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1 Perinatal Malnutrition and Epigenetic
2 Regulation of Long-Term Metabolism AU3

AU1
AU2

3 Daniel B. Hardy

4 Abstract
5 Maternal malnutrition in perinatal life can have long-lasting adverse effects on
6 glucose and lipid homeostasis in the offspring, culminating in dyslipidemia,
7 insulin resistance, and obesity. Understanding the molecular mechanisms under-
8 lying how these nutritional deficits during perinatal life lead to permanent
9 changes in hepatic and adipose function will provide efficacious therapeutic
10 strategies to mitigate these metabolic defects short and long term. This chapter
11 addresses how epigenetic mechanisms mediate alterations in hepatic and adipose
12 gene expression identified from clinical studies and different experimental
13 models of maternal malnutrition. These include DNA methylation, posttransla-
14 tional histone modifications, and microRNAs.
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68 The Role of the Liver and Adipose in the Development
69 of Dysmetabolism and Long-Term CVD

70 Collectively AU7, the liver and adipose are critical for proper lipid and glucose metabo-
71 lism in mammals. Impaired development and functioning of either of these tissues
72 result in dyslipidemia leading to obesity and insulin resistance, culminating in the
73 metabolic syndrome (Mathieu et al. 2006; Wilson et al. 1998). Specifically, the liver
74 regulates cholesterol, glucose, and fatty acid homeostasis. With respect to choles-
75 terol, the liver plays a role in cholesterol synthesis (i.e., HMG-CoA), metabolism
76 (i.e., CYP7A1, APOE, LDL receptor), and/or transport (i.e., ABCA1, ABCG5/8)
77 (Repa and Mangelsdorf 1999). The liver also plays an essential role in regulating
78 glucose via the breakdown of glycogen (i.e., glycogen phosphorylase) versus the de
79 novo production of glucose from noncarbohydrates (i.e., PEPCK, G6Pase, and
80 FBPase) (Postic et al. 2004). Finally, the hepatic fatty acid biosynthesis pathway
81 facilitates the storage of energy surplus as cytosolic lipid droplets or circulating
82 triglyceride-rich lipoproteins (Jensen-Urstad and Semenkovich 2012). These tri-
83 glycerides can later be oxidized to provide energy during times of deficiency.
84 However accumulation of excess intracellular triglycerides, as occurs during obesity
85 (Bosello and Zamboni 2000; Riediger and Clara 2011), is characteristic of athero-
86 sclerosis and hepatic steatosis (Bansal et al. 2007; Donnelly et al. 2005;
87 Nordestgaard et al. 2007). The three main sources of free fatty acids that contribute
88 to increased hepatic triglycerides are dietary, circulating, and de novo synthesis
89 (Jensen-Urstad and Semenkovich 2012). Increased de novo lipogenesis in the liver
90 occurs via transcriptional activation of genes for enzymes including acetyl-CoA
91 carboxylase-α (ACCα), fatty acid synthase (FAS), and stearoyl-CoA desaturase
92 (SCD-1) (Katsurada et al. 1990a, b; Ntambi 1992).
93 Aside from the contributions of de novo hepatic lipogenesis toward augmented
94 triglycerides, compromised adipose tissue function also plays a major role in the
95 dysregulation of lipid homeostasis and insulin sensitivity (Abate 2012). Normally,
96 excess triglycerides are deposited in adipose tissue as a natural barrier to lipid and
97 glucose toxicity, ectopic fat deposition, and, ultimately, CVD (Abate 2012). This is
98 accomplished, in part, through proper adipocyte differentiation from precursor cells
99 to the mature adipocyte capable of loading triglycerides (Abate 2012). However, if
100 the adipocyte undergoes “maturation arrest,” this reduces its triglyceride storage
101 capacity and leads to greater fatty acid spillover in the plasma increasing substrate
102 availability for triglyceride synthesis in other tissues, such as the liver (Perseghin
103 2011; van der Zijl et al. 2011). Ultimately this contributes to systemic abnormalities
104 including dyslipidemia, insulin resistance, and various components of the metabolic
105 syndrome (Aly and Kleiner 2011; Cali and Caprio 2009; Samuel et al. 2010;
106 Volovelsky and Weiss 2011). Maturation arrest of adipose tissue can result from
107 impaired adipocyte differentiation and/or proliferation (Moreno-Indias and
108 Tinahones 2015). In addition to adipocyte maturation arrest, augmented adipose
109 lipogenesis could also contribute to increased plasma fatty acid spillover
110 (Moreno-Indias and Tinahones 2015).
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111 To date, current therapeutic strategies are aimed at lifestyle modifications (i.e.,
112 healthy eating and physical activity) and/or pharmaceutical interventions to treat
113 dyslipidemia and long-term adverse outcomes (i.e., CVD) (Bansal et al. 2007;
114 Ishimoto et al. 2013; Kohli et al. 2010; Nordestgaard et al. 2007). While the risk
115 of CVD can be reduced by pharmaceuticals, the long-term dependency on them can
116 be dangerous for patients. For example, the risk of ischemic heart disease can be
117 reduced by up to 60% by statins; however the existence of statin-induced rhabdo-
118 myolysis and hepatitis-associated liver failure can ensue (Law et al. 2003). Clearly
119 additional studies are warranted for preventing dysmetabolism in the liver and
120 adipose. One major preventative strategy is in elucidating the molecular (transcrip-
121 tional and epigenetic) mechanisms involved in the developmental origins of health
122 and disease (DOHaD) so that efficacious interventions can be targeted to prevent
123 long-term dyslipidemia and its related comorbidities. For the focus of this chapter,
124 we will review how maternal malnutrition (i.e., under- or overnutrition) during
125 perinatal life alters epigenetic mechanisms in the liver and adipose leading to long-
126 term metabolic disease.

127 Maternal Malnutrition and the Vulnerability of the Developing
128 Liver and Adipose AU8

129 During the perinatal period, the liver continually grows, differentiates, and remodels
130 becoming more hepatocyte-like by neonatal life (Gualdi et al. 1996). In rodents, the
131 liver bud forms containing progenitor cells that differentiate into either hepatocytes
132 or ductal cells; however liver mass triples by the end of gestation due to extensive
133 proliferation (Cascio and Zaret 1991; Greengard et al. 1972). Neonatal life is then
134 accompanied by high rates of replication, neogenesis, and apoptosis leading to great
135 hepatocyte formation (Greengard et al. 1972). The course of liver development in
136 humans is similar, but most of the liver has differentiated by birth (Kung et al. 2010).
137 In human adipose tissue, growth and differentiation are evident from 5 to 29 weeks
138 gestation, while in rodents this occurs from late gestation to 4 weeks in postnatal life
139 (Greenwood and Hirsch 1974; Poissonnet et al. 1984). In both species, adipose tissue
140 remains expandable throughout the course of life (Greenwood and Hirsch 1974;
141 Spalding et al. 2008).
142 Maternal malnutrition, as result of a poor maternal diet or placental insufficiency,
143 has direct negative effects on fetal growth and development (Crosby 1991). During
144 perinatal life comprised by malnutrition, nutrients are repartitioned to critical organs
145 such as the brain and heart, at the expense of other organs including the liver and
146 adipose (Valsamakis et al. 2006). Given the extensive differentiation of both tissues
147 during perinatal life, they are very vulnerable to alterations by environmental cues
148 (i.e., poor maternal diet) during this developmental window. Epigenetic forces can
149 help an organism adapt to nutritional changes short term by influencing gene
150 expression in a tissue-specific manner, but this can have dire consequences long
151 term.
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152 Epigenetic Mechanisms: Overview

153 The development of many complex and noncommunicable diseases cannot be
154 simply attributed only to genomic heritability (Manolio et al. 2009). Epigenetics
155 has emerged as an important mechanism for influencing the expression patterns of
156 genes in a promoter- and tissue-specific manner in response to insults during the
157 developmental period. Epigenetic mechanisms alter the long-term expression of a
158 gene by influencing the ability of the transcriptional machinery to interact with the
159 chromatin environment. Additionally, they influence heritable phenotypic changes
160 without alterations to the genetic sequence of an organism. Epigenetic changes can
161 be both transient and persist for long periods of time (Barth and Imhof 2010; Talens
162 et al. 2010). Mechanisms of epigenetic action include DNA methylation, posttrans-
163 lational histone modifications, and microRNA-mediated repression.
164 One way the chromatin environment can be altered is due to direct DNA
165 methylation, via the addition of a methyl group to CpG sites on the DNA by
166 members of the DNA methyltransferase family. In addition, the presence of methi-
167 onine, an essential amino acid, is also critical to DNA methylation as it is the
168 ultimate methyl donor for many methylation reactions. Folate/folic acid is involved
169 in methionine metabolism and is required for methylation reactions and DNA
170 synthesis. Therefore it is not surprising that altered dietary intake of such nutrients
171 during perinatal life may significantly affect DNA methylation profiles and, ulti-
172 mately, gene expression (Kim et al. 1997; Waterland 2006; Wilson et al. 1984).
173 Posttranslational histone modifications, a second major epigenetic mechanism,
174 involve altering the chromatin environment via methylation, acetylation, phosphor-
175 ylation, ubiquitination, and/or ADP-ribosylation of histones (Jenuwein and Allis
176 2001). The combinatorial nature of these covalent modifications reveals a “histone
177 code,” which serves as an important adaptive regulatory mechanism that can also
178 influence gene expression in a tissue- and gene-specific manner during development
179 – especially in suboptimal conditions. In general euchromatin is associated with
180 histones which are acetylated on specific residues (e.g., lysine 9 and lysine 14 of
181 histone H3), whereas heterochromatin contains predominately hypoacetylated
182 and/or methylated histones (Marmorstein and Trievel 2009). These histone modifi-
183 cations occur and can be sustained by a diverse range of histone-modifying enzymes
184 including families of histone acetylases and methyltransferases, whose expression
185 levels may also be influenced by external environmental insults during these devel-
186 opmental windows (Marmorstein and Trievel 2009).
187 Aside from posttranslational histone modifications, which may govern the long-
188 term expression of genes, microRNAs (miRs) may also play a key role in the
189 perinatal programming of liver and adipose leading to dysmetabolism. miRs are
190 short, noncoding RNA molecules of 20–25 nucleotides in length that regulate gene
191 expression via degradation of mRNA species and/or repression of translation
192 (Khorram et al. 2010; Xu et al. 2010). Consequentially, miRs alter a variety of
193 physiological processes including cell cycle regulation, differentiation, metabolism,
194 and senescence (Xu et al. 2010). They silence gene expression by binding to the
195 30-untranslated region (30-UTR) with partial sequence homology to induce cleavage
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196 or repression of productive translation (Brennecke et al. 2005). Since they can bind
197 to 30-UTR with partial sequence homology, it is well established that a single
198 miRNA may have numerous targets in the genome (Brennecke et al. 2005). Con-
199 versely, given the nature of miRNA targeting, a single mRNA transcript can
200 theoretically be targeted by several miRs (Brennecke et al. 2005).
201 Overall, it is imperative to realize that the different nutritional insults that lead to
202 IUGR offspring can have both common and distinct adaptive responses initiated via
203 epigenetic mechanisms. Moreover, IUGR offspring derived from various models of
204 maternal malnutrition may be different or similar due to global, tissue, or site-
205 directed epigenetic modifications.

206 The Effects of Perinatal Nutrition on DNA Methylation
207 and Downstream Targets in the Liver and Adipose Long Term

208 With the use of various animal models of perinatal malnutrition, several links
209 between diet, DNA methylation, and long-term dysmetabolism have been identified.
210 In several models of maternal undernutrition leading to IUGR, increases in DNA
211 methylation across CpG sites impair gene expression leading to aspects of the
212 metabolic syndrome in adulthood. For example, Zhang et al. found that a high-fat
213 diet during perinatal life led to alterations in methyl-CpG-binding protein-2, a
214 protein involved in the repression of genes via DNA methylation (Zhang et al.
215 2009). Moreover, maternal protein restriction (MPR) in mouse pregnancy led to
216 increased DNA methylation and silencing of the promoter of the liver X receptor
217 (Lxrα), a nuclear receptor involved in cholesterol homeostasis in the liver (van
218 Straten et al. 2010). In pregnant sheep changing the constitution of their maternal
219 diet from one with fiber and protein to a strict corn diet (low in amino acids) led to
220 decreased DNA methylation surrounding the promoter of insulin growth factor
221 2 receptor (Igf2r) in fetal white adipose tissue (Lan et al. 2013). While less is
222 known about the links between poor maternal nutrition, IUGR, and long-term
223 DNA methylation in humans, one elegant study has demonstrated that adipose-
224 derived stem cells (ADSCs) derived from low-birth-weight adult men exhibited
225 increased DNA methylation surrounding the promoter of CYCLIN T2 associated
226 with impaired leptin secretion (Broholm et al. 2016). Another study by Einstein et al.
227 (2011) also indicated that IUGR infants exhibit hypermethylation of the HNF4α
228 gene, a nuclear receptor which when impaired leads to type II diabetes (Einstein et al.
229 2010, p. 201; Yamagata et al. 1996).
230 It should be noted that undernutrition does not always manifest to increased DNA
231 methylation. Nijland et al. (2010) demonstrated that maternal nutrient restriction led
232 to decreased methylation of CpG sites on the promoter of PCK1 in baboon offspring
233 coupled with an increase in PCK1 transcription (Nijland et al. 2010). This is
234 significant as overexpression of PEPCK, the product of PCK1 translation, has
235 been implicated in hyperglycemia and type II diabetes (Gomez-Valades et al.
236 2008; Valera et al. 1994). Moreover, elegant studies in the baboon fetus have
237 demonstrated that 70% undernutrition during pregnancy culminates to augmented
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238 hepatic gluconeogenesis associated with both increased Pck1 mRNA and decreases
239 in the methylation of CpG dinucleotides of the Pck1 promoter (Nijland et al. 2010).
240 Obesity or alterations in individual nutrients during pregnancy have also been
241 demonstrated to impact offspring adipose function via DNA methylation. For
242 example, maternal obesity in rats decreases DNA methylation attributed to increased
243 WAT differentiation and lipogenic gene expression in the offspring (Borengasser
244 et al. 2013). Moreover, high levels of methyl vitamins (e.g., folate, vitamins B12 and
245 B6) in rodent pregnancy led to increases in DNA methylation of the leptin promoter
246 contributing to obesity and insulin resistance in the offspring (Cho et al. 2015). Too
247 much folic acid in murine pregnancy results in offspring more vulnerable to obesity
248 and insulin resistance due to greater methylation of DNA and lower adiponectin
249 expression in white adipose tissue (Huang et al. 2014).
250 Animal studies have also implicated the transgenerational effects of maternal
251 malnutrition on DNA methylation. For example, the offspring of uterine-ligated
252 dams exhibit increased DNA methylation in the promoter of hepatic Igf-1 at birth
253 which persists into the F2 generation even if F1 IUGR offspring are adequately
254 nourished (Fu et al. 2015; Goodspeed et al. 2015). It is noteworthy that supplemen-
255 tation of the diet in the F1 IUGR offspring with folic acid, choline, betaine, vitamin
256 B12, and other essential nutrients prevented the methylation of the Igf-1 promoter in
257 the F2 generation along with symptoms of the metabolic syndrome (Goodspeed et al.
258 2015). However caution is warranted in interpreting these studies as undernutrition-
259 induced alterations in DNA methylation vary between sexes and within different
260 CpG islands of the same promoter (Fu et al. 2015).

261 The Effects of Perinatal Nutrition on Posttranslational Histone
262 Modifications and Downstream Targets in the Liver Long Term

263 While for a long time it was generally thought that environmental (i.e., oxygen,
264 nutrition) insults leading to posttranslational modifications to histones were tran-
265 sient, several studies now suggest they can persist for long periods of time, including
266 from fetal to postnatal life. Using chromatin immunoprecipitation (ChIP) to follow
267 changes in posttranslational histone modifications from pregnancy to adulthood, our
268 laboratory has monitored MPR offspring. We have demonstrated that MPR-induced
269 IUGR rat male offspring exhibited hypercholesterolemia concomitant with a
270 decrease in postnatal Cyp7a1 expression, the critical enzyme involved in cholesterol
271 catabolism, both short and long term (Sohi et al. 2011). More importantly, this was
272 associated with decreased recruitment of RNA polymerase II, enhanced tri-
273 methylation of histone H3 [lysine 9], and suppressed acetylation of histone H3
274 [lysine 9, 14], all markers of chromatin silencing, within the LXRE region of the
275 Cyp7a1 promoter (Fig. 1) (Sohi et al. 2011). Remarkably, this was sustained from
276 3 weeks to 4 months in postnatal life. In contrast, MPR female offspring exhibited
277 normal cholesterol, restored levels of Cyp7a1 expression, RNA polymerase II
278 binding, and acetylation and trimethylation of histone H3 [lysine 9, 14] all within
279 the same region of the Cyp7a1 promoter (Sohi et al. 2011). The trigger of these
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280 histone modifications in fetal life is due, in part, to MPR-mediated decreases in
281 Jmjd2a and Jmjd2c, demethylases involved in removing trimethyl groups of histone
282 H3 [lysine 9]. While both male and female MPR offspring exhibited decreased
283 Cyp7a1 expression at 3 weeks, female MPR offspring at 4 months are protected
284 from the posttranslational histone modifications silencing the Cyp7a1 promoter.
285 MPR has also led to silencing of the promoter of liver X receptor (Lxrα) in the
286 liver at 4 months due to decreased histone H3 acetylation [lysine 9,14] (Vo et al.
287 2013). The decrease in this repressive glucose sensor led to glucose intolerance in
288 these offspring due to augmented expression of hepatic LXR-target gluconeogenic
289 enzymes (e.g., G6Pase and 11β-HSD1) (Vo et al. 2013). In a model of maternal
290 hypoxia leading to decreased maternal food intake and IUGR, we have also dem-
291 onstrated that the 12-month IUGR male offspring display hypoglycemia concomi-
292 tant with decreased hepatic G6Pase mRNA and protein (Osumek et al. 2014).
293 Chromatin immunoprecipitation revealed that these IUGR offspring exhibit
294 increased histone H3 trimethylation [lysine 9] of the G6Pase promoter (Fig. 2).
295 Aside from undernutrition, this may originate, in part, to the direct effects of hypoxia
296 to induce global hepatic histone H3 trimethylation [lysine 9] coupled with decreased
297 G6Pase expression (Osumek et al. 2014). Given undernutrition in pregnancy also
298 leads to tissue-specific increases in hypoxia, oxygen may be an underlying factor in
299 mediating the long-term posttranslational histone modifications and physiological

Fig. 1 Overview of how maternal protein restriction during perinatal life leads to long-term
silencing of the Cyp7a1 promoter and ultimately hypercholesterolemia via posttranslational histone
modifications. A decrease in maternal proteins during fetal and neonatal life leads to diminished
histone H3 [lysine 9,14] acetylation and increased histone H3 [lysine 9] trimethylation of the
Cyp7a1 rat promoter at 3 weeks and 4 months culminating in hypercholesterolemia. This is due,
in part, to decreases in lysine 9 demethylase (e.g., Jmjd2a) expression in fetal life
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300 outcomes in these malnourished offspring (Elias et al. in revision; Peterside et al.
301 2003).

302 The Role of MicroRNAs in the Fetal Programming of Metabolic
303 Disease

304 The concept that miRs could be programmed long term by the perinatal environment
305 seemed very unlikely until the recent discoveries that their expression can be
306 regulated via both transcriptional and epigenetic mechanisms. Elegant long-term

Fig. 2 Levels of trimethylated histone H3 (lysine 9) association with the LXRE-containing region
of the glucose-6-phosphatase promoter are increased in 12-month males from hypoxemic preg-
nancies. Hepatic tissue from 12-month male control (CTRL, 20%) or hypoxic (HYP, 11.5%)
offspring was subjected to cross-linking, lysis, and sonication. Solubilized chromatin was
immunoprecipitated with a specific antibody for trimethylated histone H3 [lysine 9] or IgG control.
After immunoprecipitation, DNA was analyzed for the promoter region containing the LXRE
region of G6Pase utilizing real-time PCR. After analysis with an unpaired two-tailed t-test, it was
determined the 12-month male offspring from hypoxemic dams had significantly increased histone
H3 [lysine 9] trimethylation to the LXRE region of G6Pase relative to CTRL offspring (*p< 0.05)
(Reprinted from Osumek et al. (2014), with permission from SAGE publications)

Perinatal Malnutrition and Epigenetic Regulation of Long-Term Metabolism 9



307 studies in rodents have revealed that maternal nutrient restriction can permanently
308 alter the expression of aortic miRs in newborn and aging rat offspring (Khorram
309 et al. 2010). Unpublished data from our laboratory using Affymetrix™ miRNA
310 microarray has demonstrated the MPR IUGR offspring with postnatal catch-up
311 growth exhibit exclusive alterations in hepatic miRs compared to control or MPR
312 IUGR offspring without catch-up growth (Fig. 3). This suggests that the low-protein
313 diet alone may not be the only trigger in the long-term regulation of miRs. In
314 addition, catch-up growth in these IUGR offspring associated with augmented
315 endoplasmic reticulum (ER) stress also likely contributes to the augmented expres-
316 sion of hepatic miRs observed (Nolan et al. 2014, p. 201; Sohi et al. 2013). MPR
317 during pregnancy and lactation has been demonstrated to increase the expression of
318 hepatic miR-29a, miR-29b, and miR-29c by 3 weeks and 4 months of age which
319 silences the expression of Igf-1 attributing to the decreased insulin sensitivity
320 observed (Sohi et al. 2015). Remarkably, protein restriction during lactation alone
321 had a more profound effect to augment the miR-29 family and suppress Igf-1, while
322 restoration of maternal dietary proteins in MPR offspring at birth prevented miR-29-
323 repression of Igf-1 (Sohi et al. 2015). This demonstrates that MPR-induced expres-
324 sion of hepatic miRs could be reversed if the nutritional intervention occurred during
325 a developmental window of tissue plasticity. In guinea pigs, uterine ligation during
326 pregnancy led to the silencing of hepatic miR-146a expression in 5-month offspring,
327 resulting in increases in its target smad4, a profibrotic gene (Sarr et al. 2015).
328 In either low-birth-weight humans or the offspring of undernourished rats, the
329 expression of miR-483-3p is augmented in adipose tissue later in life, leading to
330 decreased growth differentiation factor-3 (gdf3) mediating the decreased lipid stor-
331 age, enhanced lipotoxicity, and insulin resistance observed (Ferland-McCollough
332 et al. 2012). Individual changes in maternal dietary lipids (i.e., soybean, olive oil,
333 fish oil, linseed, or palm oil) in rodent pregnancy can have differential effects on
334 programming the long-term expression of miRs in adipose and liver tissue (Casas-
335 Agustench et al. 2015). It is of great interest that the maternal fish oil-exposed

Fig. 3 Top six hepatic microRNAs exclusively upregulated in 4-month low-protein IUGR off-
spring with postnatal catch-up growth. Affymetrix™ microRNA microarray analysis of hepatic rat
microRNAs derived from control, LP1 (low-protein diet all life), and LP2 (low-protein diet during
pregnancy and weaning) dietary regimes in postnatal day 130 offspring. mirBase™ coupled with
Partek® Genomics Suite™ software was used to identify the significant microRNAs altered versus
control for each LP group, along with their postulated target genes (Unpublished data)
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336 offspring had the worst insulin sensitivity at 12 months linked to decreased expres-
337 sion of hepatic miR-192-5p, miR-10b-5p, miR-377-3p, and miR-215, all targets of
338 insulin and glucose homeostasis (Casas-Agustench et al. 2015; Sardinha et al. 2013).
339 Moreover, the changes in the expression of these miRs were specific both to
340 pregnancy (vs. non-pregnancy) and to the liver (vs. adipose) (Casas-Agustench
341 et al. 2015). Further studies are warranted to elucidate how the expression of these
342 miRs in the liver and adipose are influenced by perinatal undernutrition via direct
343 (i.e., regulation of 50-UTR of miRNA promoters) and indirect (i.e., ER stress)
344 mechanisms (Nolan et al. 2014).

345 Conclusion

346 The liver and adipose play an essential role for long-term lipid and glucose homeo-
347 stasis. Given the growth and differentiation of these tissues occur in both fetal and
348 postnatal life, alterations in maternal nutrition during these developmental windows
349 can have short-term and long-lasting implications on metabolism. The present
350 review illustrates how maternal malnutrition in pregnancy can influence epigenetic
351 (i.e., DNA methylation, posttranslational histone modifications, miRs) mechanisms
352 which dictate gene expression of key receptors, enzymes, transporters, and hor-
353 mones in these organs in postnatal life. In many situations, while these epigenetic
354 changes may serve as a compensatory adaptation during fetal life, it predominantly
355 leads to dysmetabolism and dyslipidemia in mammals, contributing to the metabolic
356 syndrome. Further studies are warranted to address safe and specific interventions
357 (i.e., dietary or pharmaceutical) during neonatal of adult life to prevent these long-
358 term deficits in metabolism. This is better achieved with further understanding of
359 how nutrition during perinatal life influences the epigenome.

360 Mini-dictionary of Terms

361 • Dyslipidemia: An increase in plasma cholesterol, triglycerides, or both, leading to
362 the development of cardiovascular disease.
363 • Euchromatin: Activated region of DNA leading to an increase in gene expression.
364 • Hepatic steatosis: Accumulation of fat in the liver.
365 • Heterochromatin: Repressed region of DNA leading to a decrease in gene
366 expression.
367 • Malnutrition: Either an excess or deficiency in one or more nutrients.
368 • Tissue plasticity: A period of time in development whereby an organ is amenable
369 to positive or negative environmental cues.
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370 Key Facts Regarding Lipid Homeostasis

371 • Both the liver and adipose play critical roles in cholesterol, fatty acid, and glucose
372 homeostasis. Moreover, these organs continually proliferate and differentiate
373 from fetal to postnatal life in mammals, subjecting them to vulnerable windows
374 of plasticity by nutritional changes in the environment.
375 • Altered maternal nutrition in pregnancy can lead to DNA methylation and
376 silencing of critical metabolic genes from fetal life to adulthood and, in certain
377 situations, from generation to generation.
378 • Posttranslational histone modifications resulting from a poor maternal diet can
379 influence long-term gene expression of lipogenic genes in promoter- and
380 sex-specific manner. Some of these changes in gene expression can be reversed
381 in neonatal life, a period of tissue plasticity.
382 • Maternal malnutrition can influence the expression and secretion of various
383 microRNAs in neonatal life and adulthood which can silence key enzymes and
384 hormones involved in lipid homeostasis. Further understanding is warranted to
385 elucidate how these microRNAs are regulated long term.

386 Summary Points

387 • The liver plays a key role in cholesterol synthesis, metabolism, and transport. It
388 also is involved in fatty acid biosynthesis and glucose homeostasis.
389 • Adipose tissue plays an important role in lipid storage and insulin signaling.
390 • Altered hepatic or adipose function leads to dyslipidemia, obesity, and cardio-
391 vascular disease. Efficacious strategies are better warranted in preventing than
392 treating dyslipidemia.
393 • During perinatal life in mammals, both the liver and adipose are vulnerable to
394 maternal nutritional insults which can reprogram gene expression leading to long-
395 term metabolic deficits in the offspring.
396 • Epigenetic mechanisms facilitate developing organs to adapt to short-term deficits
397 in nutrition; however this has can have dire consequences long term.
398 • In models of maternal undernutrition, DNA methylation can be increased or
399 decreased affecting long-term gene expression in a promoter- and/or tissue-
400 specific manner.
401 • Alterations in DNA methylation have been implicated to occur in more than one
402 generation; however developmental windows do exist which can prevent this
403 from occurring.
404 • Animal models of maternal undernutrition demonstrate that posttranslational
405 histone modifications (i.e., histone H3 acetylation and methylation) can be altered
406 in early life that persists into adulthood. Moreover, this can occur in a sex-specific
407 manner.
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408 • MicroRNAs can also be influenced by maternal malnutrition short and long term
409 which target and silence the expression of key endocrine factors in the liver and
410 adipose.
411 • Changes in maternal diet during fetal and/or neonatal life can alter the trajectory
412 of microRNA expression long term.
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