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Abstract

The presence of strong aftershocks can increase the seismic hazard following a large earth-

quake and should be considered for operational earthquake forecasting and risk management.

Aftershock forecasts are generated from seismicity models during the evolution of the after-

shock sequence. This work compares quantitative test results of the forecasting abilities for

three competing aftershock rate models - the modified Omori law, the Epidemic Type After-

shock Sequence model, and the compound Omori law - to identify the best performing model

for forecasting the largest aftershock during the early aftershock sequence. Forecasts of large

aftershock probabilities are generated by either the Extreme Value distribution or the Bayesian

Predictive distribution for the forecasting time interval. Testing is conducted retrospectively on

five sequences for a fixed forecasting time interval of seven days during the early aftershock

sequence. None of the models and forecasting methods consistently outperforms the others

regardless of the training time interval.

Keywords: Aftershock forecasting, Bayesian predictive distribution, ETAS model,

Modified Omori law, Compound Omori law, Forecasting statistics, Forecast performance test-

ing, Extreme value theory
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Summary for Lay Audience

Large earthquakes and their subsequent aftershocks are destructive. The presence of strong af-

tershocks can increase the seismic hazard and should be considered for operational earthquake

forecasting and risk management. In this study, selected large earthquakes and their aftershocks

are analyzed using three models, the modified Omori law, the Epidemic Type Aftershock Se-

quence model, and the compound Omori law. The models are applied to data available during

various lengths of time as the earthquake sequence progresses. For each length of time, the

behaviour of the sequence is simulated for the next seven days. From the simulation, the prob-

ability of a large aftershock can be computed as a forecast. This study mimics operational

forecasting by progressively increasing the amount of available data for each forecast. The

probability for large aftershocks is computed using two different methods - the Extreme Value

distribution and the Bayesian Predictive distribution. Several statistical tests are applied to the

forecasting methods and evaluated for performance. Models are scored based on quantitative

values for their performance and the results are used to compare the performance of the re-

spective models and forecasting methods. The goal of this work is to determine whether one

model and forecasting method consistently scores better than the others when forecasting large

aftershocks using data available during the early aftershock sequence.

The results of the statistical testing indicate that there is no best model nor forecasting

method. The most suitable model and method may be regional or sequence dependent. This

suggests that the choice of using one model over another should be carefully considered. To

forecast the probability of the largest aftershock occurring during a short time period more

reliably, the early aftershock behaviour of sequences requires more detailed analysis in future

studies.
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Chapter 1

Introduction

One of the main purposes of earthquake research is the prevention of loss of life. Shak-

ing of the Earth by moderate to large earthquakes disrupts activities on the surface and

can cause infrastructure damage. Secondary effects of large earthquakes can also be taken

under consideration when prioritizing studies of earthquake behaviour. Secondary effects

may include landslides, liquefaction, fires, and power grid impacts, which all contribute to

the loss of life [Kossobokov, 2013, Zhang et al., 2018, Petersen et al., 2020]. Aftershocks,

earthquakes that take place following large earthquakes, may also cause these effects. The

more aftershocks take place, the more likely these effects will occur. Given the poten-

tial physical and societal damage, improvements to the response time and general prepara-

tory steps to large earthquakes during aftershock sequences can be made. Much atten-

tion has also been given to the forecasting of the large earthquakes and their associated se-

quences [Utsu, 1971, Reasenberg and Jones, 1989, Zechar et al., 2010, Rhoades et al., 2011,

Page et al., 2016, Earthquake Research Committee, 2016].

1.1 Probability of Large Earthquakes
The occurrence of very large earthquakes near populated areas, such as those

exceeding moment magnitude 7, tends to dominate the discussion in terms of

safety, earthquake preparedness, and building requirements [Woessner et al., 2015,

1
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Earthquake Research Committee, 2016, Hardebeck et al., 2019, Petersen et al., 2020].

These earthquakes have special considerations in the public view and are understandably

a high priority in terms of anticipating their occurrence as they are associated with higher

risk. However, earthquakes with moment magnitude as low as Mw = 4.0 should be con-

sidered as they contribute to the seismic hazard in the short term (e.g., 50 years in Europe)

[Beauval et al., 2008, Delavaud et al., 2012]. For mainshocks that result in long and productive

sequences, the greater number of aftershocks increases the probability that one of these may

be a large magnitude event [Reasenberg and Jones, 1989, Page et al., 2016].

Since aftershocks are typically present following a sufficiently large magnitude event, it is

necessary to consider what the probability of a large or “mainshock” event occurring is. The

premature labelling of events can lead to a false sense of security as the public may not consider

that a larger event will take place shortly afterwards [Omi et al., 2019]. Thus, the probability

that a temporarily labelled mainshock will have a larger magnitude aftershock should be con-

sidered, especially during the time close to the mainshock as the sequence tends to be the most

productive at this time. To do so, computational methods and models can be applied to estimate

the probability of a large event.

For short-term forecasting, it is important to use a suitable model to describe the known

seismicity. In addition, for the forecast to be useful, the forecast should demonstrate features

that closely align with the observed seismicity. Some features that can be considered include:

the number of events, the magnitude distribution of the events, and the maximum magnitude

event. Several models have been published and are available in the literature. Two common af-

tershock rate models used in real-time forecasting are the Epidemic Type Aftershock Sequence

(ETAS) model and the modified Omori law (MOL) [Omori, 1894, Utsu, 1961, Ogata, 1998,

Ogata, 1999]. Other models include those based on rate-and-state, stick-slip, Every Earth-

quake a Precursor According to Scale, and the compound Omori law, in addition to the many

region-specific models [Dieterich, 1994, King et al., 1994, Utsu et al., 1995, Scholz, 2002,

Evison and Rhoades, 2004, Rhoades and Evison, 2004, Field et al., 2009, Strader et al., 2017,
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Rhoades et al., 2017]. The magnitude distributions are typically assumed to follow the

Gutenberg-Richter law [Gutenberg and Richter, 1944].

Basic forecasting may use the forecasted rate model to calculate the number of

events and assign magnitudes to individual events. Forecasting can also be done

by forward simulation of the fitted models. The results of any improvements to

forecasting methods will be reflected in downstream products such as early after-

shock warnings [Helmstetter and Sornette, 2003, Zechar and Jordan, 2008, Allen et al., 2009,

Shebalin et al., 2012, Kawamoto et al., 2016, Chung et al., 2020].

Short-term forecasting, where the forecast is on the order of days, provides the ability to

respond to on-going earthquake events to evaluate the value of issuing announcements such

as recommendations for return or evacuation warnings to and from an affected site. For ex-

ample, the United States Geological Survey (USGS) and the Japan Meteorological Agency

(JMA) currently make use of the modified Omori law as the primary earthquake aftershock

model and issue forecasts based on the probability of exceeding a certain magnitude thresh-

old [Hardebeck et al., 2019, Earthquake Research Committee, 2016, Omi et al., 2019]. More

recently, there has a been a shift towards implementing the ETAS model for forecasting as

the main method or an additional option in future versions of current forecasting methods

[Marzocchi and Lombardi, 2009, Omi et al., 2016, Omi et al., 2019]. In the USGS, the ETAS

model is used on demand [N/A, 2020]. This is presumably due to the inherently stochastic na-

ture of the ETAS model which demonstrates more variability in the sequence behaviour and the

expectation that the ETAS model may perform better and more accurately describe the number

of forecasted events and magnitude distribution.

1.2 Rationale for This Study

While it is desirable to develop a method of when and where large shocks will occur,

the precise prediction of large shocks is not feasible [Geller, 1997, Geller et al., 1997]. It is,

however, possible to characterize the aftershock behaviours and make use of them to provide
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forecasts in the near future, such as the next several hours to days. This is also of great im-

portance as this knowledge provides decision-makers with the information necessary to decide

when to evacuate and when it may be appropriate for citizens to return to a previously impacted

area. Thus, the forecasting of earthquake behaviour during sequences should be improved and

incorporate new understanding of earthquake behaviour where possible.

To improve forecasting, retrospective analysis can be applied to earthquake sequences that

have occurred in the past. When both training and testing data are available, models can be

tested on their performance. This is the case with early aftershock sequences (training data)

and the following aftershocks (testing data). Then, models that are currently in use, or newly

proposed models can be trained and tested to evaluate whether they produce useful forecasts.

Testing must be done to assess the features of the forecast before the model can be used reliably

for real-time purposes. Test results should also be produced in a form similar to previous

work, easily replicated, and the tests should ideally be easy to interpret. The limitations of the

forecasts from different models can also be identified during retrospective analysis.

The organized effort to put together forecasting testing and a systematic way of comparing

the forecast results has been in progress for over a decade now, such as with the Collabora-

tory for the Study of Earthquake Predictability (CSEP) [Zechar et al., 2009]. However, the

results from this testing have not provided a conclusion as to the best overall model for fore-

casting. The testing conducted by the CSEP is for longer term forecasts and requires advance

preparation [Zechar et al., 2009, Lombardi and Marzocchi, 2010a]. Previous work using the

CSEP tests has shown that certain models perform better on various metrics for specific time

frames, as summarized in [Schorlemmer et al., 2018, Rhoades et al., 2018]. In addition, many

of the models being tested are region specific and cannot automatically be applied to other

regions without careful consideration [Zechar et al., 2009, Gerstenberger and Rhoades, 2010].

To standardize the testing process, the submitted models do not receive additional human input

and do not tend to account for the variability in initial parameter estimates as demonstrated

in [Shcherbakov et al., 2019]. The current state of practice is to analyze one sequence at a
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time, apply an alternative forecasting model, then compare the forecast performance based on

the previous model used for forecasting and the alternative forecast performance based on the

observed events such as in [van der Elst et al., 2022]. Competing forecast models have not pre-

viously been tested in a systematic manner for several sequences occurring in different regions.

1.2.1 Study Goals
The goal of this thesis is to provide quantitative analyses of the forecasts produced using

different aftershock rate models and forecasting methods by means of a series of statistical tests

to identify if one model consistently performs better than the others on specific metrics. By

applying consistent statistical tests with quantile scores and reviewing the information gain of

competing models, it may be possible to identify which model tends to perform better than the

others.

In this work, three different models using two different forecasting methods are tested for

forecast performance and compared. While Bayesian methods have been previously used in

model parameter estimation and forecasting, Shcherbakov et al. (2019) recently investigated

the use of the Bayesian Predictive distribution (BPD) to account for inherent uncertainty of

model parameter estimation. While similar work is being conducted by the CSEP group, this

study is the first direct comparison of the ETAS model and the MOL, both of which are used

for real-time forecasting. In addition, the compound Omori law (CMOL), which is a model

that has features in between the ETAS model and the MOL is also included for testing where

applicable.

The thesis goal will be achieved with three primary objectives. The first objective is to

evaluate the forecast test scores for model performance. The second objective is to assess the

limits of each model and sequence to determine if there are specific conditions that the model

performs better under. Considerations include the catalog magnitude completeness, necessity

of fixing model parameters, and sensitivity to model parameter priors on the forecasting results.

Third, the impact of magnitude cutoff is examined on the above objectives.

The results of this study are intended to better inform current real-time forecasting prac-
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tices. The quantitative scores allow for straightforward comparison between the different meth-

ods and models tested. The results of this work can provide quantitative guidelines for policy

and decision-makers when considering more than one model or method for forecasting earth-

quake sequences. The forecast test results also isolate specific features in the forecasts and indi-

cate if the model and method used to forecast does not successfully replicate the corresponding

features in the observed sequence. In addition, this work provides examples of forecast test

score interpretation.

1.3 Background and Concepts
To have quantifiable forecasts and simulations that can be compared to observed seismic-

ity, it is necessary to have a model that can describe the earthquake sequence. The model

can then be used to generate a forecast. There are empirical laws which describe various as-

pects of earthquakes. Some well-known ones include the Gutenberg-Richter (GR) law which

relates magnitude and frequency [Gutenberg and Richter, 1944, Gutenberg and Richter, 1955],

the modified Omori law which describes the aftershock behaviour following a mainshock, and

the Utsu-Seki law which describes the relationship between the rupture length and the magni-

tude of the event [Omori, 1894, Utsu et al., 1995]. The aftershock models used in this study

include the MOL, ETAS model, and the CMOL [Omori, 1894, Utsu, 1961, Utsu et al., 1995,

Ogata, 1998, Ogata, 1999]. The magnitude-frequency distribution of the sequences is de-

scribed by a left-truncated GR law.

1.3.1 Earthquakes
An earthquake is the result of exceeding a critical value of stress within the Earth’s crust,

leading to a physical slip along a fault in the crust and release of energy [Kanamori, 1977,

Abercrombie et al., 2006]. Forces in the Earth’s crust contribute to continuous loading of

stress and strain. Earthquake ruptures may be triggered in areas of weakness and slip in

response to a large change in the stress field. Thus, one large earthquake or stress re-

lease may lead to the occurrence of aftershocks. The total energy released with each earth-
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quake can be represented using the moment magnitude (Mw), which has a logarithmic scale

[Kanamori, 1977, Hanks and Kanamori, 1979]. For regional catalogs, magnitudes may be

recorded using a local magnitude (ML) which can be converted between different mag-

nitude scales [Richter, 1935, Kanamori, 1977, Hanks and Kanamori, 1979, Kanamori, 1983,

Bindi et al., 2005, di Bona, 2016, Mueller, 2019].

A collection of earthquake events related by space and time is called an earthquake se-

quence. The events in a sequence can be treated as a stochastic marked point process in

time. The event times ti and magnitudes mi are organized in a set S = (ti,mi) : i =

1, . . . , n [Vere-Jones, 1975, Ogata, 1999]. If the assumption is made that the magnitudes

are not correlated and that ti can be fully described by the time-dependent rate λ(t), then

earthquake occurrences can be modelled as a non-homogeneous Poisson process in time

[Utsu et al., 1995, Shcherbakov et al., 2005b]. This abstraction of earthquake sequences then

allows for forecasting based on the sequence properties described by the models.

During retrospective analysis, the largest event in the sequence is referred to as the main-

shock. The events before and after are foreshocks and aftershocks, respectively. During a

real-time situation, the first, large shock may be designated the “mainshock” until a larger

event takes place. An example of some possible earthquake sequences is shown in Figure 1.1.
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a) b)

c)

Figure 1.1: Examples of a different earthquake sequences representing mainshocks, fore-
shocks, and aftershocks. The y-axis denotes the magnitude of the events, and the x-axis is
the relative time of the events. Events with magnitudes M > 6 are shown in orange. a) demon-
strates the typical mainshock with aftershock sequence. b) shows a strong foreshock with its
own aftershocks (foreshock sequence) preceeding a mainshock and aftershock sequence. c)
demonstrates a mainshock with aftershock sequence and a strong shock during the sequence,
producing an elevated seismicity rate and its own aftershock sequence.

1.3.2 Gutenberg-Richter Law

The GR law comes from an observation that there are relatively fewer large magnitude

earthquakes in comparison to small magnitude earthquakes [Gutenberg and Richter, 1944]. At

the extreme end, the number of Mw ≥ 9.0 earthquakes in the last century is easily countable,

while the number of tremors Mw ≤ 1.0 are extremely numerous, and cannot be completely

recorded due to factors such as strength of seismic signal and attenuation. The GR law ap-

plies to both global and local events, and applies to aftershocks [Shcherbakov et al., 2005a,

Shcherbakov et al., 2015]. The value that is typically reported for the GR law fit is the b-value,

which describes the relative number of small to large earthquakes in the sequence. The b-value

has been shown to change leading up to large earthquakes and is also associated with the type

of faulting present [Scholz, 1968, Wyss, 1973, Kanamori and Anderson, 1975, Båth, 1981,

Frohlich and Davis, 1993, Márquez-Ramı́rez et al., 2015]. The b-value typically varies be-
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tween 0.8 < b < 1.1, where b ∼ 1.0 is the average value globally [Frohlich and Davis, 1993,

Márquez-Ramı́rez et al., 2015].

1.3.3 Modified Omori Law

The MOL is an aftershock rate model developed on an observation that the aftershock

rate, λω, decreases as time increases from the mainshock [Omori, 1894, Utsu et al., 1995].

The aftershock rate as modelled by the MOL has an inverse rate related to the time passing

from the mainshock [Utsu, 1961]. Following a large shock, the aftershock rate is elevated

and the time between events is small. As time passes from the mainshock, the aftershock

rate of the sequence decreases until it reaches a stable rate of seismicity or returns to back-

ground seismicity levels. The MOL typically fits aftershock sequences well and is one of the

aftershock models that is often used by government agencies, such as the USGS, for fore-

casting the probable behaviour of the ongoing aftershock sequence [Hardebeck et al., 2019].

The MOL has also been used for early forecasting and used with daily adaptive forecasting in

[Ebrahimian et al., 2014, Ebrahimian and Jalayer, 2017]. Aftershocks that follow this empiri-

cal law show “Omori-like behaviour”. While frequently used, the MOL does not account for

secondary aftershocks - aftershocks produced by events other than the mainshock, and local-

ized clustering behaviour.

1.3.4 Epidemic Type Aftershock Sequence Model

The ETAS model is a self-exciting point process which allows for each shock to

generate its own associated aftershock sequence which decays in an Omori-like fashion

[Ogata and Katsura, 1986, Ogata, 1988, Zhuang et al., 2011]. This model addresses cluster-

ing behaviour and punctuation in the sequence in a way that incorporates MOL behaviour

with a limited number of parameters. Utsu (1995) suggests that the ETAS model is the best

model that incorporates behaviour described by the MOL, which is necessary to describe af-

tershocks [Ogata and Katsura, 1986, Ogata, 1988, Zhuang et al., 2011]. The seismicity rate as

described by the ETAS model is a sum of two rates, background rate and triggered rate, re-
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flecting background and triggered events, respectively. The constant background rate, which

is not associated directly with the earthquake sequence and occurs independently as a Poisson

process, is explicitly accounted for in the ETAS model. Moreover, the ETAS model allows for

the background events to trigger events as part of the sequence. For each event in the sequence,

the event can be considered a “parent” event if it generates associated aftershocks, which are

called “daughter” events. Like the MOL, larger parent events are more likely to produce a

larger number of daughter events.

The ETAS model is also self-exciting and the aftershock rate is dependent on the history

of events. Thus, the model parameter estimations for the ETAS model can be more difficult

and multiple model fits can be found. During forecasting, the rate cannot be calculated directly

and requires simulation dependent on the magnitude of individual events. The use of the ETAS

model may be unnecessary if the sequence clearly demonstrates Omori-like behaviour with

little to no background seismicity present.

1.3.5 Compound Omori Law

The MOL assumes that the sequence behaviour is dominated by the mainshock and the

ETAS model allows for each event to trigger more events, all of which can produce Omori-like

aftershocks. When a sequence that has strong secondary aftershocks clearly associated with

one specific earthquake, such as a doublet type sequence with a second instance of Omori-like

behaviour, an intermediate model can also be considered. The basic CMOL is described as

two instances of the MOL which take place at different times during the sequence [Utsu, 1970,

Ogata, 1983]. A second instance of the MOL begins at a second large shock in the sequence.

The second MOL instance contributes to the seismicity in addition to the partially decayed rate

from the first instance of the MOL by using a step function that “turns on” the additional MOL

function at the time of the large aftershock [Utsu, 1971, Ogata, 1983, Shcherbakov et al., 2012,

Shcherbakov, 2021]. The CMOL can be further extended to many instances of stacked events

which contribute to increased seismicity by adding an additional MOL component.
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1.3.6 Model Fit and Parameter Estimation

For each aftershock model, the rate of earthquake occurrence is described by the model

parameter values. Estimation of the model parameters is done using a model fitting procedure

during the training time interval. The estimated parameters are then used to forecast future

earthquakes during the forecasting time interval. When assuming that aftershocks are a non-

stationary Poisson process, the aftershock rate can be solved using an optimization method

[Ogata, 1983].

The uncertainty of point parameter estimates is important to address as the uncertainty can

propagate through the forecasting time period. The ETAS model is particularly affected due

to its rate dependence on prior events. Variations in parameter estimates can lead to different

forecasts. To account for the nature of the ETAS model and incorporate the model parameter

uncertainty, Markov Chain Monte Carlo (MCMC) algorithms can also be used to sample the

distribution of the parameters [Shcherbakov et al., 2019].

Magnitude Completeness

When modelling earthquake sequences, it is important to consider the completeness of the

data [Kagan, 2004, Peng et al., 2006, Hainzl, 2016a, Hainzl, 2016b]. The completeness mag-

nitude Mc can be considered the lowest magnitude event consistently in a catalog. See Chapter

2 for identifying Mc. Small earthquake magnitudes at distances far from seismic stations will

not be accounted for as their signals are too small. Mc decreases as additional seismic sta-

tions are deployed to increase coverage and increases temporarily if signals overlap following

a large shock or instrumental failure takes place [Agnew, 2015]. To properly estimate the af-

tershock rate and model parameters, the impacts of early aftershock incompleteness need to be

considered [Ogata, 1988, Kagan, 2004, Peng et al., 2006, Hainzl, 2016a, Hainzl, 2016b].

1.3.7 Forecasting

For specific and constrained regimes in space and time, it may be possible to provide

probability estimates of large earthquakes for active fault segments as the region approaches
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a state of criticality or during an ongoing sequence [Sykes et al., 1999]. Efforts have been

put into place to better identify and analyze the characteristics of earthquakes to forecast

during earthquake sequences or shortly there-after [Zechar et al., 2009, Rhoades et al., 2011,

Schorlemmer et al., 2018]. An example series of actions for practical, real-time forecasting

follows. Shortly after a large earthquake event, the associated seismicity is collected as a

sequence. The sequence can be rapidly characterized using a well-fitting aftershock model.

From the model fit, the probability of large events and the behaviour of the sequence can be

forecasted. The results of the short-term forecast (hours to days) can assist in decision making.

See Figure 1.2 for an example of the data collection to alarm issuing workflow.

To provide meaningful short-term forecasting, models describing the behaviour of the

earthquake sequence are necessary. In addition, an evaluation of both their fit and forecast

are important when there is more than one model available.
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Passive observation

Large earthquake occurs

Collect sequence data

Fit data to
aftershock model

Forecast from
model fit

Probability of large
aftershock

Send alarm Sequence continuation

Above hazard level Below hazard level

Sequence continues

Return to passive observation

Sequence complete

Figure 1.2: Visual representation of an example workflow starting from a large event leading
to issuing an alarm. As an example, the alarm can be directed to either a group of scientists
who inform the government and choose how to deliver the information to the public, or auto-
matically to the public with suggestions for immediate earthquake preparation response.

In practice, the point parameter estimates of the models solved using the maximum like-

lihood estimate (MLE) method are often directly used for the forecasting procedures di-

rectly to estimate the number of events and the probability of large events. The proba-

bility of large aftershocks can be estimated directly using the extreme value theory, result-

ing in the extreme value distribution (EVD). For the MOL and CMOL, it is possible to di-

rectly compute the probability of events above a certain magnitude using the Reasenberg-

Jones Model or using extreme value theory [Campbell, 1982, Reasenberg and Jones, 1989,

Daley and Vere-Jones, 2003, Page et al., 2016, Hardebeck et al., 2019]. The direct estimate is

not appropriate for the ETAS model and the probability of large events can be estimated from
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simulating the ETAS model during the forecast time period. The BPD was introduced for

forecasting to incorporate uncertainties in the model parameter estimates. The forecast pro-

duced by the BPD uses MCMC sampling and prior information from the MLE estimate. The

complete algorithm for the BPD forecast is provided in [Shcherbakov et al., 2019].

While the MOL is the primary model used for forecasting, there has been a transition and

shift towards using the ETAS model as the proposed model for real-time forecasting. For

example, the ETAS can be implemented for alarm based systems such as the USGS, which

currently applies the ETAS model on demand [N/A, 2020]. It is generally accepted that the

ETAS model is more flexible and suitable to fitting earthquake sequences in comparison to the

MOL. In addition, the ETAS model encompasses the MOL and can mimic the behaviour of the

MOL. Thus, it is reasonable to see a shift towards integrating the ETAS models into real-time

forecasting.

1.3.8 Testing Forecasts
When comparing different models for forecasting purposes, the forecasting ability of

these models can be tested. The CSEP has implemented testing of submitted models in

testing centers for specific regions such as the Regional Earthquake Likelihood Models

projects in California, New Zealand, Japan, and Italy [Jordan, 2006, Schorlemmer et al., 2007,

Marzocchi and Lombardi, 2009, Nanjo et al., 2012, Ogata, 2017]. The tests used by the CSEP

can be adapted for testing specific forecasts and can be considered benchmark requirements in

showing a model’s forecast value.

Forecasts presented in terms of probabilities can be tested statistically

[Kagan and Jackson, 1995]. To evaluate the forecasts produced by the forward sim-

ulation of a parameterized model, the likelihood function can be solved and relative

likelihood scores can be compared [Schorlemmer et al., 2007]. Earthquake features

that affect the likelihood were investigated in [Kagan, 1991]. Other investigations

on likelihood methods in the temporal domain were investigated in previous studies

[Vere-Jones and Ozaki, 1982, Ogata, 1983, Ogata and Katsura, 1986].
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1.4 Selected Case Studies
A brief overview on the selected sequences is provided below. Five sequences were se-

lected for forecasting analysis in this study. These include the 2009 L’Aquila sequence and

2016 Amatrice sequence in Italy; the 2016 Kumamoto sequence in Japan; the 2010 Darfield

sequence and associated 2011 Churchfield events in New Zealand; and, the 2020 Monte Cristo

Range (MCR) sequence in the United States of America. The case studies were selected based

on previous work and suitability to the methods applied. The catalogs for the selected works

are fairly complete and are from typically seismic regions across the world. The sequences

took place within the last 13 years with good coverage and catalog completeness. All of the

sequences have published examples of the ETAS model fitting with the exception of the MCR

sequence.

The MCR sequence took place during the period of this study [Morton et al., 2020]. With

a mainshock of Mw = 6.5, the sequence was prolific and continued for over a year. This

behaviour was similar to the other, previously studied sequences with the mainshock magnitude

and the productivity. The MCR sequence is analyzed in the same manner to see if the methods

provide similar results to this newer sequence. In addition, the MCR is the first sequence near

the border of Nevada and California that has taken place in the past 50 years in a typically

aseismic region [Rogers et al., 1991, Zheng et al., 2020].

1.5 Thesis Overview
In this chapter, an overview of earthquake modelling and forecasting with associated tech-

niques was presented. Specific earthquake models and sequences with previous forecasting

examples were described. Testing of forecasts with associated literature were provided briefly

in Chapter 1. The methods and data used in this work will be described in Chapter 2. Details

regarding the model parameters, model parameter estimation methods, forecasting methods,

and tests applied to the forecasts will be provided. The models used include the GR law to de-

scribe the frequency-magnitude statistics, and the MOL, CMOL, and ETAS model to describe
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the aftershock rates. The model parameters are estimated using both the MLE method and

MCMC methods. From the model parameter estimation, the probability of large aftershocks is

forecasted using the EVD and BPD methods where applicable. Five statistical tests are applied

to the forecasts.

The results of individual case studies using methods proposed in Chapter 2 are applied

to the five earthquake sequences in different tectonic settings and are presented in Chapter 3

using retrospective testing. The forecasts for the probability of large aftershocks and forecast

test performance are shown for the MOL and ETAS model for each sequence. The CMOL

results are provided where available. Intermediate steps are compared to previous works to

demonstrate similarity or to note differences.

In Chapter 4, the results of the model and method comparisons and forecast test perfor-

mance are discussed. The results indicate that the ETAS model performed better than the

MOL and CMOL for most of the case studies and training time intervals considered. However,

the MOL was not rejected as an alternative hypothesis. The CMOL was not found to bring

value in the forecasts and forecast performance. The relative forecast performance of the com-

peting models indicates that the performance is also dependent on the magnitude completeness

of the catalog. Some assumptions and potential limitations of this thesis are also addressed in

Chapter 4. In Chapter 5, a summary of the previous chapters and suggestions for future work

are provided.



Chapter 2

Data and Methods

2.1 Data
The data used in this study were acquired in the form of catalogs (“datasets”). Catalogs

consist of a list of earthquake events for a specific area in chronological order and include

details, such as the magnitude, date, time, latitude, longitude, and depth estimates of the events.

Additional details, such as estimation methods, the source of the data, and closest recording

station to the event may be listed in the original catalog. Following acquisition, the catalogs

are formatted in the manner as shown in Table 2.1 where each line of the catalog is one event

listing. These are listed in order as year, month, day, hour, minute, seconds, latitude, longitude,

magnitude, and depth of the event. Unless otherwise specified, it is assumed that the event

listings are of the best calculated hypocenter location. The catalogs used in this study are

publicly available for download via an Application Programming Interface (API) or direct user

interface with optional filters. The location of each study sequence is indicated in Figure 2.1.

Table 2.1: Excerpt of the JMA catalog used for the 2016 Kumamoto sequence analysis.

year month day hour min sec latitude longitude magnitude depth (km)
2016 4 14 21 26 34.43 32.7333 130.8052 6.5 11.39
2016 4 14 21 28 11.92 32.6667 130.7405 4.1 9.77
2016 4 14 21 28 52.38 32.7167 130.7716 3.4 9.25
2016 4 14 21 28 58.03 32.7333 130.7876 3.5 11.5
2016 4 14 21 29 15.59 32.75 130.8264 3.4 13.59

17
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Figure 2.1: World map with the epicenters of the mainshocks of the five case studies denoted
on the map. The L’Aquila sequence and the Amatrice sequence mainshocks overlap each other
on the map.

2.1.1 Italian Catalog - ISIDe

The Italian Seismological Instrumental and Parametric Data-Base (ISIDe catalog) was

used for the 2009 L’Aquila sequence and 2016 Amatrice sequence. The ISIDe catalog

magnitudes are reported in local magnitude ML. The ISIDe catalog is complete to as low

as ML = 2.0 and shows a marked improvement following upgrades to the network after

April 16, 2005 [Schorlemmer et al., 2010, Lombardi and Marzocchi, 2010b]. The improve-

ment in the catalog does not impact the analysis in this study. The catalog can be found at

http://terremoti.ingv.it/en/iside and is provided by the Istituto Nazionale di Geofisica e Vul-

canologia.
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2.1.2 Japanese Catalog - JMA
The Japanese Meteorological Agency (JMA) catalog was used for the 2016 Kumamoto se-

quence. Data are available in updated form on the JMA website up until 2018 as of the down-

load date (https://www.data.jma.go.jp/svd/eqev/data/bulletin/eqdoc e.html). The JMA magni-

tude is provided in MJMA. An evaluation of the automatic hypocenter estimates which con-

tribute to the bulk of the catalog can be found in [Tamaribuchi, 2018] which improves on the

method implemented in 2016. For the Kumamoto sequence, event depth restriction was ad-

justed to a maximum of 20 km following [Shcherbakov et al., 2018].

2.1.3 United States of America Catalog - ComCat
The United States Geological Survey Advanced National Seismic System Compre-

hensive Earthquake Catalog (USGS ANSS ComCat or ComCat) was used for the 2020

Monte Cristo Range (MCR) sequence. A specific sub-catalog was created by query-

ing the ComCat API for the MCR sequence. The events in the catalog are available at

https://earthquake.usgs.gov/earthquakes/search/.

2.1.4 New Zealand Catalog - GeoNet
The GeoNet catalog from the New Zealand GeoNet project was used to analyze the

2010 Darfield sequence and the later 2011 Christchurch earthquakes, large aftershocks part

of the Darfield sequence. The catalog was retrieved from the Quake Search function

https://quakesearch.geonet.org.nz/. The depth parameter for this catalog when performing

analysis was unrestricted as all events within the elliptical area of study were shallow earth-

quakes. The magnitudes in this catalog are provided in ML.

2.2 Methods
A high level view of the workflow for this study is presented in Figure 2.2. First, a catalog of

interest that contains the sequence data was downloaded and formatted into a standard format

suitable for further processing. The data were then filtered to be of at most 30 km depth
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unless otherwise noted. The catalog was further refined by the sequence region and magnitude

completeness Mc of the catalog. The region of the sequence was indicated by an ellipse that

encircled the events of the sequence. The Mc within the region was initially guided by the

reported completeness for the catalog if available. Then, a visual inspection of the frequency-

magnitude plot was used to check and adjust the Mc. Subsequent processing used events with

a selected magnitude cutoff M0 ≥ Mc. The catalog was then divided into the training time

interval, which was used to fit model parameters, and the forecasting time interval, which was

used to forecast events.
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Case Study Start

Raw Catalog

JMA

ComCat
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GeoNet
Format

Filter

Training Data
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Model Fit
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ETAS
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Point Parameters
Parameter

Distribution

Forecast EVD BPD
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Test N-, M-, R-, T -tests p-test

Done!

Figure 2.2: Methodology flowchart. Earthquake event data was collected in the form of cat-
alogs and reduced to events with magnitude M ≥ Mc and within the user defined the ellipse.
The magnitude cutoff Mc was determined by visual inspection of the GR law applied to three
days of events following the mainshock. The resulting data was used to train different model
types to solve for MLE point parameter estimates. The MCMC parameter distribution was
estimated using the MLE results as the Gamma prior means. The parameter estimates were
used to forecast the probability of large aftershocks using either the EVD or BPD during the
forecasting time period. Statistical tests were then applied to the forecasts and the performance
of the models were evaluated.
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For each training time interval [T0,Te], the Gutenberg-Richter (GR) law was fitted for the

training period using the Maximum Likelihood Estimate (MLE) method to describe the mag-

nitude population for the training interval. The magnitude population as described by the GR

law parameters were assumed to represent event magnitudes during the forecasting time inter-

val (Sections 2.2.3 and 2.3). Up to three different aftershock models were fitted to the same

training period using the MLE to estimate the aftershock rate parameters in addition to the GR

law parameters. The aftershock models used in this work included the modified Omori law

(MOL), compound Omori law (CMOL), and the Epidemic Type Aftershock Sequence (ETAS)

model (Section 2.4). Using the point parameter estimates from the MLE method as mean

values and prior information, Markov Chain Monte Carlo (MCMC) sampling was applied to

the same training time interval to produce model parameter distributions and were recorded as

chains (Section 2.5).

The point parameter estimates for the MOL and CMOL were used to directly calculate the

probability of large events during the forecasting time period [Te,Te+∆T ] using extreme value

theory (EVD) method [Shcherbakov et al., 2019]. In addition, for all of the aftershock models,

the MCMC chains were used to forward simulate the sequence in time as an ensemble for the

duration of the forecasting time period. The simulations were used to compute the probability

of large aftershocks during ∆T . The sampling algorithm used to produce the MCMC chains

accounts for the uncertainty in the model parameter estimates and uses Bayesian methods to

incorporate prior knowledge from the MLE estimates. This results in the Bayesian predictive

distribution (BPD) method [Shcherbakov et al., 2019, Shcherbakov, 2021] (Section 2.6).

Lastly, five statistical tests were applied to the forecasts produced by the EVD and BPD

methods. Each test compared the forecasted events to the observed events during the forecast-

ing time period for specific characteristics. These tests were applied for the early aftershock

training periods of each sequence, model, method for model fitting, and forecasting method

where applicable (Section 2.7). All analyses as described in this chapter were done using

MATLAB with code provided by Robert Shcherbakov and modified by Elisa Dong.
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2.2.1 Model Training Time Intervals
The model parameters were estimated during the training time period as shown in Figure

2.3. The training time period [T0,Te] consists of two components, the preparatory time interval

[T0,Ts] and the target time interval [Ts,Te]. The preparatory time interval provides a short time

interval where the events in the catalog are not included in the model parameter fitting proce-

dure for the MOL and CMOL. This bypasses some of the issues with fitting that are impacted

by potentially missing data close to the mainshock. For the ETAS model, the preparatory time

interval is used to condition the model parameter estimates. For each sequence and aftershock

model used, the preparatory time interval remains the same for all training time intervals. The

model parameter estimates take place over the target time interval.

Figure 2.3: Timeline of events during an earthquake sequence. The preparatory time interval
[T0,Ts] can be used to condition the ETAS model (Ts is typically the time of the mainshock, or
shortly after). The model is fitted over the training time interval [T0,Te], where Te is typically
provided in number of days following the mainshock, ∆Tm. The forecasting takes place during
[Te,Te + ∆T ].

To simulate real-time forecasting, the training time interval is typically aligned with the

first identified “mainshock” that produces a notable aftershock sequence. The first target time

interval ends a full day (Te = 1) after the mainshock. To capture the evolution of the sequence,

the start of the training time T0 is fixed as the Te is progressively increased in increments of 24

hours up to seven days. Additional training time periods are considered for each case study. In

this work, the number of “training days”, ∆Tm, is always made in reference to the number of

days following the mainshock unless otherwise noted. For example, Sequence A is preceded by

a foreshock sequence. The ETAS model and the CMOL can be trained starting at T0, where T0

is the time of the first large foreshock. The foreshock sequence is 3.5 days long. One training
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day for Sequence A, ∆Tm = 1, has a training time interval [0.0, 4.5]. The MOL is fitted to

Sequence A beginning with T0 at the time of the mainshock. For the MOL, the training time

interval is [0.0, 1] for ∆Tm = 1. For all of the target time intervals, if T0 is the time of the

mainshock, then Ts is a short time such as 0.002 to 0.03 days after the mainshock.

The forecasting time period [Te,Te + ∆T ] immediately follows the training time interval

(Fig. 2.3). Model parameter estimates produced using the training time interval are used to

simulate and forecast for large aftershocks during the forecasting time interval. The forecasted

events can be compared with the observed events in the catalog. In this work, the length of the

forecasting time interval was set to seven days, ∆T = 7.

2.2.2 Model Region Selection

A large magnitude event can have an estimated fault length based on an empiri-

cal relationship and region of influence [Utsu and Seki, 1955, Wells and Coppersmith, 1994,

Kagan, 2002]. In this study, it is assumed that the spatial distribution of the sequence can be

restricted to events that fall within a user-defined ellipse. This ellipse is selected by reviewing

the early aftershocks by including most events during the early aftershock sequence, and may

use knowledge of the location of fault or faults. Event data up to three days after the main event

were used to identify the extent of the aftershocks. All events captured within the ellipse and

above the selected magnitude cutoff M0 were used in subsequent analysis. Forecasted events

also occur within the same region used for training.

2.2.3 Magnitude Completeness Analysis

The magnitude completeness indicates at which magnitude the events in the sequence are

considered to be complete in the catalog. It is assumed in this work that the magnitude dis-

tribution of earthquakes follows the GR law [Gutenberg and Richter, 1944]. Based on this

premise, most of the events taking place during a sequence will be of low magnitude. If

many of these smaller events are missing from the catalog when training, this may bias the

subsequent aftershock rate analysis. In addition, Mc typically increases temporarily after a
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large shock. Some reasons include instrument saturation and the presence of coda waves

[Aki, 1969, Kagan, 1991, Shebalin et al., 2011]. Thus, it is important to find the magnitude

completeness where the data is deemed sufficiently complete for further analysis. However,

it is also important to not select too high a value for Mc as doing so reduces the amount of

data available for training. In particular, the ETAS model tends to underestimate the number

of events during a forecast when using high Mc and the productivity from small events is not

accounted for [Helmstetter and Sornette, 2003].

Mc was assessed on a sequence by sequence basis. After acquiring the catalogs, the first

three days of data following the first large shock in the elliptical region were selected. The

events were plotted onto a log-log plot of frequency-magnitude of the events. If the GR law is

an accurate representation of the frequency-magnitude relationship, then the events should fall

along a straight line on the log-log plot. When the lower magnitude events start falling below

the straight line, this indicates that the GR law does not hold in the magnitude range below

the deviation and events are missing. Other methods for selection can be found in the fol-

lowing studies [Rydelek and Sacks, 1989, Woessner and Wiemer, 2005, Mignan et al., 2011,

Agnew, 2015].

The magnitude cutoff M0 is a similar value that the user can select to limit the data available

in the catalog to restrict the analysis to events above M0, where M0 ≥ Mc. The choice of higher

M0 may affect the GR law model parameter estimation and the productivity parameters of

the rate models. M0 may affect the α parameter of the ETAS model, which is a productivity

parameter that indicates if the sequence is more swarm-like or if the aftershock behaviour

is dominated by the mainshock. In this study, M0 = Mc with the exception of the Darfield

sequence.

2.3 Gutenberg-Richter Law

The Gutenberg-Richter Law is an empirical power law that describes the frequency and

magnitude of earthquakes [Gutenberg and Richter, 1944]. Assuming that the GR law is applied
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to a complete catalog, then the GR law parameters can also be used to sample the magnitude of

forecasted events. The GR law can be represented by the left-truncated exponential distribution

log10 N = a − b(M − M0) (2.1)

where N is the number of events, b-value is a scaling parameter, and a is a constant. A larger b-

value results in a steeper slope on the plot relating the log number of events and the magnitude

of the events. This corresponds to a relatively small number of large magnitude events in

comparison to a smaller b-value.

The standard deviation for the b-value is provided by [Bender, 1983] and the standard error

for the estimation method is provided in [Shi and Bolt, 1982]. The estimation of the b-value

error due to binning for a confidence interval follows the procedure in [Tinti et al., 1987].

Equations

fθ(m) = β exp[−β(m − m0)], (2.2)

Fθ(m) = 1 − exp[β(m − m0)], (2.3)

are the probability and cumulative density functions for the GR law, respectively

[Vere-Jones, 2010]. The model parameter for the GR law is described by θ = {β}, where β

is related to the b-value by β = ln b. θ provides the magnitude population to draw upon during

the forecasting time period.

2.4 Temporal Seismicity Rate Models

Three aftershock models are used in this study, the MOL, CMOL, and the ETAS model.

The rate is described by λω and the aftershock rate model parameters are represented by ω.
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2.4.1 Modified Omori Law

A decay in seismicity rate following a large shock can be described with the empirical

modified Omori law [Omori, 1894, Utsu, 1961]. The functional form of the rate model is

λω(t) = K0/(t + c0)p0 , (2.4)

where t is the time relative to the beginning of the target time interval. The model parameters

for the MOL are ω = {K0, c0, p0}. K0 parameter describes the aftershock productivity rate of

the sequence with respect to the mainshock. The productivity rate K0 is dependent on M0. The

seismicity rate decays in inverse fashion as controlled by the decay parameter p0. c0 is a short

time delay following the mainshock before the decay of the aftershock rate begins. Further

reading on the parameters with respect to the magnitude cutoff can be found in studies by

[Utsu et al., 1995, Shcherbakov et al., 2004, Lippiello et al., 2007].

2.4.2 Compound Omori Law

In the case where an earthquake sequence has two distinct Omori-like aftershock sequences

that overlap each other, the CMOL can be applied. The CMOL consists of two instances of the

MOL which take place at different times. The functional form of the CMOL is written as

λω(t) =
K1

(t + c1)p1
+ H(t − τ)

K2

(t − τ + c2)p2
. (2.5)

The aftershocks from the first MOL instance can continue to contribute to the seismicity rate

following the second MOL instance. The model parameters are ω = {K1, c1, p1,K2, c2, p2}

where t is the time after the first large shock and τ is the time of the second large shock. The

Heaviside step function H(x) is equal to one when x ≥ 0 and is zero when x < 0. H(x) controls

when the second instance of the MOL will contribute to the seismicity rate. τ indicates when

the second instance of the MOL begins. The model parameters for the CMOL provide similar

representations as they do in the MOL function, with two instances of the MOL contributing



Chapter 2. Data andMethods 28

to the total seismicity rate.

When the sequence has a distinct foreshock sequence, τ can be set to the time of the main-

shock. Otherwise, τ is set to a user defined time associated with a large magnitude event that

is not necessarily the largest event during the aftershock sequence following the mainshock.

2.4.3 ETAS Model

The ETAS model represents seismicity by means of a trigger-model, where each parent

event in the sequence produces its own Omori-like aftershocks. The functional form of the

ETAS model is described as

λω(t|Ht) = µ +
Nt∑

i:ti<t

eα(mi−m0)(
t−ti

c + 1
)p . (2.6)

The model parameters for the ETAS model are ω = {µ,K, c, p, α} and conditioned over the

history Ht of events during the time interval [T0, t]. For the ETAS model, the background

seismicity rate µ is explicitly taken into account. µ is a constant rate prior to and during the

sequence, and is associated with seismicity from tectonic loading and can be modelled using

a homogeneous Poisson process [Ogata, 1998]. t is the time relative to the beginning of the

target time interval, and ti is the time of each event relative to the beginning of the target time

interval. The model parameters {K, c, p}, which provide a similar function to {K0, c0, p0} in

the MOL, describe the aftershock decay for short-term triggering effects in the ETAS model

[Lombardi and Marzocchi, 2010b]. The c and p values are time based parameters, where c is

the same short time delay for each parent event triggering a Omori-like aftershock sequence,

and p describes the rate of decay for each local cluster. K and α are productivity parameters

associated with each individual event in the sequence. K describes the aftershock productivity

after each event in the sequence and α describes the efficiency of aftershock activity generation

by a shock of a certain magnitude. The productivity value α indicates how large the contribu-

tion to the productivity from event mi will be. If α is small, then the ETAS model describes

swarm-like behaviour. If α is large, then the ETAS model describes Omori-like behaviour.
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2.5 Model Parameter Fitting
The model fitting takes place over the training time interval. In this work, two different

parameter estimation methods were applied.

The first parameter estimate method uses the MLE method. The MLE produces specific

point parameter estimates for θ and ω based on the training time interval. When using the

MLE method, it is assumed that the catalog being fitted over a complete and homogeneous

for the time periods under consideration [Kagan and Jackson, 1995, Zhuang et al., 2012]. The

likelihood functions are further elaborated in Appendix A.

The second method for estimating parameters uses a Markov Chain Monte Carlo (MCMC)

method. This method produces chains of point parameter estimates from each sampling step

as part of the method. By sampling the potential model parameters, the MCMC method results

in a distribution for each model parameter, thus accounting for the uncertainty in the estimates.

This method accounts for the stochasticity of the ETAS model better than that of a single point

parameter representation from the MLE method.

2.5.1 Maximum Likelihood Estimate

To estimate θ and ω, the log-likelihood function is maximized. The point parameter esti-

mation for the GR law requires additional steps as the magnitudes in the catalog are binned. In

this study, the data is typically binned in ∆M = 0.1 intervals. θ can be solved using the MLE

method for magnitudes exceeding M0 [Utsu, 1965, Aki, 1965, Guttorp and Hopkins, 1986].

The likelihood is the probability of observing the aftershocks within the training time period

given the model and the parameter estimate [Ogata, 1983, Hardebeck et al., 2019]. For the like-

lihood with a time-dependent rate as with the ETAS model, see [Daley and Vere-Jones, 2003,

Shcherbakov et al., 2019]. The log-likelihood is maximized using all events within

[Ts,Te] for the MOL and CMOL, and [T0,Te] for the ETAS model, above M0

and above the maximum depth for the sequence. The MLE is solved using

the MATLAB fmincon() function, by minimizing the negative log-likelihood function
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https://www.mathworks.com/help/optim/ug/fmincon.html. Additional details are available in

Appendix A.

In some cases, the ETAS model parameter estimation may be unstable over the varying

training time intervals. To improve parameter stability, it is possible to fix some of the parame-

ters to specific values during estimation. This is useful when catalogs of low magnitude events

dating back several years are available and the background seismicity rate appears to be low

leading up to the earthquake sequence. In those cases, µ can be fixed to an extremely low value

or µ = 0 and the model parameter does not need to be solved for.

Errors for the point parameter estimate using the MLE method for the aftershock models are

calculated using the inverse Fisher information matrix [Ogata, 1983, Ogata, 1978], which can

be derived from the Hessian. In this work, the Hessian is a byproduct of the fmincon() solution

when using MATLAB. The MOL and ETAS model inverse Fisher information matrices were

computed directly.

2.5.2 Markov Chain Monte Carlo Chains
To better describe the model parameter distributions, the MCMC method was used with the

sampler proposed by [Shcherbakov, 2021]. Each random sampling produces a set of parameter

estimates that is then saved as part of a chain. From the previous sampled step, the chain

progresses by taking another step in an arbitrary direction in the parameter space. 100,000

steps are discarded for “burn-in” and 100,000 steps are sampled for the parameter estimates so

the distribution only represents the latter portion of the steps. This is based on the procedure in

[Shcherbakov et al., 2019, Shcherbakov, 2021]. The results of the chain can be used to forward

simulate as an ensemble for forecasting. The large number of steps was needed to produce a

smooth distribution for the forecast probabilities.

Several variations of MCMC methods are available. The method in this study uses the

Metropolis-Hastings algorithm for the MOL and CMOL and Metropolis-within-Gibbs sam-

pling algorithm for the ETAS model for the posterior distributions of the ETAS model param-

eters [Shcherbakov et al., 2019]. The initial model parameter estimates θ and ω from the MLE
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are used as the mean for the Gamma priors. Since the sampling method accounts for the prior

knowledge, forecasts produced from the MCMC parameter estimates result in the BPD.

For the ETAS model, the parameter estimates are updated using both the Metropolis-

Hastings sampler and the Gibbs sampler [Shcherbakov et al., 2019]. The sampling process

samples one parameter while all other parameter values are fixed. The Gibbs sampler is used to

generate random variables from the Metropolis-Hastings sampling [Shcherbakov et al., 2019].

The ETAS model proposal distribution follows a log-normal distribution.

2.6 Forecasting Methods
Two forecasting methods were used in this study. The first uses the model parameter esti-

mates from the MLE, which can be directly input into the function described by the EVD for

the MOL and CMOL. While the EVD for the ETAS model can be produced via simulation, the

EVD does not account for the uncertainty in the parameter estimates and nature of the ETAS

model, where slightly different model parameters may result in significantly different num-

ber of forecasted events during the forecating time period. To include the uncertainties in the

model parameters, the BPD was used as the second forecasting method for all of the aftershock

models.

The forecasts produced the probability of large magnitude earthquakes occurring during the

forecasting time period for ∆T = 7 days following the target time intervals. For each sequence,

the probability of the forecasted sequence containing at least one event above the magnitude

Mex was calculated.

2.6.1 Extreme Value Distribution

The point parameter estimates from the MLE can be directly used to estimate the probabil-

ity of large events during the forecasting time period with

PEV(mex > m|θ, ω,∆T ) = 1 − exp{−Λω(∆T )[1 − Fθ(m)]}. (2.7)
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For the MOL and CMOL models, it is assumed that individual earthquake events are indepen-

dently and identically distributed and are a nonhomogeneous Poisson process which can then

be directly estimated using the Gumbel distribution

PEV(mex > m|θ, ω,∆T ) = 1 − exp{−Λω(∆T ) exp[−β(m − m0)]}, (2.8)

[Shcherbakov et al., 2019]. The productivity Λω is the number of events produced during the

time interval ∆T . Λω for the MOL and CMOL can also be written explicitly with equations

Λω(∆T ) = K0
(Te + c0)1−p0 − (Te + ∆T + c0)1−p0

p0 − 1
, (2.9)

Λω(∆T ) = +K1[(Te + c1)1−p1 − (Te + ∆T + c1)1−p1)/(p1 − 1)]

+K2[(Te − τm + c2)1−p2 − (Te + ∆T − τm + c2)1−p2)/(p2 − 1)],
(2.10)

respectively [Shcherbakov, 2021]. Then, the probability of an event during forecasting time

period ∆T above magnitude mex in Equation 2.8 is directly estimated by providing parameters

θ and ω for the MOL and CMOL by replacing Λω with either Equation 2.9 or Equation 2.10.

The productivity of the ETAS model can be found in [Shcherbakov et al., 2019]. How-

ever, the direct calculation of the productivity is not suitable for the ETAS model. Unlike

the MOL, the ETAS model simulation depends on the past history. Thus, for the ETAS

model, the EVD is generated from many simulations of the ETAS model using the pa-

rameter values. For forecasting the largest aftershock, the ETAS model can be forward

simulated during the forecasting time period following the thinning method [Ogata, 1981,

Ogata, 1998, Zhuang et al., 2004]. The largest magnitude from each simulation is extracted

and the distribution of all the largest magnitude events results in the estimation of the EVD

[Renard et al., 2013, Shcherbakov, 2021]. The EVD following this method for the ETAS model

deviates from the Gumbel distribution [Shcherbakov et al., 2019]. Since the EVD uses only

one set of model parameter estimates to produce a forecast, the EVD was not directly applied

to the ETAS model.
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2.6.2 Bayesian Predictive Distribution
The extreme value framework can be used to derive the BPD, as shown in

PB(mex > m|S,∆T ) =
∫
Ω

∫
Θ

PEV(mex > m|θ, ω,∆T )p(θ,S)dθdω, (2.11)

[Shcherbakov et al., 2018, Shcherbakov, 2021]. Unlike the EVD, the BPD accounts for uncer-

tainty of the parameter estimates. Explicitly, the BPD is the multi-dimensional integral of the

EVD multiplied by the posterior distribution over the parameters of the frequency-magnitude

domain and the model rate parameters [Shcherbakov et al., 2018]. The probability of an ex-

treme event from the PEV is used with the posterior distribution function and integrated over

the parameter space, resulting in PB. The posterior distribution can be described by

p(θ, ω|S) ∝ L(S|θ, ω)π(θ, ω), (2.12)

which is proportional to the prior distribution π and the likelihood function based on the training

data [Shcherbakov et al., 2019]. The posterior distribution provides constraints on the model

parameter variability by using prior information and information obtained from the training

data via the likelihood function. The prior distribution is represented by a Gamma distribution

[Zhuang et al., 2012, Shcherbakov et al., 2019]. The proposal distributions J(x|x̃) are set so

that the parameters can only be positive and are chosen to approximate the posterior distribution

[Shcherbakov et al., 2019]. J(x|x̃) is incorporated in the Metropolis-Hastings algorithm during

the model sampling procedure as log-normal distributions.

In practice, to compute PB, the posterior distribution p(θ,S) is sampled using the MCMC

method to produce a chain of parameters which accounts for the uncertainty in the parame-

ter estimates. From this chain, each set of model parameters ω is forward simulated for the

forecasting period.

S is the set of observed events during the parameter estimation time period. The probability

of an event during forecasting time period ∆T above magnitude mex is integrated over the
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possible parameter ranges of the frequency-magnitude distribution Θ and the parameter ranges

of the earthquake rate model Ω (Eqn. 2.11).

2.7 Statistical Tests
Hypothesis testing assumes that there is a null hypothesis which an alternative hypothesis is

being tested against. Either the null hypothesis will be rejected in favour of the test hypothesis,

or the null hypothesis is not rejected. When the null hypothesis is not rejected at a specified

significance level, then the test hypothesis does not perform better than the null hypothesis

[Schorlemmer et al., 2007].

The forecast itself is a vector of earthquake rates in the corresponding magnitude and tem-

poral bins [Schorlemmer et al., 2007]. From the forecast vector, the number of predicted events

for each of the bins is calculated to produce a vector of expectations. For each bin, the prob-

ability of observing events in the bin is the Poisson probability. The joint log-likelihood is

the sum of all the logs of the likelihoods in each bin when comparing the expectation to the

observed events in each bin [Zechar et al., 2010]. The joint log-likelihood value produces the

score on the likelihood test (L-test). A higher value suggests that the forecasted and observed

events agree better [Schorlemmer et al., 2007]. To account for uncertainty, the likelihood test

(L-test) can be conducted by simulating the observed events. In this study, the L-test score is

not produced as L-test can be divided into the N-test (testing the rate forecast) and the M-test

(magnitude test) [Zechar et al., 2010].

To evaluate the event distributions during the forecasting time period, several specific as-

pects of the forecasts were tested. Features of interest may include: the likelihood of the

forecast, the number of forecasted events, and the magnitude distribution of the forecasted

events in comparison to the observed events. Whether the largest event in the observation is

forecasted is also an interesting feature. In addition, the relative performance of the models

can be compared in terms of relative likelihood and relative information gain.

In this work, the the number test (N-test), magnitude test (M-test), ratio test (R-test),
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T -test [Kagan and Jackson, 1995, Rhoades et al., 2011], and the Bayesian p-test were con-

sidered [Shcherbakov, 2021]. The first four were adapted from tests used by the CSEP

[Schorlemmer et al., 2007, Zechar and Jordan, 2008, Zechar et al., 2010] and the Bayesian p-

test was introduced by [Shcherbakov, 2021]. For all statistical tests, effective significance levels

of 2.5% and 5% were preselected as per [Taroni et al., 2018]. Values exceeding the significance

level can typically be considered to result in a passing score on the test (Fig. 2.4). However,

extremely high quantile scores should be interpreted with caution. Passing the test with near

perfect scoring indicates that nearly all the individual forecast simulations pass the evaluation

criteria. This may be unexpected considering the variation in the model parameters used for the

BPD forecasting method. Quantile scores below the significance level indicate that the model

has failed the test and can be rejected for the criterion it is being evaluated for. If a model fails

the R-test and also fails the N- and M-tests, then the model is rejected. The T -test and Bayesian

p-test provide additional context for the model performance.

2.7.1 N-Test

The N-test compares the number of events simulated during the forecasted time period to

the number of observed events during the forecasting time period [Zechar et al., 2010]. Two

associated quantile scores are considered for the N-test, δ1 and δ2. The quantile scores indi-

cate if the generated sequences produced forecasted event numbers N f ore above or below the

observed values Nobs as shown in equations

δ1 = 1 − P((Nobs − 1)|N f ore), (2.13)

δ2 = P(Nobs|N f ore), (2.14)

respectively. δ1 is the probability of observing at least Nobs and δ2 is the probability of observing

at most Nobs. Both the overall forecast rate and observed number of events are assumed to be

Poissonian and described by N f ore and Nobs, respectively. δ2 describes the right-continuous

Poisson cumulative distribution with the expectation N f ore at corresponding Nobs at the times
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Figure 2.4: An example of the interpretation of the quantile score on a forecasting test is
provided in this image. For the training time intervals ending at Te, the performance on the
forecasting test produces a quantile score q between 0 ≥ q ≤ 1. Values above the effective
significance level 5% fall in the region marked by the green outline. Values below the effective
significance level are considered a fail on the test. The effective significance level 2.5% is also
plotted on a horizontal line in the plot. In this example, ∆Tm = 5 results in a very low quantile
score. Thus, the model producing the forecast at the corresponding training time interval fails
the forecasting test at that time interval.

evaluated. This score describes the fraction of forecast expectations smaller than the observed

events. The probability that more than Nobs events are forecasted can be described as (1 −

δ2). The problem with this approach is addressed in [Zechar et al., 2010]. Instead, the δ1

probability was added in addition to the original N-test to describe at least Nobs, in which

the user only needs to be concerned about low probability values [Schorlemmer et al., 2007,

Zechar et al., 2010].

For this updated N-test, the quantile scores determine whether the number of forecasted

events is inconsistent with Nobs. A small δ1 indicates that the forecast underpredicts the ob-

served sequence, and a small δ2 indicates that that the forecast overpredicts the number of

events. Thus if the probabilities of δ1 and δ2 are smaller than the effective significance level,

the forecast can be rejected [Zechar et al., 2010]. The effective significance level for the re-
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spective one-sided N-tests was set to 2.5% to correspond with a single quantile score which

then represents a 5% error rate for the test [Zechar et al., 2010].

The N-test performance can be interpreted by observing whether the quantile scores for δ1

and δ2 fall within the green region in Figure 2.4. High δ1 scores tend to correspond to low δ2

scores, thus it is not unusual to observe fluctuation in the scores early during the aftershock

sequence and for shorter training time intervals as the model parameters and the sequence are

stabilizing.

2.7.2 M-Test

The M-test evaluates the distribution of the magnitudes of the forecasted events during the

forecasting time period compared to the true magnitude distribution of the observed events

[Schorlemmer et al., 2007, Zechar et al., 2010]. For this test, the magnitude distribution is iso-

lated from the number of forecasted events by normalizing the forecast such that the number

of simulated events Nsim = Nobs (Nsim is different from N f ore). The testing is done by com-

puting the joint log-likelihood score of the simulated magnitude events. The M-test statistic is

indicated by a κ quantile as shown in

κ =
|{M̂x|M̂x ≤ M}|
{|M̂|}

, (2.15)

where M is the true joint log-likelihood of the observed event magnitudes and {M̂} is the joint

log-likelihood computed for every simulation x [Zechar et al., 2010]. |{A}| is the number of

elements in the set {A}. Then, the value of κ is the number of simulations that have equal or

lower joint log-likelihood than M, normalized by the number of simulations. If the quantile

score falls below the significance level, the simulated magnitude distribution is inconsistent

with the observed magnitude distribution.
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2.7.3 R-Test
The R-test compares two different forecasting models relative to each other by assuming

one of the models is true and stands in as the null hypothesis. Each of these models has a

likelihood score from the L-test based on the modified observed events sampled assuming the

null hypothesis is true. The R-test provides the ratio of the log-likelihoods for two models as

R, where R21 = L2 − L1 [Kagan and Jackson, 1995, Schorlemmer et al., 2007]. In this case,

it is assumed that the model associated with the likelihood L2 corresponds with the correct

hypothesis H2. If R > 0, then model H2 performs better. In particular, if α, the quantile score

is larger, then H2 performs better. If R < 0, then model H1 performs better. For example, when

comparing the MOL vs. ETAS model, where ETAS is H2, if R > 0, then the ETAS model

has a greater log-likelihood and performs better than the MOL. By reversing the competing

hypotheses, it is possible that both models can fail the R-test, leading to an inconclusive test

result.

2.7.4 T -Test
To simplify the R-test interpretation and to reduce computational time, the T -test was

introduced as a proxy and supplement for the R-test and is inspired by the Student’s t-test

[Rhoades et al., 2011]. The results of the T -test indicate whether a second hypothesis has per-

formed better than the first hypothesis and demonstrates significant information gain. The

T -test indicates if one model is inconsistent with the reference model. The T -test uses the

sample information gain (IG) per earthquake of one model over another, where the sample in-

formation gain for each earthquake in model 2 over model 1 is shown as IN(H2,H1) and Nobs is

the number of observed events during the forecasting time interval ∆T [Rhoades et al., 2011]

IG(H2,H1) =
R21

Nobs
. (2.16)

The IG represents the expected value of the difference between entropy scores of the two
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models. The entropy score is − log p j, where the forecast probability of outcome j for several

trials is p j [Harte and Vere-Jones, 2005]. Large and positive values of IG suggest that H2 is the

favoured model.

2.7.5 Bayesian p-Test

For forecasts that use the BPD method to generate probabilities, the Bayesian p-test can

be conducted. In this work, the value pB gives the probability that the simulated events in

the sequence will be more extreme than the observed largest event during the forecasting time

interval. pB is described as

pB = Pr[T (ŷ, θ, ω) ≥ T (t, θ, ω)], (2.17)

[Shcherbakov, 2021]. The M-test provides information on how close the magnitude distribu-

tion of the simulated forecast is to the observed events and is different than the p-test which

checks for the extreme magnitude consistency.

The implementation of the Bayesian p-test (herein p-test) uses a test quantity T (t, θ, ω)

for the observed variable y and the simulated quantity ŷ where T (y, θ, ω) = max(y). max(y)

is the largest event in the simulation, and pB is the proportion of the test quantities from the

simulated maximum events that are greater than or equal to the observed largest event during

the forecasting time interval. Extreme values of pB close to 0 suggest that the features are not

well demonstrated by the model [Shcherbakov, 2021]. This test was not applied to forecasts

produced using the EVD.
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Case Studies

Five sequences were selected for analysis using the methods presented in Chapter 2 with a

forecasting time interval of ∆T = 7 days for each training time interval. The results are pre-

sented in the following manner. A description of each sequence and a summary of the previous

aftershock analysis are provided for context. The Gutenberg-Richter (GR) law fit for a train-

ing time interval of ∆Tm = 3 days is demonstrated for the selected magnitude cutoff of the

sequence, M0. The model parameter estimates using the maximum likelihood estimate (MLE)

with corresponding errors using the aftershock rate models are provided for the training time

intervals. The forecast probabilities of the largest expected earthquake produced using the

Monte Carlo Markov Chain (MCMC) method and Bayesian predictive distribution (BPD) for

the same training time intervals are provided. The forecast performance of the aftershock rate

models using the BPD forecast method are evaluated using five statistical tests. The compar-

ative results of the R- and T - tests are summarized briefly, then the individual aftershock rate

models are evaluated using the N-,M-, and the Bayesian p- tests. Where applicable, the model

parameter estimates and the forecast performance are compared to previously published works.

The results of the extreme value distribution (EVD) forecasting method for the modified

Omori law (MOL) and compound Omori law (CMOL) are nearly identical to those of the

Bayesian predictive distribution (BPD) method. Thus, the results of the BPD shown in this

40
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chapter apply to the EVD forecasts unless otherwise noted. For brevity, the EVD forecasts for

the largest aftershock and forecast test performance are not in shown in this chapter and can

instead be found in Appendix B.

3.1 The 2009 L’Aquila, Italy, Sequence

The 2009 L’Aquila sequence began with a mainshock of Mw = 6.3 (ML = 6.1) on April

6, 2009 at 01:32:39 UTC, resulting in the deaths of about 300 people [Chiarabba et al., 2009].

L’Aquila is in the central Apennines next to large and active normal faults where there is high

seismic hazard [Woessner et al., 2015]. The deformation in this region is accommodated by

the NW-SE normal fault systems [Serpelloni et al., 2005]. In the months prior to the earth-

quake sequence, there was increased background seismicity and what appeared to be fore-

shocks days before the mainshock [Papadopoulos et al., 2010]. The mainshock was a normal

faulting event that took place ∼ 9 km beneath the surface, consistent with the extensional na-

ture of the Apennines [Elter et al., 2003, Atzori et al., 2009]. The aftershocks indicated that

the main fault dips SW and had ∼ 0.6 − 0.8 m slip using interferometry and ∼ 0.5 m slip

with GPS [Atzori et al., 2009, Walters et al., 2009, Anzidei et al., 2009]. Further descriptions

of this sequence and the associated faults can be found in [Chiaraluce et al., 2011].

The spatiotemporal Epidemic Type Aftershock Sequence (ETAS) model was fitted to

the Italian catalog between April 16, 2005 to June 1, 2009 using the MLE procedure

[Lombardi and Marzocchi, 2010b]. They found that the completeness of the L’Aquila se-

quence reaches Mc = 2.5 soon after the main event. With a retrospective test, the estimated

model parameters were found to perform well based on statistical tests when used for daily

forecasts. The model performance for real-time forecasting on the 2009 L’Aquila earthquake

sequence was evaluated in [Marzocchi and Lombardi, 2009]. Subsequent work showed that

the MOL was not the most suitable in terms of aftershock rate modelling [Lolli et al., 2011].

However, during the first 60 days, the strong aftershocks did not produce large increases in

aftershock rate. In addition, Lolli et al. (2011) even found that the rate leading up to some
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large aftershocks increased. Thus, the ETAS variants used in their study did not perform sig-

nificantly better within the first 60 days [Lolli et al., 2011].

In a separate study, spatiotemporal forms of the MOL and ETAS models were used for

daily forecasts by applying Bayesian updating which resulted in the aftershock-hazard curve

for these two models. Performance of the models was evaluated using the Bayes factor

[Ebrahimian et al., 2014]. Their results indicated that the spatial MOL performed better in

the first two days following the mainshock, and the performance of the MOL and the ETAS

model alternated in performance of the daily forecast [Ebrahimian et al., 2014]. The ETAS

model generally tended to provide upper bounds to the number of estimated events. The re-

sults of the ETAS and the MOL daily forecast impact on the ground-motion hazard was in

good agreement for the daily hazard predictions. They also noted that the performance of the

MOL using generic parameters for Italy performs notably worse than the two other models

they demonstrated performance testing on. Lastly, Ebrahimian et al. (2014) indicated that the

ETAS model performs better than the MOL on several individual days.

In this study, the magnitude cutoff M0 = 2.5 was the same as was used for

[Ebrahimian et al., 2014] for the ISIDe catalog. The area and GR relation for the first three

days following the mainshock is shown in (Figs. 3.1, 3.2). A relatively large aftershock of

M = 5.2 took place three days after the mainshock and produced a distinct aftershock sequence

which was used to fit to the CMOL.
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Figure 3.1: Map of the 2009 L’Aquila sequence during the first three days following the main-
shock. The elliptical region indicates the area that is considered part of the sequence. The
blue circles indicate the events that are included in the analysis, and the black circles indicate
events outside of the study region, or below the magnitude cutoff threshold. The main shock is
marked with a red circle. The inset map provides context for the geographic region in Italy.
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Figure 3.2: The 2009 L’Aquila sequence during the first three days following the mainshock
fitted to the GR law. The events greater than the magnitude indicated on the x-axis are counted
and plotted along a straight line. The events are also binned into ∆M = 0.1 increments.

The L’Aquila sequence was analyzed using the MOL, CMOL, and the ETAS model. As

the L’Aquila sequence was preceded by foreshocks, the foreshocks were also incorporated in
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analysis for the ETAS model by using 30 days of data leading up to the mainshock in the

training time interval. However, the foreshocks did not appear to have Omori-like behaviour,

and thus, the CMOL did not make use of the foreshocks. Instead, the CMOL was fitted to

the mainshock and the M = 5.2 shock at τ = 2.97 days for the second large shock. As

the CMOL model is equivalent to the MOL before the second shock, and the second MOL

instance begins nearly three days after the mainshock, the CMOL parameter estimation begins

on Te = 4 days to allow time for the sequence to progress after the large aftershock. Ts for

the MOL, CMOL, and the ETAS model are Ts = 0.001, 0.001, and 0.05, respectively. The

point parameter estimates from the MLE method are provided in Figures 3.3. The aftershock

sequence rate using the different models fitted for a specific training time interval is shown in

Fig. 3.4. The MLE estimates, MCMC prior variance and parameter estimates from the MCMC

sampling procedure are available in Tables B.1 - B.5 in Appendix B.
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a) b)

c)

Figure 3.3: The model parameter estimates (black squares) for the L’Aquila sequence using
the MLE for various training time intervals ending at ∆Tm with corresponding 95% confidence
intervals. The aftershock rate models used are the a) MOL, b) CMOL and c) ETAS model.
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Figure 3.4: The aftershock model fit using the a) MOL and c) ETAS model to the L’Aquila
sequence for ∆Tm = 3 days. The b) CMOL is shown for ∆Tm = 4 days. The events during this
training time interval are shown with orange markers, where markers indicate the magnitude
of the events (denoted on the right axis). The blue lines indicate the seismicity rate (left axis).
The ETAS model includes an additional 30 days for the training time interval.
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There was a slow shift in the decay parameter p0 during the first few days of the sequence

which increased from p0 ≈ 0.5 to 1.2 for the MOL over 80 days found in [Lolli et al., 2011].

This was not observed using the MLE for model parameter estimation in this sequence (Table

B.1). In the MLE estimates, there was very little variation in the parameter estimates after

∆Tm = 4 days, including the CMOL, which takes one day to stabilize.

The results of the real-time earthquake forecast experiment taking place during the L’Aquila

sequence were described in [Marzocchi and Lombardi, 2009] which also used spatiotempo-

ral parameters. Their reported model parameter values were {c, p, α} = {0.03 ± 0.01, 1.2 ±

0.05, 1.5 ± 0.1} using 60 days of training time for a larger surrounding area. c is in agreement

with the results from this study and p decreases from 3.2 to 1.3 at ∆Tm = 30. α is close to their

reported values.

The probabilities of largest expected aftershock for the MOL, CMOL, and ETAS models

as computed in this study are shown in Figure 3.5. From most of the probability estimates,

the ETAS model provided the upper bound of the probability of large aftershocks. The perfor-

mance of the ETAS model in this work demonstrated a similar trend to the forecast in Marzoc-

chi et al. (2009) which used a forecasting time period of ∆T = 1 day.

As expected, the general trend of the probability for large events was to decrease as the fore-

casting time interval was shifted further away from the mainshock. The forecasting behaviour

during the early aftershock sequences ∆Tm ≤ 4 indicated a slight increase in the probability of

large aftershocks for the ETAS model leading up to the time of the large M = 5.2 aftershock,

τ. This was reflected in the ETAS model parameter estimate of K, which increased 10-fold fol-

lowing ∆Tm = 1, with slight adjustments to other model parameters as well. Following τ, the

effects of the increased seismicity had limited impact on the probability estimates for longer

training time intervals. The contribution of seismicity from the aftershock taking place at τ

can be seen in the CMOL probabilities. Following the second shock, the probability decreased

steeply as K2 stabilized, then was restored as the contribution from the second shock increased

slightly afterwards. From the MLE estimates, the K0 parameter from the MOL was simply
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Figure 3.5: The probability of large aftershock of Mex = {5.5, 6.0, 6.5} during a seven-day
forecast for the L’Aquila sequence using various target time intervals for the MOL, CMOL,
and ETAS model in figures a), b) and c), respectively. The events are used in the training time
intervals are shown with black diamonds, corresponding with their magnitudes (right axis).
The probabilities are indicated for the corresponding training time interval.

distributed into two contributions for the CMOL. For ∆Tm ≥ 14, the probability estimates

converged and provided similar forecast results.

3.1.1 Forecast Test Results

In the comparison tests, the ETAS model performed better than the MOL in both directions

(Fig. 3.6). For the MOL vs. ETAS comparison test, the information gain was weakly positive,

which did not entirely refute the hypothesis that the MOL may be the better model. When

comparing the CMOL to the MOL, the MOL performed better after τ = 2.97 as seen in Table

3.1. The N-, M-, and p-test scores for the L’Aquila sequence BPD forecasting results are

shown in Figure 3.7.
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a) b)

Figure 3.6: Results of the a) R-test and b) T -test for the L’Aquila sequence using relative
information gain and quantile score α for the MOL and the ETAS model. Quantile scores of
zero are not plotted. The 95% confidence intervals for the information gain are shown on the
information gain plot.

Table 3.1: Results of the T -test and R-test for the L’Aquila sequence as shown using relative in-
formation gain and quantile score α for the MOL (M) and the CMOL (C). The 95% confidence
intervals for the information gain are also provided. The confidence intervals are indicated by
their lower (-) and upper (+) bounds.

∆Tm αCvM IGCvM IGCvM - IGCvM + αMvC IGMvC IGMvC - IGMvC+

4 0.90 0.41 0.11 0.12 0.00 -0.25 0.07 0.07
5 0.99 0.37 0.10 0.11 0.00 -0.22 0.07 0.06
6 0.96 0.25 0.07 0.07 0.00 -0.18 0.06 0.05
7 0.74 0.14 0.04 0.04 0.03 -0.12 0.04 0.03
10 0.98 -0.05 0.01 0.01 0.02 0.05 0.01 0.02
14 0.81 -0.01 0.00 0.00 0.30 0.01 0.00 0.00
21 0.85 -0.04 0.02 0.01 0.14 0.04 0.01 0.02
30 0.63 -0.03 0.04 0.04 0.25 0.04 0.03 0.04
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a) b)

c)

Figure 3.7: The performance of the MOL, CMOL, and ETAS model for various training time
intervals for the L’Aquila sequence. Forecast performance scores are listed for the N-test (δ1,
δ2), the M-test (κ), and the Bayesian p-test in images a), b) and c), respectively.
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Generally, the N-test indicated that the ETAS model performed well for the longer target

time intervals. However, the ETAS model underestimated the number of events during ∆Tm = 1

day and ∆Tm = 5 days (Fig. B.3 in Appendix B). This corresponded to the low K at ∆Tm = 1

day and low probability of large aftershocks following both training time interval. The MOL

tended to underestimate the number of events until ∆Tm = 10 days, around when the forecast

probabilities begin to converge for the different models. The CMOL performed reasonably

well on the N-test for all the training time intervals it was applied to. Low δ1 scores were

found at training time intervals ∆Tm = 5 days, where both the ETAS model and the MOL

underestimated the number of events. This also corresponds with the M-test quantile score

decrease, potentially related to a shift in the magnitude distribution following contribution

from the seismicity associated with the aftershock at time τ.

The ETAS model passed the M-test consistently (Fig. 3.7b). The MOL performed poorly

on the M-test during several early training time intervals ∆Tm ≤ 6. The CMOL performance on

the M-test was the same as the MOL. None of the models failed the Bayesian p-test. For this

sequence, the CMOL was unnecessarily complex without providing additional information.

Thus, the MOL was more suitable than the CMOL for forecasting during the training time

periods investigated. In addition, the information gain of the CMOL vs MOL indicated that

during the training time intervals closer to τ, the MOL performed better than the CMOL,

despite the CMOL specifically identifying the location of the secondary aftershocks (Table

3.1). Considering that the model parameters of the MOL and the ETAS do not change in a

notable manner following τ, the contributions from the smaller aftershock sequence may be

considered minimal.

In contrast to [Lolli et al., 2011], the ETAS model appeared to perform better than the MOL

based on the selected training time intervals. As with [Ebrahimian et al., 2014], the ETAS pro-

vided an upper-bound estimate during the evolution of the model forecasts and was better at

responding to increases in number of events during the ongoing sequence. From their spa-

tiotemporal forecasts, both the MOL and ETAS model were generally good at representing the
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trend in the number of aftershocks. In the results from this study, the number of forecasted

events is underestimated close to the mainshock, though the ETAS underestimates the number

events at specific training time intervals.

3.2 The 2016 Amatrice, Italy, Sequence
The 2016 Amatrice sequence was initiated with an event with magnitude Mw = 6.0 near

the village of Amatrice in Central Italy on August 24, 2016 at 01:36 UTC and included a

Mw = 5.4 aftershock within an hour of the mainshock (Fig. 3.8). A 60 km long normal fault

system was activated during the 2016 Amatrice sequence. The sequence was very active and

produced several Mw ≥ 5.0 events. Hundreds of earthquakes took place after the mainshock

and in the months following, the aftershocks migrated into the the 2009 L’Aquila aftershock

zone [Mancini et al., 2019].

Figure 3.8: Map of the 2016 Amatrice sequence during the first three days following the main-
shock of Mw = 6.0. The elliptical region indicates the area that is considered part of the
sequence. The blue circles indicate the events that are included in the analysis, and the black
circles indicate events outside of the study region, or below the magnitude cutoff threshold. The
mainshock is indicated by the red circle. The inset map provides context for the geographic
region in Italy.

The spatiotemporal ETAS model was previously fitted to this sequence in conjunction with
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Bayesian inference and MCMC methods to sample directly from the posterior probability dis-

tribution [Ebrahimian and Jalayer, 2017]. They used a simulation-based method that provided

a robust estimate of the spatial distribution of the events within a specific forecasting time in-

terval following the main event. Ebrahimian and Jalayer (2017) accounted for the ETAS model

parameter uncertainty estimates in the posterior joint probability distribution as conditioned by

the events prior in the sequence. The method used in Ebrahimian and Jalayer differs from the

BPD method in this study, which uses the priors from the MLE estimates for each training time

interval rather than the previous training time interval estimates.

In this study, the magnitude cutoff was set to M0 = 2.5 (Fig. 3.9). The MOL and ETAS

models were applied to the 2016 Amatrice sequence. There was no clear indication of strong

seismicity following an aftershock during the early aftershock sequence analysis. Thus, the

CMOL was not applied for this sequence. Prior to the ETAS model parameter estimation, the

background seismicity was reviewed over the preceding three years of available data within the

elliptical study region and fixed to µ = 0.3 for all training time interval estimates (Fig. 3.8).

This resulted in stable parameter estimates for the remainder of the analysis and avoided over

estimation of µ when the parameter was not fixed. Foreshock activity was not included in the

ETAS model analysis. T0 was set to time of the mainshock for all models, and Ts = 0.001, 0.02

for the MOL and ETAS model, respectively. The model parameter estimates are shown in

Figure 3.10, with point parameter values provided in Tables B.8 and B.10 in Appendix B. The

aftershock sequence rate as provided by the aftershock rate models is provided in Figure 3.11.

The corresponding MCMC sampling and Gamma prior variances are also provided in B.11,

B.12, and B.13 in Appendix B. While the model parameters for the ETAS model are presented

in a different form than that of [Ebrahimian and Jalayer, 2017], the c value estimates in this

work are similar to their estimates, with slightly higher p-values around p = 1.4.
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Figure 3.9: The 2016 Amatrice sequence during the first three days following the mainshock
was fitted to the GR law. The events greater than the magnitude indicated on the x-axis are
counted and plotted along a straight line. The event magnitudes were binned into ∆M = 0.1
increments.

a) b)

Figure 3.10: The model parameter estimates (black squares) for the Amatrice sequence using
the MLE for various training time interval ending at ∆Tm with corresponding 95% confidence
intervals. The aftershock rate models used are the a) MOL and b) ETAS model.
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Figure 3.11: The aftershock model fit using the a) MOL and b) ETAS model to the Amatrice
sequence for ∆Tm = 3 days. The events during this training time interval are shown with orange
markers, where markers indicate the magnitude of the events (denoted on the right axis). The
blue lines indicate the seismicity rate (left axis).
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[Lombardi, 2016] reviewed the Amatrice sequence using the spatiotemporal ETAS model

with the MLE estimation of model parameters. They produced a forecast using the thinning

method and compared the forecast to the observed number of events for varying forecasting

magnitudes. From Lomdardi’s analysis, it is evident that the ETAS model does not have pre-

dictive ability prior to a main event, as the probability of having an event ML ≥ 5.5 for the

entire area under consideration is very small before the mainshock. Lombardi also found that

the ETAS model parameter sensitivity was negligible with respect to the occurrence history at

the time of the work, which was during the ongoing events of the Amatrice sequence.

The probability of the largest aftershocks using the BPD forecast is shown in Figure 3.12.

As expected, the probability of the largest aftershock decreased with increased training time

intervals. The ETAS model forecasts provided the upper bound of the estimates. Both models

demonstrated a slight increase in probability at ∆Tm = 3 days. This corresponded to a slight

increase in the K parameter for the ETAS model and a decrease in the p and p0 parameters

for both models, which reduced the rate of seismicity decay. The lower probability estimate

following ∆Tm = 2 days was also reflected in some of the statistical tests.

a)

100

101

102

pr
ob

ab
ili

ty
 (

%
)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

m
ag

ni
tu

de

0 5 10 15 20 25 30

 T
m

 (days)

5
5.5
6
events

b)

100

101

102

pr
ob

ab
ili

ty
 (

%
)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

m
ag

ni
tu

de

0 5 10 15 20 25 30

 T
m

 (days)

5
5.5
6
events

Figure 3.12: The probability of large aftershock of Mex = {5.5, 6.0, 6.5} during a seven-day
forecast for the Amatrice sequence using various target time intervals for the a) MOL and
the b) ETAS model. The events are used in the training time intervals are shown with black
diamonds, corresponding with their magnitudes (right axis). The probabilities are indicated at
the corresponding training time interval.
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3.2.1 Forecast Test Results

Based on the T -test, it can be seen that the ETAS model typically performed better than

the MOL model with information gain values that were consistently positive and close to one

(Fig. 3.13). This was supported by the R-test quantile scores. When reversing the test (ETAS

vs. MOL), the MOL shows consistently negative information gain over the ETAS model and

the R-test was failed in several instances. The results of the individual model forecasting tests

are provided in Figure 3.14.

a) b)

Figure 3.13: Results of the a) R-test and b) T -test for the Amatrice sequence as shown using
relative information gain and quantile score α for the MOL and the ETAS model. The 95%
confidence intervals for the information gain are shown on the plot.
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a) b)

c)

Figure 3.14: The performance of the MOL and the ETAS model for various training time
intervals for the Amatrice sequence. Forecast performance scores are listed for the N-test (δ1,
δ2), the M-test (κ), and the Bayesian p-test in figures a), b) and c), respectively.

From the N-test results, the MOL tended to underestimate the number of events during the

forecasting time interval. In comparison, the ETAS model tended to overestimate the number of

events, but not greatly (see Fig. B.6 in Appendix B). Thus, when interpreting the probabilities

provided by the model forecasts, it is not surprising that the ETAS model consistently provided

the upper bound to the probability of large aftershocks as seen in Figure 3.12.

The ETAS model tended to perform better on the M-test than the MOL, especially for

shorter ∆Tm. However, the shape of the M-test was similar for both of the models. This

suggests that the performance on the M-test may have been influenced by additional factors

that were not the model parameters of the aftershock models.

The general behaviour of the p-test score reflected the behaviour in the number of events

produced during the forecast. When the p-value was high, the number of events Nsim in the
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forecasts was on average higher than Nobs for the same training time intervals (Fig. B.6 in

Appendix B). The MOL p-values mimicked the behaviour of the ETAS model results. Thus,

despite the MOL having simulated fewer events than average, the maximum magnitude as

displayed by the Bayesian p-test produced nearly the same results as with the ETAS model.

[Mancini et al., 2019] retrospectively demonstrated the spatiotemporal ETAS model ap-

plied to the 2016 Amatrice sequence beginning with training on 2005 with a fixed produc-

tivity value K. The parameter estimates were produced using the MLE and a spatially isotropic

power law distribution were used for the spatial distribution component of the ETAS model

[Mancini et al., 2019]. Compared to the other models in that paper based on several classes

of the Coulomb rate-stress, the ETAS model indicated the lowest rejection ratio during the

shorter training time intervals and tended to pass the N-test [Mancini et al., 2019]. Following

the Mw = 6.0 foreshock, the ratio of ETAS model forecasted to observed events during the one

day forecast was 1.22 [Mancini et al., 2019]. The forecasts following the events two months

after the mainshock, the forecast to observed events is 1.65. In comparison, the average num-

ber of events forecasted during the seven-day forecast from this study using ∆Tm = 1 day was

0.62 when using the ETAS model (Fig. B.6 in Appendix B). However, the seven-day forecast

following ∆Tm = 60 days in this work had a ratio of 0.33. The forecasts produced by the tem-

poral ETAS model in this study produced fewer events than that of the spatiotemporal ETAS

model used in Mancini et al. (2019). Despite this difference, the ETAS model in this study still

performs better than that of the MOL.

3.2.2 Forecasting the Second Largest Event
With retrospective knowledge, it is known that a large shock of M = 6.0 in the 2016

Amatrice sequence occurred. This event took place after two months following the mainshock.

The forecasting probability of this event for seven days following ∆Tm = 63 days with the

MOL and ETAS model were 0.3% (EVD), 0.4% (BPD) and 0.3% (ETAS). While the 2016

Amatrice sequence was known to have migrated, the aftershock region selected contains these

later migrated events and does not need to be adjusted [Ebrahimian and Jalayer, 2017]. Neither
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model demonstrated the ability to forecast with high probability this larger event.

3.3 The 2016 Kumamoto, Japan, Sequence
The Kumamoto sequence began on April 14, 2016 with a large event of MJMA = 6.5,

which preceded a large shock of MJMA = 6.4 and the Mw = 7.0 (MJMA = 7.3) main-

shock (Fig. 3.15). The foreshocks took place near the northern part of the Hinagu fault,

and the subsequent earthquakes took place along the active Futagawa-Hinagu fault zone

[Kawamoto et al., 2016]. The initial results of the finite-fault estimation were provided in

[Kawamoto et al., 2016], indicating right lateral strike-slip fault along the Futagawa fault seg-

ment. The mainshock of the Kumamoto sequence was preceded by anomalous seismic ac-

tivity and the large foreshock produced its own aftershock sequence prior to the mainshock

[Nanjo et al., 2016, Nanjo and Yoshida, 2017].

Figure 3.15: Map of the 2016 Kumamoto sequence during the first three days following the
large foreshock of Mw = 6.5. The elliptical region indicates the area that is considered part
of the sequence. The blue circles indicate the events that are included in the analysis, and
the black circles indicate events outside of the study region, or below the magnitude cutoff
threshold. The inset map provides context for the geographic region in Japan. The Mw = 6.5
foreshock is coloured in orange and the Mw = 7.0 mainshock is coloured in red.

[Milliner et al., 2020] found that the afterslip component of the dynamic rupture was con-
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sidered an important possible triggering mechanism during the aftershock sequence. The prob-

ability of the mainshock rupture was retrospectively analyzed in a multi-element probability

estimation method using anomalies and time dependent long-term forecasting [Ogata, 2017].

He found that including the first foreshock led to a higher probability of a larger earthquake

forecast in the time leading up to the mainshock.

Following the 2016 Kumamoto earthquakes, the Earthquake Research Commit-

tee (ERC) of Japan revised the procedure for operational aftershock forecasting

[Earthquake Research Committee, 2016]. Prior to the 2016 Kumamoto sequence, the ERC

procedure for calculating aftershock probabilities used the MOL for the aftershock decay and

the GR law for the magnitude-frequency relation [Omori, 1894, Gutenberg and Richter, 1944,

Utsu, 1961, Utsu et al., 1995]. At the time this procedure was proposed, the ETAS model was

mentioned, but no specific procedure using the ETAS model was described. The proposed

method in [Omi et al., 2019] issues a forecast around three hours after the mainshock, which is

an improvement to the ERC procedure produced in 2016.

In this study, the early aftershock completeness was found to be Mc = 2.5 (Fig. 3.16). The

analysis was adjusted to use M0 = 3.1 to align with previous work which first demonstrated the

forecasting technique used in this thesis [Shcherbakov et al., 2018, Shcherbakov et al., 2019].

As the foreshock produced its own aftershock sequence before the mainshock occurrence, the

Kumamoto sequence provided a clear instance where the CMOL could be applied.
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Figure 3.16: The 2016 Kumamoto sequence during the first three days following the mainshock
with M0 = 3.1 fitted to the GR law. The events greater than the magnitude indicated on the
x-axis are counted and plotted. The events are binned by ∆M = 0.1.

For the ETAS model, the foreshocks were incorporated in the target time interval for model

parameter fitting. The preparatory time interval ended at Ts = 0.03 days following the time

of the foreshock, and the evaluation for sequence progression began after the mainshock at

t = 1.17 days. The CMOL was fitted to the beginning of the foreshock sequence and the

second instance of the MOL was fitted to the mainshock of the sequence at τ = 1.17 days.

For the MOL, the training time period began at the mainshock. The preparatory time interval

for both the MOL and CMOL ended at Ts = 0.001. The results of the MOL, CMOL, and the

ETAS model parameter estimates using the MLE and an example of the fit at ∆Tm = 3 days

relative to the mainshock are shown in Figures 3.17 and 3.18. The point parameter estimates

and MCMC sampling results are provided in Tables B.14 - B.20 in Appendix B.

As the background rate was relatively high compared to the other case studies, the free

estimation during the MLE resulted in various µ parameters depending on the training time

interval. Model parameters for M0 = 3.3 fitted to the forecast sequence can be found in

[Shcherbakov et al., 2019]. p and α values for the ETAS model in this work are of similar,

thought slightly higher than, values presented in Shcherbakov et al. (2019).
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a) b)

c)

Figure 3.17: The model parameter estimates (black squares) for the Kumamoto sequence using
the MLE for various training time intervals ending at ∆Tm with corresponding 95% confidence
intervals. The aftershock rate models used are the a) MOL, b) CMOL, and c) ETAS model.
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Figure 3.18: The aftershock model fit using the a) MOL, b) CMOL, and c) ETAS model to the
Kumamoto sequence for ∆Tm = 3 days. The CMOL and ETAS x-axis is aligned so that time
t shows the number of days following the beginning of the foreshock sequence. The events
during this training time interval are shown with orange markers, where markers indicate the
magnitude of the events (denoted on the right axis). The blue lines indicate the seismicity rate
(left axis).
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The probability of the largest aftershocks corresponding to the training time intervals is pre-

sented in Figure 3.19. As with Shcherbakov et al. (2019), a large difference in the forecasted

probabilities for the largest aftershock was found using the ETAS model, the MOL (BPD fore-

cast), and the MOL (EVD forecast) (Fig. B.7 in Appendix B). For example, for forecasting

M ≥ 6.0, the probability of the MOL (BPD forecast) is nearly 40% smaller than the forecast

produced by the EVD method for ∆Tm = 1. The ETAS model forecast is closer to that of

the MOL (EVD forecast). For training time intervals larger than ∆Tm = 1 day, this difference

between the MOL forecast from the BPD and the EVD method was narrowed.
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Figure 3.19: The probability of large aftershock of Mex = {5.5, 6.0, 6.5} during a seven-day
forecast for the Kumamoto sequence using various target time intervals for the MOL, CMOL,
and ETAS model in figures a), b) and c), respectively. The events are used in the training time
intervals are shown with black diamonds, corresponding with their magnitudes (right axis).
The probabilities are indicated at the corresponding training time interval.

Generally, the probability of large aftershocks decreased with increasing∆Tm and the model

probabilities began to converge at longer training time intervals. The ETAS model provided
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the upper bound of the probabilities, and typically demonstrated fluctuations towards increased

probabilities at the same time as the MOL and CMOL. The slight increased probability at

∆Tm = 10 may be related to a smaller p-value, which would reduce the decay rate of the in-

dividual seismicity contributions from the aftershocks. Considering the mainshock magnitude

of MJMA = 7.3, intuitively, the probability of large aftershocks produced by the ETAS seemed

rather large. However, when reviewing the β estimates from the GR law during the model

parameter estimation, the β value changes as the sequence progresses. The lower β value may

correspond to the high probability of large aftershocks seen close to the mainshock.

3.3.1 Forecast Test Results
The T -test indicate that the forecasts from ETAS model performed better than the MOL

over the same training time periods (Fig. 3.20). However, the confidence intervals on the

interpretation of the information gain indicated that the relative information gain is difficult

to ascertain and the standard deviation for the number of events generated is very large. In

addition, the R-test results are difficult to interpret, though the α scores appear to be paired in

opposite values when comparing the ETAS model and the MOL. The CMOL vs. MOL fails the

R-test more frequently than the reverse test (Table 3.2). In addition, the CMOL demonstrated

negative information gain more frequently and was thus not as good as the MOL on these tests.

The performance on the other forecasting tests is shown in Figure 3.21.

The N-test indicated that the ETAS model tended to overestimate the number of simulated

events during all of the training time intervals evaluated. The MOL performance on the N-test

was variable, sometimes overestimating and sometimes underestimating. During ∆Tm = 1 − 4

days, the MOL underestimated the number of events during the forecast. The behaviour of

the MOL was similar in the CMOL results, following the same pattern on the forecasting

performance tests as the MOL. Considering the K1 value was approximately K1 ≈ 1/3K0, the

contribution from the foreshock sequence in the CMOL may have been overestimated.

The M-test was consistently passed by the ETAS model (Fig. 3.21b). The MOL and CMOL

performed similarly on the M-test, failing and passing for the same training time intervals. All
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a) b)

Figure 3.20: Results of the T -test and R-test for the Kumamoto sequence as shown using
relative information gain and quantile score α for the MOL and the ETAS model in figures a)
and b), respectively.

Table 3.2: Results of the T -test and R-test as shown using relative information gain and quantile
score α for the MOL (M) and the CMOL (C) for the Kumamoto sequence. The 95% confidence
intervals for the information gain are also provided. The confidence intervals are indicated by
their lower (-) and upper (+) bounds.

∆Tm αCvM IGCvM IGCvM - IGCvM + αMvC IGMvC IGMvC - IGMvC+

1 1.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01
2 1.00 0.01 0.01 0.01 0.00 -0.01 0.01 0.01
3 0.28 -0.02 0.01 0.01 0.53 0.03 0.01 0.01
4 0.89 0.07 0.02 0.02 0.02 -0.06 0.02 0.02
5 0.66 0.04 0.02 0.02 0.18 -0.03 0.02 0.02
6 0.38 0.04 0.03 0.03 0.41 -0.03 0.03 0.03
7 0.26 0.03 0.03 0.03 0.56 -0.03 0.03 0.03
10 0.70 0.07 0.03 0.03 0.14 -0.07 0.03 0.03
14 0.96 0.06 0.03 0.03 0.01 -0.05 0.03 0.03
21 0.81 0.00 0.04 0.03 0.12 0.01 0.03 0.04
30 0.95 0.02 0.03 0.02 0.03 -0.01 0.03 0.03

models passed the p-test for every training time interval (Fig. 3.21c).
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a) b)

c)

Figure 3.21: The performance of the MOL, CMOL, and ETAS model for various training time
intervals for the Kumamoto sequence. Forecast performance scores are listed for the N-test
(δ1, δ2), the M-test (κ), and the Bayesian p-test in figures a), b) and c), respectively.

3.4 The 2020 Monte Cristo Range, United States of America,

Sequence

The Monte Cristo Range (MCR) sequence is one of the most recent active sequences that

has been ongoing since the beginning of this work in 2020. The sequence began with a Mw =

6.5 at 11:03:27 UTC on May 15, 2020 northeast of the Mina deflection, in the Central Walker

Lane, on a previously unmapped fault 56 km from Tonopah, Nevada. The MCR sequence

began with a shallow crustal mainshock along a steeply dipping fault [Morton et al., 2020].

Subsequent events took place with right-lateral, left-lateral, and normal fault motions including

aftershocks of M ≥ 5.0 [Morton et al., 2020]. Prior to this incidence, the fault zone which

ruptured had been unmapped. Previous events with M > 6.0 within the past 100 years and
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a 50 km radius were both north of this event and took place in 1932 and 1934, respectively

[Vigil et al., 2000].

No aftershock forecasting work has been produced on this sequence to date. A map out-

lining the sequence is shown in Figure 3.22. The latest version of the catalog for analysis was

retrieved using the ComCat service on Nov 16, 2020. The GR law fitted to three days after the

mainshock indicated that Mc = 2.5 (Fig. 3.23).

Figure 3.22: The 2020 Monte Cristo Range sequence during the first three days following the
mainshock. The blue circles indicate the events that are included in the analysis, and the black
circles indicate events outside of the study region, or below the magnitude cutoff threshold.
The mainshock is indicated by the red circle. The inset map provides context for the MCR
sequence location relative to the California and Nevada border.

Both the MOL and the ETAS model were applied to the MCR sequence with the training

time period starting at the mainshock. The preparatory time period ended with Ts = 0.001, 0.02

for the MOL and ETAS model, respectively. The progressive parameter fit estimates for the

GR law, MOL, and ETAS model are shown in Figure 3.24. The results of the MOL and the

ETAS model fits with training days ∆Tm = 3 days relative to the mainshock are shown in

Figure 3.25. The point parameter estimates and the MCMC sampling are provided in Tables

B.21 - B.27 in Appendix B. In this study, several of the MCR sequence model parameters for



Chapter 3. Case Studies 70

2.5 3 3.5 4 4.5 5

magnitude, m

100

101

102

N
(

 m
)

Figure 3.23: The 2020 Monte Cristo Range sequence during the first three days following the
mainshock was fitted to the GR law. The events greater than the magnitude indicated on the
x-axis are counted and plotted. The events were binned into ∆M = 0.01 increments.

the ETAS model were fixed prior to analysis. When the ETAS model parameters were freely

estimated, the model parameters were widely variable and the shorter training time interval

solutions prevented the testing procedures from converging at a reasonable rate. To assist in

parameter estimation stability, the ETAS model parameters µ and K were fixed to {0.0, 0.1},

respectively. To produce a normally shaped distribution for the prior, the MCMC prior mean

for µ was set to µ = 0.001. In addition, the training time periods ending with ∆Tm = 1, 2 days

had c values fixed to c = 0.03 prior to the MLE method as leaving these values free resulted

in notably different model parameter estimates than the remaining training time intervals. The

point parameter estimates for the ETAS model indicated that the MCR sequence behaviour is

dominated by the mainshock, as suggested by the α parameter. Secondary aftershocks follow-

ing large aftershocks were not observed. Thus, the MCR sequence was not found to be suitable

for use with the CMOL.

The forecasted probabilities of the largest aftershock are shown in Figure 3.26. The prob-

abilities produced from the BPD from the ETAS model provided the lower bound of the es-

timates and the MOL provided the upper bounds of the forecast probabilities for large after-
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a) b)

Figure 3.24: The model parameter estimates (black squares) for the Monte Cristo Range se-
quence using the MLE for various training time intervals ending at ∆Tm with corresponding
95% confidence intervals. The aftershock rate models used are the a) MOL and b) ETAS
model.
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Figure 3.25: The aftershock model fit using the a) MOL and b) ETAS model to the Monte
Cristo Range sequence for ∆Tm = 3 days. The events during this training time interval are
shown with orange markers, where markers indicate the magnitude of the events (denoted on
the right axis). The blue lines indicate the seismicity rate (left axis).
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shocks. The probabilities of the different models paralleled each other and began to converge

with larger training time intervals.
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Figure 3.26: The probability of large aftershock of Mex = {5.5, 6.0, 6.5} during a seven-day
forecast using various target time intervals for the Monte Cristo Range sequence is shown for
the a) MOL and the b) ETAS model. The events are used in the training time intervals are shown
with black diamonds, corresponding with their magnitudes (right axis). The probabilities are
indicated at the end of the target time interval.

3.4.1 Forecast Test Results
The ETAS model indicated some information gain over the MOL as shown in Figure 3.27.

In both ratio tests, most of the training time comparisons resulted in passing the R-test. For

ETAS vs MOL, the ETAS model shows greater information gain, resulting in consistently

negative values. For the MCR sequence, the α value for the ETAS model was particularly

high, and provided an indicator that the sequence behaved similarly to the MOL. This was an

early indicator for the sequence that the ETAS information gain over the MOL is likely to not

be very large.

The forecast performance of the remaining tests can be found in Figure 3.28. The ETAS

model tended to overestimate the number of forecasted events, though less frequently during

the longer training time intervals. The MOL forecasted events varied between over- and un-

derestimation of the number of events, indicating greater sensitivity to the sequence evolution.

This can also be seen in the fluctuation of the MOL model parameter estimates (Table B.21).

Both models typically performed well on the M-test, though the MOL failed during ∆Tm = 4
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a) b)

Figure 3.27: Results of the T -test and R-test as shown using relative information gain and
quantile score α for the MOL and the ETAS model for the Monte Cristo Range sequence in
figures a) and b), respectively.

days and ∆Tm = 21 days. These training time intervals coincides with the N-test performance,

though there is no relationship between these two scores for the MOL test. Thus, the ETAS

model forecast likely captured more details of the forecasted sequence and demonstrates this

both in the N-test and the M-test. However, the information gain and R-test performance were

not sufficient to reject the MOL forecast. The p-test performance for both models paralleled

each other. The values on the p-test were slightly higher for that of the MOL.
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a) b)

c)

Figure 3.28: The performance of the ETAS and MOL models for various training time intervals
for the Monte Cristo Range sequence. Forecast performance scores are listed for the N-test (δ1,
δ2), the M-test (κ), and the Bayesian p-test in figures a), b) and c), respectively.

3.4.2 Discussion in Response to the Monte Cristo Range Sequence

Additional treatment for the Monte Cristo Range sequence was necessary in this work.

This including the fixing of two parameters for the ETAS model, µ and K. In addition, the first

two training time intervals also needed the c parameter to be fixed to produce MLE estimates

similar to the remaining training time intervals. However, fixing one of the rate parameters

implies knowledge of the sequence behaviour. During this work, the parameter estimates were

also done using the MLE method with fixing only the µ parameter (see Tables B.22 and B.23

in Appendix B).

When only the µwas fixed, the target time intervals less than three days following the main-

shock resulted in markedly different K parameter estimates in comparison to the remainder of

the training time intervals. Thus, using the retroactive knowledge from generating the MLE
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estimates for all of the training time intervals under consideration, the typical K parameter for

this sequence was fixed to K = 0.1. Following this procedure, the c parameter was also found

to be very different than the remaining time intervals. Thus, the c value for ∆Tm = 1, 2 days

was also fixed. Two potential explanations for necessary adjustments for this sequence are

provided.

First, which is most natural, is that the sequence changes in behaviour such that the ETAS

model parameters when solved find a different pattern in the data in the early aftershock se-

quence. This could be due to a physical change in the manner in which the earthquakes as part

of the MCR sequence are being produced. Due to the changes in rupture pattern and seismic-

ity, the data reflects the changes and leads to the model parameter estimates changing as well.

Field work has shown that there are small surficial ruptures that are at an oblique angle to the

main fault, demonstrating a physical irregularity [Zheng et al., 2020].

Second, the magnitude of completeness changes as the sequence develops. Based on per-

sonal communications, the additional seismic stations deployed to the site did not contribute

to the catalog that was used in this work [Zeiler, 2021]. While the magnitude completeness

could have been improved following the mainshock, this is not due to the additional stations

that were added on site. Thus, the magnitude completeness assessed following data available

from the first day after the mainshock should be considered suitable for the entire sequence.

An improvement in catalog completeness is likely not the reason that the parameter estimation

is unstable when using the MLE. However, it is also possible that the Mc estimation is incorrect

and the early aftershock Mc is higher than was determined in this work.

The impact of these additional modifications was not evaluated in this study. However,

the intermediate step which involving fixing of parameters would have directly impacted the

forecasting and forecasting test results.
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3.5 The 2010 Darfield Sequence and 2011 Christchurch

Events, New Zealand

The 2010 Darfield sequence was initiated by a Mw = 7.1 mainshock on September

4, 2010. The mainshock and aftershocks took place along previously unmapped faults

[Quigley et al., 2012]. The first 5 months of the sequence were relatively underproductive

when compared to the New Zealand aftershock decay model [Fry et al., 2011]. On February

22, 2011 local time, 171 days later, the 2011 Christchurch earthquakes took place with two

large aftershocks of Mw = 6.2 and Mw = 6.0 [Quigley et al., 2010, Shcherbakov et al., 2012].

The initial M3 = 7.3 mainshock was associated with a surface rupture length of 29.5 ± 0.5 km

[Quigley et al., 2012]. This mainshock and immediate aftershocks did not lead to any reported

deaths. However, the 2011 Christchurch events lead to nearly 300 deaths [Fry et al., 2011].

The magnitude limit for large aftershocks during this sequence was also constrained in

Shcherbakov et al. (2012) using the first 30 days of the catalog, though the probability of

their occurrence was not evaluated. They also found that variation in the frequency-magnitude

distribution was dependent on the time after the mainshock and was variable in different

magnitude ranges. The confidence intervals for large aftershocks using the BPD for this se-

quence was estimated in [Shcherbakov, 2014]. In addition, this sequence was tested after

the set up of the New Zealand Earthquake Forecast Testing Center using the GeoNet cata-

log [Gerstenberger and Rhoades, 2010]. The information gain for a three-month and one-day

forecast compared in by Rhoades et al. (2018) indicated that the ETAS model showed the

greatest information gain when compared to the other models, which were based on proximity

to past earthquakes.

The 2010 Darfield earthquake sequence was analyzed in this work during the early after-

shock sequence using the MOL and the ETAS models. The affected region is shown in the

map (Fig. 3.29). The magnitude cutoff in the three days following the Darfield mainshock was

found to be Mc = 3.3 by visual inspection (Fig. 3.30). As the sequence was prolific and had
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many events above this magnitude, the same training time intervals were also evaluated for

higher magnitude cutoffs of M0 = 3.5, 3.7. By doing so, this sequence analysis addresses the

limitations of the analysis methods for catalogs that have higher magnitude completeness.

Figure 3.29: The 2010 Darfield sequence during the first three days following the mainshock
for M0 = 3.3. The blue circles indicate the events that are included in the analysis, and the black
circles indicate events outside of the study region, or below the magnitude cutoff threshold. The
mainshock is shown by the red circle. An inset map of New Zealand provides spatial context
for the events.

The evolution of the sequence model parameter estimates for the MOL and the ETAS model

with M0 = 3.3 is presented in Figure 3.31. The corresponding point parameter estimates and

MCMC sampling estimates are provided in Tables B.28 - B.32 in Appendix B. The results of

the MOL and the ETAS model fits with training days ∆Tm = 3 days relative to the mainshock

are shown in Figure 3.32. The background seismicity rate was fixed to µ = 0.0, and the prior

mean for the MCMC sampling was set to µ = 0.001. The model parameter estimates for

M0 = 3.5 and M0 = 3.7 are available in Appendix B in Tables B.33 to B.36. Foreshocks for the

Darfield sequence were not present and not included in the analysis. Both models begin at the

mainshock with preparatory time intervals ending at Ts = 0.001, 0.03 for the MOL and ETAS

model, respectively. This is consistent for all M0 evaluated. As expected, the productivity
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Figure 3.30: The 2010 Darfield sequence during the first three days following the mainshock
for M0 = 3.3 was fitted to the GR law. The events greater than the magnitude indicated on the
x-axis are counted and plotted along a straight line.

parameters K0, K, and α are different for the different magnitude cutoffs. K0 decreases with

increasing M0. The relationship between K, α and M0 is less obvious. However, K decreases

from M0 = 3.3 to M0 = 3.5, while α increases. α decreases from M0 = 3.5 to M0 = 3.7. α

is not related to the total number of events in the sequence, but rather the relationship between

the events, which may be affected by changing M0. The model parameters otherwise appear to

be stable with increasing length of target time interval.

Forecasting using the different magnitude cutoffs demonstrated decreasing probability of

large aftershocks as the training time interval increased (Fig. 3.33). A probability gain was

seen in the ETAS model forecast for M0 = 3.3 at ∆Tm = 2 days and was likely due to model

parameter stabilization as the parameter p decreased, resulting in slower seismicity decay. The

MOL forecasts provide the upper bound for the probability of large aftershocks. The general

behaviour of the probability of the largest aftershock was consistent across all of the M0 (see

Figures B.16 and B.17 in Appendix B).
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a) b)

Figure 3.31: The model parameter estimates (black squares) for the Darfield sequence using
the MLE with M0 = 3.3 for various training time intervals ending at ∆Tm with corresponding
95% confidence intervals. The aftershock rate models used are the a)MOL and b)ETAS model.
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Figure 3.32: The aftershock model fit using the a) MOL and b) ETAS model to the Darfield
sequence for ∆Tm = 3 days. The events during this training time interval are shown with orange
markers, where markers indicate the magnitude of the events (denoted on the right axis). The
blue lines indicate the seismicity rate (left axis).

Considering the magnitude of the mainshock, the probability of large aftershocks such as

M ≥ 6.0 is surprisingly high. The high probability may be a reflection of the β estimates
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Figure 3.33: The probability of large aftershock of Mex = {5.5, 6.0, 6.5} during a seven-day
forecast using various target time intervals for the Darfield sequence with M0 = 3.3 is shown for
the a) MOL and the b) ETAS model. The events are used in the training time intervals are shown
with black diamonds, corresponding with their magnitudes (right axis). The probabilities are
indicated at the end of the target time interval.

during the same training time intervals. The first training time interval for the MOL with

M0 = 3.3 returns an estimate of β = 1.38. At ∆Tm = 30 days, β = 2.14. As the training

time intervals result in similar magnitude distributions at the same training time interval, some

general interpretations using the tests can be made. However, interpretations of the forecast

test performance based on the evolution of the sequence will be affected by the evolution of β

in addition to the rate models.

3.5.1 Forecasting Test Results

The forecast testing did not include the ETAS model for ∆Tm = 1 day due to issues with

model convergence not addressed in this thesis.

The ratio tests did not indicate whether one of the models was consistently superior. The

information gain of the ETAS vs. MOL was consistently a negative value. However, in the

MOL vs. ETAS test, the ETAS model was also rejected during some training time intervals as

seen in Figure 3.34. This suggests that the ETAS model performs better than the MOL during

specific training time intervals, but the comparative tests were not sufficient to identify the best

model. This behaviour was consistent for all M0 (Figs. B.20 and B.21 in Appendix B). The

significance level α appeared to shift to lower or higher scores on the R-test with increasing
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M0, corresponding with the ETAS vs MOL and MOL vs ETAS comparisons, respectively.

a) b)

Figure 3.34: Results of the T -test and R-test as shown using relative information gain and
quantile score α for the MOL and the ETAS model for the Darfield sequence with M0 = 3.3 in
figures a) and b), respectively.

a) b)

c)

Figure 3.35: The performance of the ETAS and MOL models for various training time intervals
for the Darfield sequence with M0 = 3.3. Forecast performance scores are listed for the N-test
(δ1, δ2), the M-test (κ), and the Bayesian p-test in figures a), b) and c), respectively.
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The ETAS model consistently overestimated the number of events and the MOL demon-

strated both over- and underestimation of the number of events during the forecast. Notably,

the number of events was significantly overestimated at ∆Tm = 3 days, providing context for

the scoring on the comparative tests as ∆Tm = 3 days coincides with the most extreme infor-

mation gain on both comparisons. The MOL underestimated Nobs following ∆Tm = 1, 2 days,

suggesting that the sequence did not provide sufficient information for fitting to Omori-like

behaviour during these training time intervals or the evolution of the sequence was not suitably

accounted for using the MOL (Fig. B.15). Both models are unable to correctly forecast the

decrease in Nobs following ∆Tm = 3, 14 days. Both models also improved on the N-test with

increasing M0. The underestimation of events was greater for the MOL at M0 = 3.7, which

indicated that the magnitude cutoff and completeness may have had larger impact on the MOL.

Both models typically passed the M-test for ∆Tm ≥ 1 day. Performance on the p-test for

both models at all M0 was very high, with extreme quantile scores near or at 1.0. The evidence

for the ETAS model as the best model was not as clear as the results demonstrated in Rhoades et

al. (2018) for comparison to different models, though their results did not include a comparison

to the MOL.

3.5.2 Forecasting the 2011 Christchurch Event
The forecasts using Te = 170 days suggest that none of the models fitted to this prolonged

segment of the sequence demonstrated predictive power for the ML = 6.2 event. Neither the

MOL nor the ETAS model forecasts indicated that there was an increased probability of large

events shortly before the 2011 Christchurch earthquakes. The probability of a large after-

shock occurring by using the target time interval ∆Tm = 170 days, 1.3 days before the first

Christchurch event, was 0.9% and 0.4% for the MOL and ETAS models with M0 = 3.3, re-

spectively.

It has been suggested that the occurrence of very large aftershocks that appear to be

part of a separate aftershock distribution, as with the Darfield sequence and the subsequent

Christchurch events, is likely because they take place on separate faults [Beavan et al., 2012,
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Shcherbakov et al., 2012, Shcherbakov et al., 2018]. Thus, forecasting based on the aftershock

distribution prior to the large Christchurch events may not be as useful when forecasting the

aftershock on a separate fault.



Chapter 4

Discussion

In the previous chapter, five case studies were presented. These include the 2009 L’Aquila,

Italy (LAQ), 2016 Amatrice, Italy (AMA), 2016 Kumamoto, Japan (KUM), 2020 Monte Cristo

Range, USA (MCR), and 2010 Darfield, New Zealand (DFL) sequences. The sequences took

place in a variety of tectonic settings and governance regions that use different approaches

and models for forecasting. The forecast testing methods in this work were used to address

some of the questions posed by the goals of this study. To do so, an analysis of the aftershock

model forecasts for each sequence was provided. Scoring on the forecast performance tests

indicated whether one of the models performed consistently better during forecasting. During

this process, some limitations to the methods were observed. Lastly, the magnitude cutoff M0

impact was reviewed by evaluating the Darfield sequence at three different M0 values. By

increasing the magnitude cutoff, the number of available events for analysis changed both the

forecasted probability of large events, as well as the forecast test results.

In this thesis, the temporal aftershock rate models - the modified Omori law (MOL), com-

pound Omori law (CMOL), and the Epidemic Type Aftershock Sequence (ETAS) model - were

applied to all of the sequences where reasonable. Despite the large range of confidence inter-

vals in the initial maximum likelihood estimate (MLE) method, the model parameter fits for

the rate models appeared to be reasonably fitted based on the observed model parameter stabil-

84
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ity with increased training time intervals and the associated error also tends to decrease. The

frequency-magnitude as described by the Gutenberg-Richter (GR) law resulted in b-values and

corresponding β in the typical range for events during the training time interval above Mc, with

the exception of the Darfield sequence which is addressed separately. No special adjustments

were needed for the MOL fitting procedure. The CMOL required user selection of the time

of the second MOL instance when it was not associated with a mainshock. The ETAS model

required adjustments to the training time interval and fixing of model parameters in some in-

stances to stabilize the parameter estimates when using the MLE method. These adjustments

naturally also impact the Markov Chain Monte Carlo (MCMC) sampling procedure as the prior

for the MCMC sampling is based on the MLE estimates.

Forecasting for large aftershock probabilities was done with the extreme value distribution

(EVD) and Bayesian predictive distribution (BPD) methods for the MOL and CMOL. The

ETAS model forecasts were done using the BPD method. From the EVD and BPD forecasts

for the MOL, it was evident that the model parameter estimates and forecasts do not require the

BPD method, confirming that the EVD using the Gumbel distribution is a close representation

of the BPD forecast [Shcherbakov, 2014, Shcherbakov et al., 2019]. This was also seen with

the CMOL. When using the EVD, the probability of a large event is similar to that of using

the BPD. Thus, for forecasting a large aftershock fitted to the MOL or the CMOL, the EVD is

likely sufficient. One notable exception was the early training time intervals of the Kumamoto

sequence where the forecast of the EVD and BPD produced different forecasts. During forecast

performance tests, the EVD and the BPD resulted in slightly different scores, most notably

close to the effective significance cut-off. Thus, for forecast testing, the BPD is necessary to

evaluate the performance of the MOL and CMOL forecasts.

For the ETAS model, the BPD method is critical to fully integrate the uncertainty around

the model parameters as the model rate is stochastic [Shcherbakov et al., 2019]. By using the

BPD method for the ETAS model, there is an increase in the time required to estimate the

model parameter distribution with a reasonable number of steps during MCMC sampling in
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comparison to using the EVD for the MOL or CMOL. While no metric was developed to assess

the computational cost of testing the ETAS model forecasting, using the full BPD forecast

requires simulations for the ETAS model and will take more time producing the MOL and

the CMOL, where each chain can be forecasted using the EVD. For example, using a desktop

with Intel(R) Core(TM) i7-5829K CPU @3.30GHz with 6 cores and 12 logical processors

required up to 30 hours for simulating the BPD for the 200,000 MCMC chains for certain

training time intervals. The same simulation conditions for the MOL can be completed under

15 minutes as the forecasting procedure for the MOL takes advantage of the EVD method and

does not require a full simulation as the forecasted rate can be directly calculated from the

model parameters. During forecast testing, the full simulation produced by the MCMC chains

is used. The ETAS model forecast testing takes on the order of 10 times more computational

time than that of the MOL and the CMOL. The computational time is also affected by the

model parameters themselves. For α ∝ β, it is expected that the ETAS model parameters lead

to a critical simulation and the simulation runs until the number of events generated during the

forecast reaches the user selected cutoff for simulation.

4.1 Interpretation of Forecast Tests

The results of the N-test are straight-forward to interpret. Since they are single-sided tests,

it is clear when the percentage of simulations produce simulated events Nsim which exceed or

are below the observed events Nobs. A good forecast will sometimes exceed and sometimes

produce a lower number of forecasted events in comparison to the observed number of events.

When determining the best model, the interpretation of the forecast tests and model forecast

performance is likely to be correct if the N-test is passed on both sides. Since this was not the

case for most of the forecasts for the case studies, with all models producing scores of δ1 = 0 or

δ2 = 0 at various training time intervals, the δ scores were evaluated separately and the N-test

results were used to support the results of the comparative R-test.

The M-test checks if the β value that was estimated is representative of the sequence during
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the forecasting time period. The number of forecasted events is scaled to match the number of

observed events, so the quantile score κ is not affected by the model rate parameters. While the

GR law assumption is not tested explicitly by the M-test, and it is assumed that the frequency-

magnitude distribution is correct, the M-test may provide context for the N- and p-test results.

As the ETAS model forecast simulation for Nsim is dependent on the magnitude of simulated

events, estimated β which does not reflect the ∆T portion of the sequence may lead to different

results in the seismicity rate, and subsequently, the forecasted probability of large aftershocks.

A poor score on the M-test for the ETAS model can also provide a partial explanation for

the N-test performance as the parameters estimated during the target time interval are used

for forecasting, and the forecast is related to the β values estimated during the training time

interval. The model parameter estimates for the ETAS model do not account for the estimated

β during the training time interval. Thus, if β does not match to the frequency-magnitude

distribution during ∆T , the performance of the ETAS model on the N-test and p-test may

be directly impacted. The MOL and CMOL seismicity rate are unaffected by β. Passing

and failing of the N-test with the MOL or CMOL are dependent only on the rate parameters.

However, the training time intervals for the MOL and CMOL are slightly longer than the ETAS

model. Thus, difference in the estimated β value during the training time interval may also be

reflected on the M-test scores.

The compiled results of the N-test performance for the case studies are shown in Figures

4.1 and 4.2. From the results, it can be seen that the ETAS model tends to overestimate the

number of events during the forecast, and the MOL and CMOL forecast rate are variable as

the sequences progress. This is expected as the ETAS model is self exciting whereas the MOL

and CMOL describe a consistently decaying rate. In addition, some of the sequences maintain

a persistent rate of background seismicity throughout the target time intervals that was not

captured by either the MOL nor CMOL. The ETAS model was also found to be more suitable

in terms of predicting the number of events that may occur when secondary aftershocks are

present (i.e., when the CMOL can be applied). The ETAS model was good at estimating the
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number of events when the sequence had Omori-like behaviour, such as in the case of the

Monte Cristo Range sequence.

a) b)

Figure 4.1: Plot of the N-test performance for all of the evaluated sequences when fitted and
forecasted with the ETAS model using the BPD for forecasting. The abbreviations correspond
to the following sequences: LAQ - 2009 L’Aquila sequence, DFL - 2010 Darfield sequence,
AMA - 2010 Amatrice sequence, KUM - 2016 Kumamoto sequence, and MCR - 2020 Monte
Cristo Range sequence. Note that forecasting was not completed for Te = 1 day for the Darfield
sequence. The remaining scores of the Darfield sequence are δ1 = 1.0 and hidden under the
other scores. Values that are not plotted were calculated to be δ = 0.0.

a) b)

Figure 4.2: Plot of the N-test performance for all of the evaluated sequences when fitted and
forecasted with the MOL using the BPD for forecasting. The abbreviations correspond to the
following sequences: LAQ - 2009 L’Aquila sequence, DFL - 2010 Darfield sequence, AMA -
2010 Amatrice sequence, KUM - 2016 Kumamoto sequence, and MCR - 2020 Monte Cristo
Range sequence. Note that values that are not plotted were calculated to be δ = 0.0.

The ETAS model was found to pass the M-test more frequently than the MOL and CMOL.

This is likely an artefact introduced from the training time interval selection which is inherent to
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the modelling procedure. The trade-off of decreasing or increasing Ts and T0, and subsequent

impacts on κ was not investigated in this study. There were no significant differences of the β

value from the MLE method to the MCMC method. Thus, the performance on the M-test is

likely due to the training time intervals selected.

In addition, Navg from the simulations for the ETAS model appeared to be closer to Nobs

events. However, for shorter target time intervals the ETAS model typically failed the δ2 side

of the N-test and overestimated the number of events during the forecasting time interval. The

MOL tended to underestimate the number of events during shorter target time intervals relative

to that of the ETAS model. For longer training time periods, the CMOL underestimated the

number of events close to the initiation of the second MOL instance. For longer training time

intervals, the MOL and the CMOL produced similar forecasting results and test performance

on the N and M-tests.

For the R-test and the T -test, the interpretation is done in conjunction. There were several

instances where both models passed the R-test. Passing of the R-test is affected by M0, as the

performance on the N- and M-tests also changes with M0. For the T -test, sample information

gain per earthquake (IG) with positive values IG ≥ 0 indicated that reference model performs

better than the alternative model, and IG ≥ 1 indicating significant information gain of the

reference model when compared to the alternative model. In the case where IG is small, then

the models do not differ significantly and it is unclear which of the models performs better.

The supporting T -test did not result in consistent information gain as the training time

intervals increased for all of the sequences for comparison of the ETAS model and the MOL.

This suggests that as the sequences evolved, the relative forecast performance of the models

was not strongly consistent. For example, when the ETAS model demonstrates IG ≥ 1 for

a short training time interval, if the information gain drops below 1 at the next training time

interval, then the ETAS model is not necessarily the “better” model for the sequence. During

time intervals with very low information gain, neither model is considered better by the T -test.

A negative information gain On the T -test, the ETAS model was found to perform better as
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the information gain was positive for four of the five sequences on the MOL vs ETAS tests.

However, most of the T -test IG values were not above one. Thus, it cannot be stated that the

ETAS model is the better choice of model, even if the performance appears better on the test.

In most cases, with the exception of the Darfield sequence which shows a shift between model

performance, when the second model hypothesis produces a positive score during the first three

training time intervals, the remaining training time intervals remain positive for that specific

model comparison.

Considering that the T -test performance tends to be consistently positive or negative, the

early T -test results can be used to determine which model is likely to have better performance

for longer training time intervals. In particular, if the information gain indicates that the MOL

performs better during the early aftershock sequence, then this model can be prioritized or used

as the baseline model when evaluating forecasts. Use of the ETAS model for forecasting under

these circumstances should be well justified with either incidences of clustering events or clear

departure from Omori-like behaviour.

When the MOL demonstrates better performance based on the T -test (such as for the Monte

Cristo Range sequence), the ETAS model still performed reasonably well on the N and M-

tests. Thus, the ETAS model cannot be entirely disqualified based on the comparative tests as

a “better” model for an ongoing or new sequence. In this study, there was no instance of the

CMOL performing better than the ETAS model in the comparative tests. The performance of

the ETAS and the CMOL on the other tests do not indicate that the CMOL is better than the

ETAS model when forecasting.

Lastly, the Bayesian p-test evaluated whether the maximum magnitude earthquake in the

observed events was likely to occur in the forecasted events from the simulation. This test is

limited in the context it provides if the number of forecasted events is significantly greater or

less than the number of observed events during ∆T . A value close to one, indicating a near

perfect score, requires additional interpretation. In the results, it is apparent that most of the

models in this study pass the p-test for most of the training time intervals. For extremely high
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scores, such as those ≥ 99%, the scores can be related to the performance on the N-test and

the average number of simulated events Nsim. Since the p-test is not scaled like the M-test to

match the number of observed events, the high quantile score may be the result of simulating

more events than were observed, and allowing for greater opportunity for an extreme event to

happen. However, good performance on the p-test occurs even in instances where the model

underestimates the number of forecasted events. The exception to this is for the MOL for very

short training time intervals where the MOL greatly underestimates the number of forecasted

events.

If both sides of the N-test are passed, and the p-test results in a high quantile score, then

the model in question performs extremely well. If δ1 is failed in the N-test and the p-test score

remains high, this suggests that the performance on the p-test is unreliable and the score is

artificially improved by the β-value which is non-representative of the forecasting time interval.

If the model has failed the p-test and the δ1 score on the N-test is below the significance level,

then a failed p-test does not provide any additional information.

The results of the p-test suggest that the ETAS model typically passes and produces extreme

values near one. In several instances, this can be explained by generating more events on

average than Nobs. In addition, the choice of β may influence the magnitude of simulated

events as evidenced by the M-test. On the other hand, the MOL typically passes the p-test as

well, despite having fewer instances of forecasting more events than observed. Thus, the MOL

is capable of achieving a high frequency of forecasting an event greater than or equal to the

largest event observed even when the ETAS model demonstrates more information gain over

the MOL and performs better on the M-test. The CMOL performance was similar to the MOL.

When considering the performance of the p-test independently of the other tests, the p-test is

not sufficient to distinguish which one of the models performs better. However, in conjunction

with the N-test, the p-test can indicate whether the largest magnitude event was successfully

forecasted due to overestimation as a consequence of the magnitude-frequency statistics from

the training time interval, or good performance from the aftershock rate model.
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In comparison of the CMOL to the MOL fitted to the first large shock, as with the L’Aquila

sequence, the MOL forecasts performed better than the CMOL for the short duration and train-

ing time interval following the second large shock at time τ. Additionally, the probability of

large magnitude events for the MOL forecast was typically higher than that of the CMOL with

the exception of the immediate training interval following the second MOL instance.

In the case of the Kumamoto sequence, the CMOL demonstrated better forecasting test

performance than the MOL for most of the training time intervals. This is unsurprising as

the mainshock of the Kumamoto sequence is an order of magnitude larger than the shock that

initiated the foreshock sequence. The large increase in seismicity cannot be easily “absorbed”

by the MOL and greatly alters the parameter estimation.

When the MOL is fitted to the second large shock during an ongoing sequence, the MOL

was more suitable for the training time period shortly after the large aftershock. Once the

CMOL parameters were stabilized, then the CMOL shows slight information gain over the

MOL. The short term secondary aftershocks in this instance do not warrant significant atten-

tion, as was with the L’Aquila sequence. For the L’Aquila sequence, the MOL performed better

than the CMOL for shorter training time intervals and has similar performance for training time

intervals ∆Tm ≥ 10. This was also evidenced by the ETAS models, where the parameters do

not change near τ and sufficiently describe the remainder of the sequence. Thus, the CMOL

is less suitable for forecasting shortly after a large aftershock unless the second MOL instance

can be characterized well early on. This is not surprising, as there may be insufficient data

close to the second shock to distinguish which events are contributed by which shock. This

might be particularly difficult when the two shocks are close together.

This suggests that the CMOL is either more difficult to estimate and describes the second

shock productivity inaccurately when there is limited data, or that the use of the CMOL intro-

duces an artefact that suggests the second shock is associated with its own aftershock sequence,

when the contributions to the rate are not significantly elevated to warrant a second instance of

MOL. This result was also suggested in [Shcherbakov, 2021] for the Ridgecrest 2019 sequence
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which also had the mainshock take place during the aftershock sequence.

4.2 Limitations and Assumptions
Several limitations of this work are noted. These include the impact of prior information,

the expectation that the GR law sufficiently describes both the past and future magnitude dis-

tribution, the completeness of the catalog, and choice of forecasting time period ∆T .

The Mc sensitivity was explicitly explored with the Darfield sequence. M0 was used as a

proxy for the completeness of the catalog for the Darfield sequence. Based on the forecasted

probabilities for large aftershocks, it is evident that increasing the M0 reduces the probability

of large events. The forecasting test results do not change dramatically and the interpretation of

the tests remains the same. This suggests that the testing implemented in this work is applicable

for catalogs and sequences with higher magnitude completeness. This includes catalogs not

used in this work.

4.2.1 Completeness
The results in this study are based on the assumption that the catalogs are complete above

Mc. Where possible, the Mc selected in this work are the same or greater than that of previous

works. However, it may be that the true Mc is higher and the selected Mc are based on faulty

assumptions which then impact the model parameters and subsequent analyses. To improve

the completeness of a catalog and lower the Mc, it is possible to backfill events to a desired

level of completeness [Zhuang et al., 2011].

As seen with the Darfield sequence, a shift in M0 results in an adjustment with the rate

based parameters K and K0, ain addition to the α parameter. α changes in such a manner

that the aftershock behaviour described by the ETAS model is different. If the M0 is set

higher, the Darfield sequence behaves more Omori-like. Based on this one example, it could

be suggested that the MOL is sufficient to describe sequences with higher magnitude com-

pleteness of the catalogs. The uncertainty for the ETAS model parameters also increases with

increased M0. Previous works have shown that higher Mc reduces the contributions of the
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ETAS model to the seismicity and results in lower probability estimates for large aftershocks

[Helmstetter and Sornette, 2003].

While the forecasted probability of large events changes, the forecast testing indicates that

the forecast performance was similar for all of the M0. The training time intervals that fail

the N− and M− forecasting tests are consistent across the M0. The Navg plots indicate over-

and underestimation at consistent training time intervals. Thus, assuming that the catalogs

are complete and there is sufficient events to fit the models, the effect of Mc is primarily on the

probability of large events. None of the selected M0 for the sequence were able to forecast with

high probability known large events several months following the mainshock. When examining

the R- and T -tests, there was a strong shift in the quantile score for the R-test and relatively

scaled values on the information gain. This supports the suggestion that for regions with less

complete catalogs and higher Mc, the probability of large aftershocks may be underestimated

when using either the ETAS model or the MOL. Regardless, the ETAS model in this case still

performs better than that of the MOL.

Given that the aftershock probability decreases for both models with increased M0, the

change in forecast appears to not be related to the choice of model and rather the data availabil-

ity. The relative information gain between the competing models was also decreased at higher

M0, suggesting that with less data available, the difference between using the ETAS model and

the MOL becomes less significant.

Completeness of the sequence is also dependent on the spatial selection of events. In this

study, it was assumed that an elliptical shape was adequate to provide coverage and contain

the events of interest. To account for events taking place on nearby faults and to include as

many events related to the sequence as possible, the ellipse size was increased by including

an additional buffer zone. Thus, it is possible that events not related to the sequence were

also included during analysis. This was addressed by using several different elliptical regions

prior to selecting the apparent best visual fit to minimize the impact of the regional selection.

Some differences are noted: the Darfield region used in this study is larger than the zone
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indicated in [Shcherbakov, 2014] and encompasses the 2011 Christchurch events; regions for

the Amatrice sequence and the L’Aquila sequence used are elliptical in comparison to the

spatiotemporal studies in [Marzocchi and Lombardi, 2009] which use a gridded system; and,

the Kumamoto sequence shares the same elliptical region as [Shcherbakov et al., 2019] using

an updated catalog with more events. Given the fairly short target time interval for the case

studies, it is unlikely that the addition of a few small events greatly changes the parameter

estimates.

The results of this work may have been impacted by both the spatial constraints imposed

and the selected Mc. However, the impact of the catalog refinement was assumed to be minimal

when considering the work done prior to the analysis to limit the impacts and the choice of Mc

which aligns with previous analyses.

4.2.2 Prior Information
For all of the models, the BPD process is impacted by the use of prior information from the

MLE parameter estimate. The MLE results in a point parameter estimate that does not reflect

the other possible local minima results. Since the MLE results are used for setting the mean

prior of the MCMC process and BPD method, poor solutions from the MLE method can affect

the downstream processes, including the forecasting.

The specific BPD procedure for the ETAS model in this study would be restricted to real-

time situations where one can be fairly confident that the MLE produces parameters which

closely estimate the mean of the true model parameter distribution. This can be complicated

by the choice of initiating parameters, as poor initiating parameters may lead to locally optimal

solutions for the MLE. Use of prior and retrospective knowledge were also used in this work

to assist in the convergence of model parameter estimates, which is not always representative

of real-time forecasting conditions. In addition, the MCMC procedure uses a user determined

variance in this work. If the prior distribution does not align with the true parameter distri-

bution, then the fit will produce a forecast that is not representative of the training sequence.

During this work, no obvious instances of this occurrence were observed.
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In some instances, the MCMC sampling process shows that the sampling deviates from the

prior despite the constraints for certain training time intervals (for example, α for the L’Aquila

sequence ETAS fit for most training time intervals, see Table B.5 in Appendix B). This can

show that either the MLE estimate is not representative of the other solutions that may better

represent the sequence activity. This includes parameters with bimodal distributions and shifted

sample distributions despite the strong prior constraints. Another concern during MCMC sam-

pling is when the prior pushes the sample towards smaller values and results in changing the

shape of the prior. This happens when the variance is too large relative to the mean. In this

study, the prior distribution shape change occurred when the parameter estimation for some of

the training time intervals was significantly different than the other point parameter estimates

and was very small. The variances are chosen so that most of the Gamma priors will have a

normal-shaped curve for the prior for all the training time intervals. In the instances where the

variance was not sufficiently small to produce the normal-shaped curve, it was assumed that

the MLE estimate did not represent the true behaviour of the sequence well. The impact this

has on the probability for large aftershocks appears to be negligible in these case studies as the

probabilities typically behave in a standard pattern of decreasing over time.

4.2.3 Background Seismicity Stationarity
It is assumed that µ is constant for the training time interval and is the same or close for

the forecasting time interval. This is typically a reasonable assumption particularly when µ is

a consistent value prior to and during the training time interval. For the Monte Cristo Range

sequence, the µ estimates prior to fixing the value were unstable and varied widely (Table B.22

in Appendix B). This suggests that there are instances of µ that can be difficult to solve for and

estimations of µmay change dramatically depending on the available sequence data. Thus, pre-

conditioning of the model parameters may not always be suitable nor a good representation of

the sequence. Depending on the sequence, it may be important to stabilize the model param-

eter estimates by extending the training time interval for estimation of µ, as with the L’Aquila

sequence, or to fix µ to improve parameter estimation stability, as with the Monte Cristo Range
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sequence. The fixed background rates were confirmed by estimating the background seismic-

ity manually for the same region over long periods of non-sequence-like seismic behaviour.

However, the productivity parameters may be elevated if the µ estimation is too low.

When µ varies before and during the sequence, such as with the Amatrice sequence which

produces µ values slightly greater than zero in comparison to the little to no seismicity immedi-

ately prior to the sequence, then the assumption that µ is stationary may be inadequate, leading

to poor estimates of other model parameters. The µ parameter for the BPD estimate is heavily

affected by the prior value, and thus the variability in the parameter is not completely accounted

for during the MCMC sampling [Shcherbakov et al., 2019]. If the background seismicity rate

is not very high, the impact of this assumption is not very big in terms of forecasting.

4.2.4 Forecasting Time Interval
In this study, the length of the forecasting time interval was set to ∆T = 7 days. ∆T = 7

was considered a reasonable time frame to demonstrate the short-term forecasting and investi-

gate whether the forecasts could account for potential future variability in the sequence. This

provides an obvious limitation to the forecast test performance evaluation, as the characteris-

tics of the forecasting may not be well represented by only one interval. While the limitation

is not addressed directly, the evolution of the sequence, events during the forecasting time in-

terval, and the corresponding analysis were incorporated by using incremental increases in the

training time intervals.

The overestimation in the forecasts which is more commonly seen with the ETAS model

may be due to the parameter estimates during the very productive early sequence. By adjusting

the forecasting time to be longer, the simulated events may result in a closer average to the ob-

served events. Reducing the forecasting time interval may lead to poor estimations in the very

short term but may demonstrate how well each model performs when forecasting imminent

aftershocks and their behaviour.

Due to time restrictions, this work does not include analysis for both shorter and longer

forecasting time intervals. However, the methods used in this work applicable to other ∆T . An
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example of the impact of ∆T can be found in [Shcherbakov et al., 2019]. It is expected that if

the model parameters fit well, then there would be a general tendency for the forecast to per-

form better on these tests as irregularities and punctuation of events can be averaged out over

a longer forecasting time period. To compensate for reduced performance on longer training

time intervals, the use of greater ∆T may result in a better in better forecasting. While this re-

duces the functionality of short-term forecasting, this is a sensible approach once the sequence

has progressed for a longer period of time and the concern of imminent large aftershocks is

lower.

4.2.5 Additional Temporal Conditions

Temporal models are dependent on the time intervals selected for training. The estimates of

the model parameters are based on the events taking place in the entirety of the training period.

This includes the often high density events in the early aftershocks close to the mainshock.

As was seen in Chapter 3, the parameter estimates for all of the models have instances where

the parameters change, particularly around three days after the mainshock. The change in

parameter is moderated by the fit close to the mainshock, even when it is clear that there is a

distinct or rapid taper towards the tail end of the aftershock sequence. For longer aftershocks

sequences, such as those that continue for over a month and demonstrate clustering of events,

use of the MOL is not recommended as the p-value may change to account for new events, but

still lead to very low probability of future events.

In terms of the ETAS model, the model has a built in conditioning statement that is based on

past seismicity. Due to the construction of the ETAS model, it is possible to not condition the

rate if there is a sufficient justification to do so. In [Gerstenberger et al., 2005], they assume

that each shock above M ≥ 3.0 could potentially have an aftershock sequence. The ETAS

model better incorporates this possibility.
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4.2.6 Limited Use of Compound Omori Law

One of the limitations of this study is the infrequent use of the CMOL. In the case studies,

the clear secondary aftershock sequence following a large aftershock that is not the mainshock

is not always seen and the CMOL is applied only to two of the five case studies. Because of

the limited results with the CMOL, the interpretations are limited. As many of the case studies

did not demonstrate aftershock activity indicative of secondary aftershocks strongly associated

with a large event, the CMOL was unnecessarily complex for most of the sequences and did

not need to be implemented for forecasting. The exception to this is if the MOL drastically

changes in model parameters following a large aftershock, such as in the case of the delayed

mainshock.

For real-time applications, the choice of applying the CMOL as the best model for the

situation has additional complications. Firstly, there is no prescribed method to choose which

event that is producing the apparent secondary aftershocks. This is the case of the Amatrice

sequence, where the large aftershocks did not produce distinct sequences when fitted to the

CMOL for the target time periods considered. The only obvious case for fitting the second

instance of MOL for the CMOL is when the mainshock takes place later than the sequence

initiating shock. As seen with the Kumamoto sequence, some time needs to pass from the

initiation of the second aftershock sequence for the model to distinguish the components of the

CMOL.
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Conclusions

For many sequences, the Epidemic Type Aftershock Sequence (ETAS) model describes the rate

better [Ogata, 1988, Shcherbakov et al., 2018]. As the most popular stochastic model describ-

ing earthquake occurrence [Lombardi, 2015], the choice of the ETAS model over the modified

Omori law (MOL), a commonly observed law, should be justified in a quantified means. In this

work, the compound Omori law (CMOL) forecast performance was also shown. As both the

CMOL and the ETAS model are extensions of the MOL,there is a trade-off between the increas-

ing complexity of the model and the potential the information gain. In addition, the forecasting

method for the ETAS model is necessarily the Bayesian predictive distribution (BPD), which

is significantly greater in complexity and more computationally demanding than solving the

BPD for both the MOL and the CMOL. The BPD process results in a similar forecast to that

of the extreme value distribution (EVD) for the MOL and CMOL, so it is not necessary to use

the BPD method for those two models. Lastly, the ETAS model may also require more ex-

pert knowledge or prior information for stable parameter estimates than the other two models.

When choosing which model to use for forecasting, it would be ideal if the model has been

tested using standard tests and there is high confidence that it performs better than the other

options.

Based on the results in Chapter 4, there is no single model that is consistently superior

100
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to the other models. However, in most of the case studies, the ETAS model performs better

than the MOL and CMOL on the ratio tests with at least marginal information gain. When the

CMOL was applied to a foreshock-mainshock sequence, the CMOL typically performed better

than the MOL for longer training time periods on the R and T -tests when the MOL was applied

starting at the mainshock. These interpretations are generally in agreement of the results seen

for the 2019 Ridgecrest sequence [Shcherbakov, 2021]. For a sequence with a large aftershock

that appeared to produce its own aftershock sequence, the MOL fitted starting at the mainshock

was found to have better performance than the CMOL. These results were limited as only one

example was shown for each case.

In this study, the forecasting of known large aftershocks was also evaluated. The ETAS

model did not present significant predictive power in terms of estimating large events, nor did

the ETAS model show greater predictive power than the MOL or CMOL. This is not surprising

as there was no obvious increase in seismicity prior to the forecasting time intervals. The

probabilities for these known large aftershocks were all very small.

During shorter time intervals, it may be advisable to use both the MOL and ETAS models

and consider the highest forecast probabilities if there is no prior information available for se-

lecting the most suitable model for forecasting. When there is prior information available, such

as a foreshock sequence or known background seismicity rates, the ETAS model parameter es-

timates produced by the MLE estimate better accounts for the early aftershock behaviour than

the MOL. Regardless, the higher probability for large aftershocks should be considered for

real-time forecasting as there was no consistent relationship between the probability forecasts

between the ETAS and the MOL.

5.1 Summary of Work

In this work, the three goals provided in the Introduction were achieved by comparison

of the forecasting test performance. As noted in the Introduction, for a model to be useful in

the forecasting process, it must fit to the training data well, then demonstrate some forecasting
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ability. Quantified scores from forecasting tests were analyzed to demonstrate each model’s

forecasting skill. In addition, testing of competing models and relative performance was done.

The scope of this work was targeted towards the short-term forecasts for the week following

immediately afterwards. The evolution of the model parameter fit, forecasting probability, and

forecast test scores were produced. For the Amatrice, Kumamoto, and Darfield sequences, the

probability of large aftershocks at known times were calculated.

In this study, four of the five case studies demonstrated that the ETAS model was the su-

perior choice for forecasting by performing better on the individual tests. The forecast perfor-

mance on the tests was consistent when increasing the magnitude cutoff M0, indicating that

the models and forecasting methods would be valid for catalogs with greater incompleteness.

However, the probability of large aftershocks decreased when M0 increased, suggesting that all

of the models may underestimate the probability of large aftershocks. Some of the limitations

of this study and comparison to previous forecasting results were addressed in Chapters 3 and

4. None of the models tested indicated forecasting ability for known aftershocks outside of

the “short-term”. This work also confirms that the EVD and BPD methods for the MOL and

CMOL produce similar forecast results and thus, perform similarly on the forecasting tests.

Retrospective testing is not entirely representative of real-time testing. The goal of this

study was not to present a specific framework to implement for real-time decision making.

Instead, the aim was to present a method in which to evaluate a variety of models and to

demonstrate how to interpret the statistical testing.

Based on these results, I would suggest that the first step during a forecast is to implement

either the MOL or, the ETAS model and the MOL, depending on prior experience and informa-

tion available. When in doubt, or if the ETAS model does not fit well and the prior conditions

are not well established, the MOL should be prioritized and used for early forecasting. If the

ETAS model appears to fit well, or the background rate in an area is well understood, then it

can be used. However, both the ETAS and MOL can be used to forecast to estimate a range of

different forecast probabilities for large aftershocks as the MOL forecast is relatively computa-
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tionally inexpensive. The CMOL is not recommended in cases with a strong aftershock unless

the mainshock occurs during the sequence or there is strong evidence for elevated seismicity

levels following a large aftershock that results in a shift in the MOL parameters. Caution is

recommended as the parameter estimation during the early secondary aftershocks may not be

stable and the contributions from the first and second large shocks may be difficult to separate

out. The MOL, CMOL, and the ETAS model can all be run at the same time for forecasting pur-

poses. Assuming the computational capacity is available, there will be a span of probabilities

produced by different models that can then be evaluated for risk.

5.2 Suggestions

The results of this work do suggest that the ETAS model in conjunction with the BPD

is a closer representation of the sequences during forecasting. The implication is that the

ETAS model is potentially more suitable for real-time forecasting as well. However, the ETAS

model tends to take on the order of 10 times longer than the MOL to run, and even in the

retrospective analyses, the ETAS model parameter estimates were assisted by knowledge of the

background seismicity in advance. The number of sampling steps for the MCMC procedure

cannot be reduced significantly either. In addition, for the Monte Cristo Range sequence,

without fixing the K parameter, the model parameter estimates did not converge. Based on

these two major reasons, the ETAS model should be well justified in its use for real-time

forecasting. For example, it can be applied to sequences with complex fault rupture areas

which are expected to potentially rupture, leading to bursts of seismic clustering. Alternatively,

if the MOL clearly cannot capture the behaviour of the sequence, then the ETAS model can be

applied. Additional work such as that done by [van der Elst et al., 2022] comparing the ETAS

model to the standard Reasenberg-Jones method of forecasting should be done regularly where

resources are available.

In anticipation of computational time usage, two suggestions to address ETAS forecasting

concerns are provided. The first is to determine in more detail a range of standard parameters
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for the ETAS model in areas of concern. As the ETAS model is stochastic in nature, the

MLE method is more sensitive to the initiating model parameters that the solver is provided.

More work can be done to develop these reference parameter ranges. Previously published

parameter values are limited to large regions and may not be entirely descriptive of the regions

that have recently experienced changes to the local stress field. The database of parameters and

simulations can be updated regularly to be associated with the latest events. Standard expected

ETAS parameters can also be used for the MLE method during a real-time forecast as the

initiating values when solving the optimization problem. As the parameter values (either the

standard ones, or the MLE solution) are used as prior values in the BPD, further study is well

justified. For example, initiating parameter values may be related to the physical conditions of

the region of interest.

Second, the behaviour of existing sequences can be analyzed in a similar fashion to this

study to identify specific traits in the early aftershock sequence that may provide more context

for prioritizing the ETAS model, or knowledge that the MOL will be sufficient, in describing

the sequence and producing a more reliable forecast. Further work may include development

of indices for clustering, smoothness, and other metrics to assist in the choice of aftershock

model without requiring retrospective knowledge.

Based on the results in this work, it appears that the CMOL does not serve any additional

purpose. As the CMOL can only be applied following a second large shock, it is less useful than

the ETAS model and the MOL in forecasting during the early sequence. However, the CMOL

can easily be included in the automated forecasting methods already in place. Following a

second large event that is part of an ongoing sequence, the CMOL can be run parallel to the

MOL. To reduce the complexity in τ selection, a suggestion regarding automatic use of the

CMOL is provided. The CMOL can automatically be fitted to any instances of large aftershocks

taking place at least one day from the initiating event, with magnitude M > Mmain − 1.5 and

when the number of observed events during [τ, τ+0.5days] is larger than that during [τ−0.5, τ].

Any large discrepancies can be resolved by adding a layer of review consisting of experts who
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can analyze the model results. At this point, the ETAS model may also be a good choice for

better characterization of the sequence if it was not previously in use.

Further analysis of the CMOL is recommended. The CMOL performed reasonably well

in the instance of the Kumamoto sequence, and better than the MOL did when applied to the

mainshock. Comparisons of the CMOL to the MOL for foreshock-aftershock sequences may

reveal patterns or conditions under which the CMOL may perform better with the additional

contributions from the foreshocks. Additional analysis will also provide better constraints

under when the CMOL should be automatically implemented.

An implicit assumption of this work is the expectation that the GR law sufficiently de-

scribes the past and forecasted magnitude distribution. The method used in this work assumes

that the β value is stationary in time. Based on the split between the frequency-magnitude and

rate models, the expectation would be that impacts on the forecast test performance would be

negligible. Specifically for the MOL and the CMOL forecasts, the rate is determined inde-

pendently of the magnitude of the events, assuming the Mc is selected appropriately. During

the forecasting procedure, the magnitude of events is randomly drawn from the frequency-

magnitude distribution as described by the β. However, the ETAS model requires simulation

including sampling from the distribution and thus would result in a different rate depending on

β. To address the the change in b-value as the sequence progresses, an adaptive β estimation

method can be introduced.

The use of Bayesian methods in this work, while powerful and accounts for model parame-

ter uncertainty, is also strongly affected by the choice of prior values for the model parameters.

Model parameters which affect the rate such as µ, K for the ETAS model and K0, K1, and K2

for the MOL and CMOL strongly influence the distribution during the MCMC sampling pro-

cess, though [Shcherbakov et al., 2019] suggests that β, K, c, p, α should be stable when the

prior changes, µ is the most impacted. Interpretation of results with fixed µ should be evaluated

carefully.

Lastly, the Bayesian p-test can be implemented with an upper limit for “passing”, as ex-
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treme success should be considered a “pass with caution” as the number of events in the fore-

cast is not scaled to the number of events in the observed period. Examples of limits could be

p ≤ 0.99 as an upper limit to passing and p ≥ 0.95 as passing, but with caution.

5.3 Final Remarks

This work is also intended to encourage more work in terms of reviewing the statistics of

the forecasting results when the opportunity to do retrospective work is available. The regular

testing and analysis of model fits is common practice in other fields which implement the

use of models to fit behaviour of complex data. In the case of earthquakes, the data quality

is variable and may be difficult to access. In addition, each earthquake sequence is different

even during retrospective analysis. Thus, unlike with some other data heavy fields, it may be

necessary to evaluate the results for individual sequences instead of searching for a singular

model to apply for multiple sequences. The statistical analyses will provide further direction

for future forecasting developments. In particular, it may be possible to identify certain features

of sequences associated with better forecasting performance using specific models. Some of the

limitations and suitability for using these models and methods were discussed, and suggestions

for future work provided.

The questions presented at the beginning of this thesis were partially addressed. I presented

the first instance of compiled probability comparisons using Bayesian methods in forecasting

that involves the use of statistical tests modified from CSEP and the additional Bayesian p-

test for several sequences. These test results show that the ETAS model tends to forecast the

behaviour of the sequences in a more similar manner to that of the true sequence in short fore-

casts. However, the results of the work do not clearly indicate which forecast is better in terms

of forecasting large aftershocks. The method in which the aftershock magnitudes are selected

is based on assumed knowledge of the frequency-magnitude distribution. By modifying the

method in which the GR law is sampled, or forecasting the change in β, the forecast of large

aftershocks may become more accurate.
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More sequences should be reviewed with these statistical tests, particularly under the cir-

cumstances of low magnitude completeness or those of doublet form. The results can be ex-

tended to spatiotemporal versions of models in a straight-forward fashion.
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Appendix A

Functions and MATLAB Settings

A.1 Log-Likelihood Functions

To solve the aftershock model parameters, the negative log-likehood functions of the af-

tershock models are minimized, thus maximizing the log-likelihood. For a typical aftershock

decay that can be described by the MOL, the log-likelihood of the MOL was proposed as a

solution by Ogata (1983), Ogata1978 and is shown as

ln L(θ) =
N∑

i=1

ln λω(ti) −
∫ Te

Ts

λ(t)dt (A.1)

[Ogata and Zhuang, 2006, Zhuang and Ogata, 2006] estimated over the training time interval

[Ts,Te] for N events during the time interval. This solution is also valid for the CMOL.

The likelihood function for the ETAS model is similar and dependency on time is included.

Then generically, the rate function can be replaced by λω(t|Ht) for a stationary process

[Ogata and Zhuang, 2006]. If the ETAS model is a non-homogeneous Poisson process, the

likelihood function for time-dependent λω(t|Ht) and event magnitudes described by Fθ(m) is

L(Mn|θ, ω) = e−Λω(Ts,Te)
n∏

j=1

λω(tk+ j)
n∏

j=1

fθ(mk+ j) (A.2)
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[Daley and Vere-Jones, 2003]. fθ(m) = dFθ(m)
dm is the probability density function, Λω(Ts,Te)

is the productivity function during the training time interval [Ts,Te], and k denotes the events

occuring prior to Ts. The magnitude and time of n events is given by Mn = {(tk+ j,mk+ j) f or j =

1, . . . n} during the training time interval. The productivity function can be described explicitly

with

Λω(Ts,Te) = µ(Te − Ts) +
Kc

p − 1

k∑
i=1

eα(mi−m0)
[(Ts − ti

c
+ 1
)1−p

−

(Te − ti

c
+ 1
)1−p]

(A.3)

+
Kc

p − 1

NTe∑
i=k+1:Ts≤ti≤Te

eα(mi−m0)
[
1 −
(Te − ti

c
+ 1
)1−p]

(A.4)

when p , 1. For p = 1, the productivity function is

Λω(Ts,Te) = µ(Te − Ts) + Kc
k∑

i=1

log

 Te−ti
c + 1

Ts−ti
c + 1

 (A.5)

+Kc
NTe∑

i=k+1:Ts≤ti≤Te

eα(mi−m0) log
(Te − ti

c
+ 1
)

(A.6)

[Shcherbakov, 2022] which can then be substituted into the log-likelihood function resulting in

ln[L(Mn|θ, ω)] = −Λω(Ts,Te) + +
n∑

j=1

ln[λω(tk+ j)] +
n∑

j=1

ln[ fθ(mk+ j)] (A.7)

= −Λω(Ts,Te) +
n∑

j=1

ln

µ + K

Ntk+ j∑
i=ti<tk+ j

eα(mi−m0)( tk+ j−ti
c + 1

)p
 (A.8)

+n ln β − β
∑
j=1

n(m̄ − mc) (A.9)

where the productivity function is substituted in for each case.

A.2 fmincon() Settings

To use the fmincon() function, lower and upper boundaries for the parameter estimates are

set, and initializing parameters ωinit are provided.
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For all of the aftershock models, the parameter estimate range can only be positive, thus

setting the lower boundary for all parameters at 0. The upper boundary for MOL estimates

is limited by a maximum value for individual parameters of ωupp = {10000.0, 10.0, 10.0}.

When initiating the function to solve for the MLE, the initial parameters are set to

ωinit = {100.0, 0.05, 1.1}. For the CMOL, the upper bound on the parameter estimates

is ωupp = {1000.0, 10.0, 10.0, 1000.0, 10.0, 10.0} and the MLE estimation is initiated with

parameter estimates ωinit = {100.0, 0.2, 1.1, 38.0, 0.4, 1.6}. For the ETAS model, ωupp =

{100.0, 1000.0, 10.0, 10.0, 10.0} and the MLE estimation is initiated with parameter estimates

ωinit = {0.05, 0.1, 0.1, 0.1, 1.6}.



Appendix B

Additional Tables and Figures

B.1 The 2009 L’Aquila, Italy Sequence

Table B.1: The 2009 L’Aquila sequence model parameter estimates for the MOL using the
MLE method and associated errors using 95% confidence intervals.

∆Tm β ± K0 ± c0 ± p0 ±

1 2.66 0.12 309.57 968.97 0.61 1.21 2.49 3.29
2 2.55 0.11 209.46 212.58 0.44 0.44 2.05 1.05
3 2.50 0.10 141.82 45.68 0.21 0.17 1.38 0.39
4 2.43 0.09 134.01 24.56 0.11 0.09 1.05 0.21
5 2.43 0.09 134.57 25.84 0.12 0.09 1.09 0.20
6 2.43 0.09 133.65 23.98 0.11 0.08 1.05 0.17
7 2.45 0.09 132.53 22.17 0.10 0.07 1.01 0.15
10 2.44 0.08 130.59 19.48 0.08 0.06 0.95 0.11
14 2.46 0.08 132.46 20.62 0.10 0.06 0.99 0.10
21 2.47 0.08 133.60 20.75 0.10 0.06 1.01 0.09
30 2.48 0.08 136.72 21.61 0.12 0.06 1.04 0.08
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Table B.2: The 2009 L’Aquila sequence model parameter estimates for the CMOL using the
MLE method and associated errors using 95% confidence intervals.

∆Tm β ± K1 ± c1 ± p1 ±

4 2.43 0.09 151.41 210.35 0.26 4.95 1.54 126.69
5 2.43 0.09 150.50 68.60 0.26 0.28 1.53 0.72
6 2.43 0.09 148.10 61.39 0.25 0.18 1.51 0.40
7 2.45 0.09 147.88 17.18 0.25 0.11 1.52 0.41
10 2.44 0.08 152.90 27.35 0.28 0.10 1.59 0.31
14 2.46 0.08 147.06 1.92 0.25 0.01 1.52 0.02
21 2.47 0.08 145.11 15.13 0.24 0.06 1.49 0.17
30 2.48 0.08 138.46 733.39 0.21 6.31 1.40 2.56

∆Tm K2 ± c2 ± p2 ±

4 212.09 71.55 0.05 11.26 1.10 198.20
5 12.38 14.59 0.04 0.11 1.05 0.58
6 17.18 17.68 0.02 0.12 0.75 0.47
7 21.08 14.53 0.01 0.02 0.61 0.25
10 26.21 5.70 0.002 0.01 0.46 0.25
14 23.95 0.41 0.004 0.01 0.53 0.02
21 23.12 3.63 0.01 0.02 0.55 0.04
30 21.12 91.06 0.01 0.74 0.61 3.25

Table B.3: The 2009 L’Aquila sequence model parameter estimates for the ETAS model using
the MLE method and associated errors using a 95% confidence intervals.

∆Tm β ± µ ± K ± c ± p ± α ±

1 2.54 0.12 0.17 0.16 0.74 0.98 0.48 0.84 3.21 3.78 1.97 0.40
2 2.46 0.11 0.19 0.17 16.00 11.10 0.04 0.05 2.12 0.96 1.01 0.23
3 2.43 0.10 0.18 0.17 10.50 6.90 0.06 0.07 2.17 0.94 1.15 0.22
4 2.37 0.09 0.18 0.16 11.00 6.77 0.05 0.05 2.05 0.76 1.14 0.21
5 2.37 0.09 0.17 0.16 9.96 5.99 0.05 0.05 1.99 0.65 1.18 0.20
6 2.38 0.09 0.16 0.16 10.40 6.07 0.04 0.03 1.80 0.47 1.18 0.19
7 2.40 0.09 0.15 0.15 11.00 6.24 0.03 0.03 1.66 0.37 1.18 0.19
10 2.39 0.08 0.14 0.15 10.20 5.49 0.03 0.02 1.52 0.27 1.21 0.18
14 2.41 0.08 0.13 0.15 8.32 4.40 0.03 0.02 1.48 0.22 1.29 0.18
21 2.42 0.08 0.13 0.15 4.87 2.70 0.03 0.02 1.40 0.17 1.47 0.18
30 2.44 0.08 0.13 0.15 2.68 1.62 0.04 0.02 1.34 0.14 1.68 0.19
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Figure B.1: Probability of large aftershocks for the L’Aquila sequence using the a) MOL and
b) CMOL produced by the EVD.

a) b)

Figure B.2: The performance of the MOL and CMOL for various training time intervals for
the L’Aquila sequence using the EVD method for forecasting. Forecast performance scores are
listed for the a) N-test (δ1, δ2) and the b) M-test (κ).

Table B.4: Variance for 2009 L’Aquila sequence Gamma priors. Gamma prior means are
provided using the MLE point parameter estimate. In order, the priors are for the MOL, CMOL,
and ETAS model.

K c p
10.0 1e-3 0.01

K1 c1 p1 K2 c2 p2

1.0 1e-4 0.01 0.5 1e-7 0.01
µ K c p α

0.1 0.01 0.0001 0.05 0.1
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Figure B.3: Average number of events generated during seven day forecast for L’Aquila se-
quence using the BPD method.
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B.2 The 2016 Amatrice, Italy Sequence

Table B.8: The 2016 Amatrice sequence model parameter estimates for the MOL using the
MLE method and associated errors using a 95% confidence intervals.

∆Tm β ± K0 ± c0 ± p0 ±

1 2.15 0.10 120.87 36.42 0.19 0.24 1.52 0.91
2 2.19 0.09 122.65 44.34 0.22 0.18 1.66 0.58
3 2.28 0.09 120.50 19.31 0.09 0.07 1.12 0.23
4 2.30 0.09 121.52 18.70 0.09 0.07 1.09 0.19
5 2.28 0.09 121.59 18.77 0.09 0.06 1.09 0.17
6 2.30 0.08 121.59 18.03 0.08 0.06 1.07 0.15
7 2.32 0.08 121.64 18.60 0.09 0.06 1.09 0.14
10 2.31 0.08 120.91 17.27 0.08 0.05 1.05 0.11
14 2.31 0.08 120.70 16.46 0.07 0.04 1.02 0.10
21 2.33 0.08 122.21 17.28 0.08 0.04 1.05 0.09
30 2.33 0.07 120.31 16.03 0.07 0.04 1.02 0.07
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Figure B.4: Probability of large aftershocks for the Amatrice sequence using the MOL pro-
duced by the EVD.
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Table B.9: The Amatrice sequence ETAS model parameters estimated using the MLE method
without fixing of model parameters with associated 95% confidence intervals.

∆Tm β ± µ ± K ± c ± p ± α ±

1 2.33 0.11 0.00 303.00 0.19 1.40 0.05 0.21 1.15 2.01 2.64 2.08
2 2.35 0.10 0.00 57.80 1.36 2.85 0.06 0.12 1.55 1.36 2.05 0.67
3 2.43 0.10 0.00 36.90 3.28 4.45 0.02 0.04 1.29 0.68 1.92 0.44
4 2.45 0.10 0.00 23.90 4.45 5.03 0.02 0.03 1.27 0.52 1.87 0.37
5 2.41 0.09 0.00 18.50 2.65 3.13 0.02 0.03 1.24 0.46 2.00 0.38
6 2.43 0.09 5.22 13.70 2.17 2.58 0.03 0.04 1.31 0.48 2.03 0.38
7 2.45 0.09 2.77 11.30 2.38 2.69 0.02 0.03 1.27 0.41 2.02 0.37
10 2.43 0.09 4.89 7.33 1.31 1.56 0.03 0.04 1.28 0.37 2.17 0.37
14 2.42 0.08 2.90 5.44 0.96 1.11 0.03 0.03 1.21 0.29 2.27 0.36
21 2.44 0.08 0.00 3.58 0.75 0.90 0.02 0.03 1.10 0.22 2.38 0.38
30 2.43 0.08 0.00 2.31 1.82 1.62 0.01 0.01 1.05 0.15 2.29 0.28

Table B.10: The 2016 Amatrice sequence model parameter estimates for the ETAS model
using the MLE method and associated errors using a 95% confidence intervals where µ = 0.03
is fixed. These model parameters were used as the Gamma prior mean during the MCMC
sampling procedure.

∆Tm β ± K ± c ± p ± α ±

1 2.33 0.11 0.19 1.40 0.05 0.21 1.15 2.01 2.64 2.08
2 2.35 0.10 1.36 2.85 0.06 0.12 1.55 1.36 2.05 0.67
3 2.43 0.10 3.28 4.45 0.02 0.04 1.29 0.68 1.92 0.44
4 2.45 0.10 4.45 5.02 0.02 0.03 1.27 0.52 1.86 0.37
5 2.41 0.09 2.65 3.13 0.02 0.03 1.24 0.46 2.00 0.38
6 2.43 0.09 2.44 2.91 0.02 0.03 1.18 0.39 2.05 0.38
7 2.45 0.09 2.53 2.88 0.02 0.02 1.19 0.37 2.04 0.37
10 2.43 0.09 1.61 1.92 0.02 0.02 1.11 0.28 2.20 0.37
14 2.42 0.08 1.08 1.27 0.02 0.02 1.10 0.24 2.29 0.36
21 2.44 0.08 0.75 0.90 0.02 0.03 1.10 0.22 2.38 0.38
30 2.43 0.08 1.81 1.61 0.01 0.01 1.05 0.15 2.29 0.28

Table B.11: Variance for 2010 Amatrice sequence Gamma priors. Gamma prior means are
provided using the MLE point parameter estimate. In order, the priors are for the MOL, and
ETAS model.

K c p
10.0 0.001 0.01

µ K c p α

1e-7 0.001 1e-4 0.05 0.05
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a) b)

(a) M-test

Figure B.5: The performance of the MOL for various training time intervals for the Amatrice
sequence using the EVD method for forecasting. Forecast performance scores are listed for the
a) N-test (δ1, δ2) and the b) M-test (κ).

Figure B.6: Average number of events generated during seven day forecast for Amatrice se-
quence using the BPD method.
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B.3 The 2016 Kumamoto, Japan, Sequence

Table B.14: The 2016 Kumamoto sequence model parameter estimates for the MOL using the
MLE method and associated errors using a 95% confidence intervals.

∆Tm β ± K0 ± c0 ± p0 ±

1 2.03 0.09 60.42 17.11 0.02 0.02 1.26 0.24
2 2.04 0.09 63.50 11.69 0.02 0.01 1.22 0.17
3 2.06 0.08 71.62 10.40 0.02 0.01 1.12 0.12
4 2.03 0.08 78.27 9.77 0.01 0.01 1.05 0.10
5 2.06 0.08 82.85 9.35 0.01 0.01 1.01 0.09
6 2.08 0.08 82.91 8.94 0.01 0.01 1.01 0.08
7 2.10 0.08 83.06 8.67 0.01 0.01 1.01 0.08
10 2.11 0.08 78.88 8.11 0.01 0.01 1.05 0.07
14 2.11 0.08 79.25 7.85 0.01 0.01 1.05 0.07
21 2.11 0.07 81.20 7.65 0.01 0.01 1.02 0.06
30 2.12 0.07 80.48 7.57 0.01 0.01 1.03 0.05
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Figure B.7: Probability of large aftershocks for the Kumamoto sequence using the a) MOL and
b) CMOL produced by the EVD.
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Table B.15: The 2016 Kumamoto sequence model parameter estimates for the CMOL using
the MLE method and associated errors using a 95% confidence intervals.

∆Tm β ± K1 ± c1 ± p1 ±

1 1.89 0.07 26.28 5.54 0.03 0.05 1.25 0.28
2 1.91 0.07 26.55 7.77 0.03 0.03 1.23 0.44
3 1.93 0.07 28.65 4.16 0.02 0.02 1.15 0.20
4 1.91 0.07 31.26 6.04 0.02 0.22 1.06 1.78
5 1.94 0.06 34.18 2.07 0.01 0.01 0.98 0.04
6 1.96 0.06 34.47 1.69 0.01 0.01 0.97 0.02
7 1.97 0.06 34.93 9.82 0.01 0.02 0.96 0.26
10 1.98 0.06 29.81 33.17 0.02 0.22 1.11 0.13
14 1.98 0.06 30.71 7.99 0.02 0.10 1.08 0.16
21 1.99 0.06 38.30 11.77 0.01 0.01 0.89 0.20
30 2.00 0.06 34.59 11.44 0.01 0.02 0.97 0.30

∆Tm K2 ± c2 ± p2 ±

1 50.84 8.19 0.03 0.02 1.38 0.18
2 53.49 5.07 0.03 0.02 1.34 0.92
3 59.42 13.45 0.02 0.01 1.24 0.36
4 63.54 15.03 0.02 0.01 1.18 0.12
5 65.19 2.89 0.02 0.01 1.15 0.07
6 65.03 3.88 0.02 0.00 1.15 0.02
7 64.72 10.90 0.02 0.01 1.15 0.62
10 66.42 52.98 0.02 0.04 1.15 1.21
14 65.98 17.50 0.02 0.08 1.15 0.74
21 57.78 23.04 0.02 0.01 1.23 0.26
30 62.61 20.95 0.02 0.01 1.18 0.22

Table B.16: The 2016 Kumamoto sequence model parameter estimates for the ETAS model
using the MLE method and associated errors using a 95% confidence intervals.

∆Tm β ± µ ± K ± c ± p ± α ±

1 1.91 0.07 15.10 18.30 0.44 0.55 0.03 0.02 1.58 0.41 2.25 0.30
2 1.92 0.07 15.50 16.60 0.39 0.49 0.03 0.02 1.55 0.38 2.28 0.29
3 1.95 0.07 15.40 13.30 0.43 0.49 0.03 0.02 1.55 0.37 2.26 0.27
4 1.92 0.07 15.00 11.20 0.51 0.55 0.03 0.02 1.53 0.34 2.23 0.26
5 1.96 0.07 17.10 9.13 0.51 0.55 0.03 0.02 1.56 0.34 2.22 0.25
6 1.97 0.07 13.90 7.65 0.59 0.61 0.03 0.02 1.50 0.29 2.20 0.25
7 1.99 0.07 11.90 6.52 0.61 0.62 0.02 0.02 1.46 0.26 2.19 0.24
10 2.00 0.07 1.69 4.42 0.89 0.85 0.02 0.01 1.26 0.16 2.12 0.23
14 2.00 0.07 1.95 2.96 1.06 0.97 0.02 0.01 1.26 0.15 2.08 0.22
21 2.01 0.06 2.39 1.96 1.24 1.06 0.01 0.01 1.27 0.13 2.05 0.20
30 2.02 0.06 1.17 1.31 1.22 1.01 0.01 0.01 1.23 0.11 2.06 0.20
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a) b)

Figure B.8: The performance of the MOL and CMOL for various training time intervals for
the Kumamoto sequence using the EVD method for forecasting. Forecast performance scores
are listed for the a) N-test (δ1, δ2) and the b) M-test (κ).

Table B.17: Variance for 2016 Kumamoto sequence Gamma priors. Gamma prior means are
provided using the MLE point parameter estimate. In order, the priors are for the MOL, CMOL,
and ETAS model.

K c p
10.0 1e-5 0.01

K1 c1 p1 K2 c2 p2

1.0 1e-6 0.005 1.0 1e-4 0.01
µ K c p α

0.1 0.01 1e-7 0.01 0.1
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Figure B.9: Average number of events generated during seven day forecast for Kumamoto
sequence using the BPD method.



Chapter B. Additional Tables and Figures 149

B.4 The 2020 Monte Cristo Range, United States of Amer-

ica, Sequence

Table B.21: The 2020 Monte Cristo Range sequence model parameter estimates for the MOL
using the MLE method and associated errors using a 95% confidence intervals.

∆Tm β ± K0 ± c0 ± p0 ±

1 0.82 0.10 33.82 17.11 0.17 0.02 0.49 0.41
2 0.90 0.09 22.69 11.69 0.15 0.01 0.55 0.26
3 0.89 0.09 87.95 10.40 0.41 0.01 0.95 0.47
4 0.90 0.08 94.85 9.77 0.40 0.01 1.01 0.41
5 0.91 0.08 53.63 9.35 0.26 0.01 0.87 0.26
6 0.91 0.08 35.03 8.94 0.17 0.01 0.76 0.19
7 0.91 0.07 49.51 8.67 0.23 0.01 0.87 0.21
10 0.92 0.07 63.63 8.11 0.27 0.01 0.97 0.20
14 0.93 0.07 54.97 7.85 0.23 0.01 0.96 0.16
21 0.95 0.07 69.23 7.65 0.27 0.01 1.06 0.15
30 0.95 0.06 53.43 7.57 0.22 0.01 1.01 0.11
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Figure B.10: Probability of large aftershocks for the Monte Cristo Range sequence using the
MOL produced by the EVD.
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Table B.22: Monte Cristo Range sequence ETAS model parameters estimated using the MLE
method without fixing of model parameters with associated 95% confidence intervals.

∆Tm β ± µ ± K ± c ± p ± α ±

1 2.05 0.11 100.00 503.00 0.0008 0.1310 0.03 0.46 0.79 4.33 3.54 43.60
2 2.20 0.10 47.30 279.00 0.0002 0.0403 0.04 0.36 0.70 2.04 3.80 45.80
3 2.17 0.09 0.00 231.00 0.0000 0.0033 0.28 1.25 0.94 2.69 4.23 33.30
4 2.16 0.09 0.00 132.00 0.0000 0.0027 0.34 1.16 1.01 2.10 4.09 16.00
5 2.18 0.08 0.00 92.50 0.0000 0.0050 0.21 0.61 0.86 1.22 4.12 30.40
6 2.18 0.08 0.00 70.90 0.0830 0.2510 0.19 0.48 1.03 1.22 2.21 0.77
7 2.17 0.08 0.00 52.70 0.0552 0.1620 0.35 0.77 1.23 1.44 2.28 0.76
10 2.19 0.07 0.00 25.00 0.1170 0.2220 0.44 0.73 1.47 1.45 2.07 0.53
14 2.22 0.07 0.00 18.20 0.0344 0.0988 0.32 0.48 1.15 0.84 2.40 0.76
21 2.24 0.07 0.00 9.36 0.0505 0.1220 0.36 0.41 1.22 0.69 2.30 0.64
30 2.26 0.07 0.00 5.52 0.0294 0.0664 0.32 0.31 1.12 0.42 2.45 0.58

Table B.23: Monte Cristo Range sequence ETAS model parameters estimated using the MLE
method with the µ parameter fixed to µ = 0.0 with associated 95% confidence intervals. Some
errors are so small that they are reported here as less than 0.01.

∆Tm β ± K ± c ± p ± α ±

1 2.05 0.11 6e-5 < 0.01 0.001 < 0.01 0.42 < 0.01 4.44 < 0.01
2 2.20 0.10 2e-4 0.02 0.013 0.24 0.49 1.44 3.95 34.50
3 2.17 0.09 1e-5 < 0.01 0.283 1.27 0.94 2.72 4.46 27.80
4 2.16 0.09 3e-5 < 0.01 0.342 1.17 1.01 2.10 4.20 18.70
5 2.18 0.08 6e-5 0.01 0.206 0.61 0.86 1.22 4.05 27.70
6 2.18 0.08 0.08 0.25 0.189 0.48 1.03 1.22 2.21 0.77
7 2.17 0.08 0.06 0.16 0.351 0.77 1.23 1.44 2.28 0.76
10 2.19 0.07 0.12 0.22 0.435 0.73 1.47 1.45 2.07 0.53
14 2.22 0.07 0.03 0.10 0.324 0.48 1.15 0.84 2.40 0.76
21 2.24 0.07 0.05 0.12 0.357 0.41 1.22 0.69 2.30 0.64
30 2.26 0.07 0.03 0.07 0.316 0.31 1.12 0.42 2.45 0.58
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Table B.24: The 2020 Monte Cristo Range sequence model parameter estimates for the ETAS
model using the MLE method and associated errors using a 95% confidence intervals. The
model parameters µ = 0.0 and K = 0.1 were fixed. The model parameter c = 0.3 was fixed for
∆Tm = 1, 2 days for stability. These model parameters were used as the Gamma prior mean
during the MCMC sampling procedure.

∆Tm β ± c ± p ± α ±

1 2.05 0.11 0.30 N/A 1.17 18.10 2.11 5.20
2 2.20 0.10 0.30 N/A 1.08 6.38 2.10 3.59
3 2.17 0.09 0.27 1.12 1.17 3.24 2.13 1.93
4 2.16 0.09 0.29 0.96 1.22 2.88 2.13 1.51
5 2.18 0.08 0.24 0.65 1.13 1.79 2.14 1.21
6 2.18 0.08 0.19 0.48 1.06 1.26 2.16 0.73
7 2.17 0.08 0.37 0.79 1.35 1.62 2.12 0.62
10 2.19 0.07 0.44 0.74 1.45 1.43 2.11 0.55
14 2.22 0.07 0.29 0.41 1.24 0.86 2.13 0.55
21 2.24 0.07 0.32 0.35 1.27 0.67 2.13 0.51
30 2.26 0.07 0.26 0.26 1.20 0.43 2.14 0.41

a) b)

(a) M-test

Figure B.11: The performance of the MOL for various training time intervals for the Monte
Cristo Range sequence using the EVD method for forecasting. Forecast performance scores
are listed for the a) N-test (δ1, δ2) and the b) M-test (κ).

Table B.25: Variance for 2020 Monte Cristo Range sequence Gamma priors. Gamma prior
means are provided using the MLE point parameter estimate. In order, the priors are for the
MOL and ETAS model

K c p
10.0 1e-3 0.01

µ K c p α

1e-7 1e-3 1e-4 0.01 0.05
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Figure B.12: Average number of events generated during seven day forecast for Monte Cristo
Range sequence using the BPD method.

B.5 The 2010 Darfield Sequence and 2011 Christchurch

Events, New Zealand
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Figure B.13: Probability of large aftershocks for the Darfield sequence with M0 = 3.3 using
the MOL produced by the EVD.
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Table B.28: The 2010 Darfield sequence model parameter estimates at M0 = 3.3 for the MOL
using the MLE method and associated errors using a 95% confidence intervals.

∆Tm β ± K0 ± c0 ± p0 ±

1 1.38 0.08 59.14 17.03 0.004 0.01 0.83 0.17
2 1.58 0.08 74.79 12.64 0.002 0.00 0.72 0.11
3 1.70 0.08 88.34 11.12 0.001 0.00 0.64 0.08
4 1.76 0.08 83.82 9.61 0.001 0.00 0.67 0.07
5 1.78 0.08 80.58 8.75 0.002 0.00 0.69 0.07
6 1.83 0.08 80.13 8.29 0.002 0.00 0.70 0.07
7 1.86 0.08 78.58 7.94 0.002 0.00 0.71 0.07
10 1.92 0.08 75.91 7.41 0.003 0.00 0.74 0.06
14 1.99 0.07 77.16 7.18 0.002 0.00 0.72 0.05
21 2.06 0.07 74.87 7.06 0.003 0.00 0.76 0.05
30 2.14 0.07 74.38 7.06 0.004 0.01 0.77 0.05

Table B.29: The 2010 Darfield sequence model parameter estimates using M0 = 3.3 for the
ETAS model using the MLE method and associated errors using a 95% confidence intervals.
The model parameter µ = 0.0 was fixed during the model parameter estimation.

∆Tm β ± K ± c ± p ± α ±

1 1.90 0.13 51.90 85.90 0.009 0.017 1.51 0.77 0.05 0.95
2 2.11 0.12 34.30 46.30 0.003 0.008 1.02 0.74 0.72 1.01
3 2.20 0.11 27.20 56.10 0.002 0.007 0.95 0.48 0.77 1.46
4 2.25 0.11 23.50 19.40 0.003 0.004 0.99 0.20 0.84 0.58
5 2.25 0.11 20.90 17.00 0.004 0.006 1.05 0.25 0.81 0.69
6 2.30 0.10 17.70 14.30 0.004 0.006 1.01 0.20 0.92 0.57
7 2.32 0.10 15.90 30.60 0.005 0.009 1.02 0.42 0.94 2.13
10 2.38 0.10 11.80 20.30 0.005 0.015 0.99 0.51 1.12 2.34
14 2.43 0.10 11.80 12.70 0.003 0.004 0.95 0.14 1.24 0.38
21 2.51 0.10 8.93 9.05 0.005 0.007 0.97 0.14 1.30 0.47
30 2.58 0.09 8.41 8.89 0.004 0.013 0.95 0.15 1.41 1.35

Table B.30: Variance for 2010 Darfield sequence Gamma priors. Gamma prior means are
provided using the MLE point parameter estimate. In order, the priors are for the MOL and
ETAS model and remain the same for the different M0.

K c p
3.0 1e-6 0.01

µ K c p α

1e-7 1.0 1e-7 0.01 0.1

B.5.1 Increasing M0
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Table B.33: The 2010 Darfield sequence model parameter estimates with M0 = 3.5 for the
MOL using the MLE method and associated errors using a 95% confidence intervals.

∆Tm β ± K0 ± c0 ± p0 ±

1 1.50 0.10 33.41 12.29 0.008 0.010 1.03 0.22
2 1.67 0.10 44.33 9.71 0.005 0.007 0.90 0.14
3 1.79 0.10 55.72 8.94 0.002 0.004 0.79 0.10
4 1.84 0.10 54.21 7.86 0.002 0.004 0.80 0.09
5 1.88 0.10 53.75 7.26 0.002 0.004 0.80 0.09
6 1.92 0.10 53.84 6.89 0.002 0.004 0.80 0.08
7 1.95 0.10 53.05 6.59 0.003 0.004 0.81 0.08
10 2.04 0.10 52.41 6.12 0.003 0.004 0.82 0.07
14 2.13 0.09 54.05 5.91 0.002 0.004 0.80 0.06
21 2.17 0.09 51.68 5.69 0.003 0.005 0.84 0.06
30 2.23 0.09 51.08 5.61 0.004 0.005 0.85 0.06

Table B.34: The 2010 Darfield sequence model parameter estimates using M0 = 3.5 for the
ETAS model using the MLE method and associated errors using a 95% confidence intervals.
The model parameter µ = 0.0 was fixed during the model parameter estimation.

∆Tm β ± K ± c ± p ± α ±

1 2.12 0.17 45.40 44.10 0.004 0.005 1.27 0.31 0.62 0.56
2 2.31 0.16 32.20 113.00 0.002 0.006 1.08 0.47 0.99 3.92
3 2.39 0.15 29.00 28.20 0.002 0.003 0.99 0.18 0.98 0.60
4 2.45 0.14 22.40 79.00 0.002 0.029 0.98 1.32 1.14 3.79
5 2.48 0.14 19.20 18.80 0.002 0.004 0.99 0.20 1.20 0.79
6 2.53 0.14 16.90 17.50 0.002 0.003 0.96 0.14 1.30 0.55
7 2.56 0.14 14.40 15.20 0.002 0.003 0.95 0.14 1.41 0.53
10 2.66 0.14 11.50 13.00 0.002 0.003 0.93 0.13 1.56 0.44
14 2.74 0.13 11.60 12.50 0.002 0.003 0.91 0.10 1.56 0.40
21 2.77 0.13 9.71 9.78 0.002 0.004 0.95 0.11 1.59 0.37
30 2.83 0.13 9.54 15.70 0.002 0.004 0.95 0.19 1.65 0.98
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Table B.35: The 2010 Darfield sequence model parameter estimates using M0 = 3.7 for the
MOL using the MLE method and associated errors using a 95% confidence intervals.

∆Tm β ± K0 ± c0 ± p0 ±

1 1.74 0.12 19.91 9.05 0.009 0.011 0.27 0.22
2 1.95 0.13 29.95 7.92 0.005 0.007 0.16 0.14
3 2.03 0.12 35.87 7.23 0.003 0.005 0.12 0.10
4 2.08 0.12 34.81 6.40 0.003 0.005 0.11 0.09
5 2.12 0.12 35.24 5.98 0.003 0.005 0.10 0.09
6 2.18 0.12 35.75 5.70 0.003 0.005 0.10 0.08
7 2.21 0.12 35.28 5.45 0.003 0.005 0.09 0.08
10 2.29 0.13 35.01 5.05 0.003 0.005 0.09 0.07
14 2.41 0.13 36.84 4.87 0.003 0.004 0.07 0.06
21 2.43 0.13 35.12 4.62 0.004 0.004 0.07 0.06
30 2.50 0.13 34.74 4.51 0.004 0.005 0.07 0.06

Table B.36: The 2010 Darfield sequence model parameter estimates using M0 = 3.7 for the
ETAS model using the MLE method and associated errors using a 95% confidence intervals.
The model parameter µ = 0.0 was fixed during the model parameter estimation.

∆Tm β ± K ± c ± p ± α ±

1 2.69 0.24 0.43 1.22 0.0001 0.0007 1.18 0.21 4.07 0.94
2 3.02 0.24 50.70 52.70 0.0023 0.0036 1.16 0.27 0.92 0.66
3 2.97 0.21 49.00 47.30 0.0023 0.0030 1.13 0.23 0.85 1.86
4 3.03 0.21 41.80 36.70 0.0022 0.0069 1.11 0.42 0.99 1.80
5 3.06 0.21 35.00 35.30 0.0022 0.0032 1.09 0.17 1.11 0.67
6 3.16 0.21 31.00 31.10 0.0020 0.0029 1.05 0.17 1.21 0.61
7 3.19 0.21 28.20 86.70 0.0019 0.0085 1.05 0.16 1.28 0.91
10 3.31 0.21 22.60 25.40 0.0017 0.0029 1.01 0.16 1.46 0.52
14 3.44 0.20 23.70 27.00 0.0013 0.0021 0.97 0.14 1.48 0.52
21 3.44 0.20 19.70 61.60 0.0017 0.0026 1.01 0.12 1.54 1.66
30 3.53 0.20 18.80 19.90 0.0017 0.0029 1.01 0.20 1.57 0.38



Chapter B. Additional Tables and Figures 160

a) b)

Figure B.14: The performance of the MOL for various training time intervals for the Darfield
sequence using the EVD method for forecasting using M0 = 3.3. Forecast performance scores
are listed for the a) N-test (δ1, δ2) and the b) M-test (κ).

Figure B.15: Average number of events generated during seven day forecast for Darfield se-
quence with M0 = 3.3.



Chapter B. Additional Tables and Figures 161

a)

100

101

102

pr
ob

ab
ili

ty
 (

%
)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

m
ag

ni
tu

de

0 5 10 15 20 25 30

 T
m

 (days)

5.5
6
6.5
events

b)

100

101

102

pr
ob

ab
ili

ty
 (

%
)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

m
ag

ni
tu

de

0 5 10 15 20 25 30

 T
m

 (days)

5.5
6
6.5
events

c)

100

101

102

pr
ob

ab
ili

ty
 (

%
)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

m
ag

ni
tu

de

0 5 10 15 20 25 30

 T
m

 (days)

5.5
6
6.5
events

Figure B.16: Probability of large aftershocks for the Darfield sequence for M0 = 3.5 forecasted
using the a) MOL with BPD, b) MOL with EVD, and c) ETAS model.
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Figure B.17: Probability of large aftershocks for the Darfield sequence for M0 = 3.7 forecasted
using the a) MOL with BPD, b) MOL with EVD, and c) ETAS model.

a) b)

Figure B.18: N-test performance of the Darfield sequence with a) M0 = 3.5 and b) M0 = 3.7.
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a) b)

Figure B.19: M-test performance of the Darfield sequence with a) M0 = 3.5 and b) M0 = 3.7.

a) b)

Figure B.20: a) R-test performance of the Darfield sequence with M0 = 3.5. b) The associated
information gain is plotted for M0 = 3.5 with 95% confidence intervals.

a) b)

Figure B.21: a) R-test performance of the Darfield sequence with M0 = 3.7. b) The associated
information gain is plotted for M0 = 3.7 with 95% confidence intervals.
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