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Abstract
This thesis develops numerical approaches to attain optimal multi-period portfolio strategies in
the context of advanced stochastic models within expected utility and mean-variance theories.
Unlike common buy-and-hold portfolio strategies, dynamic asset allocation reflects the invest-
ment philosophy of a portfolio manager that benefits from the most recent market conditions
to rebalance the portfolio accordingly. This enables managers to capture fleeting opportunities
in the markets thereby enhancing the portfolio performance. However, the solvability of the
dynamic asset allocation problem is often non-analytical, especially when considering a high-
dimensional portfolio with advanced models mimicking practical asset’s return. To overcome
this issue, this thesis presents a competitive methodology to approximate optimal dynamic
portfolio strategies.

The thesis can be categorized into two large sections. The development, algorithmic de-
scription, testing and extension of the methodology are presented in detail in the first section.
Specifically, the main method, named PAMC, is originally developed for constant relative risk
aversion investors. In a comparison with two existing well-known benchmark methods, our ap-
proach demonstrates superior e�ciency and accuracy, this is not only for cases with no known
solution but also for models where the analytical solution is available. We consequently extend
the method into the wider hyperbolic absolute risk aversion utility family which is more flex-
ible in capturing the risk aversion of investors. This extension permits the applicability of our
method to both expected utility theory and mean-variance theory. Furthermore, the quality of
portfolio allocation is directly linked to the quality of the portfolio value function approxima-
tion. This generates another important extension: the replacement of the polynomial regression
in the original method by neural networks. Besides, we successfully implement the method on
two important but models that have not been solved in closed-form: the Ornstein-Uhlenbeck
4/2 model and the Heston model with a stochastic interest rate, which further confirms the
practicality and e↵ectiveness of our novel methodology.

The second part of the thesis addresses the application of our numerical method to invest-
ments involving financial derivatives. In addition to portfolio performance maximization, we
propose another criterion, namely, risk exposure minimization, to help investors meet regu-
latory constraints and protect their capital in the case of a market crash. The complexity of
derivatives’ price dynamics leads to new challenges on the solvability of the optimal allocation
for a derivative-based portfolio. With proper modifications, our method is applicable to this
type of problem. We then consider a portfolio construction with equity options and volatility
index (VIX) options in the presence of volatility risk, providing insight into best investment
practices with derivatives.

Keywords: Dynamic programming, Quadratic-A�ne processes, Expected Utility, Portfo-
lio optimization, derivatives market, Volatility risk
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Summary for lay audience
Financial markets, i.e. markets for financial securities, are important mediums for economic
development. There are two typical players in financial markets. The demand side refers to
participants who seek funds for daily operational cash flows, bridge financing or long-term
special projects. In contrast, the supply side refers to those who have excess money that can be
used in favor of demand side thereby earning appreciation of their capital. This “dedication”
of assets is often called investment, which is investigated in a scientific way in this thesis.

In practice, investment is a systematic process for large institutional investors including
defining objectives, security selection, ongoing monitoring, etc. In this thesis, we focus on
one of the most important steps, i.e. portfolio construction. A portfolio is a collection of
financial investments like stocks, bonds, commodities, that take advantage of the wisdom of
diversification—which simply means never put all your eggs in one basket. Moreover, we
consider the portfolio in a continuous-time framework which allows investors to adjust their
portfolio allocation in real time in response to new information that can appear at any time.
Thus, Chapters 2, 3 and 4 are mainly concerned on the methodologies for approximating the
optimal portfolio strategy.

Financial derivatives, defined as contracts that derive value from the performance of under-
lying assets, are widely used for hedging, speculation and taking arbitrage opportunities. There
are numerous studies showing that derivatives may e↵ectively enhance portfolio performance.
This generates interest in the theme of the last two chapters: investments across traditional fi-
nancial markets and derivatives markets. Specifically, Chapter 5 develops a new framework for
derivatives-based portfolios. Chapter 6 illustrates an application of derivatives-based portfolios
in presence of volatility risk.
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Preface
In this thesis new, fast, and accurate numerical methods are developed to solve for asset allo-
cation (and the associated value function) in dynamic portfolio problems. These methods are
validated and widely tested for accuracy and speed on various models. The newly developed
tools are used to extract insights about portfolio allocation in previously unsolvable cases. Five
related but distinct projects are completed. These projects, each of which is its own stand alone
paper are presented as chapters 2 through 6 in the thesis. The introductory chapter 1 provides
the necessary preliminaries.

The first project, presented in chapter 2, proposes a new polynomial a�ne methodology to
study portfolio allocation to various stocks (or indexes) and one money market fund where the
investor maximizes its expected constant relative risk aversion (CRRA) utility. This method
is termed PAMC, which stands for polynomial a�ne method for CRRA. The methodology is
applied on four di↵erent widely used models: a geometric Brownian motion (GBM), a Heston
1/2 stochastic volatility (SV), an exponential Ornstein Uhlenbeck (OU) model (the first three
models allow comparison with the appropriate closed form solution), and a vector autoregres-
sive (VAR) model. The optimal allocation vector and the value function obtained with PAMC
are compared to closed form solutions and/or the solutions arising from other existing numer-
ical methods. These results demonstrate the superior accuracy and e�ciency of the PAMC.
Furthermore, we exemplify the application of PAMC on an unsolvable model, i.e. the Hes-
ton model with stochastic interest rate. In particular, we learn about the impact of the various
correlation on optimal portfolio decisions.

The second project, presented in chapter 3, extends the work of chapter 2 to the wider
Hyperbolic Absolute Risk Aversion (HARA) utility class for a somehow narrower family of
multidimensional models. As such this method is denoted by PAMH. Given the flexibility of
the HARA structure, the methodology is applicable not only to expected utility theory (EUT)
but also to mean variance theory (MVT). The accuracy and e�ciency of the approximation
is examined in a comparison to known closed-form solutions for the one dimensional Heston
model, and a high dimensional stochastic covariance model. Moreover, the PAMH is applied to
a setting in which the risky asset is a commodity modelled by the OU 4/2 model which captures
two stylized facts of financial data: mean reverting drift and SV. This is the first analysis of such
a new model leading to interesting conclusions summarized next.

In this chapter, the optimal strategies for both a decreasing relative risk aversion (EUT)
investor and an increasing relative risk aversion (MVT) investor are presented. The former
incorporates a minimum capital guaranteed, while the latter delivers what is known as a pre-
commitment solution due to the time-inconsistent nature of the problem. Sensitivity analysis of
the optimal strategies with respect to key parameters of the commodity model and risk aversion
are conducted. We also studied the certainty equivalent return (CER) loss in case of the OU 1/2
model given two sub-optimal strategies: a myopic strategy (Merton’s solution) ignoring future
movements of state variables; and a strategy adopted by investors who ignores the SV feature
of asset dynamics. We conclude that, for a particular market-calibrated set of parameters, a
myopic strategy is preferable to a strategy ignoring SV.

The third project, described in chapter 4, combines neural network and PAMC, namely
NNMC. Two customized architectures of the neural network are introduced, both nesting the
polynomial choice of chapter 2. The methodologies are applied on four settings: a 4/2 SV

xiv



model with two types of market price of risk, a 4/2 model with jumps, and an OU 4/2 model.
The results of these, both in computing the value surface and in computing the asset allocations,
are demonstrated in a one money market, one risky asset CRRA setting. Even through the
NNMC fails to outperform and is not as e�cient as PAMC, it demonstrates a way to tackle
more advanced models along the lines of Markov switching, Lévy processes, and fractional
Brownian processes.

The previous chapters work with incomplete market solutions, e.g. no additional asset
hedging the SV risk. Projects four and five address the complete market problem, first from a
theoretical perspective (chapter 5), and then mostly numerically in chapter 6. The portfolios
here can use derivatives on the underlying to ensure completion, therefore infinitely many
choices of portfolio assets become available. In particular, an additional optimization criterion
(i.e. risk exposure minimization) inspired by regulatory constraints is proposed in chapter 5.
In this chapter, for simplicity and to gain a better understanding of the problematic, we work
in the context of the Black-Scholes-Merton setting. Here, we prove the minimum number of
derivatives needed to simultaneously maximize expected utility and minimize risk exposure for
investors. To help investors make a practical derivatives selection, a comparison is conducted
within one-asset options (e.g. American, European and Asian puts and calls), synthetic straddle
options are studied as well. In addition, the superiority of multi-asset options (i.e. basket
options) over one-asset options in many realistic situations is confirmed.

Finally, the last project of the thesis extends the work of chapter 5 to a generalized dif-
fusion model family. Chapter 6 focuses on two issues in derivatives-based portfolio choice
problem: the computation of the optimal allocation on derivatives, and the selection of deriva-
tives for risk exposure minimization purpose. Advanced models with various stylized facts
often endanger the mathematical tractability of optimal allocation of common assets, let alone
derivatives with complex structures. To overcome this problem, we propose two variants of
PAMC, namely PAMC-direct and PAMC-indirect. The PAMC-direct is a straightforward ap-
plication of PAMC, where derivatives are taken as assets whose dynamics is explicitly known.
In contrast, the PAMC-indirect first computes the optimal strategy for a pure factor portfolio;
and the optimal derivatives strategy is obtained with financial replication techniques. The accu-
racy and e�ciency of the PAMC-direct and the PAMC-indirect are compared. The selection of
derivatives is explored within the Heston SV model, where we consider 4 popular products on
stocks: call/put options, synthetic straddle and strangle options. Straddle and strangle options
are preferable for their intrinsic exposure to the volatility risk. Furthermore, we studied VIX
products, such as VIX options, thereby describing interesting conclusions in the chapter.

xv



Chapter 1

Introduction

1.1 Motivation and background

Portfolio construction is one of the most important segments in the business of asset manage-
ment and investment companies. Tracing back to Markowitz 1952, [73] was the first to analyze
a portfolio in a quantitative way, where the author minimized the variance of terminal wealth
given a specific expected return. His work laid the foundations for the development of portfo-
lio analysis in both academia and industry. However, the result was based on the assumption
of single period investment, hence a major criticism of Markowitz’s work is that it only al-
lows investors to allocate their wealth myopically and fails to account for the opportunity of
rebalancing when the market state fluctuates.

Seventeen years later, Samuelson, in [83] first formulated and solved a multi-period port-
folio selection problem corresponding to lifetime planning of consumption and investment
decisions. His work provided instructions for an investor who has constant relative risk aver-
sion through his whole life. [46] presented a discrete-time model for an investor’s economic
decision under risks and obtained closed-form optimal strategies with constant relative risk
aversion (CRRA) and constant absolute risk aversion (CARA) utilities. Dynamic multi-period
portfolio analysis is certainly an important extension of Markowitz’s work, it allows investors
to rebalance their portfolio at pre-determined dates. However, scholars soon shifted their atten-
tion to the continuous-time portfolio analysis because of its more flexible and practical setting
that allows investors to react to new information immediately while producing closed-form
solutions.

The seminal work of Merton [76] initiated research on continuous-time portfolio optimiza-
tion. The author obtained optimal allocation and consumption policy with a dynamic program-
ming technique and the use of Hamilton-Jacobi-Bellman equations (HJB), assuming the stock
price follows a geometric Brownian motion (GBM). Compared to Markowitz’s work and those
in multi-period analysis, his portfolio construction process assumed a more realistic rebalanc-
ing policy, which has now become an indispensable component in investment management.
In the late 80s, [54] and [25] pioneered the martingale method to solve portfolio optimization
problems via a combination of static optimization and financial replication. Both, dynamic
programming, and martingale methods are mainly applied when the investor’s preference is
represented by a utility function (i.e. expected utility theory [EUT]), although it can also be
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2 Chapter 1. Introduction

used, with some limitations, in the context of mean-variance theory (MVT) considered in [73].
EUT and MVT reflect di↵erent investment objectives from a financial viewpoint. While both
approaches reward return and penalize volatility, EUT does this though utility function which
provides convex “enjoyment” of wealth, while MVT just takes return good and volatility bad
as axiomatic. Following [43], it can be shown that the EUT problem can approximately be
described as a maximization problem with respect to a mean-variance criterion on the portfo-
lio return. This shows a strong mathematical relation between the theories. Debate continues
about the better framework, EUT or MVT. The reality is that EUT and MVT have become the
two major branches of portfolio optimization analysis.

Financial markets are constantly evolving dynamical systems, a variety of financial assets
and indices appear which display distinct intrinsic characteristic in their time series data. Con-
sequently, detecting and modeling stylized facts of financial time series is an active area of
research. For example, the Vasicek model (see [86]) and the Hull–White model (see [51]) were
proposed, as improvements over the GBM, to describe the evolution of interest rates, which
play an essential role in bond and interest rate derivatives valuation. In equity markets, the
Heston’s 1/2 model was introduced in [48] to fit popular market indexes like S&P500 incor-
porating stochastic volatility, now fully accepted as confirmed by the existence of volatility
indexes like VIX. The OU 4/2 model (see [37]), developed in 2020 is, at the time of writing,
the latest substantial achievement in commodity price modelling, this incorporates both mean-
reverting price patterns and an advanced stochastic volatility structured on a single model.
Many portfolio researchers, inspired by the rise of advanced financial model, seek the optimal
investment policy for investor focusing on these specific asset classes.

Within EUT, dynamic portfolio choice for CRRA type investors has been widely studied
with several closed-form results in the literature, which we list next for models with only one
extra state variable. [59] solved the associated HJB equation and obtained the optimal strategy
when the stock price follows the Heston’s 1/2 stochastic volatility (SV) model. [19] considered
the optimal investment problem for an insurer, who invests in assets modelled by an expo-
nential Ornstein–Uhlenbeck (OU) process, subject to random payments of insurance claims.
[38] constructed a portfolio across the equity and fixed-income markets, their optimal alloca-
tion provides intuition about how to hedge against interest rate risk. [13] hedged against both
stochastic volatilities and correlations risk solving the optimal allocation problem for incom-
plete markets. [34] derived optimal portfolio decision in complete and incomplete markets for
a multivariate setting where the principal components have stochastic eigenvalues, generaliz-
ing the multi-factor model of [22]. The optimal portfolio problem given the GBM 4/2 model
with certain types of market price of risk (MPR) was studied in [18]. The results have been
extended to Hyperbolic absolute risk aversion (HARA) class of utility functions that are pop-
ular due to its flexibility to capture risk aversion preferences. For a risk-averse investor with a
HARA utility, the explicit solution of optimal strategy with stochastic market price of risk or
SV is presented in [61]. [33] considered a regime switching bond-stock market, obtaining the
optimal strategy even with multi stochastic factors.

There has been also plenty of progress in the study of dynamic portfolio choice within
the framework of MVT. This is in spite of the di�culty of applying classical dynamic pro-
gramming techniques coming from the presence of a variance term in the objective function
with time-inconsistency implications. A pre-commitment strategy, proposed in [89], was ob-
tained by solving a class of auxiliary stochastic linear-quadratic (LQ) problems. [21] followed
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the method suggested in [5], and derived a time-consistent strategy when the stock price is
modelled by a exponential OU process. All these results confirm the interest and promote
the application of portfolio theory in real-world investment settings. But obtaining analytical
portfolio solutions is getting harder by the decade.

Financial markets are growing in terms of volume and complexity at a rapid speed, hence
any adequate strategy for investors must rely on emerging models reflecting new stylized facts
of these evolving markets. However, the complexity of advanced models jeopardizes the solv-
ability of optimal portfolio problems. This generates more interest on approximation methods
for dynamic portfolio analysis. Most numerical methods for dynamic portfolio focus on EUT,
incorporating ideas from the martingale method or dynamic programming technique in the
construction of the methodology. The explicit representation of the optimal terminal wealth
obtained via the martingale method was utilized in [26] to estimate the optimal allocation
through Monte Carlo simulation. [30] achieved better accuracy with the application of Malli-
avin derivatives. In addition, avoiding the limitations of a complete market setting, the seminal
paper [10] extended the least-squares Monte Carlo (LSMC) method (see [72]) to the context of
dynamic portfolio optimization. Their method, namely BGSS, recursively estimates the value
function, which follows the dynamic programming principle. [39] and [41] targeted the opti-
mal allocation approximation and proposed to expand the value function based on a nonlinear
decomposition. [24], enlightened by the stochastic grid bundling method (SGBM) for condi-
tional expectation estimation introduced in [53], further enhanced the accuracy of the BGSS.

This thesis studies five topics related to dynamic portfolio choice. We first introduce related
background information for this thesis in chapter 1. We provide a brief overview on the two
fundamental methodologies: the dynamic programming approach and the martingale method,
and demonstrate the pre-commitment strategy for dynamic mean-variance portfolio. Next,
several representative numerical methods for dynamic portfolio are presented with the intention
of providing a wide overview of relevant, existing numerical approaches. We also concisely
mention the architecture of artificial neural network and a learning algorithm: backpropagation.
A LSMC method for American option valuation is also described in details.

In chapter 2, we introduce the polynomial a�ne method for CRRA utilities (PAMC), which
o↵ers a new competitive numerical methodology to approximate the optimal strategy and the
value function. The PAMC, inspired by the quadratic-a�ne family of portfolio solutions de-
scribed in the celebrated paper [70], estimates the value function via an exponential polynomial
function. The PAMC is divided into two branches: the value function iteration (VFI) method
and the portfolio weight iteration (PWI) method, distinguished by the approach to obtain the
value function. The implementation of PAMC-VFI, PAMC-PWI, SGBM and BGSS on each
of Merton’s model, Heston’s model, the exponential OU model, and the (discrete-time) vec-
tor autoregressive (VAR) model are conducted for comparison purposes. The e�ciency and
accuracy of PAMC are demonstrated by considering the several metrics: computational time,
relative error of the optimal allocation and of the expected utility at initial time, and mean L2
error of the optimal allocation at the mid point of the investment horizon.

Chapter 3 constructs optimal portfolios in a commodity market, where the asset’s price fol-
lows the OU 4/2 model. We first extend the PAMC to the wider HARA utility family and pro-
pose the so-called polynomial a�ne method for HARA (PAMH). The accuracy of the PAMH
is examined on a variety of models for which closed-form solutions are known, some of which
are highly multivariate. The PAMH produces optimal strategies in the contexts of EUT, this is
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for decreasing relative risk aversion (DRRA), as well as in the framework of MVT, which can
be interpreted as an increasing relative risk aversion (IRRA). We conduct the sensitivity analy-
sis of optimal strategies for both DRRA and IRRA with respect to volatility group parameters.
The e�cient frontier of dynamic mean-variance portfolio is also reported. Moreover, certainty
equivalent return (CER) losses from sub-optimal strategies mostly based on ignoring key pa-
rameters, are studied.

Most numerical methods for portfolio optimization, including PAMC and PAMH, approxi-
mate the value function with a classical regression model. An alternative way is using a neural
network, such functions have recently displayed their superiority in many real world applica-
tions. In chapter 4, we replace the regression model with a deep learning model within the
PAMC methodology seeking better portfolio performance. Two network architectures aimed
at fitting the value function are presented in details. Comparisons between portfolio allocations
obtained with the original PAMC and the new PAMC incorporating the neural networks, are
conducted for various advanced stochastic models.

In chapter 5, we reveal the optimal derivatives-based portfolio strategy for maximizing
expected utility investors. Given a set of derivatives, there are infinitely many strategies avail-
able, all producing the same maximum of the value function in a frictionless market. We take
advantage of this to further propose an additional criterion (i.e. risk exposure minimization)
for a practical derivative selection. The new criterion help investors meet potential regulatory
constraints in terms of portfolio total exposure to risky assets, hence protecting the investor’s
capital from risks. We determine the minimum number of derivatives needed to achieve both
of investors’ objectives, these are expected utility maximization and risk exposure minimiza-
tion. We also investigate the selection of derivatives among three specific option classes: (i)
American, European and Asian calls and puts; (ii) American, European and Asian synthetic
straddles; and (iii) basket options. Furthermore, one-asset options and multi-asset options are
compared in several realistic situations.

Chapter 6 extends the work in chapter 5 to a generalized di↵usion model. The lack of an-
alytical solutions for the optimal strategy lays obstacles for the implementation of derivatives-
based portfolio, this generates the interest on two variants of the PAMC: the PAMC-direct
which is a straightforward application of PAMC; and the PAMC-indirect which bridges derivatives-
based portfolio strategies and pure factor strategies. A numerical study demonstrates the su-
periority of the PAMC-indirect in terms of accuracy and computational e�ciency. In addition,
we explore derivatives selection in the context of the Heston SV model. We study two ma-
jor derivatives classes for hedging the volatility risk: (i) options on the stock (e.g. call, put,
straddle and strangle options) and (ii) VIX products, e.g. options on the VIX. Advantages and
disadvantages of each derivative class are illustrated.

1.1.1 Contributions
In this section, we summarize the innovations and contributions in each chapters.

Chapter 2

• We introduce two methodologies (PAMC-VFI and PAMC-PWI) based on polynomial-
A�ne structures to approximate the optimal solution of a portfolio investment problem.
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• We demonstrate, with the help of three popular continuous-time and one discrete-time
model, the accuracy and computational e�ciency of PAMC in capturing both value func-
tions and optimal strategies. For this we rely on the annualized certainty equivalent rate,
the relative errors at the initial time for value function and optimal strategies, and the
mean L2 error for optimal strategies at mid point of investment horizon.

• We demonstrate that PAMC-VFI could be three times faster, while producing 90% more
accurate results than other approaches, in capturing optimal strategies. The e�ciency
could be even more significant for higher levels of precision.

• The PAMC is applied to an important unsolvable case, i.e. the Heston model with a
stochastic interest rate. We show that PAMC delivers the highest CER, while the optimal
strategy and portfolio performance are a↵ected more by the correlation between stock
price and interest rate than by the correlation between SV and interest rate.

Chapter 3

• A numerical method (PAMH) is presented to approximate optimal allocation and value
function for a risk-averse investor in a general HARA setting, hence embedding both
EUT (i.e. decreasing relative risk aversion [DRRA]) and MVT (i.e. increasing relative
risk aversion [IRRA]) cases. The method relies on the wealth and state variables separa-
bility of the value function to fit the value function via an exponential polynomial. With
this we generalize the family of exponential quadratic solutions (see [70]).

• A high level of accuracy of the methodology and low computational time on a standard
PC of the PAMH are examined in a comparison to known closed-form solutions for a
one dimensional (n = 1) geometric Brownian motion with a CIR stochastic volatility
model (i.e. GBM 1/2 or Heston model), and a high dimensional (up to n = 35) stochastic
covariance model.

• The optimal strategy, optimal wealth and value function are numerically studied for an
OU 4/2 model in the context of EUT (decreasing RRA). Sensitivities to risk aversion
level, minimum capital guarantee and 4/2 parameters are presented. The analysis con-
firms substantial changes in allocations due to relatively small changes in these parame-
ters.

• An e�cient frontier of pre-commitment strategies for dynamic MVT (increasing RRA
investor) is obtained. A sensitivity to 4/2 parameters and multipliers is presented, con-
firming the findings of the DRRA case.

• The suboptimality of myopic strategies in terms of the certainty equivalent rate (CER),
for OU 4/2 models, is corroborated. A similar analysis of CER performance in the
popular OU 1/2 model confirms low CERs for investors ignoring SV, to the point that a
myopic strategy may be preferable to a strategy that neglects SV.

Chapter 4
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• An approximation method, namely NNMC, for optimal continuous-time portfolio strate-
gies based on a combination of neural networks and Monte Carlo is proposed.

• We design two architectures enriching an embedded quadratic-a�ne structure to fit the
portfolio value function, i.e. sum of exponential network (NNMC-SEN) and improving
exponential network (NNMC-IEN), and we explore three types of activation functions.

• The NNMC is applied on four settings: a 4/2 SV model with two types of market price
of risk, a 4/2 model with jumps, and an Ornstein–Uhlenbeck 4/2 model. We report the
accuracy of the various settings in terms of optimal strategy, portfolio performance and
computational e�ciency, highlighting the potential of NNMC to tackle complex dynamic
models.

Chapter 5

• We study a derivatives-based portfolio choice problem. In addition to the expected utility
maximization, we explore an additional optimization criterion, namely risk exposure
minimization, which is motivated by investor needs for practical derivatives selection.

• Given two one-factor (e.g. GBM) assets, we illustrate that investors need only two
derivatives for the expected utility to be maximized and risk exposure to be minimized
simultaneously.

• Comparison among simple one-asset options (e.g. American, European and Asian calls
and puts) reveal that a deep out-of-the-money Asian option is the preferable derivative
choice. Furthermore, we illustrate that a synthetic straddle is practically useful because
its optimal strategies refrain from boundary optimality, which leads to a product with
acceptable liquidity for investor.

• We investigate the benefit of multi-asset derivatives, it’s shown that a basket option could
be a better choice than one-asset option in many realistic situations.

Chapter 6

• The multitude of financial derivatives available in the market o↵ers investors non-unique
optimal choice in terms of EUT maximization. Hence, we extend the additional opti-
mization criterion propose [36], namely risk exposure minimization, from the family of
GBM to SV models. This aids investors with practical derivative selection in a popular
modelling setting of stock markets.

• A numerical method (i.e. PAMC-indirect) is proposed to approximate the optimal allo-
cation for a CRRA investor investing in the derivatives market. The superior accuracy
and e�ciency of the methodology are verified on the Heston model.

• Targeting equity and volatility risk, we first consider the optimal choice among equity
options (e.g. calls, puts, straddles and strangles). We demonstrate that strangles are the
best options for minimizing risk exposure in many practical situations.
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• We also investigate the usage of financial derivatives on the VIX as a means of com-
pleting the market, and we conclude that investors would prefer VIX options to equity
strangle when only long-term maturity options are available.

In summary, the thesis presents a competitive methodology for dynamic portfolio choice.
The method can be applied to various types of investors (e.g. HARA, CRRA and constant
absolute risk aversion [CARA]). The analysis presented here allows the investor to freely al-
ter the dynamic model for asset prices according to the asset’s features and market condition.
The thesis applies this methodology to answer many practical questions. The methodology is
developed and expounded in Chapter 2 for CRRA investors. Chapter 3, targeting commodity
market investment, constructs the optimal portfolio for risky assets which follow the OU 4/2
model in a context of HARA utilities. Chapter 4 describes an attempt to enhance the method-
ology with a deep learning model; two architectures estimating the portfolio value function are
proposed. Chapter 5 builds a new criterion for derivatives-based portfolio selection aiming at
market completion. Finally, two variants of the methodology for derivatives-based portfolio
are proposed in chapter 6, the optimal derivative choice for hedging volatility risk is studied.

1.1.2 Connection among chapters
The thesis will focus on approximation methods for dynamic portfolio choice, as well as the
applications of these methods. The connection among the core chapters (i.e. chapter 2-6) and
the internal logic of this thesis are provided in this section.

Chapter 2 is the foundation of the whole thesis; subsequent chapters are constructed on its
foundation. The main objective of this chapter is the introduction of the new PAMC approxima-
tion method, which targets a high-frequency re-balancing/continuous-time dynamic portfolio.
The algorithm is described in detail to help readers better understand the PAMC. Furthermore,
we validate the robustness of the PAMC by the implementation of several popular models.
PAMC exhibits superior accuracy and e�ciency in comparison with other existing methods.
However, there are two potential limitations in the PAMC. First, the PAMC is only applicable
to EUT when the investor’s risk preference is modelled by a CRRA utility. The PAMC also
requires the dynamics of assets’ prices to follow explicit structures within Ito’s processes as
explained in the chapter.

Chapter 3 illustrates both an extension and an application of chapter 2. We first extend
the PAMC to a wider HARA utility family, proposing the PAMH. This extension addresses
the first limitation of the PAMC, the PAMH is not only applied to EUT with common utilities
(e.g. HARA, CRRA and CARA), but it can also be used to find the pre-commitment strategy
for a dynamic mean-variance portfolio. Note that, even though PAMH and PAMC have similar
algorithms, PAMH adopts a new structure of the value function to adapt the flexibility of HARA
utility in capturing the risk preference. Moreover, the PAMH is applied to an important and
unsolvable model (i.e. OU 4/2 model). Optimal dynamic portfolios within both EUT and MVT
are studied, and we conduct a sensitivity analysis to investigate the impact of key parameters on
portfolio allocation and a sub-optimal analysis to quantify the loss from sub-optimal strategies
that might be used by investors.

Chapter 4 enhances the accuracy of the PAMC. Both PAMC and PAMH approximate the
portfolio value function with a polynomial regression model. Even though the Stone–Weierstrass
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theorem guarantees that any continuous function in a compact support can be approximated ar-
bitrarily well in a polynomial class, estimating a non-polynomial function with a polynomial
regression may still lead to significant errors. We, therefore, investigate if the neural network
is a better choice in value function approximation, and we propose two architectures for this
problem.

The last two chapters consider investment in derivatives markets. The dynamics of deriva-
tives price can be written explicitly only on a few occasions, therefore this problem emphasizes
the second limitation of the PAMC. The framework for the derivatives-based portfolio is first
constructed in chapter 5. We introduce an additional portfolio criterion that helps investors
select the best financial derivatives to be included in the portfolio. The derivatives-based port-
folio framework minimizes the unexpected loss for investors while keeping the best portfolio
performance. Furthermore, in the context of GBM, the derivative selection within the subset
of one-asset options (e.g. American, European and Asian calls, puts and straddles) and within
the subset of multi-asset options (e.g. basket options) are studied.

Chapter 6 integrates the achievements in chapter 2 and chapter 5 by extending the derivatives-
based portfolio to a generalized di↵usion model family. Inspired by the PAMC, a new ap-
proximation method, termed PAMC-indirect, is proposed to obtain the optimal strategy for
derivatives-based portfolio. We specifically considered a market characterized by volatility
risk and investigate derivatives selection among four popular equity options. Finally, the com-
parison between equity options and VIX options is also illustrated.

1.2 Stochastic optimal control for dynamic asset allocation

The application of dynamic portfolio choice was pioneered by [76], which extended the dy-
namic programming technique to the context of continuous-time portfolio optimization within
EUT. [54] and [25] considered the same problem, while they focused on the replication of the
static optimum, and proposed the so-called martingale method. In the following years, these
two methods inspired many papers and books in the field of analytical and numerical portfolio
optimization. In this section, we first convey the ideas of these two methods, and summarize
their basic procedures. Furthermore, as optimal strategy for MVT is ingeniously related to the
optimal strategy within EUT (see [89]), we illustrate the connection between these two optimal
strategies in Section 1.2.3. This lays the foundation for solving dynamic portfolio problems
within the MVT in later Chapters. The investor’s problem used to implement the dynamic
programming technique and the martingale method is described as follows:

We assume the stochastic processes describing the financial market is defined on a com-
plete probability space (⌦,F ,P) with a right-continuous filtration {Ft}t2[0,T ]. A frictionless
market consists of a money account (S 0

t ) and N risky assets S t = [S 1
t , S 2

t , ..., S N
t ]T , where

investors can freely trade assets at prices without market impact and transaction costs. More-
over, the dynamics of assets’ price are also determined by a M dimensional state variable
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Ht = [H1
t ,H2

t , ...HM
t ]T :
8>>>>>>>>>>>><
>>>>>>>>>>>>:

dS 0
t

S 0
t
= r(Ht)dt

dS t = diag(S t)(µ(t,Ht)dt + ⌃(t,Ht)dBt)
= diag(S t)(r(Xt) + ⌃(t,Ht)�(t,Ht)dt + ⌃(t,Ht)dBt)

dHt = µH(Ht)dt + ⌃H(Ht)dBH
t

< dBt, dBH
t >= ⇢dt,

(1.1)

where Bt = [B1
t , B2

t , ..., BN
t ]T and BH

t = [BH,1
t , B

H,2
t , ..., B

H,M
t ]T are N and M dimensional Brow-

nian motions with independent components, r(Ht) is the risk-free rate, µ(t,Ht) and ⌃(t,Ht) are
the drift and volatility matrix of the price process, �(t,Ht) is the market price of risk. We denote
the drift and volatility of the state variable Ht by µH(Ht) and ⌃H(Ht). Elements in the corre-
lation matrix ⇢ are between [�1, 1] (i.e. |⇢i, j|  1) and ⇢ is positive definite. With a specific
trading strategy ⇡t, the corresponding wealth process Wt is given by

dWt

Wt
= (r(Xt) + ⇡T

t (⌃(t,Ht))�(t,Ht))dt + ⇡T
t ⌃(t,Ht)dBt, (1.2)

We define a utility function U to represent the investor’s degree of satisfaction associated
with the terminal wealth WT .

Definition 1.2.1 (Utility function) A continuously di↵erentiable and strictly concave function
U : (0,1)! R, which satisfies the conditions

U0(0) = lim
w#0

U0(w) = 1 U0(1) = lim
w"1

U0(w) = 0 (1.3)

is called a utility function.

An investor is assumed to be able to freely trade at any time and wants to derive an investment
strategy ⇡t that will maximize the expected utility from terminal wealth WT . The investor’s
problem at time t 2 [0,T ] can be written as,

V(t,W,H) = max
⇡{s�t}

EP(U(WT )|Ft), (1.4)

where V(t,W,H) is the value function at time t. Both the martingale method and the dynamic
programming technique provide methodologies for obtaining the optimal investment strategy
⇡⇤t and the value function V(t,W,H) for the investor.

1.2.1 Martingale method
The martingale method was introduced in [54] and [25] in the late 80’s. The method obtains
the optimal terminal wealth through a static optimization. If markets are complete (i.e. ⇢ is the
identity matrix), there is a replicating strategy for the optimal terminal wealth.

The risk-neutral probability measure Q is defined by the Radon-Nikodym derivative

dQ
dP = exp

 
�0.5

Z t

0
||�(s,Hs)||2ds �

Z t

0
�(s,Hs)T dBs

!
= ⇠t. (1.5)
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The expectation of any stochastic payo↵ XT under measure Q and P at time t is connected by

EQ
t (XT ) = EP

t

 
⇠T
⇠t

XT

!
. (1.6)

The martingale method is based on two important theorems. The first theorem states a con-
straint on the portfolio terminal wealth.

Theorem 1.2.1 If ⇡t is a feasible strategy, then

EQ
0

 
exp

 Z T

0
�r(Hs)ds

!
WT

!
= EP

0

 
exp

 Z T

0
�r(Hs)ds

!
⇠T WT

!
 W0, (1.7)

where WT is the terminal wealth induced by the strategy ⇡t.

Proof [55] Theorem 1.5.6.

Theorem 1.2.1 indicates that the investor’s problem is to maximize the expected utility of
terminal wealth, whose expectation is less than W0 under the risk-neutral measure.

max
⇡{s�0}

EP
0 (U(WT ))

s.t. EP
0

 
exp

 Z T

0
�r(Hs)ds

!
⇠T WT

!
= W0.

(1.8)

The Lagrangian for constrained optimization problem (1.8) is given by

L = EP
0 (U(WT )) � y

 
EP

0

 
exp

 Z T

0
�r(Hs)ds

!
⇠T WT

!
�W0

!
, (1.9)

where y is a Lagrange multiplier. Let I denote the inverse of the utility’s first derivative (U0)�1.
Then, the candidate optimal terminal wealth has the representation

W⇤
T = I

 
y exp

 Z T

0
�r(Hs)ds

!
⇠T

!
, (1.10)

where y is chosen such that Equation (1.7) holds for W⇤
T . The next theorem illustrates that the

optimal terminal wealth in the static problem is feasible and optimal in the dynamic problem.

Theorem 1.2.2 Under the optimal strategy, the optimal terminal wealth is given in (1.10). And
the wealth process is given by

W⇤
t = EQ

t

 
exp

 Z T

t
�r(Hs)ds

!
W⇤

T

!
. (1.11)

Proof [55] Theorem 3.7.6.
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Hence, if the strategy ⇡⇤t is feasible and generates a terminal wealth of W⇤
T , then it must be the

optimal strategy. Next, we define the optimal wealth process W⇤
t such that exp

⇣R t
0 �r(Hs)ds

⌘
⇠tW⇤

t =

EP
t

✓
exp

✓R T
0 �r(Hs)ds

◆
⇠T W⇤

T

◆
. Due to the martingale representation theorem, there is a process

�t such that

d exp
 Z t

0
�r(Hs)ds

!
⇠tW⇤

t = �tdBt. (1.12)

Consider a portfolio wealth process Wt generated by a strategy ⇡t,

d exp
⇣R t

0 �r(Hs)ds
⌘
⇠tWt

exp
⇣R t

0 �r(Hs)ds
⌘
⇠tWt

= (⇡T
t ⌃t(t,Ht) � �T (t,Ht))dBt. (1.13)

Apparently, when ⇡t satisfies

⇡t = (⌃t(t,Ht)T )�1

0
BBBBBBBBBB@

�T
t

exp
✓R T

t �r(Hs)ds
◆
⇠tWt

+ �(t,Ht)

1
CCCCCCCCCCA
, (1.14)

Wt has the same dynamic as W⇤
t , which results in WT = W⇤

T .
Furthermore, the value function is rewritten by

V(t,W,H) = EP(U(W⇤
T )|Ft). (1.15)

Finally, we summarize the procedure for finding optimal strategies and value function via the
martingale method as follows:

1. Compute the representation of the optimal terminal wealth W⇤
T = I(y exp(

R T
t �r(Hs)ds) ⇠T⇠t ).

2. Obtain the Lagrange multiplier y such that EQ
0 (W⇤

T ) = W0.

3. Solve the exp
⇣R t

0 �r(Hs)ds
⌘
⇠tW⇤

t in closed form and find the process �t with Ito’s lemma.

4. Calculate the optimal strategy with Equation (1.14) and the value function with (1.15).

1.2.2 Dynamic programming approach
The dynamic programming technique was first applied to a continuous-time optimal consump-
tion/investment problem in [76] and [78]. It relies on the Bellman principle and the explicit so-
lution for the optimal strategy and value function are found by solving an associated Hamilton-
Jacobi-Bellman (HJB) equation. Unlike the martingale method, the dynamic programming
technique is applicable even if the financial market is incomplete. However, the HJB equation
is a non-linear, high-order partial di↵erential equation, which is not usually solvable.

We first consider a discrete-time multi-period portfolio problem. According to the Bellman
principle, the value function at time t can be expressed as:

V(t,Wt,Ht) = sup
⇡t

E(V(t + �t,Wt + �t,Ht + �t)). (1.16)
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We move the V(t,Wt,Ht) to the right hand side, and divide both sides by �t. Then,

0 = sup
⇡t

V(t + �t,Wt + �t,Ht + �t) � V(t,Wt,Ht)
�t

. (1.17)

As �t ! 0, investors rebalance their allocation continuously. Moreover,

lim
�t!0

V(t + �t,Wt + �t,Ht + �t) � V(t,Wt,Ht)
�t

=
dV(t,Wt,Ht)

dt
. (1.18)

The numerator dV(t,Wt,Ht) is obtained by Ito’s lemma. Therefore, Equation (1.16) in the
continuous-time setting converges to the HJB equation, i.e.

0 = sup
⇡t

n
Vt((t,Wt,Ht)) + VWt(t,Wt,Ht)Wt(rt(Ht) + ⇡T

t ⌃�)

+ (µH)T VHt(t,Wt,Ht) +
1
2

VWtWt(t,Wt,Ht)W2
t ⇡

T
t ⌃⌃

T⇡t

+W⇡T
t ⌃⇢(⌃

H)T VHtWt(t,Wt,Ht) +
1
2

Tr((⌃H)T ⌃HVHtHt(t,Wt,Ht))
o
,

(1.19)

where rt, ⌃, �, µH, ⌃H are the abbreviations of rt(Ht), ⌃(t,Ht), �(t,Ht), µH(Ht) and ⌃H(Ht)
respectively. Note that Equation (1.19) is a quadratic function of the allocation ⇡t. Assuming
V(t,W,H) is concave with respect to W, the optimal allocation is given by

⇡⇤t = �(⌃⌃T )�1 VWt(t,Wt,Ht)⌃� + ⌃⇢(⌃H)T VHtWt(t,Wt,Ht)
VWtWt(t + dt,Wt,Ht)Wt

. (1.20)

We substitute (1.20) into (1.19), the value function therefore satisfies the partial di↵erential
equation (PDE)

0 =Vt + VW(rW � ((⌃⌃T )�1 VW⌃� + ⌃⇢(⌃H)T VHW

VWW
)T⌃�) + (µH)T VH

+
1
2

VWW((⌃⌃T )�1 VW⌃� + ⌃⇢(⌃H)T VHW

VWW
)T (VW⌃� + ⌃⇢(⌃H)T VHW))

� ((⌃⌃T )�1 VW⌃� + ⌃⇢(⌃H)T VHW

VWW
)T⌃⇢(⌃H)T VHW +

1
2

Tr((⌃H)T⌃HVHH).

(1.21)

With the terminal condition: V(T,W,H) = U(W). Finally, we summarize the steps for finding
optimal strategies and value function via the dynamic programming technique as follows:

1. Write the HJB equation.

2. Assume the value function V is concave w.r.t the wealth, and obtain the optimal strategy
⇡⇤t ( i.e. a the function of the value function’s derivatives).

3. Substitute ⇡⇤t back into the HJB equation, and derive the PDE for the value function V .

4. Find the explicit solution for the value function V as well as the optimal strategy ⇡⇤t .

5. Check all necessary conditions.
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1.2.3 Pre-commitment strategy within MVT

Both the martingale method and the dynamic programming technique are applicable within
EUT (i.e. the investor’s preference is represented by a utility function), which is widely used in
economic studies. In contrast, the framework proposed in [73] (i.e. MVT) measures the invest-
ment risk with the variance of the portfolio terminal wealth, and investors aim at maximizing
the expected portfolio terminal wealth given a specific upper bound B for the variance

max
⇡{s�t}

E(WT |Ft)

s.t. Var(WT |Ft)  B.
(1.22)

Equivalently,

V(t,Wt,Ht) = max
⇡{s�t}

E(WT |Ft) � y(Var(WT |Ft) � B), (1.23)

where y > 0 is a Lagrange multiplier. [89] demonstrated that problem (1.23) can be embedded
into a class of auxiliary stochastic linear-quadratic (LQ) problems that can be solved analyti-
cally.

Theorem 1.2.3 If ⇡⇤s�t is the optimal strategy for problem (1.23), ⇡⇤s�t is the optimal strategy
for

max
⇡{s�t}
�E((WT � µ)2|Ft), (1.24)

where µ = 1
2y + E(W⇤

T |Ft) and W⇤
T is the terminal wealth induced by ⇡⇤s�t.

Proof See [89], Theorem 3.1.

Theorem 1.2.3 illustrates that, if the following two conditions are satisfied— 1O optimal
strategy for (1.23) exists, and 2O optimal strategy for (1.24) is unique—the optimal strategy
for (1.23) can be found by solving (1.24). Then, the dynamic portfolio choice problem within
MVT is converted to a dynamic portfolio choice problem for an investor with risk preference
as per a quadratic utility.

1.3 Numerical methods for dynamic portfolio choice

As shown in Figure 1.1, we can divide the existing popular numerical methods for dynamic
portfolio choice into two categories. One uses the representation of the optimal terminal wealth
in the martingale method and attempt to find the replicating strategy for it. The other follows the
principle of dynamic programming and approximates the value function and optimal allocation
recursively. Moreover, the later category can be further classified by the approaches to obtain
the optimal strategy. Some explanations and clarifications of Figure 1.1 are provided next.
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Figure 1.1: Classification of the numerical methods

In this section, we first present three methods that approximate value function recursively
and compute the optimal allocation with the first order condition (FOC). These three meth-
ods, namely the BGSS (see [10]), the State Variable Decomposition (SVD) (see [39]) and
the Stochastic Grid Bundling Method (SGBM, see [24]); target a CRRA-type investor whose
preference on terminal wealth W is given by

U(W) =
W1��

1 � � , (1.25)

where � (� > 0,, 1) shows the level of risk aversion. Given wealth level Wt and set of state
variables Ht, the value function is assumed to follow a separable representation:

V(t,Wt,Ht) = Et(U(WT ) | Wt,Ht) = W1��
t f (t,Ht). (1.26)

This is, the value function is separable into wealth W1��
t and a state variable function f (t,Ht).

The methods, BGSS, SVD and SGBM, benefit from the separable property, and hence only
estimate the state variable function. In the next step, the value function is expanded so that the
optimal strategy can be calculated by the FOC.

In contrast, the VBB (see [85]) and the Fourier cosine series (COS) technique (see [24])
rely on grid-searching to tackle the optimization problem. However, grid-searching methods
su↵er from the curse of dimensionality, which makes those methods unsuitable for the targeting
problem in this thesis. In section 1.3.4, we present a method based on regressing the value
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function over both state variables and decision variables (S&D regression method). The method
is quite general and applicable to both di↵erentiable and non-di↵erentiable utility functions.
Unlike the other methods mentioned above, Cvitanic’s method (see [26]) does not involve any
estimation of value function. The method aims at a complete market portfolio and seeks the
financial replication for the optimal terminal wealth. [30] developed a comprehensive approach
for the calculation of optimal portfolios in asset allocation problems within complete markets,
and the application of Malliavin calculus enhances its accuracy. Both above two methods
are based on the martingale approach, we introduce Cvitanic’s method in detail at end of this
section for its operational simplicity.

1.3.1 BGSS method
BGSS was introduced in [10], it first applies the LSMC method (see [72]) in the context of
dynamic portfolio problem as a way to develop the BGSS methodology. One of the innovation
of BGSS is that it approximates the optimal allocation by expanding the value function with
respect to wealth. For simplicity, we illustrate with the case of a second-order expansion. Note
that the extension to higher order expansion is feasible, which further enhances the accuracy
of the method. We denote the excess return of the stock by Re

t and the risk-free return by Rf .
Given portfolio allocation ⇡t, the wealth process is

Wt+�t = Wt(⇡T
t Re

t+�t + Rf ), (1.27)

and the value function is expanded at WtRf

V(t,Wt,Ht) = max
⇡t

Et(V(t + �t,Wt+�t,Ht+�t))

⇡ max
⇡t

Et

 
V(t + �t,WtRf ,Ht+�t) +

@V(t + �t,WtRf ,Ht+�t)
@WtRf (Wt⇡

T
t Re

t+�t)

+
1
2
@2V(t + �t,WtRf ,Ht+�t)

@(WtRf )2 (Wt⇡
T
t Re

t+�t)
2
!
.

(1.28)

Therefore, the value function is realized when a quadratic function of allocation ⇡t reaches the
optimum. In order to compute the partial derivatives of the value function, a terminal wealth
ŴT is generated

ŴT = WtRf
T��tY

s=t+�t

(⇡T
s Re

s+�t + Rf ), (1.29)

and the partial derivatives are conditional expectations as follows:

@V(t + �t,WtRf ,Ht+�t)
@WtRf = Et+�t

0
BBBBB@
dU(ŴT )

dŴT

T��tY

s=t+�t

(⇡T
s Re

s+�t + Rf )
1
CCCCCA

@2V(t + �t,WtRf ,Ht+�t)
@(WtRf )2 = Et+�t

0
BBBBB@
d2U(ŴT )

dŴ2
T

T��tY

s=t+�t

(⇡T
s Re

s+�t + Rf )2

1
CCCCCA .

(1.30)
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Substituting (1.30) into (1.28), then the optimal allocation ⇡⇤t can be approximated by,

⇡⇤t = �
8>><
>>:Et

0
BBBBB@
d2U(ŴT )

dŴ2
T

T��tY

s=t+�t

(⇡T
s Re

s+�t + Rf )2Re
t+�t(R

e
t+�t)

T

1
CCCCCA Wt

9>>=
>>;

�1

Et

0
BBBBB@
dU(ŴT )

dŴT

T��tY

s=t+�t

(⇡T
s Re

s+�t + Rf )Re
t+�t

1
CCCCCA .

(1.31)
The BGSS applies a back-to-front estimation. At each rebalancing time t, subsequent optimal
allocations has already been obtained which provide su�cient information to compute the
current optimal strategy. In this way, the BGSS recursively approximates the optimal strategies
covering the whole investment horizon. The notation for the BGSS method is summarized in
the Table 1.1.

Notation Meaning
Bm

t Brownian motion at time t in mth simulated path
S m

t Stock price at time t in mth simulated path
Re,m

t Excess return of stock during [t � �t, t] in mth simulated path
Rf Risk-free return
Hm

t state variable at time t in mth simulated path
nr Number of simulated path
Ŵm

T Simulated terminal wealth for computing
the realized value of value function’s partial derivatives

⇡⇤,mt The optimal allocation at time t in mth simulated path
L1(t,H) Regression function approximating the numerator in (1.31)
L2(t,H) Regression function approximating the denominator in (1.31)

Table 1.1: Notation (BGSS)
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Next, we present the step by step BGSS algorithm.
Algorithm 1: BGSS

Input: S 0,W0,H0, dynamics of all processes involved
Output: Optimal current trading strategy ⇡⇤0, expected utility V(0,W0,H0)

1 initialization;
2 Generating nr paths of S m

t , Hm
t and compute corresponding Re,m

t f or m = 1...nr;
3 while t = T � �t do
4 Let Wm

T��t = 1 and Ŵm
T = Rf , compute Am

T��t =
dU(Ŵm

T )
dŴm

T
Re,m

T and

Bm
T��t =

d2U(Ŵm
T )

dŴm2
T

Re,m
t+�t(R

e,m
t+1)T ;

5 Regress Am
T��t and Bm

T��t over the polynomial base of state variable Hm
T��t and

obtain L1(T � �t,H) and L2(T � �t,H);

6 The optimal allocation is ⇡⇤,mT��t = �
L1(T��t,Hm

T��t)
L2(T��t,Hm

T��t)
;

7 for t = T � �t to �t do

8 Let Wm
t = 1 and Ŵm

T = Rf
T��tQ

s=t+�t
((⇡m

s )T Re,m
s+�t + Rf ), compute

Am
t =

dU(Ŵm
T )

dŴm
T

T��tQ
s=t+�t

((⇡m
s )T Re,m

s+�t + Rf )Re,m
T and

Bm
t =

d2U(Ŵm
T )

dŴm2
T

T��tQ
s=t+�t

((⇡m
s )T Re,m

s+�t + Rf )2Re,m
t+1(Re,m

t+�t)
T ;

9 Regress Am
t and Bm

t over the polynomial base of state variable Hm
t and obtain

L1(t,H) and L2(t,H);
10 The optimal allocation is ⇡⇤,mt = �

L1(t,Hm
t )

L2(t,Hm
t ) ;

11 while t = 0 do

12 Let Wm
0 = 1 and Ŵm

T = Rf
T��tQ
s=�t

((⇡m
s )T Re,m

s+�t + Rf ), compute

A0 =
1
nr

nrP
m=1

dU(Ŵm
T )

dŴm
T

T��tQ
s=�t

((⇡m
s )T Re,m

s+�t + Rf )Re,m
T and

B0 =
1
nr

nrP
m=1

d2U(Ŵm
T )

dŴm2
T

T��tQ
s=�t

((⇡m
s )T Re,m

s+1 + Rf )2Re,m
t+�t(R

e,m
t+1)T ;

13 The optimal allocation at initial time is ⇡⇤0 = �A0
B0

;

14 Compute Wm
T = W0((⇡⇤0)T Re,m

�t + Rf )
T��tQ
s=�t

((⇡⇤,ms )T Re,m
s+�t + Rf ).

15 The expected utility is , V̂(0,W0,H0) = 1
nr

nrP
n=1

U(Wm
T )

16 Return ⇡⇤0 and V̂(0,W0,H0).

1.3.2 SVD approach
[39] introduced the SVD approach, which improves the recursive approximation method ex-
hibited in BGSS. There are two innovations in the SVD approach: 1O The value function is
expanded based on a Nonlinear Decomposition. 2O It applies the inverse utility transformation
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on the value function. The SVD approach still targets a CRRA investor, whose value function
is separable into wealth and a state variable function. With the Bellman principle, the value
function is given by

V(t,Wt,Ht) = W1�� f (t,Ht) = W1��V(t, 1,Ht) = W1��U(J(t, 1,Ht))
= W1��max

⇡t
Et(U(⇡T

t Re
t+�t + Rf )J(t + �t,Ht+�t)1��), (1.32)

where J = U�1(V). Substituting the log excess return re
t (i.e. Re

t = Rf (exp(re
t ) � 1)) into (1.32),

the expansion of the value function has the representation

V(t,Wt,Ht) = W1��max
⇡t

Et(U(⇡T
t R f (exp(re

t+�t) � 1) + Rf )J(t + �t,Ht+�t)1��). (1.33)

The log excess return and state variables are decomposed into the conditional mean and the
random source i.e. re

t+�t = µ
r
t+�t + ✏

r
t+�t, Ht+�t = µH

t+�t + ✏
H
t+�t where Et(✏rt+�t) = Et(✏H

t+�t) = 0. [39]
proposed two versions of SVD approach. The partial SVD (PSVD) expands the value function
only with respect to the ✏rt+�t

V(t,Wt,Ht) = W1��max
⇡t

MX

m=0

1
m!

dmGt+�t(0)
d✏rm

t+�t
Et((✏rt+�t)

mJ(t + �t,Ht+�t)1��), (1.34)

where Gt+�t(✏rt+�t) = U(⇡T
t R f (exp(µr

t+�t + ✏
r
t+�t) � 1) + Rf ). The full SVD (FSVD) expands the

value function with respect to both, ✏rt+�t and ✏H
t+�t

V(t,Wt,Ht) = W1��max
⇡t

X

0m1+m2M

1
m1!m2!

dm1+m2 Kt+�t(0, 0)
d✏rm1

t+�t✏
Hm2
t+�t

Et((✏rt+�t)
m1(✏H

t+�t)
m2), (1.35)

where Kt+�t(✏rt+�t, ✏
H
t+�t) = U(⇡T

t R f (exp(µr
t+�t + ✏

r
t+�t) � 1) + Rf )J(t + �t, µH

t+�t + ✏
H
t+�t)

1��. The
allocation ⇡t is embedded in the partial derivatives of Gt+�t or Kt+�t.

At each rebalancing point t, an approximation of J(t + �t,Ht+�t) has already been ob-
tained. The SVD approach computes the conditional expectations with the cross-path regres-
sion method used in BGSS. Then, the optimal allocation ⇡⇤t is immediately known by the opti-
mization search. Using these values, the function J(t,Ht) is fitted by a polynomial regression.
The SVD approach moves backwards and repeat these procedures until reaching the initial
time.

1.3.3 SGBM
[24] equipped the BGSS with a recently developed method ( i.e. Stochastic Grid Bundling
Method [SGBM]) for calculating the conditional expectation, which results in a lower biased
approximation of the optimal allocation. Compared with Algorithm 1, at each rebalancing
time t, the SGBM sorts the simulated paths by the size of state variable Hm

t and bundles those
paths into B non-overlapping partitions denoted by Bt(1),Bt(2), ...,Bt(B). The realized value
of numerator Am

t and denominator Bm
t of the optimal allocation are regressed over the polyno-

mial basis of Hm
t within the bundle Bt(b), so the regression function L1,b(t,H) and L2,b(t,H)
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are obtained. The optimal allocation is computed by ⇡⇤,mt = � L1,b(t,Hm
t )

L2,b(t,Hm
t ) . Repeating the same

procedures for all bundles, the optimal allocation for each path is found.
[24] further extended the SGBM method by applying the Taylor expansion based on a non-

linear decomposition of the value function which is introduced in the SVD approach, while it
chooses a di↵erent expansion center re

t+�t = 0. The author claimed that the new expansion cen-
ter is superior according to the numerical test result. In the SGBM with log Taylor expansion
(SGBM-LT), the value function is expanded as follows:

V(t,Wt,Ht) = W1��max
⇡t

MX

m=0

1
m!

dmGt+�t(0)
drem

t+�t
Et((re

t+�t)
m f (t + �t,Ht+�t)), (1.36)

where Gt+�t(re
t+�t) = (⇡T

t R f (exp(re
t+�t)�1)+Rf )1��. The allocation ⇡t is embedded in the partial

derivatives of Gt+�t and is obtained by searching the optimum point of a polynomial.

1.3.4 Denault’s method
All the methods above solve the dynamic portfolio choice problem for CRRA-type investor,
where the value function is expanded to obtain the optimal strategy. [29] presented a Least-
Squares Monte Carlo method that regresses the post decision value function with respect to
both state variables and decision variable (LSMC-S&D). The method do not rely on a Taylor
expansion nor the derivatives of the utility function, which makes it suitable for both di↵eren-
tiable and non-di↵erentiable utilities. The notations for LSMC-S&D is listed in table 1.2.

Notation Meaning
S m

t Stock price at time t in mth simulation path
Re,m

t Excess return at time t in mth simulation path
Rf Risk-free return
Hm

t State variable at time t in mth simulation path
nr Size of simulated path
nw(t) Size of wealth grid at time t
nx Size of trading allocation grid
Wk,t kth value on the representative future wealth grid at time tn
vm

k,t+�t,Wk,t+�t

onw(t+�t)

k=1
Surface of value function and wealth at time t in mth simulation path

Lk,t(⇡,H) Regression function estimating the value function at time t given wealth Wk,t

Table 1.2: Notation (LSMC-S&D)

The method is divided into two stages. In the stage of forward simulation, the paths of stock
prices and state variables are generated, then the LSMC-S&D computes a grid of representative
future wealths. In the stage of backward recursion, LSMC S&D considers the post-decision
value function V(t,Wt,Ht, ⇡t) defined by

V(t,Wt,Ht, ⇡t) = max
⇡s�t+�t

Et(V(t + �t,Wt+�t,Ht+�t)). (1.37)

At each rebalancing time t, a wealth at t + �t is generated given wealths at t, i.e. Wk
t , state

variable Ht and allocation ⇡t. The realized value of the post decision value function at t + �t
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is found by interpolation on the surface of the value function with representative wealths. An
approximation function Lk,t(⇡,H) to V(t,Wk

t ,H, ⇡) is then obtained by regressing the value
of post decision value functions over the polynomial basis of state variables Ht and decision
variable ⇡t. Lastly, the optimal strategy is found by searching the optimum of the Lk,t(⇡,H).
Next, the LSMC-S&D is presented step by step in Algorithm 2 and 3 .

Algorithm 2: LSMC–S&D-Forward Simulation
Input: S 0, H0, W0

Output: S m
t , Hm

t , Re,m
t , portfolio allocation grid ⇡i, representative future wealth grid

Wk,t

1 initialization;
2 Generate nr paths of S m

t , Hm
t and compute corresponding Re,m

t f or m = 1...nr;
3 Compute a grid of portfolio allocation ⇡i, f or i = 1...nx;
4 Calculate the future wealth level eWj,t by keeping a large allocation on risky assets. The

wealth level percentile grid is given by

Wk,t = percentile({eWm,t}nr
j=1, Pk) f or k = 1...nw(t) (1.38)

In step 4 of the Algorithm 2, simulated wealth eWj,t is generated by a relatively risky strategy
(i.e. keeping a large proportion of wealth on the risky assets). Then, the range of eWj,t is wide
enough to cover most feasible outcomes given a substantial simulation size adapted to the
problem, which makes the percentile grid of eWj,t, i.e. Wk,t, an ideal grid for the representative
future wealth.

1.3.5 Cvitanic’s method
All the methods above rely on the Bellman principle and dynamic programming techniques,
which approximate the value function and the optimal allocation recursively. Targeting dy-
namic portfolio in complete market, [26] proposed a pure Monte Carlo simulation method
based on the Martingale approach. The method is quite general and can be applied to any type
of time additive utility function as long as: 1OMarkets are complete, 2O The dynamics of all the
processes involved are known. To simplify the presentation, we illustrate Cvitanic’s method in
one dimension with the investor’s preference as per power utility (see (1.25)). The key of the
method is to find the replication strategy of the optimal wealth process. Under the risk-neutral
measure Q, the optimal wealth process satisfies

dW⇤
t

W⇤
t
= rdt + �W

t dBQ
t . (1.39)

The investor’s wealth process given the strategy ⇡t can be written as

dWt

Wt
= rdt + ⇡t�

S
t dBQ

t , (1.40)

where �S
t is the instantaneous volatility of the stock price. The investor’s wealth process is

identical to the optimal wealth process when the optimal strategy ⇡⇤t is adopted. Comparing
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Equation (1.40) with (1.39), the optimal allocation ⇡⇤t is immediately known if the �W
t is com-

puted.
According to the Martingale method, the optimal terminal wealth is given by,

W⇤
T =

 
y exp

 
�

Z T

0
rsds

!
⇠T

!� 1
�

, (1.41)

where y is the Lagrange multiplier, ⇠T = exp(�0.5
R T

0 �
2
sds �

R T
0 �sdBs) denotes the Radon-

Nikodym derivative and the market price of risk is denoted by �t. Furthermore, the optimal
wealth process is equivalent to a conditional expectation of the optimal terminal wealth under
the measure Q.

W⇤
t+�t = EQ

t+�t

 
exp

 
�

Z T

t+�t
rsds

!
W⇤

T

!
. (1.42)

Therefore, W⇤
t+�t can be approximated by a Monte Carlo simulation. In addition, the instanta-

neous volatility of optimal wealth process satisfies

�W
t = lim

�t!0
Et

 
(W⇤

t+�t �W⇤
t )(Bt+�t � Bt)
�t

!
, (1.43)

which is also obtained with a Monte Carlo simulation. Finally, the optimal strategy is computed
by ⇡⇤t =

�W
t
�S

t
. Next, we present the step by step algorithm,

Algorithm 4: Cvitanic’s method
Input: S 0, H0, W0

Output: Optimal allocation ⇡⇤0
1 initialization;
2 Generate N paths of S m

t , Hm
t and compute corresponding pricing kernel ⇠m

t
m = 1...N;

3 Find the y Lagrange multiplier that makes W0 =
1
N

NP
m=1

✓
y exp

✓
�

R T
0 rsds

◆
⇠T

◆� 1
�

;

4 Generate the value at t = �t, S i
�t, Hi

�t, Bi
�t and compute pricing kernel ⇠i

�t i = 1...K;
5 for i = 1 to K do
6 Generate M paths of S i, j

t , Hi, j
t and compute corresponding pricing kernel ⇠i, j

t
starting from S i

�t, Hi
�t and ⇠i

�t j = 1...M;

7 Compute optimal terminal wealth Wi, j
T =

✓
y exp

✓
�

R T
0 rsds

◆
⇠i, j

T

◆� 1
�

j = 1...M;

8 Calculate the optimal wealth at t = �t, Wi
�t =

1
M

MP
j=1

exp
✓
�

R T
�t rsds

◆
⇠i, jT
⇠i
�t

Wi, j
T ;

9 Obtain instantaneous volatility of optimal wealth process �W
0 =

1
M

KP
i=1

(Wi
�t�W0)Bi

�t
W0�t ;

10 Finally compute optimal allocation ⇡⇤0 =
�W

0
�S

0
;
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1.4 An overview of neural network
In this section, we briefly introduce the architecture of artificial neural networks (ANN) and
the backpropagation i.e. a widely used algorithm for training neural networks.

1.4.1 Artificial neural network
Artificial neural networks is a general method for learning real value functions with unknown
form. It is inspired by the biological neural networks and try to mimic the way the human brain
analyzes and processes information. For simplicity, we illustrate with the two hidden layers
network depicted in the Figure 1.2.

Figure 1.2: Structure of the neural network

We denote the vector of input by X = [X1, X2]T and output by v̂. Then, the ANN is equiva-
lent to the function:

v̂ = f (W3 f (W2 f (

O1
z      }|      {
W1X + B1) + B2

|                      {z                      }
O2

) + B3

|                                      {z                                      }
O3

), (1.44)

where O1 = [O1
1,O

2
1], O2 = [O1

2,O
2
2,O

3
2] are the hidden neurons and

W1 =

"
w1

11 w1
12

w1
21 w1

22

#
W2 =

2
666666664

w2
11 w2

12
w2

21 w2
22

w2
31 w2

32

3
777777775 W3 =

h
w3

1 w3
2 w3

3

i

B1 =
h

b1
1 b1

2

iT
B2 =

h
b2

1 b2
2 b2

3

iT
B2 =

h
b3

i
(1.45)
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are the weights of ANN to be fitted with the sample data. f represents the activation function
that connects the neurons and provides the nonlinearity for the ANN. The architecture of ANN
is determined by the number of hidden layers, the number of hidden neurons and the activation
function, which are selected according to the target function to be fitted. We summarize some
representative activation functions as follows:

1. Rectified linear unit (ReLU)

f (x) =

8>><
>>:

x x � 0
0 x < 0.

(1.46)

ReLU neural network will provide a piece-wise function.

2. Exponential linear unit (ELU)

f (x) =

8>><
>>:

x x � 0
↵(ex � 1) x < 0.

(1.47)

3. Scaled Exponential linear unit (SELU)

f (x) =

8>><
>>:
�x x � 0
�↵(ex � 1) x < 0.

(1.48)

SELU function is a general case of ELU.

4. SoftPlus
f (x) = ln(1 + ex). (1.49)

5. Sigmoid

f (x) =
1

1 + e�x . (1.50)

1.4.2 Backpropagation
The algorithm of backpropagation was originally invented in [69]. However, the importance
of backpropagation wasn’t fully appreciated until [82] demonstrated that it could provide in-
teresting distribution representations. The backpropagation is used to approximates the value
of weights in the ANN , i.e. W1, W2, W3, B1, B2 and B3 in the above example. It employs
the gradient descent method to minimize the error between the output of ANN and target value
from the sample data.

Given the input variables (X1, X2, ..., XN) in the sample data, ANN generates a set of predict
value for the output variables (v̂1, v̂2, ..., v̂N). The sum of error is hence calculated with the
predict values and target values (Y1,Y2, ...YN).

Er =
NX

i=1

L(v̂i,Yi), (1.51)
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where L is a loss function. The derivative of error Er with respect to the each weight (i.e. dEr
dWi

and dEr
dBi ) can be computed with the chain rule. Next, the backpropagation algorithm update the

weights with

Wi(updated) = Wi(old) � l
dEr
dWi

Bi(updated) = Bi(old) � l
dEr
dBi ,

(1.52)

where l is the learning rate. The predicted value for the output variables (v̂1, v̂2, ..., v̂N) are
regenerated with the updated weights. In this way, the error between ANN’s predict values and
target values diminishes, and weights in ANN iteratively converge to the optimal value to fit
the target function. The backpropagation algorithm stop when the error Er is smaller than a
pre-determined threshold.

1.5 A LSMC approach for the American option Valuation
There are plenty of analytical results in the valuation of European options, where the price func-
tion is rewritten as the conditional expectation of terminal payo↵ under the risk neural measure
and options’ price are the solutions of Feynman–Kac PDEs. For example, the seminal paper
[8] obtained the closed form call and put price given a single factor model (GBM); another
substantial achievement (see [48]) incorporated the volatility risk into option valuation, which
better captures the implied volatility surface. In contrast, analytical results for path-dependent
options (e.g. the American option) are more rare. The involvement of optimal stopping time
jeopardizes the solvability, even in the context of Black–Scholes–Merton setting, closed form
solution for American option price has not been found yet. Some researchers explore the appli-
cation of numerical PDEs, like for example finite-di↵erence method (FDM), which is e↵ective
for a limited amount of underlying assets and state variables. This method su↵ers from the
curse of dimensionality, so it is ine�cient for high-dimensional problem. Alternatively, [72]
proposed a powerful simulation based method, namely LSMC. The LSMC is accurate, easy
to apply and computational e�cient, which has led to its extensive use in both industry and
academia. We first summarize the notation for LSMC in Table 1.3.

Notation Meaning
S m

t Stock price at time t in mth simulated path
r f Risk-free return
Hm

t state variable at time t in mth simulated path
nr Number of simulated path
nI

t Number of in the money simulated path at time t
⌧m The optimal stopping time in mth simulated path
L(t, S ,H) Regression function approximating the option price
U(t, ⌧, S ). Discounted option payo↵ U(t, ⌧, S ) = exp

⇣
�(⌧ � t)r f

⌘
U(⌧, ⌧, S )

P0 Price of the option at t = 0

Table 1.3: Notation (LSMC)
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Next, we present the step by step algorithm for LSMC.
Algorithm 5: LSMC

Input: S 0,H0, dynamics of all processes involved
Output: Price of the option at t = 0

1 initialization;
2 Generating nr paths of S m

t , Hm
t under the risk neutral measure, and let ⌧m = T

f or m = 1...nr;
3 for t = T � �t to �t do
4 Find the in-the-money simulated path subset (i.e. U(t, t, S m

t ) > 0);
5 Within the subset, compute the discounted option payo↵ U(t, ⌧m, S m

⌧m)
f or m = 1...nI

t ;
6 Regress U(t, ⌧m, S m

⌧m) over S m
t and Hm

t and obtain L(t, S ,H);
7 if L(t, S m

t ,Hm
t ) < U(t, t, S m

t ) then
8 let ⌧m = t;

9 while t = 0 do
10 Compute the average of discounted option payo↵: Ū = 1

nr

nrP
i=1

U(0, ⌧m, S m
⌧m);

11 P0 = max
n
Ū,U(0, 0, S 0)

o
;

12 Return P0.
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Algorithm 3: LSMC-S&D–Backward recursion
Input: representative future wealth grid Wk,t,
simulated paths S m

t , Hm
t , Re,m

t m = 1...nr

portfolio allocation grid ⇡i i = 1, 2, ...nx

Output: Optimal strategy ⇡⇤0
1 while t = T � �t do
2 for k = 1 to nw(T � �t) do
3 Generate nx ⇥ nr wealth at time T :

Wm
k,T (⇡i,Re,m

T ) = Wk,T��t(Rf + ⇡T
i Re,m

T ), m = 1...nr and i = 1, 2, ...nx;
4 Compute realized value vi,m

k,T = U(Wm
k,T (⇡i,Re,m

T ));
5 Regress vi,m

k,T over the polynomial basis of (⇡i,Hm
T��t) and obtain Lk,T��t(⇡,H);

6 Calculate the optimal strategy ⇡m
k,T��t = arg max

⇡
Lk,T��t(⇡,Hm

k,T��t) m = 1...nr;

7 Compute Wm
k,T (⇡m

k,T��t,R
e,m
T ) = Wk,T��t(Rf + (⇡m

k,T )T Re,m
T ),

vm
k,T��t = U(Wm

k,T (⇡m
k,T��t,R

e,m
T )) m = 1...nr and k = 1, 2, ...nw(T � �t);

8 Construct surface
n
vm

k,T��t,Wk,T��t

onw(T��t)

k=1
m = 1...nr;

9 for t = T � 1�t to �t do
10 for k = 1 to nw(t) do
11 Generate nx ⇥ nr wealth at time t + �t:

Wm
k,t+�t(⇡i,Re,m

t+�t) = Wk,t(Rf + ⇡T
i Re,m

t+�t), m = 1...nr and i = 1, 2, ...nx;
12 Compute realized value vi,m

k,t+�t by interpolating Wm
k,t+�t(⇡i,Re,m

t+�t) through
n
vm

k,t+�t,Wk,t+�t

onw(t+�t)

k=1
;

13 Regress vi,m
k,t+�t over the polynomial basis of (⇡i,Hm

t ) and obtain Lk,t(⇡,H);
14 Calculate the optimal strategy ⇡m

k,t = arg max
⇡

Lk,t(⇡,Hm
k,t) m = 1...nr;

15 Compute Wm
k,t+�t(⇡

m
k,t,R

e,m
t+�t) = Wk,t(Rf + (⇡m

k,t+�t)
T Re,m

t+�t), vm
k,t is calculated by

interpolating Wm
k,t+�t(⇡

m
k,t,R

e,m
t+�t) through

n
vm

k,t+�t,Wk,t+�t

onw(t+�t)

k=1
m = 1...nr and

k = 1, 2, ...nw(t);

16 Construct surface
n
vm

k,t,Wk,t

onw(t)

k=1
m = 1...nr;

17 while t = 0 do
18 Generate nx ⇥ nr wealth at time �t: Wm

�t(⇡i,Re,m
�t ) = W0(Rf + ⇡T

i Re,m
�t ), m = 1...nr

and i = 1, 2, ...nx;
19 Compute realized value vi,m

k,�t by interpolating Wm
�t(⇡i,Re,m

�t ) through
n
vm

k,t+�t,Wk,t+�t

onw(t+�t)

k=1
;

20 Regress vi,m
�t over the polynomial basis of (⇡i,Hm

t ) and obtain L0(⇡);
21 Calculate the optimal strategy ⇡⇤0 = arg max

⇡
L0(⇡) m = 1...nr;

22 Return ⇡̂0



Chapter 2

A polynomial-A�ne approximation for
dynamic portfolio choice

Chapter summary:
This chapter proposes an e�cient and accurate simulation-based method to approximate

the solution of a continuous-time dynamic portfolio optimization problem for multi-asset and
multi-state variables within expected utility theory (EUT). The performance of this methodol-
ogy is demonstrated in five settings of a risky asset. Closed-form solutions are available for
three of these settings—a geometric Brownian motion, a stochastic volatility (SV) model, and
an exponential Ornstein-Uhlenbeck process—which help assess performance. The fourth set-
ting is a discrete-time vector autoregressive (VAR) parametrization, which is popular in this
area of research. In these cases, we compare our method to at least two relevant benchmarks
in the literature: the BGSS methodology of [10] and the SGBM approach of [24]. Our method
delivers accurate and fast results for the optimal investment and value function, comparable to
analytical solutions. Moreover, it is also significantly faster for a given precision level than the
aforementioned competing simulation-based methodologies. Lastly, we explore the solution to
a model with mean-reverting SV and interest rate, under full correlation; this last assumption
makes it unsolvable in closed-form. Our analysis shows a significant impact of correlation be-
tween stock and interest rate on allocation and Annualized certainty equivalent rate (CER).
Status: Second round at Computational Economics.

2.1 Introduction

Since the late 20th century, financial markets have become increasingly complex. The list of
stylized facts required to characterize even simple equity time series gets longer every decade.
For instance, the modeling of a popular market index like the S&P 500 must include stochas-
tic volatility (SV) and stochastic volatility of volatility (SVV), both of which are indisputable
with the appearance of volatility indexes quoted by Chicago Board Options Exchange (CBOE):
volatility index (VIX) as a proxy for SV and VIX volatility index (VVIX) to track SVV. Non-
constant leverage e↵ects, stochastic market prices of risk and periods of mean-reverting pat-
terns are simply additional complexities reported in real data. Such stylized facts concern a
one-dimensional series (S&P 500), but the reality is that the surface has barely been scratched

27
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in terms of joint assets behaviour; one popular stylized fact in multidimensions is stochastic
correlation, which is partially targeted with the introduction of the CIX index (CBOE). Making
decisions that adequately mirror this complexity requires the introduction of more complicated
stochastic models. Unfortunately, these challenging models and the additional sources of ran-
domness they entail jeopardise the analytic solvability of important financial problems like,
for instance, optimal investment allocation. This highlights the need for an accurate and fast
numerical method that can keep up with the ever increasing challenges.

Portfolio optimization for continuous-time processes within the framework of expected
utility theory (EUT) began in the 1960s with the seminal papers [76] and [78], in which the
associated Hamilton-Jacobi-Bellman (HJB) problem was solved in closed-form, hence pro-
ducing the optimal trading strategy, value functions, and wealth for stock prices modelled with
a geometric Brownian motion (GBM). In the 1980s, [54] and [25] pioneered the martingale
method to solve the portfolio optimization problem via a combination of static optimization
and financial replication. These approaches have generated a large amount literature on ana-
lytical solutions for a variety of models. For example, [59] obtained closed-form solution of
optimal strategies with Heston’s SV model. [19] considered the portfolio problem for stocks
with prices that follow mean-reverting processes, obtaining analytic solutions up to a system
of ordinary di↵erential equations (ODEs). More recently, [38] solved the optimal portfolio for
investors allocating their wealth to stocks and bonds (stochastic interest rates). [13] considered
a model with stochastic volatilities and correlations solving the optimal allocation for incom-
plete markets. Similarly, [34] assumed a multivariate setting where the principal components
have stochastic eigenvalues, generalizing the multi-factor model of [22].

All the cases described above belong to the family of linear-a�ne models,1 which explains
their solvability. This family of solvable models was extended to include quadratic-a�ne mod-
els in the celebrated paper of [70]. This latest family is, to the best of our knowledge, one
of the broadest families solvable in closed form. It accommodates stochastic processes for
the underlying with drifts and quadratic variations (coe�cients of the infinitesimal genera-
tor, [IG]), which can be represented as quadratic polynomials in the variables. In such cases,
the optimal value function is separable into a function of wealth and an exponential quadratic
function on state-variables; such a setting also permits analytical optimal strategies. On the
other hand, there are many reasonable and interesting models for which analytical solutions
are not available. In particular, IG coe�cients with either non-polynomial structures, display-
ing a polynomial of an order higher than 2, or non-integer exponents are rarely solvable in the
context of portfolio optimization.

These limitations have generated a literature on approximations to the underlying optimal
control problem, with a minority of papers focusing on the financial applications and implica-
tions. One of the key breakthroughs in terms of methodology and financial applications is the
seminal work of [10]. Their method (BGSS) applies least-square Monte Carlo (LSMC, [72]) to
the context of portfolio optimization with excellent results in terms of accuracy and time e�-
ciency. Subsequently, [85] compared the numerical performance of two sub-methodologies—
the value function iteration (VFI) and the portfolio weight iteration (PWI)—and concluded that
VFI shows a higher bias in the solution. [39] argue that VFI can also produce accurate results if
a proper transformation on value function is applied. [40] improve [10] by applying an inverse

1Portfolio value function is an exponential linear function when asset prices follow a linear-a�ne model.
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utility transformation to the value function and choosing a di↵erent expansion center. [57] com-
bine an endogenous grid method and a simulation-based technique to accommodate life cycles
that are characterized by endogenous variables. More recently, [29] proposed a new algorithm
using both regression and interpolation estimation methods for non-di↵erentiable utility func-
tions. In the same spirit, [24] enhance [10] by replacing the standard regression method by a
technique called the Stochastic Grid Bundling Method (SGBM), which was introduced in [53].
A VFI method is introduced in [12] that takes certainty equivalent transformation on value
functions and exhibits better accuracy than some Taylor series expansion based methods.

All approximation methods mentioned above focus on multi-period portfolio construction
with a relatively low re-balancing frequency, which reflects the investment philosophy that
portfolio managers acquire new information from traditional sources, such as quarterly and
annual financial reports, and adjust their allocation at a slow pace. This is perfectly suitable for
large-scale funds, which are under the constraints of portfolio turnover due to non-negligible
transaction costs and market impact. More recently, small-scale investors have benefited from
the availability of data, which enables them to make extra profits by capturing fleeting op-
portunities in the markets. In this case, the investors move their attention to continuous-time
assets’ price models, which are not subject to a specific time interval. However, approximation
methods targeting unsolvable continuous-time models are rarely studied. To fill this research
gap, a new method, namely the polynomial a�ne method for constant relative risk aversion
utility (PAMC), is proposed in this chapter. Our focus is on investors who may want to make
transactions in near continuous time (rebalancing at will) and prefer to use advanced stochastic
models with common factors (e.g., SV and interest rate) or unconventional factors (e.g., natural
language processing indicator) to detect any profitable chance.

Inspired by the applicability of the quadratic-a�ne family of models in [70], we approxi-
mate the optimal investment strategy for any given stochastic process model using an order k
polynomial a�ne structure on the value function. This approach automatically detects if the
given problem has a low-order polynomial a�ne structure, therefore delivering a highly precise
solution to the embedded quadratic-a�ne family of models. We demonstrate the accuracy and
e�ciency of our approximation on three well-known cases for practitioners in finance and eco-
nomics: a GBM (Merton’s solution, [78]), Heston’s SV model for an incomplete market (see
[59]), and an exponential Ornstein-Uhlenbeck (OU) process (see [19]) targeting commodities.
We compare our approach to what can be considered two leading, gold-standard methodolo-
gies: the BGSS (see [10]) and the SGBM (see [24]). To ensure the fairness of the comparison
and also to demonstrate the applicability of the PAMC in discrete-time cases, we implement all
the methods on the vector autoregression (VAR) setting reported in both [10] and [24]. Finally,
we exemplify the application of PAMC on an unsolvable model of significance in the financial
industry with a full correlation between SV, stochastic interest rate, and stock prices.

The contributions of the chapter can be summarized as follows:

• We introduce two methodologies (PAMC-VFI and PAMC-PWI) based on polynomial-
a�ne structures to approximate the optimal solution of a portfolio investment problem.

• We demonstrate, via three popular continuous-time models and one discrete-time model,
the accuracy and computational e�ciency of our methods capturing value function (V)
and optimal strategies (⇡). For this, we use the annualized certainty equivalent rate
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(CER), the relative errors at the initial time for V and ⇡0, and the mean L2 error for
⇡T/2.

• In particular, VFI could be three times faster, while producing 90% more accurate results
than other approaches (e.g. BGSS and SGBM), in capturing optimal strategies. The
e�ciency could be even more significant for higher levels of precision.

• We implement the PAMC on the Heston model with a stochastic interest rate, which is
not solvable in closed form. We show that PAMC delivers the highest CER, while the
optimal strategy and portfolio performance are a↵ected more by the correlation between
stock price and interest rate than by the correlation between SV and interest rate.

The chapter is organized as follows: Section 2.2 introduces the problem and approximation
solution methodology. Section 2.3 provides examples of models with closed-form solutions
to be used for comparison purposes. The assessment of the accuracy and e�ciency of our
proposal is conducted in Section 2.4, where all models are studied separately. Section 2.5
provides an example of solving the optimal portfolio strategy given an unsolvable model with
our methods. Lastly, Section 2.6 concludes. Section 2.7 and 2.8 provide mathematical proofs
and a gold-standard method for comparison, respectively, while Section 2.9 reports all long
tables and figures.

2.2 A methodology based on a polynomial-a�ne approxima-
tion

Let (⌦,F ,P) be a complete probability space with a right-continuous filtration {Ft}t2[0,T ]. The
stochastic processes introduced later in the chapter are defined on this probability space. We
consider an economy with a money market account (cash, M), n stocks S = (S (1), ..., S (n)) and
an agent with constant relative risk aversion (CRRA) utility U(W) = W1��

1�� , � � 0, � , 1. The
investor wants to derive an investment strategy ⇡ (percentage of wealth allocated to the stock)
for the time interval [0,T ] that will maximize the expected utility from the terminal wealth WT .

Assume investors can trade their desired quantity without transaction costs at the prede-
termined set of re-balance (0,�t, 2�t, ...,T � �t). We suppose the log stock price follows a
generalized process with a d dimensional state variable H:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

dMt
Mt
= r(Ht)dt

d ln S (i)
t = ✓i(Ht, ln S t)dt +

nP
j=1
�i, j(Ht, ln S t)dB( j)

t , i = 1, .., n

dH( j)
t = aj(H

( j)
t )dt + bj(H

( j)
t )dB(H, j)

t , j = 1, ..., d
< dB(i)

t , dB(H, j)
t >= ⇢i, jdt, i = 1, .., n, j = 1, .., d

< dB(H,i)
t , dB(H, j)

t >= ⇢H,i, jdt, i, j = 1, .., d,

(2.1)

where B(i)
t , B(H, j)

t for i = 1, .., n, j = 1, .., d are Brownian motions; r(Ht) is the risk-free
rate; and ✓i(Ht, ln S t), �i(Ht, ln S t), aj(Ht), and bj(Ht) are measurable functions satisfying
standard growth and Lipschitz conditions. We also assume that the covariance matrix ⌃ =
�(Ht, ln S t)�(Ht, ln S t)T is definite positive.
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The corresponding wealth process is

dWt

Wt
=

0
BBBBBB@r(Ht) +

nX

i=1

⇡(i)
t

0
BBBBBB@✓i(Ht, ln S t) +

nX

j=1

1
2
�2

i, j(Ht, ln S t) � r(Ht)

1
CCCCCCA

1
CCCCCCA dt (2.2)

+

nX

i=1

⇡(i)
t

0
BBBBBB@

nX

j=1

�i, j(Ht, ln S t)dB( j)
t

1
CCCCCCA .

The investor’s problem at any time t 2 [0,T ] can be written as

V(t,W, ln S ,H) = max
⇡{s�t}

E(U(WT )|Ft). (2.3)

V(t,W, ln S ,H) is the value function at time t.
Here is where the main novelty in our approach is realized. Inspired by the structure of the

value function within the quadratic-a�ne model class,2 we propose the following representa-
tion for V:

V(t,W, ln S ,H) =
W1��

1 � � [ f (t, ln S ,H)]�, (2.4)

where f = exp {Pk}, and Pk is a polynomial of order k with time-dependent coe�cients. This
is equivalent to the following representation:

ln (�V(t,W, ln S ,H)) = (1 � �) ln W + Pk(t, ln S ,H). (2.5)

We name our method the PAMC because of the exponential polynomial representation of
the value function (2.5). This is a natural way to generalize the quadratic-a�ne subclass that
contains the vast majority of solvable models in the literature. The Stone-Weierstrass theorem
guarantees that any continuous function on a compact support can be approximated arbitrarily
well in the polynomial class. Although this conflicts with the existence of unbounded paths for
the processes H and ln S , the small probability of such paths for finite horizons and the choice
of high-order polynomials grant soundness to the methodology, as endorsed by the numerical
sections. The only hard assumption is the separability of wealth W and state variables H, ln S ,
which is compatible with all known solvable cases in the literature.3 The assumption of an
exponential polynomial with separable wealth value function (2.4) still holds with intermediate
consumption.

PAMC is a backward approximation method. At arbitrary re-balancing time t, PAMC uses
the approximation of value function at t + �t to compute the optimal strategies. Based on
these strategies, the value function at t can be approximated. Structure shown in Equation (2.5)
allows us to estimate the value function V(t,W, ln S ,H) by a polynomial regression over the
time t + �t vector (H, ln S ). Once we estimate the coe�cient of the regression function, we
completely specify the value function at time t. Next theorem states the representation for the
optimal strategy.

2Portfolio value function is an exponential quadratic function when asset prices follow a quadratic-a�ne
model.

3The separability of wealth and existence of intermediate consumption (i.e. money withdrawn from the port-
folio) will be incorporated in future research.
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Theorem 2.2.1 The optimal allocation ⇡⇤t = (⇡(⇤,1)
t , .., ⇡(⇤,n)

t ) for investors with market dynamics
shown in Equation (2.1) can be approximated by the unique solution to the following system of
equations:

nX

j=1

gi, j(t,Wt, ln S t,Ht)⇡
(⇤, j)
t = gi(t,Wt, ln S t,Ht), i = 1, .., n (2.6)

where

gi, j(t,Wt, ln S t,Ht) = �
0
BBBBB@

nX

m=1

�i,m(Ht, ln S t)� j,m(Ht, ln S t)
1
CCCCCA

gi(t,Wt, ln S t,Ht) =

0
BBBBBB@✓i(Ht, ln S t) +

1
2

nX

j=1

�2
i, j(Ht, ln S t) � r(Ht)

1
CCCCCCA

+

nX

j=1

@Pk(t + dt, ln S t,Ht)
@ ln S ( j)

t

0
BBBBB@

nX

m=1

�i,m(Ht, ln S t)� j,m(Ht, ln S t)
1
CCCCCA

+

dX

j=1

@Pk(t + dt, ln S t,Ht)
@H( j)

t

0
BBBBB@

nX

m=1

�i,m(Ht, ln S t)bj(H
( j)
t )⇢m, j

1
CCCCCA .

(2.7)

Under this strategy, the wealth process Wt � 0 with a unique path-wise solution.

Proof See Section 2.7.

Note that the functions gi, j and gi in Equation (2.6) can then be directly and harmoniously 4

computed by taking the derivative of the regression function obtained. Therefore, the optimal
allocation at time t is a function of the current state variable and coe�cients in the regression
function, which can be directly computed.

At this point, the PAMC separates into two branches: the VFI and the PWI, which are
described in detail in Section 2.2.1 and 2.2.2, respectively.

2.2.1 PAMC-VFI
We first introduce PAMC-VFI. Given the initial value of stock prices and state variables, the
first step of the PAMC-VFI is the (forward) simulation via Euler on the dynamics in Equation
(2.1). This leads to path-wise stock prices and state variables. Next, a backward approximation
is conducted. Starting at the last re-balancing time T � �t, we compute the optimal strategy
via Theorem 2.2.1 for each path generated in the forward simulation. This is feasible because
the value function at terminal is the utility function. Note that the investor wealth level is
independent of the optimal strategy and of the value function because of its separability (2.4).
Hence, we simply let the wealth level at each re-balancing time be Wt = W0. With the optimal
strategies, it is easy to simulate the optimal terminal wealth W⇤

T and estimate the path-wise
expected utilities.

4Other approaches separate the calibration of gi, j from that of gi, hence creating an inconsistency with the
primal representation of V . See Section 2.7.
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We then regress the modified log expected utility (ln (�V(T � �t,W, ln S ,H)) � (1 � �) ln W0)
over stock prices and state variables via a polynomial regression, creating Pk(T � �t, ln S ,H)
in Equation (2.5). Lastly, we move backward to time T � 2�t. The optimal strategy is found
using Pk(T � �t, ln S ,H). The VFI method uses the Bellman equation

V(T � 2�t,Wt, ln S t,Ht) = max
⇡T��t

Et(V(T � �t,WT��t, ln S T��t,HT��t))

to compute the expected utility. At each path, the wealth, stock prices, and state variables at
T � �t are generated and substituted into the approximated value function

V(T � �t,W, ln S ,H) ⇡ W1��

1 � �Pk(T � �t, ln S ,H).

The average of these simulated value functions approximates the expected utility. We follow
a similar procedure at each re-balancing time until the optimal initial strategy ⇡⇤0 is obtained.
Finally, we re-generate the path of stock prices and states variables. The optimal strategies
at each path are obtained via Theorem 2.2.1. We simulate the portfolio wealth and evaluate
the portfolio performance.5 We clarify the notation in Table 2.1 and illustrate the PAMC-VFI
method in Algorithm 6 in detail.

Notation Meaning
B( j,m)

t , B( j,m)
t Brownian motion at time t in mth simulated path

S m
t Stock price at time t in mth simulated path

Hm
t State variable, such as interest rate or volatility

nr Number of simulated paths
N Number of simulations to compute expected utility for a given set (W0, S m

t ,Hm
t )

Ŵm,n
s (⇡m) A simulated wealth level at s > t, given that wealth, stock price and other,

state variables at t are Wt = W0, S m
t and Hm

t
Ŝ m,n

s Simulated stock price at s > t
Ĥm,n

s Simulated state variable at s > t
V(t,W, ln S ,H) Value function at time t given wealth W, stock price S , and state variable H
v̂m Estimation of log(�V(t,Wm

t ,Hm
t )) � (1 � �) log(Wm

t ). Regressand in regression,
superscript m, i indicate the corresponding regressor (Wm

t ,Hm
t )

Lt(H, ln S ) The regression function to be used to approximate
log(�V(t,W, ln S ,H)) � (1 � �) log(W)

⇡m
t Optimal strategy at time t given stock price and other state variables: S m

t and Hm
t

⇡m,n
s Optimal strategy at time s > t given stock price

and other state variables Ŝ m,n
s and Ĥs

m,n

V̂(0,W0, ln S 0,H0) Estimation of expected utility at time 0

Table 2.1: Notation

5PAMC computes expected utilities and CERs with an independent set of simulations, while BGSS and SGBM
use the same set of simulations in building the optimal strategies.
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2.2.2 PAMC-PWI
Next, we describe the PWI method. PAMC-PWI follows the same procedures as PAMC-VFI
in the forward simulation and backward approximation at T � �t. For an earlier re-balancing
time, the approximation of the expected utility of the PWI method relies directly on (Equation
(2.3))

V(t,Wt, ln S t,Ht) = Et(U(WT )).

This means that, at re-balancing time t, we simulate the path of stock price S s>t and state vari-
able Hs>t, and we calculate the optimal allocation ⇡s>t via Theorem 2.2.1 and Pk(s, ln S ,H), by
which the optimal terminal wealth WT is computed. The mean of simulated utilities approxi-
mates expected utility, and we regress the modified log expected utilities ln (�V(t,W, ln S ,H))�
(1 � �) ln W0 over stock prices and state variables to produce Pk(t, ln S ,H). We repeat the pro-
cedure at each re-balancing time until the ⇡⇤0 is obtained. The pseudo code for the PWI method
is rendered in Algorithm 7.

Di↵erences between our methodology and BGSS from [10], which we selected for com-
parison, are explained in detail in Section 2.7.

2.3 Examples of problems and solutions
In this section, we provide a concise review of popular models and their implied closed-form
solutions, which will be used for comparison purposes in the rest of the chapter. All of the
problems maximize the expected discounted future utility of a portfolio containing one risky
and one risk-free asset, where the uncertainty is driven only by the single risky asset.

We start with a reminder of the closed-form solution for Merton’s model, in which the
stock price process follows a GBM, which is driven by a single Wiener process with a constant
return rate and volatility. We then report the solution for the Heston stock price model. The
Heston stock model is like GBM, except the instantaneous variance follows a Cox-Ingersoll-
Ross (CIR) process, which is itself driven by a second Wiener process correlated to the stock
process. Finally, we provide the existing solution for the portfolio problem in which the log
of the risky asset price follows a mean-reverting OU process. This model is commonly used
to describe the evolution of commodity prices and volatility indexes. A fully closed-form
solution has not yet been discovered in this case, and the portfolio problem’s solution can be
represented in terms of the solution of ordinary di↵erential equations, whose numerical solution
is straightforward.

2.3.1 Geometric Brownian motion
We start with Merton’s case where all coe�cients involved are constant. Here the dynamics
are given by the following:

8>><
>>:

dMt
Mt
= rdt

dS t
S t
= (r + �S�)dt + �dBt,

(2.8)
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where �S captures the market price of equity risk. This is the one-dimensional case of Equation
(2.1), when state variable Ht, drift ✓(Ht, ln S t), and volatility �(Ht, ln S t) of stock are constants.
The optimization problem, with power utility function, was solved by [78], and the optimal
trading strategy ⇡⇤t and the corresponding value function are given by

⇡⇤t =
1
��
�S

V(t,W) =
W1��

1 � � (e(r+ 1
2� �

2
S )(T�t))1��.

(2.9)

2.3.2 Stochastic volatility (SV) model
[59] provides a closed-form solution for Heston’s SV model ([48]). The dynamics can be
summarized by the following:

8>>>>><
>>>>>:

dMt
Mt
= rdt

dS t
S t
= (r + �S Xt)dt +

p
XtdBS

t

dXt = X(✓X � Xt)dt + �X
p

XtdBX
t

< BS , BX >t= ⇢S X. (2.10)

The Heston model is a special case of Equation (2.1), with state variable Ht be the SV Xt,
�(Ht, ln S t) =

p
Xt and ✓(Ht, ln S t) = r + (�S � 0.5)Xt. The optimal trading strategy and value

function for a CRRA investor are given by the following:

V(t,W, X) =
W1��

1 � �e�a(T�t)+�b(T�t)X

⇡⇤t =
1
�
+ �S + ⇢S X�Xb(T � t),

(2.11)

where the functions a(⌧) and b(⌧) are

a(⌧) =
2X✓X

k4
ln

2k2e0.5(k1+k2)⌧

2k2 + (k1 + k2)(ek2⌧ � 1)

b(⌧) =
k3(ek2⌧ � 1)

2k2 + (k1 + k2)(ek2⌧ � 1)

(2.12)

with auxiliary parameters

k1 = X +
� � 1
�
⇢S X�X�S , k2 =

q
k2

1 � k3k4

k3 =
1 � �
�2 �

2
S , k4 = �

2
X((1 � �)(⇢2

S X � 1) + 1).
(2.13)

2.3.3 Mean-reverting log stock price process
The last case is the exponential OU model, where the log of the stock price follows an OU
process: 8>><

>>:

dMt
Mt
= rtdt

d ln S t = (✓ � A ln S t)dt + �dBt.
(2.14)
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If we let �(Ht, ln S t) = � and ✓(Ht, ln S t) = ✓ � A ln S t, the generalized model (2.1) is exactly
the exponential OU model. The corresponding wealth process is given by

dWt

Wt
= (r + ⇡t�t)dt + ⇡t�dBt, (2.15)

where �t = ✓� A ln S t +
1
2⌃� r, ⌃ = �2. [19] solved the optimal strategy and value function for

a CRRA investor in closed form:

⇡⇤t =
1
�

((
1
⌃
� AK(t))�t � AN(0, t))

V(0,W, ln S 0) =
W1��

1 � �e
1
2�

2
0K(T )+N(0,T )�0+M(0,T )

(2.16)

where K(t), N(t,T ), and M(t,T ) can be obtained by solving ODEs, leading to K(t) = R2(t)R�1
1 (t),

R = (R1(t),R2(t)), and

R(t) = exp
0
BBBB@
0
BBBB@

1
�A � 1

�A
2⌃

1��
�⌃ � 1

�A

1
CCCCA t

1
CCCCA
 
1
0

!

N(T � t) = N(t,T ) =

R T�t
0 ✓K(s)�H(s, 0)ds
�H(T � t, 0)

(2.17)

where

d�H(t, s)
dt

= H(t)�H(t, s),H(t) =
1
�

(A � A2⌃K(t)) �H(s, s) = 1 (2.18)

M(T � t) = M(t,T ) =
T�tZ

0

{N(s)✓s +
1
2

K(s)A2⌃ +
1

2�
N(s)A2⌃N(s) + (1 � �)r}ds. (2.19)

2.4 Assessing accuracy and e�ciency of the PAMC
In this section, we examine the accuracy and e�ciency of the PAMC (VFI and PWI) by im-
plementing GBM (Section 2.4.1), the Heston model (Section 2.4.3), exponential OU model
(Section 2.4.4), and the VAR model (Section 2.4.2). We compare optimal allocation at time
0 and time T/2 as well as expected utility at time 0 for seven methodologies. These are as
follows: PAMC-VFI and PAMC-PWI; BGSS with 2nd order and with fourth-order Taylor ex-
pansions of the utility function;6 the SGBM and the SGBM with log, both with 4th order Taylor
expansion (SGBM-LT);7 and, lastly, the true theoretical results. We always generate 2 ⇥ 106

paths to evaluate the performance and employ 20 bundles in SGBM and SGBM-LT. We also
report the annualized CER from all methodologies, where the CER is defined as follows:

U(W0(1 +CER)T ) = V(0,W0, ln S 0,H0), (2.20)
6More details about the di↵erence between BGSS 2nd and BGSS 4th can be found in [10].
7More details about the di↵erence between SGBM and SGBM-LT can be found in [24].
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hence describing the annualized rate of return of a risk-free asset that yields the same utility
of wealth obtained from the dynamic portfolio strategy. The initial optimal allocation and
expected utility is computed for all approaches (PAMC-VFI, PAMC-PWI, BGSS 2nd, BGSS
4th, SGBM, SGBM-LT, and theoretical) using their corresponding optimal allocation along
paths.

To study the impact from discretization error, we implement all seven methods for di↵erent
number of periods and provide the numerical weights at time 0. We show that the numerical
approximation converges to the theoretical result (re-balance continuously), as the number of
periods is large.

To assess the accuracy of optimal allocations at mid point, we compute the mean of the L2

distance, which is defined as follows:

mean of L2 error =
1
N

vt
NX

i=1

(⇡appro,i
T
2

� ⇡⇤,iT
2

)2 (2.21)

where ⇡⇤,iT
2

and ⇡appro,i
T
2

are the theoretical optimal allocation and numerical allocation at mid
point respectively. Note that the error is roughly symmetric about 0, which indicates the low
bias of the PAMC.

We also investigate the impact of the number of periods on the computational time for both
the Heston and the exponential OU model.

Finally, we investigate the impact of the choice of polynomial degree k on the approxi-
mation quality. For the (Section 2.4.3) and exponential OU model (Section 2.4.4), we allow
this degree to be unknown and let the methodology select the proper order by studying the
improvement in accuracy. We do not report the results of this analysis in the case of Merton
(Section 2.4.1) due to its simplicity.

2.4.1 Geometric Brownian motion
We start with the simplest model, where the stock follows a geometric Brownian motion, Equa-
tion (2.8). In this case, the value function is only dependent on time t and wealth W; hence,
the function f is in theory a constant. The chosen parameters for the GBM case are shown in
Table 2.2.

Table 2.7 compares theoretical and all three numerical optimal strategies at time 0, ⇡⇤,
the expected utility V⇤(0,W0), the CER, and the computational time needed for all numerical
methods. Table 2.7 demonstrates that all methods—PAMC (VFI and PWI), BGSS methods,
SGBM, and SGBM-LT—can produce accurate results. Our methods are much faster with VFI,
boasting a slight computational edge over PWI. PAMC produces similar CER values, which
are slightly smaller than the CER of the theoretical result.

[Table 2.7 about here.]

2.4.2 VAR model
In this section, we consider a VAR model to describe the dynamics of the log excess return
re

t of the risky asset and its log dividend yield dt, which is the state variable. The dynamics
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involved are given by

re
t+1 = ar + brdt + ✏

r
t+1

dt+1 = ad + bddt + ✏
d
t+1,

(2.22)

where
"
✏rt+1
✏dt+1

#
v N(µ,⌃), µ =

"
µr

µd

#
and ⌃ =

"
�2

r ⇢�r�d

⇢�r�d �2
d

#
.

Rf is the gross return of the risk-free asset, while the stock price can be written as S t+1 =

S t(Rf + Re
t+1) with Re

t+1 = Rf (exp(re
t+1) � 1) as the excess return. The VAR model is actually

a discretized constant volatility model with an excess return following an OU process, so the
PAMC is applicable. We impose borrowing and short-selling constraints on allocation: in other
words, ⇡ 2 [0, 1]. The model and this particular parametric setting have been widely used by
other authors, including [10], [85], [39], and [24]. The parameters involved are estimated from
quarterly data and shown in Table 2.3.

In the VAR model, results from a Fourier cosine series expansion (COS) (see [24])8 are
also reported as a benchmark. The COS is a quadrature method instead of a simulation-based
method, where the conditional expectation is computed with numerical integration, and the op-
timal strategy is obtained with the grid-searching technique. Table 2.8 shows that both PAMC
methods and the COS method achieve similar expected utility and CER, which are higher than
the results from BGSS and SGBM. Furthermore, the PAMC-VFI method is as fast as BGSS
2nd, both of which are the most computationally e�cient and take less than a quarter of the
computational time needed by other methods.

[Table 2.8 about here.]

2.4.3 Stochastic volatility (SV) model.
We implement methodologies from Heston’s SV model (Section 2.3.2), and the dynamics in-
volved are given in Equation (2.10), where the squared volatility follows a CIR process. The
parameters used in the numerical example come from the source paper and are shown in Table
2.4. In the simulations, regardless of the re-balancing time interval, we simulate the path of
the stock’s price and volatility by the Euler scheme, with dt = 1

60 to decrease the discretization
error and make the result comparable to the theoretical solution of the continuous model.

Table 2.9 reports several results at time 0. Note that Equation (2.11) shows that the correct
degree of Pk for this model is k = 1. First, we can see that the smaller the investor’s risk
aversion level, �, the more precise the optimal allocation and value functions are. We can also
observe that most methods—VFI, PWI, SGBM, SGBM-LT, and BGSS 4th—achieve similar
accuracy, outperforming BGSS 2nd, while VFI is the most computationally e�cient. Lastly, the
expected utility and CER, with 10 re-balancing times, is close to the true maximum expected
utility (resulting from continuous re-balancing), which means that a portfolio optimization with
the Heston model does not require frequent re-balancing.

8Grids for numerical integration and optimal strategy searching in the COS method are identical to the set
given in [24].
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[Table 2.9 about here.]

Tables 2.10 compares the allocation and the CER when choosing di↵erent degrees of the
Pk. Increasing the degree above 1 has a small impact on the accuracy of allocation and the
CER, but it increases computational time; hence, k = 1 is the optimal degree, as expected.

[Table 2.10 about here.]

Table 2.11 presents the mean of the L2 distance of optimal allocation at mid point for all
methods including various degrees of Pk. The L2 distance shows little di↵erence for di↵erent
degrees. It also demonstrates that PAMC-PWI delivers a more precise allocation at mid point
compared to PAMC-VFI, both BGSSs, SGBM, and SGBM-LT.

[Table 2.11 about here.]

Next, we investigate the impact of the number of periods for a fixed time to maturity T in
Figure 2.1. The number of simulations used to compute expected utility in our methods for a
given set (Wm

t , S m
t , Xm

t ) was N = 2000.9 (a) shows the computational time varying with respect
to the number of periods. The computational time required by PWI increases much faster than
VFI, which is linear with the number of periods. This is because PWI always needs to compute
the value at terminal at each period which significantly increases the computational complexity
when the number of periods increases. BGSS 2nd is the most e�cient, which is followed by our
VFI method. BGSS 4th is slower than our VFI when the number of periods is greater than 12.
(b) shows the CER obtained using all methods. Both of the PAMCs and BGSS 4th outperform
BGSS 2nd in terms of CER regardless of the number of periods. SGBM and SGBM-LT obtain
similar CERs as our methods when the number of periods is large.10

[Figure 2.1 about here.]

The mean L2 error of optimal allocation at mid point is shown in (c). PAMC-VFI and
PAMC-PWI produce significantly more accurate allocations at mid point than BGSS, SGBM,
and SGBM-LT. As the number of periods increases, the bias from discretization diminishes
while the number of coe�cients increases; this leads to a greater estimation error. In PAMC
and SGBM, the discretization bias dominates the mean L2 error of optimal allocation at mid
point, which thus decreases with the number of periods. In BGSS, the estimation error is
important, and the mean L2 error of optimal allocation at mid point increases with the number
of periods. Finally, we take account of these three criteria, and only PAMC-VFI achieves
superior CERs and accuracy of optimal strategy while maintaining excellent e�ciency given a
high re-balancing frequency.

In Figure 2.2 (a), we increase the number of periods proportionally to the time to maturity
T and plot the CER versus T . One can observe a decreasing CER for all methods, and the
BGSS 2nd always achieves slightly smaller CER than other methods.

[Figure 2.2 about here.]
9We noticed little improvements in accuracy when taking N = 200000 at the expense of more computational

time
10In all cases, CER increases with the number of periods, converging slowly to the true optimal (e.g., number

of periods greater than 100).
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2.4.4 Exponential Ornstein–Uhlenbeck (OU) model
The last model considered is the exponential OU model, where log prices follow a mean-
reverting process. The dynamics involved are shown in Equation (2.14), and the parameters
used in the numerical example are shown in Table 2.5.

Table 2.12 reports initial optimal allocations and value functions for k = 2. PAMC-VFI and
PAMC-PWI achieve similar accuracy, with the former being more e�cient and outperforming
all other methods. SGBM, SGBM-LT, and BGSS 4th obtain CERs slightly higher than BGSS
2nd. Compared to the Heston model, the expected utility and CER with 10 re-balancing times
is farther away from the continuous-time optimal values, which highlights the need for even
more frequent re-balancing in an exponential OU model.

[Table 2.12 about here.]

Equation (2.16) illustrates that the correct degree of Pk for this model is k = 2. Table 2.13
confirms that both k = 2 and k = 3 give substantially better results than k = 1 in terms of
allocation and CER. The results of Tables 2.13 are less conclusive when comparing k = 2 and
k = 3. Here, one may argue that on accuracy, there is not much di↵erence, but on speed, k = 2
is best.

[Table 2.13 about here.]

Table 2.14 shows the mean of L2 distance of optimal allocation at mid point. Here, we
display results from the BGSS, the SGBM, and the PAMC with di↵erent degrees of Pk. L2

distance is much smaller when we choose the degree 2 or 3. For both VFI and PWI, choosing
a smaller degree will result in a larger bias than choosing a large degree. It also shows that VFI
produces more precise allocation at mid point compared to PWI. Compared with SGBM and
SGBM-LT, PAMC-VFI and PAMC-PWI have a smaller mean of L2 distance, which demon-
strates the superior accuracy of the PAMC.

[Table 2.14 about here.]

As with the Heston case, we investigate the impact of the number of periods with a fixed
number of simulation N = 2000 and time to maturity T , as shown in Figure 2.3. Figure 2.3 (a)
shows how the computational time varies with the number of periods. BGSS 2nd and VFI are
the most computationally e�cient. PWI is faster than BGSS 4th, SGBM, and SGBM-LT when
the number of periods is small but slower when the number of periods is large.

Figure 2.3 (b) displays the CER for all methods. The two PAMCs achieve similar CERs
with di↵erent numbers of periods, and both are higher than the CER from BGSS, while SGBM
and SGBM-LT are close to the PAMC when the number of periods is large. We also noticed
that BGSS 4th performs better than BGSS 2nd when the number of periods is small, but it
is surpassed as the number of periods increases. A possible explanation is that increasing
the order of expansion on utility function improves accuracy when �t is large but has more
coe�cients to estimate, which increases the estimation error simultaneously. Furthermore, the
CER grows faster when the number of periods is small, which comes from the mean-reverting
nature of prices and investors enhancing profit by reacting swiftly to the under/overpricing
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opportunity. The mean of L2 distance of the optimal allocation at mid point is shown in Figure
2.3 (c). Both VFI and PWI lead to more accurate allocations at mid point. It is concluded that
PAMC-VFI exhibits excellent portfolio performance, accurate optimal strategies, and a modest
growth rate of computational time to the number of periods, which makes it best suited for
high-frequency investors in this case.

We study the impact of time to maturity on CERs in Figure 2.2 (b). The optimal CER
increases with the time to maturity T , and all numerical methods increase as well. On the other
hand, the di↵erence between PAMC and BGSS 2nd increases with T . BGSS 4th, SGBM, and
SGBM-LT produce CER values between our methods and BGSS 2nd for T  2, but they fail to
avoid negative terminal wealth when T > 2.

[Figure 2.3 about here.]

2.5 The Heston model with stochastic interest rate.
The superiority of PAMC in terms of accuracy and e�ciency has been verified for the solvable
cases: GBM, the Heston model, and the exponential OU model. In this section, we apply
PAMC to an important unsolvable problem, which is a situation with fully correlated stochastic
asset price, volatility, and interest rate:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

dMt
Mt
= rtdt

dS t
S t
= (rt + �S Xt)) dt +

p
XtdBS

t

dXt = X(✓X � Xt)dt + �X
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rtdBr
t
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< BX, Br >t= ⇢Xr.

(2.23)

This is a specific case of the generalized model (2.1), where n = 1, d = 2, rt = H(1)
t ,

Xt = H(2)
t , �1(Ht, ln S t) =

p
Xt, and ✓(Ht, ln S t) = rt + �S Xt, �S ✓X = �X⇢S X✓X + �r⌫✓r⇢S r +

�old
S (✓X
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S X + ✓r
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S r). The set of parameters for this model, calibrated with the daily
time series of the S&P500 and 10 years to maturity bond prices (see [35]), are shown in Table
2.6.

Correlations ⇢S r and ⇢Xr are the key parameters stopping the expected utility problem from
having a closed-form solution, which is why we focus on studying their impact on the solu-
tion. Figure 2.4 (a) illustrates how the optimal strategy varies with the correlation ⇢S r and ⇢Xr.
There is little improvement when the degree of polynomial goes beyond 1, so we let k = 1.
The optimal strategies from the PAMC-VFI and the PAMC-PWI are visually overlapped. The
correlation between the interest rate and variance ⇢Xr has little impact on the optimal portfolio
allocation. Furthermore, it is shown that the investor should allocate more wealth on the stock
as the stock and interest rate become less correlated: in other word, when |⇢S r| ⇡ 0. The CER as
a function of the correlation ⇢S r and ⇢Xr is also reported: see Figure 2.4 (b). Here we continue
to witness a parabolic cylindrical surface. A small correlation |⇢S r| leads to a better portfolio
performance.
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[Figure 2.4 about here.]

Given the little impact of ⇢Xr, we specify ⇢Xr = 0 and compare PAMC, BGSS, and SGBM
in terms of optimal strategy as well as CER and the computational time in Figure 2.5. Part (a)
shows the optimal strategy across di↵erent values of ⇢S r: PAMC-PWI and VFI yield the most
aggressive position, followed by SGBM-LT. Note that the optimal initial strategy from SGBM
and BGSS 4th are close. We plot the CER versus ⇢S r in (b), and PAMC-VFI and PWI achieve
the best portfolio performance. All the methods confirm that stronger portfolio performance
is attainable when correlation |⇢S r| is small. Furthermore, BGSS 2nd leads to a much lower
CER than other methods. Part (c) in the figure shows the computational time for each method:
BGSS 2nd is the most e�cient, as it is slightly faster than PAMC-VFI. Thus, BGSS 2nd and
PAMC-VFI have obvious advantages over other methods in terms of computational e�ciency.

[Figure 2.5 about here.]

2.6 Conclusion
This chapter introduces a new numerical method for portfolio dynamic optimization in the con-
text of EUT. Our method is based on an approximation of the value function via a polynomial-
a�ne structure inspired by the popular family of quadratic-a�ne models. This allows us to
estimate the value function with a polynomial fitting, which also produces closed-form opti-
mal strategies. We divided our method into two branches: the PAMC-VFI method and the
PAMC-PWI method. We implemented both methods, as well as SGBM and SGBM-LT ([24])
and the BGSS method from [10], on four models: three continuous-time models with analytical
solutions (Merton’s model, Heston’s model, and a mean-reverting model) and a discrete-time
model (VAR) popular for comparison purposes. These analyses helped us study the accuracy
and e�ciency of our methodologies. The four models were chosen for their popularity.

In comparison to BGSS, SGBM, and SGBM-LT, our methods are, in most cases, signif-
icantly more accurate in terms of value function and optimal allocation at initial time and at
mid point. They are also better in terms of CER performance. The largest di↵erences are
found in optimal allocation at mid point. Furthermore, the PAMC-VFI maintains e�ciency
and accuracy as the re-balancing frequency increases, which makes it an ideal methodology
for high turnover funds capturing fleeting market opportunities. We compared the result from
the PAMC by selecting di↵erent degrees of the fitting polynomial; in all cases, the method
finds the right degree with minimum impact from choosing higher degrees. We investigated
the impact of the number of periods on the accuracy of the PAMC, confirming, as expected,
more precise results as the number of periods increases.

As the PAMC is proposed to approximate the optimal strategy when closed-form solutions
are not available, we also applied our methodology to an important unsolvable case. This was
a fully correlated model with stochastic assets, volatility, and interest rate. In this model, the
instantaneous variance and short rate followed CIR processes. We demonstrated how the cor-
relations between stock price and interest rate and between instantaneous variance and interest
rate impact the optimal strategies and portfolio performance. Moreover, the PAMC achieves
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superior portfolio performance to other approximation methods while keeping the best compu-
tational e�ciency.

The approximation method proposed in this chapter, PAMC, can work with an unsolv-
able multi-factor continuous-time model; hence, it is flexible enough in terms of rebalancing
frequency and stochastic complexity to accommodate institutional and individual investors.
Especially with the evolution of financial markets, many asset prices exhibit complex struc-
tures in their dynamics, while the availability of data permits a higher frequency of trading.
Like most approximation methods for the dynamic portfolio choice problem, the PAMC relies
on the assumption of a frictionless market, where no transaction cost and no market impact
exist. Furthermore, the method can be extended to more general utility families (e.g., hyper-
bolic absolute risk aversion) and can entertain derivatives-based portfolios needed for market
completion. These are topics for future research.

2.7 Proof of Theorem 2.2.1.
According to the Bellman equation, the value function can be rewritten as,

V(t,W, ln S ,H) = Et(V(t + dt,Wt+dt, ln S t+dt,Ht+dt) | W, ln S ,H)
= max

⇡t
Et(V(t + dt,Wt+dt, ln S t+dt,Ht+dt) | W, ⇡, ln S ,H). (2.24)

We expand V(t + dt,Wt+dt, ln S t+dt,Ht+dt) at t + dt in terms of all the variables.
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Substituting dWt, d ln S t, dHt which can be found in Equation (2.1), taking conditional
expectation on both sides, and rewriting V(t,Wt, ln S t,Ht) in a quadratic form with respect to ⇡
leads to
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We assume a su�ciently small dt so that o(dt) terms are omitted when taking conditional
expectations. The optimal allocation is given by the solution to the system of equations:

nX
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2 fi, j(t,Wt, ln S t,Ht)⇡
(⇤, j)
t = � fi(t,Wt, ln S t,Ht), i = 1, .., n. (2.27)

With the representation of the value function in Equation (2.4) and assuming that f (t, ln S ,H) =
exp(Pk(t, ln S ,H)), the derivatives of value function with respect to each stock and state vari-
able can be rewritten as,
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Substituting (2.28) into (2.27), the optimal strategy can be approximated as follows:
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�i,m(Ht, ln S t)� j,m(Ht, ln S t)
1
CCCCCA

+

dX

j=1

@Pk(t + dt, ln S t,Ht)
@H( j)

t

0
BBBBB@

nX

m=1

�i,m(Ht, ln S t)bj(H
( j)
t )⇢m, j

1
CCCCCA .

(2.29)

The existence and uniqueness of the approximation, ⇡(⇤, j)
t is ensured by the invertibility of

the matrix �(Ht, ln S t)�(Ht, ln S t)T , together with the di↵erentiability of the polynomial Pk.
Note ⇡⇤ does not depend on Wt, hence the drift and volatility of the wealth process are linear in
Wt, and they both satisfy the conditions in Proposition 1.2 in [60], therefore the wealth process
has a positive path-wise unique solution:

dWt =

0
BBBBBB@Wtr(Ht) +

nX

i=1

1
�

Wta(t, ln S t,Ht)

0
BBBBBB@✓i(Ht, ln S t) +

nX

j=1

1
2
�2

i, j(Ht, ln S t) � r(Ht)

1
CCCCCCA

1
CCCCCCA dt

+

nX

i=1

1
�

Wta(t, ln S t,Ht)

0
BBBBBB@

nX

j=1

�i, j(Ht, ln S t)dB( j)
t

1
CCCCCCA .

2.8 Relation to the BGSS
The main di↵erence between the our method and BGSS centralize on the procedure to obtain
the optimal allocation.
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In our method, we expand the value function with respect to all state variables up to second
order in Equation (2.25) and optimal allocation can be computed by Equation (2.6). At time t,
we compute the optimal allocation with estimated value function at t+�t and use it to estimate
value function at time t by a regression function. We move backward and obtain the value
function and optimal allocation at each period. There are two ways to obtain the corresponding
expected utility V(t,W0, ln S m

t ,Hm
t ) given state variable (W0, S m

t ,Hm
t ). The first (VFI) approach

is to make use of the estimation of function V(t + �t,W, ln S ,H) obtained from last step. After
computing the optimal allocation ⇡m

t , we generate Ŵm,n
t+�t(⇡

m
t ), Ŝ m,n

t+�t, Ĥ
m,n
t+�t. V(t,W0, ln S m

t ,Hm
t )

can be estimated by

V̂(t,W0, S m
t , X

m
t ) ⇡ 1

N

NX

n=1

V(t + �t, Ŵm,n
t+�t(⇡

m
t ), Ŝ m,n

t+�t, Ĥ
m,n
t+�t). (2.30)

An alternative (PWI) way is to generate the optimal terminal wealth (at T ). We set Ŵm,n
t =

W0, Ŝ m,n
t = S m

t , Ĥ
m,n
t = Hm

t . For time s � t, optimal allocation ⇡m,n
s can be obtained by V(s +

�t,W, ln S ,H) which has been estimated in previous step. We simulate Ŝ m,n
s , Ĥm,n

s and compute
the corresponding optimal wealth Ŵm,n

s . The value V(t,Wm
t , ln S m

t ,Hm
t ) can be estimated by

V̂(t,W0, S m
t ,H

m
t ) ⇡ 1

N

NX

n=1

U(Ŵm,n
T ). (2.31)

After computing the value of V(t,W0, ln S m
t ,Hm

t ), we regress it over (W0, S m
t ,Hm

t ) and obtain
an approximation for V(t,W, ln S ,H).

BGSS expands the value function solely with respect to the wealth level, and this is up to
order four. For simplicity, we show the expansion of the value function to the second order in
Equation (2.32). Instead of estimating the value function, the authors construct two regression
functions, one over f1 and the second over f2, while the optimal allocation is computed by
their ratio. One possible flaw of such approach is that by estimating f1 and f2 separately, one
may obtain incompatible results violating the intrinsic relation between these two functions, as
they are both descendants (plain derivatives) of the value function. We avoid this by estimating
directly the value function and then di↵erentiating to produce f1 and f2.

V(t,Wt, ⇡, ln S t,Ht) = f1(t,Wt, ln S t,Ht)⇡2 + f2(t,Wt, ln S t,Ht)⇡ + f3(t,Wt, ln S t,Ht)

f1(t,Wt, ln S t,Ht) =
1
2
Et[VWtWt(t + dt, (1 + r(Ht)dt)Wt, ln S t+dt, Xt+dt)W2

t �
2(Ht, ln S t)(dBt)2]

f2(t,Wt, ln S t,Ht) = Et[VWt(t + dt, (1 + r(Ht)dt)Wt, ln S t+dt,Ht+dt)Wt(✓(Ht, ln S t)

+
1
2
�2(Ht, ln S t) � r(Ht)))dt]

f3(t,Wt, ln S t,Ht) = Et[V(t + dt, (1 + r(Ht)dt)Wt, ln S t+dt,Ht+dt)]

⇡⇤t = �
f2(t,Wt, ln S t,Ht)

2 f1(t,Wt, ln S t,Ht)
.

(2.32)

The second di↵erence is that we assume a functional structure on the value function, i.e.
exponential polynomial, followed by a log transformation. We use a polynomial of (ln S ,H) to
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estimate the transformed value function ln (�V(t,W, ln S ,H)) � (1 � �) ln W. However, BGSS
directly estimate the derivatives of the value function without any transformation.

2.9 Tables and Figures.

(a)

(b) (c)

Figure 2.1: Di↵erent periods (Heston), (a) shows computational time versus number of period.
(b) shows annualized certainty equivalent rate (CER) versus number of period. (c) shows mean
L2 distance of optimal allocations at mid point versus number of period. We set � = 4 and use
other parameters in table 2.5 to produce above plots.



48 Chapter 2. A polynomial-Affine approximation for dynamic portfolio choice

(a) Heston (b) Mean reverting

Figure 2.2: CER versus time to maturity T , � = 10

(a) (b)

(c)

Figure 2.3: Di↵erent periods (Mean-reverting Model), (a) shows computational time versus
number of period. (b) shows annualized certainty equivalent rate (CER) versus number of
period. (c) shows mean L2 distance of optimal allocations at mid point versus number of
period. We set � = 4 and use other parameters in table 2.5 to produce above plots.
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Algorithm 6: VFI
Input: S 0,W0,H0, Initial value for all processes involved
Output: Optimal current trading strategy ⇡⇤0 and expected utility V̂(0,W0, ln S 0,H0)

1 initialization;
2 Generating nr paths of B( j,m)

t , B( j,m)
t , S m

t , Hm
t , m = 1...nr;

3 if t = T � �t then
4 for m = 1...nr do
5 Directly compute optimal allocation ⇡m

T��t with Equation (2.6) where the
derivative of value function w.r.t state variable is 0 at time T .;

6 for n = 1...N do
7 Simulate wealth Ŵm,n

T (⇡m
T��t) at the terminal time given that wealth, stock

price allocation and other state variables at T � �t are W0, S m
T��t, ⇡

m
T��t

and Hm
T��t;

8 Compute v̂m = ln (� 1
N

NP
n=1

U(Ŵm,n
T (⇡m

T��t))) � (1 � �) ln W0 ;

9 Regress v̂m over the polynomial of (Hm
T��t,ln S m

T��t), and obtain the function
LT��t(H, ln S );

10 for t = T � 2�t to �t do
11 for m = 1...nr do
12 Using the estimation of transformed value function Lt+�t(H, ln S ) from last

step, compute optimal allocation ⇡m
t with Equation (2.6) given S m

t , and Hm
t ;

13 for n = 1...N do
14 Simulate wealth Ŵm,n

t+�t(⇡
m
t ), Ŝ m,n

t+�t and Ĥm,n
t+�t given that wealth, stock price,

allocation and other state variables at t are W0, S m
t , ⇡m

t and Hm
t ;

15 Compute v̂m = ln ( 1
N

NP
n=1

(Wm,n
t+�t(⇡

m
t ))1�� exp(Lt+�t(Ĥm,n

t+�t, ln Ŝ m,n
t+�t))) � (1 � �) ln W0

;

16 Regress v̂m over the polynomial of (Hm
t , ln S m

t ), to produce the function Lt(H, ln S );

17 if t = 0 then
18 Compute ⇡⇤0 with L�t(H, ln S ) and Equation (2.6) ;
19 Generate new paths of S z

t , Hz
t , z = 1...N0, use the estimation of transformed value

function Lt(H, ln S ) to compute corresponding optimal allocation ⇡z
t and calculate

the optimal terminal wealth Wz
T . The expected utility is ,

V̂(0,W0, ln S 0,H0) = 1
N0

N0P
n=1

U(Wz
T );

20 return ⇡⇤0, V̂(0,W0, ln S 0,H0);
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Algorithm 7: PWI
Input: S 0,W0,H0, initial values for all processes involved
Output: Optimal current trading strategy ⇡⇤0 and expected utility V̂(0,W0, ln S 0,H0)

1 initialization;
2 Generating nr paths of B( j,m)

t , B( j,m)
t , S m

t , Hm
t , m = 1...nr;

3 if t = T � �t then
4 for m = 1...nr do
5 Directly compute optimal allocation ⇡m

T��t with Equation (2.6) where the
derivative of value function w.r.t state variable is 0 at time T ;

6 for n = 1...N do
7 Simulate wealth Ŵm,n

T (⇡m
T��t) at the terminal given that wealth, stock price,

allocation and other state variables at T � �t are W0, S m
T��t, ⇡

m
T��t and

Hm
T��t;

8 Compute v̂m = ln ( 1
N

NP
n=1

U(Ŵm,n
T (⇡m

T��t))) � (1 � �) ln (W0) ;

9 Regress v̂m over the polynomial of (Hm
T��t,ln S m

T��t), producing the function
LT��t(H, ln S )

10 for t = T � 2�t to �t do
11 for m = 1...nr do
12 for n = 1...N do
13 Set Ŵm,n

t = W0, Ŝ m,n
t = S m

t and Ĥm,n
t = Hm

t ;
14 for s = t to T � �t do
15 Using the estimation of transformed value function Ls+�t(H, ln S ) from

previous step, compute optimal allocation ⇡m,n
s with Equation(2.6),

given Ŝ m,n
s and Ĥm,n

s ;
16 Simulate wealth Ŵm,n

s+�t, Ŝ m,n
s+�t and Ĥm,n

s+�t given the wealth, stock price
allocation and other state variables at t are Ŵm,n

s , Ŝ m,n
s , ⇡m,n

s and Ĥm,n
s ;

17 Obtain terminal wealth Ŵm,n
T . Compute

v̂m = ln ( 1
N

NP
n=1

U(Ŵm,n
T )) � (1 � �) ln (W0) ;

18 Regress v̂m over the polynomial of (Hm
t ,ln S m

t ), and obtain the function Lt(H, ln S );

19 if t = 0 then
20 Compute ⇡⇤0 with L�t(H, ln S ) and Equation (2.6) ;
21 Generate new paths of S z

t , Hz
t , z = 1...N0, use the estimation of transformed value

function Lt(H, ln S ) to compute corresponding optimal allocation ⇡z
t and calculate

the optimal terminal wealth Wz
T . The expected utility is ,

V̂(0,W0, ln S 0,H0) = 1
N0

N0P
n=1

U(Wz
T );

22 return ⇡⇤0, V̂(0,W0, ln S 0,H0);
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Table 2.2: Parameter value for Merton’s problem
Parameter Value Parameter Value
T 1 � 0.2
r 0.05 �S 0.22
�t 0.1 period 10
S 0 1.0 W0 1
N 2000 nr 100
N0 2000000

Table 2.3: Parameter value for VAR model
Parameter Value Parameter Value
T 10 �t 0.25
Rf 1.060.25 period 40
ar 0.277 br 0.060
ad -0.155 bd 0.958
µr 0 µd 0
�2

r 0.0060 �2
d 0.0049

⇢�r�d -0.0051 d0 -3.6905
S 0 1.0 W0 1
N 2000 nr 100
N0 2000000

Table 2.4: Parameter value for the SV case, after [34]
Parameter Value Parameter Value
T 1 ⇢S V -0.54
✓v 0.0257 �v 0.26
v 1.33 �S 2.45
�t 0.1 period 10
r 0.05 v0 0.04
S 0 1.0 W0 1
N 2000 nr 100
N0 2000000

Table 2.5: Parameter value for mean-reverting model, after [19]
Parameter Value Parameter Value
T 1 A 1
✓t 0.1 � 0.02
�t 0.1 period 10
rt 0.05 W0 1
S 0 1.0 N 2000
nr 100 N0 2000000
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Table 2.6: Parameter value for the Heston model with stochastic interest rate, after [35]
Parameter Value Parameter Value
T 1 ⇢S X -0.7
✓X 0.0199 �X 0.2941
X 2.8278 �old

S 2.2472
�X -6.6932 �r -0.1132
✓r 0.0192 �r 0.0566
r 0.1300 ⌫ -0.5973
�t 0.1 period 10
r0 ✓r X0 ✓X
S 0 1.0 W0 1
N 2000 nr 100
N0 2000000

(a) ⇡ versus ⇢S r and ⇢Xr (b) CER versus ⇢S r and ⇢Xr

Figure 2.4: The optimal strategy and CER across di↵erent value of ⇢S r and ⇢Xr (Heston model
with stochastic interest rate), � = 4. Results from PAMC-VFI and PAMC-PWI are visually
overlapped.



2.9. Tables and Figures. 53

Table 2.7: Results for GBM
� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0

Theoretical
Weights (⇡⇤0) 0.550 0.275 0.183 0.138 0.110
Expected utility (V⇤(0)) -0.940 -0.282 -0.153 -0.099 -0.070
CER (%) 6.41 5.77 5.56 5.45 5.38
BGSS 2nd

Weights (⇡BGS S
0 ) 0.554 0.277 0.185 0.139 0.111

Relative error(%) in ⇡ 0.7 0.7 0.7 0.7 0.7
Expected utility (VBGS S (0)) -0.940 -0.282 -0.153 -0.099 -0.069
Relative error(%) in V 0.02 0.05 0.07 0.10 0.12
CER (%) 6.38 5.75 5.54 5.43 5.37
Computational time (seconds) 7.1 7.0 7.5 7.6 7.1
BGSS 4th

Weights (⇡BGS S
0 ) 0.556 0.278 0.185 0.139 0.111

Relative error(%) in ⇡ 1.0 1.1 1.2 1.2 1.2
Expected utility (VBGS S (0)) -0.940 -0.282 -0.153 -0.099 -0.069
Relative error(%) in V 0.02 0.05 0.07 0.10 0.12
CER (%) 6.38 5.75 5.54 5.43 5.37
Computational time (seconds) 17.1 17.6 17.4 17.4 17.5
SGBM
Weights (⇡BGS S

0 ) 0.554 0.277 0.185 0.139 0.111
Relative error(%) in ⇡ 0.8 0.8 0.8 0.8 0.8
Expected utility (VBGS S (0)) -0.940 -0.282 -0.153 -0.099 -0.069
Relative error(%) in V 0.009 0.03 0.05 0.08 0.10
CER (%) 6.39 5.75 5.54 5.43 5.37
Computational time (seconds) 16.0 16.7 16.1 16.6 16.6
SGBM-LT
Weights (⇡S GBM

0 ) 0.554 0.277 0.185 0.139 0.111
Relative error(%) in ⇡ 0.7 0.9 0.9 0.9 0.9
Expected utility (VS GBM(0)) -0.940 -0.282 -0.153 -0.099 -0.069
Relative error(%) in V 0.02 0.05 0.07 0.10 0.12
CER (%) 6.39 5.75 5.54 5.43 5.37
Computational time (seconds) 20.0 21.7 20.1 21.6 21.6
PAMC (VFI)
Weights (⇡S GBM

0 ) 0.550 0.275 0.183 0.138 0.110
Relative error (%) in ⇡ 0 0 0 0 0
Expected utility (VS GBM(0)) -0.940 -0.282 -0.153 -0.099 -0.069
Relative error (%) in V 0.01 0.07 0.07 0.11 0.10
CER (%) 6.38 5.75 5.54 5.43 5.37
Computational time (seconds) 6.4 7.8 7.9 8.1 8.1
PAMC(PWI)
Weights (⇡S GBM

0 ) 0.550 0.275 0.183 0.138 0.110
Relative error (%) in ⇡ 0 0 0 0 0
Expected utility (VS GBM(0)) -0.940 -0.282 -0.153 -0.099 -0.069
Relative error (%) in V 0.01 0.04 0.06 0.11 0.17
CER (%) 6.39 5.75 5.54 5.43 5.36
Computational time (seconds) 21.4 21.8 21.9 21.1 21.8
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Table 2.8: Results for VAR model
� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0

COS
Weights (⇡COS

0 ) 1.0 0.835 0.725 0.640 0.570
Expected utility (VCOS (0)) -0.414 -0.0270 -0.00364 -0.000650 -0.000136
CER (%) 9.23 8.74 8.34 8.01 7.74
Computational time (seconds) 325.9 334.7 334.9 334.9 334.7
BGSS 2nd

Weights (⇡BGS S
0 ) 1.0 0.763 0.608 0.486 0.401

Expected utility (VBGS S (0)) -0.414 -0.0272 -0.00388 -0.000762 -0.000172
CER (%) 9.23 8.71 8.20 7.76 7.45
Computational time (seconds) 55.3 56.7 56.5 53.6 53.2
BGSS 4th

Weights (⇡BGS S
0 ) 1.0 0.831 0.693 0.577 0.484

Expected utility (VBGS S (0)) -0.414 -0.0270 -0.00372 -0.000690 -0.000151
CER (%) 9.23 8.74 8.30 7.92 7.61
Computational time (seconds) 109.1 273.4 320.1 325.8 346.9
SGBM
Weights (⇡S GBM

0 ) 1.0 0.833 0.713 0.603 0.508
Expected utility (VS GBM(0)) -0.414 -0.0270 -0.00365 -0.000679 -0.000150
CER (%) 9.23 8.74 8.34 7.94 7.62
Computational time (seconds) 230.8 230.7 234.1 235.6 231.6
SGBM-LT
Weights (⇡S GBM

0 ) 1.0 0.842 0.729 0.639 0.550
Expected utility (VS GBM(0)) -0.414 -0.0270 -0.00364 -0.000653 -0.000141
CER (%) 9.23 8.74 8.34 8.00 7.70
Computational time (seconds) 253.2 256.6 260.5 261.1 265.1
PAMC (VFI)
Weights (⇡PAMC

0 ) 1.0 0.853 0.741 0.656 0.586
Expected utility (VPAMC(0)) -0.414 -0.0270 -0.00365 -0.000650 -0.000136
CER (%) 9.23 8.74 8.34 8.01 7.74
Computational time (seconds) 56.3 58.2 58.2 57.9 58.1
PAMC (PWI)
Weights (⇡PAMC

0 ) 1.0 0.837 0.722 0.641 0.572
Expected utility (VPAMC(0)) -0.414 -0.0270 -0.00365 -0.000651 -0.000136
CER (%) 9.23 8.74 8.34 8.01 7.74
Computational time (seconds) 482.4 476.8 475.9 475.1 475.1



2.9. Tables and Figures. 55

Table 2.9: Results for stochastic volatility
� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0

Theoretical
Weights (⇡⇤0) 1.287 0.660 0.442 0.335 0.268
Expected utility (V⇤(0)) -0.902 -0.264 -0.142 -0.091 -0.064
CER (%) 10.88 8.05 7.08 6.60 6.31
BGSS 2nd

Weights (⇡BGS S
0 ) 1.267 0.648 0.435 0.327 0.263

Relative error (%) in ⇡ 1.52 1.93 2.09 2.16 2.21
Expected utility (VBGS S (0)) -0.902 -0.264 -0.142 -0.091 -0.064
Relative error (%) in V 0.03 0.07 0.10 0.13 0.16
CER (%) 10.84 8.02 7.06 6.58 6.29
Computational time (seconds) 20.3 21.0 21.5 21.3 21.2
BGSS 4th

Weights (⇡BGS S
0 ) 1.275 0.657 0.442 0.333 0.267

Relative error (%) in ⇡ 0.92 0.56 0.51 0.50 0.50
Expected utility (VBGS S (0)) -0.902 -0.264 -0.142 -0.091 -0.064
Relative error (%) in V 0.02 0.06 0.08 0.12 0.15
CER (%) 10.85 8.03 7.06 6.58 6.29
Computational time (seconds) 37.8 39.7 38.1 38.9 38.0
SGBM
Weights (⇡S GBM

0 ) 1.275 0.657 0.442 0.333 0.267
Relative error (%) in ⇡ 0.94 0.56 0.51 0.48 0.49
Expected utility (VS GBM(0)) -0.902 -0.264 -0.142 -0.091 -0.064
Relative error (%) in V 0.03 0.06 0.09 0.13 0.16
CER (%) 10.85 8.03 7.06 6.58 6.29
Computational time (seconds) 55.3 55.0 54.5 55.3 55.1
SGBM-LT
Weights (⇡S GBM

0 ) 1.274 0.656 0.442 0.333 0.267
Relative error (%) in ⇡ 1.02 0.65 0.60 0.59 0.58
Expected utility (VS GBM(0)) -0.902 -0.264 -0.142 -0.091 -0.064
Relative error (%) in V 0.02 0.06 0.09 0.12 0.16
CER (%) 10.85 8.03 7.06 6.58 6.29
Computational time (seconds) 61.4 62.1 61.3 62.0 62.1
PAMC (VFI)
Weights (⇡PAMC

0 ) 1.286 0.660 0.444 0.334 0.268
Relative error (%) in ⇡ 0.04 0.08 0.10 0.12 0.12
Expected utility (VPAMC(0)) -0.902 -0.264 -0.142 -0.091 -0.064
Relative error (%) in V 0.02 0.04 0.05 0.05 0.06
CER (%) 10.85 8.03 7.07 6.59 6.30
Computational time (seconds) 50.3 50.1 50.4 50.0 50.3
PAMC (PWI)
Weights (⇡PAMC

0 ) 1.281 0.655 0.440 0.331 0.265
Relative error (%) in ⇡ 0.48 0.86 1.01 1.10 1.15
Expected utility (VPAMC(0)) -0.902 -0.264 -0.142 -0.091 -0.064
Relative error (%) in V 0.02 0.04 0.05 0.06 0.06
CER (%) 10.85 8.03 7.07 6.60 6.30
Computational time(seconds) 122.5 123.4 122.6 122.8 122.3
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Table 2.10: Results for Heston model with di↵erent degree of polynomial
degree Theoretical 1 2 3 1 2 3

VFI PWI
� = 2 Weight 1.287 1.286 1.287 1.280 1.281 1.281 1.286

CER(%) 10.88 10.85 10.85 10.85 10.85 10.85 10.85
Computational time 51.1 50.9 51.5 148.2 150.0 153.4

� = 10 Weight 0.268 0.268 0.268 0.266 0.265 0.265 0.267
CER(%) 6.31 6.30 6.30 6.30 6.30 6.30 6.30
Computational time 53.8 54.3 55.0 154.8 158.6 161.9

Table 2.11: Error between numerical and theoretical allocation at mid point Heston Model

method
� 2 10

Mean of L2 distance
BGSS 2nd 6.8 ⇥ 10�5 1.5 ⇥ 10�5

BGSS 4th 1.9 ⇥ 10�4 1.2 ⇥ 10�5

SGBM 9.0 ⇥ 10�5 1.0 ⇥ 10�4

SGBM -LT 8.7 ⇥ 10�5 2.3 ⇥ 10�5

(VFI) (degree=1) 5.1 ⇥ 10�6 2.0 ⇥ 10�6

(VFI) (degree=2) 5.1 ⇥ 10�6 2.0 ⇥ 10�6

(VFI) (degree=3) 6.2 ⇥ 10�6 2.4 ⇥ 10�6

(PWI) (degree=1) 4.8 ⇥ 10�6 1.8 ⇥ 10�6

(PWI) (degree=2) 4.4 ⇥ 10�6 1.7 ⇥ 10�6

(PWI) (degree=3) 4.3 ⇥ 10�6 1.6 ⇥ 10�6
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Table 2.12: Results for mean-reverting case
� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0

Theoretical
Weights (⇡⇤0) 1.084 0.632 0.449 0.348 0.284
Expected utility (V⇤(0, x)) -0.859 -0.240 -0.126 -0.080 -0.056
CER (%) 16.38 11.56 9.64 8.60 7.95
BGSS 2nd

Weights (⇡BGS S
0 ) 1.031 0.578 0.401 0.307 0.249

Relative error (%) in ⇡ 4.93 8.64 10.54 11.65 12.38
Expected utility (VBGS S (0)) -0.865 -0.244 -0.129 -0.083 -0.058
Relative error (%) in V 0.67 1.83 2.54 3.00 3.32
CER (%) 15.61 10.89 9.09 8.14 7.56
Computational time(seconds) 7.9 8.8 8.9 8.9 8.8
BGSS 4th

Weights (⇡BGS S
0 ) 1.076 0.612 0.440 0.332 0.270

Relative error (%) in ⇡ 0.73 3.13 4.07 4.62 5.00
Expected utility (VBGS S (0)) -0.864 -0.243 -0.129 -0.082 -0.057
Relative error (%) in V 0.60 1.36 1.88 2.23 2.48
CER (%) 15.68 11.06 9.23 8.26 7.66
Computational time(seconds) 30.1 29.6 30.3 29.1 31.0
SGBM
Weights (⇡S GBM

0 ) 1.070 0.612 0.429 0.330 0.269
Relative error (%) in ⇡ 1.26 3.23 4.36 5.06 5.54
Expected utility (VS GBM(0)) -0.864 -0.243 -0.129 -0.082 -0.057
Relative error (%) in V 0.55 1.36 1.88 2.21 2.46
CER (%) 15.75 11.06 9.23 8.26 7.66
Computational time(seconds) 39.8 39.9 40.7 39.9 39.4
SGBM-LT
Weights (⇡S GBM

0 ) 1.072 0.613 0.430 0.331 0.269
Relative error (%) in ⇡ 1.12 3.00 4.16 4.89 5.39
Expected utility (VS GBM(0)) -0.864 -0.243 -0.129 -0.082 -0.057
Relative error (%) in V 0.52 1.32 1.82 2.16 2.40
CER (%) 15.78 11.07 9.24 8.27 7.67
Computational time(seconds) 47.3 47.9 47.0 47.3 47.6
PAMC (VFI)
Weights (⇡PAMC

0 ) 1.092 0.635 0.448 0.346 0.282
Relative error (%) in ⇡ 0.70 0.44 0.16 0.62 0.95
Expected utility (VPAMC(0)) -0.863 -0.243 -0.128 -0.082 -0.057
Relative error (%) in V 0.41 1.18 1.64 1.95 2.16
CER (%) 15.90 11.12 9.28 8.30 7.70
Computational time (seconds) 7.6 7.8 7.8 7.8 7.9
PAMC (PWI)
Weights (⇡PAMC

0 ) 1.093 0.640 0.452 0.349 0.285
Relative error (%) in ⇡ 0.78 1.16 0.79 0.46 0.21
Expected utility (VPAMC(0)) -0.858 -0.243 -0.128 -0.082 -0.057
Relative error (%) in V 0.33 1.18 1.64 1.95 2.17
CER (%) 16.00 11.12 9.28 8.30 7.70
Computational time (seconds) 20.4 20.5 20.6 20.6 20.6
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Table 2.13: Results for mean-reverting case with di↵erent degree of polynomial
degree Theoretical 1 2 3 1 2 3

VFI PWI
� = 2 Weight 1.084 1.001 1.092 1.092 1.016 1.093 1.090

CER(%) 16.38 15.66 15.90 15.84 15.64 16.00 15.83
Computational time 7.5 7.8 8.3 18.9 20.6 22.2

� = 10 Weight 0.284 0.226 0.282 0.281 0.267 0.285 0.281
CER(%) 7.95 7.53 7.70 7.70 7.52 7.70 7.70
Computational time 7.3 7.9 8.5 19.0 20.6 22.4

Table 2.14: Error between numerical and theoretical allocation at mid point Mean-reverting
Model

method
� 2 10

Mean of L2 distance
BGSS 2nd 2.1 ⇥ 10�4 6.7 ⇥ 10�5

BGSS 4th 1.5 ⇥ 10�4 3.6 ⇥ 10�5

SGBM 1.5 ⇥ 10�4 3.3 ⇥ 10�5

SGBM-LT 1.4 ⇥ 10�4 3.1 ⇥ 10�5

(VFI) (degree=1) 2.0 ⇥ 10�4 8.8 ⇥ 10�5

(VFI) (degree=2) 1.5 ⇥ 10�5 1.5 ⇥ 10�5

(VFI) (degree=3) 3.6 ⇥ 10�5 1.5 ⇥ 10�5

(PWI )(degree=1) 2.0 ⇥ 10�4 8.9 ⇥ 10�5

(PWI) (degree=2) 3.4 ⇥ 10�5 1.7 ⇥ 10�5

(PWI) (degree=3) 3.2 ⇥ 10�5 1.6 ⇥ 10�5
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(a) ⇡ versus ⇢S r (b) CER versus ⇢S r

(c) Computational time versus ⇢S r

Figure 2.5: Comparison in Heston model with stochastic interest rate given ⇢Xr = 0: (a) optimal
strategy, (b) CER and (c) computational time from PAMC, BGSS and SGBM across di↵erent
value of ⇢S r.



Chapter 3

Polyomial a�ne approach to the HARA
utility with application to OU 4/2 model

Chapter summary:
This chapter designs a numerical methodology, named PAMH, to approximate an investor’s

optimal portfolio strategy in the contexts of expected utility theory (EUT) and mean-variance
theory (MVT). Thanks to the use of hyperbolic absolute risk aversion utilities (HARA), the ap-
proach produces optimal solutions for decreasing relative risk aversion (DRRA) investors, as
well as for increasing relative risk aversion (IRRA) agents. The accuracy and e�ciency of the
approximation is examined in a comparison to known closed-form solutions for a one dimen-
sional (n = 1) geometric Brownian motion with a CIR stochastic volatility model (i.e. GBM
1/2 or Heston model), and a high dimensional (up to n = 35) stochastic covariance model. The
former confirms the method works even when the theoretical candidate is not well-defined,
while the latter illustrates low errors (up to 8% in certainty equivalent rate (CER)) and feasible
computational time (less than one hour in a PC) .
Given the potential of this method, we investigate a relevant practical setting with no closed-
form solution, namely when assets follow an Ornstein–Uhlenbeck 4/2 stochastic volatility (SV,
i.e. OU 4/2) model. We conduct sensitivity analyses of the optimal strategies for DRRA and
IRRA investors with respect to key parameters; (e.g. risk aversion, minimum capital guarantee
and 4/2’s parameters). In particular, the e�cient frontier for the IRRA case is presented. A
comparison to important sub-optimal strategies in terms of CER is performed, indicating low
CER performances due to ignorance of stochastic volatility for CRRA investors, i.e. a myopic
strategy would be even better than ignoring SV. The analyses highlight the importance of e�-
cient and precise numerical methods to obtain substantially higher CERs.
Status: Published in Applied Mathematics and Computation.

3.1 Introduction
Financial markets and the models that describe them are ceaselessly evolving. New stylized
market phenomena emerge over time, and models to describe even the simplest equity mar-
kets are significantly refined each decade. For example, stochastic volatility (SV; see [32] for
the ARCH model and [48] for the 1/2 continuous-time model, geometric Brownian motion

60
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[GBM] 1/2) emerged in 1980s and 1990s; this is one of the most important stylized facts when
describing market indexes, such as the S&P 500, or common stocks. This branch has led to
many innovations, such as the trading of VIX since 2004, created by Chicago Board Options
Exchange (CBOE) as an index tracking the instantaneous SV of the S&P 500, or the invention
of VVIX in 2012, used for tracking the stochastic volatility of volatility (SVV). As recently
as 2017 (see [45]), researchers are still crafting the right models for SV; there, the author in-
troduced the GBM 4/2 model to better capture implied volatility surfaces and the patterns of
historical volatilities. Many other stylized facts, such as stochastic market prices of risk, mean-
reverting periods and Markov-switching market states (crisis, normal), also require constant
attention to remain relevant in modern financial mathematics. All these facts highlight the
need for numerical methods that can e�ciently solve important financial challenges.

This chapter proposes a numerical method for portfolio optimization targeting investor with
hyperbolic absolute risk aversion (HARA) risk preferences. We explore accuracy and time
e�ciency when working with advanced stochastic variance/covariance models. Given the im-
portance and lack of solvability of the 4/2 family of models, we use the numerical approach to
explore in detail the solutions for one member of the 4/2 family. Next we present an overview
motivating our 4/2 application and the state of the art on numerical portfolio solutions.

Starting with the GBM in [8] seminal work, continuous-time stochastic di↵erential equa-
tions (SDEs) are powerful tools to generate rich models capable of describing financial data.
Unlike the GBM, the SV model of [48], named GBM 1/2, is able to produce volatility smiles
and skews similar to those observed in equity option markets. However, because of the restric-
tions on the volatility of volatility, 1/2 volatility paths spend much more time close to 0 than is
predicted by the empirical distribution of the volatility, among other drawbacks. The GBM 3/2
model of [49] was developed to overcome some of these limitations but it still admits extreme
paths with spikes in instantaneous volatility. Twenty-five years later, a new influential model
(see [45] for the GBM 4/2) unified the 1/2 and 3/2 models, better capturing the evolution of the
implied volatility surface. The 4/2 model uniformly bounds the instantaneous variance away
from zero when weights on 1/2 and 3/2 factors are positive. The GBM 4/2 was extended to
capture mean-reverting of the underlying stock in [37], defining the Ornstein–Uhlenbeck 4/2
(OU 4/2) targeting commodities and currency markets.. However, the additional sources of
randomness jeopardise the analytic solvability of important financial problems, including the
target of this chapter: optimal investment allocation.

Portfolio optimization for continuous-time processes began in the late 60s with the seminal
papers of [76] and [78]; this was in the setting of expected utility theory (EUT). The author used
Hamilton-Jacobi-Bellman (HJB) to produce optimal trading strategies, value functions and
the optimal wealth for stock prices modeled with a GBM. Moreover, [59] followed Merton’s
approach and obtained a closed-form solution of optimal strategies with the 1/2 model for a
constant relative risk aversion (CRRA) utility, which is one of the most popular choices among
investors. Then, [19] considered the same optimal portfolio problem and utility, when stock
price follows exponential Ornstein–Uhlenbeck processes. They obtained analytic solutions up
to a system of ordinary di↵erential equations (ODEs). All the cases described above belong to
quadratic-a�ne family defined in the celebrated paper of [70]. This latest family appears to be
one of the broadest classes solvable in closed form with CRRA utilities. Nonetheless, many
reasonable and interesting models do not match the definition of the quadratic-a�ne family,
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and they are hence rarely solvable in the context of portfolio optimization. The examples
considered in this chapter, namely, the OU 4/2 model and the embedded cases of OU 1/2 and
OU 3/2, are not quadratic a�ne.

Moreover, CRRA is a somewhat narrow family of utilities; the larger class of HARA util-
ities is preferable due to the flexible capturing risk aversion preference. However, HARA is a
challenging class with which to generate closed-form solutions; therefore, it has been studied
to a lesser extent for advanced SDE models. Two notable exceptions are the works of [61],
where the authors considered the stochastic market price of risk and SV, as well as non-mean
reverting underlyings, solving the optimal allocation problem for incomplete markets. Optimal
allocations for a bond-stock market incorporating regime switching, a stochastic short rate and
further stochastic factors was presented in [33]. The target model in this chapter (i.e. the Orn-
stein–Uhlenbeck 4/2 model) has not yet been studied with CRRA or with HARA utilities due
to the lack of closed-form solutions.

Another benefit of HARA utilities is their use as a bridge connecting EUT and another
important branch of portfolio optimization, namely, mean-variance theory (MVT). [73] solved
the optimal single-period investment allocation which laid the foundation for the later devel-
opment of asset management. The existence of a variance term in the objective function does
not allow for a direct application of the Bellman principle (i.e. time inconsistent problematic).
[5] thus proposed a framework to derive a so-called time-consistent mean-variance (TCMV)
strategy. An alternative solution is called a pre-commitment approach (see [89]), which is ob-
tained by transforming the dynamic mean-variance portfolio problem into a stochastic linear
quadratic (LQ) problem. In addition to the traditional HJB PDE, the LQ approach leads to a
representation of the solution in terms of backward stochastic di↵erential equations (BSDEs).
The seminal papers, [66] and [65], found the associated stochastic Riccati equations (SREs) for
the optimal mean-variance strategy in complete and incomplete market setting. These works
are extended in [20], which obtained closed-form solution of mean–variance portfolio in the
presence of correlation risk. TCMV solutions within the LQ approach were first presented in
[50]. The recent work of [88] links TCMV portfolio to the solutions of BSDEs for generalized
one-dimensional SV models.

The linear quadratic pre-commitment problem is a special case of a HARA utility; there-
fore, the MVT strategy can be studied as an EUT HARA portfolio choice problem. As men-
tioned before, closed-form solutions exist for GBM, OU and GBM 1/2 models, but more ad-
vanced models such as the OU 4/2 model must be studied with an e�cient numerical method.

The lack of closed-form solutions promotes the emergence of many numerical approxima-
tion methods for optimal portfolio strategies, most of which focus on a CRRA-type investor.
[11] analyzed dynamic portfolio selection by solving HJB partial di↵erential equation (PDE)
with a finite di↵erence method. However, the numerical PDE method su↵er from the curse of
dimensionality, which limits its practical use (see [42] and [1]). In contrast, Monte Carlo based
methods accommodate a variety of situations and are preferable in the case of a large amount
of state variables and stochastic factors. Inspired by [72], [10] first applied the least-squares
Monte Carlo method to the portfolio optimization problem with excellent results in terms of
accuracy and time e�ciency. Therefore, [40] expanded the value function based on a nonlin-
ear decomposition and applied the inverse transformation on the value function, successfully
improving the accuracy. [24] enhanced [10] by replacing the standard regression method by a
techniques called the stochastic grid bundling method (SGBM) introduced in [53]. A Monte
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Carlo based method was discussed in [9], which utilizes the martingale approach and is ef-
ficient for high dimensional portfolio selection. Recently, deep learning models have been
successfully used in high-dimensional stochastic control problems. For example, [4] and [52]
proposed deep learning-based algorithms, providing accurate estimates of optimal control and
value function for discrete-time finite time horizon problems. An e�cient deep reinforcement
learning based algorithm, targeting non-linear PDEs and dynamic optimization problem in fi-
nance, was introduced in [42]. [84] considered the application of a deep-learning method to
high-dimensional portfolio with serially-dependent models. [64] enhanced method introduced
in [23] with the Lasso and shown good stability in both low and high dimensional portfolio
choice problem.

The contributions of the chapter are summarized next:

1. A numerical method is presented to approximate optimal allocation and value func-
tion for a risk-averse investor in a general HARA setting, hence embedding both EUT
(DRRA) and MVT (IRRA) cases. The method relies on the wealth and state variables
separability of the value function to fit the value function via an exponential polynomial.1
This work generalizes the family of exponential quadratic solutions (see [70]).

2. A high level of accuracy of the methodology and low computational time on a standard
PC are demonstrated on two models, a one-dimensional stochastic volatility GBM 1/2
model (as per [61]), and, for CRRA utilities, a 35-dimensional multivariate stochastic
covariance model (see [34]).

3. The optimal strategy, optimal wealth and value function are numerically studied for an
OU 4/2 model (see [37]) in the context of EUT (decreasing RRA). Sensitivities to risk
aversion level, minimum capital guarantee and 4/2 parameters are presented. The anal-
ysis confirms substantial changes in allocations due to relatively small changes in these
parameters.

4. An e�cient frontier of pre-commitment strategies for dynamic MVT (increasing RRA
investor) is obtained. A sensitivity to 4/2 parameters and multipliers is presented, con-
firming the findings of the DRRA case.

5. The suboptimality of myopic strategies in terms of the certainty equivalent rate (CER),
for OU 4/2 models, is corroborated. A similar analysis of CER performance in the
popular OU 1/2 model confirms low CERs for investors ignoring SV, to the point that a
myopic strategy may be preferable to a strategy that neglects SV.

The chapter is organized as follows: Section 3.2 introduces the investor’s problem and
methodology, and Section 3.3 examines the accuracy of the method by comparing it to the
analytical solution of Heston’s SV model and a multivariate stochastic covariance model. The
optimal allocation, e�cient frontier and sensitivity analysis with respect to the volatility group
parameters are then studied in Section 3.4. Section 3.5 concludes with the detailed algorithm,
and mathematical proof is provided in the Section 3.6 and 3.7.

1See [90] for a CRRA application with neural networks.



64Chapter 3. Polyomial affine approach to theHARA utility with application toOU 4/2 model

3.2 Polynomial-a�ne method for HARA utilities
This section introduces a method to solve dynamic portfolio choice for a risk-averse investor
with a HARA utility function. We assume that the stochastic processes describing the financial
market are defined on a complete probability space (⌦,F ,P) with a right-continuous filtration
{Ft}t2[0,T ]. We consider an economy with a money market account (M) and n stocks S =
(S (1), ..., S (n)). We assume the log stock prices follow a general di↵usion process with a n-dim
state variable X = (X(1), ..., X(n)):

8>>>>>>>><
>>>>>>>>:

dMt
Mt
= rdt

d ln S (i)
t = ✓i(Xt, ln S t)dt +

Pn
j=1 �i, j(Xt, ln S t)dB( j)

t , i = 1, .., n
dX( j)

t = aj(X
( j)
t )dt + bj(X

( j)
t )dB(X, j)

t

< dB( j)
t , dB(X, j)

t >= ⇢ jdt, j = 1, .., n

(3.1)

where B(i)
t , B(X, j)

t for i, j = 1, .., n are Brownian motions with correlation only when i =
j, |⇢ j| < 1. r is the risk-free rate, ✓(Xt, ln S t) = (✓1(Xt, ln S t), .., ✓n(Xt, ln S t)), �(Xt, ln S t) =
(�i, j(Xt, ln S t)) are the drift and volatility of the log price processes. We assume the matrix
�(Xt, ln S t)�(Xt, ln S t)T is strictly definite positive, and the coe�cients: ✓i,�i, j, aj, bj satisfy
the non-Lipschitz conditions in Proposition 1.2 from [60] to ensure existence and uniqueness
of a solution to the SDE.

There are many popular models embedded in this representation. For example, for one
stock, Equation (3.1) is the Geometric Brownian Motion (GBM) when ✓(Xt, ln S t) and�(Xt, ln S t)
are constants. If we set ✓(Xt, ln S t) = r + (�S � 0.5)Xt, �(Xt, ln S t) =

p
Xt, a(Xt) = X(✓X � Xt)

and b(Xt) = �X
p

Xt, Equation (3.1) is exactly the Heston’s 1/2 model. Furthermore, the expo-
nential Ornstein–Uhlenbeck model can be obtained by setting ✓(Xt, ln S t) = S (✓S � ln S t)dt,
�(Xt, ln S t) = �.

For multiple stocks, (3.1) greatly overlaps with the largest family of solvable stochastic
covariance models in the literature, this is the Quadratic-A�ne defined in [70]. For simplicity
of exposition, we choose the same number of state variables and stocks (n) and a convenient
dependence structure among the Brownian vectors B and B(X), both assumptions can be relaxed
for future analysis.

We consider an investor with risk preference as per a HARA utility, defined in [78], as
follows:

U(W) =
�

1 � � (
!

�
W � F)1�� (3.2)

where ! > 0, � , 1 and !�W � F > 0. � represents the investor’s level of risk aversion. There
is a lower bound on portfolio wealth W when � > 0 and an upper bound on W when � < 0.
The relative risk aversion (RRA) of HARA utility is given by

RRA = �WU00(W)
U0(W)

= (
1
�
� F
!W

)�1, (3.3)

which increases with wealth W when F is negative (IRRA) and decreases when F is positive
(DRRA). A well-known example, of a positive F is the constant proportion portfolio insur-
ance (CPPI) strategy obtained for a HARA investor when stock price follows a GBM; in this
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case, F can be interpreted as a minimum capital guarantee. It is worth mentioning that the
HARA utility in Equation (3.2) converges to other standard utilities with a specific choice of
the parameters. Table 3.1 lists some special cases of HARA utility, which can consequently be
adapted to our methodology.

Table 3.1: Special cases of the hyperbolic absolute risk aversion (HARA) utility
Parameter Utility
� = �1 Quadratic utility
� ! 1, F = �1 Exponential utility (CRAR)
F = 0, � > 0 Power utility (CRRA)
! = � ! 1, F = 0 Log utility

We assume that investors can freely trade at, highly frequent, discrete opportunities t 2
[0,�t, 2�t, ...,T � �t] up to a terminal time T . Let ⇡t = (⇡(1)

t , .., ⇡
(n)
t ) denote the percentage of

wealth allocated to the stocks at time t. The corresponding wealth process is,

dWt

Wt
=

0
BBBBBB@r +

nX

i=1

⇡(i)
t

0
BBBBBB@✓i(Xt, ln S t) +

nX

j=1

1
2
�2

i, j(Xt, ln S t) � r

1
CCCCCCA

1
CCCCCCA dt (3.4)

+

nX

i=1

⇡(i)
t

0
BBBBBB@

nX

j=1

�i, j(Xt, ln S t)dB( j)
t

1
CCCCCCA .

The investor wants to derive an investment strategy ⇡t that maximizes the expected utility
from the terminal wealth WT . The investor’s problem at any time t 2 [0,T ] can be written as

V(t,W, ln S , X) = max
⇡{s�t}

E(U(WT )|Ft), (3.5)

where V(t,W, ln S , X) is called the value function at time t.
The value function for a HARA utility and a large family of di↵usion has been shown to

have representation (see, for instance, [33]):

V(t,W, X, ln S ) =
�

1 � � (
!

�
W � Fd(t))1�� f (t, X, ln S ) (3.6)

where d(t) is the price of a zero coupon bond. Moreover the structure of the value function
within the quadratic-A�ne model class of [70] is also of the form:

V(t,W, X, ln S ) =
W1��

1 � � f (t, X, ln S ). (3.7)

In both cases the function f (t, X, ln S ) is exponential linear or quadratic. Inspired by these re-
sults we assume Equation (3.6) to be an approximation for the solution of problem (3.5), with
the flexibility that ln f could be of any polynomial form.2 In other words, we approximate
the true ln f by a polynomial of order k, denoted Pk, via regression. It is not di�cult to show

2If the model is solvable, ln f is often a linear or quadratic function. While, when the model is unsolvable, a
polynomial function with higher degree provides flexibility in capturing the value function.
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that the value function is indeed separable in W and X, e.g. in the form of (3.7), therefore the
problem reduces to approximating f . It should be noted that, by the Stone-Weierstrass the-
orem, any continuous function on a compact support can be approximated arbitrarily well in
the polynomial class. Although the support of f is not necessarily compact here, the PAMH
method works with simulations on a finite horizon, hence an approximation of the space via
a compact region. This can also be motivated with practical financial arguments, and it can
be interpreted as an approximation of the value function on a compact support. With a good
approximation of the value function, the estimation of the optimal strategy would also be ac-
curate because it depends on the coe�cient of the value function.3

Note that the coe�cients in Pk are time-dependent and the order n is determined by the
highest expected utility. With the representation of the value function in Equation (3.6), we
obtain an approximation of the optimal allocation described in Theorem 3.2.1.

Theorem 3.2.1 The optimal allocation ⇡⇤t = (⇡(⇤,1)
t , .., ⇡(⇤,n)

t ) for investors with market dynamics
shown in Equation (3.1) can be approximated by the unique solution to the system of equations:

nX

j=1

gi, j(t,Wt, ln S t, Xt)⇡
(⇤, j)
t = gi(t,Wt, ln S t, Xt), i = 1, .., n (3.8)
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(3.9)

Under this strategy, the wealth process Wt � Fd(t) � 0 has a unique pathwise solution.

The Proof of Theorem 3.2.1 is given in Section 3.7. It should be noted that the previous result
implicitly assumes existence and uniqueness of the solution to the optimal control problem.
Given the generality of our model, this can not be ensured via explicit conditions, as it depends
on the specific choice of models (see [59] and [18] for examples on one-dimensional models).
Nonetheless, as explained in section 3, our numerical methodology delivers good results even
when the solution can be not ensured.

The notation of the polynomial a�ne method for HARA utility (PAMH) and the step-by-
step algorithm are presented in Section 3.6. To facilitate understanding and measure accuracy,

3The same principle can be applied to other basis functions or neural networks.
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we apply the main result to the solvable cases of the 1/2 model (dimension n = 1), and to a
popular stochastic covariance model (dimension up to n = 35). Then we focus on the applica-
tion and financial implications for the OU 4/2 model. The methodology was run on a laptop
with processor Intel(R) Xeon(R) CPU @ 2.30GHz and 25 GB RAM.

3.3 Accuracy of the approximation for GBM 1/2 model
In this section, the goodness of the methodology is examined by comparing it to the closed-
form solution of the popular Heston’s model (see [48]). We first provide a concise review of
the GBM 1/2 model, its closed-form optimal strategy and value function. By implementing
the Heston’s 1/2 model, the accuracy and e�ciency of our method is demonstrated. Moreover,
we compare the optimal allocation and the expected utility at time 0 from our method with the
theoretical results, and we report the annualized CER defined by,

U(W0(1 +CER)T ) = V(0,W0, ln S 0, X0). (3.10)

3.3.1 Closed-form solution of GBM 1/2 model
The dynamics of Heston’s model (see [48]) can be summarized as follows:

8>>>>><
>>>>>:

dMt
Mt
= rdt

dS t
S t
= (r + �S Xt)dt +

p
XtdBS

t

dXt = X(✓X � Xt)dt + �X
p

XtdBX
t .

< BS , BX >t= ⇢S X (3.11)

[61] present the corresponding optimal trading strategy and value function for a HARA
utility, which is given by

V(t,W, X) =
(!�Wer(T�t) � F)1��

1 � � e�a(t)+�b(t)X

⇡⇤(t,W, X) =
(!W � �Fe�r(T�t))

!�W
(�S + ⇢S X�Xb(t)).

(3.12)

Here the functions a(⌧) and b(⌧) are

a(⌧) = �X✓X
dX

(
dX + bX

2
� ln

2dX

2dX � (dX + bX)(1 � e�dX(T�⌧))

)

b(⌧) =
2cX(1 � e�dX(T�⌧))

2dX � (dX + bX)(1 � e�dX(T�⌧))

(3.13)

with auxiliary parameters aX =
(1+⇢2

S X(1��)/�)�2
X

2 , bX = �X⇢S X�S
1��
� � X, cX =

1��
2�2 �

2
S and dX =q

b2
X � 4aXcX. [59] stated a su�cient condition for well-defined parametrization of the model,

which is given by

�S <
X
�X

 r
⇢2

S X +
�

1 � � � ⇢S X

!
. (3.14)
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Table 3.2: Parameter value for geometric Brownian motion (GBM) 1/2 model.
Parameter Value Parameter Value
T 1 ⇢S V -0.54
✓v 0.0257 �v 0.26
v 1.33 �S 2.45
�t 0.1 period 10
r 0.05 X0 0.04
S 0 1.0 M0 1.0
W0 1 nr 100
N 2000 N0 2000000
F 0.5 ! �

A violation of Equation (3.14) could render the closed-form solution invalid i.e. the HJB
problem has no unique real solution; this could lead to an expected utility (3.12) of complex
or infinitely large value. We consider such situation next to assess the performance of our
numerical method.

3.3.2 Accuracy for DRRA investors

Next, we implement our method on the Heston 1/2 model. We start with the decreasing RRA
case, where F > 0 and � > 0. We use the parameter set given in [34] which can be found in
Table 3.2.

A first order of the polynomial Pk is selected, which is identical the degree of the polyno-
mial on the state variable in the exponential function of the closed form solution (see Equation
(3.12)). To increase accuracy, we generate the paths of stock price and state variable with
dt = 1

60 which is finer than the re-balancing time interval �t = 0.1. First, we consider an
investor with DRRA (see Table 3.3), at time 0 with various investor’s risk aversion levels �.
Both optimal allocation and expected utility from the PAMH are close to the theoretical val-
ues. The relative error of optimal allocation is less than 1% and the relative error of expected
utility is less than 0.1%. The di↵erences between CERs are also negligible—less than 0.02%.
Furthermore, the PAMH is e�cient, and all the results are obtained within a minute.

Figure 3.1 compares the expected utility and CER between the theoretical result and our
method across di↵erent values of F. The results visually overlap, which demonstrates that the
PAMH is able to obtain accurate results of optimal allocation and value function despite the
choice of risk aversion level � and minimum capital guarantee level F.
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Table 3.3: Results for GBM 1/2 model with decreasing relative risk aversion (DRRA) investor.
� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0

Theoretical
Weights(⇡⇤0) 0.675 0.346 0.233 0.175 0.141
Expected utility(V⇤(0, x)) -3.440 -7.331 -21.494 -67.017 -213.738
CER(%) 8.14 6.66 6.15 5.90 5.75
PAMH
Weights(⇡PAMH

0 ) 0.672 0.345 0.232 0.175 0.140
Relative error(%) 0.36 0.47 0.53 0.56 0.58
Expected utility(VPAMH(0, x)) -3.441 -7.334 -21.505 -67.057 -213.876
Relative error(%) 0.027 0.043 0.0054 0.060 0.065
CER(%) 8.13 6.65 6.15 5.89 5.74
Computational time(S econds) 56.3 55.3 55.1 53.4 53.0

(a) Expected utility (b) CER

Figure 3.1: Expected utility and certainty equivalent rate (CER) versus F (geometric Brownian
motion [GBM] 1/2 model).

Moreover, we investigate a parametrization where closed-form solutions are not well-defined
(i.e., �S exceeds the upper bound given in Equation (3.14)). We let F = 0. so the investor’s
preference is modelled by a power utility function. Besides, we assume the positive corre-
lation between volatility and stock price (i.e., ⇢S V = 0.54) and risk aversion level � = 0.3.
We consider a high frequency re-balancing strategy (i.e., �t = 0.001) to ensure the stability
of portfolio wealth, and set the number of simulations to compute expected utility at a fixed
value N0 = 100000.4 Figure 3.2 displays the expected utility and CER versus �S , well-defined
closed-form solution holds when �S < 1.579 (blue vertical line). Before the condition is vio-
lated, the PAMH strategy achieves similar portfolio performance as the theoretical solution.
Alternatively, when �S > 1.579, the theoretical approach can not ensure a viable solution.
Nonetheless, as per Figure 3.2, our numerical methodology still provides a very good solu-
tion, with expected utility and CER increasing smoothly, even though the theoretical solution
would actually deliver complex numbers. Note the expected utility shall explode in finite time

4This proves the stability of PAMH in case of violations of Equation (3.14), a larger N0 would improve the
precision of the approximated expected utility at the expense of computational time.
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(�S = 5.5231 in this setting), which can be detected with PAMH by increasing �S toward
the divergent value. Hence PAMH solution would also produce divergent expected utility and
CER.

(a) Expected utility (b) CER

Figure 3.2: Expected utility and certainty equivalent rate (CER) versus �S with non-well-
defined parametrization (geometric Brownian motion [GBM] 1/2 model).

3.3.3 Accuracy for IRRA investors

A HARA utility (3.2) coincides with the quadratic utility when � = �1, ! = 1 and F is
negative, which correspond to the increasing RRA investor’s preference. Table 3.4 compares
the result from our PAMH methodology versus the known theoretical results ([61]). This is
done in terms of optimal allocation and expected utility for a quadratic utility setting. Relative
errors in optimal allocation and expected utility remain small for any value of F, while both
the expectation and the standard deviation of terminal wealth increase with the absolute value
of F.

Table 3.4: Results for GBM 1/2 model with increasing relative rsik aversion (IRRA) investor.
F = �1.2 F = �1.4 F = �1.6 F = �1.8 F = �2.0

Theoretical
Weights(⇡⇤0) 0.433 1.015 1.597 2.179 2.761
Expected utility(V⇤(0, x)) -0.009 -0.047 -0.116 -0.217 -0.348
CER(%) 6.92 9.33 11.73 14.14 16.55
PAMH
Weights(⇡PAMH

0 ) 0.423 0.989 1.555 2.121 2.688
Relative error(%) 2.29 2.54 2.61 2.64 2.66
Expected utility(VPAMH(0, x)) -0.009 -0.048 -0.118 -0.220 -0.353
Relative error(%) 1.51 1.45 1.44 1.43 1.43
CER(%) 6.82 9.10 11.39 13.67 15.96
E(WT ) 1.086 1.130 1.175 1.220 1.264
sd(WT ) 0.065 0.151 0.236 0.321 0.407
Computational time(S econds) 53.8 54.8 54.9 54.1 53.9
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3.3.4 Application to a n-dim Heston model
To verify e↵ectiveness and e�ciency of the PAMH for a multi-dimensional portfolio choice
problem, we applied the PAMH to a multi-factor stochastic volatility model, which is summa-
rized by

8>>>>>>>>>><
>>>>>>>>>>:

dMt
Mt
= rdt

d ln S (i)
t =

⇣
r +

Pn
j=1

⇣
�( j)

s ai, j � 1
2a2

i, j

⌘
X( j)

t

⌘
dt +

Pn
j=1 ai, j

q
X( j)

t dB( j)
t , i = 1, .., n

dX( j)
t = X, j(✓X, j � X( j)

t )dt + �X, j

q
X( j)

t dB(X, j)
t

< dB( j)
t , dB(X, j)

t >= ⇢ jdt, j = 1, .., n.

(3.15)

A = (ai, j) is a constant orthogonal matrix (i.e., AAT is a identity matrix). Note that the multi-
factor stochastic volatility model (3.15) is exactly the GBM 1/2 model (3.11) when the number
of stocks is n = 1. The value function and optimal strategy for CRRA investors was solved in
[34].

For simplicity, we let �( j)
s = �S , X, j = X, ✓X, j = ✓X, �X, j = �X, S (i)

0 = S 0, and X j
0 = X0

(see Table 3.2). Hence, identical distributed stocks S (i)
t are included in investors’ portfolio as n

increases. The orthogonal matrix A is generated by the equation:

A = 2eT e/(eeT ) � I, (3.16)

where e is a 1 ⇥ n all-ones vector, and I is a n ⇥ n identity matrix. In order to create a fair
comparison across dimensions, and for the purpose of extend-ability of the setting to higher di-
mension, we increase the number of simulated paths linearly with dimension, i.e. nr = 100 ⇤ n,
and set the number of simulations to compute expected utility at a fixed value N0 = 100000.5
Figure 3.3 (a) displays the expected utilities obtained with the PAMH and the theoretical solu-
tion versus number of stocks for a CRRA investor (i.e., � = 4, F = 0 and ! = �). Expected
utility increases with stocks because more assets allow investors to improve performance. The
distance between expected utilities from our PAMH and theoretical solution stays small for any
size of stocks involved. Figure 3.3 (b) plots the CER versus the number of stocks, we witness
a similar result with (a) except that the theoretical solution slightly outperform PAMH when
dimension is high, e.g. 8% relative di↵erence at n = 35. In Figure 3.3 (c), we define the mean
of relative strategy error (MRSE) as follows:

MRS E =
1
n

nX

i=1

�������
⇡i,PAMH

0 � ⇡i,⇤
0

⇡i,⇤
0

�������
,

which is the average of relative error of the di↵erence in allocation compared to PAMH at time
0. The optimal strategy from the PAMH is very accurate, the mean relative strategy error is
less than 1.4% when the number of stocks is as high as 35. We also consider the computational
time in Figure 3.3 (d), which increases modestly with dimension n. It’s concluded that PAMH
exhibits excellent accuracy and e�ciency on both low and high dimensional dynamic portfolio
choice problem.

5This proves to be reasonable for n = 35, a larger N0 would improve the precision of the approximated
expected utility at the expense of computational time.
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(a) Expected utility (b) CER

(c) Mean of relative allocation error (d) Computational time

Figure 3.3: Expected utility, certainty equivalent rate (CER), mean of relative strategy error,
and computational time versus dimension n (multi-factor stochastic volatility model).

3.4 Applications to the OU 4/2 family of models
Now that we have a reliable method to compute allocations and expected utilities, we turn our
attention to an important practical model where the stock price follows the general OU 4/2
model: see Equation (3.17). Here, the state variable Xt is the variance driver which follows a
CIR process with mean-reverting rate X > 0, long run average ✓X > 0 and volatility of volatility
�X > 0. In the drift of the log stock price, the excess return is linear in the instantaneous
variance (aS

p
Xt +

bSp
Xt

)2. This is the preferred setting in the finance/economics literature; see
[78]. Moreover, the parameter ⇢ captures the leverage e↵ect, while �S controls the speed of
reversion to the mean, where the latest is captured by LS .

8>>>>>>>>><
>>>>>>>>>:

dS 0
t

S 0
t
= rdt

d ln S t = (LS + (�S � 1
2 )(aS

p
Xt +

bSp
Xt

)2 � �S ln S t)dt + (aS
p

Xt +
bSp

Xt
)dBt.

dXt = X(✓X � Xt)dt + �X
p

XtdBX
t

< dBt, dBX
t >= ⇢dt

(3.17)

The nested case of a constant variance was solved in closed-form in [19] for a CRRA
investor, no results are known in the presence of even simpler stochastic volatility like the
1/2 (Heston) model. Another nested case, the 4/2 model of [45] was solved recently in [18].
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Similarly, the authors are not aware of solutions to even the constant variance case for the
IRRA side of the problem.6

In Section 3.4.1, we consider a DRRA (i.e. � > 1&F > 0) HARA utility objective func-
tion. The optimal allocation, expected utility and CER are reported. In Section 3.4.2, we first
demonstrate the connection between dynamic mean-variance portfolio and optimal portfolio
with an IRRA preference. Then, we study the optimal allocation and the e�cient frontier.
In Section 3.4.3, we investigate the loss investor ignoring SV with a specific case of the OU
4/2 model (i.e. the OU 1/2 model). The sensitivity analysis and portfolio performance of the
optimal strategy, myopic strategy and constant volatility strategy are reported for comparison
purposes. Note that the myopic strategy is considered due to its simplicity and appeal in the
industry. This is inspired by Merton’s non-state variables solution, which fails to account for
future movement of the state variable. The myopic strategy can be computed directly because
it is obtained by assuming that the derivatives of the value function with respect to the state
variables are 0 in the HJB equation. For the OU 4/2 model, the myopic strategy is given as
follows:

⇡Myopic
t =

!W � �F exp(�r(T � t � �t))
!�W(aS

p
Xt +

bSp
Xt

)2
(LS � r + �S (aS

p
Xt +

bSp
Xt

)2 � �S ln S t). (3.18)

We compare the optimal portfolio versus myopic strategies in terms of allocation, expected
utility, CER and e�cient frontier. Furthermore, we analyze the sensitivity of optimal allocation
to various parameters. The parameters used in the numerical example are listed in Table 3.5
and estimated from the data of the gold ETF and the volatility index of the gold ETF in [37].

Table 3.5: Parameter value for OU 4/2 model.
Parameter Value Parameter Value
T 1 X0 0.04
r 0.05 �S 0.572
�t 1

60 period 60
S 0 120.0 M0 1.0
W0 1 nr 100
X 4.7937 ✓X 0.0395
�X 0.2873 aS 1
bS 0.002 ⇢ -0.08
L 3.7672 �S 0.78
N 2000 N0 2000000
F 0.5 ! �

3.4.1 Analysis of a DRRA investor
We first consider the optimal portfolio for a DRRA investor. Here, a qualified polynomial Pk is
selected. Note that there is no significant improvement by further increasing the order beyond

6[88] consider general SV models but closed-form solutions are not evident in the presence of mean-reverting
assets.
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2. Table 3.6 reports the optimal allocation, expected utility, CER and computational time. The
myopic strategy can be directly computed from Equation (3.18), and the computational time
for each strategy reflects the time required to compute the expected utility via simulation.

As expected, the optimal strategy from the PAMH always achieves a higher expected utility
and CER than the myopic strategy, and there is no significant monotone relationship between
the di↵erence in CERs and the risk aversion level �. Standard deviation of the estimates are
given in Table 3.6, displayed in parentheses, by running the PAMH for 100 times. The myopic
strategy is deterministic, so the standard deviation of expected utility and CER result solely
from the simulation of stock price, while standard deviation for the PAMH results from both
the simulation of stock price and the estimation of the strategy. Therefore, the PAMH is slightly
more volatile than the myopic strategy. However, standard deviation for both, PAMH and
myopic strategies, are small, which indicates the accuracy and stability of the reported results.
Figure 3.4 illustrates the expected utility and CER from the PAMH versus the myopic strategy
for di↵erent levels of the minimum capital guarantee level F, for � = 4. The di↵erence in
expected utility is negligible, while the di↵erence in CER grows as F decreases.7 Both optimal
allocations from the PAMH and the myopic strategy place a large proportion of wealth on the
risk-free asset when F increases which results in a diminishing di↵erence in the CER.

Table 3.6: Results for OU 4/2 model with DRRA investor.
� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0

Myopic
Weights(⇡Myopic

0 ) 0.049 0.024 0.016 0.012 0.010
(0.00) (0.00) (0.00) (0.00) (0.00)

Expected utility(V Myopic(0, x)) -3.393 -7.132 -20.792 -64.629 -205.729
(0.001) (0.002) (0.006) (0.021) (0.072)

CER(%) 8.95 7.18 6.53 6.19 5.98
(0.009) (0.006) (0.003) (0.003) (0.002)

Computational time(seconds) 55.6 57.6 54.1 58.5 60.2
(2.5) (1.6) (1.4) (1.3) (1.6)

PAMH
Weights(⇡PAMH

0 ) 0.036 0.013 0.008 0.005 0.004
(0.005) (0.004) (0.003) (0.003) (0.002)

Expected utility(VPAMH(0, x)) -3.389 -7.095 -20.630 -64.020 -203.565
(0.001) (0.003) (0.010) (0.036) (0.122)

CER(%) 9.02 7.28 6.62 6.27 6.05
(0.011) (0.007) (0.006) (0.004) (0.004)

Computational time(seconds) 166.5 165.5 161.5 164.5 161.4
(1.4) (1.2) (4.0) (4.8) (3.7)

7The di↵erences between PAMH and Myopic strategy in terms of expected utility and CER gets significant as
the time to maturity increases.
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(a) Expected utility (b) CER

Figure 3.4: Expected utility and CER versus F (OU 4/2 model).

The relationship between optimal allocation and volatility group parameters aS and bS ,
is presented in Figure 3.5. Both the PAMH allocation and the myopic strategy change sig-
nificantly with aS and bS ; the PAMH changes faster, which suggest that myopic approaches
underestimate the importance of volatility. Furthermore, the figure also indicates that investors
should put a larger proportion of their wealth on risky assets in more volatile periods.

(a) aS (b) bS

Figure 3.5: Optimal allocation for decreasing relative risk aversion (DRRA) investor versus aS

and bS (OU 4/2 model).

3.4.2 Analysis of IRRA investors–the mean-variance case
In this section, we consider a dynamic mean-variance portfolio problem where investors maxi-
mize the expectation of the portfolio terminal wealth given a bound on the variance of terminal
wealth. Formally, the investor problem is given by

V(t,Wt, Xt) = max
⇡{s�t}

E(WT |Ft) � �Var(WT |Ft), (3.19)

where � denotes the Lagrange multiplier. Due to the variance term and the failure of iterated
expectations, an application of dynamic programming does not lead to an optimal solution.
[89] shows that the optimal strategy of Problem (3.19) can be found by solving a stochastic
linear quadratic problem.
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Theorem 3.4.1 If ⇡⇤s�t is the optimal strategy for Problem (3.19), ⇡⇤s�t is the optimal strategy
for

min
⇡{s�t}

E((WT � µ)2|Ft) (3.20)

where µ = 1
2� + E(WT |Ft).

Proof See [89], Theorem 3.1.

If two conditions are assumed— 1O the optimal strategy for Equation (3.19) exists, and 2O
the optimal strategy for (3.20) is unique—then the optimal strategy for (3.19) can be found
by solving Equation (3.20). This is a special case of our investor’s problem in Equation (3.2),
when we set � = �1, F = �µ and ! = 1:

max
⇡{s�t}
�1

2
E((�WT � F)2|Ft). (3.21)

In this section, we obtain the optimal strategy of the dynamic mean-variance strategy by
solving Auxiliary Problem (3.21). Note that, in this case, a negative F leads to IRRA investors,
and its size determines the distribution of the optimal terminal wealth.

Table 3.7 compares the optimal strategy, expected utility and CER from the myopic strategy
and the PAMH. The expected utility represented the value of (3.21) at time t = 0. The expecta-
tion and standard deviation of terminal wealth are also provided. The optimal strategy obtained
from the PAMH is significantly di↵erent from the myopic strategy: PAMH always leads to a
higher expectation and standard deviation of terminal wealth for the same fixed value of F.
Standard deviation of estimates are reported in parentheses, obtained from 100 runs. All the
results from PAMH are slightly more volatile because of the extra randomness from estima-
tion of optimal strategy. The small standard deviation demonstrates the excellent accuracy and
stability of the results from the PAMH. In addition, to illustrate the trade-o↵ between expected
return and volatility, we plot the e�cient frontiers in Figure 3.6. The expectation of terminal
wealth from both the PAMH and the myopic strategy is linear with the volatility. Not surpris-
ingly, given a specific volatility level, the PAMH also always achieves a higher expected return
than the myopic strategy. Furthermore, the di↵erence increases as volatility increases.8

8Superiority of PAMH is more significant when the time to maturity get larger.
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Table 3.7: Results for OU 4/2 model with IRRA investor.
F = �1.06 F = �1.1 F = �1.2 F = �1.3 F = �1.4

Myopic
Weights(⇡Myopic

0 ) 0.0017 0.0088 0.026 0.044 0.062
(0.00) (0.00) (0.00) (0.00) (0.00)

Expected utility(V Myopic(0, x)) -0.00002 -0.0008 -0.0072 -0.0202 -0.0397
(0.0000001) (0.000002) (0.00002) (0.00006) (0.00012)

CER(%) 5.30 6.07 7.99 9.90 11.82
(0.002) (0.006) (0.020) (0.031) (0.042)

E(WT ) 1.054 1.064 1.089 1.115 1.141
(0.000002) (0.00001) (0.00003) (0.00005) (0.00007)

sd(WT ) 0.003 0.016 0.047 0.078 0.110
(0.00004) (0.00014) (0.00050) (0.00075) (0.00102)

Computational time(S econds) 58.1 62.8 60.9 56.1 59.9
(7.2) (5.9) (4.9) (4.7) (4.5)

PAMH
Weights(⇡PAMH

0 ) 0.0010 0.0048 0.0143 0.0238 0.0333
(0.0004) (0.0021) (0.0063) (0.0105) (0.0147)

Expected utility(VPAMH(0, x)) -0.00002 -0.0007 -0.0064 -0.0180 -0.0353
(0.0000005) (0.00002) (0.00014) (0.00039) (0.00077)

CER(%) 5.34 6.29 8.66 11.04 13.41
(0.008) (0.041) (0.124) (0.208) (0.291)

E(WT ) 1.055 1.069 1.105 1.141 1.176
(0.00007) (0.00039) (0.00118) (0.00197) (0.00276)

sd(WT ) 0.004 0.020 0.061 0.103 0.144
(0.0002) (0.0008) (0.0025) (0.0042) (0.0058)

Computational time(S econds) 229.6 232.7 255.4 249.7 242.0
(4.1) (54.9) (19.2) (52.5) (43.4)

Figure 3.6: E�cient frontier (OU 4/2 model).

Next, we investigate the impact of volatility group parameters aS and bS on the optimal
allocation, (see Figure 3.7) for a fixed F = �1.2. Both strategies increase with aS and bS , (i.e.
they increase with the instantaneous volatility). However, the PAMH is much more sensitive
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to volatility group parameters than the myopic strategy. It should be noted that aS , which is the
parameter controlling the GBM 1/2 part, could even change the sign of the allocation, leading
to short positions on these mean reverting underlyings for investors.

(a) aS (b) bS

Figure 3.7: Optimal allocation for IRRA investor versus aS and bS (OU 4/2 model).

3.4.3 Suboptimality analysis for CRRA investors – the OU 1/2 model

We investigate the impact on performance when CRRA investors fail to account for SV. In
particular, we focus on the OU 1/2 (Heston’s) model, which is the most popular and important
member of the OU 4/2 family (i.e. bS = 0). The dynamics of the OU Heston are summarized
as follows:

8>>>>>>>><
>>>>>>>>:

dMt
Mt
= rdt

d ln S t = (LS + (�S � 1
2 )Xt � �S ln S t)dt +

p
XtdBt.

dXt = X(✓X � Xt)dt + �X
p

XtdBX
t

< dBt, dBX
t >= ⇢dt

(3.22)

The investor may neglect the SV feature of the financial time series and simply take the
long run average of the variance as the instantaneous variance (i.e. �2 = E(Xt) = ✓X). This
makes the OU 1/2 model degenerate into the exponential OU model

8>><
>>:

dMt
Mt
= rdt

d ln S t = (LS + (�S � 1
2 )�2 � �S ln S t)dt + �dBt.

(3.23)

A CRRA-type investor would be able to use closed-form solutions for the exponential OU
model as presented in [19]:

⇡⇤t =
1
�

((
1
�2 � �S K(T � t))(LS + �S�

2 � �S ln S t � r) � �S N(t,T )), (3.24)

where K(T � t), N(t,T ) can be obtained by solving ODEs, leading to K(T � t) = R2(T �
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t)R�1
1 (T � t), R(t) = (R1(t),R2(t)) and

R(T � t) = exp
0
BBBB@
0
BBBB@

1
��S � 1

��
2
S�

2

1��
��2 � 1

��S

1
CCCCA T � t

1
CCCCA
 
1
0

!

N(T � t) = N(t,T ) =

R T�t
0 ⇥K(T � s)�H(s, 0)ds

�H(T � t, 0)

⇥ =
1
2
�S�

2 � �S r

(3.25)

where

d�H(t, s)
dt

= H(t)�H(t, s),H(t) =
1
�

(�S � �2
S�

2K(T � t)) �H(s, s) = 1. (3.26)

The parameters for the OU 1/2 model from [37] are presented in Table 3.8,

Table 3.8: Parameter values for OU 1/2 model.
Parameter Value Parameter Value
T 3 X0 0.04
r 0.05 �S 0.572
�t 1

120 period 360
S 0 120.0 M0 1.0
W0 1 nr 100
X 5.028 ✓X 0.0426
�X 0.4149 ⇢ -0.08
L 3.7672 �S 0.78
N 2000 N0 2000000
F 0 ! �

Figure 3.8 compares the portfolio performance of the myopic strategy, constant volatility
strategy (exp OU) and PAMH optimal strategy for a CRRA-type investor in terms of expected
value function and CER. The PAMH optimal strategy outperformed the other two sub-optimal
strategies as expected. The myopic strategy achieves a higher expected value function and CER
than the constant volatility strategy, which suggests that investors who fail to take the future
movement of the volatility into consideration outperform those ignoring the SV.
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(a) Expected utility (b) CER

Figure 3.8: Expected utility and CER versus � (OU 1/2 model).

A sensitivity analysis of the three strategies at time t = 0 to the long run average ✓X and
the volatility �X of instantaneous variance Xt are illustrated in Figure 3.9. With the fixed
risk aversion level at � = 4, all three strategies increase with ✓X, and both the PAMH and
constant volatility strategy increase faster than the myopic strategy. Moreover, the PAMH
strategy decreases with �X while the myopic strategy and constant volatility strategy remain
constant.

(a) ✓X(X0 = ✓X) (b) �X

Figure 3.9: Optimal allocation versus ✓X and �X (OU 1/2 model).

3.5 Conclusions
This chapter proposed a numerical scheme —the PAMH— for HARA utilities. The accu-
racy and time e�ciency of PAMH are verified using closed-form solutions available for an
one-dimensional problem, the GBM 1/2 (Heston’s) model, and for a multivariate stochastic
covariance problem in dimension n = 35. The former was implemented on both, the case of
DRRA, (i.e. EUT), and the case of IRRA, (i.e. MVT), while the latter was applied to the
CRRA case only. In all cases the results are very close to the optimal levels in reasonable
computational times. The method produces good solutions even in situations when verification
theorems fail to deliver existence of a unique optimal.

The methodology was applied to the OU 4/2 model, which addresses two stylized facts
of financial data: mean reversion and advanced SV. This is a powerful model for commodity
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prices, volatility indexes, exchange rates and interest rates. We hence approximated the dy-
namic portfolio choice for the OU 4/2 model numerically and obtained optimal strategies for
EUT and MVT.

For both, IRRA and DRRA, we witnessed large changes in optimal allocation due to vari-
ations in the volatility group parameters: aS and bS . For the DRRA case, the di↵erence in
CER between the PAMH strategy and the myopic strategy increased as the minimum capital
guarantee level F decreased. As the optimal allocation for an IRRA investor coincides with the
pre-commitment strategy in the context of a dynamic mean-variance portfolio, we displayed
the corresponding e�cient frontier. Here again, the myopic strategy performed quite poorly
compared to the optimal. We also found low CER performances due to the ignorance of SV
for CRRA investors. In this case, investors should prefer a myopic strategy to a strategy that
neglects SV.

3.6 Notation and algorithm for our methodology
In this section we clarify the notation and present the algorithm step by step:

Notation Meaning
Bm

t ,Bm,X
t Brownian motion at time t in mth simulated path

S m
t Stock price at time t in mth simulated path

Xm
t Other state variables such as interest rate or volatility

nr Number of simulated paths
N Number of simulations to compute expected utility for a given set (W0, S m

t , Xm
t )

Ŵm,n
t+�t(⇡

m) The simulated wealth level at t + �t given the wealth, the allocation
and other state variables at t are W0, ⇡m, S m

t , and Xm
t

Ŝ m,i
t+�t A simulated stock price at t + �t given S m

t
X̂m,i

t+�t A simulated state variable at t + �t give Xm
t

V(t,W, ln S , X) Value function at time t given wealth W, stock price S and state variable X
v̂m Estimation of Pk(t, ln S m

t , Xm
t ) = log( f (t, ln S m

t , Xm
t )) in Equation (3.6). Regressand

in regression, superscript m indicates the corresponding regressor (ln S m
t , Xm

t )
Lt(X, ln S ) The regression function to be used to approximate Pk(t, ln S , X)
⇡m

t Optimal strategy at time t in mth simulated path
V̂(0,W0, ln S 0, X0) Estimation of expected utility at time 0.

Table 3.9: Notation and definitions

3.6.1 Algorithm
Next, we describe the algorithm step by step. We first generate the paths of stock prices S m

t
and state variables Xm

t according to their dynamics. Starting from t = T � �t, which is the
last period before the terminal, we compute the optimal strategy ⇡m

T��t given W0, S m
T��t, Xm

T��t.
Next, we obtain v̂m, which is the estimation of Pk(T � �t, ln S m

T��t, X
m
T��t), by taking the av-

erage of the simulated values. By regressing v̂m over the polynomial of (Xm
T��t,ln S m

T��t), we
obtain LT��t(X, ln S ) which is the approximation of the function Pk(T � �t, ln S , X). The value
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function at t = T ��t is then known immediately. We move backward and stop when the initial
optimal strategy is obtained.

The state variable function f is separable with the wealth in Equation (3.6), so Pk(t, ln S m
t , Xm

t )
can be estimated assuming the wealth level starts at W0 at each re-balancing time. To evaluate
the expected utility, we regenerate the paths of stock price and state variables. The optimal
strategy can be computed from Lt(X, ln S ); hence, it is easy to obtain the optimal terminal
wealth. The average of the utility of optimal terminal wealth denotes the expected utility.

Algorithm 8: PAMH
Input: S 0,W0,X0

Output: Optimal current trading strategy ⇡⇤0 and expected utility V̂(0,W0, ln S 0, X0)
1 Initialization;
2 Generating nr paths of Bm

t , Bm,X
t , S m

t , Xm
t f or m = 1...nr;

3 while t = T � �t do
4 Directly compute optimal allocation ⇡m

T��t with Equation (3.8) where the derivative
of value function w.r.t state variable is 0 at time T ;

5 Simulate wealth Ŵm,i
T (⇡m

T��t) at the terminal given the wealth, stock price allocation
and other state variables at T � �t are W0, S m

T��t, ⇡
m
T��t and Xm

T��t
f or i = 1...N;

6 Compute v̂m = ln [1��
�

1
N

NP
i=1

U(Ŵm,i
T (⇡m

T��t))] � (1 � �) ln [!�W0 � Fd(T � �t)]

f or m = 1...nr ;
7 Regress v̂m over the polynomial of (Xm

T��t,ln S m
T��t), and obtain the function

LT��t(X, ln S )
8 for t = T � 2�t to �t do
9 Take the Lt+�t(X, ln S ) obtained from last step as Pk(t + �t, X, ln S ), we compute

optimal allocation ⇡m
t with Equation (3.8) given W0, S m

t , and Xm
t ;

10 Simulate wealth Ŵm,i
t+�t(⇡

m
t ), Ŝ m,i

t+�t and X̂m,i
t+�t given the wealth, stock price, allocation

and other state variables at t are W0, S m
t , ⇡m

t and Xm
t f or i = 1...N;

11 Compute

12 v̂m = ln [ 1
N

NP
i=1

(!�Wm,i
t+�t(⇡

m
t ) � Fd(t + �t))1��exp(Lt+�t(X̂m,i

t+�t, ln Ŝ m,i
t+�t))] � (1 �

�) ln [!�W0 � Fd(t)] f or m = 1...nr ;
13 Regress v̂m over the polynomial of (Xm

t , ln S m
t ), and obtain the function Lt(X, ln S );

14 while t = 0 do
15 Compute gi, j and gj with L�t(X, ln S ) obtained from the last step, so the optimal

strategy is immediately known with Equation (3.8);
16 Generate new paths of S z

t , Xz
t f or z = 1...N0, use the estimation of transformed

value function Lt(X, ln S ) to compute corresponding optimal allocation ⇡z
t and

calculate the optimal terminal wealth Wz
T . The expected utility is ,

V̂(0,W0, ln S 0, X0) = 1
N0

N0P
n=1

U(Wz
T )

17 return ⇡⇤0, V̂(0,W0, ln S 0, X0)
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3.7 Proof of Theorem 3.2.1

According to the Bellman equation, the value function can be rewritten as,

V(t,W, ln S , X) = Et(V(t + dt,Wt+dt, ln S t+dt, Xt+dt) | W, ln S , X)
= max

⇡t
Et(V(t + dt,Wt+dt, ln S t+dt, Xt+dt) | W, ⇡, ln S , X). (3.27)

We expand V(t + dt,Wt+dt, ln S t+dt, Xt+dt) at t + dt in terms of all the variables.

V(t + dt,Wt+dt, ln S t+dt, Xt+dt) = V(t + dt,Wt, ln S t, Xt) + VWt(t + dt,Wt, ln S t, Xt)dWt

+
1
2

VWtWt(t + dt,Wt, ln S t, Xt)(dWt)2

+

nX

i=1

⇣
Vln S (i)

t
(t + dt,Wt, ln S t, Xt)d ln S (i)

t + VX(i)
t

(t + dt,Wt, ln S t, Xt)dX(i)
t

⌘

+
1
2

nX

i, j=1

⇣
Vln S (i)

t ln S ( j)
t

(t + dt,Wt, ln S t, Xt)(d ln S (i)
t )(d ln S ( j)

t )
⌘

+
1
2

nX

i=1

⇣
VX(i)

t X(i)
t

(t + dt,Wt, ln S t, Xt)(dX(i)
t )2

⌘
+

nX

i=1

⇣
VWt ln S (i)

t
(t + dt,Wt, ln S t, Xt)dWtd ln S (i)

t

⌘

+

nX

i=1

⇣
VWtX

(i)
t

(t + dt,Wt, ln S t, Xt)dWtdX(i)
t

⌘
+

nX

i, j=1

⇣
Vln S (i)

t X( j)
t

(t + dt,Wt, ln S t, Xt)d ln S (i)
t dX( j)

t

⌘
+ o(dt).

(3.28)

Substituting dWt, d ln S t, dXt which can be found in Equation (3.1), taking conditional expec-
tation on both sides, and rewriting V(t,Wt, ln S t, Xt) in a quadratic form with respect to ⇡ leads
to
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V(t,Wt, ln S t, Xt) = max
⇡t

0
BBBBBB@

nX

i, j=1

fi, j(t,Wt, ln S t, Xt)⇡(i)
t ⇡

( j)
t +

nX

i=1

fi(t,Wt, ln S t, Xt)⇡(i)
t + f0(t,Wt, ln S t, Xt)

1
CCCCCCA

fi, j(t,Wt, ln S t, Xt) =
1
2

VWtWt(t + dt,Wt, ln S t, Xt)W2
t

0
BBBBB@

nX

k=1

�i,k(Xt, ln S t)� j,k(Xt, ln S t)
1
CCCCCA dt

fi(t,Wt, ln S t, Xt) = VWt(t + dt,Wt, ln S t, Xt)Wt

0
BBBBBB@✓i(Xt, ln S t) +

1
2

nX

j=1

�2
i, j(Xt, ln S t) � r

1
CCCCCCA dt

+

nX

j=1

VWt ln S ( j)
t

(t + dt,Wt, ln S t, Xt)Wt

0
BBBBB@

nX

k=1

�i,k(Xt, ln S t)� j,k(Xt, ln S t)
1
CCCCCA dt

+

nX

j=1

VWtX
( j)
t

(t + dt,Wt, ln S t, Xt)Wt�i, j(Xt, ln S t)bj(X
( j)
t )⇢ jdt

f0(t,Wt, ln S t, Xt) = V(t + dt,Wt, ln S t, Xt) + VWt(t + dt,Wt, ln S t, Xt)Wtrdt

+

nX

i=1

Vln S (i)
t

(t + dt,Wt, ln S t, Xt)✓i(Xt, ln S t)dt

+

nX

i=1

 
VX(i)

t
(t + dt,Wt, ln S t, Xt)ai(X(i)

t ) +
1
2

VX(i)
t X(i)

t
(t + dt,Wt, ln S t, Xt)b2

i (X(i)
t )

!
dt

+
1
2

nX

i, j=1

Vln S (i)
t ln S ( j)

t
(t + dt,Wt, ln S t, Xt)

0
BBBBB@

nX

k=1

�i,k(Xt, ln S t)� j,k(Xt, ln S t)
1
CCCCCA dt

+

nX

i, j=1

Vln S (i)
t X( j)

t
(t + dt,Wt, ln S t, Xt)�i, j(Xt, ln S t)bj(X

( j)
t )⇢ jdt.

(3.29)

We assume a su�ciently small dt so that o(dt) terms are omitted when taking conditional
expectations. The optimal allocation is given by the solution to the system of equations:

nX

j=1

2 fi, j(t,Wt, ln S t, Xt)⇡
(⇤, j)
t = � fi(t,Wt, ln S t, Xt), i = 1, .., n. (3.30)

With the representation of the value function in Equation (3.6) and assuming that f (t, ln S , X) =
exp(Pk(t, ln S , X)), the derivatives of value function with respect to each stock and state variable
can be rewritten as,
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VW(t + dt,Wt, ln S t, Xt) = !(
!

�
Wt � Fd(t + dt))�� exp(Pk(t + dt, ln S t, Xt))

VWW(t + dt,Wt, ln S t, Xt) = �!2(
!

�
Wt � Fd(t + dt))���1 exp(Pk(t + dt, ln S t, Xt))

VW ln S (i)
t

(t + dt,Wt, ln S t, Xt) = !(
!

�
Wt � Fd(t + dt))�� exp(Pk(t + dt, ln S t, Xt))

@Pk(t + dt, ln S , X)
@ ln S (i)

t

VWX(i)
t

(t + dt,Wt, ln S t, Xt) = !(
!

�
Wt � Fd(t + dt))�� exp(Pk(t + dt, ln S t, Xt))

@Pk(t + dt, ln S t, Xt)
@X(i)

t
(3.31)

substituting Equation (3.31) into Equation (3.30), the optimal strategy can be approximated as
follows:

nX

j=1

gi, j(t,Wt, ln S t, Xt)⇡
(⇤, j)
t = gi(t,Wt, ln S t, Xt), i = 1, .., n

gi, j(t,Wt, ln S t, Xt) = !Wt

0
BBBBB@

nX

k=1

�i,k(Xt, ln S t)� j,k(Xt, ln S t)
1
CCCCCA

gi(t,Wt, ln S t, Xt) = (
!

�
Wt � Fd(t + dt))

0
BBBBBB@✓i(Xt, ln S t) +

1
2

nX

j=1

�2
i, j(Xt, ln S t) � r

1
CCCCCCA

+

nX

j=1

(
!

�
Wt � Fd(t + dt))

@Pk(t + dt, ln S t, Xt)
@ ln S ( j)

t

0
BBBBB@

nX

k=1

�i,k(Xt, ln S t)� j,k(Xt, ln S t)
1
CCCCCA

+

nX

j=1

(
!

�
Wt � Fd(t + dt))

@Pk(t + dt, ln S t, Xt)
@X( j)

t

�i, j(Xt, ln S t)bj(X
( j)
t )⇢ j.

(3.32)

The existence and uniqueness of the approximation, ⇡(⇤, j)
t is ensured by the invertibility

of the matrix �(Xt, ln S t)�(Xt, ln S t)T , together with the di↵erentiability of the polynomial Pk.
Note ⇡⇤ depends on Wt in the form

(!�Wt�Fd(t+dt))
Wt

a(t, ln S t, Xt), hence the drift and volatility of
the wealth process are linear in Wt, and they both satisfy the conditions in Proposition 1.2 in
[60], therefore the wealth process has a pathwise unique solution which always remains above
the floor Fd(t) � 0:

dWt =

0
BBBBBB@Wtr +

nX

i=1

(
!

�
Wt � Fd(t + dt))a(t, ln S t, Xt)

0
BBBBBB@✓i(Xt, ln S t) +

nX

j=1

1
2
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i, j(Xt, ln S t) � r

1
CCCCCCA

1
CCCCCCA dt

+

nX

i=1

(
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�
Wt � Fd(t + dt))a(t, ln S t, Xt)

0
BBBBBB@

nX

j=1

�i, j(Xt, ln S t)dB( j)
t

1
CCCCCCA .



Chapter 4

A neural network Monte Carlo
approximation for expected utility theory

Chapter summary:
This chapter proposes an approximation method to create an optimal continuous-time port-

folio strategy based on a combination of Neural Networks and Monte Carlo, named NNMC.
This work is motivated by the increasing complexity of continuous-time models and stylized
facts reported in the literature. We work within expected utility theory for portfolio selection
with a Constant Relative Risk Aversion utility. The method extends a recursive polynomial
exponential approximation framework, first documented in chapter 3, by adopting neural net-
works to fit the portfolio value function. We develop two architectures of network and explore
several activation functions. The methodology is applied on four settings: a 4/2 stochastic
volatility (SV) model with two types of market price of risk, a 4/2 model with jumps, and
an Ornstein–Uhlenbeck 4/2 model. Closed-form solution in one case above is available, which
helps in the comparison of accuracy. We report the accuracy of the various settings in terms of
optimal strategy, portfolio performance and computational e�ciency, highlighting the potential
of NNMC to tackle complex dynamic models.
Status: Published in Journal of Risk and Financial Management.

4.1 Introduction
Optimally allocating to a collection of financial investments like stocks, bonds, commodities,
has been a topic of concern to financial institutions and players since at least the pioneer work
of Markowitz’s Mean-Variance portfolio theory in 1952. People then realized the importance
of diversification and his work laid the foundations for the development of portfolio analysis
in both academia and industry. These initial results were in discrete-time, but it was not long
before continuous-time portfolio decisions were produced in the alternative paradigm of Ex-
pected Utility Theory, see [76]. The author assumed the investor is able to adjust their position
continuously, and stock price process is modelled by a geometric Brownian motion (GBM).
The optimal trading strategy and consumption policy that maximize the investor’s expected
utility were obtained in closed-form by solving a Hamilton-Jacobi-Bellman equation.

The beauty and practicality of this continuous-time solution led many researchers on this

86
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path, producing optimal closed-form strategies for a wide range of models. For example, [59]
considered the stochastic volatility (SV) Heston model, [48]. [38] constructed a portfolio of
stocks and fixed-income market products to hedge interest rate risk. Explicit solutions in the
presence of regime switching, stochastic interest rate and stochastic volatility was presented
in [33], the positive performance of their portfolio is confirmed by empirical study. For the
commodities asset class, [19] modelled a mean-reverting risky asset by an exponential Orn-
stein–Uhlenbeck (OU) process and solved the investment problem for an insurer subject to
random payment of insurance claim.

These models are particular cases of the quadratic-A�ne family (see [70]), one of the
broadest model solvable in closed-form. The value function for a model in this family is the
product of a function of wealth and an exponential quadratic function. Nonetheless, the com-
plexity of financial markets has continued increasing every decade, with researchers detecting
new stylized facts and proposing new models outside the quadratic-A�ne. Needless to say,
investor must rely on these advanced models for better financial decision, however. Closed-
form solutions are no longer guarantee. One example of these advanced models is the GBM
4/2 model, introduced in [45]. The model improves the Heston model in terms of better fitting
of implied volatility surfaces and historical volatilities patterns. The optimal portfolio problem
with the GBM 4/2 model is solvable for certain types of market price of risk (MPR, see [18]),
while the optimal trading strategy has not been found yet with a MPR proportional to the in-
stantaneous volatility. More recently, an OU 4/2 model, which unifies the mean-reverting drift
and stochastic volatility in a single model, was presented in [37]. The model targets two asset
classes: commodities and volatility indexes. The optimal portfolio with the OU 4/2 model is
not closed-form. This motivates approximation methods for dynamic portfolio choice.

Most approximation methods follow the idea from martingale method (see [54]) or dynamic
programming technique [10]. [26] proposed a simulation-based method seeking the financial
replication of the optimal terminal wealth given in the martingale method. [30] developed a
comprehensive approach for the same investment problems, and the application of Malliavin
calculus enhances its accuracy. The work in [10] led to the BGSS method, which is inspired on
the popular least-square Monte Carlo method of [72]. BGSS pioneered the recursive approx-
imation method for dynamic portfolio choice. [24] enhanced BGSS with the Stochastic Grid
Bundling Method (SGBM) for conditional expectation estimation introduced in [53]. More
recently, a polynomial a�ne method for Constant Relative Risk Aversion utility (PAMC) was
recently developed in [92]. The method takes advantage of the quadratic-A�ne structure, lead-
ing to superior accuracy and e�ciency in the approximation of the optimal strategy and value
function. In this chapter, we extend the methodology in PAMC using neural networks.

The history of artificial neural networks goes back to [75], where the author created the
so-called a “threshold logic” on the basis of the neural networks of the human brain in order to
mimic human thoughts. Then deep learning has steadily evolved. Almost three decades later,
back propagation, a widely used algorithm in neural network’s parameter fitting for supervised
learning, was introduced, see [69]. The importance of back propagation was only fully rec-
ognized when [82] showed that it can provide interesting distribution representations. The
universal approximation theorem (see [27]) illustrated that every bounded continuous function
can be approximated by a network with an arbitrarily small error, which further verifies the
e↵ectiveness of the neural network. Neural networks recently attracted a lot of attention of
applied scientists, which success in fields such as image recognition and natural language pro-
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cessing because it is particular good at function approximation when the form of the target
function is unknown. In the realm of dynamic portfolio analyses, [67] first predicted portfolio
covariance matrix with the Elman network and achieved good estimation of the optimal mean-
variance portfolio. More recently, [63] proposed a neural network, representing the portfolio
strategy at each rebalancing time, for a constrained defined contribution (DC) allocation prob-
lem. [17] introduced a di↵erential equation based method, where the value function with the
Heston model is estimated by a deep neural network.

In this chapter, motivated by the lack of knowledge on the correct expression for the port-
folio value function for unsolvable models, we approximate the optimal portfolio strategy for
any given stochastic process model with a neural network fitting the value function. A success-
ful fitting relies on a suitable network architecture that captures the connection between input
and output variable, as well as reasonable activation functions. We design two architectures
enriching an embedded quadratic-a�ne structure, and we consider three types of activation
functions.

Given the lack of closed-form solutions for SV 4/2 models, we use them as our toy exam-
ples in the implementations. In particular, we first implement our methodology on the solvable
case (i.e., GBM 4/2 with solvable MPR), so the accuracy and e�ciency is demonstrated before
it is applied to the unsolvable cases of: GBM 4/2 model with stochastic jumps, GBM 4/2
model with proportional instantaneous volatility MPR, and the OU 4/2 model. Furthermore,
we show numerically which network architecture is preferable in each case.

The chapter is organized as follows, Section 4.2 introduces the dynamic portfolio choice
problem, and presents the neural network architectures, activation functions and parameter
training details. The step by step algorithm of our methodology is provided in Section 4.3.
Sections 4.4 and 4.5 applies the methodology to the GBM 4/2 and the OU 4/2 models. Section
4.6 concludes.

4.2 Problem Setting and Architectures of the Deep Learning
Model

We consider a frictionless market consisting of a money market account (cash, M) and one
stock (S ). We assume the stock price follows a generalized di↵usion process incorporating a
one-dimensional state variable X. All the processes are defined on a complete probability space
(⌦,F ,P) with a right-continuous filtration {Ft}t2[0,T ], summarized by the stochastic di↵erential
equations (SDE):

8>>>>>>>><
>>>>>>>>:

dMt
Mt
= r(Xt)dt

dS t = S t✓(Xt, S t)dt + S t�(Xt, S t)dBt + S t�µNdNt

dXt = a(Xt)dt + b(Xt)dBX
t

< dBt, dBX
t >= ⇢dt.

(4.1)

Bt and BX
t are Brownian motions with correlation ⇢. r(Xt) is the interest rate, ✓(Xt, S t) and

�(Xt, S t) are the drift and di↵usion coe�cients for the stock price. a(Xt) and b(Xt) are measur-
able functions of state variable Xt. Nt is a pure-jump process independent of Bt and BX

t with
stochastic intensity �N Xt for constant �N > 0, and µN > �1 denotes the jump size.
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We consider an investor with risk preference represented by a constant relative risk aversion
(CRRA) utility:

U(W) =
W1��

1 � � . (4.2)

Investors can adjust their allocation at a predetermined set of rebalancing times (0,�t, 2�t, ...,T�
�t). The investors wish to derive a portfolio strategy ⇡ (percentage of wealth allocated to the
stock) that maximizes their expected utility of terminal wealth, in other word, E (U(WT )). The
value function, representing investor’s conditional expected utility, has the following represen-
tation:

V(t,W, S , X) = max
⇡s�t

E (U(WT ) | t,W, S , X) =
W1��

1 � � f (t, S , X). (4.3)

The value function is separated into a wealth factor W1��

1�� and a state variable function f . The
NNMC estimates the state variable function f with a neural network model NN and computes
the optimal strategy ⇡⇤t with the Bellman principle.

4.2.1 Architectures of the deep learning model
In this section, we present two neural network architectures to fit the value function. According
to the separable property of the value function shown in Equation (4.3), the only unknown
component is the state variable function f , which is therefore the target function for the neural
network. The architectures of the networks are built around exponential polynomial functions,
which are the most common form of solvable investor’s value functions and used in the PAMC
method (see [92]).This property of proposed networks ensures the new method generalizes
PAMC.

The neural network is expected to achieve a better fit than a polynomial regression if the
true state variable function is significantly di↵erent from the exponential polynomial function.
Furthermore, we designed an initialization method for networks, which is better than a random
initialization in terms of portfolio value function fitting.

4.2.1.1 Sum of exponential network

We first introduce the sum of exponential polynomial neural network (SEN), as illustrated in
Figure 4.1. The amount of input depends on the number of state variables. For simplicity, we
take two inputs as an example. The first hidden layer computes the monomial of inputs. The
second hidden layer obtains the linear combinations of the neuron in the first layer, where the
weights are fitted in NNMC. An exponential activation function is applied to the second layer.
The final output calculates a linear combination of exponential polynomials, so the exponential
polynomial is a specific case of this neural network.

We denote the sum of exponential network by NNS EN; the proposition next states the esti-
mation of the corresponding optimal allocation.

Proposition 4.2.1 Given the SEN approximation of the value function at the next rebalancing
time t + �t, (i.e. NNS EN[t + �t, S t, Xt]), the optimal strategy at time t is given by

⇡S EN
t = arg max

⇡
V(t,Wt, ⇡t, S t, Xt), (4.4)
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Figure 4.1: Sum of exponential network (SEN).

which is the solution of

f2(t,Wt, S t, Xt)+ f1(t,Wt, S t, Xt)⇡t+NNS EN(t+�t, S t(1+µN), Xt)�N XtµN(1+⇡tµN)�� = 0, (4.5)

where

f1(t,Wt, S t, Xt) = ��NNS EN(t + �t,Wt, S t, Xt)�2(Xt, S t)
f2(t,Wt, S t, Xt) = NNS EN(t + �t,Wt, S t, Xt)(✓(Xt, S t) � r(Xt)))

+
@NNS EN(t + �t,Wt, S t, Xt)

@S t
S t�

2(Xt, S t)

+
@NNS EN(t + �t,Wt, S t, Xt)

@Xt
�(Xt, S t)b(Xt)⇢.

(4.6)

Notably, ⇡S EN
t = � f2(t,Wt ,S t ,Xt)

f1(t,Wt ,S t ,Xt)
when S t follows a di↵usion process, i.e., �N = 0. ⇡S EN

t =

1
µN

((� f2(t,Wt ,S t ,Xt)
NNS EN (t+�t,S t ,Xt)�N XtµN

)�
1
� � 1) when S t follows a jump process, i.e., �(Xt, S t) = 0.

Proof It follows similarly to Theorem 1 in [91]. According to the Bellman principle,

V(t,Wt, S t, Xt) = max
⇡t

Et(V(t + �t,Wt+�t, S t+�t, Xt+�t) | Wt, S t, Xt). (4.7)

We substitute V(t + �t,Wt+�t, S t+�t, Xt+�t) with W1��

1�� NNS EN(t + �t,Wt+�t, S t+�t, Xt+�t) and
expand the right hand side of the equation with respect to W, S and X, then V(t,Wt, S t, Xt) is
written as a function of strategy ⇡t. Equation (4.5) is obtained with the first order condition.
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4.2.1.2 Improving Exponential Network

The architecture of an improving exponential network (IEN) is exhibited in Figure 4.2.

Figure 4.2: Improving exponential polynomial.

The target function of IEN is the log of the state variable function f (i.e. ln f ). The neural
network consists of three parts. Node 1 is a polynomial with the output denoted by V1. Node
2 is an artificial neural network with an arbitrary number of hidden layers and neurons; we
denote its output by V2. Node 3 is a single layer network with a Sigmoid function which com-
putes a proportion p 2 [0, 1]. The final output is the weighted average of the first two nodes
pV1 + (1 � p)V2. The second node is the complement to the exponential polynomial function.
Moreover, the similarity between the true value function and the exponential polynomial func-
tion is measured by p, which is fitted into the NNMC methodology. Therefore, the network
automatically adjusts the weights on the exponential polynomial function and its supplement
according to the generated data. Finally, the state variable function f is computed as

f = epv1+(1�p)v2 = (ev1)p ⇥ (ev2)1�p, (4.8)

which is the geometric weighted average of nodes 1 and 2. Letting NNIEN denote the IEN, the
estimation of optimal strategy is give in the next proposition.

Proposition 4.2.2 Given the IEN approximation of the log value function at time t + �t (i.e.,
NNIEN[t + �t, S t, Xt]), the optimal strategy at time t is given by

⇡IEN
t = arg max

⇡
V(t,Wt, S t, Xt), (4.9)

which is the solution of

( f2(t,Wt, S t, Xt)+ f1(t,Wt, S t, Xt)⇡t)+�N Xt exp
⇣
NNIEN(t + �t, S t(1 + µN), Xt)

⌘
µN(1+⇡tµN)�� = 0,

(4.10)
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where
f1(t,Wt, S t, Xt) = �� exp

⇣
NNIEN(t + �t, S t, Xt)

⌘
�2(Xt, S t)

f2(t,Wt, S t, Xt) = exp
⇣
NNIEN(t + �t, S t, Xt)

⌘
(✓(Xt, S t) � r(Xt)))

+
@NNIEN(t + �t,Wt, S t, Xt)

@S t
exp

⇣
NNIEN(t + �t, S t, Xt)

⌘
S t�

2(Xt, S t)

+
@NNIEN(t + �t,Wt, S t, Xt)

@Xt
exp

⇣
NNIEN(t + �t, S t, Xt)

⌘
�(Xt, S t)b(Xt)⇢.

(4.11)

Notably, ⇡IEN
t = � f2(t,Wt ,S t ,Xt)

f1(t,Wt ,S t ,Xt)
when S t follows a di↵usion process, in other word, �N = 0.

⇡IEN
t = 1

µN
((� f2(t,Wt ,S t ,Xt)

exp(NNIEN (t+�t,S t ,Xt))�N XtµN
)�

1
��1) when S t follows a jump process (i.e. �[Xt, S t] = 0).

Proof The proof follows similarly to Proposition 4.2.1.

4.2.2 Initialization, Stopping Criterion and Activation Function
In this section, we disclose more details on training the neural networks. The initialization of
weights is the first step of network training, which may significantly impact the goodness of fit.
A good initialization prevents the network’s weights from converging to a local minimum and
avoids slow convergence. Random initialization is most used when interpretability of network
is usually weak. In contrast, both the SEN and the IEN are extensions of an exponential poly-
nomial function; we suggest taking advantage of the results from the polynomial regression.
Hence, the neural network searches the minimum near the exponential polynomial function
used in the PAMC ensuring consistency. The polynomial regression initialization achieves
superior results to the random initialization.

The coe�cients of the exponential polynomial are first obtained with a regression model.

The output of the SEN is a linear combination of exponential polynomial functions
NP

i=1
ai exp(Pi

n(x, y))+

b, we substitute the coe�cients from polynomial regression into P1
n(x, y) and set a1 = 1, a2 =

a3 = ... = an = b = 0. For the initialization of the IEN, we substitute the coe�cients into the
first node and artificially make p = 1.

The training process minimizes the mean squared error (MSE) between network’s the out-
put and the simulated expected utility, and the sample data is split into a training set and a test
set to reduce the overfitting problem. Adam is a back-propagation algorithm that combines the
best properties of the AdaGrad and RMSProp algorithms to handle sparse gradients on noisy
problems and provides excellent convergence speed. We applied the Adam on the training set
for updating the network’s weights, and the test set MSE was computed and recorded after-
ward. The test set MSE was expected to be convergent, so the training process was finished
when the di↵erence between the moving average of the recent 100 test set MSEs and the most
recent test set MSE was less than a predetermined threshold, which was set at 0.00001 in the
implementation.

The number of exponential polynomials is a hyperparameter in the SEN. We let the SEN be
a sum of two exponential polynomial functions for simplicity. Node 2 in the IEN is an artificial
neural network, which complements node 1 when the value function significantly deviates
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from an exponential polynomial function. The number of hidden layers and neurons, as well
as the activation function of node 2, are freely determined before fitting the value function. We
assume node 2 is a single layer network with 10 neurons1 and we implement several functions
for comparison purposes, such as the logistic (sigmoid):

f (x) =
1

1 + e�x , (4.12)

the Rectified linear unit (ReLU):

f (x) =

8>><
>>:

0 if x  0
x if x > 0

, (4.13)

and the Exponential linear unit (ELU):

f (x) =

8>><
>>:

0 if x  0
ex � 1 if x > 0

. (4.14)

4.3 Notation and Algorithm of the Methodology

In this section, we clarify the notation and the step-by-step algorithm. The notation is displayed
in Table 4.1.

Notation Meaning
Bm

t Brownian motion at time t in mth simulated path
S m

t Stock price at time t in mth simulated path
Xm

t Other state variable such as interest rate or volatility
nr Number of simulated paths
N Number of simulation to compute expected utility for a given set (W0, S m

t , Xm
t )

Ŵm,n
t+�t(⇡

m) A simulated wealth level at t + �t given the wealth, allocation
and other state variables at t are W0, ⇡m and Xm

t
Ŝ m,n

t+�t A simulated stock price at t + �t given S m
t

X̂m,n
t+�t A simulated state variable at t + �t give Xm

t
V(t,W, S , X) Value function at time t given wealth W, stock price S and state variable X
NN(t, X, S ) The neural network used to fit f (t, S t, Xt) or ln [ f (t, S t, Xt)]
v̂m Estimation of f (t, S m

t , Xm
t ) or ln [ f (t, S m

t , Xm
t )]

⇡m,n
s Optimal strategy at time s given wealth, stock price and other state variables

are Ŵm,n
s , Ŝ m,n

s and X̂s
m,n

V̂(0,W0, S 0, X0) Estimation of expected utility at time 0.

Table 4.1: Notations for NNMC for NNMC is listed here.

1In our experiments, increasing the number of layers has little improvement in portfolio performance.
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4.3.1 Algorithm
We first generate the paths of the stock price S m

t and state variable Xm
t . The method starts

from t = T � �t (i.e., the last rebalancing time before the terminal). We compute the op-
timal strategy ⇡m

T��t given W0, S m
T��t, Xm

T��t using the Equations (4.5) or (4.10). Next, v̂m is
obtained through simulation, which estimates f (T � �t, S m

T��t, X
m
T��t) when using SEN and

ln [ f (T � �t, S m
T��t, X

m
T��t)] when using IEN. The network NN(T � �t, X, S ), approximating

the state variable function, is trained with the input (Xm
T��t,S

m
T��t) and output v̂m. We conduct a

similar procedure at each rebalancing point and recursively approximate the value function and
optimal strategy untill the inception of the portfolio. To evaluate the expected utility, we regen-
erate the paths of stock price and state variables. The path-wise optimal strategy is computed
from NN(t, X, S ), so the optimal terminal wealth is easy to obtain. The average of the util-
ity of optimal terminal wealth approximates the expected utility. Algorithm 9 and 10 present
the pseudo code for NNMC using SEN and IEN respectively. Simulation variance reduction
methods, such as antithetic variates, could be incorporated into both algorithms to reduce the
standard error of estimated expected utility.

4.4 Application to 4/2 model
[45] unified the 1/2 and 3/2 SV models and proposed the 4/2 SV model. The 4/2 model better
captures the evolution of the implied volatility surface and uniformly bounds the instantaneous
variance away from zero when weights on 1/2 and 3/2 factors are positive. We implement the
NNMC on the 4/2 model and report the optimal allocation, expected utility, and the annualized
CER defined by

U(W0(1 +CER)T ) = V(0,W0, S 0, X0). (4.15)
Three versions of the 4/2 model are considered; all are specific cases of the generalized model
(4.1). The first assumes market price of risk proportional to the volatility driver. In other
word, the value function and the optimal allocation are solvable in closed-form. The second
incorporates stochastic jumps into the 4/2 model, while the last uses the preferred setting for the
market price of risk in the economics/finance literature (i.e., proportional to the instantaneous
volatility). The parameters used in this section are presented in Table 4.2 2 and are estimated
from the S&P 500 and its volatility index (VIX) in [18].

4.4.1 A solvable case
[18] found the closed-form solution for an optimal dynamic portfolio when the stock price
follows a 4/2 model with the market price of risk linear to the square root of the volatility
driver

p
Xt. The dynamics of stock price S t and volatility driver Xt are exhibited in Equation

(4.16).
8>>>>><
>>>>>:

dMt
Mt
= rdt

dS t
S t
= (r + �S (aS Xt + bS ))dt + (aS

p
Xt +

bSp
Xt

)dBS
t

dXt = X(✓X � Xt)dt + �X
p

XtdBX
t .

< BS
t , B

X
t >= ⇢t (4.16)

2�re
t is the portfolio rebalancing interval, 1

�re
t

indicates the rebalancing frequency. The Euler method with step
size �si

t is applied in generating the stock price and states variables.
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Algorithm 9: NNMC-SEN
Input: S 0,W0,X0

Output: Optimal trading strategy ⇡⇤0 and expected utility V̂(0,W0, S 0, X0)
1 initialization;
2 Generating nr paths of Bm

t , S m
t , Xm

t f or m = 1...nr;
3 while t = T � �t do
4 Compute optimal allocation ⇡m

T��t with Equation (4.5) ;
5 Simulate wealth Ŵm,n

T (⇡m
T��t) given W0, S m

T��t, ⇡
m
T��t and Xm

T��t at T � �t
f or n = 1...N;

6 Compute v̂m = 1
N

NP
n=1

U(Ŵm,n
T (⇡m

T��t)) ⇥
1��

W1��
0

f or m = 1...nr ;

7 Train a network with input (Xm
T��t,S

m
T��t) and output v̂m. Denote the network by

NN(T � �t, X, S )
8 for t = T � 2�t to �t do
9 Compute optimal allocation ⇡m

t with NN(t + �t, X, S ) and Equation (4.5) given W0,
S m

t , and Xm
t ;

10 Simulate wealth Ŵm,n
t+�t(⇡

m
t ), Ŝ m,n

t+�t and X̂m,n
t+�t given W0, S m

t , ⇡m
t and Xm

t at time t
f or n = 1...N;

11 Compute v̂m = [ 1
N

NP
n=1

(Wm,n
t+�t(⇡

m
t ))1��NN(t + �t, X̂m,n

t+�t, Ŝ
m,n
t+�t)] ⇥ 1

W1��
0

f or m = 1...nr ;

12 Train a new network with input (Xm
T��t,S

m
T��t) and output v̂m and denote it by

NN(t, X, S ) ;

13 while t = 0 do
14 Compute ⇡⇤0 with with NN(�t, X, S ) and Equation (4.5);
15 Generate new paths of S z

t , Xz
t f or z = 1...N0, use the estimation of value

function NN(t, X, S ) to compute ⇡z
t and Wz

T .

16 The expected utility is , V̂(0,W0, S 0, X0) = 1
N0

N0P
n=1

U(Wz
T )

17 return ⇡⇤0, V̂(0,W0, S 0, X0)

Solving the associated Hamilton-Jacobi-Bellman (HJB) equation,

0 = sup
⇡

⇢
Vt +Wt(r + �S (aS Xt + bS ) + X(✓X � Xt)VX

+
1
2

W2
t ⇡

2(aS
p

Xt +
bSp

Xt
)2VWW +

1
2
�2

XXtVXX + ⇡Wt(aS Xt + bS )�X⇢VWX

�
,

(4.17)

the optimal trading strategy and value function are given by

V(t,W, X) =
W1��

1 � �ea(T�t)+b(T�t)X

⇡⇤t =
X

aX + b
[
�X⇢S Xb(T � t)

�
+
�S

�
].

(4.18)
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The functions a(T � t) and b(T � t) are

a(T � t) = �r(T � t) +
2X✓X

k2
ln

2k3e0.5(k1+k2)(T�t)

2k3 + (k1 + k3)(ek3(T�t) � 1)

b(T � t) =
k0(ek3(T�t) � 1)

2k3 + (k1 + k3)(ek3(T�t) � 1)
,

(4.19)

with auxiliary parameters k0 =
1��
� �

2
S , k1 = X � 1��

� ⇢S X�X�S , k2 = �2
X +

(1��)�2
X⇢

2
S X

� and k3 =q
k2

1 � k0k2.
The closed-form solution (see Equation (4.18)) reveals that the value function in this case is

an exponential linear function. Hence we set the degree of polynomial to 1 when implementing
NNMC with both the SEN and the IEN. Table 4.3 compares the optimal allocation, expected
utility and CER from NNMC, the embedded PAMC and the theoretical solution. PAMC takes
the least computational time. The optimal allocation obtained from PAMC is more accurate
than results from NNMC, while the di↵erences in expected utility and CER are not significant.
Furthermore, SEN slightly outperforms IEN in terms of accuracy of optimal allocation and
computation e�ciency. Moreover, the ReLU activation function is superior to the sigmoid and
ELU function when IEN is applied.

We repeat the estimation of expected utility (i.e., steps 14-16 in NNMC-SEN and steps
15-17 in NNMC-IEN) after the value function and optimal strategy are obtained. All approx-
imation methods have similar standard deviations of the estimated expected utility and CERs.
Moreover, standard deviation decreases with risk aversion level �, which indicates that our
approximation is more accurate for higher risk averse investors.

Figure 4.3 displays the expected utility and CER as a function of time to maturity T when
� = 2. The expected utility increases with maturity T as expected, while the CER decreases.
Expected utility from PAMC, NNMC, and the theoretical solution are visually the same. The
comparison in portfolio performance is clearer by showing the CER: PAMC and NNMC pro-
duce CERs that are slightly smaller than the theoretical result. Furthermore, ELU seems to
be inferior to the ReLU and sigmoid function, and CER obtained from NNMC with the ELU
activation function is slightly smaller than results from other methods when the investment
horizon is small.

4.4.2 An unsolvable case, 4/2 Model with jumps
Next, we extend the 4/2 model to account for stochastic jumps. The dynamics of stock prices
and volatility drivers are summarized by the SDE:

8>>>>><
>>>>>:

dMt
Mt
= rdt

dS t
S t
= (r + �S (aS Xt + bS ) � �QXtµN)dt + (aS

p
Xt +

bSp
Xt

)dBS
t + µNdNt

dXt = X(✓X � Xt)dt + �X
p

XtdBX
t .

< BS
t , B

X
t >= ⇢t

(4.20)
Volatility and market price of risk are the same with the 4/2 model given in Equation (4.16).

Nt is an independent Poisson process with intensity �N Xt, µN is the jump size, and �QXt captures
the market price of jump risk.
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(a) Expected utility (b) CER

Figure 4.3: S t follows the 4/2 model with market price of risk �S
p

Xt, (a) shows the Expected
utilities obtained with theoretical results and approximation methods versus investment horizon
T , (b) shows the CERs versus investment horizon T given � = 2.

We use the set of jump risk parameters given in [71]: �N = �Q = 0.1/✓X and µN = 0.1.
Notably, the stock is expected to jump once every 10 years if Xt stays at its mean level ✓X.
The degree of polynomial in PAMC and NNMC was chosen to be 1. In this case, the opti-
mal strategy cannot be solved explicitly given the approximation of the value function at the
next rebalancing time (see Propositions 4.2.1 and 4.2.2), hence we solve Equation (4.5) and
(4.10) with the Newton-Raphson method in NNMC. The optimal allocation, expected utility,
CER obtained with NNMC and PAMC are reported in Table 4.4. When the stock follows the
4/2 model with jumps, PAMC is faster, followed by NNMC-SEN. Moreover, the accuracy of
estimated expected utility and CER from PAMC and NNMC are similar, which suggests that
neural networks fail to enhance the portfolio performance in this case. The standard deviations
of these approximation methods have little di↵erence.

Figure 4.4 exhibits the expected utility and CER as a function of investment horizon T .
Portfolios with longer investment horizon are expected to achieve a better performance (i.e.,
higher expected utility) while CER decreases with T .

(a) Expected utility (b) CER

Figure 4.4: S t follows a 4/2 model with stochastic jump, (a) shows the Expected utilities
obtained with the approximation methods versus investment horizon T , (b) shows CERs versus
investment horizon T given � = 2.
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4.4.3 An unsolvable case, market price of risk proportional to volatility
In this section, we consider an excess return, proportional to the instantaneous variance. The
dynamics are given in Equation (4.21), and a closed-form solution has not been found yet.
We report the optimal allocation and expected utility from PAMC and NNMC, as well as
investigate the impact of maturity T . The degree of polynomial in PAMC and NNMC is still 1.

8>>>>><
>>>>>:

dMt
Mt
= rdt

dS t
S t
= (r + �S (aS

p
Xt +

bSp
Xt

)2)dt + (aS
p

Xt +
bSp

Xt
)dBS

t

dXt = X(✓X � Xt)dt + �X
p

XtdBX
t .

< BS
t , B

X
t >= ⇢t (4.21)

Table 4.5 reports the optimal allocation, expected utility, and CER from PAMC and NNMC.
PAMC is still the most e�cient method, followed by the NNMC-SEN. All methods achieve
similar portfolio performance in terms of the expected utility and CER as well as the corre-
sponding standard deviation. Figure 4.5 plots the expected utility and CER versus maturity T
when � = 2, which further verifies the non-significant di↵erence in expected utility and CER
obtained from the methods.

(a) Expected utility (b) CER

Figure 4.5: S t follows the 4/2 model with market price of risk �S (a
p

Xt +
bp
Xt

), (a) shows the
Expected utilities obtained with theoretical results and approximation methods versus invest-
ment horizon T , (b) shows the CERs versus investment horizon T given � = 2.

4.5 Application to the OU 4/2 model
Motivated by the 4/2 stochastic volatility model and mean-reverting price pattern popular
among various asset classes (e.g., commodities, exchange rates, volatility indexes), [37] de-
fine an Ornstein–Uhlenbeck 4/2 (OU 4/2) stochastic volatility model for volatility index option
and commodity option valuation. Equation (4.22) presents the dynamics involved in the OU
4/2 model, which is a specific case of Equation (4.1) given ✓(Xt, S t) = (LS + (�S � 1

2 )(aS
p

Xt +
bSp

Xt
)2 � �S ln S t), �(Xt, S t) = (aS

p
Xt +

bSp
Xt

), a(Xt) = X(✓X � Xt) and b(Xt) = �X
p

Xt. The
parameters used in this section are reported in Table 4.6, which is estimated from the data
of gold Exchange-traded fund (ETF) and the volatility index of gold ETF in [37]. There are
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two state variables in the OU 4/2 model; hence, the input in both the SEN and the IEN are 2.
Furthermore, the degree of polynomial in PAMC and NNMC is 2.

8>>>>>>>><
>>>>>>>>:

dMt
Mt
= rdt

dS t
S t
= (LS + �S (aS

p
Xt +

bSp
Xt

)2 � �S ln S t)dt + (aS
p

Xt +
bSp

Xt
)dBt

dXt = X(✓X � Xt)dt + �X
p

XtdBX
t

< dBt, dBX
t >= ⇢dt.

(4.22)

SEN performs worse than IEN when fitting the value function with the OU 4/2 model.
Sometimes, SEN significantly deviates from the true value function, which results in poor port-
folio performances and the occurrence of negative terminal wealth. Therefore, we exclude the
results from NNMC-SEN in this section. Table 4.7 compares the optimal allocation, expected
utility, and CER obtained for the OU 4/2 model. PAMC and NNMC-IEN produce similar opti-
mal allocations, both outperforming NNMC-SEN. Furthermore, we also estimate the standard
deviation of expected utility and CER, which demonstrates that NNMC leads to a less volatile
estimation of expected utility and CER than PAMC in most cases. In contrast to the results
for the 4/2 model, IEN is more e�cient than SEN. We conclude that IEN is suitable for the
model with complex structure and multiple state variables. The expected utility and CER as a
function of the maturity T when � = 2 is plotted in figure 4.6. Both the expected utility and
CER increase with T . The expected utility and CER obtained from PAMC and NNMC-IEN
visually overlap and are slightly higher than that of NNMC-SEN. Moreover, the selection of
activation function in IEN makes little di↵erence.

(a) Expected utility (b) CER

Figure 4.6: S t follows the OU 4/2 model, (a) shows the Expected utilities obtained via approx-
imation methods versus investment horizon T , (b) shows the CERs versus investment horizon
T given � = 2.

4.6 Conclusions
This chapter investigated fitting the value function in an expected utility, dynamic portfolio
choice using a deep learning model. We proposed two architectures for the neural network,
which extends the broadest solvable family of value function (i.e., the exponential polynomial
function). We measured the accuracy and e�ciency of various types of NNMC methods on
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the 4/2 model and the OU 4/2 model. The di↵erence in optimal allocation, expected utility
and CER is insignificant when the stock price follows the 4/2 model. The embedded PAMC
is superior to NNMC due to the lower parametric space, hence e�ciency. Furthermore, when
considering the OU 4/2 model, NNMC-SEN is inferior to a polynomial regression (PAMC)
and to the NNMC-IEN in terms of expected utility and CER.

In summary, NNMC benefits from the popular exponential polynomial representation (em-
bedded PAMC method) to propose network architecture flexible enough to reach beyond A�ne
models. Although the best setting, NNMC-IEN (ELU), is not as e�cient as PAMC, neural
networks demonstrate the way to tackle more advanced models along the lines of Markov
switching, Lévy processes, and fractional Brownian processes.
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Algorithm 10: NNMC-IEN
Input: S 0,W0,X0

Output: Optimal trading strategy ⇡⇤0 and expected utility V̂(0,W0, S 0, X0)
1 initialization;
2 Generating nr paths of Bm

t , S m
t , Xm

t f or m = 1...nr;
3 while t = T � �t do
4 Compute optimal allocation ⇡m

T��t with Equation (4.10);
5 Simulate wealth Ŵm,n

T (⇡m
T��t) given W0, S m

T��t, ⇡
m
T��t and Xm

T��t at T � �t
f or n = 1...N;

6 Compute v̂m = ln [sign(1 � �) 1
N

NP
n=1

U(Ŵm,n
T (⇡m

T��t))] � (1 � �) ln [W0]

f or m = 1...nr;
7 Train the network with input (Xm

T��t,S
m
T��t) and output v̂m. Denote the network by

NN(T � �t, X, S )
8 for t = T � 2�t to �t do
9 Compute optimal allocation ⇡m

t with NN(t + �t, X, S ) and Equation (4.10) given
W0, S m

t , and Xm
t ;

10 Simulate wealth Ŵm,n
t+�t(⇡

m
t ), Ŝ m,n

t+�t and X̂m,n
t+�t given W0, S m

t , ⇡m
t and Xm

t at t
f or n = 1...N;

11 Compute

12 v̂m = ln [ 1
N

NP
n=1

(Wm,n
t+�t(⇡

m
t ))1��exp(NN(t + �t, X̂m,n

t+�t, Ŝ
m,n
t+�t))] � (1 � �) ln [W0] f or

m = 1...nr ;
13 Train a new network with input (Xm

T��t,S
m
T��t) and output v̂m and denote it by

NN(t, X, S ) ;

14 while t = 0 do
15 Compute ⇡⇤0 with with NN(�t, X, S ) and Equation (4.10);
16 Generate new paths of S z

t , Xz
t f or z = 1...N0, use the estimation of transformed

value function NN(t, X, S ) to compute ⇡z
t and Wz

T .

17 The expected utility is , V̂(0,W0, S 0, X0) = 1
N0

N0P
n=1

U(Wz
T )

18 return ⇡⇤0, V̂(0,W0, S 0, X0)
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Table 4.2: Parameter values for 4/2 model.
Parameter Value Parameter Value
T 1 X0 0.04
r 0.05 �S 2.9428
�re

t
1

10 �si
t

1
60

S 0 1.0 M0 1.0
W0 1 nr 100
N 2000 N0 200000
X 7.3479 ✓X 0.0328
�X 0.6612 as 0.9051
bS 0.0023 ⇢ �0.7689
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Table 4.3: Results for the 4/2 model with market price of risk �S
p

Xt. We report the optimal
weights, expected utility, and CER obtained with theoretical result and with the approximation
method for di↵erent levels of risk aversion �. The standard deviation of estimated expected
utility and CER from 100 runs is displayed in parentheses.

� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0
Theoretical
Weights (⇡⇤0) 1.614 0.832 0.561 0.423 0.340
Expected utility (V⇤0) �0.878 �0.253 �0.135 �0.087 �0.061
CER (%) 13.85 9.62 8.15 7.40 6.95
PAMC
Weights (⇡PAMC

0 ) 1.615 0.833 0.561 0.423 0.340
Relative error(%) 0.001 0.05 0.05 0.04 0.04
Expected utility (VPAMC

0 ) �0.879 �0.253 �0.135 �0.087 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

Relative error (%) 0.04 0.04 0.05 0.06 0.08
CER (%) 13.80 9.60 8.14 7.40 6.95

(0.065) (0.033) (0.023) (0.017) (0.014)
Computational time (seconds) 31.3 30.6 30.3 30.0 30.4
NNMC-SEN
Weights (⇡S EN

0 ) 1.612 0.831 0.560 0.422 0.339
Relative error(%) 0.15 0.18 0.20 0.22 0.23
Expected utility (VS EN

0 ) �0.879 �0.253 �0.135 �0.087 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

Relative error(%) 0.05 0.04 0.05 0.06 0.06
CER (%) 13.80 9.60 8.14 7.40 6.95

(0.065) (0.033) (0.026) (0.017) (0.014)
Computational time (seconds) 56.4 57.2 57.6 57.0 57.9
NNMC-IEN (ReLU)
Weights (⇡IEN ReLU

0 ) 1.612 0.831 0.560 0.422 0.339
Relative error(%) 0.14 0.19 0.22 0.25 0.27
Expected utility (VIEN ReLU

0 ) �0.879 �0.253 �0.135 �0.087 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

Relative error(%) 0.05 0.04 0.05 0.06 0.06
CER (%) 13.80 9.60 8.14 7.40 6.95

(0.065) (0.033) (0.023) (0.017) (0.014)
Computational time (seconds) 62.1 63.4 64.8 63.5 63.5
NNMC-IEN (sigmoid)
Weights (⇡IEN sigmoid

0 ) 1.612 0.831 0.560 0.422 0.339
Relative error(%) 0.15 0.20 0.23 0.27 0.27
Expected utility (VIEN sigmoid

0 ) �0.879 �0.253 �0.135 �0.087 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

Relative error(%) 0.05 0.04 0.05 0.10 0.10
CER (%) 13.80 9.60 8.14 7.39 6.94

(0.065) (0.033) (0.023) (0.017) (0.014)
Computational time (seconds) 63.6 62.2 63.1 79.2 75.1
NNMC-IEN (ELU)
Weights (⇡IEN ELU

0 ) 1.612 0.831 0.560 0.422 0.339
Relative error(%) 0.16 0.19 0.19 0.28 0.31
Expected utility (VIEN ELU

0 ) �0.879 �0.253 �0.135 �0.087 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

Relative error(%) 0.06 0.10 0.05 0.18 0.20
CER (%) 13.78 9.58 8.14 7.38 6.93

(0.065) (0.034) (0.023) (0.017) (0.014)
Computational time (seconds) 78.2 74.6 62.1 77.4 75.3
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Table 4.4: Results for the 4/2 model with stochastic jumps. We report the optimal weights,
expected utility and CER obtained via the approximation methods for di↵erent levels of risk
aversion �. The standard deviation of estimated expected utility and CER from 100 runs is
displayed in parentheses.

� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0
PAMC
Weights (⇡PAMC

0 ) 1.545 0.797 0.537 0.405 0.325
Expected utility (VPAMC

0 ) �0.882 �0.255 �0.136 �0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0001) (0.0001)

CER (%) 13.43 9.41 8.01 7.30 6.87
(0.075) (0.039) (0.027) (0.020) (0.016)

Computational time (seconds) 47.1 48.4 47.1 47.2 47.1
NNMC-SEN
Weights (⇡S EN

0 ) 1.545 0.797 0.537 0.405 0.325
Expected utility (VS EN

0 ) �0.882 �0.255 �0.136 �0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0001) (0.0001)

CER (%) 13.43 9.41 8.01 7.30 6.87
(0.075) (0.040) (0.027) (0.020) (0.016)

Computational time (seconds) 74.2 77.3 72.5 72.3 82.7
NNMC-IEN (ReLU)
Weights (⇡IEN ReLU

0 ) 1.544 0.796 0.536 0.405 0.325
Expected utility (VIEN ReLU

0 ) �0.882 �0.255 �0.136 �0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0001) (0.0001)

CER (%) 13.43 9.41 8.01 7.30 6.87
(0.075) (0.040) (0.027) (0.020) (0.016)

Computational time (seconds) 93.1 89.4 86.8 83.7 83.2
NNMC-IEN (sigmoid)
Weights (⇡IEN sigmoid

0 ) 1.544 0.796 0.537 0.404 0.324
Expected utility (VIEN sigmoid

0 ) �0.882 �0.255 �0.136 �0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0001) (0.0001)

CER (%) 13.43 9.41 8.01 7.30 6.87
(0.075) (0.040) (0.027) (0.020) (0.016)

Computational time (seconds) 93.1 92.7 90.3 83.5 82.1
NNMC-IEN (ELU)
Weights (⇡IEN ELU

0 ) 1.544 0.796 0.537 0.404 0.325
Expected utility (VIEN ELU

0 ) �0.882 �0.255 �0.136 �0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0001) (0.0001)

CER (%) 13.43 9.41 8.01 7.30 6.87
(0.075) (0.040) (0.027) (0.020) (0.016)

Computational time (seconds) 81.3 83.9 88.1 81.5 85.6
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Table 4.5: Results for the 4/2 model with market price of risk �S (aS
p

Xt +
bSp

Xt
). We report the

estimation of optimal weights, expected utility and CER obtained via approximations given
di↵erent levels of risk aversion �. The standard deviation of estimated expected utility and
CER from 100 runs is displayed in parentheses.

� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0
PAMC
Weights (⇡PAMC

0 ) 1.539 0.789 0.531 0.400 0.321
Expected utility (VPAMC

0 ) �0.882 �0.255 �0.136 �0.087 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

CER (%) 13.38 9.36 7.97 7.26 6.84
(0.065) (0.033) (0.022) (0.017) (0.013)

Computational time (seconds) 33.9 33.6 34.0 35.4 33.2
NNMC-SEN
Weights (⇡S EN

0 ) 1.537 0.788 0.530 0.399 0.320
Expected utility (VS EN

0 ) �0.882 �0.255 �0.136 �0.087 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

CER (%) 13.38 9.36 7.97 7.26 6.84
(0.065) (0.033) (0.022) (0.017) (0.013)

Computational time (seconds) 62.7 62.6 62.4 62.7 62.9
NNMC-IEN (ReLU)
Weights (⇡IEN ReLU

0 ) 1.537 0.788 0.530 0.399 0.320
Expected utility (VIEN ReLU

0 ) �0.882 �0.255 �0.136 �0.087 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

CER (%) 13.38 9.35 7.97 7.26 6.84
(0.065) (0.033) (0.022) (0.017) (0.013)

Computational time (seconds) 70.8 69.8 69.0 69.4 69.6
NNMC-IEN (sigmoid)
Weights (⇡IEN sigmoid

0 ) 1.537 0.788 0.530 0.399 0.320
Expected utility (VIEN sigmoid

0 ) �0.883 �0.255 �0.136 �0.088 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

CER (%) 13.38 9.35 7.97 7.26 6.84
(0.065) (0.033) (0.022) (0.017) (0.013)

Computational time (seconds) 69.0 68.0 68.9 68.4 68.7
NNMC-IEN (ELU)
Weights (⇡IEN ELU

0 ) 1.537 0.788 0.530 0.399 0.320
Expected utility (VIEN ELU

0 ) �0.882 �0.255 �0.136 �0.087 �0.061
(0.0005) (0.0002) (0.0001) (0.0001) (0.0001)

CER (%) 13.38 9.35 7.97 7.26 6.84
(0.065) (0.033) (0.022) (0.017) (0.013)

Computational time (seconds) 69.3 69.4 68.3 71.6 68.5
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Table 4.6: Parameter value for the OU 4/2 model.
Parameter Value Parameter Value
T 1 X0 0.04
r 0.05 �S 0.572
�re

t
1

60 �si
t

1
60

S 0 120.0 M0 1.0
W0 1 nr 100
X 4.7937 ✓X 0.0395
�X 0.2873 aS 1
bS 0.002 ⇢ �0.08
L 3.7672 �S 0.78
N 2000 N0 200,000
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Table 4.7: Results for the OU 4/2 model. We report the estimation of optimal weights, expected
utility and CER obtained via approximations for di↵erent levels of risk aversion �. The stan-
dard deviation of estimated expected utility and CER from 100 runs is provided in parentheses.

� = 2.0 � = 4.0 � = 6.0 � = 8.0 � = 10.0
PAMC
Weights (⇡PAMC

0 ) 0.068 0.026 0.015 0.010 0.008
Expected utility (VPAMC

0 ) �0.888 �0.255 �0.136 �0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0002) (0.0001)

CER (%) 12.65 9.28 8.00 7.32 6.90
(0.073) (0.047) (0.035) (0.028) (0.024)

Computational time (seconds) 103.9 104.6 104.4 104.5 104.3
NNMC-SEN
Weights (⇡S EN

0 ) 0.134 0.056 0.042 0.040 0.029
Expected utility (VS EN

0 ) �0.888 �0.256 �0.136 -0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0001) (0.0001)

CER (%) 12.62 9.26 7.97 7.29 6.87
(0.076) (0.045) (0.032) (0.025) (0.020)

Computational time (seconds) 439.5 477.5 434.3 446.9 449.7
NNMC-IEN (ReLU)
Weights (⇡IEN ReLU

0 ) 0.070 0.028 0.016 0.011 0.007
Expected utility (VIEN ReLU

0 ) �0.888 �0.255 �0.136 �0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0002) (0.0001)

CER (%) 12.65 9.29 8.00 7.32 6.90
(0.072) (0.045) (0.033) (0.026) (0.022)

Computational time (seconds) 190.3 190.6 190.4 187.8 185.1
NNMC-IEN (sigmoid)
Weights (⇡IEN sigmoid

0 ) 0.067 0.026 0.015 0.010 0.007
Expected utility (VIEN sigmoid

0 ) �0.888 �0.255 �0.136 �0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0001) (0.0001)

CER (%) 12.65 9.28 8.00 7.32 6.90
(0.072) (0.044) (0.033) (0.026) (0.022)

Computational time (seconds) 185.7 186.0 185.2 181.4 181.9
NNMC-IEN (ELU)
Weights (⇡IEN ELU

0 ) 0.072 0.031 0.015 0.010 0.008
Expected utility (VIEN ELU

0 ) �0.888 �0.255 �0.136 �0.087 �0.061
(0.0006) (0.0003) (0.0002) (0.0001) (0.0001)

CER (%) 12.65 9.28 8.00 7.32 6.90
(0.072) (0.044) (0.033) (0.026) (0.022)

Computational time (seconds) 185.6 184.1 188.1 195.1 193.7



Chapter 5

Derivatives-based portfolio decisions. An
expected utility insight

Chapter summary:
This chapter challenges the use of stocks in portfolio construction, demonstrating that deep

out-of-the-money Asian products, conveniently designed straddles and basket options could be
better choices. Our results are obtained under the assumptions of the Black–Scholes–Merton
setting, uncovering a hidden benefit of derivatives that complements their well-known gains
for hedging, in market incompleteness, while also transferable to more advanced settings.
The analysis relies on the infinite number of optimal choices of derivatives for a maximized
expected utility (EUT) agent, proposing risk exposure minimization as an additional optimiza-
tion criterion inspired by regulations.
Status: Accepted by Annals of Finance.

5.1 Introduction
Financial derivatives such as futures, options and swaps play essential roles in current financial
markets. They are used for hedging and speculation as well as for arbitrage opportunities. The
history of derivatives is as old as the history of commerce. Derivatives have grown into an in-
dispensable asset class since the 1970s, in part due to the increase in volatility and complexity
of global financial markets. The popularity of derivatives is such that some market analysts,
such as [74], place the size of derivatives at more than 10 times the total world gross domestic
product (GDP). Vanilla European and American options usually come to mind first when dis-
cussing options. Beyond that, a wide variety of options are traded in centralized exchanges or
over-the-counter (OTC) markets, and some investors are even able to define their own products
and terms. The enduring appeal of derivatives lies in their diversity and hence the capacity to
fulfill their needs of financial players.

This chapter uncovers an additional benefit of derivatives. It addresses a basic, yet poorly
understood question for investors: what is the best financial derivative to include in a portfolio?
We challenge the common practice of using the underlying stock; instead, we demonstrate that
Asian derivatives, straddles or baskets could be more convenient choices. Our analysis and
results are obtained under the safe assumptions of a Black–Scholes–Merton model, which not

108



5.1. Introduction 109

only uncovers the hidden “in plain sight” benefits of derivatives, but also highlights their po-
tential for applications in more advanced settings incorporating market incompleteness, jumps
and transaction costs, among others.

Derivative valuation in the context of continuously trading markets was initiated by the
seminal papers of [8] and [77]. The authors solved associated partial di↵erential equations
(PDEs) and obtained the price function of a European option in closed form, when the under-
lying asset follows a geometric Brownian motion (GBM). Their work (i.e. Black–Scholes–
Merton formula) laid the foundation for the development of derivative pricing. Their results
have been extended in many directions; most relevant to this study are extensions to the pricing
of many other types of options, such as American options (see [7]) lookback options (see [44])
and geometric average Asian options (see [56]), to mention a few. The distinctive exercise
rights and structure of payo↵ reflect the complexity of financial derivatives.

This chapter focuses on the benefits of derivatives from the portfolio investment perspec-
tive for a maximized expected utility (EUT) agent. Investment incorporating derivatives have
been studied from multiple perspectives. [47] found a buy-and-hold strategy that minimizes
the mean-squared distance to the terminal wealth of [76] continuously rebalancing portfolio.
Moreover, an elasticity approach was introduced in [58], by which the author obtained the op-
timal strategy of a portfolio with path-dependent options. [79] studied a portfolio of volatility
derivatives (options or swaps) for a constant absolute risk aversion (CARA) investor. In ad-
ditions, [71] investigated the optimal portfolio in a stock-derivatives market with Heston’s SV
model and jumps. Their results demonstrated the improvement in performance when using
derivatives to complete the market, while showing that an infinite number of derivatives can be
used with the same optimal performance for the portfolio. In contrast to the existing literature,
this chapter investigates how to best select derivatives.

For this purpose, in addition to a maximized EUT, we develop a second optimization crite-
rion for the portfolio manager as a way of selecting the best derivative. We choose risky asset
exposure minimization motivated by two facts. First, the maximization of the utility can be
achieved by an infinitely number of equally optimal derivatives (as per [71]). Second, min-
imizing risk exposure, as a second optimization criterion, aligns with practical needs in the
industry. In general, investment companies face many constraints in the construction of their
portfolios, many of which are imposed by regulatory agencies. The key factor behind regula-
tory constraints is the intention to control the exposure of a portfolio to risky assets, protecting
an investor’s capital in the case of a market crash. Some of these risks are di�cult to accurately
model, which highlights the importance of minimizing exposure.

Our findings demonstrate that derivatives can be used to reduce risk exposure with no im-
pact on the level of satisfaction of the investor (e.g. maximum utility). We investigate the
selection of derivatives in three specific option classes: (i) American, European and Asian
calls and puts; (ii) American, European and Asian synthetic straddles; and (iii) basket options.
We further compare one-asset and multi-asset options in various realistic situations, and we
consider the relationship between risky asset exposure and portfolio rebalancing frequency.

The contributions of the chapter are summarized as follows:

1. Given the infinite number of choices of equally optimal financial derivatives for an EUT
investor, we explore an additional optimization criterion, namely, risk exposure mini-
mization, to help investors make a practical derivative selection.
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2. We demonstrate, in the context of two one-factor (e.g. GBM) assets, that the minimum
number of derivatives needed not only to maximize EUT performance, but also to mini-
mize risk exposure is exactly two.

3. In a comparison of the most popular types of simple one-asset options (e.g. American,
European and Asian calls and puts), we illustrate that the deepest out-of-the-money Asian
products are the best choices for minimizing risk exposure.

4. To avoid illiquid out-of-the-money options, which also require plenty of rebalancing, we
explore optimal selections among straddles. We demonstrate the existence of an optimal
strike price for risk exposure minimization, which is likely a better practical choice than
out-of-the-money calls and puts.

5. Given the setting of two assets in the portfolio, we study the optimality of multi-asset
derivatives. We determine that a basket option could be a better selection than one-asset
Asian calls and puts in many realistic situations.

6. Several analyses are performed to solidify our findings; in particular, the relationship
between risky asset exposure and portfolio rebalancing frequency is investigated, and
the results are put to the test for a variety of parametric choices.

The chapter is organized as follows. Section 5.2 describes the EUT problem for an investor
allocating directly among financial derivatives. Given the vast number of optimal derivatives
available for this problem, Section 5.2 defines a criterion based on an additional optimiza-
tion problem that aids in selecting a single optimal solution. Section 5.3 then explores two
cases of one-asset options available to a portfolio investor: (1) calls and puts and (2) straddles.
Thereafter, Section 5.4 focuses on the benefit of multi-asset derivatives such as basket options,
and Section 5.5 concludes this study. Section 5.6 presents all the proofs and complementary
analyses in support of our findings.

5.2 Mathematical setting and results
Let (⌦,F ,P) be a complete probability space with a right-continuous filtration {Ft}t2[0,T ]. We
consider a frictionless market, in which trading occurs without transaction costs or market
impact, comprising a money market account Mt and two risky assets S t = [S (1)

t , S
(2)
t ]T , with the

following dynamics:
8>><
>>:

dMt
Mt
= rdt

dS t = diag(S t)
⇥
(r · + diag(�)⇤)dt + diag(�)dBt

⇤
,

(5.1)

where Bt = [B(1)
t , B

(2)
t ]T are Brownian motions modelling the risk of two underlying assets,

whose correlation is denoted by ⇢ 2 (�1, 1). Here, r is the risk-free rate and denote the
vector of ones, ⇤ = [�(1), �(2)]T are constants capturing the market price of risk of Bt, and
� = [�(1),�(2)]T captures the volatility of the two underlying assets.

We now introduce a set of admissible financial derivatives on the assets S t, for a fixed n � 1:

⌦(n)
O =

n
Ot = [O(1)

t ,O
(2)
t , ...,O

(n)
t ]T | O(i)

t , 0, i = 1, ..., n and rank (⌃t) = 2, t 2 [0,T ]
o
,
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where ⌃t represents the variance matrix of Ot. The element (i, j), i = 1, .., n, j = 1, 2, of ⌃t, de-
noted by f i j

t , represents the sensitivity of O(i)
t to the underlying asset S ( j)

t , i.e. f i j =
dO(i)

t

dS ( j)
t

S ( j)
t �

( j).
Note that ⌦O is an infinite set, which could contain standardized exchange-traded options and
non-standardized OTC options available to a generic investor. The reader should observe that
f i j
t depends on derivative type, style, underlying price, strike price, time to maturity and other

factors, and ⌃t is a full-rank matrix, which allows us to continue working in a complete market
if n � 2. For simplicity, we also assume that the derivatives in ⌦(n)

O will be rolled over, always
keeping the same time to maturity and a non-zero value.

We are now ready to create a derivatives-based dynamic portfolio choice problem for a
risk-averse investor. The investor preference is measured by the widely used and algebraically
simple CRRA utility.1 We assume that an investor allocates in an element of ⌦O; that is, a
specific Ot = [O(1)

t ,O
(2)
t , ...,O

(n)
t ]T (n � 2). Note that by arbitrage arguments, the dynamics of

the derivatives-based assets and the market account are as follows:
8>><
>>:

dMt
Mt
= rdt

dOt = diag(Ot) [(r · + ⌃t⇤)dt + ⌃tdBt] .
(5.2)

The investor is not prohibited from trading on the underlying assets. This would be equiv-
alent to setting n = 2 and taking Ot = S t.

Let ⌦(O)
⇡ denote the space of admissible strategies satisfying the standard conditions, where

the element ⇡t = [⇡(1)
t , ⇡

(2)
t , ..., ⇡

(n)
t ]T represents the proportions of the investor’s wealth in the

options Ot = [O(1)
t ,O

(2)
t , ...,O

(n)
t ]T with the remaining 1 � T⇡t invested in the cash account Mt.

The wealth process Wt satisfies

dWt

Wt
= (r + ⇡T

t ⌃t⇤)dt + ⇡t⌃tdBt. (5.3)

A CRRA utility function represents the investor’s preference on the terminal wealth WT , which
is given by

U(WT ) =
W1��

T

1 � � , (5.4)

Moreover, � > 0, � , 1 measures the investor’s level of risk aversion. The investor’s objective
is to derive an investment strategy ⇡⇤t that maximizes the EUT of the terminal wealth WT . Then,
the investor’s problem can be written as follows:

V(t,W) = max
⇡s�t2⌦(O)

⇡

E(U(WT ) | Ft), (5.5)

and V(t,W) denotes the value function at time t. According to the principles of stochastic
control, we state the Hamilton-Jacobi-Bellman (HJB) equation for the value function V:

sup
⇡t

(
Vt +WtVW(r + ⇡T

t ⌃t⇤) +
1
2

W2
t VWW(⇡T

t ⌃t��
T⌃T

t ⇡t)
)
= 0, (5.6)

where � =
"

1 0
⇢

p
1 � ⇢2

#
.

1The can easily be extended to other utility functions.
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Proposition 5.2.1 (Solution for V and ⇡⇤t ) The value function has the representation:

V(t,W) =
W1��

1 � � exp
 
(1 � �)

 
r +

1
2
⇤T (��T )�1⇤

�

!
(T � t)

!
. (5.7)

Moreover, ⇡⇤t is an optimal strategy if it satisfies ⌃T
t ⇡
⇤
t = ⌘

⇤
t , where ⌘⇤t is given by

⌘⇤t =

"
⌘(1)

t
⌘(2)

t

#
=

(��T )�1⇤

�
. (5.8)

Proof See Section 5.6.1.

Proposition 5.2.1 highlights three important implications. First, for any given element in
⌦(n)

O , if n > 2 numerous, indeed infinitely many, strategies, all produce the same maximum
value function. This can be interpreted as a redundant market case. Second, if n = 2, then a
unique optimal strategy exists for the problem. Finally, if n = 1, there is no optimal solution:
the value function cannot reach the global maximum; this is actually an incomplete market
situation.

In summary, as there are a host of tradeable derivatives in the financial market, hence a
myriad of elements exist in ⌦(n)

O . This means there are an infinite number of choices of the
portfolio composition Ot that can deliver the same optimal solution to the EUT problem. The
next section takes advantage of this pool of optimal solutions to design a criterion that allows
investors to select the best portfolio composition, with the corresponding strategy. This extra
criterion is motivated by investor needs. Adding such a criterion will lead to an additional
optimization problem, the solution of which is explored below.

5.2.1 Derivative selection criterion: minimizing `1 risk exposure
In this section, we propose a derivative selection criterion. Proposition 5.2.1 illustrates that,
given Ot 2 ⌦(n)

O , with n � 2, an optimal strategy ⇡⇤t 2 ⌦(O)
⇡ exists that maximizes the EUT of

terminal wealth. From the traditional dynamic portfolio choice perspective, derivative selection
does not benefit the investor, because regardless of the derivative chosen, the optimal strategy
always achieves the same EUT.

In reality, investors are always concerned with the size of their risky allocations. For ex-
ample, market conditions may change over time, and a risky investor could su↵er large, unex-
pected losses especially during crisis periods. Regulatory constraints also force the investor to
keep increasingly large percentages of wealth in cash. This means that strategies with smaller
exposure on the risky products are naturally preferable to the investor. In this regard, we design
a simple derivative selection criterion aimed at capturing this practical dilemma:

min
Ot2⌦(n)

O

�������
arg max
⇡s�t2⌦(O)

⇡

E(U(WT ) | Ft)

�������
1

, (5.9)
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where k⇡s�tk1 =
nP

i=1

���⇡(i)
t

��� represents the `1 norm of allocations at time t. Note that this objective

is equivalent to maximizing the cash position while shorting less.
As we mentioned before, it is suboptimal for the investor to choose a portfolio composition

size n < 2 based on the unhedgeable risk resources and incompleteness of the market. However,
the investor might be interested in a redundant (n > 2) market situation, hoping to reduce their
risky asset exposure. In the next proposition, we demonstrate that the best choice of n, for
problem (5.9), is actually n = 2.

Proposition 5.2.2 Assume that an optimal solution for problem (5.9) exists for n � 2, then,
(5.9) leads to the same minimal `1 norm for any n � 2. In addition, an optimal strategy exists
for problem (5.9) such that the number of non-zero allocations is less than or equal to 2.

Proof See Section 5.6.2.

Proposition 5.2.2 demonstrates that redundancy will not o↵er any additional help with the
investor’s risky asset exposure. In other words, working with n = 2 is su�cient for problem
(5.9). This allows us to work with the simplest case given a complete market setting (i.e.
n = 2).

5.3 Applications to one-asset derivatives
In this section, we solve the derivative selection problem—that is, (5.9)—for n = 2, within
subsets of the derivative set ⌦(2)

O . The derivative selection problem is rewritten as

min
Ot2⌦(2,1)

O

�������
arg max
⇡s�t2⌦(O)

⇡

E(U(WT ) | Ft)

�������
1

, (5.10)

where ⌦(2,1)
O captures one-asset (single-stock) derivatives, which can be represented as follows:

⌦(2,1)
O =

n
Ot = [O(1)

t ,O
(2)
t ]T | Ot 2 ⌦(2)

O , O(i)
t = g

⇣
S (i)

⌘
, i = 1, 2 t 2 [0,T ]

o
.

In this situation, the option’s variance matrix for a portfolio composition Ot = [O(1)
t ,O

(2)
t ]T 2

⌦(2,1)
O is defined by

⌃t =

"
f (1)
t 0
0 f (2)

t

#
, (5.11)

which, provided f (1)
t and f (2)

t are nonzero, is a rank 2 (non-singular) diagonal matrix. By Itô’s
lemma, the sensitivity of O(i)

t is a function of the option Delta, spot price S (i)
t , stock volatility

�(i) and the option price O(i)
t :

f (i) =
@O(i)

t

@S (i)
t

S (i)
t �

(i)

O(i)
t

. (5.12)

The next proposition states the fundamental principle of one-asset option selection.
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Proposition 5.3.1 (Fundamental principle of one-asset option selection) A portfolio compo-
sition:
O⇤t = [O(1),⇤

t ,O(2),⇤
t ]T 2 ⌦(2,1)

O is optimal for problem (5.10) if and only if

O(i),⇤
t = arg max

O(i)
t

������
dO(i)

t

dS (i)
t

1
O(i)

t

������ . (5.13)

Proof See Section 5.6.3.

Note that both option Delta and price must be bounded away from 0 and 1 to avoid the sub-
optimal incomplete market case, such that the option sensitivity f (i) 2 (0,1) and variance
matrix ⌃t is non-singular. In other words, we could witness an infinitely large allocation as
f (i) ! 0 (to be explained in Section 5.3.1), which would also lead to a suboptimal solution
(incomplete market) and hence a departure from the investor’s target (i.e. maximizing utility
and minimizing risk exposure).

The fundamental principle of one-asset option selection illustrates that the selection of one-
asset options is separable. Investors can first pick the option with the largest relative sensitivity
to S (1)

t among all one-asset options on S (1)
t as O(1),⇤

t , and they can then select O(2),⇤
t in a similar

way. Based on this principle, we consider the case where ⌦(2,1)
O is a subset of put and call

options in Section 5.3.1. Then, the best option style and strike price for minimizing k⇡tk1 is
quantified.

Selection of put and call options is studied first due to their popularity. Nonetheless, calls
and puts have a problem: their optimal is on the boundary of the strike price range. This could
lead to illiquid choices (high out-of-the-money options) or, even worse, incomplete market
suboptimality on the limit as the strike price goes to zero (puts) or infinity (calls). In Section
5.3.2, we investigate derivative selection in a subset of straddles. Straddles are also popular
products, which avoid the boundary optimality of calls and puts. Note that the selection of
O(1),⇤

t and O(2),⇤
t is independent, and the procedures are similar; hence, for simplicity, we only

present the result for O(2),⇤
t .

The chosen parameters are presented in Table 5.1.2 These parameters are considered to be
plausible.

Table 5.1: Parameter Value
Parameter Value Parameter Value
�(1) 0.13 �(2) 0.2
r 0.05 ⇢ 0.4
�(1) 0.52 �(2) 0.6
Investment horizon T 1 Time to maturity of options T̂ 2
S (1)

0 40 S (2)
0 30

⌘(1)
t 0.083 ⌘(2)

t 0.117
� 4.0

2See Section 5.6.9 for analysis of other parameter choices.
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The option variance matrix may not be solvable in closed form. Therefore, we approxi-
mate the sensitivity of European, American and arithmetic average Asian options via the finite
di↵erence method: the Delta of option Ot is given by

Delta =
Ot(S + �S ) � Ot(S � �S )

2�S
. (5.14)

Here, Ot(S ) is the simulated option price given spot price S . In addition, we estimate the sen-
sitivity of American options with the generalized infinitesimal perturbation analysis approach
introduced by [16].

5.3.1 Put and call options

We first consider the derivative selection problem (5.10) on the subset denoted by ⌦(2,put call)
O

that contains only European-, American- and Asian-style put and call options:

⌦
(2,put call)
O =

n
Ot = [O(1, j)

t ,O
(2, j)
t ]T | O(i, j)

t = g( j)
⇣
S (i)

⌘
, i = 1, 2, t 2 [0,T ]

o
.

For both practical and theoretical reasons, the strike price K(i, j) of a given option O(i, j)
t is

bounded within [A(i, j), B(i, j)], where j 2 {Euro Call, Asian Call, Amer Call, Euro Put, Asian Put,
Amer Put}. The put option strike price is bounded away from 0; that is, A(i, j) > 0, where
j 2 {Euro Put, Asian Put, Amer Put}. Similarly, the call option strike excludes1. Both condi-
tions ensure the non-zero option price assumption. For simplicity, we also assume that all the
options have the same time to maturity T̂ = 2, and we search the optimal portfolio composition
in terms of option type, style and strike price.

European put and call prices and their sensitivities are solved by the well-known Black–Scholes–Merton
model (see [8]). Let O(i,Euro Call)

t and O(i,Euro Put)
t be a call and put option on S (i)

t given in Equation
(5.1). The Black–Scholes–Merton model indicates that

O(i,Euro Call)
t = S (i)

t N(d1) � K(i,Euro Call)e�r(T̂�t)N(d2)

O(i,Euro Put)
t = K(i,Euro Put)e�r(T̂�t)N(�d2) � S (i)

t N(�d1)

@O(i,Euro Call)
t

@S (i)
t

= N(d1)
@O(i,Euro Put)

t

@S (i)
t

= �N(�d1),

(5.15)

where N is the cumulative distribution function of a standard normal random variable and

d1 =
ln (S (i)

t /K(i,Euro Call/Put)) + (r + 1
2 (�(i))2)(T̂ � t)

�(i)
p

T̂ � t
, d2 = d1 � �(i)

p
T̂ � t. (5.16)

The proposition next demonstrates the existence of an optimal portfolio composition O⇤t 2
⌦

(2,put call)
O , given the assumption that O(i, j)

t 2 C1 and the Delta is non-zero.

Proposition 5.3.2 (Existence of optimal portfolio composition in put and call subset) Assume
O(i, j)

t

⇣
S (i),K(i, j)

⌘
2 C1 on (0,1) ⇥ [A(i, j), B(i, j)],3 the optimal portfolio composition for problem

(5.10) within the subset ⌦(2,put call)
O exists.

3 @O
(i, j)
t

@K(i, j) on boundary is defined as the one-sided derivative.
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Proof See Section 5.6.4.

It is easy to show the expression for this optimal composition, in the case of the European
options, as clarified in the following corollary.

Corollary 5.3.3 The risk exposure to an European call option decreases with K(i,Euro Call) and
converges to 0 as K(i,Euro Call) ! 1. Similarly, the risk exposure to an European put option
increases with K(i,Euro Put) and converges to 0 as K(i,Euro Put) ! 0.
Therefore, the optimal European call is achieved when K(i,Euro Call) = B(i,Euro Call) and the opti-
mal European put is achieved when K(i,Euro Put) = A(i,Euro Put) .

Proof See Section 5.6.5.

Corollary 5.3.3 demonstrates that k⇡tk1 can vanish if the European call option’s strike price
approaches infinity. These extreme options cannot be found in the market, but more impor-
tantly, they would also lead to a violation of the non-singular matrix ⌃t condition, creating
an incomplete market situation. This is known as the problem of “boundary optimality.” The
corollary thus illustrates the importance of our derivative selection.

Figure 5.1 (a) exhibits ⇡(2, j)
0 —that is, the allocation on call options O(2, j)

t at t = 0—as a
function of strike price and spot price ratio K(2, j)/S (2)

t ; for example, K(2, j)/S (2)
t = 1 indicates

at-the-money options. The analytical sensitivity of European calls is obtained with Equation
(5.12) and (5.15), with which the optimal strategy is known immediately. Note that the Euro-
pean call option reduces to S (2)

t when K(2,Euro Call) = 0, and the allocation hence converges to the
optimal strategy on S (2)

t . The allocation on the European call obtained by the finite di↵erence
method is also plotted to verify the accuracy of numerical approximation. Allocations obtained
via analytical and numerical approaches visually overlap except when K(2,Euro Call) is extremely
large. The allocation to Asian calls is similar to that of European calls when the strike prices
are small, but it decreases faster. Asian calls are consequently preferable to European calls
given the same upper bound on strike price; that is, B(2,Euro call) = B(2,Asian call).

The allocation on put options is illustrated in Figure 5.1 (b). The absolute allocations for
European, American4 and Asian puts increase with strike price because of the decreasing in-
stantaneous sensitivity. The absolute allocation on Asian puts is the smallest when K(2,Asian Put)

is small, but the opposite occurs as the strike price rises. Figure 5.1 not only confirms Corollary
5.3.3—that is ⇡(2,Euro Call)

t ! 0 as K(2,Euro Call) ! 1 and ⇡(2,Euro Put)
t ! 0 as K(2,Euro Put) ! 0—

but also demonstrates a similar conclusion for Asian and American options.
In summary, the absolute allocation on a put or call option is monotone with strike price;

hence, the optimal choice of O(2, j)
t is on the boundary. This means we only need to compare the

allocation ⇡(2, j) on the deepest out-of-the-money option to obtain the option with the smallest
absolute allocation.

4We assume stocks which pay no dividends, so American call is identical to the European call in (a). In
addition, the allocation on American put is shown in (b) when K(2,Amer Put) < 37.7, i.e. the region, in which the
American put should be held and not yet exercised.
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Next, we consider the case where options of di↵erent style5 share an identical boundary:

[S (2)
t ,R

BS (2)
t ] = [A(2, j), B(2, j)], j 2 {Euro Call, Asian Call}

[RAS (2)
t , S

(2)
t ] = [A(2, j), B(2, j)], j 2 {Euro Put, Asian Put, Amer Put}.

Here, RA  1, and RB � 1. As we move the lower bound of put option strike price RAS (2)
t

and the upper bound of call option strike price RBS (2)
t , the optimal choice of O(2, j)

t is shown in
Figure 5.1 (c). The Asian option is preferable compared to American and European options.
Asian calls dominate when both RA and RB are large, whereas Asian puts dominate when both
RA and RB are small.

(a) allocation on call options (b) allocation on put options

(c) Derivative selection region

Figure 5.1: Allocation on options versus strike price

Figure 5.2 displays the performance of the portfolio Ot = [O(1,Euro Call)
t ,O(2,Euro Call)

t ]T versus
strike prices for di↵erent rebalancing frequencies. The portfolio performance is measured by
annualized certainty equivalent (CER), defined as

U(W0 exp (CER ⇤ T )) = V(0,W0). (5.17)

The theoretical optimal CER (orange wireframe) is plotted as the benchmark, which can only
be achieved by continuously rebalancing. We also present the incomplete market CER (i.e.

5The actual range of American put strike price is the intersection of [A(i,Amer Put), B(i,Amer Put)] and the region
of K(i,Amer Put) such that the option is not exercised immediately, hence American option is not considered when
[A(i,Amer Put), B(i,Amer Put)] is mutually exclusive with that region.
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the green wireframe) for comparison purposes, for example obtained through the lack of an
asset to hedge the risk in B(2)

t . A portfolio with in-the-money call options is insensitive to the
rebalancing frequency, and the loss from occasional rebalancing is not significant. On the other
hand, the CER of a portfolio with two deep out-of-the-money calls could be even smaller than
that of an incomplete market CER when the portfolio is only rebalanced 10 times per year,
whereas it approaches complete market CER as the rebalancing frequency increases.
This is important for investors reducing their risk exposure with deep out-of-the-money op-
tions. These products lack liquidity; hence, the trading strategy might fail because investors
cannot adjust their position quickly enough. In summary, the best (out-of-the-money) options
are those requiring more frequent rebalancing, as Figure 5.2 demonstrates. This points at future
research addressing the trade-o↵ between exposure and rebalancing.

Figure 5.2: Certainty equivalent rate (CER) versus strike price with di↵erent rebalancing fre-
quencies

5.3.2 Straddles
Next, we consider the derivative selection in a subset of options called straddles:

⌦(2,straddle)
O =

n
Ot = [O(1, j)

t ,O
(2, j)
t ]T | O(i, j)

t = g( j)
⇣
S (i)

⌘
, i = 1, 2, t 2 [0,T ]

o
.

where j 2 {Euro S trad, Asian S trad, Amer S trad}. A straddle is an option synthesized by
simultaneously taking a long position in a call and a put option; hence, the terminal payo↵ of
a European straddle is

���S (i)
T � K(i,Euro S trad)

���, where K(i,Euro S trad) denotes the strike price. The
European straddle price and Delta are obtained with the Black–Scholes– Merton model:

O(i,Euro S trad)
t = S (i)

t (2N(d1) � 1) � K(i,Euro S trad)e�r(T̂�t)(2N(d2) � 1)

@O(i,Euro S trad)
t

@S (i)
t

= 2N(d1) � 1.
(5.18)
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d1and d2 are defined in Equation (5.16). We substitute the straddle’s Delta into Equation (5.12),
and the sensitivity of straddle O(i,Euro S trad)

t is given by

f (i,Euro S trad) =
(2N(d1) � 1)S (i)

t �
(i)

O(i,Euro S trad)
t

. (5.19)

The non-singular variance matrix condition requires non-zero sensitivity f (i,Euro S trad), such that
2N(d1) � 1 , 0 and the feasible region for the strike price is as follows:

K(i,Euro S trad) 2
"
0, S (i)

t exp (r +
1
2

(�(i))2)(T̂ � t)
!
[

 
S (i)

t exp (r +
1
2

(�(i))2)(T̂ � t),1
!
. (5.20)

It is easy to verify that O(Euro S trad)
t 2 (0,1) and O(i, j)

t

⇣
S (i),K(i, j)

⌘
2 C1. We define the feasible

region for the straddle O(i, j)
t by analogy: K(i, j) 2 [0, A(i, j))[(A(i, j),1), where j 2 {Euro S trad, Asian S trad},

and K(i, j) 2 [0, A(i, j)) [ (A(i, j), B(i, j)], where j 2 {Amer S trad}. Here, A(i,Amer S trad) is the point
Delta of O(i,Amer S trad)

t equal to 0, and B(i,Amer S trad) is the maximum strike price such that the
American put is not immediately exercised. The next theorem shows the existence of an opti-
mal straddle (i.e. an optimal strike price).

Proposition 5.3.4 (Existence of optimal portfolio composition in the straddle subset) There
exists a portfolio composition O⇤t = [O(1),⇤

t ,O(2),⇤
t ]T with finite strike prices K(i, j,⇤), such that O⇤t

is optimal for problem (5.10) within ⌦(2,straddle)
O . Here the optimal strike price, K(i, j,⇤) is the

solution of the equation:

@2O(i, j)
t

@S (i)
t @K(i, j)

O(i, j)
t � @O

(i, j)
t

@S (i)
t

@O(i, j)
t

@K(i, j) = 0. (5.21)

Proof See Section 5.6.6.

Next, we quantify the derivative selection within the subset of straddles. Here, we only
illustrate the optimal choice of O(2, j)

t because of the separable selection within a one-asset
option subset (see Proposition 5.3.1). We first compute the optimal strike price of American
straddle B(i,Amer S trad) = 37.7 and the unfeasible point A(2, j) for European, Asian and American
straddles; this is where the Delta of O(2, j)

t is equal to 0. From the formulas above, we have
A(2,Euro S trad) = S (2)

t exp (r + 1
2 (�(2))2)(T̂ � t) = 34.5, A(2,Asian S trad) = 31.9 and A(2,Amer S trad) =

32.9, which are all obtained with Brent’s algorithm.
Figure 5.3 depicts the allocation ⇡(2, j)

0 , where j 2 {Euro S trad, Asian S trad, Amer S trad}
versus the ratio of spot price to strike price. The allocation ⇡(2, j)

0 has the shape of a hyperbola,
and it approaches ±1 as K(2, j) "# A(2, j), which forms a “cli↵.” In contrast to the put and call
option, the optimal straddle is found in the interior regardless of the option style. The boundary
optimality issue is thus avoided, and it’s plausible that the straddle minimum risk exposure will
have acceptable liquidity. Moreover, the optimal straddle minimizing the risk exposure lies
on the left branch; that is, K(2, j) 2 [0, A(2, j)). The Asian straddle is superior to European and
American straddles because of its smaller absolute allocation.
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Figure 5.3: Allocation on straddle versus K(i, j)

S (i, j)
0

The allocation on the European straddle ⇡(i,Euro S trad)
t is solved in closed form with Equation

(5.19):

⇡(i,Euro S trad)
t =

⌘(i)
t

f (i,Euro S trad) =
⌘(i)

t (2S (i)
t (2N(d1) � 1) � K(i,Euro S trad)e�r(T̂�t)(2N(d2) � 1)

(2N(d1) � 1)S (i)
t �

(i)
,

(5.22)
which is a function of the ratio of strike price to spot price K(i,Euro S trad)/S (i)

t .
In the subset of put and call ⌦(2,put call)

O (previous section), the optimal option is always
found at the boundary. Therefore, investors stick to the option by rolling over with the same
strike price. The optimal option in ⌦(2,straddle)

O depends on the spot price and time-dependent
optimal ratio K(i,Euro S trad)/S (i)

t , and the investor should roll from the current holding to new
straddles at each rebalancing time to minimize risk exposure. In this regard, Figure 5.4 (a)
plots the optimal strike and spot price ratio of European straddle K(i,Euro S trad)/S (i)

t versus time
t. Both K(1,Euro S trad)/S (1)

t and K(2,Euro S trad)/S (2)
t increase with time t, while K(2,Euro S trad)/S (2)

t
grows faster.

The connection between portfolio CER and rebalancing frequency is demonstrated in Fig-
ure 5.4 (b). As expected, the portfolio CER approaches the theoretical result as rebalancing
frequency rises. Note that the CER of the rolling straddle portfolio is close to the theoretical
CER even when the rebalancing frequency is less than 10 times per year, suggesting that rebal-
ancing even relatively infrequently causes only a small loss. This is another benefit of choosing
straddles over out-of-the-money calls or puts.

In conclusion, straddles are an ideal option class for two reasons. First, the optimal straddle
for minimizing risk exposure happens to be an active and liquid option. In addition, a rolling
straddle portfolio is insensitive to the rebalancing frequency, thus reducing an investor’s addi-
tional costs, such as transaction costs (although transaction cost is not exactly modelled yet).
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(a) Optimal ratio K(i,Euro S trad)

S (i,Euro S trad)
t

versus time t (b) CER versus rebalancing frequency

Figure 5.4: Straddle analysis

5.4 Multi-asset option selection
Multi-asset options are commonly traded in the OTC market. In this section, we explore the
benefits of including such options in an investor’s portfolio. A subset of multi-asset options is
defined as follows:

⌦(2,multi asset)
O =

n
Ot = [O(1, j1)

t ,O(2, j2)
t ]T |O(1, j1)

t = g( j1)
⇣
S (1)

⌘
, j1 = one-asset option;

O(2, j2)
t = g( j2)

⇣
S (1), S (2)

⌘
, j2 = multi-asset option, t 2 [0,T ]

o
.

Assume the portfolio composition Ot 2 ⌦(2,multi asset)
O consists of a one-asset option and a multi-

asset option. The variance matrix then has the representation

⌃t =

"
f (11)
t 0

f (21)
t f (22)

t

#
. (5.23)

The next proposition states the fundamental principle of derivative selection in the subset of
multi-asset options.

Proposition 5.4.1 (Fundamental principle of multi-asset option selection) If a portfolio com-
position O⇤t = [O(1),⇤

t ,O(2),⇤
t ]T is optimal for problem (5.10) within ⌦(2,multi asset)

O , then

O(1),⇤
t = arg max

O(1, j1)
t

������
dO(1, j1)

t

dS (1)
t

1
O(1, j1)

t

������ . (5.24)

Proof See Section 5.6.7.

Proposition 5.4.1 demonstrates a necessary condition for multi-asset option selection and
reveals the sequential selection property for problem (5.10) within ⌦(2,multi asset)

O . Investors
should pick the one-asset option with the largest relative sensitivity to S (1)

t first, and they should
then search for the optimal multi-asset option (see Equation (5.45)) given a fixed f (11)

t .
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Now, we illustrate the multi-asset portfolio selection with an example of basket options.
The subset of basket option is given by

⌦(2,call basket)
O =

n
Ot = [O(1, j1)

t ,O(2, j2)
t ]T |O(1, j)

t = g( j1)
⇣
S (1)

⌘
, j1 = European call;

O(2, j2)
t = g( j2)

⇣
S (1), S (2)

⌘
, j2 = Basket Call or Basket Put, t 2 [0,T ]

o
.

Notably, ⌦(2,call basket)
O ⇢ ⌦(2,multi asset)

O . The basket option, simultaneously hedging the risk on a
combination of two assets, has the following payo↵:6

8>><
>>:

O(2, j2)
T =

⇣
S (1)

T + S (2)
T � K(2, j2)

⌘+
j2 = Basket Call

O(2, j2)
T =

⇣
K(2, j2) � S (1)

T � S (2)
T

⌘+
j2 = Basket Put.

(5.25)

Furthermore, K(i, ji) 2 [A(i, ji), B(i, ji)], where j1 = Euro Call and j2 2 {Basket Call, Basket Put},
denotes the strike price of call and basket options. The existence of optimal portfolio compo-
sition within the subset of basket option is demonstrated in the next proposition.

Proposition 5.4.2 (Existence of optimal portfolio composition in the subset of basket option)
Let the basket option price O(2, j2)

t be a function of
⇣
S (1)

t , S
(2)
t ,K(2, j2)

⌘
and O(2, j2)

t 2 C1 on (0,1)⇥
(0,1) ⇥ [A(2, j2), B(2, j2)], then the optimal portfolio composition for problem (5.10) within the
subset ⌦(2,call basket)

O exists.

Proof See Section 5.6.8.

The risky asset exposure (see Equation (5.45)) is broken down into the allocation on O(1, j1)
t

and O(2, j2)
t . Note that allocation on O(2, j2)

t depends only on f (22)
t because B(2)

t is solely hedged by
the basket option O(2, j2)

t . Figure 5.5 (a) illustrates how risky asset exposure varies with K(1, j1)

and K(2, j2). Allocation on O(1, j1)
t is scaled by the relative sensitivity f (11)

t (see Equation (5.45));
hence, risky asset exposure decreases with K(1, j1), and out-of-the-money O(1, j1)

t is preferable re-
gardless of the choice of O(2, j2)

t , for example one-asset or multi-asset options. In addition, risky
asset exposure is monotonic with K(2, j2) except when K(1, j1) is extremely small. We plot the
cross section of (a) in Figure 5.5 (b) for illustration purposes. Given an at-the-money or out-of-
the-money O(1, j1)

t , k⇡tk1 decreases when j2 = Basket Call and increases when j2 = Basket Put.
Therefore, out-of-the-money basket options minimize risky asset exposure. Moreover, k⇡tk1 is
insensitive to K(1, j1) because investing in basket options generally leads to a smaller allocation
on O(1, j1)

t .
Similarly to put and call options, with the parameters listed in Table 5.1, the optimal basket

call is achieved when the strike price K(2, j2) is at the upper bound, while the optimal basket put
is achieved when strike price K(2, j2) is at the lower bound.

6Investor can choose the weight on each asset of basket option in OTC market, we only consider equal
weighted case in this chapter .
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(a) `1 norm of allocation versus strike price (b) Cross section of (a), basket call

Figure 5.5: k⇡tk1 versus strike price (Basket option)

Given the similarities between one-asset calls/puts and basket calls/puts, investors could be
interested in the best among those choices. To answer this question, we fix the strike price of a
European call O(1, j1)

t , letting the lower bound of a put option strike price and the upper bound
of a call option strike price be proportional to the spot price:

[S (2)
t ,R

BS (2)
t ] = [A(2, j2), B(2, j2)], j2 2 {Euro Call, Asian Call};

[S (1)
t + S (2)

t ,R
B(S (1)

t + S (2)
t )] = [A(2, j2), B(2, j2)], j2 2 {Basket Call};

[RAS (2)
t , S

(2)
t ] = [A(2, j2), B(2, j2)], j2 2 {Euro Put, Asian Put, Amer Put};

[RA(S (1)
t + S (2)

t ), S (1)
t + S (2)

t ] = [A(2, j2), B(2, j2)], j2 2 {Basket Put},

where RA  1 and RB � 1.
By letting the ratio RA and RB vary, the optimal choice of O(2, j2)

t is studied in Figure 5.6.
One can observe that when O(1, j1)

t is an at-the-money-option—that is, K(1, j1) = 40—a one-asset
Asian option dominates for a small RB, while a basket call is superior to other options when
RB is large. However, basket calls become less preferable as K(1, j1) increases. As mentioned
above, compared with one-asset options, investors have a smaller absolute allocation on O(1, j1)

t
and a larger absolute allocation on O(2, j2)

t with a basket option. Furthermore, the allocation on
O(1, j1)

t is scaled by the relative sensitivity f (11)
t (see Equation (5.35) and (5.45)), which explains

why a basket call has an advantage over one-asset options when K(1, j1) is small but loses its
dominant position as K(1, j1) rises. The optimal choice of O(2, j2)

t with other sets of parameters is
demonstrated in Section 5.6.9.

5.5 Conclusions
This chapter reveals the benefit of using options to minimize the total risk exposure of a port-
folio, while maintaining an optimal level of utility. We demonstrate that the farther out-of-
the-money calls or puts are, the better choices they are, particularly the Asian type. Given the
lack of liquidity on those type of options, we explored straddle options and found that optimal
choices are close to at-the-money options, which are hence likely liquid products. We also
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(a) K(1, j1) = 40 (b) K(1, j1) = 50 (c) K(1, j1) = 60

Figure 5.6: Derivatives selection O(2, j2)
t

explored multi-asset derivatives and can confirm that basket options are preferable to one-asset
options in terms of minimizing risk exposure.
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5.6 Proofs

5.6.1 Proof of Proposition 5.2.1

We assume V(t,W) = W1��
t

1�� exp(h(T�t)), which is substituted into Equation (5.6). Then, h(T�t)
satisfies:

sup
⇡t

(
h0(T � t)

1 � � + r + ⇡T
t ⌃t⇤ �

�

2
(⇡T

t ⌃t��
T⌃T

t ⇡t)
)
= 0, (5.26)

Denote ⌘t = ⌃
T
t ⇡t, then problem (5.26) can be rewritten as,

sup
⌘t

(
h0(T � t)

1 � � + r + ⌘T
t ⇤ �

�

2
(⌘T

t ��
T⌘t)

)
= 0. (5.27)

which implies the optimal strategy

⌘⇤t =
(��T )�1⇤

�
. (5.28)

With ⌘⇤t = ⌃T
t ⇡
⇤
t , there are infinitely many choice of ⇡⇤t if n > 2. Next, we substitute ⌘⇤t into

Equation (5.27) and derive the ordinary di↵erential equation (ODE) for h(T � t):
8>><
>>:

h0(T�t)
1�� + r + ⇤

T (��T )�1⇤

2� = 0
h(T ) = 0.

(5.29)

where the terminal condition results from V(t,W) = U(W). The solution to Equation (5.29) is

h(T � t) = (1 � �)(r + ⇤
T (��T )�1⇤

2�
)(T � t), (5.30)

5.6.2 Proof of Proposition 5.2.2

Let Ot,n = [O(1)
t ,O

(2)
t , ...,O

(n)
t ]T with variance matrix ⌃t of rank 2 be an optimal subset of options

for problem (5.9). ⇡⇤t,n is a strategy maximizing the expected utility if and only if ⌃T
t ⇡
⇤
t,n = ⌘

⇤
t .

Therefore, Ot,n and ⇡⇤t,n is an optimal pair for (5.9) when ⇡⇤t,n is an optimal solution for

minimize
⇡t

||⇡t||1
subject to ⌃T

t ⇡t = ⌘
⇤
t .

(5.31)

According to the principle 4.5 in [80], problem (5.31) is equivalent to

minimize
�t

T�t

subject to ⌃̂T
t �t = ⌘

⇤
t ,

�t � 0

(5.32)
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where �t = [↵(1)
t ,↵

(2)
t , ...,↵

(n)
t , �

(1)
t , �

(2)
t , ..., �

(n)
t ]T satisfies ↵(i)

t =
|⇡(i)

t |+⇡
(i)
t

2 , and �(i)
t =

|⇡(i)
t |�⇡

(i)
t

2 , with

⌃̂t =

"
⌃t

�⌃t

#
=

2
666666666666666666666664

f 11
t f 12

t
... ...
f n1
t f n2

t
� f 11

t � f 12
t

... ...
� f n1

t � f n2
t

3
777777777777777777777775

. (5.33)

Theorems 2.3 and 2.4 in [6] lists the necessary and su�cient conditions for the extreme point
�t, i.e.

1. �t = [�(1)
t , �

(2)
t , ..., �

(n)
t , �

(n+1)
t , �(n+2)

t , ..., �(2n)
t ]T .

2. the q̂th and p̂th rows in ⌃̂t are linear independent, �(i)
t = 0 if i , q̂ or p̂.

3. �t is feasible solution.

Without loss of generality, we assume the pth and qth rows in ⌃ are linear independent, and we
consider 4 cases:

�[1]
t =

8>><
>>:

[�[1],(1)
t , �[1],(2)

t , ..., �[1],(n)
t , �[1],(n+1)

t , �[1],(n+2)
t , ..., �[1],(2n)

t ]T

�[1],(i)
t = 0 if i , q or p

�[2]
t =

8>><
>>:

[�[2],(1)
t , �[2],(2)

t , ..., �[2],(n)
t , �[2],(n+1)

t , �[2],(n+2)
t , ..., �[2],(2n)

t ]T

�[2],(i)
t = 0 if i , q + n or p

�[3]
t =

8>><
>>:

[�[3],(1)
t , �[3],(2)

t , ..., �[3],(n)
t , �[3],(n+1)

t , �[3],(n+2)
t , ..., �[3],(2n)

t ]T

�[3],(i)
t = 0 if i , q or p + n

�[4]
t =

8>><
>>:

[�[4],(1)
t , �[4],(2)

t , ..., �[4],(n)
t , �[4],(n+1)

t , �[4],(n+2)
t , ..., �[4],(2n)

t ]T

�[4],(i)
t = 0 if i , q + n or p + n

.

(5.34)

It is clear that there is a non-negative strategy in �[1]
t , �[2]

t , �[3]
t and �[4]

t because the ith row in
⌃̂ is the opposite of the (i + n)th row, and the non-negative strategy is feasible and an extreme
point. This proves the existence of an extreme point for problem (5.32).Now, theorem 2.7 in
[6] guarantees that there is an optimal solution which is an extreme point for problem (5.32).
With the second necessary and su�cient conditions of the extreme point, we know that an
optimal solution �⇤t for problem (5.32) has at most two non-zero elements. This would imply
an optimal solution, denoted by ⇡⇤t,n = [⇡(1)

t,n , ⇡
(2)
t,n , ..., ⇡

(n)
t,n ]T , for problem (5.31) with at most two

non-zero elements, which would also be the optimal strategy for (5.9).
Without loss of generality, we assume ⇡(i)

t,n = 0, i , x, y. Ot,2 = [O(x)
t ,O

(y)
t ] and ⇡⇤t,2 = [⇡(x)

t,n , ⇡
(y)
t,n]T

is a feasible strategy for problem (5.9) with n = 2. We show that it is an optimal pair by
contradiction.
If there is a feasible solution Ôt,n = [Ô(1)

t , Ô
(2)
t ] and ⇡̂⇤t,2 = [⇡̂(1)

t,2 , ⇡̂
(2)
t,2 ]T such that ||⇡̂⇤t,2||1 < ||⇡⇤t,2||1,

then ⇡̂⇤t,n = [⇡̂(1)
t,2 , ⇡̂

(2)
t,2 , 0, ..., 0]T is a feasible strategy for (5.9) such that ||⇡̂⇤t,n||1 < ||⇡⇤t,n||1, which

is contradiction to our previous conclusion. Note that ||⇡⇤t,2||1 = ||⇡⇤t,n||1, so problem (5.9) with
n = 2 and with n � 2 have the same minimum `1 norm of allocation.
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5.6.3 Proof of Proposition 5.3.1

Let Ot 2 ⌦(2,1)
O with non-singular variance matrix ⌃t (see Equation (5.11)), the optimal strategy

space ⌦O
⇡ contains a unique strategy, i.e. ⇡t = (⌃T

t )�1⌘⇤t , and `1 norm of ⇡t is given by

k⇡tk1 =
������
⌘(1)

t

f (1)
t

������ +
������
⌘(2)

t

f (2)
t

������ . (5.35)

A non-zero denominator is guaranteed by the non-singular variance matrix assumption. O⇤t =
[O(1),⇤

t ,O(2),⇤
t ]T 2 ⌦(2,1)

O with variance matrix

⌃⇤t =

"
f (1),⇤
t 0
0 f (2),⇤

t

#
. (5.36)

For Ot 2 ⌦(2,1)
O , if

��� f (1)
t

��� 
��� f (1),⇤

t

��� and
��� f (2)

t

��� 
��� f (2),⇤

t

��� hold, then it is easy to see k⇡tk1 �
���⇡⇤t

���
1, so

O⇤t is a optimal portfolio composition.
If

��� f (1)
t

��� 
��� f (1),⇤

t

��� or
��� f (2)

t

��� 
��� f (2),⇤

t

��� does not hold, then there is a O⇤⇤t 2 ⌦(2,1)
O , such that the

corresponding strategy
���⇡⇤⇤t

���
1 <

���⇡⇤t
���

1, hence O⇤t is not the optimal.
We have shown that, for any Ot 2 ⌦(2,1)

O ,
��� f (1)

t

��� 
��� f (1),⇤

t

��� and
��� f (2)

t

��� 
��� f (2),⇤

t

��� is a su�cient
and necessary condition for O⇤t to be an optimal portfolio composition for problem (5.10).
Therefore,

O(i),⇤
t = arg max

O(i)
t

������
dO(i)

t

dS (i)
t

1
O(i)

t

������ . (5.37)

5.6.4 Proof of Proposition 5.3.2

O⇤t = [O(1),⇤
t ,O(2),⇤

t ]T is the optimal portfolio composition for problem (5.10) if and only if it has
the largest absolute sensitivity (see Proposition 5.3.1), i.e.

O(i),⇤
t = arg max

������
dO(i, j)

t

dS (i)
t

1
O(i, j)

t

������ . (5.38)

For convenience, we write the absolute sensitivity as a function of strike price KK(i, j).

h(K(i, j), j) =
������
dO(i, j)

t

dS (i)
t

1
O(i, j)

t

������

h(K(i, j), j) is continuous because O(i, j)
t 2 C1 and O(i, j)

t , 0. According to the extreme value
theorem, there is a K̂(i, j) 2 [A(i, j), B(i, j)] that achieves the largest h(K(i, j), j), hence minimizes `1
norm of allocation

���⇡⇤t
���

1. O(i),⇤
t is the optimal for problem (5.10) when the strike price K(i, j) is

one of the K̂(i, j) where:
j 2 {Euro Call, Asian Call, Amer Call, Euro Put, Asian Put, Amer Put}
This guarantees the existence of optimal composition in ⌦(2,put call)

O .
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5.6.5 Proof of Corollary 5.3.3
We first prove the following lemma,

Lemma 5.6.1 The inequality
�(x � c)
N(x � c)

� c  �(x)
N(x)

(5.39)

holds for 8x 2 (�1,1), c 2 (0,1), where � and N are respectively the density function and
distribution function of a standard normal random variable.

Proof Let us define the ”reversed hazard rate” function:

Y(x) =
�(x)
N(x)
.

We want to show
Y(x � c) � c  Y(x).

We first demonstrate Y 0(x) � �1 for all x. To see this, note:

Y 0 + 1 =
�

N2

 
�0

�
N � � + N2

�

!
=
�

N2 f .

Using �0 = �x�, we have f 0 =
⇣
1 + xN

�

⌘
N. It is not di�cult to see that x + Y � 0 (use the fact

that g = (x + Y) N ! 0 as x ! �1 and g0 = N � 0). Hence we know
⇣
1 + xN

�

⌘
� 0, which

implies f 0 � 0. Moreover f (x) � lim
x!�1

f (x) = 0, therefore Y 0 + 1 � 0.
Now we complete the proof, using Y 0 � �1 for all x, and the mean value theorem, we

conclude ”by contradiction” that

Y(x) � Y(x � c)
c

� �1

for all x and c, which implies
Y(x) � Y(x � c) � c.

Next, we show that absolute value of optimal allocation on an European call decreases
to 0 as K(i,Euro Call) ! 1 and absolute value of allocation on an European put increases with
K(i,Euro Put) and converges to 0 as K(i,Euro Put) ! 0. We first abbreviate K(i,Euro Call) to K. Equation
(5.12) and (5.15) shows the sensitivity of an European call,

@O(i,Euro Call)
t

@S (i)
t

1
O(i,Euro Call)

t

�(i)S (i)
t =

N(d1)�(i)S (i)
t

S (i)
t N(d1) � Ke�r(T̂�t)N(d2)

=
�(i)

1 � e�r(T̂�t) K
S (i)

t

N(d2)
N(d1)

,

where

d1 =
ln (S (i)

t /K) + (r + 1
2 (�(i))2)(T̂ � t)

�(i)
p

T̂ � t
= a

⇣
ln (S (i)

t /K) + r(T̂ � t)
⌘
+b (5.40)

d2 = d1 � �(i)
p

T̂ � t = a
⇣
ln (S (i)

t /K) + r(T̂ � t)
⌘
+b � c (5.41)
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with c = �(i)
p

T̂ � t > 0, b = 1
2c and a = 1

c . Let us rewrite the sensitivity as follows:

@O(i,Euro Call)
t

@S (i)
t

1
O(i,Euro Call)

t

�(i)S (i)
t =

�(i)

1 � e b�x
a G(x)

where x = a
⇣
ln (S t/K) + r(T̂ � t)

⌘
+b and G(x) = N(d2)

N(d1) =
N(x�c)

N(x) .
We would like to show H(x) = e b�x

a G(x) is increasing in K, hence decreasing in x. Its first
derivative leads to:

H0(x) = �e b�x
a

a
G(x) + e

b�x
a G0(x) = �e b�x

a

a
N(x � c)

N(x)
+ e

b�x
a

n(x � c)N(x) � N(x � c)n(x)
N2(x)

= �e b�x
a

a
N(x � c)

N(x)
+ e

b�x
a

 
n(x � c)
N(x � c)

� n(x)
N(x)

!
N(x � c)

N(x)

= e
b�x

a

"
�1

a
+

 
n(x � c)
N(x � c)

� n(x)
N(x)

!#
N(x � c)

N(x)

= e
b�x

a

"
�c +

 
n(x � c)
N(x � c)

� n(x)
N(x)

!#
N(x � c)

N(x)

It’s easy to see H0(x) < 0 with Lemma 5.6.1. The sensitivity of an European call is positive
and increases with K.

As K ! 1, O(i,Euro call)
t ! 0, so Ke�r(T̂�t)N(d2)! 0. Furthermore,

H(x) =
Ke�r(T̂�t)N(d2)

S (i)
t N(d1)

L’Hôpital’s rule����������!
e�r(T̂�t)N(d2) � �(d1) S (i)

t

K�(i)
p

T̂�t

� S (i)
t �(d1)

K�(i)
p

T̂�t

L’Hôpital’s rule����������!
��(d1) S (i)

t

(K)2�(i)
p

T̂�t
� �(d1) d1S (i)

t

(K�(i)
p

T̂�t)2
+

�(d1)S (i)
t

(K)2�(i)
p

T̂�t

��(d1) S (i)
t d1

(K�(i)
p

T̂�t)2
+

S (i)
t �(d1)

(K)2�(i)
p

T̂�t

=
�S (i)

t �
(i)

p
T̂ � t � S (i)

t d1 + S (i)
t �

(i)
p

T̂ � t

�S (i)
t d1 + S (i)

t �
(i)

p
T̂ � t

�! 1.

Hence,
@O(i,Euro Call)

t

@S (i)
t

1
O(i,Euro Call)

t

�(i)S (i)
t =

�(i)

1 � H(x)
�! 1.

Moreover, the absolute value of allocation on O(i,Euro Call)
t is decreasing with K and

���⇡(i,Euro Call)
t

��� =

���⌘(i)
t

���
�����
@O(i,Euro Call)

t

@S (i)
t

1
O(i,Euro Call)

t
�(i)S (i)

t

�����
�! 0 as K �! 1. (5.42)

The proof for European put follows similarly.
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5.6.6 Proof of Proposition 5.3.4

Suppose for any Ot 2 ⌦(2,straddle)
O , O(i, j)

t satisfies these four conditions:

1. @O
(i, j)
t

@S (i)
t
= 0 () K(i, j) = A(i, j).

2.
�����
@O(i)

t

@S (i)
t

����� has an upper bound.

3. O(i, j)
t 2 (0,1) and O(i, j)

t ! 1
as K(i, j) ! 1, where j 2
{Euro S trad, Asian S trad}.

4. O(i, j)
t

⇣
S (i),K(i, j)

⌘
2 C1.

All four assumptions are not restrictive in a Black-Scholes setting. Proposition 5.3.1 illus-
trates that O⇤t = [O(1),⇤

t ,O(2),⇤
t ]T is the optimal portfolio composition for problem (5.10) if it has

the largest absolute sensitivity, i.e.

O(i),⇤
t = arg max

O(i, j)
t

������
dO(i, j)

t

dS (i)
t

1
O(i, j)

t

������ . (5.43)

For convenience, we write the absolute sensitivity as a function of strike price K(i, j):

h(K(i, j), j) =
������
dO(i, j)

t

dS (i)
t

1
O(i, j)

t

������ .

With the four assumptions above, it’s easy to see,
8>>>>>>>><
>>>>>>>>:

h(0, j) 2 (0,1) j 2 {Euro S trad, Asian S trad, Amer S trad}
h(B(i,Amer S trad), Amer S trad) 2 (0,1)
h(K(i, j), j)! 0 as K(i, j) "# A(i, j), j 2 {Euro S trad, Asian S trad, Amer S trad}
h(K(i, j), j)! 0 as K(i, j) ! 1, j 2 {Euro, Asian}.

(5.44)
When K(i, j) 2 [0, A(i, j)) and j 2 {Euro S trad, Asian S trad, Amer S trad}, h(K(i, j), j) is continu-
ous because
O(i, j)

t

⇣
S (i),K(i, j)

⌘
2 C1. Besides, there is a Z such that h(K(i, j), j) < h(0, j) when K(i, j) 2 (Z, A(i, j)).

According to the extreme value theorem, there is a K(l,i, j) such that h attains the maximum in
[0,Z], hence h(K(l,i, j), j) � h(0, j). K(l,i, j) is proven to be the maximum point for h(K(i, j), j) in
[0, A(i, j)).
Let M be a real number in (A(i, j),1) where j 2 {Euro S trad, Asian S trad}, it’s obvious that
h(M, j) > 0. There is a Z > 0 such that h(K(i, j), j) < h(M, j) when K(i, j) 2 (A(i, j), A(i, j) +
1
Z ) [ (Z,1). According to the extreme value theorem, there is a K(r,i, j) such that h attains the
maximum in [A(i, j) + 1

Z ,Z], i.e. h(K(r,i, j), j) > h(M, j). Then, K(r,i, j) is the maximum point for
h(K(i, j), j) in (A(i, j),1).
As for American straddle ( j = Amer S trad), h(B(i, j), j) > 0. There is a Z > 0 such that
h(K(i, j), j) < h(B(i, j), j) when K(i, j) 2 (A(i, j), A(i, j) + 1

Z ). And there is a K(r,i, j) such that h attains
the maximum in [A(i, j) + 1

Z , B
(i, j)], hence h(K(r,i, j), j) � h(B(i, j), j). h(K(r,i, j), j) is the maximum

point on the right branch [A(i, j), B(i, j)]. O(i),⇤
t is the optimal for the problem (5.10) when the

strike price K is either K(l,i, j) or K(r,i, j) where j 2 {Euro S trad, Asian S trad, Amer S trad}. The
existence of the optimal composition in a straddle subset is proven.
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5.6.7 Proof of Proposition 5.4.1

Let Ot 2 ⌦(2,multi asset)
O with non-singular variance matrix ⌃t (see Equation (5.23)), the optimal

strategy space ⌦O
⇡ contains a unique strategy, i.e. ⇡t = (⌃T

t )�1⌘⇤t . The allocation and its `1 norm
can be written as

⇡(1, j) =
1

f (11)
t

(⌘(1)
t �

f (21)
t

f (22)
t

⌘(2)
t ) ⇡(2, j) =

⌘(2)
t

f (22)
t

k⇡tk1 =
1��� f (11)

t

���

������⌘
(1)
t �

f (21)
t

f (22)
t

⌘(2)
t

������ +

���⌘(2)
t

���
��� f (22)

t

���
.

(5.45)

If O⇤t = [O(1),⇤
t ,O(2),⇤

t ]T 2 ⌦(2,multi asset)
O achieves minimum `1 norm of allocation and

O(1),⇤
t , arg max

O(1, j1)
t

������
dO(1, j1)

t

dS (1)
t

1
O(1, j1)

t

������ . (5.46)

Then there is a O⇤⇤t = [O(1),⇤⇤
t ,O(2),⇤⇤

t ]T , such that
������
dO(1),⇤

t

dS (1)
t

1
O(1),⇤

t

������ <
������
dO(1),⇤⇤

t

dS (1)
t

1
O(1),⇤⇤

t

������ . (5.47)

Therefore, let O(2),⇤⇤
t = O(2),⇤

t , this implies
��� f (11),⇤

t

��� <
��� f (11),⇤⇤

t

���, f (21),⇤
t = f (21),⇤⇤

t and f (22),⇤
t = f (22),⇤⇤

t .
Equation (5.45) indicates

���⇡⇤t
���

1 >
���⇡⇤⇤t

���
1, which proves by contradiction that

O(1),⇤
t = arg max

O(1, j1)
t

������
dO(1, j1)

t

dS (1)
t

1
O(1, j1)

t

������ . (5.48)

is a necessary condition for O⇤t to be the optimal portfolio composition for problem (5.10)
within ⌦(2,multi asset)

O .

5.6.8 Proof of Proposition 5.4.2

Recall f (ik)
t in the variance matrix ⌃t can be written as

f (ik) =
@O(i, ji)

t

@S (k)
t

S (k)
t �

(k)

O(i, ji)
t

. (5.49)

According to the non-singular variance matrix assumption, f (11)
t , f (22)

t , 0. In addition, O(1, j1)
t is

an European call option, hence f (11)
t is continuous with respect to K(1,Euro Call) on [A(1,Euro Call), B(1,Euro Call)].

f (21)
t and f (22)

t are continuous with respect to K(2, j2) on [A(2, j2), B(2, j2)] because O(2, j2)
t 2 C1.

k⇡tk1 (see Equation (5.45)) is continuous on the closed set [A(1,Euro Call), B(1,Euro Call)]⇥[A(2, j2), B(2, j2)],
so there is a portfolio with strike price [K̂(1,Euro Call), K̂(2, j2)]T that achieves minimum risky asset
exposure with any j2. O⇤t is the optimal for problem (5.10) within ⌦(2,call basket)

O when the strike
price is in [K̂(1,Euro Call), K̂(2, j2)]T , where j2 2 {Basket Call, Basket Put}.
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5.6.9 Comparison between the one-asset option and multi-asset option
subsets

In this section, we exhibit the optimal choice of O(2, j2)
t given di↵erent set of parameters. In

contrast to the two positive correlated underlying assets considered in Section 5.4, i.e. ⇢ = 0.4
(see Table 5.1), we let correlation ⇢ = �0.4 while all other parameters remain unchanged, here
a similar derivatives selection is conducted.
Results are presented in Figure 5.7. Unlike the case of two positive correlated underlying assets
(see Figure 5.6), one-asset option is no longer preferable in minimizing risky asset exposure
while basket put becomes competitive. Especially when O(1, j1)

t is an at-the-money European
call, i.e. K(1, j1) = 40, a basket put is superior to other options, i.e. larger area.

(a) K(1, j1) = 40 (b) K(1, j1) = 50 (c) K(1, j1) = 60

Figure 5.7: Derivatives selection O(2, j2)
t (⇢ = �0.4)

Next, we consider the case when the parameters of the two underlying assets are exchanged,
i.e. �(1) = 0.6, �(2) = 0.52, �(1) = 0.2, �(2) = 0.13 while all other parameters are given in Table
5.1, the optimal choice of O(2, j2)

t is shown in Figure 5.8. Compared with Figure 5.6, basket put
instead of basket call is selected in the largest region. Furthermore, the one-asset Asian option
is preferable when K(1, j1) is lregardless of the underlying assets’ parameters.

(a) K(1, j1) = 40 (b) K(1, j1) = 50 (c) K(1, j1) = 60

Figure 5.8: Derivatives selection O(2, j2)
t (exchange assets’ parameter)



Chapter 6

Optimal market completion through
financial derivatives with applications to
volatility risk

Chapter summary:
This chapter investigates the optimal choices of financial derivatives to complete a finan-

cial market in the framework of stochastic volatility (SV) models. We introduce an e�cient
and accurate simulation-based method, applicable to generalized di↵usion models, to approx-
imate the optimal derivatives-based portfolio strategy. We build upon the double optimization
approach (i.e. expected utility maximization and risk exposure minimization) proposed in the
chapter 5; demonstrating that strangle options are the best choices for market completion within
equity options. Furthermore, we explore the benefit of using volatility index derivatives and
conclude that they could be more convenient substitutes when only long-term maturity equity
options are available.
Status: Submitted to Quantitative Finance.

6.1 Introduction
Financial markets are often modelled as a system of contingents on states mirroring the real-
world economy. This generates a concept widely used in economic and finance literature,
namely the complete market, which is simply described as ‘a market for every good’. Earlier
studies assumed that the number of securities equals the number of states of nature and in-
vestigated the optimal allocation, placing all of the capital at once (see [2], [3]). Recognizing
that investors benefit from adjusting allocation with a change of market status, more recent
researchers have focused on the idea of a dynamically complete market, which is defined as a
market wherein any contingent claim can be replicated by a self-financing strategy.

The study of portfolio choice in a dynamically complete market under a continuous-time
framework can be traced back to the seminal work of [76], who computed the optimal al-
location and consumption policy with a dynamic programming technique, assuming that the
stock price follows a geometric Brownian motion (GBM). In this framework, the uncertainty
is reflected in the Brownian motion, which captures the randomness of a stock’s return; hence,

133
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investors can achieve the best portfolio performance with investments only on the stock and a
cash account.

However, the financial market is ever evolving, and becoming increasingly complex; for
instance, substantial evidence suggests that a single Brownian motion or source of randomness
is insu�cient to explain the movements of a single stock or index. Researchers have had
to incorporate so-called stylized facts such as stochastic volatility (SV) or stochastic interest
rates in their modelling to mimic this new reality. These stylized facts are captured via adding
new ‘state variables’ (e.g. a new random processes for SV). These state variables have been
recognized as important factors in the portfolio allocation process.

The importance of adding financial derivatives into a portfolio for market completion was
demonstrated in [71], confirming that investors can improve portfolio performance when adding
as many linearly independent equity options as new state variables in the portfolio composi-
tion. They do this to hedge the risk of the new state variables, thereby achieving significant
improvement in portfolio performance compared to incomplete market investment (e.g. in-
vesting solely on stock and cash account). This work was extended in many directions. For
example, [34] constructed an optimal portfolios with the addition of options to hedge new state
variables accounting for stochastic correlation. Moreover, [62] solved derivative-based strate-
gies under an asset–liability management (ALM) framework with the mean–variance criterion.
In a similar setting, the optimal complete and incomplete strategies for the 4/2 SV model were
derived in [18], which demonstrated the superiority of the complete market portfolio.

Although the literature cited above strongly supports the addition of derivatives to complete
the market, investors may complete market in many ways due to the variety of derivatives in the
market. Therefore, investors e↵ectively have a non-unique solution to the problem (i.e. an infi-
nite number of strategies, each linked to a choice of derivative, producing the same maximum
expected utility). The problem of infinitely many solutions and the optimal choice of deriva-
tives was studied in the recent paper [36] in the context of the Black—Scholes—Merton model.
The paper proposed an optimization criterion (i.e. additional to the maximization of the utility,
namely risk exposure minimization) to produce a unique, meaningful solution, thus deriving a
practical derivative selection methodology for investors. The risk exposure minimization crite-
rion can be motivated from many angles, especially in terms of regulatory constraints intended
to control investors’ exposure to risky assets and hence to protect investors’ capital in the event
of a market crash. In this chapter, we follow the same derivatives selection framework and
explore the optimal product for market completion in the popular setting of SV models, with
emphasis on the celebrated Heston model (see [48]).

There are two major hurdles for our derivatives-based portfolio allocation problem. First,
given the complexity of advanced models with many state variables jeopardizes the solvabil-
ity of the utility maximization allocation problem, closed-form solutions are often unavail-
able. This hurdle can be overcome using approximation methods for dynamic portfolio choice
problems. [10], inspired by the least-squares Monte Carlo method (see [72]), recursively esti-
mated the value function and optimal allocation following a dynamic programming principle.
This method was later named the BGSS and [24] utilized the stochastic grid bundling method
for conditional expectation estimation, introduced in [53], further enhancing the accuracy of
BGSS. Additionally, [91] targeted unsolvable continuous-time models, proposing an e�cient
and accurate simulation-based method, namely the polynomial a�ne method for constant rela-
tive risk aversion utility (PAMC). The second hurdle appears in the complexity of derivatives’
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price dynamics which, in contrast to traditional asset classes, could lead to highly non-linear
stochastic di↵erential equations. In this chapter, we overcome the two hurdles simultaneously
by unifying the PAMC and an options’ Greek approximation technique. Notably, the broad
applicability of this methodology laid the foundation for the derivatives selection study within
a generalized model family.

As mentioned above, our focus is on investors who are particularly concerned about volatil-
ity risk and seek the best derivatives to attain market completion. The seminal paper by [48]
recognized the mean-reverting pattern of volatilities and introduced the well-known Heston
(GBM 1/2) model. Later, extensions, such as the GBM 3/2 (see [49]) and GBM 4/2 (see [45]),
were developed to better capture the volatility surface. These lead to notable successes in the
valuation of European equity options, and semi-closed-form solutions for the option price and
Greeks are generally accessible using Fourier transformation. Popular equity options, such as
call, put, straddle and strangle options, are ideal products for investors to manage the volatility
risk. Furthermore, the volatility index (VIX), a measure of the stock market’s volatility based
on S&P 500 index options provided by the Chicago Board Options Exchange (CBOE), a↵ords
investors an alternative way to assess the volatility risk. The e↵ectiveness of VIX products in
the portfolio performance enhancement has been confirmed in the literature: see [31], [15] and
[87]. Hence, in this chapter we compare two categories of derivatives, namely equity options
and VIX options in terms of optimal dynamic completion.

The contributions of the chapter are as follows:

1. The multitude of financial derivatives available in the market o↵ers investors non-unique
optimal choice in terms of expected utility theory (EUT) maximization. Hence we extend
the additional optimization criterion proposed in [36], namely risk exposure minimiza-
tion, from the family of GBM to SV models. This aids investors with practical derivative
selection in a popular stock markets modeling setting.

2. The PAMC-indirect numerical method is proposed to approximate the optimal alloca-
tion for a constant relative risk aversion (CRRA) investor investing in the derivatives
market. The superior accuracy and e�ciency of the methodology are verified on the
Heston model.

3. Targeting equity and volatility risk, we first consider the optimal choice among equity
options (e.g. calls, puts, straddles and strangles). We demonstrate that strangles are the
best options for minimizing risk exposure.

4. We also investigate the usage of financial derivatives on the VIX as a means of com-
pleting the market, and we conclude that investors would prefer VIX options to equity
strangles when only long-term maturity options are available.

The remainder of this chapter is organized as follows: Section 6.2 presents the investor’s prob-
lem (i.e. the two criteria for optimal allocation [utility maximization] and optimal market com-
pletion [risk exposure minimization]). Section 6.3 details an e�cient approximation method
for derivatives-based portfolio allocation. The optimal market completion targeting volatility
risk within an equity option and a VIX option is studied in Section 6.4, followed by the conclu-
sion in Section 6.5. Section 6.6 presents the mathematical proofs, while Section 6.7 provides
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an alternative approximation method and a numerical examination of accuracy and e�ciency
for the two methods.

6.2 Investor’s problem
In this section, we introduce a market completion framework using financial derivatives. We
define a complete probability space (⌦,F ,P) with a right-continuous filtration {Ft}t2[0,T ]. The
market is frictionless (i.e. no transaction cost and market impact), and a risk-free cash account
Mt, a stock S t and an investor with constant relative risk aversion (CRRA) utility, U(W) = W1��

1��
exist. The market dynamics are summarized as follows:

8>>>>>>>><
>>>>>>>>:

dMt
Mt
= rdt

dS t
S t
= (r + �S�S )dt + �S dBS

t

dHt = µHdt + �HdBH
t

< dBS
t , dBH

t >= ⇢S Hdt.

(6.1)

where BH
t and BS

t are Brownian motions with correlation ⇢S H 2 (�1, 1), and the interest rate
r is constant. State variable Ht follows a generalized di↵usion process, where µH = µH(t,Ht)
denotes the drift and �H = �H(t,Ht) denotes volatility. The market price of risk and the
volatility of stock could be functions of both the stock price and the state variable, respectively;
that is �S = �S (t,Ht, ln S t) and �S = �S (t,Ht, ln S t).

In this market, the number of investable risky assets is less than the number of risk drivers,
hence market incompleteness. To eliminate the welfare loss resulting from the unhedgeable
risk drivers, we introduce a set of financial derivatives:

⌦(n)
O =

n
Ōt = [O(1)

t ,O
(2)
t , ...,O

(n)
t ]T | O(i)

t , 0, i = 1, ..., n and rank (⌃t) = 2, t 2 [0,T ]
o
.

We assume that an investor allocates in an element of⌦O; that is, a specific Ōt = [O(1)
t ,O

(2)
t , ...,O

(n)
t ]T

(n � 2). Note that by arbitrage arguments, the dynamics of the extended market are as follows:
8>>>>>>>><
>>>>>>>>:

dMt
Mt
= rdt

dŌt = diag(Ōt) [(r · + ⌃t⇤)dt + ⌃tdBt]
dHt = µHdt + �HdBH

t

< dBS
t , dBH

t >= ⇢S Hdt,

(6.2)

where Bt = [BS
t , BH

t ]T and ⌃t represents the n ⇥ 2 variance matrix of Ōt; the first column
(i, 1) represents the sensitivity of O(i)

t to the underlying asset S t (i.e. @O(i)
t
@S t

S t
1

O(i)
t
�S ); and the

second column (i, 2) represents the sensitivity of O(i)
t to the state variable Ht (i.e. @O

(i)
t

@Ht

1
O(i)

t
�H).

⇤ = [�S , �H]T , where �H = �H(t,Ht, ln S t) denotes the market price of volatility risk. Rank 2
variance matrix ⌃t guarantees the completeness of the market. For simplicity, we also assume
that the derivatives in ⌦(n)

O will be rolled over, always maintaining the same time to maturity
and a non-zero value. Note that the investor is not prohibited from trading on the stock, which
is included in ⌦(n)

O as a special derivative.
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Let ⌦(O)
⇡ denote the space of admissible strategies satisfying the standard conditions, where

the element ⇡t = [⇡(1)
t , ⇡

(2)
t , ..., ⇡

(n)
t ]T represents the proportions of the investor’s wealth in the

derivatives Ōt = [O(1)
t ,O

(2)
t , ...,O

(n)
t ]T , with the remaining 1 � T⇡t invested in the cash account

Mt. The investor’s wealth process Wt satisfies

dWt

Wt
= (r + ⇡T

t ⌃t⇤)dt + ⇡T
t ⌃tdBt. (6.3)

The investor’s objective is to maximize the expected utility of their wealth at terminal T ; hence,
their problem at time t 2 [0,T ] can be written as

V(t,W,H, ln S ) = max
⇡s�t2⌦(O)

⇡

E(U(WT ) | Ft). (6.4)

The associated Hamilton-Jacobi-Bellman (HJB) equation for the value function V follows the
principles of stochastic control and is given by

sup
⇡t

⇢
Vt +WtVW(r + ⇡T

t ⌃t⇤) +
1
2

W2
t VWW(⇡T

t ⌃t��
T⌃T

t ⇡t) +WtVWH�
H(⇡T

t ⌃tA) +WtVW ln S�
S (⇡T

t ⌃tB)
�

+VHµ
H +

1
2

VHH(�H)2 + Vln S (r + �S�S ) +
1
2

Vln S ln S (�S )2 + VH ln S�
H�S⇢S H = 0,

(6.5)

where � =

2
6666664

1 0

⇢S H

q
1 � ⇢2

S H

3
7777775, A = [⇢S H, 1]T and B = [1, ⇢S H]T .

Next, we define a new artificial market, which consists of three assets: a risk-free money
account Mt and two pure factor assets S (S )

t and S (H)
t :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

dMt
Mt
= rdt

dS (S )
t

S (S )
t
= (r + �S )dt + dBS

t

dS (H)
t

S (H)
t
= (r + �H)dt + dBH

t

dHt = µHdt + �HdBH
t

< dBS
t , dBH

t >= ⇢S Hdt

. (6.6)

Compared to the original market, the market state variable is still Ht; nonetheless, here the
investor can put their money in the hypothetical pure factor assets S (S )

t and S (H)
t , which have

a unit exposure on BS
t and BH

t , respectively. Let ⌘t = [⌘(1)
t , ⌘

(2)
t ]T be the allocation on the pure

factors (also known as exposures in the literature: see [71]); Ŵt denotes the investor’s wealth
process, and V̂(t, Ŵ,H, ln S ) represents the value function in the artificial market. Similarly,
the associated HJB equation is given by

sup
⌘t

⇢
V̂t + ŴtV̂Ŵ(r + ⌘T

t ⇤) +
1
2

Ŵ2
t V̂ŴŴ(⌘T

t ��
T⌘t) + ŴtV̂ŴH�

H(⌘T
t A) + ŴtV̂Ŵ ln S�

S (⌘T
t B)

�

+V̂Hµ
H +

1
2

V̂HH(�H)2 + Vln S (r + �S�S ) +
1
2

V̂ln S ln S (�S )2 + V̂H ln S�
H�S⇢S H = 0.

(6.7)
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If the solution of the associated HJB PDEs exists, then it is easy to verify that,

V̂(t, Ŵ,H, ln S ) = V(t,W,H, ln S ) (6.8)
Ŵt = Wt (6.9)
⌃T

t ⇡
⇤
t = ⌘

⇤
t . (6.10)

Furthermore, if the number of derivatives in Ot is greater than 2 (i.e. n � 2), there are infinitely
many optimal strategies, all producing the same maximum value function.

Aside from the expected utility maximization, the investor is also concerned with the size
of their risky allocations. For instance, on the other hand, an institutional investor may have to
keep their gross allocation exposure under a certain level due to regulatory constraints. On the
other hand, a small exposure is important for capital safety regarding unmodellable risk, such
as financial crisis. Hence, we consider an additional derivative selection criterion, namely risk
exposure minimization, introduced in [36]:

min
Ōt2⌦(n)

O

�������
arg max
⇡s�t2⌦(O)

⇡

E(U(WT ) | Ft)

�������
1

, (6.11)

where k⇡s�tk1 =
nP

i=1

���⇡(i)
t

��� represents the `1 norm of allocations at time t. Note that this objective

is equivalent to maximizing the cash position while shorting less. [36] demonstrated that the
redundancy o↵ers no additional help with either the investor’s expected utility or their risky
asset exposure in the case of two one-factor assets. In the next proposition, we demonstrate a
generalized conclusion, which applies to any di↵usion model.

Proposition 6.2.1 Assume that an optimal solution for Problem (6.11) exists for n � 2; then,
(6.11) leads to the same minimal `1 norm for any n � 2. In addition, an optimal strategy exists
for Problem (6.11) such that the number of non-zero allocations is less than or equal to 2.1

Proof See Section 6.6.1.

Proposition 6.2.1 demonstrates that investors do not need to consider the portfolio compo-
sition Ot with size n > 2. Working with n = 2 is su�cient for both Problems (6.4) and (6.11).
We hence only study the simplest case given a complete market setting (i.e. n = 2).

6.3 Polynomial a�ne method for CRRA utilities in financial
derivatives market

In this section, we introduce a methodology to compute derivatives-based portfolio strategies.
This method is required to find the optimal candidate composition Ōt 2 ⌦(2)

O for risk exposure
minimization.

1The result can be easily extended to higher dimension. When model contains m � 2 independent risk factors
(Brownian motions), an optimal strategy exists for Problem (6.11) such that the number of non-zero allocations is
less than or equal to m.
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Complexity in assets’ dynamic models often jeopardizes the analytic solvability of HJB
PDE; this means that closed-form solutions are not always available. Motivated by this fact,
[91] proposed a simulation-based method to approximate the optimal strategy for continuous-
time portfolios within EUT (i.e. the PAMC). The original PAMC method is only applicable to
asset classes, such as equity, fixed income and currency, where assets’ dynamics are known
explicitly. However, with proper modifications, the PAMC is easily extended to financial
derivatives markets. The new method, namely the PAMC-indirect, is introduced in Section
6.3.1. Furthermore, an alternative method is described in Section 6.7. The performances of
both methodologies are demonstrated in the case of the Heston model, and the comparison to
the theoretical solution confirms the excellent accuracy and e�ciency of the PAMC-indirect
method.

6.3.1 The PAMC-indirect
Inspired by the quadratic a�ne model family (see [70]), the PAMC approach assumes that the
value function has the following representation:

V(t,W,H, ln S ) =
W1��

1 � � f (t,H, ln S ), (6.12)

where f (t,H, ln S ) is approximated by an exponential polynomial function of order k; that is,
exp{Pk}. The PAMC method utilizes the Bellman equation and the fact that the value function
at re-balancing time is the conditional expectation of the value function at t + �t; that is,

V(t,Wt,Ht, ln S t) = max
⇡t

E(V(t + �t,Wt+�t,Ht+�t, ln S t+�t) | Ft).

The PAMC expands the value function at t + �t with respect to wealth W, state variable H and
log stock price ln S , and it considers a su�ciently small re-balancing interval �t such that the
infinitesimal o(�t) terms are omitted. Then, the value function V(t,Wt,Ht, ln S t) is rewritten as
a quadratic function of the portfolio strategy, and the optimal strategy is immediately solved
with the first order condition given the information at t + �t. Proposition 6.3.1 displays the
estimation of optimal strategy ⌘⇤t in the artificial pure factor market (6.6).

Proposition 6.3.1 Given the approximation of the value function at the next re-balancing time
t + �t (i.e. W1��

1�� exp{Pk}(t + �t,H, ln S )), the optimal strategy at time t is given by

⌘⇤t =
1
�

(��T )�1(⇤ +
@Pk

@H
�HA +

@Pk

@ ln S
�S B). (6.13)

Proof See Section 6.6.2.

The PAMC-indirect inherits the recursive approximation structure of the PAMC. After the gen-
eration of paths of asset price and state variables, the optimal pure factor strategies at last re-
balancing time T � �t can be directly computed with Equation (6.13) because Pk(T,H, ln S ) =
0; the path-wise expected utilities are obtained through simulation. Furthermore, the expected
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utilities are regressed over stock price S T��t and state variable HT��t, and the regression func-
tion approximates the V(T � �t,W,H, ln S ). Then, the method moves backward, and similar
procedures are conducted at each re-balancing time until the optimal initial strategy of the pure
factor portfolio (i.e. ⌘⇤0) is obtained.

Finally, the PAMC-indirect calculates the portfolio variance matrix ⌃t, which depends on
the option price Ot, Delta @Ot

@S t
and the sensitivity to the state variable @Ot

@Ht
. The optimal deriva-

tives strategy ⇡⇤0 is solved with Equation (6.10). Only in some special cases (e.g. the Black-
Scholes model) are option prices solved analytically. A variety of approximation methods for
option price and Greeks are available in the existing literature. The choice of such methods
should be determined by the option style and underlying assets model. For example, an ac-
curate Fourier transform (FT) approximation is an ideal choice when the semi-closed-form
solution of an option is available (e.g. the Heston model, the Ornstein–Uhlenbeck 4/2 model),
while a simple Monte Carlo simulation is universal for options with a deterministic exercise
date; and a least-squares Monte Carlo method is applicable when considering American style
options.

We clarify the notation in Table 6.1 and detail the PAMC-indirect in Algorithm 11.

Notation Meaning
Bm,S

t ,Bm,H
t Brownian motion at time t in mth simulated path

S m
t Stock price at time t in mth simulated path

S m,S
t Pure factor asset S S

t at time t in mth simulated path
S m,H

t Pure factor asset S H
t at time t in mth simulated path

Hm
t State variable Stock price at time t in mth simulated path

Om
t Derivatives price at time t in mth simulated path

nr Number of simulated paths
⌃m

t Variance matrix of portfolio composition at time t in mth simulated path
N Number of simulations to compute expected utility for a given set (W0, S m

t ,Hm
t )

Ŵm,n
t+�t(⇡

m) The simulated wealth level at t + �t given the wealth, the allocation
and other state variables at t are W0, ⇡m, S m

t , and Hm
t

Ŝ m,n
t+�t A simulated stock price at t + �t given S m

t
Ĥm,n

t+�t A simulated state variable at t + �t given Hm
t

Ôm,n
t+�t A simulated option price at t + �t

V(t,W, ln S ,H) Value function at time t given wealth W, stock price S and state variable H
v̂m Estimation of Pk(t, ln S m

t ,Hm
t ) = log( f (t, ln S m

t ,Hm
t )) in Equation (6.12). Regressand in

regression; superscript m indicates the corresponding regressor (ln S m
t ,Hm

t )
Lt(H, ln S ) The regression function to be used to approximate Pk(t, ln S ,H)
⌘m

t Optimal strategy at time t in mth simulated path

Table 6.1: Notation and definitions
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6.4 Derivatives selection

In this section, we study derivative selection for market completion-that is, (6.11)-for n = 2
within subsets of the derivative set ⌦(2)

O . The derivative selection problem is rewritten as

min
Ōt2⌦(2,C)

O

�������
arg max
⇡s�t2⌦(O)

⇡

E(U(WT ) | Ft)

�������
1

, (6.14)

where ⌦(2,C)
O is a derivative set defined by

⌦(2,C)
O =

n
Ōt = [S t,O(C)

t ]T |O(C)
t 2 C, t 2 [0,T ]

o
.

The portfolio composition Ōt 2 ⌦(2,C)
O consists of a stock S t and a derivative security O(C)

t ; su-
perscript C represents the candidate set of derivative type; and Top denotes the time to maturity
of O(C)

t . This setting coincides with a popular practical strategic investment implementation (i.e.
the elimination unhedgeable risk factors of a pure-stock portfolio with financial derivatives).
We use the Heston SV model given in Equation (6.15) as the proxy of the market dynamics.

8>>>>>>>>>>>><
>>>>>>>>>>>>:

dMt
Mt
= rdt

dS t
S t
= (r + �Xt)dt +

p
XtdBS

t

dXt = X(✓X � Xt)dt + �X pXtdBX
t

dO(C)
t = (r + �@O

(C)
t
@S t

S tXt + �X @O
(C)
t
@Xt
�XXt)dt + @O

(C)
t
@S t

S t
p

XtdBS
t +

@O(C)
t
@Xt
�X pXtdBX

t

< BS , BX >t= ⇢S X

. (6.15)

The Heston model is a specific case of the generalized di↵usion model (6.1) with �S = �
p

Xt,
�H = �X pXt, �S =

p
Xt, µX = X(✓X � Xt) and �H = �X pXt. We employed a representative

market-calibrated set of parameters (see Table 6.2), given in [71], to investigate the best prod-
uct to account for volatility risk. The optimal allocation for the model (6.15) can be written
explicitly with Equations (6.13) and (6.10) as follows

⇡S
t =

1
�(1 � ⇢2

S X)
(� � ⇢S X�

X) � ⇡O
t

S t

O(C)
t

@O(C)
t

@S t

⇡O
t =

0
BBBB@

O(C)
t

��X(1 � ⇢2
S X)

(�X � ⇢S X�) +
O(C)

t

�

@Pk

@Xt

1
CCCCA

1
@O(C)

t
@Xt

. (6.16)

The representation indicates that the optimal allocation on option ⇡O
t solely depends on the

choice of option O(C)
t (i.e. ⇡O

t is a function of the option’s sensitivity to the instantaneous
variance and option price), while the optimal allocation on the stock ⇡S

t is determined by the
ratio of the option’s sensitivity to the instantaneous variance and the sensitivity to the stock.
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Table 6.2: Parameter value for the Heston model.
Parameter Value Parameter Value
T 1 year ⇢S X -0.4
✓X 0.0169 �X 0.25
X 5.0 � 4.0
�X -7.1 Top 0.1 year
�t 1

60 period 60
r 0.05 X0 ✓X

S 0 1.0 M0 1.0
W0 1 � 4
N 2000 nr 100

6.4.1 Derivatives selection within options on stock
We start the selection among four popular equity options. Specifically, the candidate set is
given by

C = {Call option, Put option, Straddle, Strangle} .
For simplicity, we only consider European-style derivatives. Call (i.e. payo↵ (S � K)+)

and put (i.e. payo↵ (K � S )+) options are the most common products traded in the market.
Additionally, a straddle (i.e. payo↵ (S � K)+ + (K � S )+) is a commonly used product when
investors expect the underlying asset to deviate from the spot price; hence, the long position of
a straddle is approximately a long position on volatility. Compared with a straddle synthesized
by purchasing a call and a put with the same strike price and maturity, a strangle (i.e. payo↵
(S � K1)+ + (K2 � S )+) has a more flexible structure, as it takes long positions on out-of-the-
money (OTM) put and call, which is a cheaper way to acquire exposure to volatility.2

Figure 6.1 displays the risk exposure k⇡tk1 of portfolios as a function of derivative money-
ness K/S 0, where K is the strike price of the options. Figure 6.1 (a) exhibits risk exposure given
options with maturity Top = 0.1, and Figure 6.1 (b) displays results when the option maturity
is Top = 0.5. In both cases, investors reduce their risk exposure with OTM put and call options.
Puts and calls could lead to illiquid choices, whereas a straddle achieves minimum k⇡tk1 when
it is near at-the-money (ATM). The optimal moneyness of a straddle option shifts to the right
as maturity Top increases. The risk exposure with a strangle decreases as its component put
option moves deeper OTM. Furthermore, even the strangle consisting of a near-ATM put and
call outperforms other options. We consequently conclude that the strangle minimizes the risk
exposure.

The turning point on the left tail of the strangle’s risk exposure in Figure 6.1 is further stud-
ied in Figure 6.2, where we illustrate how the optimal moneyness of an OTM call, an allocation
on stock ⇡S

t and an allocation on strangle ⇡O
t vary with the moneyness of an OTM put. Note the

practical range selected for the moneyness of an OTM call; that is, KCall/S 0 2 [S 0, 110%S 0]. It
is shown that, if the strike price of the put option starting at the spot price moves in the direction
of OTM, the corresponding optimal moneyness of the call option also becomes deeply OTM.

2Elements in variance matrix ⌃t, which are functions of option prices and Greeks, can be obtained with nu-
merical integration method (see [81] chapter 11). Specifically, we utilized the formula given in [48] and compute
numerical integration with the Newton-Cotes formulas.
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(a) Maturity=0.1 (b) Maturity=0.5

Figure 6.1: The k⇡tk1 versus moneyness: The Y-axis is the risk exposure of a portfolio contain-
ing di↵erent derivatives. The X-axis indicates the moneyness K/S 0 of calls, puts and straddles.
The strangle is synthesized with an OTM put and an OTM call. Given moneyness of the OTM
put indicated by the X-axis, the strike price of the OTM call is the one achieving minimum
k⇡tk1 within the range [S 0, 110%S 0].

The OTM call reaches the boundary earlier than the put, which leads to the turning point.
Before the turning point, allocation on the stock ⇡S

t continues to be small, and ⇡O
t gradually

approaches 0; hence, the total risk exposure k⇡tk1 assumes a decreasing trend. However, ⇡S
t

increases rapidly after the turning point, and k⇡tk1 consequently rises as ⇡O
t continues to drop.

Moreover, Figures 6.2 (a) and (b) compare strangles with maturity Top = 0.1 and Top = 0.5,
respectively. The turning point for a longer maturity strangle is more easily reached, which
makes it less preferable.

(a) Maturity=0.1 (b) Maturity=0.5

Figure 6.2: Impact of the OTM put’s moneyness on the strangle. Left vertical axis indicates the
optimal moneyness of the OTM call within [100%S 0, 110%S 0]. Right vertical axis indicates
the allocation on the stock and the strangle.

Equation (6.16) demonstrates that the allocation on the option is determined by the ratio of
the Vega to the option price. Therefore, in Figure 6.3, we investigate the relationship between
the Vega of the strangle and the time to maturity to provide further insight for the comparison
of maturity in Figures 6.1 and 6.2. Figure 6.3 (a) illustrates the Vega versus the maturity of an
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ATM strangle (the moneyness of component put option K/S 0 = 100%) and an OTM strangle
(the moneyness of component put option K/S 0 = 95%). For an especially short-term maturity
strangle, the terminal payo↵ do not have su�cient time to react to the change in volatility state,
therefore, the Vega is small. For the long-term maturity strangle, a change in the instantaneous
variance also has a small impact on the option price because of its mean-reverting nature.
Hence, the Vegas of both strangles are concave in time to maturity, which peaks at around 0.3
years. The impact from time to maturity on the ratio of Vega to price is illustrated in Figure
6.3 (b), where @O

(C)
t
@Xt
/O(C)

t is always positive and monotonically decreases with maturity, which
leads to an increasing |⇡O

t |. In Figure 6.2, ⇡S
t is close to 0 before the boundary, and |⇡O

t | increases
with maturity; hence, we conclude that a short-term maturity strangle is preferable.

(a) Vega @O
(C)
t
@Xt

(b) Vega to Price @O
(C)
t
@Xt
/O(C)

t

Figure 6.3: Sensitivity of strangle option price O(C)
t to instantaneous variance Xt versus time to

maturity Top. The legend indicates the moneyness of component put, and the call option is the
one achieving minimum risk exposure. Note that there is no boundary for the strike price of
the component call.

6.4.2 Derivatives selection within VIX products
Next, we study an investor who has access to the VIX of the stock at hand, such as the VIX
for the S&P 500. In this case, the investor has direct access to the volatility risk by investing in
products based on the VIX. The VIX has drawn investors’ attention since its origin in 1993; not
only is it a real-time indicator of the market sentiment, but also products such as VIX futures
and VIX options are popular for hedging volatility risk. In this section, we explore products on
the VIX. We consider a candidate set

C = {VIX call, VIX put, VIX straddle, Strangle} .

Note that a strangle is the best option for minimizing risk exposure considered in Section 6.4.1.
VIX calls and VIX puts are call and put options, respectively, based on the value of the VIX.
A VIX straddle is an instrument synthesized by the long position of a VIX call and a VIX put
with the same strike price.
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Given the definition of VIX as specified in the CBOE white paper [14], [68] solved the
VIX2 in closed-form as a function of instantaneous variance Xt. Under the Heston model, we
have

VIX2
t =

1
⌧

(a⌧Xt + b⌧)

a⌧ =
1 � exp�⇤v⌧

⇤v
, b⌧ = ✓⇤v(⌧ � a⌧) ⇤v = v + �

X�v, ✓
⇤
v =
v✓v
⇤v
, ⌧ =

30
365
,

(6.17)

where VIX2
t is linear with the instantaneous variance Xt. Computing a VIX option’s price

and Greeks is easy via Monte Carlo simulation; this method enable us to find elements in the
variance matrix ⌃t.

Unlike options on the stock, by investing in VIX products, the investor acquires exposure
only on the volatility risk; hence, the variance matrix ⌃t is diagonal. Moreover, the equity-
neutral position of VIX products leads to a specific case of Equation (6.16):

⇡S
t =

1
�(1 � ⇢2

S X)
(� � ⇢S X�

X)

⇡O
t =

0
BBBB@

O(C)
t

��X(1 � ⇢2
S X)

(�X � ⇢S X�) +
O(C)

t

�

@Pk

@Xt

1
CCCCA

1
@O(C)

t
@Xt

. (6.18)

In this case, the allocation on the stock is invariant to the choice of VIX products, which thus
becomes a natural lower bound for risk exposure (i.e. k⇡tk1 � |⇡S

t | ).
The risk exposure when investors hedge the volatility risk with VIX calls and puts is dis-

played in Figure 6.4 (a). On the one hand, calls and puts on the VIX have similar properties as
those on the stock: OTM options tend to achieve smaller risk exposure. On the other hand, a
VIX straddle is less ine↵ective in hedging the volatility risk because it is relatively insensitive
to the volatility, and a larger risk exposure k⇡tk1 is needed for investors compared to the cases
of VIX calls and puts. The risk exposure with the equity strangle is displayed for comparison
purpose; here, the turning point resulting from the boundary of moneyness on the OTM call
is still evident. Moreover, the strangle achieves a much smaller risk exposure than the VIX
products. We therefore conclude that equity strangle is superior when the time to maturity Top

for candidate products is small (Top = 0.1).
Figure 6.4 (b) illustrates how the option maturity Top a↵ects the risk exposure k⇡tk1. It

indicates that an OTM VIX call and an OTM VIX put are preferable in (a), and a similar
conclusion is verified numerically for any Top 2 (0, 1]. Therefore, risk exposure for the best
VIX call (K = 105%S 0) and VIX put (K = 95%S 0) are plotted in Figure 6.4 (b). In addition,
the minimum risk exposure within a pre-specified region of moneyness is also displayed. As
the volatility time series exhibits a mean-reverting property, the VIX options with long-term
maturity are insensitive to the instantaneous variance; hence, it has little e↵ect in hedging
the volatility risk. The figure also suggests that a large allocation on the long-term maturity
VIX option is needed, such that the risk exposure increases rapidly with maturity. A strangle
achieves smaller risk exposure when short-term maturity products are available in the market,
aligning with the result in Figure 6.4 (a).

According to Figures 6.1 and 6.2, the boundary of the OTM call is reached faster as Top

increases, and the boundary significantly restricts risk exposure, thus reducing the e↵ect of the
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strangle. This leads to a steep slope of risk exposure for the strangle in Figure 6.4 (b). In
summary, the investor should make a choice between VIX products and an equity strangle,
depending on the situation. If the investor has access to short-term maturity options, then
the strangle is preferable. However, when only long-term maturity products are available, the
investor should choose call options on the VIX for market completion.

(a) The k⇡tk1 versus moneyness: the time to ma-
turity of both VIX options and the strangle is 0.1
year. The X-axis indicates moneyness of VIX op-
tions and the OTM put in the strangle; the strike
price of the OTM call is the one achieving minimum
k⇡tk1 within the range [S 0, 105%S 0].

(b) The k⇡tk1 versus maturity: the strike price of
VIX calls is 105%S 0. The strike price of VIX puts
is 95%S 0. The green line shows the smallest k⇡tk1
is achieved by the strangle given the OTM put strike
price KPut 2 [95%S 0, 100%S 0] and the OTM call
strike price KCall 2 [100%S 0, 105%S 0].

Figure 6.4: The k⇡tk1 for VIX products

6.5 Conclusion

This chapter explored optimal derivatives-based portfolios to complete a market characterized
by volatility risk as a state variable. An accurate and high-speed approximation for optimal
allocations is proposed, for the unsolvable problem of optimal derivative exposure. In addi-
tion to the traditional portfolio decision objective (i.e. EUT maximization), we work with an
additional criterion, namely risk exposure minimization, for derivative selection. This aids in
the selection of a meaningful product out of many that maximize the utility. We found that
strangle options are the best equity option product for managing volatility risk. Moreover, we
demonstrated that options based on the VIX are superior to equity strangles in some realistic
situations.

There are many interesting potential extensions to this line of research. For instance, we
could incorporate multi-factor models considering the stochastic interest rates, stochastic cor-
relations, jumps and stochastic market prices of risk, to mention a few. These are more realistic
settings, solvable within our numerical method, hence providing investors with valuable insight
into optimal high-dimensional portfolios and multi-asset derivatives for sensible practical in-
vestment.
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6.6 Proofs

6.6.1 Proof of Proposition 6.2.1

Let Ot,n = [O(1)
t ,O

(2)
t , ...,O

(n)
t ]T with variance matrix ⌃t of rank 2 be an optimal subset of options

for problem (6.11). ⇡⇤t,n is a strategy maximizing the expected utility if and only if ⌃T
t ⇡
⇤
t,n = ⌘

⇤
t .

Therefore, Ot,n and ⇡⇤t,n is an optimal pair for (6.11) when ⇡⇤t,n is an optimal solution for

minimize
⇡t

||⇡t||1
subject to ⌃T

t ⇡t = ⌘
⇤
t .

(6.19)

According to principle 4.5 in [80], problem (6.19) is equivalent to

minimize
�t

T�t

subject to ⌃̂T
t �t = ⌘

⇤
t ,

�t � 0

(6.20)

where �t = [↵(1)
t ,↵

(2)
t , ...,↵

(n)
t , �

(1)
t , �

(2)
t , ..., �

(n)
t ]T satisfies ↵(i)

t =
|⇡(i)

t |+⇡
(i)
t

2 , and �(i)
t =

|⇡(i)
t |�⇡

(i)
t

2 , with

⌃̂t =

"
⌃t

�⌃t

#
=

2
666666666666666666666664

f 11
t f 12

t
... ...
f n1
t f n2

t
� f 11

t � f 12
t

... ...
� f n1

t � f n2
t

3
777777777777777777777775

. (6.21)

Theorems 2.3 and 2.4 in [6] lists the necessary and su�cient conditions for the extreme point
�t, i.e.

1. �t = [�(1)
t , �

(2)
t , ..., �

(n)
t , �

(n+1)
t , �(n+2)

t , ..., �(2n)
t ]T .

2. the q̂th and p̂th rows in ⌃̂t are linear independent, �(i)
t = 0 if i , q̂ or p̂.

3. �t is feasible solution.

Without loss of generality, we assume the pth and qth rows in ⌃ are linear independent, and we
consider 4 cases:

�[1]
t =

8>><
>>:

[�[1],(1)
t , �[1],(2)

t , ..., �[1],(n)
t , �[1],(n+1)

t , �[1],(n+2)
t , ..., �[1],(2n)

t ]T

�[1],(i)
t = 0 if i , q or p

�[2]
t =

8>><
>>:

[�[2],(1)
t , �[2],(2)

t , ..., �[2],(n)
t , �[2],(n+1)

t , �[2],(n+2)
t , ..., �[2],(2n)

t ]T

�[2],(i)
t = 0 if i , q + n or p

�[3]
t =

8>><
>>:

[�[3],(1)
t , �[3],(2)

t , ..., �[3],(n)
t , �[3],(n+1)

t , �[3],(n+2)
t , ..., �[3],(2n)

t ]T

�[3],(i)
t = 0 if i , q or p + n

�[4]
t =

8>><
>>:

[�[4],(1)
t , �[4],(2)

t , ..., �[4],(n)
t , �[4],(n+1)

t , �[4],(n+2)
t , ..., �[4],(2n)

t ]T

�[4],(i)
t = 0 if i , q + n or p + n

.

(6.22)
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It is clear that there is a non-negative strategy in �[1]
t , �[2]

t , �[3]
t and �[4]

t because the ith row in
⌃̂ is the opposite of the (i + n)th row, and the non-negative strategy is feasible and an extreme
point. This proves the existence of an extreme point for problem (6.20). Now, theorem 2.7 in
[6] guarantees that there is an optimal solution which is an extreme point for problem (6.20).
With the second necessary and su�cient conditions of the extreme point, we know that an
optimal solution �⇤t for problem (6.20) has at most two non-zero elements. This would imply
an optimal solution, denoted by ⇡⇤t,n = [⇡(1)

t,n , ⇡
(2)
t,n , ..., ⇡

(n)
t,n ]T , for problem (6.19) with at most two

non-zero elements, which would also be the optimal strategy for (6.11).
Without loss of generality, we assume ⇡(i)

t,n = 0, i , x, y. Ot,2 = [O(x)
t ,O

(y)
t ] and ⇡⇤t,2 = [⇡(x)

t,n , ⇡
(y)
t,n]T

is a feasible strategy for problem (6.11) with n = 2. We show that it is an optimal pair by
contradiction.
If there is a feasible solution Ôt,n = [Ô(1)

t , Ô
(2)
t ] and ⇡̂⇤t,2 = [⇡̂(1)

t,2 , ⇡̂
(2)
t,2 ]T such that ||⇡̂⇤t,2||1 < ||⇡⇤t,2||1,

then ⇡̂⇤t,n = [⇡̂(1)
t,2 , ⇡̂

(2)
t,2 , 0, ..., 0]T is a feasible strategy for (6.11) such that ||⇡̂⇤t,n||1 < ||⇡⇤t,n||1, which

is contradiction to our previous conclusion. Note that ||⇡⇤t,2||1 = ||⇡⇤t,n||1, so problem (6.11) with
n = 2 and with n � 2 have the same minimum `1 norm of allocation.

6.6.2 Proof of Proposition 6.3.1

According to the Bellman equation, the value function can be rewritten as,

V(t,W, ln S ,H) = Et(V(t + dt,Wt+dt,Ht+dt, ln S t+dt) | W,H, ln S )
= max

⌘t
Et(V(t + dt,Wt+dt,Ht+dt, ln S t+dt) | W, ⌘,H, ln S ). (6.23)

We expand V(t + dt,Wt+dt,Ht+dt, ln S t+dt) at t + dt in terms of all the variables.

V(t + dt,Wt+dt,Ht+dt, ln S t+dt) = V(t + dt,Wt, ln S t,Ht) + VWt(t + dt,Wt,Ht, ln S t)dŴt

+
1
2

VWtWt(t + dt,Wt,Ht, ln S t)(dŴt)2 + Vln S t(t + dt,Wt,Ht, ln S t)d ln S t + VHt(t + dt,Wt,Ht, ln S t)dHt

+
1
2

Vln S t ln S t(t + dt,Wt,Ht, ln S t)d ln S td ln S t +
1
2

VHtHt(t + dt,Wt, ln S t,Ht)dHtdHt

+ VWt ln S t(t + dt,Wt,Ht, ln S t)dŴtd ln S t + VWtHt(t + dt,Wt,Ht, ln S t)dŴtdHt

+ Vln S tHt(t + dt,Wt, ln S t,Ht)d ln S tdHt + o(dt).
(6.24)

Substituting dŴt, d ln S t, dHt which can be found in Equation (6.1), taking conditional
expectation on both sides, and rewriting V(t,Wt,Ht, ln S t) in a quadratic form with respect to ⌘
leads to
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V(t,Wt,Ht, ln S t) = max
⌘t

0
BBBBBB@

2X

i, j=1

fi, j(t,Wt, ,Ht ln S t)⌘(i)
t ⌘

( j)
t +

2X

i=1

fi(t,Wt,Ht, ln S t)⌘(i)
t + f0(t,Wt,Ht, ln S t)

1
CCCCCCA

fi, j(t,Wt,Ht, ln S t) =
1
2

VWtWt(t + dt,Wt,Ht, ln S t)Ŵ2
t (��T )i, jdt

fi(t,Wt,Ht, ln S t) = VWt(t + dt,Wt,Ht, ln S t)Ŵt⇤idt + VWt ln S t(t + dt,Wt,Ht, ln S t)Ŵt�S Bidt
+ VWtHt(t + dt,Wt,Ht, ln S t)Ŵt�HAidt

f0(t,Wt,Ht, ln S t) = V(t + dt,Wt,Ht, ln S t) + VWt(t + dt,Wt,Ht, ln S t)Ŵtrdt

+ Vln S t(t + dt,Wt,Ht, ln S t)(�S�S � 1
2

(�S )2)dt + VHt(t + dt,Wt,Ht, ln S t)µHdt

+
1
2

VHtHt(t + dt,Wt,Ht, ln S t)(�H)2dt +
1
2

Vln S t ln S t(t + dt,Wt,Ht, ln S t)(�S )2dt

+ Vln S tHt(t + dt,Wt,Ht, ln S t)�S�Hdt.
(6.25)

We assume a su�ciently small dt so that o(dt) terms are omitted when taking conditional
expectations. The optimal allocation is given by the solution to the system of equations:

2X

j=1

2 fi, j(t,Wt,Ht, ln S t)⌘
(⇤, j)
t = � fi(t,Wt,Ht, ln S t), i = 1, 2. (6.26)

With the representation of the value function in Equation (6.12) and assuming that f (t,H, ln S ) =
exp(Pk(t,H, ln S )), the derivatives of value function with respect to each stock and state vari-
able can be rewritten as,

VW(t + dt,Wt,Ht, ln S t) = Ŵ��
t exp(Pk(t + dt,Ht, ln S t))

VWW(t + dt,Wt,Ht, ln S t) = ��Ŵ���1
t exp(Pk(t + dt,Ht, ln S t))

VW ln S t(t + dt,Wt,Ht, ln S t) = Ŵ��
t exp(Pk(t + dt,Ht, ln S t))

@Pk(t + dt,Ht, ln S t)
@ ln S t

VWHt(t + dt,W,Ht, ln S t) = Ŵ��
t exp(Pk(t + dt,Ht, ln S t))

@Pk(t + dt,Ht, ln S t)
@Ht

.

(6.27)

Substituting Equation (6.27) into Equation (6.26), the optimal strategy can be approximated as
follows:

2X

j=1

gi, j(t,Wt,Ht, ln S t)⌘
(⇤, j)
t = gi(t,Wt,Ht, ln S t), i = 1, 2

gi, j(t,Wt,Ht, ln S t) = �(��T )i, j

gi(t,Wt,Ht, ln S t) = ⇤i +
@Pk(t + dt,Ht, ln S t)

@ ln S t
�S Bi +

@Pk(t + dt,Ht, ln S t)
@Ht

�S Ai,

(6.28)
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Then, the optimal strategy can be rewritten in matrix form:

⌘⇤t =
1
�

(��T )�1(⇤ +
@Pk

@H
�HA +

@Pk

@ ln S
�S B). (6.29)

6.7 Alternative approximation method and comparison

6.7.1 Direct method

We introduced an alternative method for derivatives-based portfolio strategy, namely PAMC-
direct method, which is straightforward application of the PAMC. At each re-balancing time,
the path-wise option price Ot, Delta @Ot

@S t
and the sensitivity to the state variable @Ot

@Ht
are approx-

imated, so the instantaneous dynamics of derivatives are obtained. In this way, derivatives can
be taken as an asset with dynamics known explicitly, the PAMC method is directly applied.
Next proposition shows the estimation of optimal strategy ⇡⇤t in PAMC-direct.

Proposition 6.7.1 Given the approximation of the value function at the next re-balancing time
t + �t (i.e. W1��

1�� exp{Pk}(t + �t,H, ln S )), the optimal strategy at time t is given by

⇡⇤t =
1
�

(⌃t��
T⌃T

t )�1(⌃t⇤ +
@Pk

@H
�H⌃tA +

@Pk

@ ln S
�S⌃tB). (6.30)

Proof Similar to Section 6.6.2.

We continue to use the notation in Table 6.1 and describe the step by step algorithm of the
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PAMC-direct in Algorithm 12.

Algorithm 12: PAMC-direct method
Input: S 0,W0,H0

Output: Optimal trading strategy ⇡⇤0
1 initialization;
2 Generating nr paths of Bm

t , Bm,H
t ,S m

t , Hm
t f or m = 1...nr;

3 Apply approximation methods and obtain the price of Ot(Hm
t , ln S m

t ) as well as its
sensitivity @Ot

@S t
(Hm

t , ln S m
t ) and @Ot

@Ht
(Hm

t , ln S m
t ) f or t = 0,�t, ...T ;

4 while t = T � �t do
5 for m = 1...nr do
6 Compute the variance matrix ⌃m

T��t with derivatives price and sensitivity
obtained in step 3 ;

7 Directly compute optimal allocation ⇡m
T��t with Equation (6.30) where the

Pk = 1 at time T ;
8 for n = 1...N do
9 Generate Ŝ m,n

T and Ĥm,n
T given S m

T�� and Hm
T�� and obtain Ôm,n

T ;

10 Compute wealth Ŵm,n
T (⇡m

T��t) at the terminal given the wealth at WT��t = W0,
the transformed value function is estimated by

v̂m = ln [(1 � �) 1
N

NP
n=1

U(Ŵm,n
T (⇡m

T��t))] � (1 � �) ln W0 ;

11 Regress v̂m over the polynomial of Hm
T��t and ln S m

T��t, and obtain the function
LT��t(H, ln S );

12 for t = T � 2�t to �t do
13 for m = 1...nr do
14 Compute the variance matrix ⌃m

t with derivatives price and sensitivity obtained
in step 3;

15 Directly compute optimal allocation ⇡m
t with Equation (6.30) where the

Pk = Lt+�t(H, ln S );
16 for n = 1...N do
17 Generate Ŝ m,n

t+�t and Ĥm,n
t+�t given S m

t and Hm
t and obtain Ôm,n

t+�t;

18 Compute wealth Ŵm,n
t+�t(⇡

m
t ) at the terminal given the wealth at Wt = W0, the

transformed value function is estimated by

v̂m = ln [ 1
N

NP
n=1

(Wm,n
t+�t(⇡

m
t ))1��exp(Lt+�t(Ĥm,n

t+�t, ln Ŝ m,n
t+�t))] � (1 � �) ln W0;

19 Regress v̂m over the polynomial of Hm
t and ln S m

t , and obtain the function
Lt(H, ln S );

20 while t = 0 do
21 Compute the variance matrix ⌃0 with derivatives price and sensitivity obtained in

step 3, and the optimal allocation ⇡⇤0 is obtained with Equation (6.30) and where
the Pk = L�t(H, ln S );

22 return ⇡⇤0
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6.7.2 Comparison between the PAMC-direct method and the PAMC-indirect
method

In this section, we implement the PAMC-direct method and the PAMC-indirect method on the
Heston SV model given in Equation (6.15) for comparison purpose. The derivatives-based
portfolio given the Heston model was first studied in [71], where the author constructed a
portfolio with derivative securities and a stock so that volatility risk is able to be managed.
The optimal strategy stock-derivatives portfolio is solved in closed-form. The accuracy and
e�ciency of the PAMC-direct and the PAMC-indirect are examined in comparison with the
analytical solution.

We continue to use the market-calibrated set of parameters in Table 6.2. For simplicity, we
let Ot be a delta-neutral straddle because the delta-neutral position keeps the straddle near-the-
money, and the liquidity should not be a concern.

Figure 6.5 (a) and (b) compares the optimal allocation on the stock and straddle across dif-
ferent values of risk aversion level �. We let the re-balancing frequency of the PAMC-indirect
method be 60 times per year, i.e. investors roughly adjust their positions weekly. Optimal al-
location from the PAMC-indirect method and theoretical solution (re-balancing continuously)
are visually overlapped, the PAMC-indirect method exhibits very excellent accuracy in this
case. The allocation from the PAMC-direct method with 60 re-balances per year is subject to
a substantial error, on the other hand, the gap to the theoretical solution shrinks if we let the
re-balancing frequency be 300 times per year (roughly daily re-balance). We expect the gap
will vanish as re-balancing frequency continues to increase. The computational times of the
PAMC-direct and PAMC-indirect methods are compared in figure 6.5 (c), the time required for
the PAMC-indirect method is significantly smaller than the time for the PAMC-direct method.
The PAMC-indirect is superior to the PAMC-direct with regard to both accuracy and computa-
tional e�ciency, we hence use only the PAMC-indirect in section 6.4.

(a) allocation on stock (b) allocation on straddle option (c) Computational time

Figure 6.5: Allocation on straddle versus �
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Algorithm 11: PAMC-indirect
Input: S 0,W0,H0

Output: Optimal trading strategy ⇡⇤0
1 Initialization;
2 Generating nr paths of Bm,S

t , Bm,H
t ,S m

t , Hm
t ,S m,S

t ,S m,H
t f or m = 1...nr;

3 while t = T � �t do
4 for m = 1...nr do
5 Directly compute optimal allocation ⌘m

T��t with Equation (6.13) where Pk = 1
at time T ;

6 for n = 1...N do
7 Generate Ŝ m,n,S

T and Ŝ m,n,H
T given S m,S

T�� and S m,H
T�� ;

8 Compute wealth Ŵm,n
T (⌘m

T��t) at the terminal time given the wealth at
WT��t = W0, the transformed value function is estimated by

v̂m = ln [(1 � �) 1
N

NP
n=1

U(Ŵm,n
T (⇡m

T��t))] � (1 � �) ln W0 ;

9 Regress v̂m over the polynomial of Hm
T��t and ln S m

T��t, and obtain the function
LT��t(H, ln S );

10 for t = T � 2�t to �t do
11 for m = 1...nr do
12 Directly compute optimal allocation ⌘m

t with Equation (6.13) where
Pk = Lt+�t(H, ln S );

13 for n = 1...N do
14 Generate Ŝ m,n

t+�t, Ĥm,n
t+�t, Ŝ m,n,S

t+�t and Ŝ m,n,H
t+�t given S m

t , Hm
t , S m,S

t and S m,H
t ;

15 Compute wealth Ŵm,n
T+�t(⌘

m
t ) at the terminal given the wealth at Wt = W0, the

transformed value function is estimated by

v̂m = ln [ 1
N

NP
n=1

(Wm,n
t+�t(⇡

m
t ))1��exp(Lt+�t(Ĥm,n

t+�t, ln Ŝ m,n
t+�t))] � (1 � �) ln W0 ;

16 Regress v̂m over the polynomial of Hm
t and ln S m

t , and obtain the function
Lt(H, ln S );

17 while t = 0 do
18 ⌘⇤0 is obtained with Equation (6.13) and where the Pk = L�t(H, ln S );
19 Apply approximation methods and obtain the price of O0(H0, ln S 0) as well as its

sensitivity @O0
@S 0

(H0, ln S 0) and @O0
@H0

(H0, ln S 0) ;
20 Compute the variance matrix ⌃0, and the optimal allocation ⇡⇤0 = (⌃T

t )�1⌘⇤0;

21 return ⇡⇤0



Chapter 7

Summary and Future Research

The thesis studies numerical methods for dynamic portfolio choice problems as well as their
applications. We first introduced a competitive numerical method (i.e. PAMC) to approximate
the optimal strategy and value function for a CRRA-type investor in Chapter 2. The outstanding
accuracy and e�ciency of the PAMC were verified on a variety of continuous- and discrete-
time models. Chapter 3 extended PAMC to the wider HARA utility family and proposed the
PAMH. An important application of the PAMH was illustrated, where the optimal strategy and
value function for the OU 4/2 model within both EUT and MVT were obtained. Furthermore,
we demonstrated an innovation of fitting the portfolio value function with neural networks in
Chapter 4, two architectures as extensions of exponential polynomial functions were proposed.
The last two chapters investigated the portfolio decision in derivatives markets. Chapter 5 con-
structed a derivatives selection framework and explored an additional optimization criterion,
namely, risk exposure minimization, to help investors make a practical derivatives selection.
This framework was applied to volatility risk in Chapter 6. The optimal choices among equity
options and VIX options to complete a financial market were studied relying on an extension
method of the PAMC.

Our approximation methodologies in Chapters 2, 3, and 4 can be extended on several
fronts. First, our methods are applicable to continuous-time (di↵erentiable) models and spe-
cific discrete-time models (e.g. the VAR model); the application to other discrete-time models
would be an interesting research topic. Currently, our methodologies are developed within a
hypothetical trading environment where all costs and constraints associated with transactions
are non-existent. These realistic considerations could be incorporated into the asset allocation
process. Furthermore, a variety of variance reduction techniques might be applied to enhance
the quality of the simulation in our methodologies. Many institutional investors in the capital
market have distinct peculiarities in managing portfolios. For example, pension funds under-
take legal obligations of future payments, while in an asset-liability management framework
balancing portfolio return and surplus risk is suitable. Banks and property and casualty (P&C)
insurers face significant cash flow uncertainty due to the nature of their liabilities, hence as-
sets’ liquidity and redemption period should be accounted in their portfolios. We suggest for
future research variants of our methods, targeting specific investors, that could be more robust
to instruct the investment decision.

Chapters 5 and 6 investigated the derivatives selection in a low-dimensional setting, i.e.
portfolios consisting of two derivatives. One could incorporate multi-factor models taking into
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account: stochastic interest rates, currency risk, stochastic correlations, jumps, and stochastic
market prices of risk. In these cases, besides the equity and VIX derivatives, other products
such as fixed-income and foreign exchange derivatives should be involved in the portfolio.
These realistic settings will provide investors with a more comprehensive insight into opti-
mal high-dimensional portfolios and multi-asset derivatives for sensible practical investment.
Moreover, in Chapter 5, we witness that sensitivity to rebalancing frequency is a potential
concern for derivatives-based portfolios. Another possible improvement to the derivatives
selection criterion would consider the trade-o↵ between risk exposure reduction and trading
cost. Finally, we propose the additional portfolio criterion of risk exposure minimization for a
derivatives-based portfolio. However, the choice of the objective function is subjective. People
can consider other risk metrics (e.g. L2 norm of the investment size), which will likely lead to
di↵erent derivatives choices. Investigating the relation between metrics and derivative choices
would also be an interesting extension of this work.
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