an easier interpretation of the studied phenomenon is also an interesting aspect
of these tests. Additionally, the fact that one mode in each direction can be represented in
section model tests is not problematic since this study mostly focuses on flutter, an instability
that typically involves one vertical mode and one torsional mode.

Nonlinear section model tests for bridges do not intend to replace the analysis procedure
utilized in the industry combining section model tests and numerical analysis. It is rather
a supplemental tool to understand the effect of structural nonlinearities on the aeroelastic
behavior of bridges. In this initial development of nonlinear section model tests, we are only
interested in stiffness nonlinearities due to the difficulty to characterize nonlinear structural
damping in cable-supported bridges. Even though structural nonlinearities are the focus
of such experimental approach, it is worth mentioning that aerodynamic nonlinearities are
automatically accounted for when section model tests are utilized. The first step to conduct
section model tests accounting for the effect of structural nonlinearities is to determine the
scaled nonlinear structural behavior to be utilized for such experiments. For the sake of
completeness, this procedure is briefly reviewed in this section, but the reader is referred to
chapters 3 and 4 to find more information about it.
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6.2.1 Nonlinear Generalized Stiffness

The nonlinear structural behavior in stiffness to be utilized for nonlinear section model tests
is determined from nonlinear finite element analysis. This is achieved by applying loads that
are proportional to modes of vibration onto a geometrically nonlinear numerical model of a
cable-supported bridge. In this method, only geometric nonlinearities are of concern as the
structures of interest in this research are cable-supported bridges. Longitudinal hydraulic
buffers are also inactive. The reader can find a detailed presentation of nonlinear generalized
stiffness analysis in the context of cable-supported bridges in chapter 3. This idea of using
linear modes of vibration in the context of geometrically nonlinear structures has been used
before in civil engineering [155] and in the field of aerospace engineering (e.g. [190]).

By following this numerical procedure for the first symmetric vertical mode and first
symmetric torsional mode of a bridge, the nonlinear generalized restoring force f̃V (zV , zθ)

and nonlinear generalized restoring moment f̃θ (zV , zθ) relative to these modes are obtained.
Since a nonlinear structure is considered, both are functions of the generalized vertical
displacement zV and generalized rotation zθ. By using matrix notation for the nonlinear
generalized restoring forces in eq. 6.1, it is possible to calculate a two-mode tangent nonlinear
generalized stiffness matrix as shown in eq. 6.2:

f̃Vθ(zVθ) =

 f̃V(zV , zθ)
f̃θ(zV , zθ)

 (6.1)

K̃t
Vθ(zVθ) =

∂f̃Vθ

∂zVθ
=

∂ f̃V
∂zV

∂ f̃V
∂zθ

∂ f̃θ
∂zV

∂ f̃θ
∂zθ

 (6.2)

where zVθ = [zV zθ]T; K̃t
Vθ(zVθ) is the two-mode tangent nonlinear generalized stiffness

matrix. It is worth noting that each term of the tangent nonlinear generalized stiffness
matrix is also a function of both generalized displacements, i.e., zV and zθ. The non-
zero off-diagonal terms in K̃t

Vθ and the fact that the matrix entries are functions of both
generalized displacements demonstrate the nonlinear structural vertical-torsional coupling in
cable-supported bridges.

For this research, nonlinear generalized stiffness analysis is utilized to characterize the non-
linear structural behavior to be considered for nonlinear section model tests. In the nonlinear
generalized stiffness approach, it is worth mentioning that the modes used for the modal
loads are normalized such that the maximum vertical displacement or maximum rotation of
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the deck are unity. Additionally, compared to antisymmetric modal pairs, symmetric modal
pairs show a more nonlinear evolution of the generalized restoring forces (see chapter 3).
Therefore, nonlinear section model tests are relevant for symmetric modal pairs, and linear
tests are sufficient for antisymmetric modal pairs. Considering that the natural frequencies
of the different modes in very long cable-supported bridges are very close to each other, the
flutter wind speeds for the first antisymmetric modal pair and the first symmetric modal pair
can also be close. Therefore, it is of interest to see whether the nonlinear structural behavior
could trigger the symmetric instability to happen before the antisymmetric instability.

6.2.2 Mode Correction Factors

Mode correction factors are required for the nonlinear generalized restoring forces since the
modal displacements for a specific mode vary along a bridge whereas a section model has
uniform modes of vibration. This is why the generalized restoring forces need to be divided
by the correction factors given in eq. 6.3. For the same reason, the generalized masses have
to be divided by the factors in eq. 6.4, and the generalized displacements need to be modified
by eq. 6.5.

Γh
V =

∫
Lbr

∣∣∣ψh
V(x)

∣∣∣ dx Γαθ =

∫
Lbr

∣∣∣ψαθ (x)
∣∣∣ dx (6.3)

Γh
V2 =

∫
Lbr

[ψh
V(x)]2 dx Γαθ2 =

∫
Lbr

[ψαθ (x)]2 dx (6.4)

βV =
Γh

V

Γh
V2

βθ =
Γαθ

Γαθ2
(6.5)

In eqs. 6.3–6.5, ψh
V(x) is a function for the vertical displacements along the bridge deck

of the first symmetric vertical mode; ψαθ (x) is a function for the torsional rotations along
the bridge deck of the first symmetric torsional mode. The functions ψh

V(x) and ψαθ (x) are
normalized such that the maximum vertical displacement or maximum rotation are unity.
The generalized displacements, which also correspond to the maximum deck displacements
due to the normalization utilized for the modes, are given by zV = βVyV and zθ = βθyθ with
yV and yθ being respectively the vertical displacement and rotation of the section model at
full scale.



151

6.2.3 Effective Distributed Mass Properties

Using the correction factors in eq. 6.4 onto the generalized masses m̃V and m̃θ leads to the
calculation of the mass per unit length mV and mass moment of inertia per unit length mθ

that will be utilized for section model tests:

mV =
m̃V

Γh
V2

mθ =
m̃θ

Γαθ2
(6.6)

Since eq. 6.6 can sometimes overestimate the mass parameters to be used for a section model
(see chapter 4), the following equations were therefore considered in this research:

m∗V =
m̃∗V
Γh

V2

m∗θ =
m̃∗θ
Γαθ2

(6.7)

where m̃∗V = ϕ∗V
TMϕ∗V with ϕ∗V being a vertical mode shape for which the components

corresponding to the longitudinal degrees of freedom are set to zero; m̃∗θ = ϕ
∗
θ

TMϕ∗θ with ϕ∗θ
being a torsional mode shape for which the components corresponding to the lateral degrees
of freedom are set to zero; M is the mass matrix calculated using the finite element method.

6.2.4 Scaled Nonlinear Generalized Stiffness Behavior

The nonlinear generalized stiffness behavior discussed in section 6.2.1 corresponds to a
full-scale bridge, and it therefore needs to be scaled. For this purpose, the geometric scale
λL and velocity scale λU are utilized. For nonlinear tests, the mass parameters are scaled as
for linear section model tests, i.e., m∗Vm = λ

2
L m∗V p and m∗θm = λ

4
L m∗θp where subscripts m and

p refer to the model and the prototype bridge respectively. For the damping ratios, we have
that ξVm = ξV p and ξθm = ξθp. The displacements and rotations are obtained using the usual
approach, i.e., yVm = λL yV p and yθm = yθp. For a model-scale section model of length Lmm,
the mass of the model is m∗Vm = m∗VmLmm, and the mass moment of inertia is m∗θm = m∗θmLmm.
Therefore, a section model having m∗Vm and m∗θm as its scaled mass properties must have the
following scaled nonlinear stiffness behavior:
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f ∗Vm(yVm, yθm) = Lmm
m∗V
mV

λ2
UλL

Γh
V

· f̃V p

(
βV

λL
yVm, βθyθm

)
(6.8)

f ∗θm(yVm, yθm) = Lmm
m∗θ
mθ

λ2
Uλ

2
L

Γαθ
· f̃θp

(
βV

λL
yVm, βθyθm

)
(6.9)

where f ∗Vm(yVm, yθm) and f ∗θm(yVm, yθm) are the scaled mass-corrected restoring vertical force
and moment. In converting the nonlinear generalized restoring forces, eqs. 6.8 and 6.9
account for the mode correction factors and scaling factors. Additionally, the mass-correction
factors m∗V/mV and m∗θ/mθ are utilized to ensure the correct natural frequencies when m∗V and
m∗θ are considered for the mass properties per unit length of the section model.

6.3 Experimental Apparatus for Nonlinear Section Model

Tests

As discussed in chapter 5, the nonlinear springing system that is considered for nonlinear
section model tests of bridges requires an arrangement of inclined springs similar to the
one illustrated in fig. 6.1. For such a spring configuration, it is considered that each spring
behaves linearly since the nonlinear behavior is provided by the nonlinear geometric effects
due to the inclination of the springs. In order to be able to conduct section model tests using
the springing system of fig. 6.1, it is required to use a calibration procedure to determine the
spring parameters that satisfy the nonlinear generalized stiffness behavior of eqs. 6.8 and 6.9.
In chapter 5, it was also found that an experimental rig specifically designed for nonlinear
section model tests is required for this research. These two elements are discussed in the
following subsections.

6.3.1 Calibration Procedure for Nonlinear Spring Configuration

The spring parameters and stiffnesses shown in fig. 6.1 are determined using a nonlinear
least-squares procedure. Therefore, the following error function needs to be minimized so
that the inclined spring system matches as well as possible the scaled nonlinear generalized
restoring forces of eqs. 6.8 and 6.9:



153

Figure 6.1: Spring configuration for nonlinear section model tests

JVθ =

N∑
i=1

[ f ∗Vm(yVmi, yθmi) − FV(yVmi, yθmi)
]2
+

[
f ∗θm(yVmi, yθmi)

bclm
−

Mθ(yVmi, yθmi)
bclm

]2
 (6.10)

where bclm is half of the cable spacing at model scale; N is the number of samples of the
nonlinear generalized restoring forces used in the calculation of JVθ; FV(yVm, yθm) is the
vertical resultant force of the springing system; Mθ(yVm, yθm) is the resultant moment of the
springing system. It is worth noting that all the top springs have the same stiffness; the same
applies to the bottom springs.

The goodness of the fit for the springing system is evaluated using the standard error of the
regression σVθ, which is defined as follows:

σVθ =

√
JVθ

2N
(6.11)

A lower value for the standard error of the regression indicates a better fit. Additionally, it
should be noted that 2N is utilized in eq. 6.11 because of the contributions from both the
vertical force and moment to JVθ. The differential evolution optimization method is utilized
for the minimization of eq. 6.10. More information can be found about this calibration
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procedure in chapter 5.

Using this calibration procedure for single-span suspension bridges in chapter 5, it was
found that intersecting springs are required. Even though the experimental rig presented in
section 6.3.2 is capable of intersecting springs, it is possible to have a fit as good by only
using non-intersecting top springs for the bridges considered in this research. This means
there are no bottom springs. In this case, the springs depicted as dashed lines in fig. 6.1 are
omitted in the nonlinear least-squares procedure by setting their stiffnesses to zero.

6.3.2 Description of Nonlinear Section Model Test Rig

In order to be able to easily adjust the vertical and horizontal positions of the attachment
points of the inclined springs required for nonlinear tests, a new section model test rig was
developed, which was discussed in chapter 5. This nonlinear section model test rig is shown
in fig. 6.2. As it can be seen in the 3D rendering of fig. 6.2a, the experimental rig is made
of two units that are located at the ends of the bridge model. A typical unit as fabricated is
illustrated in fig. 6.2b. Each unit is inserted into streamlined walls that are installed in the
wind tunnel (see fig. 6.3). Both units of the nonlinear section model test rig are 1065 mm
wide and 1065 mm high. This new experimental rig for section model tests of bridges can
be utilized with vertical springs in the case of linear tests (fig. 6.2a) as well as with inclined
springs for nonlinear tests (fig. 6.2b).

To have the correct spring lengths and inclinations in the case of nonlinear tests, each unit
has vertical and horizontal aluminum extrusions allowing an easy adjustment of the spring
attachment points. Suspended to the springs, there is a moving cart mounted on air bushings
that allow the section model to move in the vertical direction. A torsion arm is mounted
on a ball bearing in the middle of the moving cart so that the section model can also rotate.
Therefore, only the vertical and torsional degrees of freedom are considered for nonlinear
section model tests since the lateral mode was shown to have an insignificant effect on the
nonlinear generalized stiffness behavior (see chapter 3). The moving cart and torsion arm
are made out of carbon fiber composite so that these elements are light and stiff.

For the adjustment of the structural damping, a magnetic damping system, consisting
of neodymium magnets and conducting plates in aluminum, is utilized. Also, the mass
properties of the section model can be adjusted using ballast masses as shown in fig. 6.2b.
The motion of the section model is measured using laser displacement sensors. Load cells
are also utilized for the measurement of the individual spring forces.
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(a) Three-dimensional model

(b) Typical unit

Figure 6.2: New section model test rig
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6.4 Experimental Program

6.4.1 Boundary Layer Wind Tunnel Laboratory at the University of

Western Ontario

Wind tunnel tests for the experimental rig presented in section 6.3.2 were conducted at the
Boundary Layer Wind Tunnel Laboratory (BLWTL) of the University of Western Ontario.
More specifically, wind tunnel tests were carried out in the high-speed test section of BLWT
2 as shown in fig. 6.3. For section model tests of bridges conducted in BLWT 2, the bridge
model is positioned between two streamlined walls, which are typically positioned such
that there is a distance of 2.15 m between them. As mentioned previously, the units of
the section model test rig are located inside these walls. Additionally, the test section
where bridge section models are tested is 1.77 m high, and a maximum wind speed of
30 m/s can be reached at this location. The mean wind speed is measured using two Pitot
tubes positioned above the bridge model, which are shown in fig. 6.3. Under smooth flow
conditions, turbulence intensities are less than 0.5 %. For the grid shown in fig. 6.3b that
is placed at the entrance of the high-speed test section, the turbulent flow measured at the
location of the section model has a longitudinal turbulence intensity of 4.8 % and a vertical
turbulence intensity of 4.4 %.

6.4.2 Bridge Section Models

Of the eleven cable-supported bridges that have been analyzed for the purpose of this
research (see chapters 3–5), single-span suspension bridges are of interest for nonlinear
section model tests since they are more nonlinear in comparison to three-span suspension
bridges and cable-stayed bridges. Single-span suspension bridges with longer spans are
particularly interesting because they have a stronger nonlinear vertical-torsional coupling.
With reference to the bridge names used in chapters 3–5, bridges SU4c and SU4d therefore
appear of interest as they are single-span suspension bridges with main spans of 2400 m
and 3000 m respectively. For the sake of comparison, bridge SU2, a three-span suspension
bridge with a main span of 1624 m, is also included in this study. The deck of bridge SU2 is
a single-box girder. For the decks of bridges SU4c and SU4d, the same twin-box girder is
considered. A description of these bridges is presented in table 6.1, but further information
about them can be found in chapters 3–5. Consequently, section model tests were conducted
for bridges SU2, SU4c and SU4d at the BLWTL as shown in fig. 6.3. The section model
of bridge SU2 has a geometric scale of 1/70 for a model width of 443 mm. This model is
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Table 6.1: Description of cable-supported bridges

Bridge SU2 SU4c SU4d
Type Three-span suspension Single-span suspension Single-span suspension

Bridge deck Single-box girder Twin-box girder Twin-box girder
Spans (m) 536 + 1624 + 536 2400 3000

Bridge-deck width (m) 31.0 46.4 46.4

Bridge-deck
cross section

Finite element
model

(a) Bridge SU2 (b) Bridges SU4c and SU4d

Figure 6.3: Bridge models utilized for nonlinear section model tests

also 1806 mm long. For bridges SU4c and SU4d, the 2134 mm-long section model has a
geometric scale of 1/75 for a model width of 619 mm.

6.4.3 Validation of Nonlinear Section Model Test Rig

Before conducting nonlinear section model tests using the new bridge rig, it was required to
validate its accuracy and reliability for dynamic tests. For this purpose, the section model
of bridge SU2 was considered since it had been previously tested in the main wind tunnel
of the Université de Sherbrooke. At first, it was decided to measure the mean aerodynamic
force coefficients using the static test rig of the BLWTL in order to compare them to those
from the Université de Sherbrooke. This aimed at ensuring that the section model of bridge
SU2 was not altered in its transportation between the two wind tunnel laboratories. Then,
the flutter derivatives and linear dynamic responses for bridge SU2 measured using the new
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bridge rig were compared to those measured using the existing bridge rig at the BLWTL
and those obtained in the main wind tunnel of the Université de Sherbrooke. This second
step of the validation procedure allows to confirm the adequacy of the new bridge rig for
dynamic section model tests. With the exception of the flutter derivative tests at the BLWTL
for which only a smooth flow was used, all the wind tunnel results for this validation were
measured using smooth and turbulent flow conditions, either at the Université de Sherbrooke

or the BLWTL. The reader is referred to appendix C in order to find more information about
the validation procedure of the new bridge rig.

6.4.4 Linear Section Model Tests

In order to have a basis of comparison for the nonlinear section model tests, linear section
model tests were first carried out for the suspension bridges of table 6.1. These tests
correspond to standard dynamic tests where vertical springs are utilized to suspend the
bridge section model. The new bridge rig of the BLWTL was utilized for these wind tunnel
tests. The experimental rig was set up in a similar manner to what is illustrated in fig. 6.2a.

The full-scale test parameters utilized for these dynamic tests are presented in table 6.2. With
the exception of bridge SU2, linear dynamic tests were performed for the first symmetric
modal pair as well as the first antisymmetric modal pair. This was done because the
frequencies for the first symmetric modal pair ( fVS 1 and fθS 1) and the frequencies for the first
antisymmetric modal pair ( fVA1 and fθA1) are close to each other. Therefore, it is not a priori
clear which modal pair is critical for flutter. For bridge SU2, it was only possible to do tests
for the first symmetric modal pair since the torsional-to-vertical frequency ratio required in
the case of the first antisymmetric modal pair cannot be achieved with the experimental rigs
of the BLWTL. This was not problematic because 2D flutter analysis relying on complex
eigenvalue analysis for bridge SU2 indicated that the first symmetric modal pair was critical
for flutter since the first antisymmetric modal pair has a much higher critical wind speed.

Due to the fact that most bridges are tested for the first symmetric and antisymmetric modal
pairs, the mass per unit length m∗V and mass moment of inertia per unit length m∗θ that are
shown in table 6.2 correspond to the average values given by eq. 6.7 for the first symmetric
modes and first antisymmetric modes. It is also worth mentioning that the experimental
mass properties were within 5 % of the full-scale target values that are presented in table 6.2.
Similarly, the experimental natural frequencies were in good agreement with the target
natural frequencies in table 6.2. Regarding the damping ratios, the values presented in
table 6.2 correspond to the experimental ones. In the case of the first symmetric modes
for bridges SU4c and SU4d, the damping ratios used during the linear tests (see values
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Table 6.2: Full-scale test parameters for section model tests (m∗V : mass per unit length,
m∗θ: mass moment of inertia per unit length, fVS 1: natural frequency of first symmetric
vertical mode, ξVS 1: damping ratio of first symmetric vertical mode, fθS 1: natural frequency
of first symmetric torsional mode, ξθS 1: damping ratio of first symmetric torsional mode,
fVA1: natural frequency of first antisymmetric vertical mode, ξVA1: damping ratio of first
antisymmetric vertical mode, fθA1: natural frequency of first antisymmetric torsional mode,
ξθA1: damping ratio of first antisymmetric torsional mode, αs: angle of attack)

Bridge SU2 SU4c SU4d
m∗V (103 kg/m) 23.01 38.03 44.56

m∗θ (106 kg ·m2/m) 2.505 12.977 16.889
fVS 1 (Hz) 0.097 0.093 0.083
ξVS 1 (%) L: 0.40, NL: 0.40 L: 0.58, NL: 0.63 L: 0.55, NL: 0.58
fθS 1 (Hz) 0.279 0.140 0.115
ξθS 1 (%) L: 0.28, NL: 0.38 L: 0.72, NL: 0.71 L: 0.61, NL: 0.61
fVA1 (Hz) - 0.065 0.059
ξVA1 (%) - L: 0.44 L: 0.39
fθA1 (Hz) - 0.126 0.100
ξθA1 (%) - L: 0.27 L: 0.36
αs (°) 0.0 0.0 0.0

for L) were set to match those for the nonlinear tests. This is discussed in more detail in
section 6.4.5. Additionally, it is worth noting that linear dynamic tests were conducted for
smooth and turbulent flows and for an angle of attack of 0°.

6.4.5 Nonlinear Section Model Tests

As mentioned in section 6.2.1, linear section model tests are sufficient for the first antisym-
metric modal pairs, and nonlinear section model tests are therefore only relevant for the first
symmetric modal pairs in this study. By following the procedure presented in sections 6.2
and 6.3.1, the nonlinear structural behavior and inclined spring configurations were deter-
mined for the first symmetric modal pairs of the bridges in table 6.1. Figure 6.4 presents the
spring configurations utilized for the nonlinear section model tests, which were obtained
considering the mass properties of table 6.2 and scaling parameters given in fig. 6.4. Also,
in this figure, the dashed grey lines represent the usable space inside the units of the new
bridge rig for the springs and moving parts. The spring stiffnesses in this figure correspond
to the individual spring stiffness of each spring shown in the figure. However, since two
springing systems are used in the wind tunnel, i.e., one at each end of the section model, the
springs utilized in the wind tunnel have a stiffness that is half of the values given in fig. 6.4.
As shown in this figure, it was decided to use the same springs for the nonlinear tests of the
three bridges. Consequently, the velocity scale was changed for the different bridges instead
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(a) Bridge SU2 (λL = 1/70, λU = 1/4.18,
Lmm = 1806 mm, Γh

V = 1133.4, Γαθ = 994.2,
βV = 1.551, βθ = 1.372, m∗V/mV = 0.968,
m∗θ/mθ = 0.569)

(b) Bridge SU4c (λL = 1/75, λU = 1/5.17,
Lmm = 2134 mm, Γh

V = 948.9, Γαθ = 1049.1,
βV = 1.485, βθ = 1.337, m∗V/mV = 0.992,
m∗θ/mθ = 1.034)

(c) Bridge SU4d (λL = 1/75, λU = 1/4.96,
Lmm = 2134 mm, Γh

V = 1186.9, Γαθ = 1247.8,
βV = 1.478, βθ = 1.357, m∗V/mV = 0.987,
m∗θ/mθ = 1.032)

Figure 6.4: Nonlinear spring configurations for the first symmetric modal pairs of the
suspension bridges

of using springs with different stiffness values. Doing so made easier the adjustment of the
section model test rig when switching between the different nonlinear spring configurations.
The individual stiffness of each spring was measured so that the average spring stiffness can
be considered in the calibration process of section 6.3.1 (twice the average due to the two
springing systems). This was done by suspending weights to the springs and measuring the
corresponding displacements using a laser displacement sensor. Additionally, as it is shown
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in fig. 6.2b, turnbuckles are utilized to adjust the distance between the spring attachment
points of the horizontal extrusion and torsion arm.

Since only the top springs are used in the spring configurations of fig. 6.4, the spring
prestressing is therefore only provided by the weight of the section model. For this reason,
it was decided to use extension springs without initial pretension. By doing so, the weight
of the section model provides a maximum spring extension, ensuring that the springs stay
under tension at all times even when the section model moves. To avoid the vibration of the
inclined springs, light springs with a relatively small wire diameter were utilized as shown in
fig. 6.2b. It is also worth mentioning that top-spring-only setups were utilized for the linear
tests with vertical springs of bridges SU4c and SU4d.

Just like in the case of linear tests, standard procedures can be utilized in the case of nonlinear
section model tests for the measurement of the natural frequencies, mass, mass moment of
inertia and damping ratios as long the amplitudes of vibration are small so that the behavior is
quasilinear. However, in the case of inclined spring configurations, the added mass technique
cannot be used to calculate the mass and mass moment of inertia, but these quantities can
be calculated from the frequencies and stiffness of the system. With the inclined spring
configurations, it is also required to check the nonlinear structural behavior of the system by
applying known vertical forces and torsional moments and by measuring the corresponding
displacements. This is to make sure that the nonlinear stiffness provided by the inclined
springs matches the target nonlinear structural behavior. From the measurement of the
nonlinear structural behavior, the tangent stiffnesses when yV and yθ are close to zero can
be obtained for the purpose of calculating the experimental mass and mass moment of
inertia. Additionally, it is worth mentioning that the measured frequencies in the case of
the nonlinear tests for small amplitudes of vibration were very close to the target linear
frequencies presented in table 6.2. With regard to the mass and mass moment of inertia, the
experimental values were within 5 % of the full-scale target values shown in table 6.2.

Once the bridge rig is set up for nonlinear section model tests, its usage for dynamic tests
is the same as for typical linear tests where the dynamic response of a bridge is obtained
by gradually increasing the wind speed in the wind tunnel. However, it was found that the
inherent mechanical damping of the new bridge rig was higher when set up for nonlinear
tests in the case of bridges SU4c and SU4d. Indeed, it was not possible for the nonlinear tests
to have damping ratios around 0.3 % for these bridges, which was the value that was initially
intended to be considered in the dynamic section model tests. Instead, damping ratios around
0.6 % were obtained for the nonlinear tests as shown in table 6.2 in the case of the first
symmetric modal pair (see values for NL). The additional inherent damping observed for the
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nonlinear tests is possibly explained by the fact that there are greater rotational amplitudes
of the bearings located on the top spring attachment points in the case of inclined springs
in comparison to a vertical spring configuration. Consequently, the linear tests for the first
symmetric modal pairs were carried out again for a damping ratio close to 0.6 % in order
to be able to make a direct result comparison with the nonlinear test results. As shown in
table 6.2, the damping ratios for the linear and nonlinear cases are similar for each of the
three bridges in the case of the first symmetric modal pair.

6.5 Results

6.5.1 Static Aerodynamic Coefficients

Before conducting dynamic section model tests, the static aerodynamic coefficients were
measured for the bridge section models utilized in this research. For the single-box girder
model of bridge SU2, static tests were conducted just prior to the dynamic tests. The section
model for bridges SU4c and SU4d was tested for the static coefficients during a previous
wind tunnel test campaign at the BLWTL. For the presentation of the static coefficients, the
following formulation is considered for the mean aerodynamic forces:

Ds =
1
2
ρU2B CD(αs) Ls =

1
2
ρU2B CL(αs) Ms =

1
2
ρU2B2 CM(αs) (6.12)

where Ds, Ls and Ms are the mean aerodynamic drag force, mean aerodynamic lift force
and mean aerodynamic moment per unit length; ρ is the density of air; U is the mean wind
speed; B is the bridge-deck width; CD, CL and CM are respectively the drag coefficient, lift
coefficient and moment coefficient; αs is the angle of attack. The sign convention that is
utilized for the aerodynamic forces in this chapter is shown in fig. 6.5.

The static coefficients of the section model of bridge SU2 as well as the static coefficients of
the section model for bridges SU4c and SU4d are presented in fig. 6.6. For the sake of brevity,
only the results for a turbulent flow are included in this section. These results were measured
for a Reynolds number of approximately 3.3×105 for bridge SU2, whereas the section model
of bridges SU4c and SU4d was tested for a Reynolds number of approximately 5.6 × 105.
The Reynolds number is calculated with respect to the bridge-deck width. Additionally, the
static coefficients were measured for angles of attack varying between −10° and 10° with
increments of 1°.
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Figure 6.5: Sign convention for displacements and forces

Figure 6.6: Static aerodynamic coefficients (turbulent flow)

6.5.2 Old Bridge Rig vs New Bridge Rig for Linear Tests

Following the measurements of the static coefficients, linear section model tests for the
same section model were performed using the old bridge rig of the BLWTL as well as the
new BLWTL bridge rig. As mentioned previously, this was done in order to validate the
new bridge rig. The first verification consisted in comparing the flutter derivatives for both
section model test rigs measured using the free-vibration test approach. For this purpose, the
self-excited forces and flutter derivatives are defined as shown in the following equations:

Lse(t) =
1
2
ρU2B

(
KH∗1

ḣ
U
+ KH∗2

Bα̇
U
+ K2H∗3α + K2H∗4

h
B

)
(6.13)

Mse(t) =
1
2
ρU2B2

(
KA∗1

ḣ
U
+ KA∗2

Bα̇
U
+ K2A∗3α + K2A∗4

h
B

)
(6.14)
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where Lse(t) and Mse(t) are the self-excited lift force and self-excited moment per unit length;
t is the time; h = h(t) and α = α(t) are respectively the dynamic vertical displacement and
dynamic rotation; K = ωB/U is the reduced frequency; ω = 2π f is the angular frequency
of oscillation; H∗i and A∗i (i = 1, ..., 4) are the flutter derivatives, which are functions of the
reduced velocity UR = U/( f B); f is the frequency of oscillation; the overdot denotes the
time derivative. The sign convention considered for the forces and displacements is shown
in fig. 6.5.

Figure 6.7: Flutter derivatives of bridge SU2 (smooth flow)

Figure 6.7 presents a comparison between the flutter derivatives for the section model
of bridge SU2 measured using the old bridge rig (BLWTL-Old) and the new bridge rig
(BLWTL-New). For the sake of brevity, only selected flutter derivatives are presented,
and the reader is referred to appendix C for the detailed presentation of this analysis. The
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Modified Unifying Least-Squares (MULS) method [27] was utilized for the calculation of
the flutter derivatives from the free-vibration test results. In addition to the flutter derivatives
measured at the BLWTL, fig. 6.7 also includes the flutter derivatives of bridge SU2 measured
in the main wind tunnel of the Université de Sherbrooke. At the Université de Sherbrooke,
the flutter derivatives were measured using the free-vibration procedure (UdeS-Free) as well
as the forced-vibration approach (UdeS-Forced). For the forced-vibration technique, the
flutter derivatives were calculated from the experimental results using a linear least-squares
approach. The results in fig. 6.7 are for smooth flow conditions and an angle attack of 0°.

The second verification undertaken to validate the new bridge rig consisted in comparing
the dynamic responses of the sprung model of bridge SU2 measured using the old and new
bridge rigs. These linear dynamic tests were carried out considering the dynamic properties
for the first symmetric modal pair. The dynamic response measured for bridge SU2 at the
Université de Sherbrooke was also included in this comparison. However, due to limitations
of the experimental apparatus at the Université de Sherbrooke, damping ratios were just
over 0.9 % for the Université de Sherbrooke results. Samples results of this analysis for a
smooth flow are presented in fig. 6.8. Results for a turbulent flow can be found in appendix C.
Figures 6.8a and 6.8b show respectively the mean displacements and peak displacements of
the linear dynamic responses for bridge SU2 measured using the different experimental rigs.

(a) Mean displacements (b) Peak displacements

Figure 6.8: Linear dynamic response of bridge SU2 for modes VS1 and TS1 and a smooth
flow (full scale)
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6.5.3 Structural Behavior for Nonlinear Section Model Tests

Supplemental to the measurements of the mass, mass moment of inertia, natural frequencies
and damping ratios, it is also required to check the nonlinear stiffness behavior in the case
of nonlinear tests, which was briefly discussed in section 6.4.5. As illustrated in fig. 6.9,
this was done by applying known vertical forces and torsional moments to the bridge model
using weights, pulleys and wires. The corresponding displacements were measured using
laser displacement sensors as shown in fig. 6.9b. For bridge SU2, six different amplitudes for
the vertical force and seven different values for the torsional moment were considered, which
lead to a total of 42 combinations. In the case of bridges SU4c and SU4d, 49 force-moment
combinations for seven values for the vertical force and torsional moment were utilized to
verify the nonlinear stiffness behavior.

In fig. 6.10, the experimental nonlinear stiffness behaviors measured using the approach
described in the previous paragraph are compared to the target nonlinear behaviors for
bridges SU2, SU4c and SU4d. The target behaviors, shown as surfaces in this figure,
correspond to the scaled nonlinear behavior of eqs. 6.8 and 6.9, calculated following the
procedure of section 6.2 for each bridge. The experimental results are shown as colored
circles in this figure. The coloring that is used for the circles shows the error between the
experimental results and the target numerical values. The error for the vertical force |∆ f ∗Vm|

and the error for the torsional moment |∆ f ∗θm| are calculated as per eq. 6.15. In fig. 6.10, the
standard errors for the experimental results are also shown, which were calculated using the
following equations:

|∆ f ∗Vm| =
∣∣∣ f ∗Vm − FV

∣∣∣ |∆ f ∗θm| =
∣∣∣ f ∗θm − Fθ

∣∣∣ (6.15)

6.5.4 Mean and Peak Displacements for Dynamic Tests

In this section, the main results of the dynamic section model tests are included. The linear
test results and nonlinear test results are presented for each bridge of table 6.1 considering the
dynamic properties shown in table 6.2. More specifically, the mean and peak displacements
measured using the new bridge rig for an increasing wind speed are shown in this section.
These results correspond to the full-scale displacements of the section model. The main and
peak displacements for bridge SU2 for a smooth flow and a turbulent flow are respectively
found in figs. 6.11 and 6.12. Figures 6.13 and 6.14 present the dynamic test results of bridge
SU4c for smooth and turbulent flow conditions. In the case of bridge SU4d, the dynamic test
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(a) Bridge SU2

(b) Bridges SU4c and SU4d

Figure 6.9: Setup for measuring nonlinear structural behavior
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(a) Bridge SU2 (σVθ = 2.41 N)

(b) Bridge SU4c (σVθ = 1.47 N)

(c) Bridge SU4d (σVθ = 0.97 N)

Figure 6.10: Comparison between target nonlinear behavior and experimental nonlinear
behavior
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Table 6.3: Flutter wind speeds for linear and nonlinear tests (full scale)

Bridge Ucr for smooth flow (m/s) Ucr for turb. flow (m/s)
A1L S1L S1NL A1L S1L S1NL

SU2 - 78.2 74.9 - 78.9 77.6
SU4c 70.0 76.5 82.3 77.1 77.1 >93.5
SU4d 60.1 69.4 75.0 61.0 64.7 >90.1

results for a smooth flow and a turbulent flow are shown in figs. 6.15 and 6.16. For bridge
SU2, the results for the first symmetric modal pair are presented for the linear case (S1L)
and nonlinear case (S1NL). Supplemental to the linear and nonlinear results for the first
symmetric modal pair, the linear dynamic test results for the first antisymmetric modal pair
(A1L) are also included in these figures in the case of bridges SU4c and SU4d.

From the peak displacement results obtained for the different bridges, the flutter wind speeds
were determined, which are presented in table 6.3. In this table, the flutter wind speed is
defined as the wind speed at which the peak rotation reaches a value of 1.5°. It is worthy to
note that in some cases it was not possible to measure the displacements for a peak rotation
greater than 1.5° since the displacements would suddenly become very large and the wind
tunnel had to be stopped. In this case, the wind speed for which the last point that was
recorded for the peak displacement results was considered as the flutter wind speed.

(a) Mean displacements (b) Peak displacements

Figure 6.11: Linear and nonlinear dynamic responses of bridge SU2 for a smooth flow
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(a) Mean displacements (b) Peak displacements

Figure 6.12: Linear and nonlinear dynamic responses of bridge SU2 for a turbulent flow

(a) Mean displacements (b) Peak displacements

Figure 6.13: Linear and nonlinear dynamic responses of bridge SU4c for a smooth flow
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(a) Mean displacements (b) Peak displacements

Figure 6.14: Linear and nonlinear dynamic responses of bridge SU4c for a turbulent flow

(a) Mean displacements (b) Peak displacements

Figure 6.15: Linear and nonlinear dynamic responses of bridge SU4d for a smooth flow
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(a) Mean displacements (b) Peak displacements

Figure 6.16: Linear and nonlinear dynamic responses of bridge SU4d for a turbulent flow

6.5.5 Linear and Nonlinear Dynamic Responses When Flutter Is

Reached

For the dynamic tests of bridges SU2, SU4c and SU4d, it is also interesting to analyze
the linear and nonlinear dynamic responses when flutter is reached. For this purpose, it is
relevant to present the displacement time histories of the flutter instability of each bridge. A
comparison of the power spectral densities (PSD) of the displacements for the linear and
nonlinear tests is also included. The time histories and PSDs presented in this section are
for the full-scale displacements of the section model. The displacement time histories and
PSDs for bridges SU2, SU4c and SU4d are presented in figs. 6.17–6.19. To make it easier
to compare the PSDs of the displacements, they are presented in a normalized format. The
vertical displacement PSD (S yV) is divided by the variance of the vertical displacement (σ2

yV),
whereas the torsional rotation PSD (S yθ) is normalized with respect to the variance of the
torsional rotation (σ2

yθ). In figs. 6.17–6.19, the results of the linear and nonlinear tests are
presented for the first symmetric modal pair (S1L and S1NL). The time histories and PSDs
for the antisymmetric modal pair (A1L) are also included in figs. 6.18 and 6.19.
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(a) Time history (first sym. modes, linear) (b) Time history (first sym. modes, nonlinear)

(c) Power spectral density

Figure 6.17: Flutter dynamic response of bridge SU2 for a smooth flow
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(a) Time history (first antisym. modes, linear) (b) Time history (first sym. modes, linear)

(c) Time history (first sym. modes, nonlinear) (d) Power spectral density

Figure 6.18: Flutter dynamic response of bridge SU4c for a smooth flow
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(a) Time history (first antisym. modes, linear) (b) Time history (first sym. modes, linear)

(c) Time history (first sym. modes, nonlinear) (d) Power spectral density

Figure 6.19: Flutter dynamic response of bridge SU4d for a smooth flow
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6.6 Discussion

6.6.1 Static Aerodynamic Coefficients of Bridge Section Models

In the case of the single-box girder of bridge SU2, the measurements of the static coefficients
were made at the Université de Sherbrooke and at the BLTWL in order to confirm that the
section model was not damaged during its storage and transportation between the Université

de Sherbrooke and the BLWTL. As discussed in appendix C, a good agreement was obtained
between the static coefficients measured at the different wind tunnels, confirming that the
section model for bridge SU2 was not altered during its transportation.

From the analysis of fig. 6.6, it is of interest to notice that there is a change of slope for
the moment coefficient of the section model used for bridges SU4c and SU4c. This occurs
at an angle of attack just over 4°. In comparison, the moment coefficient for bridge SU2
is practically linear over the range of angles of attack tested. To a lesser extent, the lift
coefficient for bridges SU4c and SU4d also shows a change of slope at an angle of attack
around 4°, whereas the lift coefficient is still linear for bridge SU2. The change of slope
observed for the twin-box girder model of bridges SU4c and SU4d is likely attributed to the
fact that the airflow passes through the gap in the middle of the bridge deck when the angle
of attack is greater than 4°. This could be confirmed using CFD, but this was deemed out of
the scope of this research on structural nonlinearities. For the drag coefficient, the minimum
values for both section models are obtained for angles of attack close to 0° as it is typically
the case.

6.6.2 Validity of the New Section Model Test Rig

As discussed in section 6.4.3, the first step of the validation procedure of the new bridge rig
consisted in measuring the flutter derivatives for bridge SU2. Figure 6.7 shows that there is
a good agreement between the flutter derivatives obtained with the different experimental
rigs. Regarding the dynamic responses of bridge SU2 measured with the three different
section model test rigs, there is an excellent agreement between the old and new bridge
rigs of the BLWTL as shown in fig. 6.8. The peak displacements obtained at the Université

de Sherbrooke are less than those for the two BLWTL rigs since higher damping ratios of
around 0.9 % were utilized due to experimental limitations. Nevertheless, from this analysis
of the flutter derivatives and dynamic responses for bridge SU2, it is possible to confirm
the adequacy of the new section model test rig. A detailed presentation of the results and
discussions about this analysis can be found in appendix C.
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6.6.3 Process of Conducting Nonlinear Section Model Tests

It was found that it is easier to first perform the linear section model tests before the nonlinear
tests. Doing so facilitates the calibration of the mass and mass moment of inertia since the
added mass technique can be utilized for the linear tests. After conducting the linear tests, the
springs are arranged according to the nonlinear configurations illustrated in fig. 6.4, and the
ballast masses used to adjust the mass properties are kept the same as for in the linear tests.
Nonetheless, the mass and mass moment of inertia are checked again for the nonlinear test
configurations. In this case, the mass properties are calculated using the natural frequencies
and tangent stiffnesses of the nonlinear system as explained in section 6.4.5. It was found
that the mass properties for the nonlinear tests were practically the same as those for the
linear tests.

As for the linear tests, the experimental natural frequencies and damping ratios were also
measured. In addition to that, the nonlinear behavior in stiffness was measured by applying
known forces and moments to the section model (see sections 6.4.5 and 6.5.3). This was
found to be a lengthy procedure due to the numerous force-moment combinations required
to obtain the graphs that are shown in fig. 6.10. According to fig. 6.10, it is possible to say
that the experimental nonlinear behavior in stiffness matches quite well the target numerical
nonlinear behavior. This is demonstrated by the small values for the standard error σVθ that
is around 1 N to 2 N. In fig. 6.10a, there are more noticeable differences in the case of the
vertical force of bridge SU2 for large displacements. Nevertheless, the average values for
the errors |∆ f ∗Vm| and |∆ f ∗θm| for bridge SU2 are 2.48 N and 0.15 Nm, which are small values
with respect to the forces and moments in fig. 6.10. The average errors for bridges SU4c
and SU4d are even smaller. For bridge SU4c, the average errors are 1.28 N and 0.10 Nm,
whereas average errors of 1.08 N and 0.07 Nm are obtained for bridge SU4d. From this
analysis, it is concluded that the inclined spring configurations utilized for the nonlinear
section model tests represent in a satisfactory manner the target nonlinear stiffness behavior.

6.6.4 Linear Dynamic Tests vs Nonlinear Dynamic Tests

When looking at the results of the dynamic responses for bridge SU2 in figs. 6.11 and 6.12, it
is possible to see that the critical velocity for flutter is only slightly impacted by the nonlinear
structural behavior. According to table 6.3, the nonlinear behavior reduces the flutter wind
speed by 4.2 % and 1.7 % for a smooth flow and a turbulent flow. This is explained by the
fact that bridge SU2 was found to be the least nonlinear of the three bridges used in this
research (according to fig. 6.10 and nonlinear generalized stiffness analysis results presented
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in appendix B). Even though the flutter wind speed was not significantly impacted by the
nonlinear structural behavior for bridge SU2, it is possible to see that the evolution of the
flutter peak displacements in the case of a smooth flow is more gradual for the nonlinear
behavior compared to the linear behavior (see figs. 6.8 and 6.11). For a linear behavior, the
displacements become suddenly very large (see fig. 6.8). It is interesting to note that the
gradual evolution of the peak displacements for wind speeds in the vicinity of flutter was not
observed for a turbulent flow as shown in fig. 6.12. According to table 6.3, it appears that
turbulence does not have a significant influence on the critical velocity for flutter in the case
of bridge SU2. Regarding the mean displacements, slightly smaller vertical displacements
are observed for the nonlinear tests of bridge SU2.

For bridges SU4c and SU4d for smooth flow conditions, figs. 6.13 and 6.15 show that
the nonlinear structural behavior increases the flutter critical velocity by 7.6 % and 8.2 %
based on table 6.3. It appears that the greater nonlinear structural behaviors for bridges
SU4c and SU4d lead to a more significant impact on the flutter wind speeds compared to
bridge SU2. In fig. 6.13, it is also interesting to note that, once flutter is reached, the peak
displacements stabilize over a small range of wind speeds until the bridge becomes stable
again. It is believed that this is related to the change of slope observed for the moment
coefficient in fig. 6.6 in the case of the twin-box girder deck for bridges SU4c and SU4d. For
the first symmetric modal pair, the nonlinear structural behavior delays the onset of flutter in
comparison to the linear case, which allow the bridge model to have a greater mean rotation
close to 3° as shown in fig. 6.13a. Including the dynamic response, this means that the
rotation of the model can reach more than 5°. This is within the range of angles for which a
nonlinear evolution of the moment coefficient is observed in fig. 6.6. The nonlinear variation
of CM leads to the peculiar instability shown in fig. 6.13 since the flutter derivatives A∗3,
which is important for coupled flutter, is related to the slope of CM according to quasi-steady
theory. Therefore, it seems that there is a combined effect of structural nonlinearities and
aerodynamic nonlinearities that caused the instability of fig. 6.13. As shown in fig. 6.15, this
peculiar instability was not observed for bridge SU4d. It is believed that the mean rotation
was not sufficient to trigger it as the flutter occurred for a lower wind speed in the case of
bridge SU4d compared to bridge SU4c. Also, figs. 6.14 and 6.16 show that the combined
effect of structural nonlinearities and turbulence is sufficient to prevent flutter over the range
of wind speeds achievable in the wind tunnel with the new bridge rig. This is surprising
considering that an instability was experienced for a linear behavior and a turbulent flow. For
this reason, the nonlinear results for a turbulent flow were remeasured in order to confirm
them.



179

When looking at the time histories of the flutter responses for the first symmetric modes
in figs. 6.17–6.19, it is not possible to see noticeable differences between the linear or
nonlinear responses. The same applies to the PSDs of the flutter responses presented in
figs. 6.17c, 6.18d and 6.19d since the linear and nonlinear results for the first symmetric
modes show similar trends. More specifically, the PSD peaks around 0.2 Hz for bridge SU2
and around 0.1 Hz for bridge SU4c and SU4d, associated with coupled flutter, are practically
the same for the linear and nonlinear cases for the first symmetric modes. Figures 6.17c,
6.18d and 6.19d also show other peaks close to 1 Hz. These peaks are attributed to vibrations
of the section model, but they do not detract from the conclusion regarding the PSD peaks
corresponding to flutter.

For bridges SU4c and SU4d, linear dynamic section model tests were also conducted for
the first antisymmetric modes as shown in figs. 6.13–6.16 and table 6.3. In general, the
flutter wind speeds for the first antisymmetric modes are less than those obtained in the
dynamic tests for the first symmetric modes, either linear or nonlinear. However, it seems
that antisymmetric flutter is delayed by a turbulent flow when comparing fig. 6.13 and
fig. 6.14. In fig. 6.14, it appears that the antisymmetric and symmetric instabilities occur
for the same wind speed, which is of 77.1 m/s according to table 6.3. Regarding the flutter
response PSD of bridge SU4c for a smooth flow presented in fig. 6.18, it is possible to
notice that the frequency of the antisymmetric instability is very close to the one for the
symmetric instability. For bridge SU4d, there is a more significant difference between the
flutter frequencies for the first antisymmetric and symmetric modes, with the antisymmetric
case having the lowest frequency (see fig. 6.19).

From the analysis of the results of this initial experimental investigation of the effect of
structural nonlinearities on the aeroelastic stability of cable-supported bridges, it appears that
a nonlinear stiffness behavior mostly have an effect on the critical flutter wind speed since
nonlinear dynamic phenomena of structural origins were not observed. Further research
would be required in order to understand why the flutter wind speed can be impacted by
a nonlinear structural behavior. It will be worth studying whether this could be caused
by a slight variation of the natural frequencies because of the varying stiffness or by a
combination of nonlinear structural effects and nonlinear aerodynamic effects. Therefore, it
is recommended to conduct more nonlinear section model tests for this purpose. It would
also be of interest to perform wind tunnel tests in the case of other structural systems.
Since simple suspension bridges, often used as pedestrian bridges, are nonlinear structures
[42, 43], it would be relevant to include this structural system in future experimental work.
Double-main-span suspension bridges would be of interest as well. Additionally, it would
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be interesting to compare experimental results of nonlinear section model tests to numerical
simulations. In future research efforts, it would be interesting to see whether the symmetric
instability could be triggered for a wind speed lesser than the critical wind speed for the
antisymmetric instability.

6.7 Conclusions

Cable-supported bridges are intrinsically geometrically nonlinear due to the cable systems
utilized in these structures. Since the cable systems contribute more to the total stiffness
of longer bridges, this intrinsic nonlinear behavior could be of importance for the dynamic
behavior of long cable-supported bridges. This could especially be the case with regard
to the dynamic response of bridges subjected to wind actions like flutter. This is why this
chapter aimed at studying the effect of structural nonlinearities on the aeroelastic stability
of cable-supported bridges. More specifically, an innovative wind tunnel test approach for
bridges based on section model tests able to account for the nonlinear structural behavior was
utilized to see whether a nonlinear structural behavior can impact the stability of bridges. The
focus of this study was on geometric nonlinearities, which are of concern for cable-supported
bridges.

The theory for nonlinear section model tests was first reviewed, which was followed by
the presentation of the experimental apparatus used for nonlinear section model tests. This
section model test rig is able to model the nonlinear structural behavior of cable-supported
bridges by suspending the bridge section model to a springing system comprised of inclined
springs. Wind tunnel tests using this nonlinear section model test rig were conducted at the
Boundary Layer Wind Tunnel Laboratory of the University of Western Ontario. At first,
this bridge rig for nonlinear tests was validated by comparing linear dynamic test results
for the old bridge rig and this new bridge rig using the single-box girder bridge model of
a three-span suspension bridge. Using the new bridge rig, section model tests for a linear
structural behavior were also conducted for two supplemental configurations, which are for
a twin-box girder model considered for single-span suspension bridges with main spans of
2400 m and 3000 m. For these three bridge configurations, nonlinear section model tests
were then conducted using inclined spring configurations.

The reliability of the new section model test rig for dynamic tests was validated since the
flutter derivatives and linear dynamic responses measured with it compared well to those
obtained using the old rig of the Boundary Layer Wind Tunnel Laboratory. Using the new
bridge rig in the case of inclined spring configurations proved the possibility of conducting
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nonlinear section model tests in the case of cable-supported bridges. It was demonstrated
that the nonlinear structural behavior can have an influence on the critical wind speed for
flutter, especially in the case of the twin-box girder bridge model of the two single-span
suspension bridge configurations. This was in the case of an instability for the first symmetric
modes. However, the nonlinear structural behavior did not have a significant effect on the
wind dynamic response of a three-span suspension bridge, for which the bridge deck is a
single-box girder, from the fact that this structural system is less nonlinear. Even though it
would be of interest to conduct more nonlinear section model tests for different structural
systems and bridge-deck cross sections, it is possible to recognize the fact that this work has
made available to researchers and engineers an additional experimental tool to understand
the effect of structural nonlinearities on the aeroelastic behavior of bridges. Future research
should especially focus on whether the symmetric instability could be triggered for a wind
speed lesser than the critical wind speed for the antisymmetric instability.
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Chapter 7

Conclusion

7.1 Summary

From the fact that cable-supported bridges are getting longer, structural nonlinearities could
play a more important role on the behavior of these bridges due to the greater contribution of
the cable system to the stiffness of these bridges. The observations made by mathematicians
regarding large oscillations in suspension bridges due to nonlinear structural dynamic
phenomena also point in this direction. Therefore, it appears of interest to assess whether
the nonlinear structural behavior could have an influence on the stability of cable-supported
bridges when subjected to the effects of wind. For example, the critical wind speed for
flutter could be influenced by such nonlinear structural behavior, and it is not impossible
that structural nonlinearities could trigger nonlinear structural dynamic phenomena that have
never been observed in bridges. This is why this doctoral research project aimed at assessing
the effect of structural nonlinearities on flutter instability of long cable-supported bridges.

To answer this research problem, four separate objectives had to be met. The first objective
was to provide an evaluation of structural nonlinearities in cable-supported bridges. The
focus of this analysis was on geometric nonlinearities, which are of concern in cable-
supported bridges because of their cable systems. This assessment especially focused on
nonlinear structural vertical-torsional coupling in cable-supported bridges. Analyses were
performed using a simplified practical approach relying on nonlinear pushover analysis.
More specifically, modal loads were applied to geometrically nonlinear finite element models
of cable-supported bridges. By doing so, nonlinear generalized stiffness parameters were
determined for equivalent systems, which have from one to three degrees of freedom (lateral,
vertical and torsional). They provide a comparison basis for identifying bridges that are
more nonlinear, and thus more likely to have their flutter response impacted by nonlinear
structural behavior.

Since it is difficult to analytically model the aerodynamic forces on bridges for large am-
plitudes of vibration, it was decided to utilize an experimental approach for the assessment
of the effect of structural nonlinearities on flutter. Consequently, the second objective of
this research was to make the theoretical developments required to account for structural
nonlinearities when conducting wind tunnel tests of bridges, more specifically section model
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tests. It was demonstrated that a two-mode nonlinear generalized stiffness behavior, obtained
using nonlinear generalized stiffness analysis for a vertical mode and a torsional mode,
can be considered to develop nonlinear section model tests for bridges. By comparing the
full-bridge dynamic equations to the section-model equations, it was possible to develop a
scaling procedure for the nonlinear generalized stiffness behavior to be considered for the
vertical and torsional stiffnesses in nonlinear section model tests. This scaling procedure
requires the use of mode correction factors and scaling factors. The assumptions made in
the theory for nonlinear tests were validated, and the proposed scaling procedure to obtain
the nonlinear structural behavior to be considered in nonlinear section model tests was also
tested.

It was then found that a new experimental test rig was needed in order to conduct nonlinear
section model tests for bridges. Therefore, it was required to develop a design for an
experimental wind tunnel apparatus for section model tests of bridges able to represent the
nonlinear structural behavior of a cable-supported bridge. This was also the third objective
of this research project. First, the idea of using a nonlinear springing system composed of
inclined springs was discussed. This was followed by the presentation of a numerical method
to calibrate the nonlinear springing system so that its behavior matches the target behavior
based on nonlinear generalized stiffness analysis. After testing the calibration method for
different bridges, the design of a new section model test rig for bridges able of nonlinear
tests was presented. With an easy adjustment of the attachment points of the inclined springs,
this design of a new bridge test rig offers the flexibility required for a nonlinear springing
system.

Following the fabrication of this section model test rig able of nonlinear section model tests,
wind tunnel tests were conducted at the Boundary Layer Wind Tunnel Laboratory (BLWTL)
of the University of Western Ontario. At first, linear section model tests were conducted for
the single-box girder bridge model of a suspension bridge using the existing bridge rig as
well as the new bridge rig. This procedure allowed to confirm the validity of the new bridge
rig in the case of linear dynamic tests. Then, nonlinear section model tests were conducted
at the BLWTL in order to study the effect of structural nonlinearities on the aeroelastic
stability of cable-supported bridges, which corresponds to the fourth objective of this project.
Supplemental to the test configuration of the single-box girder suspension bridge model, two
additional test configurations for a twin-box girder suspension bridge model were utilized for
the nonlinear tests. These three test configurations were first considered for linear dynamic
section model tests. They were followed by nonlinear tests carried out using a nonlinear
springing system with inclined springs. The effect of structural nonlinearities on flutter was
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therefore assessed by comparing the results of the linear tests to those of the nonlinear tests.

7.2 Contributions

It is now of interest to summarize the main contributions of this research project, which is
done in what follows.

1. The first contribution of this project is a numerical approach to quantify structural
geometric nonlinearities in cable-supported bridges. It is a practical approach relying
on nonlinear pushover analysis for modal loads that allows the determination of non-
linear generalized stiffnesses for equivalent reduce-order structural systems. Nonlinear
generalized stiffness parameters can be utilized to quantify in a practical manner the
level of nonlinearity and the nonlinear vertical-torsional coupling in cable-supported
bridges.

2. The second contribution of this project is an assessment of structural nonlinearities in
suspension bridges and cable-stayed bridges, which relied on nonlinear generalized
stiffness analysis. This analysis demonstrated that vertical modes, especially symmet-
ric vertical modes, are more nonlinear than lateral and torsional modes. Additionally,
it confirmed nonlinear structural vertical-torsional coupling in cable-supported bridges.
The suspension bridge system was also found to be more nonlinear in terms of geo-
metric nonlinearity than the cable-stayed bridge system.

3. The third contribution of this Ph.D. project is a theory for section model tests of cable-
supported bridges to account for the nonlinear structural behavior when conducting
wind tunnel tests. The theory relies on the nonlinear generalized stiffness behavior of
a cable-supported bridge that is modified using mode correction factors and scaling
factors. It was demonstrated that the theory for nonlinear section model tests for
small displacements is equivalent to the linear theory. This indicates that the nonlinear
theory is an extension of the linear theory.

4. The fourth contribution is a demonstration that a springing system consisting of
inclined springs can be utilized to represent the nonlinear structural behavior in
nonlinear section model tests. To find how to arrange the inclined springs, it was
required to utilize a numerical method based on the minimization of the error between
the target nonlinear structural behavior and the nonlinear behavior from the inclined
springs.
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5. The fifth contribution of this research project is the development and fabrication of
a new test rig that can be utilized for nonlinear section model tests of bridges. This
experimental rig is suitable for a springing system composed of inclined springs.

6. The sixth and last contribution of this project is an experimental assessment of the
influence of structural geometric nonlinearities on the aeroelastic stability of long-
span bridges. This was done by using nonlinear section model tests. Such nonlinear
tests account for a nonlinear structural behavior representative of a cable-supported
bridge. The possibility of conducting nonlinear section model tests in the case of
cable-supported bridges was therefore proved. These tests demonstrated that geometric
nonlinearities can have an influence the critical wind speed for flutter.

7.3 Recommendations for Future Work

This research project provided an initial assessment of the effect of structural nonlinearities
on the stability of cable-supported bridges when subjected to wind, and more specifically on
flutter. The experimental approach based on nonlinear section model tests utilized in this
research is a first step toward a better understanding of the effect of structural nonlinearities
on flutter for cable-supported bridges. Consequently, it is interesting to briefly discuss in
this section recommendations for further research on structural nonlinearities and flutter in
the case of cable-supported bridges.

From the fact that the system modeled in nonlinear section model tests is a simplified
representation of the problem, such tests are well suited for understanding the influence of
specific effects like a nonlinear stiffness behavior and aerodynamic nonlinearities. With the
same logic, numerical analysis could be utilized to simulate nonlinear section model tests.
At first, it would be relevant to see whether harmonic vertical forces could lead to nonlinear
dynamic phenomena for a 2-DOF dynamic system with a nonlinear behavior representative
of a cable-supported bridge. The forcing amplitude and frequency would be parameters
of interest to evaluate. Furthermore, 2D flutter analysis for a 2-DOF nonlinear dynamic
system should also be conducted using time-domain dynamic analysis. It would be worth
assessing the influence of using either linear or nonlinear aerodynamic force models for
such time-domain flutter analyses. The effect of turbulence could also be studied. These
numerical simulations would be compared to experimental results in order to be validated.

After, getting more insight on structural nonlinearities from 2D dynamic analysis, the next
step could be to perform nonlinear dynamic analysis considering geometric nonlinearities
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using numerical models of entire cable-supported bridges. Such numerical simulations
would be carried out in the time domain for harmonic forces as well as for aerodynamic
forces based on linear or nonlinear force models. It would also be relevant to use such
numerical simulations to assess the effect of nonlinearities from the structural damping on
the aeroelastic behavior of bridges. Additionally, using nonlinear finite element models of
cable-supported bridges, it would be pertinent to calculate nonlinear normal modes. This
should also provide more insight into the nonlinear dynamic behavior of cable-supported
bridges.

In terms of experimental work, it would be recommended to conduct supplemental nonlinear
section model tests using section models with bridge-deck cross sections that are different
than those utilized in this project. With regard to the nonlinear behavior, it would be
relevant to consider different structural systems such as simple suspension bridges and
double-main-span suspension bridges. It would be interesting to see whether the effect of
structural nonlinearities could be more apparent for some cross sections or structural systems.
Additionally, it would be relevant to develop a full-aeroelastic model of a suspension bridge
in which only the main span would be considered, i.e., only the main cables, hangers and
bridge deck in the main span would be modeled. In such a model, the nonlinear geometric
behavior would be represented correctly since the towers are excluded and that only the
bending stiffness needs to be scaled for the deck of a suspension bridge. Nonlinear wind
tunnel tests conducted using such a scale model would provide a reliable way to validate
nonlinear numerical analyses. Finally, it is believed that such research that started with
nonlinear section model tests will ensure the safe design of very long cable-supported
bridges.
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[38] S. Maheux, S. Langlois, and F. Légeron, “Study on extraction parameters of flutter
derivatives for the development of a time-domain formulation of self-excited forces,”
in Proceedings of the 7th European & African Conference on Wind Engineering,
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Appendix A

Finite Element Models of Cable-Supported

Bridges

A.1 Modeling and Validation of Finite Element Models

This appendix presents a description of the cable-supported bridges used for this research
project as well as the corresponding finite element models. Nine suspension bridges with
main spans between 1200 m and 4140 m and two cable-stayed bridges with main spans
around 1 km were considered. As mentioned previously, such a wide range in terms of
span lengths was used for the suspension bridges in order to identify any potential span
length effect. Also, the cable-stayed bridges were included in this research for comparison
purposes between the two most common structural systems used for long-span bridges, i.e.,
the suspension system and cable-stayed system. Detailed information for each of the eleven
bridges is presented in sections A.2–A.12. Tables A.1, A.3, A.5, A.7, A.9, A.11, A.13,
A.15, A.17, A.19 and A.21 present relevant information about the structural system and
geometry of each bridge as well as the number of elements for the numerical models. The
finite element models are shown in figs. A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15, A.17,
A.19 and A.21.

It should be mentioned that suspension bridges SU1, SU2 and SU3b and cable-stayed
bridges CS1 and CS2 are existing structures or existing detailed designs. Bridges SU3a and
SU3c are preliminary bridge designs based on bridge SU3b, but with different span lengths.
Compared to bridge SU3b, which has a main span of 3300 m, bridges SU3a (2460 m) and
SU3c (4140 m) are respectively 25 % shorter and 25 % longer in terms of span length. For
these bridges, the main cables and towers were redesigned considering the new span lengths,
but the bridge-deck properties and hanger spacing were kept as in bridge SU3b. The same
sag-to-span ratio of 1/10.5 was considered for bridges SU3a, SU3b and SU3c. These bridges
provide a reliable way to judge on the span length effect as they originate from the same
design concept.

Since it was found that single-span suspension bridges have a stronger nonlinear behavior, it
was decided to develop four preliminary designs of single-span suspension bridges, which
are bridges SU4a, SU4b, SU4c and SU4d. For this purpose, the design basis of bridge SU3b
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was utilized with the exception that only vehicle usage was considered unlike bridge SU3b
that has road and rail usages. The different span lengths considered for these bridges are
1200 m, 1800 m, 2400 m and 3000 m. For these four bridges, a sag-to-span ratio of 1/10
was utilized. The bridge deck used for these bridges, which is the same for bridges SU4a,
SU4b, SU4c and SU4d, is a twin-box girder unlike the triple-box girder of bridge SU3b.
This choice was made because railways are not present. Also, this is to ensure that the
bridges are sufficiently stable against flutter since the applicability of a single-box girder
would be questionable for the bridge designs with a main span of 1800 m and over [17]. The
twin-box deck considered for these bridges was tested at the Boundary Layer Wind Tunnel
Laboratory in 2001 for a proposed bridge project. Similar towers to bridge SU3b were used
for these preliminary designs, but were resized accordingly. Similarly, the cable system was
redesigned. These four single-span suspension bridges also offer a reliable way to assess the
span length effect.

A.1.1 Modeling Approach of Suspension Bridges

For the suspension bridges, the fishbone modeling approach was used, i.e., each box girder
of the bridge deck was modeled using Timoshenko beam elements connected to the cable
system using rigid elements. For the towers, Timoshenko beam elements were also utilized.
The main cables and hangers were modeled using tension-only truss elements, and cable
preloads were applied using equivalent temperature loads. When active, the hydraulic buffers
were represented using nonlinear truss elements having a bilinear material model. The
suspension bridge models were analyzed considering geometric nonlinearities through large
displacement analysis.

A.1.2 Modeling Approach of Cable-Stayed Bridges

Similar to the suspension bridges, the fishbone modeling approach was used for the cable-
stayed bridges, and the bridge deck and towers were modeled with Timoshenko beam
elements. Each stay cable was subdivided into 8 to 12 tension-only truss elements. This
allows the cable sag effect to be represented adequately [181]. Temperature loads were used
for the cable pretensions. Large displacement analysis is also considered for the cable-stayed
bridge models.

For the purpose of dynamic analysis including modal analysis, two different modeling
approaches were used to model the mass of the stay cables. The cable mass was uniformly
distributed along each stay cable in the first approach, which is referred as the distributed
cable mass (DCM) approach. In the second approach, half of the mass of each stay cable was
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lumped at its ends and is referred as the lumped cable mass (LCM) approach. For the second
approach, it is also required to apply the cable self-weight as a uniformly distributed load in
order to have the correct geometric stiffness. Since the second approach allows disregarding
cable modes and deck-cable modes, this approach is preferred for dynamic analysis over
the first approach as it eases analysis. It should be noted that both modeling approaches for
the cable mass do not have any incidence for static analysis and yield the same results. This
is because in both approaches the self-weight is applied in the same manner and that the
mass herein is referred in the context of dynamic analysis which does not influence the static
behavior.

A.1.3 Validation Procedure of Finite Element Models

For comparison purposes, finite element models for the eleven cable-supported bridges
were developed using two different finite element programs for a total of 22 numerical
models. The programs used are Code Aster [180], an open-source finite element software,
and the commercial software SAP2000 [191]. The finite element models for each bridge and
each software are presented in figs. A.1, A.3, A.5, A.7, A.9, A.11, A.13, A.15, A.17, A.19
and A.21.

The first step in the validation of the bridge numerical models was to compare static pushover
analysis results for the same bridge modeled in Code Aster and SAP2000. Four different
pushover analysis scenarios were considered. The first one corresponds to the application of
a uniformly distributed load that is monotonically increased and applied to the bridge deck
in the lateral direction. The second pushover load case is a uniformly distributed torsional
moment applied to the deck. A distributed vertical load applied to the deck in the downward
direction is the third scenario. The last case is a distributed vertical load applied upwards
to the bridge deck. The maximum static loads for each scenario were chosen in order to
observe some nonlinear behavior. They are therefore larger than the design loads, but these
loads were only used for model validation purposes. The pushover analysis results were
obtained considering large displacement analysis. The static pushover analysis results for
each bridge are presented in figs. A.2, A.4, A.6, A.8, A.10, A.12, A.14, A.16, A.18, A.20
and A.22. These figures present the midspan deck displacement for an increasing load in the
case of inactive hydraulic buffers where applicable. As it can be seen in these figures, the
agreement for each bridge between Code Aster and SAP2000 is excellent. Additionally, it
should be mentioned that the agreement between both programs is very good for the case of
of active buffers, but the results are not shown herein for the sake of brevity.

The second validation that was used consisted in comparing the natural frequencies calculated
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using Code Aster and SAP2000 for the dead-load configuration. When applicable, the natural
frequencies were also compared to the designer’s values, which are not presented herein for
confidentiality reasons. The natural frequencies and corresponding mode shapes for each
bridge are shown in tables A.2, A.4, A.6, A.8, A.10, A.12, A.14, A.16, A.18, A.20 and A.22.
The frequencies and mode shapes are shown up to the second symmetric mode (except for
bridges CS1 and CS2), and they correspond to the modes used in this research. For the
cable-stayed bridges, the natural frequencies shown below correspond to the LCM modeling
approach. In these tables, the natural frequencies for inactive buffers (w/o buffers) and active
buffers (w/ buffers) are presented. As for the static pushover analysis, the agreement for the
natural frequencies of each bridge between Code Aster and SAP2000 is excellent. They also
compare very well to the designer’s values where applicable. Consequently, it is possible to
state that the Code Aster bridge numerical models used for this research are reliable.
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A.2 Suspension Bridge SU1

Table A.1: General information for suspension bridge SU1

Parameter Value

Type Three-span suspension bridge
Usage Road traffic

Bridge deck Steel single-box girder
Deck supports at towers Continuous girder with lateral restraints

Longitudinal buffers? Yes
Towers Steel towers
Cables Steel cables

Sag-to-span ratio 1/9
Spans (m) 566 + 1550 + 566

Hanger longitudinal spacing (m) 25.0
Main-cable lateral spacing (m) 30.1

Bridge-deck width (m) 35.93

Bridge-deck cross section

Number of truss elements 410
Number of beam elements 462

(a) Code Aster (b) SAP2000

Figure A.1: Finite element models of suspension bridge SU1
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Figure A.2: Pushover analysis for suspension bridge SU1 (w/o buffers)
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Table A.2: Natural frequencies and mode shapes for suspension bridge SU1 (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.053 0.053 0.053 0.053

LA1 0.124 0.124 0.124 0.123

LS2 0.207 0.206 0.207 0.206

VS1 0.090 0.090 0.090 0.090

VA1 0.107 0.107 0.095 0.095

VS2 0.133 0.133 0.133 0.133

θS1 0.256 0.256 0.256 0.256

θA1 0.274 0.273 0.274 0.273

θS2 0.402 0.400 0.402 0.400
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A.3 Suspension Bridge SU2

Table A.3: General information for suspension bridge SU2

Parameter Value

Type Three-span suspension bridge
Usage Road traffic

Bridge deck Steel single-box girder
Deck supports at towers Continuous girder with lateral restraints

Longitudinal buffers? Yes
Towers Concrete towers
Cables Steel cables

Sag-to-span ratio 1/9
Spans (m) 536 + 1624 + 536

Hanger longitudinal spacing (m) 24.0
Main-cable lateral spacing (m) 27.0

Bridge-deck width (m) 31.0

Bridge-deck cross section

Number of truss elements 432
Number of beam elements 370

(a) Code Aster (b) SAP2000

Figure A.3: Finite element models of suspension bridge SU2
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Figure A.4: Pushover analysis for suspension bridge SU2 (w/o buffers)
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Table A.4: Natural frequencies and mode shapes for suspension bridge SU2 (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.051 0.051 0.051 0.051

LA1 0.116 0.116 0.116 0.116

LS2 0.188 0.187 0.188 0.187

VS1 0.097 0.097 0.098 0.097

VA1 0.080 0.080 0.112 0.112

VS2 0.131 0.131 0.131 0.131

θS1 0.279 0.278 0.279 0.278

θA1 0.358 0.357 0.358 0.357

θS2 0.411 0.409 0.411 0.409
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A.4 Suspension Bridge SU3a

Table A.5: General information for suspension bridge SU3a

Parameter Value

Type Three-span suspension bridge
Usage Road traffic, rail traffic

Bridge deck Steel triple-box girder
Deck supports at towers Partially continuous girder with lateral restraints

Longitudinal buffers? Yes
Towers Steel towers
Cables Steel cables

Sag-to-span ratio 1/10.5
Spans (m) 183 + 2460 + 183

Hanger longitudinal spacing (m) 30.0
Main-cable lateral spacing (m) 52.0

Bridge-deck width (m) 60.36

Bridge-deck cross section

Number of truss elements 448
Number of beam elements 1443

(a) Code Aster (b) SAP2000

Figure A.5: Finite element models of suspension bridge SU3a
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Figure A.6: Pushover analysis for suspension bridge SU3a (w/o buffers)
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Table A.6: Natural frequencies and mode shapes for suspension bridge SU3a (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.037 0.037 0.037 0.037

LA1 0.077 0.077 0.078 0.078

LS2 0.143 0.143 0.143 0.143

VS1 0.095 0.095 0.095 0.095

VA1 0.065 0.065 0.076 0.076

VS2 0.127 0.127 0.127 0.127

θS1 0.130 0.130 0.130 0.130

θA1 0.105 0.106 0.105 0.106

θS2 0.170 0.171 0.170 0.171
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A.5 Suspension Bridge SU3b

Table A.7: General information for suspension bridge SU3b

Parameter Value

Type Three-span suspension bridge
Usage Road traffic, rail traffic

Bridge deck Steel triple-box girder
Deck supports at towers Partially continuous girder with lateral restraints

Longitudinal buffers? Yes
Towers Steel towers
Cables Steel cables

Sag-to-span ratio 1/10.5
Spans (m) 183 + 3300 + 183

Hanger longitudinal spacing (m) 30.0
Main-cable lateral spacing (m) 52.0

Bridge-deck width (m) 60.36

Bridge-deck cross section

Number of truss elements 588
Number of beam elements 1835

(a) Code Aster (b) SAP2000

Figure A.7: Finite element models of suspension bridge SU3b
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Figure A.8: Pushover analysis for suspension bridge SU3b (w/o buffers)
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Table A.8: Natural frequencies and mode shapes for suspension bridge SU3b (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.030 0.030 0.030 0.030

LA1 0.056 0.056 0.057 0.056

LS2 0.083 0.083 0.084 0.083

VS1 0.080 0.080 0.080 0.080

VA1 0.058 0.058 0.065 0.064

VS2 0.107 0.107 0.107 0.107

θS1 0.100 0.101 0.100 0.101

θA1 0.081 0.082 0.081 0.082

θS2 0.133 0.133 0.133 0.133
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A.6 Suspension Bridge SU3c

Table A.9: General information for suspension bridge SU3c

Parameter Value

Type Three-span suspension bridge
Usage Road traffic, rail traffic

Bridge deck Steel triple-box girder
Deck supports at towers Partially continuous girder with lateral restraints

Longitudinal buffers? Yes
Towers Steel towers
Cables Steel cables

Sag-to-span ratio 1/10.5
Spans (m) 183 + 4140 + 183

Hanger longitudinal spacing (m) 30.0
Main-cable lateral spacing (m) 52.0

Bridge-deck width (m) 60.36

Bridge-deck cross section

Number of truss elements 732
Number of beam elements 2227

(a) Code Aster (b) SAP2000

Figure A.9: Finite element models of suspension bridge SU3b
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Figure A.10: Pushover analysis for suspension bridge SU3c (w/o buffers)
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Table A.10: Natural frequencies and mode shapes for suspension bridge SU3c (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.027 0.027 0.027 0.027

LA1 0.047 0.047 0.047 0.047

LS2 0.062 0.062 0.063 0.062

VS1 0.070 0.070 0.070 0.070

VA1 0.052 0.052 0.057 0.057

VS2 0.093 0.093 0.093 0.093

θS1 0.083 0.083 0.083 0.083

θA1 0.067 0.067 0.067 0.067

θS2 0.109 0.110 0.109 0.110
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A.7 Suspension Bridge SU4a

Table A.11: General information for suspension bridge SU4a

Parameter Value

Type Single-span suspension bridge
Usage Road traffic

Bridge deck Steel twin-box girder
Deck supports at towers Lateral, vertical and torsional restraints

Longitudinal buffers? Yes
Towers Steel towers
Cables Steel cables

Sag-to-span ratio 1/10
Spans (m) 1200

Hanger longitudinal spacing (m) 30.0
Main-cable lateral spacing (m) 46.4

Bridge-deck width (m) 46.4

Bridge-deck cross section

Number of truss elements 210
Number of beam elements 384

(a) Code Aster (b) SAP2000

Figure A.11: Finite element models of suspension bridge SU4a



224

Figure A.12: Pushover analysis for suspension bridge SU4a (w/o buffers)
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Table A.12: Natural frequencies and mode shapes for suspension bridge SU4a (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.070 0.070 0.098 0.097

LA1 0.203 0.201 0.235 0.231

LS2 0.362 0.334 0.372 0.338

VS1 0.136 0.136 0.136 0.136

VA1 0.088 0.087 0.110 0.109

VS2 0.182 0.182 0.182 0.182

θS1 0.244 0.241 0.244 0.242

θA1 0.252 0.250 0.252 0.250

θS2 0.384 0.381 0.386 0.381
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A.8 Suspension Bridge SU4b

Table A.13: General information for suspension bridge SU4b

Parameter Value

Type Single-span suspension bridge
Usage Road traffic

Bridge deck Steel twin-box girder
Deck supports at towers Lateral, vertical and torsional restraints

Longitudinal buffers? Yes
Towers Steel towers
Cables Steel cables

Sag-to-span ratio 1/10
Spans (m) 1800

Hanger longitudinal spacing (m) 30.0
Main-cable lateral spacing (m) 46.4

Bridge-deck width (m) 46.4

Bridge-deck cross section

Number of truss elements 310
Number of beam elements 504

(a) Code Aster (b) SAP2000

Figure A.13: Finite element models of suspension bridge SU4b
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Figure A.14: Pushover analysis for suspension bridge SU4b (w/o buffers)
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Table A.14: Natural frequencies and mode shapes for suspension bridge SU4b (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.045 0.045 0.058 0.058

LA1 0.110 0.110 0.134 0.133

LS2 0.196 0.194 0.231 0.227

VS1 0.109 0.109 0.109 0.109

VA1 0.074 0.074 0.089 0.089

VS2 0.145 0.145 0.146 0.145

θS1 0.178 0.176 0.178 0.177

θA1 0.168 0.167 0.168 0.167

θS2 0.257 0.256 0.257 0.256
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A.9 Suspension Bridge SU4c

Table A.15: General information for suspension bridge SU4c

Parameter Value

Type Single-span suspension bridge
Usage Road traffic

Bridge deck Steel twin-box girder
Deck supports at towers Lateral, vertical and torsional restraints

Longitudinal buffers? Yes
Towers Steel towers
Cables Steel cables

Sag-to-span ratio 1/10
Spans (m) 2400

Hanger longitudinal spacing (m) 30.0
Main-cable lateral spacing (m) 46.4

Bridge-deck width (m) 46.4

Bridge-deck cross section

Number of truss elements 414
Number of beam elements 624

(a) Code Aster (b) SAP2000

Figure A.15: Finite element models of suspension bridge SU4c
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Figure A.16: Pushover analysis for suspension bridge SU4c (w/o buffers)



231

Table A.16: Natural frequencies and mode shapes for suspension bridge SU4c (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.036 0.036 0.043 0.042

LA1 0.075 0.074 0.091 0.090

LS2 0.127 0.127 0.151 0.149

VS1 0.093 0.093 0.093 0.093

VA1 0.065 0.065 0.077 0.076

VS2 0.124 0.124 0.124 0.124

θS1 0.140 0.139 0.140 0.139

θA1 0.126 0.125 0.127 0.125

θS2 0.194 0.190 0.195 0.193
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A.10 Suspension Bridge SU4d

Table A.17: General information for suspension bridge SU4d

Parameter Value

Type Single-span suspension bridge
Usage Road traffic

Bridge deck Steel twin-box girder
Deck supports at towers Lateral, vertical and torsional restraints

Longitudinal buffers? Yes
Towers Steel towers
Cables Steel cables

Sag-to-span ratio 1/10
Spans (m) 3000

Hanger longitudinal spacing (m) 30.0
Main-cable lateral spacing (m) 46.4

Bridge-deck width (m) 46.4

Bridge-deck cross section

Number of truss elements 514
Number of beam elements 744

(a) Code Aster (b) SAP2000

Figure A.17: Finite element models of suspension bridge SU4d
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Figure A.18: Pushover analysis for suspension bridge SU4d (w/o buffers)
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Table A.18: Natural frequencies and mode shapes for suspension bridge SU4d (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.031 0.031 0.035 0.034

LA1 0.058 0.058 0.069 0.069

LS2 0.091 0.091 0.109 0.108

VS1 0.083 0.083 0.083 0.083

VA1 0.059 0.059 0.069 0.069

VS2 0.110 0.110 0.110 0.110

θS1 0.115 0.115 0.115 0.115

θA1 0.100 0.100 0.100 0.100

θS2 0.155 0.154 0.155 0.154
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A.11 Cable-Stayed Bridge CS1

Table A.19: General information for cable-stayed bridge CS1

Parameter Value

Type Semi-fan cable-stayed bridge

Usage Road traffic

Bridge deck
Steel single-box girder (main span)

Concrete single-box girder (side spans)

Deck supports at towers Rigid deck-tower connection

Longitudinal buffers? No

Towers Concrete towers

Cables Steel cables

Cable crossties Steel cables

Tower-to-span ratio (above deck) 1/5.46

Spans (m) 856

Cable long. spacing (at deck level) (m) 19.65

Cable lateral spacing (at deck level) (m) 21.2

Bridge-deck width (m) 23.5

Bridge-deck cross section

Number of truss elements 1908

Number of beam elements 432

(a) Code Aster (b) SAP2000

Figure A.19: Finite element models of cable-stayed bridge CS1
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Figure A.20: Pushover analysis for cable-stayed bridge CS1
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Table A.20: Natural frequencies and mode shapes for cable-stayed bridge CS1 (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 (top view for L**,

elevation view for V** and θ**)

LS1 0.138 0.138

LA1 0.338 0.338

VS1 0.215 0.215

VA1 0.271 0.270

VS2 0.361 0.360

θS1 0.693 0.695
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A.12 Cable-Stayed Bridge CS2

Table A.21: General information for cable-stayed bridge CS2

Parameter Value

Type Semi-fan cable-stayed bridge

Usage Road traffic

Bridge deck
Steel twin-box girder (main span)

Concrete twin-box girder (side spans)

Deck supports at towers Continuous girder with lateral restraints

Longitudinal buffers? Yes

Towers Concrete towers

Cables Steel cables

Cable crossties None

Tower-to-span ratio (above deck) 1/4.62

Spans (m) 1018

Cable long. spacing (at deck level) (m) 18.17

Cable lateral spacing (at deck level) (m) 49.66

Bridge-deck width (m) 53.3

Bridge-deck cross section

Number of truss elements 1792

Number of beam elements 1218

(a) Code Aster (b) SAP2000

Figure A.21: Finite element models of cable-stayed bridge CS2
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Figure A.22: Pushover analysis for cable-stayed bridge CS2 (w/o buffers)
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Table A.22: Natural frequencies and mode shapes for cable-stayed bridge CS2 (L: lateral, V:
vertical, θ: torsion, S: symmetric, A: antisymmetric)

Mode Frequency (Hz) Mode shape
Code Aster SAP2000 Code Aster SAP2000 (top view for L**,

(w/o buffers) (w/o buffers) (w/ buffers) (w/ buffers) elevation view for V** and θ**)

LS1 0.157 0.157 0.157 0.157

LA1 0.393 0.384 0.393 0.384

VS1 0.198 0.198 0.198 0.198

VA1 0.240 0.238 0.239 0.238

VS2 0.302 0.303 0.304 0.303

θS1 0.428 0.433 0.428 0.433

θA1 0.587 0.600 0.587 0.600
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Appendix B

Nonlinear Structural Coupling for Non-Analogous

Modes

B.1 Introduction

The first few decades of the 20th century were marked by a rapid increase in span length
for suspension bridges. This went on until dynamic wind effects were observed on some of
the suspension bridges designed in this era, even those by prominent engineers like Othmar
Amman and David B. Steinman. The collapse of the Tacoma Narrows Bridge is obviously
the event that triggered what has been more than 80 years of research on the dynamic effects
of wind on bridges. Going from wind tunnel testing, finite element analysis to computational
fluid dynamics, this research has made possible super long-span bridges like the Çanakkale
Bridge and Messina Strait Bridge. As span lengths are getting longer, nonlinear structural
phenomena in cable-supported bridges could play a role on the safety and stability of these
bridges when subjected to wind effects. Similar to what happened in the case of dynamic
wind actions at the beginning of the 20th century, nonlinear structural phenomena have been
omitted in the design process due to a lack of information about them.

Regarding nonlinear structural phenomena, there have been some demonstrations of non-
linear mode coupling made by mathematicians using nonlinear differential equations of
continuum models of suspension bridges [166–169]. It has been shown that dynamic vertical
forcing can induce large torsional oscillations due to nonlinear structural coupling. The
nonlinear effect described previously seems to be attributed to a dynamic instability called
internal parametric resonance [170]. To the author’s knowledge, such nonlinear dynamic
phenomena have never been demonstrated experimentally in a wind tunnel. However, a
transition from an antisymmetric flutter mode to a symmetric flutter mode was observed on
a full-aeroelastic model of a double-main-span suspension bridge [171]. A possible explana-
tion for this would be internal resonance due to nonlinear effects of the aeroelastic-structural
bridge system [172].

As nonlinear structural effects combined with aeroelastic effects could lead to unexpected
instabilities, it appears that further research on structural nonlinearities in long-span bridges
is needed, especially on nonlinear coupling between modes of vibration. Therefore, this
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appendix presents an assessment of nonlinear mode coupling in cable-supported bridges. An
emphasis is made on the coupling for non-analogous modal pairs, i.e., modes having a weak
correlation along the bridge deck between the vertical displacement and torsional rotation.

First, the key aspects of nonlinear generalized stiffness analysis for cable-supported bridges
in the case of vertical-torsional modal pairs are reviewed. Using this analysis technique,
nonlinear generalized stiffness parameters for nine suspension bridges with main spans
between 1.2 km and 4.14 km were calculated. Comparing the results for analogous modal
pairs and non-analogous ones allows identifying the more critical modal pairs with regard to
nonlinear structural coupling.

B.2 Two-mode Nonlinear Generalized Stiffness

Nonlinear generalized stiffness analysis provides a way to measure the nonlinear structural
behavior of a bridge in terms of its dynamic properties or more specifically, its modes
of vibration. This is achieved by applying static loads proportional to selected modes of
vibration to a nonlinear finite element model of a cable-supported bridge. The reader is
referred to chapter 3 for further information on nonlinear generalized stiffness analysis.

Since material nonlinearities are unlikely under wind loads in a properly designed cable-
supported bridge, only geometric nonlinearities are of concern in this study. As shown in
eqs. B.1 and B.2, nonlinear generalized stiffness analysis in this appendix accounts for two
modes, i.e., mode ϕi and mode ϕ j:

fS G(unl) = pi j (B.1)

pi j = pi + p j = aiω
2
i Mϕi + a jω

2
jMϕ j (B.2)

where fS G(unl) is the internal force vector of the nonlinear geometric system; unl is the
nonlinear displacement vector obtained from nonlinear static analysis; M is the mass matrix
calculated using the finite element method; ai and a j are respectively the modal load coeffi-
cients for mode ϕi and mode ϕ j; ωi and ω j are respectively the natural angular frequencies
for mode ϕi and mode ϕ j. The dead-load configuration of the bridge is used as the reference
state for the nonlinear static equation in eq. B.1 and the calculations of the modal properties.
Also, vertical and torsional modes are of interest for this study. They are normalized such
that the maximum vertical displacement of the bridge deck is unity for vertical modes. For
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torsional modes, the maximum torsional rotation is unity.

After solving eq. B.1, unl can be approximated as follows:

unl ≈ ϕizi + ϕ jz j = Φi jzi j (B.3)

where Φi j = [ϕi ϕ j] and zi j = [zi z j]T; zi and z j are the generalized displacements for
modes ϕi and ϕ j. Because of the mode normalization considered here, the generalized
displacements correspond to the maximum deck displacement or rotation in the direction
under consideration.

It is possible to rearrange eq. B.3 in order to find the generalized displacements (see
chapter 3). By varying the modal load coefficients, a force-displacement relationship can
be obtained for the generalized modal forces as functions of the generalized displacements.
This relationship is utilized to calculate the two-mode tangent nonlinear generalized stiffness
matrix K̃t

i j:

K̃t
i j(zi j) =

∂p̃i j

∂zi j
=

 ∂p̃i
∂zi

∂ p̃i
∂z j

∂ p̃ j

∂zi

∂p̃ j

∂z j

 (B.4)

It should be noted that p̃i j = Φ
T
i jpi j = [p̃i p̃ j]T = [aiω

2
i m̃i a jω

2
jm̃ j]T. Also, we have that

m̃i = ϕ
T
i Mϕi and m̃ j = ϕ

T
j Mϕ j. By accounting for two modes in the modal load, it is possible

to study the nonlinear structural coupling between these modes. This is demonstrated by
the off-diagonal terms in the matrix shown in eq. B.4 as well as by the fact that the matrix
entries are functions of both generalized displacements, zi and z j.

B.3 Numerical Models of Cable-Supported Bridges

This study focuses on suspension bridges since they showed a stronger nonlinear mode
coupling than cable-stayed bridges. Table B.1 presents the nine suspension bridges consid-
ered for this analysis on nonlinear coupling between non-analogous modes. Finite element
models were developed for these bridges using the fishbone modeling approach where the
bridge deck, modeled as Timoshenko beam elements, is connected to the cable system
through rigid elements. The cable system is modeled using tension-only truss elements, for
which the cable pretensions are applied using temperature loads. As mentioned previously,
the geometric nonlinearities are considered for these numerical models. It is also worth
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Table B.1: Description of cable-supported bridges

Bridge Type Main span Buffers? Elevation view
(m)

SU1
Three-span suspension

Continuous girder 1550 Yes

SU2
Three-span suspension

Continuous girder 1624 Yes

SU3a
Three-span suspension

Partially continuous girder 2460 Yes

SU3b
Three-span suspension

Partially continuous girder 3300 Yes

SU3c
Three-span suspension

Partially continuous girder 4140 Yes

SU4a
Single-span suspension

Girder restrained at towers 1200 Yes

SU4b
Single-span suspension

Girder restrained at towers 1800 Yes

SU4c
Single-span suspension

Girder restrained at towers 2400 Yes

SU4d
Single-span suspension

Girder restrained at towers 3000 Yes

noting that the hydraulic buffers, which are designed to limit longitudinal deck motions, are
considered as inactive in this study.

B.4 Results

In this section are presented the nonlinear generalized stiffness analysis results for the
dead-load configuration of the bridges in table B.1. First, section B.4.1 presents nonlinear
generalized stiffness parameters in the case of modal pairs consisting of one vertical mode
and its analogous torsional mode. Section B.4.1 serves as a basis of comparison for the
results in sections B.4.2 and B.4.3. Section B.4.2 is used to assess the mode coupling caused
by geometric nonlinearities between vertical and torsional effects for non-analogous modes.
In the case of section B.4.3, the nonlinear coupling between pairs of modes of the same type
are studied. For the sake of brevity, only results in the case of symmetric modes are included
herein. Compared to symmetric modes, nonlinear coupling between antisymmetric modes is
negligible (see chapter 3). This observation is also valid for nonlinear coupling between a
symmetric mode and an antisymmetric mode.

For the calculation of the nonlinear generalized stiffness matrix K̃t
i j, the range of values for

the modal load coefficients was chosen such that the nonlinear behavior can be observed.
A total of 81 values for each of the modal load coefficients were used, therefore forming
an 81×81 grid with a total of 6561 points. However, the presentation of the results in
sections B.4.1–B.4.3 is limited to generalized displacement limits determined in chapter 3.
They were determined based on the nonlinear static response under mean wind loads
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calculated from finite element analysis. A displacement allowance was also included in order
to account for the dynamic wind effects, which were estimated from wind tunnel results.

B.4.1 Nonlinear Coupling for Analogous Modes

For the sake of comparison with the case of non-analogous modes, fig. B.1 presents the terms
of the nonlinear generalized stiffness matrix for analogous modes. Results for the modal
pair formed by the first symmetric vertical mode (VS1) and the first symmetric torsional
mode (θS1) are shown. Results for mode VS2 and mode θS2 are also included.

It is also worth noting that the results are presented in a normalized format. Diagonal terms
are normalized with respect to the corresponding linear generalized stiffnesses. For example,
the diagonal term relative to mode VS1 is presented as k̃t

VS 1,VS 1/k̃VS 1 where k̃t
VS 1,VS 1 and

k̃VS 1 are respectively the nonlinear generalized stiffness and linear generalized stiffness for
mode VS1 (k̃VS 1 = ϕT

VS 1KϕVS 1 with K being the stiffness matrix of the bridge). In the
case of modal pair VS1-θS1, the off-diagonal terms are normalized as (k̃t

VS 1,θS 1/bcl)/k̃VS 1

and (k̃t
θS 1,VS 1bcl)/k̃θS 1, where bcl is half of the distance between the main cables. This is

done because k̃t
VS 1,θS 1 and k̃t

θS 1,VS 1 have different units than the linear generalized stiffnesses
k̃VS 1 and k̃θS 1. The quantity k̃t

VS 1,θS 1/bcl can be seen as a vertical generalized stiffness at the
location of the cable connections to the deck. The quantity k̃t

θS 1,VS 1bcl represents an equiv-
alent torsional generalized stiffness. In the case of modes VS1 and θS1, these normalized
stiffnesses are expressed as functions of the normalized generalized displacements zVS 1/Lspan

and zθS 1bcl/Lspan, where Lspan is the main span length. The results for modes VS2 and θS2
are also presented in a similar normalized format.

B.4.2 Nonlinear Coupling for Non-Analogous Modes

Figure B.2 presents the results of nonlinear generalized stiffness analysis in the case of
non-analogous pairs formed by a vertical mode and a torsional mode. Modal pair VS1-θS 2
and modal pair VS2-θS 1 were considered. Results are presented in a normalized form
similar to what is used in section B.4.1.

B.4.3 Nonlinear Coupling for Same-Type Modes

It is also of interest to assess the nonlinear coupling between modes of the same type, e.g.,
for two vertical modes or two torsional modes. Therefore, fig. B.3 presents the nonlinear
generalized stiffnesses between modes VS1 and VS2 as well as those for modes θS1 and θS2.
In this case, the diagonal and off-diagonal generalized stiffness terms are directly normalized
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(a) Modes VS1 and θS1

Figure B.1: Nonlinear generalized stiffness terms of suspension bridges for analogous
vertical and torsional modes
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(b) Modes VS2 and θS2

Figure B.1: Nonlinear generalized stiffness terms of suspension bridges for analogous
vertical and torsional modes (cont.)
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(a) Modes VS1 and θS2

Figure B.2: Nonlinear generalized stiffness terms of suspension bridges for non-analogous
vertical and torsional modes
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(b) Modes VS2 and θS1

Figure B.2: Nonlinear generalized stiffness terms of suspension bridges for non-analogous
vertical and torsional modes (cont.)
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with respect to the linear generalized stiffnesses because they have consistent units since
modes of the same type are used.

B.5 Discussion

As in it can be observed in figs. B.1–B.3, the diagonal terms of K̃t
i j relative to the vertical

modes mainly show a one-mode nonlinear behavior. For example, k̃t
VS 1,VS 1 varies with zVS 1,

and it is only slightly affected by the second generalized displacement (zθS 1 for fig. B.1,
zθS 2 for fig. B.2 and zVS 2 for fig. B.3). This is explained by the fact that vertical cable
modal displacements for symmetric modes involve a change of cable tension causing a
variation of the geometric stiffness [185]. Additionally, from these results, it is evident that
the three-span suspension bridges with short side spans (SU3a, SU3b and SU3c) and the
single-span suspension bridges (SU4a, SU4b, SU4c and SU4d) show a stronger nonlinear
modal coupling than the three-span suspension bridges (SU1 and SU2). Also, a span length
effect can only be observed in fig. B.1.

By comparing fig. B.2 to fig. B.1, it is clear that the non-analogous case for one vertical
mode and one torsional mode is less nonlinear compared to the analogous one. This is better
demonstrated by the off-diagonal terms and the torsional diagonal terms. Regarding the
modal coupling between modes of the same type, fig. B.3a for the vertical modes shows a
stronger nonlinear coupling than for the torsional modes in fig. B.3b, which clearly shows
a linear behavior. This indicates that the nonlinear behavior between modes of vibration
mainly originates from the vertical movement of the bridge structure.

From this analysis, it appears that nonlinear mode coupling is stronger for pairs formed by
analogous vertical and torsional modes. This indicates that further research on the effect of
nonlinear structural coupling on the stability of bridges subjected to wind should focus on
analogous modal pairs.

B.6 Conclusions

According to theoretical research, nonlinear structural coupling in cable-supported bridges
could potentially lead to unexpected instabilities involving large torsional bridge-deck
oscillations. Such coupling could have an effect on the stability of bridges subjected to wind.
Therefore, this appendix presented an analysis of nonlinear coupling in the case of non-
analogous modes. The procedure for nonlinear generalized stiffness analysis was applied to
nine suspension bridges for different mode pairings. It was found that non-analogous modes
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(a) Modes VS1 and VS2

Figure B.3: Nonlinear generalized stiffness terms of suspension bridges for same-type modes
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(b) Modes θS1 and θS2

Figure B.3: Nonlinear generalized stiffness terms of suspension bridges for same-type modes
(cont.)



253

have a weaker nonlinear coupling than analogous modes. This indicates that future research
should focus on analogous modes in the assessment of the effect of structural nonlinearities
on the stability of bridges under wind effects.
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Appendix C

Validation of New Experimental Bridge Rig

C.1 Introduction

It is well known that long cable-supported bridges, such as suspension bridges and cable-
stayed bridges, are sensitive structures to the actions of wind, especially for dynamic
phenomena like flutter. Flutter, which is a self-excited instability, can lead to major structural
damages and even bridge collapse. For this reason, it has been common practice in the field
of long-span bridge engineering to conduct wind tunnel tests in order to verify the soundness
of bridge designs with respect to aerodynamic and aeroelastic phenomena. Different wind
tunnel testing procedures can be utilized for bridges. In order of increasing complexity, the
most common approaches are the section model tests [30], taut-strip model tests [59] and
full-aeroelastic model tests [29]. Due to their versatility, simplicity and cost effectiveness
in comparison to other testing procedures, section model tests have become the standard
approach for wind tunnel tests of bridges.

Section model tests can be utilized to measure aerodynamic coefficients, measure the wind
and motion-induced surface pressures and study the dynamic response of the bridge deck,
especially with regard to instabilities like flutter. However, even with the improvements
made in experimental apparatus over the years, section model tests still rely on the same
simplifications with respect to the aerodynamic and structural behaviors. The fact that the
aerodynamic contribution of the cable system is neglected is an example of such simplifi-
cations. Typically, only one vertical mode and an analogous torsional mode, which have
uniform shapes, are considered in section model tests. Furthermore, the bridge structure is
assumed to have a linear behavior because the modes represented in such tests are obtained
considering linear structural dynamics theory.

Nevertheless, it is known that cable-supported bridges can show geometric nonlinearities
[149] as well as material nonlinearities [151] and localized nonlinearities [17] in specific
cases. Using advanced mathematical models of suspension bridges, mathematicians and
engineers demonstrated that a dynamic vertical force can lead to large torsional oscillations
due to nonlinear structural dynamic coupling [169, 170]. This coupling is caused by the
intrinsic nonlinear geometric behavior of the suspension bridge system. In [170], it is
mentioned that internal parametric resonance, a structural dynamic instability caused by
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the nonlinear structural coupling between modes of vibration, would be responsible. To the
author’s knowledge, such large torsional oscillations due to nonlinear structural dynamic
effects have never been witnessed on an actual bridge. Nonetheless, a transition from an
antisymmetric instability mode to a symmetric instability mode occurred for a full-aeroelastic
model of a double-main-span suspension bridge [171]. Internal resonance associated with the
nonlinearities of the aeroelastic system would be responsible for the phenomenon observed
on this full-aeroelastic bridge model [173]. This has led to recent studies on nonlinear flutter
and aerodynamic nonlinearities [96, 101]. The main focus of these studies has been on
aerodynamic nonlinearities, and structural nonlinearities are only discussed in verifications
that section model test rigs behave linearly. However, in the field of aeronautics, it was
demonstrated using nonlinear section model tests for airfoils that a nonlinear stiffness
behavior can have an influence on flutter [54, 57].

Considering that the flutter response of airfoils can be impacted by a nonlinear stiffness
behavior, it is worth asking whether this can also be the case for bridges. A section model
test procedure for bridges able to represent the nonlinear structural behavior would be able
to answer this question. The first step toward nonlinear section model tests for bridges was
to develop a numerical procedure to study the nonlinear structural vertical-torsional coupling
in cable-supported bridges (see chapter 3). The procedure in chapter 3 can also be used to
determine the nonlinear structural behavior in stiffness to be considered for nonlinear section
model tests. During the development of a scaling procedure for the nonlinear behavior
obtained using the approach in chapter 3, it was determined that a new section model test rig
is required in order to conduct nonlinear section model tests for bridges.

Therefore, this appendix presents the validation procedure of this new section model test
rig in the case of standard linear tests. More specifically, a single-box girder bridge model
was tested in two different wind tunnels, i.e., the main wind tunnel at the Université de

Sherbrooke and the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University
of Western Ontario. The new bridge rig of the BLWTL is validated by comparing the wind
tunnel test results of the new bridge rig to those measured at the Université de Sherbrooke

and those obtained at the BLWTL using the old bridge rig. First, the wind tunnels and section
model test rigs considered in the validation procedure are presented. Then, the experimental
program, which included static tests, flutter derivative tests and dynamic tests, is discussed.
Finally, a presentation of the experimental results is made, which also includes a discussion
of the results.
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C.2 Experimental Apparatuses

C.2.1 Wind Tunnel at the Université de Sherbrooke

For this validation of a new section model test rig, experimental results from two different
wind tunnels are considered. The first one is the main wind tunnel at the Université de

Sherbrooke, which is a closed-circuit wind tunnel with a maximum wind speed of 31 m/s.
The 10 m-long test section is 1.83 m by 1.83 m. The mean wind speed was measured with
two Pitot tubes located above and below the bridge section model. At the test location of
section models, the longitudinal and vertical turbulence intensities are approximately 1.0 %
under smooth flow conditions. For the turbulent flow conditions considered for some of
the test runs, a grid positioned upstream was utilized. In this case, longitudinal and vertical
turbulence intensities are respectively 7.1 % and 5.4 %.

In fig. C.1, the bridge section model test rig at the Université de Sherbrooke is presented.
This rig is located outside the wind tunnel. As shown in fig. C.1, it can be used in two
different configurations, which are a free-vibration test configuration and a force-vibration
test configuration. The free-vibration configuration (fig. C.1a) can be used to measure
the dynamic response of a sprung section model. Two degrees of freedom (DOF) are
considered in this research, i.e., the vertical displacement and rotation. The free-vibration
measurement of flutter derivatives is also possible in this configuration. In the forced-
vibration configuration, the bridge model is attached to load cells through pretensioned
cables, and dynamic hydraulic actuators are utilized to impose motion to the model (fig. C.1b).
In this configuration, the test rig is typically used for a forced-vibration extraction of flutter
derivatives. In both test configurations, laser displacement sensors are utilized to measure
the displacements, whereas load cells are used for the forces. It is also worth noting that this
test rig can also measure the static aerodynamic coefficients. More information about the
experimental tests at the Université de Sherbrooke can be found in [206].

C.2.2 Boundary Layer Wind Tunnel Laboratory at the University of

Western Ontario

Tests at the Boundary Layer Wind Tunnel Laboratory at the University of Western Ontario
were conducted in the high-speed test section of the closed-circuit wind tunnel BLWT 2.
For section model tests of bridges, the test rig units are installed inside two streamlined
walls, one at each end of the bridge model (see fig. C.4b). Where the section model is
mounted, a distance of 2.15 m between the walls is typically used, which is situated within
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(a) Free-vibration tests (b) Forced-vibration tests

Figure C.1: Section model test rig at the Université de Sherbrooke

the 3.35 m-wide test section. However, the width considered for the tests discussed herein
was of 1.83 m since the bridge model considered is shorter than the models usually tested at
the BLWTL. The overall height of the bridge test section is 1.77 m. The mean wind speed
was measured with two Pitot tubes located above the bridge section model. The maximum
wind speed achievable in the test section is 30 m/s. Smooth flow turbulence intensities are
less than 0.5 %. For the turbulent tests, a longitudinal turbulence intensity of 4.8 % and a
vertical turbulence intensity of 4.4 % were obtained using the grid shown in fig. C.4b.

The section model test rigs utilized at the BLWTL are shown in fig. C.2. Both are free-
vibration test rigs equipped with torsion arms on which vertical springs are attached to
provide vertical and torsional stiffness to the bridge model. Therefore, two DOFs, a vertical
and a rotational, are possible with these rigs. For both test rigs, the displacements and
rotations of the bridge model were measured using laser displacement sensors. In the case
of the old bridge rig, the lateral movement of the model is restrained using leaf springs (see
fig. C.2a). Also, the damping can be adjusted using pneumatic dampers in the old rig. For
the new bridge rig (fig. C.2b), the lateral movement of the bridge model is made impossible
by using air bushings able to move vertically along stainless-steel shafts but restrained in
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(a) Old bridge rig (b) New bridge rig

Figure C.2: Section model test rigs at the Boundary Layer Wind Tunnel Laboratory

the lateral direction. In the new bridge rig, a magnetic damping system is utilized to set the
damping. Just like for the old rig, it is possible in the new bridge rig to adjust the horizontal
position of the springs, but what differentiates the new bridge rig is that it is also possible
to adjust the vertical position of the top and bottom attachment points of the springs. This
is done by moving the top and bottom horizontal aluminum extrusions that are shown in
fig. C.2b. This provides the flexibility to the new bridge rig that is required for a nonlinear
device able to represent the nonlinear structural behavior in order to eventually conduct
nonlinear section model tests for bridges.

C.3 Experimental Program

C.3.1 Bridge Section Model

The bridge section model utilized in the validation procedure of the new bridge rig is a
box girder of a suspension bridge, which is referred herein as bridge SU2. The full-scale
width of the bridge deck is 31 m. A geometric scale of λL = 1/70 is utilized, which gives a
model width of 443 mm. As shown in fig. C.3, the section model consists of a carbon fiber
frame that is cladded with balsa wood sheets to form the bridge-deck cross section. Using
this fabrication method allows the section model to be very light with a total mass of only
1.72 kg for a model that is 1806 mm long. Having a light model is particularly important
for the extraction of flutter derivatives using forced-vibration tests as it reduces the model
inertial forces that are measured by the load cells. This therefore facilitates the determination
of the self-excited forces needed for the extraction of flutter derivatives. Additionally, the
stiffness of the carbon fiber frame combined with the lightness of the model ensure that



259

(a) Carbon fiber frame (b) Model in its final form

Figure C.3: Section model of bridge SU2 for λL = 1/70

(a) Université de Sherbrooke (b) Boundary Layer Wind Tunnel Laboratory

Figure C.4: Section model of bridge SU2 inside the wind tunnels

the model vibrations are minimal for free-vibration tests as well as for forced-vibration
tests. Figure C.4a shows the bridge model when mounted on the section model test rig at
the Université de Sherbrooke. The model when tested at the BLWTL is also presented in
fig. C.4b.

C.3.2 Static Tests at the Université de Sherbrooke

In order to verify that the section model of bridge SU2 was not altered from its storage and
its transportation between the two universities, it was first decided to compare the static
coefficients measured at the Université de Sherbrooke and at the BLWTL. For the static
tests at the Université de Sherbrooke, the static coefficients were measured for an angle of
attack varying from −10° to 10°. Increments of 1° were used for angles of attack between
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Figure C.5: Static test rig of the Boundary Layer Wind Tunnel Laboratory

−6° and 6°. Otherwise, increments of 2° were considered. Measurements were made for
three different wind speeds in order to check for potential Reynolds number effects. This
was done for a smooth flow and a turbulent flow.

C.3.3 Static Tests at the Boundary Layer Wind Tunnel Laboratory

For the static tests at the BLWTL, the angle of attack was varied between −10° and 10°
with increments of 1°. Static coefficients were measured for two different mean wind
speeds, which correspond to the two highest wind speeds considered in the static tests at the
Université de Sherbrooke. At an angle of attack of 0°, the static coefficients were measured
over the range of wind speeds achievable in BLWT 2. This was done to assess the Reynolds
number dependence of the aerodynamic coefficients. All static tests at the BLWTL were
conducted for a smooth flow as well as a turbulent flow using the static test rig presented in
fig. C.5.

C.3.4 Free-Vibration Flutter Derivative Tests at the Université de

Sherbrooke

The first step of the validation procedure for the new bridge rig is to compare the flutter
derivatives measured using the different experimental rigs. At the Université de Sherbrooke,
the flutter derivatives were first measured using the free-vibration procedure, which consists
in measuring exponentially decaying displacement time histories of the sprung bridge model
at different wind speeds. The full-scale dynamic properties of the sprung model used for
these tests are shown in table C.1 (column UdeS). Flutter derivatives were measured for a
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Table C.1: Full-scale test parameters for dynamic tests of bridge SU2 (m∗V : mass per unit
length, m∗θ: mass moment of inertia per unit length, fVS 1: natural frequency of first symmetric
vertical mode, ξVS 1: damping ratio of first symmetric vertical mode, fθS 1: natural frequency
of first symmetric torsional mode, ξθS 1: damping ratio of first symmetric torsional mode, αs:
angle of attack)

Parameter Target UdeS BLWTL–Old BLWTL–New
Value Error Value Error Value Error

m∗V (103 kg/m) 23.01 23.87 3.7 % 23.54 2.3 % 23.91 3.9 %
m∗θ (106 kg ·m2/m) 2.505 2.380 −5.0 % 2.482 −0.9 % 2.646 5.6 %

fVS 1 (Hz) 0.097 0.101 4.1 % 0.097 0.0 % 0.098 1.0 %
ξVS 1 (%) 0.30 0.93 210 % 0.31 3.3 % 0.40 33.3 %
fθS 1 (Hz) 0.279 0.279 0.0 % 0.281 0.7 % 0.278 −0.4 %
ξθS 1 (%) 0.30 0.91 203 % 0.37 23.3 % 0.28 −6.7 %
αs (°) 0.0 0.0 - 0.0 - 0.0 -

smooth flow and a turbulent flow.

C.3.5 Forced-Vibration Flutter Derivative Tests at the Université de

Sherbrooke

At the Université de Sherbrooke, the flutter derivatives were also measured using the forced-
vibration procedure. For these tests, uncoupled harmonic motions were imposed to the
bridge model, i.e., for one DOF at a time (vertical or torsional). By doing so for different
wind speeds, it is possible to measure the corresponding self-excited forces, from which the
flutter derivatives are calculated. The vertical amplitude and frequency for the vertical tests
were 11 mm and 1.80 Hz. A torsional amplitude of 2.0° and a torsional frequency of 3.25 Hz
were considered for the torsional tests. Smooth and turbulent flows were used for these tests.

C.3.6 Free-Vibration Flutter Derivative Tests at the Boundary Layer

Wind Tunnel Laboratory

For the free-vibration tests at the BLWTL, the flutter derivatives were only measured for a
smooth flow since turbulence did not have a significant effect on the flutter derivatives for
the tests made at the Université de Sherbrooke. At the BLWTL, flutter derivatives tests were
conducted for the old bridge rig and the new bridge rig. The full-scale dynamic properties of
the sprung model considered in these tests for the old rig (column BLWTL-Old) and the new
rig (column BLWTL-New) are presented in table C.1.
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C.3.7 Dynamic Tests at the Université de Sherbrooke

As a second validation of the new bridge rig, a comparison is made for the dynamic responses
of the sprung model of bridge SU2 measured using the different experimental rigs. Dynamic
section model tests were performed considering the first symmetric vertical mode and first
symmetric torsional mode, which are the critical modes with respect to flutter for bridge
SU2. For the tests at the Université de Sherbrooke, the full-scale dynamic properties of the
sprung model are presented in table C.1 (column UdeS). As it can be seen in this table, with
the exception of the damping ratios, these dynamic parameters are close to the target values
also shown in table C.1. For the UdeS damping ratios, it was required to use higher damping
ratios due to limitations of the section model test rig. For these dynamic tests, time histories
of the displacements of the sprung model were recorded for different mean wind speeds
until the onset of flutter was reached. These tests were performed considering smooth and
turbulent flows.

C.3.8 Dynamic Tests at the Boundary Layer Wind Tunnel Labora-

tory

Similar dynamic tests were conducted at the BLWTL using the old bridge rig and the new
bridge rig. The full-scale dynamic properties for these tests are presented in table C.1. In
this table, it can be seen that these test parameters are close to the full-scale target values.
Dynamic tests at the BLWTL were also conducted for smooth and turbulent flows.

C.4 Results and Discussion

C.4.1 Results for Static Tests

First, the experimental results for the static coefficients for bridge SU2 are analyzed. Herein,
the following formulation is utilized for the mean aerodynamic forces and static coefficients:

Ds =
1
2
ρU2B CD(αs) Ls =

1
2
ρU2B CL(αs) Ms =

1
2
ρU2B2 CM(αs) (C.1)

where Ds, Ls and Ms are the mean aerodynamic drag force, mean aerodynamic lift force
and mean aerodynamic moment per unit length; ρ is the density of air; U is the mean wind
speed; B is the bridge-deck width; CD, CL and CM are respectively the drag coefficient, lift
coefficient and moment coefficient; αs is the angle of attack. The sign convention for the



263

 

Figure C.6: Sign convention for displacements and forces

aerodynamic forces is shown in fig. C.6.

Figure C.7 presents a comparison of the static coefficients measured at the Université de

Sherbrooke (UdeS) and the BLWTL for bridge SU2. Figures C.7a and C.7b show respectively
the static coefficients for a smooth flow and a turbulent flow. Since it was found that the
static coefficients are marginally impacted by the Reynolds number, results are only shown
for a Reynolds number Re of approximately 3.4 × 105 (based on the bridge-deck width). As
it can be seen in fig. C.7, there is a good agreement between the static coefficients measured
from the two different wind tunnels, even though there are more noticeable discrepancies at
large angles of attack. Nonetheless, it is possible to say that the section model of bridge SU2
was not altered from its storage and its transportation between the two universities.

C.4.2 Results for Flutter Derivative Tests

It is now of interest to examine the flutter derivatives measured using the different experimen-
tal rigs for bridge SU2. For the free-vibration tests, the flutter derivatives were calculated
using the Modified Unifying Least-Squares (MULS) method [27]. In the case of the forced-
vibration tests, a linear least-squares approach was utilized to obtain the flutter derivatives
from the experimental results. In this appendix, the self-excited forces and flutter derivatives
are defined as follows:

Lse(t) =
1
2
ρU2B

(
KH∗1

ḣ
U
+ KH∗2

Bα̇
U
+ K2H∗3α + K2H∗4

h
B

)
(C.2)

Mse(t) =
1
2
ρU2B2

(
KA∗1

ḣ
U
+ KA∗2

Bα̇
U
+ K2A∗3α + K2A∗4

h
B

)
(C.3)
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(a) Smooth flow and Re = 3.4 × 105

(b) Turbulent flow and Re = 3.3 × 105

Figure C.7: Static aerodynamic coefficients of bridge SU2

where Lse(t) and Mse(t) are the self-excited lift force and self-excited moment per unit length;
t is the time; h = h(t) and α = α(t) are respectively the dynamic vertical displacement and
dynamic rotation; K = ωB/U is the reduced frequency; ω = 2π f is the angular frequency
of oscillation; H∗i and A∗i (i = 1, ..., 4) are the flutter derivatives, which are functions of the
reduced velocity UR = U/( f B); f is the frequency of oscillation; the overdot denotes the
time derivative. The sign convention for the forces and displacements is shown in fig. C.6.

The flutter derivatives of bridge SU2 relative to the vertical motion are presented in fig. C.8,
whereas those with respect to a rotational motion are shown in fig. C.9. These results are
for a smooth flow. In these figures, a comparison is made for the free- and forced-vibration
results measured at the Université de Sherbrooke (UdeS-Free and UdeS-Forced) as well as
the results measured at the BLWTL using the old bridge rig (BLWTL-Old) and the new
bridge rig (BLWTL-New). As observed in figs. C.8 and C.9, there is a good agreement
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Figure C.8: Flutter derivatives of bridge SU2 for vertical motion (smooth flow)

between the different sets of flutter derivatives. This is especially the case for the flutter
derivatives relative to the rotational motion. However, there are greater discrepancies for
the derivatives with respect to the vertical motion. A possible explanation for this is that the
aerodynamic damping is high for the vertical motion, therefore making difficult a reliable
extraction of the derivatives using the free-vibration procedure. This could also be partially
caused by different initial conditions considered in the free-vibration tests. Additionally, in
some instances like for H∗2 in fig. C.9, the flutter derivatives measured from forced-vibration
tests are different than those from free-vibration tests. This could be explained by the static
rotation of the bridge model in the free-vibration tests (e.g. see fig. C.10a). Conversely, the
mean angle of attack is imposed in forced-vibration tests to 0°. Nevertheless, it is possible to
conclude that the new bridge rig is reliable for the measurement of flutter derivatives.
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Figure C.9: Flutter derivatives of bridge SU2 for rotational motion (smooth flow)

C.4.3 Results for Dynamic tests

As mentioned previously, the second validation procedure of the new bridge rig consisted in
comparing the dynamic response of the sprung model of bridge SU2 for the different free-
vibration test rigs. Such comparisons are presented in figs. C.10 and C.11 for a smooth flow
and a turbulent flow respectively. These figures include results measured at the Université

de Sherbrooke (UdeS) and at the BLWTL for the old bridge rig (BLWTL-Old) and the
new bridge rig (BLWTL-New). Figures C.10a and C.11a present the mean displacements,
whereas the peak displacements are shown in figs. C.10b and C.11b.

In figs. C.10 and C.11, it can be observed that the dynamic responses for the old and new
rigs of the BLWTL agree very well. For the bridge rig of the Université de Sherbrooke,
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(a) Mean displacements (b) Peak displacements

Figure C.10: Dynamic response of bridge SU2 for modes VS1 and TS1 and a smooth flow
(full scale)

(a) Mean displacements (b) Peak displacements

Figure C.11: Dynamic response of bridge SU2 for modes VS1 and TS1 and a turbulent flow
(full scale)
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figs. C.10b and C.11b show that the peak displacements are less than those for the BLWTL
test rigs. This is attributed to the greater damping utilized for the tests at the Université de

Sherbrooke (see table C.1). However, the larger damping for the UdeS dynamic response has
a marginal effect on the onset of flutter since flutter occurs at relatively the same wind speed
for the three experimental rigs. It is also worth noting that it was not always possible to
measure the displacements when flutter occurred as the displacements would rapidly become
very large, and the wind tunnel had to be stopped. This was the case for the results of the
new BLWTL rig for a smooth flow and the old BLWTL rig for a turbulent flow. Regarding
the mean displacements, the old and new BLWTL rigs have very similar results. However, in
the case of the mean vertical displacement, there are discrepancies between the UdeS results
and the results for the two other bridge rigs. Further investigation would be required in order
to find an explanation for this behavior. This would likely require conducting additional
wind tunnel tests at the Université de Sherbrooke. This was out of the scope of this research
project since it is still possible to validate the new BLWTL rig by using the results measured
for the old bridge rig of the BLWTL.

From this validation procedure based on standard linear section model tests, it is possible to
conclude that the new BLWTL bridge rig is valid since it has demonstrated its reliability for
the measurement of flutter derivatives and dynamic responses. The next step in this research
project will be to replace the linear structural behavior by a nonlinear stiffness behavior in
order to conduct nonlinear section model tests using the new bridge rig of the BLWTL. Such
an experimental approach will allow an experimental investigation of the effect of structural
nonlinearities on the aerodynamic and aeroelastic behavior of bridges.

C.5 Conclusions

Wind tunnel section model tests for cable-supported bridges are extensively used in industry
and research. However, they rely on some assumptions. For example, they assume a linear
structural behavior for the stiffness of the bridge. Considering theoretical demonstrations
made regarding nonlinear structural dynamic phenomena in suspension bridges, it seems
relevant to extend the capabilities of the section model test procedure for bridges by making
such tests able to account for a nonlinear structural behavior. To achieve this, it was needed
to design and fabricate a new section model test rig able to accommodate a nonlinear device
representative of the nonlinear behavior of a bridge. Before using this new bridge rig for
nonlinear section model tests, it was required to validate its usage by conducting linear
section model tests. The results for this new bridge rig at the Boundary Layer Wind Tunnel
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Laboratory of the University of Western Ontario were compared to results measured at the
Université de Sherbrooke and results from the old bridge rig of the Boundary Layer Wind
Tunnel Laboratory. This was done considering the same bridge section model. For the flutter
derivatives and dynamic responses, a good agreement was obtained between the results of
the different bridge rigs, therefore validating the reliability of the new bridge rig. This new
bridge rig will be utilized in the near future to conduct nonlinear section model tests in
order to provide an experimental assessment of the effect of structural nonlinearities on the
aerodynamic and aeroelastic behavior of cable-supported bridges.
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B. Kaabia, S. Langlois, and S. Maheux, “Effect of structure configurations and wind charac-
teristics on the design of solar concentrator support structure under dynamic wind action,”
Wind and Structures, An International Journal, vol. 27, no. 1, pp. 41–57, 2018.
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