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Abstract

It is well known that cable-supported bridges, like suspension bridges and cable-stayed
bridges, are structures that are highly sensitive to wind. This is why there has been an
important research effort over the past decades on aeroelastic instability phenomena in
bridges like flutter. This has allowed the safe design of long-span bridges with respect to
wind effects. Nonetheless, the analysis methods that have become the norm in the field of
bridge engineering, such as flutter analysis and wind tunnel tests, rely on some simplifications
to facilitate analysis. For example, they assume a linear structural behavior of the bridge
structure. Therefore, this research project aims at developing a better understanding of the
effect of structural nonlinearities on the wind stability of these bridges. To do so, a new
experimental approach able to account for structural nonlinearities of bridges is elaborated
for wind tunnel tests. First, a numerical method based on large-displacement finite element
analysis is developed to characterize the nonlinear structural behavior of cable-supported
bridges. The research focuses on geometric nonlinearities, which are more of a concern
for these bridges. It is found that single-span suspension bridges behave more nonlinearly.
Secondly, it is shown that the nonlinear behavior obtained from the numerical method can
be scaled to be utilized for dynamic section model tests in the wind tunnel that account for
the nonlinear structural behavior of the bridge. This led to the development of a springing
system able to mechanically reproduce this nonlinear behavior in the wind tunnel. A new
experimental apparatus for section model tests was designed and fabricated for this purpose.
This section model test rig was utilized at the Boundary Layer Wind Tunnel Laboratory
(BLWTL) of the University of Western Ontario. This proved the possibility of accounting for
structural nonlinearities when conducting dynamic section model tests. It is demonstrated
that structural nonlinearities have an effect on the dynamic response as well as on the critical
velocity for flutter. This research project therefore provides to bridge designers an effective
tool for the assessment of the influence of structural nonlinearities on the aeroelastic stability

of cable-supported bridges.
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Summary for Lay Audience

Cable-supported bridges, such as suspension bridges and cable-stayed bridges, are commonly
used in our modern road networks for the crossing of major obstacles. These structures can
be very long, and it is not uncommon to have bridges spanning distances over 1 km. These
bridges are therefore very flexible, what makes them vulnerable to wind actions. In order
to ensure the safety of such long bridges, engineers utilize techniques that can be either
run on a computer using a numerical representation of a bridge or performed in a wind
tunnel using scale models of bridges. The stability of bridges when subjected to wind is
one of the main concerns for which engineers have utilized these methods. The approaches
rely on some simplifications that ease their utilization, especially pertaining to how the
bridge structure behaves. Consequently, this project aims at developing a new approach for
studying the stability of bridges for which the structural behavior is modeled accurately. At
first, a numerical approach is elaborated to characterize with good accuracy the behavior of
cable-supported bridges. Then, the results of this new numerical techniques were utilized
for the development of a new method for testing bridges in the wind tunnel. By comparing
it to typical wind tunnel tests for bridges, this new innovative wind tunnel test approach is
utilized to demonstrate the effect of accounting for an accurate bridge structural behavior on
the stability of bridges. It is believed that this research will eventually lead to safer bridge

designs against wind.
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Les recherches connues sur les lois du choc
et de la résistance des fluides n’offrent pas
les moyens d’apprécier, avec I’exactitude qui
serait a désirer, I’action des vents sur les ponts
suspendus.

—Claude-Louis Navier, 1830
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Preface

Being raised in a small town that is home of the Pont Perrault, the second longest covered
bridge in Canada, I believe that it was meant for me to study and work in the field of bridge
engineering. Not too far away at about 100 km northwest of this covered bridge can be
found two major structures that have kept impressing me by their sheer size and beauty.
The first one, the Pont de Québec, will certainly always fascinate me with its history and
for having the world’s longest span for a cantilever bridge. The other structure is the Pont
Pierre-Laporte, the longest suspension bridge in Canada. Its elegance that originates from
the slenderness and apparent lightness of its suspension system was the triggering point for
my interest in cable-supported bridges, which are undoubtedly the “sexiest” bridges ever
built.

Unknowingly in 2010, I began my civil engineering studies at the Université de Sherbrooke,
where one of the only researchers in Canada specialized in cable-supported bridges was
professor at the time. His name is Dr. Frédéric Légeron, and in 2012, he gave me my first
chance to work on such bridges when I was an undergraduate researcher. This brought me to
do a master’s about the aeroelastic stability of long-span bridges. Inevitably, this also led me
to write this Ph.D. thesis on the same subject at the University of Western Ontario. My Ph.D.
experience has brought me even closer to my little boy’s dream of designing cable-supported

bridges.

Being at the junction of structural engineering, bridge engineering and wind engineering,
the research presented in this thesis is relevant to any bridge engineers, wind engineers and
researchers interested in very long cable-supported bridges, either suspension bridges or
cable-stayed bridges. More specifically, anyone with experience with nonlinear analysis of
cable-supported bridges, bridge aeroelasticity and wind tunnel testing of bridges should find

information and conclusions of interest in this Ph.D. thesis.

XXiX



Chapter 1

Introduction

1.1 Context

Cable-supported bridges, like suspension bridges and cable-stayed bridges, are important
elements of our modern transportation networks that have developed over the years. Due to
the great distances that cable-supported bridges can span, they are utilized for the crossing
of major obstacles such as rivers, fjords and valleys. This is made possible, technically and
economically, by the inherent lightness of cable structures as these structures provide an
effective utilization of material. This is explained by the fact that these bridges mostly carry
loads using cables, which are good in tension, the most effective way for a structural element
to resist an external force. The use of cables in long-span bridges and their slenderness,
originating from their length, make them very flexible. From this fact, cable-supported
bridges are quite effective at resisting earthquakes. Conversely, their flexibility makes them
sensitive to the actions of wind. From being able to span great distances, these structures are
usually located in open locations where strong winds are often encountered. Consequently,
it is of paramount importance to account for wind effects in the design of the complex

structures that are cable-supported bridges.

Early in the development of modern suspension bridges at the beginning of the 1800s, it was
clear that long-span bridges were seen as complex structures. Engineers relied on empirical
approaches and experience for their design as accurate design methods were not available
[1]. This had inevitably led to collapses of many early suspension bridges mainly due to
brittle material, overloading and dynamic wind actions. In the 1820s, Claude-Louis Navier,
a famous French engineer mostly known for the Navier-Stokes equations, was mandated
to study the suspension bridge system after the failure of the Pont des Invalides, crossing
the River Seine in Paris [2]. In his report to the Direction générale des Ponts et Chaussées
et des mines, Navier was the first to develop a mathematical model for suspension bridges,
more specifically for the unstiffened suspension bridge. However, at the time, the equations
of his model could not be utilized for the purpose of designing a modern suspension bridge
having a stiffening girder, i.e., a stiffened suspension bridge. It is worth mentioning that, in
his report [2], Navier recommends that cable-stayed bridges should be avoided. He made
this recommendation based on the numerous collapses as well as on the observation that this

structural system cannot be calculated using the mathematical tools available at that time.



Because of Navier’s recommendation, it was needed to wait until the 1950s before seeing

modern cable-stayed bridges being built again.

Additionally, in his report [2], Navier mentions that the analytical approaches that had
been available for the analysis of suspension bridges could not account for the complicated
dynamic actions of wind. This is why, until almost the end of the 1800s, the design of
suspension bridges had been done through experience. For example, John A. Roebling
designed the Brooklyn Bridge, which opened in 1883, using simplified calculations and
physical scale models [3]. It is only towards the end of the nineteenth century with the
development of the elastic theory and deflection theory of suspension bridges that analytical
design approaches became predominant [4]. At the beginning of the twentieth century, the
adoption of the deflection theory, originally developed by Josef Melan and made available
for design purposes by David B. Steinman [5], had led to a rapid increase in span length and
slenderness for cable-supported bridges. This is when dynamic wind oscillations started
to be encountered again in suspension bridges. Unlike their predecessors who had relied
on empirical rules and experience, the engineers of this era had used analytical methods,
and they had somehow been overconfident of their designs determined by analysis. This
was especially the case with regard to dynamic wind effects as only static wind forces were
considered at the time [3]. The George Washington Bridge, designed by Othmar Ammann,

was one of those wind-sensitive bridges.

After modifying the deflection theory to include the effect of horizontal wind forces, Leon
S. Moisseift showed that the main cables in a suspension bridge contribute to the lateral
stiffness of a bridge and help resist horizontal wind loads [6]. This had led to a further
increase in slenderness that culminated with the Tacoma Narrows Bridge. It is well known
that, during its short life, the Tacoma Narrows Bridge had experienced dynamic vertical
oscillations for being too flexible and having an H-shaped bridge-deck cross section prone
to wind-generated vortices. The Tacoma Narrows Bridges eventually collapsed in 1940 due
to torsional flutter [7, 8]. This led Prof. F. Burt Farquharson to develop modern wind tunnel
testing approaches for long-span bridges as he was involved in the engineering investigation
for Tacoma [9]. As a result, wind tunnel tests have then been utilized in the design process

of cable-supported bridges.

Since the collapse of Tacoma, important research efforts have been dedicated to understand-
ing dynamic wind effects in cable-supported bridges. Nowadays, the standard approaches
for checking the dynamic response of bridges under turbulent wind originate from the
frequency-domain buffeting theory developed by Prof. Alan G. Davenport [10]. Regarding

aeroelastic stability, the flutter derivative technique originally elaborated by Prof. Robert H.



Scanlan [11] is still central to the analytical techniques utilized to predict flutter, an instabil-
ity phenomenon characterized by large dynamic oscillations and caused by aerodynamic
self-excited forces. These analytical techniques and wind tunnel approaches have made
possible the safe construction of long suspension bridges, like the Great Belt Bridge [12] and
Akashi Kaikyo Bridge [13], as well as long cable-stayed bridges, like the Pont de Normandie
[14] and Russky Bridge [15]. Now, even longer spans are possible by using vented-box
girders made out of multiple longitudinal boxes with airfoil-shaped cross sections that are
interconnected with crossbeams, an idea of William C. Brown. The bridge deck of the
Canakkale Bridge [16], the longest suspension bridge in the world with a main span of
2023 m, is an example as it is equipped with a twin-box girder. A triple-box girder was
considered for the Messina Strait Bridge, which, with a main span of 3300 m, is the longest

proposed suspension bridge for which a detailed design exists [17].

As discussed in the previous paragraph, main spans for cable-supported bridges are getting
longer, which makes the issue of aeroelastic stability even more important in order to
ensure safe and reliable bridge structures for the public. The analytical approaches and
wind tunnel techniques utilized nowadays in bridge engineering assume a linear behavior
for cable-supported bridges. This appears reasonable for most cable-supported bridges,
but this might be inappropriate for bridges with very long main spans. This is because
very long-span bridges are intrinsically nonlinear due to their cable system as it is known
that the cable system dominates the structural behavior of a bridge for longer spans [17].
Considering that cables have a greater influence on the structural behavior in the case of
very long cable-supported bridges, it seems reasonable to think that their aeroelastic stability
could be impacted, and such nonlinear effects should be accounted for in the prediction of

instabilities in the case of very long bridges.

1.2 Definition of Research Project

Indeed, there is a possibility that a stronger nonlinear behavior in cable-supported bridges
has an effect on the predicted critical wind speed for an instability. In other words, the
structural nonlinearities in long-span bridges could change the onset of flutter, and neglecting
them could lead to erroneous stability predictions in the case of bridges with very long main
spans. Not only that the critical velocity could be impacted by structural nonlinearities, but
these nonlinearities could trigger nonlinear structural dynamic phenomena that have never
been observed in bridges. If such nonlinear dynamic phenomena are possible, it would be

relevant to ask whether they could interact with aerodynamic and aeroelastic effects.



Similar to what happened when dynamic wind actions were not considered in the design of
suspension bridges, instability predictions for long-span bridges are currently carried out
without including structural nonlinearities. Therefore, this doctoral research project aims
at providing an assessment of the effect of structural nonlinearities on flutter instability of
long cable-supported bridges. This research focuses on geometric nonlinearities, which are
more of a concern for long cable-supported bridges. This project begins with an assessment
of structural nonlinearities in cable-supported bridges using numerical analysis in order
to find bridges that are more critical to nonlinear effects. From there, it is believed that
an experimental approach is the most convenient way to assess the effect of structural
nonlinearities due to the difficulty to analytically represent aerodynamic forces involved in
flutter for large bridge-deck amplitudes of vibration. Consequently, following theoretical
developments for a new experimental approach in the wind tunnel able to account for
structural nonlinearities, it is required to develop a new experimental apparatus for this new
method. By testing bridges that exhibit a stronger nonlinear behavior using this experimental
approach, it will be possible to determine whether the aeroelastic stability of cable-supported

bridges can be impacted by structural nonlinearities.

1.3 Objectives of Research Project

This research project has four main objectives which are as follows:

1. Quantify structural nonlinearities in cable-supported bridges in terms of dynamic

properties using nonlinear finite element analysis;

2. Develop the theory required to account for structural nonlinearities when conducting

wind tunnel tests of bridges;

3. Design an experimental apparatus for wind tunnel tests of bridges able to represent

the nonlinear structural behavior of a cable-supported bridge;

4. Conduct nonlinear wind tunnel tests in order to study the effect of structural nonlinear-

ities on the aeroelastic stability of cable-supported bridges experimentally.

1.4 Original Contributions

From this research project, six original contributions will be produced:

1. Numerical approach to quantify structural nonlinearities in cable-supported bridges;



2. Assessment of structural nonlinearities for suspension bridges and cable-stayed bridges

of various span lengths;

3. Theoretical approach for section model tests in the wind tunnel for cable-supported

bridges able to account for the nonlinear structural behavior;

4. Numerical method for the calibration of a mechanical device for nonlinear section

model tests able to model the nonlinear structural behavior of a cable-supported bridge;

5. Experimental rig for nonlinear section model tests in the wind tunnel for cable-

supported bridges;

6. Assessment of the influence of structural nonlinearities on the aeroelastic stability of

long-span bridges using nonlinear section model tests.

1.5 Thesis Structure

This integrated-article format thesis is comprised of a literature review chapter, four main
research chapters, a concluding chapter and three appendices. In chapter 2, a literature review
pertaining to this research project is made in order to demonstrate the gap in knowledge with

respect to the effect of structural nonlinearities on the aeroelastic stability of bridges.

1.5.1 Nonlinear Structural Vertical-Torsional Coupling

Chapter 3 presents a preliminary investigation of structural nonlinearities in long-span
bridges, more specifically for nonlinear vertical-torsional coupling. This is done using a
simplified practical approach. The approach relies on nonlinear pushover analyses that are
conducted for the geometrically nonlinear finite element models of five suspension bridges
and two cable-stayed bridges. This approach allows determining the nonlinear stiffness
parameters of equivalent systems having between one and three degrees of freedom (lateral,
vertical and torsional). It provides an effective method to determine bridges that are more
nonlinear and are likely more critical for their flutter response to be impacted by the nonlinear
structural behavior. Since the proposed technique relies on the modes of vibration and can
account for the interaction between the vertical and torsional effects, it can also be used
to judge which ones of the bridges considered are the most susceptible to nonlinear mode

coupling under wind loads.



1.5.2 Theory for Nonlinear Section Model Tests

Chapter 4 presents the theoretical developments for a new type of section model test for
bridges that accounts for geometric nonlinearities of the bridge structure. This theory for
nonlinear section model tests starts from two-mode nonlinear generalized stiffness parameters
obtained using nonlinear pushover analysis, which need to be scaled using a specifically
developed procedure. Using eleven numerical models of cable-supported bridges (nine
suspension bridges and two cable-stayed bridges), the assumptions made in the theory for

nonlinear tests are then validated. The proposed scaling procedure is also tested.

1.5.3 Design of Test Rig for Nonlinear Section Model Tests

Chapter 5 discusses the development of a new experimental apparatus for nonlinear section
model tests that will allow studying the interaction between nonlinear structural effects and
aeroelastic effects. After reviewing the theoretical developments for nonlinear section model
tests, a numerical procedure to determine the parameters of a mechanical system able to
model the nonlinear structural behavior for section model tests is developed. The procedure
was tested for four single-span suspension bridges with main spans ranging from 1.2 km to
3.0km. Following a discussion on the characteristics needed for a nonlinear section model

test rig, a design of such a test rig is briefly presented.

1.5.4 Nonlinear Section Model Tests

Chapter 6 presents an experimental assessment of the effect of structural nonlinearities on the
aeroelastic stability and wind response of cable-supported bridges. This is achieved by using
nonlinear section model tests, which account for the nonlinear structural behavior of the
bridge under consideration. First, the theoretical developments required for nonlinear section
model tests of bridges are briefly reviewed. Then, the experimental apparatus utilized for
nonlinear wind tunnel tests is described, which includes a short description of the calibration
procedure used for the mechanical device required for nonlinear tests. Three different
suspension bridge configurations are tested. The first is for a single-box girder suspension
bridge, and the second and third are for two twin-box girder suspension bridges having
different span lengths. By comparing the results of linear tests to those of nonlinear tests, it

is possible to assess the effect of structural nonlinearities.



1.5.5 Appendices

Following the concluding chapter, where the main conclusions and recommendations are
discussed, can be found three appendices in which additional information regarding this
project is given. Firstly, a detailed description is presented in appendix A for the eleven
cable-supported bridges utilized for this research as well as for the corresponding finite
element models. Secondly, appendix B discusses an assessment of nonlinear structural
vertical-torsional coupling for non-analogous modes of vibration in suspension bridges. This
is done in order to validate that nonlinear structural coupling in cable-supported bridges
is stronger in the case of analogous modes, therefore confirming that an assessment of the
effect of structural nonlinearities on the aeroelastic stability of bridges should focus on
analogous modes. Lastly, the validation of the new experimental rig for section model tests
is presented in appendix C. This is achieved by comparing wind tunnel test results for the

existing experimental rig to those of the new one.



Chapter 2
Literature Review

The main function of bridge decks in suspension bridges and cable-stayed bridges is to carry
the gravity loads from vehicles, which are eventually transferred to the ground through the
tower foundations and abutments. This is achieved through a cable system. As mentioned
before, the efficiency of cable systems allows cable-supported bridges to span great distances,
but it has the inconvenience of making these structures sensitive to wind actions due to their
flexibility. Considering that they are often located where high winds can be encountered, it
is therefore of paramount importance to adequately study the aerodynamic and aeroelastic

behavior of cable-supported bridges.

2.1 Aerodynamic and Aeroelastic Phenomena

Obviously, the bridge deck of a cable-supported bridge is one of the critical structural
elements with regard to the actions of wind. This is why it is important to characterize
aerodynamic forces caused by wind on it. It is of common practice to separate the actions
of wind on bridge decks into three components: mean aerodynamic forces or static forces,
buffeting forces and self-excited forces. Buffeting forces correspond to forces relative to
wind fluctuations, whereas self-excited forces are aerodynamic forces associated with the
motion of the bridge deck. It is worth noting that this separation of wind effects on bridge
decks is relevant for linear aerodynamic force models as individual aerodynamic effects
are not as easily distinguishable in the case of nonlinear force models. Mean aerodynamic
forces, buffeting forces and self-excited forces need to be accounted for in the assessment of
the dynamic response of a bridge subjected to turbulent wind, i.e., the buffeting response.
These aerodynamic forces induce straining actions in a bridge, but they can also lead to other

static and dynamic phenomena, especially instabilities.

2.1.1 Static Phenomena

Static instabilities due to wind in bridges are phenomena that are analogous to column
buckling. Such instability happens when the effective stiffness, the cumulative effect of
structural stiffness and aerodynamic stiffness, of a bridge becomes nil. Any further increase
of the mean aerodynamic forces will therefore lead to very large bridge-deck displacements

and likely to bridge collapse. This phenomenon is referred to as an aerostatic instability



[18-20]. This instability happens due to the variation of the mean aerodynamic forces with
the angle of att