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Abstract 

Due to their low neutron absorption cross-section and good corrosion properties, zirconium 

and its alloys have been widely used as the structural material in the core of nuclear reactors. 

These alloys are exposed to an intensive neutron flux which may lead to dimensional 

instabilities and the degradation of the mechanical properties of the alloy over the service 

time of the reactor. The changes in deformation behavior and mechanical properties can be 

traced back to the formation, evolution, and interaction of the irradiation-induced 

microstructural defects, e.g., point defect clusters, dislocation loops, and complex dislocation 

line networks. However, the materials constitutive models are rarely correlated to the 

irradiated-induced defects at the grain scale. Further, the available modeling approaches for 

simulating the deformation of irradiated materials are mostly empirical and generally do not 

incorporate the effects of microstructure or defect densities. 

To simulate the mechanical behavior of zirconium alloys exposed to neutron radiation, the 

present research focuses on updating a crystal plasticity finite element model by firstly 

including the effects of dislocation densities. The results of the model are compared against 

previously published data for a series of in-situ neutron diffraction and high angular 

resolution electron backscatter diffraction (HR-EBSD) experiments conducted on un-

irradiated α-zirconium specimens. The effects of implementing different formulations for 

determining dislocation densities are also investigated. It is shown that the calculated 

dislocation densities, stress, and rotation fields, as well as internal elastic strains, agree with 

the measured ones. The effects of irradiation growth are subsequently integrated into the 

model and the numerical results are compared to the previously published data. It is shown 

that the model is capable of determining the effects of material texture, grain size, and prior 

cold work on the evolution of average growth strain. It is shown, for the first time, that the 

growth strain is non-uniformly distributed among different grains and localized at the grain 

boundaries or slip bands.  

Keywords 

Non-local CPFE, dislocation density, irradiation growth, zirconium, microstructure   
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Summary for Lay Audience 

When any engineering device is designed, there is a fundamental question that needs to be 

answered: Will the product fail under the operating condition? The answer to this question is 

extremely important, to ensure the safe operation of the engineering component. To 

accurately assess the life cycle of engineering components, there has been an increasing 

demand in advanced numerical models. In this research, we are updating and providing a 

physical-based numerical tool which can be used to simulate the deformation of nuclear 

reactor core components made of zirconium. The presented numerical model can help 

nuclear engineers understand the performance of nuclear reactors core components. The 

model links the effects of zirconium microstructure to its macroscopic mechanical behaviour. 

It simulates the localization of stress and strain fields that might affect the failure of 

engineering components.  
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𝐷௜ Diffusivity of interstitial point defects 
𝐷௩ Diffusivity of vacancy point defects 
𝐶௜ Concentration of the interstitial point defects 
𝐶௩ Concentration of the vacancy point defects 
𝐷௖௟ Diffusivity of the interstitial clusters 
𝐶௖௟ Concentration of the interstitial clusters 
𝐾௖௟

ଶ  Sink strength of the interstitial clusters 
𝐾ீ஻ Sink strength of the grain boundary 
𝜌௝ Total dislocation density 

𝑁௜
௝  Interstitial loop number density 

𝑁௩
௝  Vacancy loop number density 

𝑟௜
௝ Interstitial loop radius 

𝑟௩
௝ Vacancy loop radius 

𝑟௖ௗ Capture radius of dislocations for interstitial clusters 
fc Fraction of the point defects that are recombined 

𝑓௜
௖௟ Fraction of the interstitial point defects which are clustered 

𝑘௩
ଶ Sink strength of vacancy loops for interstitial clusters 

𝑘௜
ଶ Sink strength of interstitial loops for interstitial clusters 

𝑟௖௩௟ Capture radius of vacancy type prismatic loops for clusters 
𝑟௖௜௟ Capture radius of interstitial type prismatic loops for clusters 
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Chapter 1  

1 Introduction 

 Background 

Hexagonal close-packed (HCP) zirconium polycrystals are used in fuel assemblies of 

nuclear reactors, due to their good corrosion and creep resistance as well as their low 

neutron absorption cross section [1]. During the operation of nuclear reactors, zirconium 

alloys are exposed to an intensive neutron flux from the fission of uranium atoms. During 

neutron irradiation, the atoms of zirconium are displaced and different types of nano-

scale defects, e.g., point defects, interstitial clusters, and dislocation loops are formed. 

The interaction of dislocation lines and loops with the irradiation-induced defects affects 

the mechanical properties of the alloys during the lifetime of the reactors.   

The interaction between neutrons and zirconium atoms can cause irradiation hardening, 

irradiation softening, irradiation growth, and irradiation-enhanced creep [2–4]. Irradiation 

hardening happens when the microstructural defects, introduced by irradiation, impede 

the movement of dislocations during plastic deformation [2]. Irradiation hardening 

increases the flow stress of zirconium alloys. At higher applied stresses, the resolved 

shear stress acting on dislocations will be high enough to overcome the internal forces 

induced by radiation defects. At this stage, dislocations move through and annihilate a 

portion of the existing defects, leading to a phenomenon known as irradiation softening 

[5]. The localized plastic deformation can cause crack initiation and failure of the 

irradiated material [6]. 

High energy neutrons can cause formation of two different types of dislocation loops in 

HCP zirconium: interstitial loops and vacancy loops [2–4]. Formation of these loops is 
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respectively accompanied by the expansion and contraction of the HCP crystal along its 

c- and a-axis. That is, an anisotropic dimensional change takes place in the HCP crystal, 

even in the absence of an externally applied load- this is called irradiation growth. 

Irradiation growth is significantly affected by the texture and microstructure of the 

zirconium polycrystal, as well as the amount of prior cold-work [4]. In the presence of an 

externally applied load, irradiation-enhanced creep may take place due to the strong 

interaction between dislocations and the internal forces from irradiation-induced point 

defects.  

 Motivation 

Due to the aging of nuclear reactors, understanding the mechanisms that control the 

performance of reactors core components have become important. For example, in 

CANada Deuterium Uranium (CANDU) reactors, irradiation-induced creep can lead to 

the excessive dimensional change of the fuel channel assembly. Although the separation 

between the pressure tube and calandria tube is maintained by the use of garter spring 

spacers, the excessive sag of pressure tubes can lead to the contact between the hot 

pressure tube and the cold calandria tube [7,8]. This contact leads to the deuterium 

ingress into the zirconium lattice, which can result in the formation of hydride blisters 

and cracking of the pressure tube [9].  

The accurate determination of materials lifetime requires the development of numerical 

methods that can simulate the "true" deformation mechanisms of the material, even in the 

presence of neutron irradiation. As such, the present research focuses on the updating a 

crystal plasticity finite element (CPFE) model to include the effects of line defects and 

their interactions with the irradiation-induced point defects. The CPFE model is a user 

material (UMAT) subroutine that links to finite element solvers. 
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 Objectives 

This research aims to update a CPFE model to study the mechanical behavior of HCP 

zirconium alloys exposed to neutron irradiation. Due to the presence of many different 

mechanisms, the main attention is given to the evolution of dislocation densities in the 

absence of neutron irradiation, as well as including the effects of irradiation growth. 

Hence, the following research objectives are determined: 

1. Adding the effects of dislocation line densities, i.e., geometrically necessary 

dislocations (GNDs) and statically stored dislocations (SSDs) to the CPFE model.  

2. Studying the capability of the updated model in simulating the formation of slip 

bands and localized plastic zones for un-irradiated HCP zirconium polycrystals. 

3. Incorporating the effects of irradiation growth and irradiation hardening to the 

model and studying their subsequent effects on the development of localized 

strain fields at the grain scale. 

 Structure of the thesis 

After an introduction in Chapter 1, a literature review is provided in Chapter 2. The rest 

of the thesis is presented in a manuscript-format. Chapter 3 discusses the steps taken for 

updating the CPFE model by integrating the densities of GNDs and SSDs. The updated 

model is used to replicate the previously published data for in-situ neutron diffraction 

experiments [11]  as well as high resolution electron backscatter diffraction experiments 

[12]. HCP zirconium polycrystals are used for the numerical simulations and 

experimental measurements. Chapter 3 is published in the International Journal of 

Plasticity [10]. Chapter 4 discusses the results of the model for using different methods 

for determining dislocation densities. The capability of each method in simulating the 

formation of slip bands is discussed. Chapter 4 is published in Crystals [13]. Chapter 5 
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discusses the steps taken for adding irradiation growth to the CPFE model. Previously 

published experimental data for single crystals [14] and polycrystalline specimens [15] 

are used for model validation. Chapter 6 represents the initial attempt taken to understand 

the structure of the original CPFE model, which includes a study on how twins form in a 

titanium micro-pillar. The results of the model are compared with those measured during 

an in-situ high resolution electron backscatter diffraction experiment. This chapter is also 

published in Materialia [16]. Finally, Chapter 7 includes the conclusions made in 

previous chapters and discusses the possible future studies.  
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Chapter 2  

2 Literature review 

This chapter focuses on providing a literature review of the modeling attempts done so 

far for understanding deformation mechanisms of polycrystalline materials exposed to 

neutron irradiation. Attention is given to α-zirconium alloys. Crystal plasticity finite 

element (CPFE) is firstly introduced since it is the main methodology used in this thesis. 

A comparison between the conventional and non-local CPFE approaches is provided 

which is followed by an introduction to the experimental techniques used for model 

validation. In addition, the published numerical and experimental studies focusing on the 

deformation mechanisms of zirconium alloys under irradiation are reviewed. Lastly, the 

knowledge gap in the literature is highlighted for further investigation in this thesis. 

 Modeling frameworks 

Generally, two approaches are used for modeling irradiation damage: empirical and 

mechanistic. Empirical models are mainly based on curve fitting and rely excessively on 

the measured experimental data. For example, in the study conducted by Franklin, an 

empirical model was proposed to determine irradiation growth strain as a function of fast-

neutron fluence [1]. Further, Limback formulated an empirical irradiation creep model 

with considering the effects of stress, temperature and irradiation doze on the creep rate 

of in-reactor materials [2]. Although these models account for texture, irradiation dose, 

and temperature effects on the material deformation, none of them incorporate the 

mechanistic basis or the explicit effects of microstructural features. Therefore, these 

empirical models are solely valid for the range of the temperatures or stresses that their 

parameters are fitted for [3]. More importantly, the interaction between crystallographic 

texture, grain morphologies, and irradiation damage is neglected [1].  
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The other approach is the physically-based mechanistic approach that incorporates the 

micromechanics of plastic deformation under irradiation condition. Molecular dynamics 

(MD) and dislocation dynamics (DD) are two nano-scale approaches used to understand 

the interaction between dislocations with point defects, as well as to calculate their 

densities or distributions during irradiation cascades [4–10]. For instance, Subramanian et 

al. used an MD approach to study the absorption rate of interstitials and vacancies by 

various sinks such as dislocations and grain boundaries [6]. Such atomistic simulations 

provide valuable information for better understanding the nature of interaction between 

point defects and line defects. However, MD and DD simulation of polycrystals are 

computationally costly for engineering length scales or even impossible for large strains. 

In addition, the time scale of these atomistic-level methods is in the order of 

microseconds, which is not representative of what happens in a nuclear reactor. 

 Conventional crystal plasticity 

Crystal plasticity is a set of constitutive equations that can be used to study heterogeneous 

deformation of individual or clusters of grains. It is a meso-scale modeling approach, 

where plastic strain is calculated by determining the slip that occurs on all possible active 

slip systems. The model scale can vary from a couple of nanometers within a grain to a 

couple of millimeters that represent thousands of grains. Therefore, each calculation 

(integration) point can represent a dislocation, group of dislocations, or even an entire 

grain. Hence, crystal plasticity model is one of the few existing numerical methods that 

can be used to study deformation across length scales. 

Crystal plasticity has been implemented in different frameworks, e.g., self-consistent 

[11], fast Fourier transform (FFT) [12,13], and finite element (FE) [14,15]. In the self-

consistent framework, each grain interacts with a homogenous medium that represents 

the average properties of the polycrystal except for the grain that is investigated. 
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Although this framework is naturally fast, the "true" interaction among neighboring 

grains is ignored. However, such interactions can be investigated using FFT or FE 

frameworks [16–19]. For example, local stress variations, stress concentration within 

individual grain, and the effects of local neighborhood on the response of each grain are 

studied using crystal plasticity finite element (CPFE) analysis [16,18,20].  

CPFE modeling framework suffers from several limitations. Firstly, since the crystal 

plasticity is a meso-scale technique, it not capable to capture the nano-scale effects, e.g. 

interaction between individual dislocations or other atomistic scale defects. In addition, 

the macro-scale quantities need to be averaged over a large number of grains and 

elements, which makes the CPFE framework computationally expensive. Finally, 

comparing to the empirical models, the constitutive equations are more complicated, 

which makes the implementation of the equations more difficult.   

Plastic deformation in zirconium polycrystals is accommodated by slip or twinning, 

depending on the crystal orientation and applied loading condition. For slip to occur, 

dislocations should overcome both short-range and long-range obstacles. The primary 

short-range obstacles are generally assumed to be the other dislocations that intersect the 

slip plane and impede the movement of dislocations. On the other hand, the long-range 

obstacles may include the elastic stress fields due to grain boundaries or far field 

dislocations and defects. While the short-range obstacles can mainly be overcome by 

thermal activation, the long-range obstacles are generally independent from temperature 

and can be overcome by increasing the resolved shear stress (RSS) that acts on the slip 

system [21]. Many studies have attempted to incorporate the effects of both short- and 

long-range obstacles in material hardening models within the crystal plasticity framework 

[22,23]. For example, Evers et al. assumed that the resistance induced by the long-range 

obstacles is a function of the spatial gradient of geometrically necessary dislocations 
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(GND) densities, while that of short-range obstacles was assumed to be dependent on 

both total GND and statistically stored dislocation (SSD) densities [23]. Therefore, it was 

assumed that SSDs do not have any long-range effects, while the evolution of both SSDs 

and GNDs during crystallographic slip equally increase the short-range interactions 

[23,24]. In the conventional form of crystal plasticity, no differentiation is made between 

the two types of obstacles and the critical resolved shear stress (CRSS) required for 

dislocation movement solely depends on the state of deformation in the current 

calculation point.  

 Non-local crystal plasticity 

In the “non-local” crystal plasticity framework, dislocation densities are calculated based 

on the gradients of the plastic strain; such gradients depend on the deformation of the 

neighboring regions. Therefore, both short- and long-range effects can be introduced 

using the non-local approach [25–30]. This framework is also called strain-gradient 

crystal plasticity. Since non-local crystal plasticity models are based on strain gradient 

theory, unlike the conventional crystal plasticity, it is possible to study the geometrical 

"size effects" [31,32]. 

Two forms of non-local plasticity theories are available in the literature: the lower-order 

and higher-order theories [33]. In the lower-order form [34–36], the effects of strain 

gradients are only included in the materials hardening laws. In this form, the force-

equilibrium equations or boundary conditions are not affected by the strain gradient 

effects. This approach is usually implemented in crystal plasticity framework by 

determining GND densities based on the gradient of the plastic strain. It is generally 

incorporated into the materials hardening equations. The drawback of this approach is 

that it may result in unrealistic higher strain gradients and formation of unusual localized 

deformation fields [33]. In the higher-order non-local plasticity theory [37–40], both 
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materials hardening law as well as force-equilibrium equations are modified by 

introducing an extra term which represents localized micro-scale stresses. The micro-

scale stress terms depend on the second order gradient of the plastic strain. In order to 

solve the modified force-equilibrium equations, additional boundary conditions are 

generally required.  

In the lower-order strain gradient crystal plasticity models, the non-local effects are taken 

into account by introducing the GND density term into the material hardening equation. 

During plastic deformation, GNDs are formed as a result of the lattice curvature and their 

densities can be determined using the gradients of plastic strain [41]. The derivation of 

dislocation densities from the “curl” of the deformation gradient in the Nye equation has 

been accompanied with inconsistencies in the literature, some of which have been 

reported by Das et al. [42]. Two methods are generally used in the literature for 

extracting GNDs using Nye equations. In the first method, the contribution of each slip 

system, e.g. α, to GND density is assumed to be proportional to the plastic shear 

accommodated on the same slip system α. Hence, the number of linear equations that 

should be solved is equal to the number of unknowns, i.e., GNDs on each slip system α. 

This is called the direct method where the density of GNDs on each slip system is 

determined unambiguously. The direct method was initially proposed by Dai [43] and 

was subsequently implemented in the CPFE models [23,31,35,44,45]. In the second 

method, the cumulative contribution of plastic shears on all slip systems to the total GND 

densities on all slip systems is assumed to be proportional to the Nye tensor [46-49]. This 

usually results in an under-determined system of equations where the number of 

unknowns is more than the number of equations. In contrast to the direct method which 

provides a unique solution for the GND density on each slip system, the minimization 

approach leads to non-unique solutions. Therefore, an investigation is required to 
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compare the magnitudes and distributions of the obtained GND densities from these two 

methods. 

 Experimental diffraction methods 

Diffraction based experimental techniques are mainly used for measuring internal or 

localized stress and strain fields as well as the density of dislocations. In this section, 

neutron diffraction and high angular resolution electron backscatter diffraction (HR-

EBSD) techniques are briefly introduced. The results of the previously conducted 

experiments using these two techniques are used in this thesis to validate the developed 

CPFE model. 

Neutron diffraction is an experimental technique that can be used to measure internal 

elastic lattice strains in polycrystalline materials [50,51]. In this technique, the thermal 

neutrons with wavelength close to lattice spacing can penetrate up to several centimeters. 

Contribution of large volume and number of grains is an advantage of this method, which 

is useful for measuring the average mechanical behavior of a polycrystalline material. 

The spacing between different lattice planes can be determined using the Bragg`s law 

[52-53]. Accordingly, the lattice strain, which is the elastic strain inside a group of grains 

that satisfy the Bragg condition for an incident beam, can be measured. The deflections 

observed in lattice strains correspond to activation of various slip or twinning modes of 

deformation. This property of lattice strains can be used to study deformation mechanism 

of polycrystals. 

Electron backscatter diffraction (EBSD) is an experimental technique that can be used to 

measure the orientations of the grains located at the surface of polycrystals. Briefly, in a 

scanning electron microscope, backscattered electrons can form Kikuchi bands on the 

EBSD detector. Kikuchi bands can be used to define orientation of each crystal. With 
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HR-EBSD technique, it is possible to measure elastic strains, stresses, and GND densities 

in many grains, yet close to the sample surface. For this purpose, the Kikuchi diffraction 

patterns measured within a grain are cross correlated with respect to a pattern collected at 

a reference point within the same grain. The displacement gradient can subsequently be 

calculated and used to extract the “relative” elastic strain and lattice rotation fields. 

Assuming that the stress normal to surface is zero, it is possible to calculate the “relative” 

stress tensor [54–56]. Since the “relative” elastic lattice rotations are known, it is also 

possible to calculate GND densities using Nye tensor [57]. 

 Deformation mechanisms 

2.5.1 Slip and twinning 

Deformation by slip and twinning are reported to be the two main plastic deformation 

mechanism of zirconium alloys at room temperature. Slip in HCP zirconium is generally 

controlled by 18 slip systems, i.e. three prism ({101ത0}, 〈112ത0〉), three basal 

({0001}, 〈112ത0〉) and twelve pyramidal <c+a> ({101ത1}, 〈112ത3〉) [58]. The twinning 

systems for HCP zirconium are {101ത2}〈101ത1〉 and {112ത1}〈112ത6〉 during tension and 

{101ത1}〈101ത2〉 and {112ത2}〈112ത3〉 during contraction [58]. The {101ത2}〈101ത1〉 tensile 

twinning is reportedly the most active twinning system.  

2.5.2 Irradiation growth 

Over the last decades, many experimental studies have been conducted to investigate the 

effects of irradiation damage on the deformation mechanisms of zirconium alloys [59]. In 

this section, the studies associated with the irradiation growth are reviewed. Irradiation 

growth strain is affected by neutrons fluence and energy, the operating temperature of the 

reactor, as well as zirconium’s composition, texture, prior cold work, and average grain 

size. The role of grain boundaries as sinks for irradiation-induced defects was 
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investigated by Rogerson, where it was shown that irradiation growth in annealed 

polycrystalline zirconium is significantly greater than that of single crystals [60]. In 

another study by Fidleris [61], it was shown that irradiation growth increases with 

decreasing the average grain size in annealed polycrystalline zirconium. This grain size 

dependency of the irradiation growth was also reported by Murgatroyd and Rogerson 

[62]. Cann et al. [63] showed that for the polycrytals with the grain sizes bigger than 50 

μm, the growth strain may not be affected by grain size anymore. The growth strain of 

the zirconium is also significantly affected by the prior cold work. An experimental study 

by Rogerson showed that cold-worked specimens with smaller grain sizes have 

significantly higher growth strains compared to annealed ones with bigger grains [60]. In 

addition, it was shown that the irradiation growth strain increases with cold working 

[64,65]. Although macroscale measurements are conducted to study the evolution of 

irradiation growth strain, there is not many grain scale experimental data for the growth 

strain at. Modeling techniques can be helpful for such cases. 

Irradiation growth models have primarily been developed based on a rate-theory 

approach [5,66–69]. A comprehensive review of the various physically-based irradiation 

growth models is provided in [59]. Most of these models are based on a simple 

assumption that the primary damage in the atomic scale is in the form of Frenkel pairs, 

i.e., equal number of vacancy and interstitial point defects are generated as a result of the 

collision cascade. That is, the formation of clusters is neglected in these models. 

However, MD simulations have shown that a large number of interstitial point defects are 

found in small clusters [70]. Accordingly, a reaction-diffusion model for irradiation 

growth of HCP materials was proposed by Golubov et al. [69]. In this model, the 

evolution of vacancy and interstitial loops follows a dose-dependent formulation, 

resulting in a dose-dependent irradiation growth model for single crystal HCP zirconium. 

This model was implemented in a self-consistent crystal plasticity framework to study the 
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evolution of grain-average growth strain [71]. It was shown that the effects of texture and 

grain size on the calculated growth strain are significant. However, the possible effects of 

the local grain neighborhood were ignored. In addition, the distribution of growth strain 

between and within grains was not studied. Such studies can be conducted in dislocation-

based CPFE models. 

2.5.3 Irradiation hardening and softening 

There have been extensive experimental studies to understand the effects of irradiation 

damage on the deformation by slip in zirconium [72–77]. For example, Cogez et al., 

conducted uniaxial tensile experiments on a set of neutron irradiated Zircaloy-2 samples 

with different neutron fluences and measured the macroscopic stress strain curves [73]. 

Long et al. measured not only the average stress-strain curves, but also the elastic lattice 

strains of neutron irradiated Zr-2.5Nb polycrystal using the neutron diffraction technique 

[77]. Balough et al. measured the development of the polycrystal average dislocation 

density during a post-irradiation uniaxial tensile test for a Zr-2.5Nb polycrystal using 

neutron diffraction line profile analysis [72]. It was shown that while plastic deformation 

of non-irradiated material equally increases the dislocation density on all slip systems, 

post irradiation plastic deformation only increases the pyramidal type dislocation 

densities. In another study by Qiang et al., Zr-2.5Nb sample was irradiated by Zr ions, 

followed by nano-indentation tests [75]. It was shown that the yield stress of the 

irradiated sample is more effected when the indentation is along the direction where the 

prism and basal slip systems are the dominant ones.  

Several numerical studies have been recently conducted to account for the effects of 

irradiation defects using crystal plasticity modeling [78–84]. A few of them, however, 

have simulated irradiated zirconium alloys, e.g., [80,81,85]. Although modeling 

irradiation hardening is rather straightforward, different models have been proposed in 
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the literature for irradiation softening. For example, a CPFE model is used to simulate 

strain localization due to irradiation softening in body-centered cubic (BCC) iron by 

Barton et al. [78], and in BCC steel by Patra and McDowell [79]. In both models, the 

dislocation loop annihilation rate depends on the current dislocation loop density 

accumulated on each slip system and the resolved shear strain rate on the same slip 

system. Similarly, Erinosho and Dunne [80] used a CPFE framework to study irradiation 

softening effects in HCP zirconium. In their model, the strength of slip systems was 

approximated using a linear relationship with respect to the accumulated resolved shear 

strain. Recently, Onimus et al. [81] have incorporated the effects of irradiation softening 

of zirconium in a self-consistent framework . In this model, the evolution law for 

dislocation loop density was formulated as a function of shear strain and current 

dislocation loop density.  

 The knowledge gaps 

The available macro-scale models used for simulating zirconium alloys are mostly 

empirical. Depending on the complexity of the proposed empirical model, a large number 

of parameters need to be calibrated by fitting the parameters against extensive data sets 

that are mainly measured at "macro-scales". Therefore, these models do not incorporate 

the true deformation mechanism of zirconium alloys and are solely valid over the range 

of the temperatures, doses, or deformation rates, that their parameters are fitted. Further, 

although the MD or DD nano-scale models provide valuable insights toward 

understanding the interaction between line and point defects, they are rarely capable of 

modeling deformation of zirconium for their real service time or at engineering length 

scales. Hence, there is a need to develop physical based meso-scale models to link the 

scales and to study the various effects of irradiation-induced defects. 



16 

 

 

 

 

 

Several studies have focused on incorporating dislocation-based crystal plasticity 

constitutive models in the self-consistent framework to investigate the effects of neutron 

irradiation on the plastic deformation of HCP zirconium. However, it is not possible to 

study grain-grain interaction in the self-consistent framework. In addition, the effects of 

strain or stress localization are not included in this mesoscale modeling framework. 

Hence, this thesis focuses on adding the effects of dislocation densities into a CPFE 

model to study such grain-grain interactions and strain or stress localization in the 

presence or absence of irradiation growth in HCP zirconium polycrystals.  
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Chapter 3  

3 A non-local crystal plasticity constitutive model for 
hexagonal close-packed polycrystals 

A strain gradient crystal plasticity finite element model is developed to study the 

evolution of internal and localized elastic strains in hexagonal close-packed polycrystals. 

The results of the model are firstly compared to the previously published data for a series 

of in-situ neutron diffraction experiments conducted on α-zirconium specimens. The 

development of internal lattice strains is studied first without considering the possible 

effects of grain morphologies and locations. This is followed by importing the “as-

measured” grain maps into the model, and investigating the development of localized 

lattice rotation fields, geometrically necessary dislocation densities, and statistically 

stored dislocation densities in the vicinity of twins. The numerical results are compared to 

those measured for a deformed α-zirconium specimen using high angular resolution 

electron back scatter diffraction technique. To understand the benefits of using non-local 

formulation, numerical results are further compared to those from a conventional crystal 

plasticity model. It is shown that while the calculated lattice strains and lattice rotations 

from both models are in agreement with the measured ones, the non-local model provides 

a better estimation of localized stresses in the regions with a sharp strain gradient. This 

difference is more pronounced in the vicinity of twins, where the calculated stresses and 

geometrically necessary dislocation densities by the non-local model are in better 

agreement with the measurements. 

 Introduction 

Understanding the deformation mechanism of hexagonal closed-packed (HCP) 

polycrystals has been in the center of many studies for decades [1–5]. These polycrystals 
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are being used in various industrial sectors. For example, zirconium and its alloys are 

used for manufacturing the core components of nuclear reactors due to their low neutron 

absorption cross section and good corrosion resistance. Magnesium and titanium alloys 

are used in automotive and aerospace industries due to their low density and good 

mechanical properties. During fabrication or in service, these materials may undergo 

macroscopic or localized microscopic plastic deformation. Such localized deformation 

zones can become susceptible sites for crack nucleation or even accelerated corrosion [6–

9]. This chapter focuses on the development of a strain-gradient, also known as non-local, 

crystal plasticity finite element (CPFE) model to study the distribution of localized stress 

or dislocation hotspots that drives accelerated degradation mechanisms while replicating 

the macroscopic deformation behaviour of HCP polycrystals. 

Various numerical approaches have been used to investigate the micromechanics of 

plastic deformation. For example, dislocation dynamics (DD) simulations were used to 

identify the coefficients of latent hardening in pure magnesium [10]. Such modeling 

scheme helps understand how the interactions among dislocations of different slip 

systems affect the macroscopic hardening observed in magnesium alloys [11]. Further, 

Tummala et al. used DD modeling to study the stress fields around hydrides in zirconium 

[12]. It is important to understand how the localized stress fields around zirconium 

hydrides evolve since hydrogen embrittlement significantly affects the facture toughness 

of the zirconium alloys used in nuclear industry. Although DDD models take the 

interaction between individual dislocations into account, they are numerically costly and 

do not represent the “real” time scale over which a given phenomenon occurs. As a meso-

scale modeling scheme, crystal plasticity is used to study heterogeneous deformation of 

individual or clusters of grains in “real time” by taking into account the effects of plastic 

slip that occurs on active slip systems [13–15]. Crystal plasticity has been implemented in 

different frameworks, e.g., self-consistent [16], fast Fourier transform (FFT) [17,18], and 
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finite element (FE) [19,20]. In the self-consistent framework, each grain interacts with a 

homogenous medium that represents the average properties of the aggregate except for 

the grain that is investigated. Although it is naturally fast, it is not possible to study the 

"true" interaction among neighbouring grains in the self-consistent framework. In the 

FFT or FE frameworks, however, such interactions can be investigated and recently, 

there has been promising advances in the field [21–24]. 

It has been shown that the interaction among the neighboring grains can have significant 

effects on the evolution of stress within individual grains of HCP polycrystals [25]. Such 

interactions can lead to the development of localized stress or dislocation fields that 

control the nucleation of cracks in materials [26]. Depending on the crystal orientation, 

slip or twinning are generally active in such localized stress fields.  For slip to occur, 

dislocations should overcome both short-range and long-range obstacles. The primary 

short-range obstacles are generally assumed to be the other dislocations that intersect the 

slip plane and can potentially impede the movement of dislocations on the same plane. 

The long-range obstacles, on the other hand, may include the elastic stress fields due to 

grain boundaries or far field dislocations and defects. While the short-range obstacles can 

mainly be overcome by thermal activation, the long-range obstacles are generally 

independent from temperature and can be overcome by increasing the resolved shear 

stress (RSS) that acts on the slip system [27]. Many studies have attempted to incorporate 

the effects of both short- and long-range obstacles in material hardening models. For 

example, Lu et al. (2019) assumed that the dislocation movement is a function of the 

resistance induced by both short- and long-range obstacles. It was assumed that the 

threshold for activating dislocation glide depends on the long-range obstacles which in 

turn depends on the evolving dislocation density. The resistance due to short-range 

obstacles was assumed to originate from Peierls barrier, solid solution atoms, or other 

point defects in the material. Evers et al. assumed that the resistance induced by the long-
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range obstacles is a function of the spatial gradient of geometrically necessary 

dislocations (GND) densities, while that of short-range obstacles was assumed to be 

dependent on both total GND and statistically stored dislocation (SSD) densities [23]. 

Therefore, it was assumed that SSDs do not have any long-range effects, while the 

evolution of both SSDs and GNDs during crystallographic slip equally increase the short-

range interactions [28,29]. In the conventional form of crystal plasticity, no 

differentiation is made between the two types of obstacles. That is, the critical resolved 

shear stress (CRSS) required for dislocation movement solely depends on the state of 

deformation in the current calculation point. However, in the non-local crystal plasticity 

framework, dislocation densities are calculated based on the gradients of the plastic 

strain; such gradients depend on the deformation of the neighbouring regions and hence, 

both short- and long-range effects can be introduced [30–35]. 

There are two forms of strain gradient plasticity theories, i.e., the lower-order and higher-

order theories [36]. In the lower-order form [37–39], the effects of strain gradients are 

only included in the materials hardening laws, with no subsequent adjustment made to the 

force-equilibrium equations or boundary conditions. For example, in the crystal plasticity 

framework, this is mainly done by introducing GND densities to materials hardening 

equations and correlating GNDs with the gradient of the plastic strain. While it is the 

simpler form between the two, the drawback of this approach is that it may result in 

unrealistic higher strain gradients and formation of unusual localized deformation fields 

[36]. In the higher-order form [40–43], both materials hardening law as well as force-

equilibrium equations are modified by adding an extra term that represents localized 

micro-scale stresses. The consideration of micro-scale stresses results in the modification 

of virtual work equations which in return results in an extra term proportional to the 

second order gradient of the plastic strain. In order to solve these differential equations, 

additional boundary conditions are generally required.  
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Diffraction based experimental techniques are mainly used for measuring internal or 

localized stress fields as well as the density of dislocations. While the measurement of 

SSDs is not straightforward, various diffraction techniques are used for measuring GNDs. 

For example, micro X-ray diffraction is used for measuring the density of dislocation in 

the vicinity of slip bands or for determining slip activity in HCP polycrystals [44,45]. 

This method provides a three-dimensional view of the GNDs as well as stress fields, but 

for a few grains. With high angular resolution electron back scatter diffraction (HR-

EBSD) technique it is, however, possible to measure stresses and GND densities in many 

grains, yet close to the sample surface. In this technique, the Kikuchi diffraction patterns 

measured within a grain are cross correlated with respect to a pattern collected at a 

reference point within the same grain. The reference point is normally chosen to be “far” 

from grain boundaries where the variation of stress and orientation is assumed to be 

minimum. The displacement gradient can subsequently be calculated and used to extract 

the “relative” elastic strain and lattice rotation, and by assuming that the stress normal to 

surface is zero, it is possible to calculate the “relative” stress tensor [46–48]. Since the 

“relative” elastic lattice rotations are known, it is possible to calculate GND densities 

using Nye tensor [49]. This method has been successfully used for measuring stresses and 

GND densities at the vicinity of slip bands and twins in HCP polycrystals [50–52]. For 

measuring internal strains, as oppose to surface strains, neutron or X-ray diffraction can 

be used [53–55]. Lattice strains are the elastic strains in the direction of the scattering 

vector and in the family of grains that can diffract the incident X-ray or neutron beam. 

The deflections observed in lattice strains correspond to activation of various slip or 

twinning modes of deformation. This unique property of lattice strains can be used to 

study deformation mechanism of polycrystals. 

In this chapter, a non-local CPFE model is developed to study deformation mechanisms 

of HCP polycrystals. Results from a calibrated conventional CPFE model are used to 
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firstly calibrate the single crystal properties of the non-local model. The non-local model 

is subsequently validated in two steps; in the first step, the development of internal lattice 

strains in Zircaloy-2 is simulated and compared to those measured using the neutron 

diffraction technique. In the second step, the distribution of localized elastic lattice 

rotation, dislocation density, and stress for individual zirconium crystals from the model 

are compared to those measured using HR-EBSD. Attention is given to deformation 

fields measured and simulated in the vicinity of twins. In addition, results from the non-

local model are compared to those from the conventional method. The aim of this chapter 

is to understand the benefits of using non-local models over conventional CPFE models 

and highlight their differences. 

 Experiments 

The numerical results are compared to the previously published data measured by the 

authors using neutron diffraction and HR-EBSD methods. Details of each experiment are 

provided in [56] and [57], here just a brief description is provided. For the neutron 

diffraction experiment, samples were cut from a hot rolled Zircaloy-2 plate with the 

texture shown in Fig. 3.1a. Since most of the crystals c-axis are oriented towards the 

normal direction (ND), tension along rolling direction (RD) or compression along ND 

will have minimum effects on the activation of tensile twinning and will cause plastic 

deformation mainly by slip on prism and basal systems. In this experiment, samples were 

deformed in-situ along the ND and RD with lattice strains measured along all three 

principal directions, i.e. ND, RD, and transverse direction (TD). The first step of model 

validation was done by ignoring the effects of deformation twinning and comparing the 

calculated lattice strains for compression along ND and tension along RD to those 

measured experimentally. Although the average texture and lattice strains were measured 
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in the neutron diffraction experiment, it was not possible to determine grain 

morphologies and locations with the set-up used.   

 

Figure 3.1 (a) The initial texture of the Zircaloy-2 specimen used in the neutron 

diffraction experiment. The three principle directions are the normal direction 

(ND), rolling direction (RD) and transverse direction (TD). (b) The measured EBSD 

map is color coded with respect to the inverse pole figure- ND. 

Understanding the effects of the grain-grain interactions on the formation of localized 

deformation fields is the main benefit of using a non-local model. Such localized 

deformation fields may form in the vicinity of the twins, particularly close to their tips, 

which may trigger nucleation of a crack. Formation of stress hotspots in the vicinity of 

twins in HCP and face-centered cubic (FCC) materials has been studied by [58–60]. 

Therefore, in the second step of the current study, the “real” grain shapes measured for a 

deformed Zircoaloy-2 sample was imported into the CPFE model to simulate the 

formation of localized deformation fields. In contrast to the neutron diffraction 

experiment where only the “average” strain from many diffracting grains are measured, 

in this step, the “localized” values within individual grains are measured. The experiment 

was done by applying a uniaxial tensile load along the ND and measuring the “relative” 

elastic strain, lattice rotation, and stress fields using HR-EBSD technique. In addition, the 
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distribution of GNDs were measured and compared with the modeling results. Since the 

c-axis of most of the grains is oriented towards the loading direction, deformation 

twinning is activated. For Zircaloy-2, {101ത2}〈101ത1〉 tensile twinning is the dominant 

twin system at room temperature. The measured EBSD map for the deformed sample is 

shown in Fig. 3.1b. The HR-EBSD measurement is conducted in the region shown with a 

black rectangle. 

In both experiments, samples were deformed using strain rate of 𝜀̇ = 5 × 10ିହ𝑠ିଵ. For 

neutron diffraction experiments, samples were deformed up to 12% applied strain 

whereas for the HR-EBSD experiment, the sample was deformed to 2.7% tensile strain, 

after which it was unloaded for ex-situ measurement. Both samples were initially 

annealed at 650 °C and cooled down to room temperature to conduct the experiments. To 

investigate the localized stress and dislocation fields induced by twinning, two of the 

twins located in the middle of the EBSD map, T1 and T2 as shown in Fig. 3.1b, are 

modeled and studied in detail.    

 Modeling 

The constitutive equations used for both conventional and non-local crystal plasticity 

models in the finite element framework are described in this section. These equations are 

implemented into a user material (UMAT) subroutine originally developed by Abdolvand 

and Wilkinson [57]. The equations that govern deformation by slip are firstly described 

which are followed by the assumptions made to simulate deformation twinning. 

3.3.1 Crystal plasticity constitutive equations 

In the absence of twinning, the total deformation gradient (𝑭) can be decomposed to the 

elastic (𝑭𝒆) and plastic (𝑭𝒑) parts following: 
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𝑭 =  𝑭𝒆𝑭𝒑 (3-1) 

The total velocity gradient tensor (𝑳) in the current configuration can be divided into 

elastic (𝑳𝒆) and plastic (𝑳𝒑) parts as: 

𝑳 =  𝑭̇𝑭ି𝟏 =  𝑭̇𝒆𝑭𝒆ି𝟏 +  𝑭𝒆𝑭̇𝒑𝑭𝒑ି𝟏𝑭𝒆ି𝟏 =  𝑳𝒆 + 𝑳𝒑 (3-2) 

The total velocity gradient tensor can be divided into symmetric part, i.e. deformation 

rate tensors (𝑫௘ , 𝑫௣), and asymmetric part, i.e. spin tensors (𝜴௘ , 𝜴௣). The time 

integration of deformation rate tensor and spin tensor, respectively provides the 

increments of the strain and rotation tensors. During crystallographic slip, dislocations 

move on a particular plane in a particular direction. The plastic part of the velocity 

gradient can be calculated from the summation of crystallographic slips over all active 

slip systems [61]: 

𝑳𝒑 = 𝑫௣ + 𝜴௣ = ෍ 𝛾̇ఈ𝑚ሬሬ⃗ ఈ ⊗

ே

ఈୀଵ

𝑛ሬ⃗ ఈ (3-3) 

where 𝑚ሬሬ⃗ ఈ, 𝑛ሬ⃗ ఈ and 𝛾̇ఈ represent the slip direction, the slip plane normal and the shear rate 

on the 𝛼th slip system for the 𝑁 number of slip systems, respectively. 𝑚ሬሬ⃗ ఈ ⊗ 𝑛ሬ⃗ ఈ is the 

dyadic product of the slip plane direction and the slip plane normal, known as the Schmid 

tensor of the slip system 𝛼. The plastic parts of the deformation rate and spin tensors can 

be calculated using the following equations: 
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𝑫௣ = ෍ 𝑷ఈ𝛾̇ఈ

ே

ఈୀଵ

 

𝜴௣ = ෍ 𝑾ఈ𝛾̇ఈ

ே

ఈୀଵ

 

(3-4) 

where 𝑷ఈ and 𝑾ఈ are the symmetric and asymmetric parts of the Schmid tensor. A rate 

dependent equation is used to calculate the shear strain rate on the slip system 𝛼, based 

on the resolved shear stress (𝜏ఈ) that acts on the same slip system [61]: 

𝛾̇ఈ =  𝛾̇଴
ఈ sign(

𝜏ఈ

𝑔ఈ
) ฬ

𝜏ఈ

𝑔ఈ
ฬ

௡

 
(3-5) 

where 𝛾̇଴ is a reference shear strain rate, 𝑛 represents the sensitivity of the material to a 

strain-rate and 𝑔ఈ is the CRSS of the slip system 𝛼. The difference between conventional 

and strain-gradient CPFE models is mainly based on the descriptions used for the 

evolution of 𝑔ఈ [30,62]. The resolved shear stress acting on the slip system 𝛼 is 

proportional to Kirchhoff stress (𝝍) through the following equation [63]: 

𝜏ఈ =  𝑷𝜶: 𝝍 (3-6) 

The Jaumann rate of the Kirchhoff stress (𝝍ෙ ) is related to the elastic part of the 

deformation rate tensor (𝑫௘) as: 

𝝍ෙ =  ℂ ∶ 𝑫௘ (3-7) 

where ℂ is the elastic stiffness tensor of the HCP crystal after rotation to the deformed 

configuration. The elastic modulus of zirconium used in this study is the one determined 
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by Fisher and Renken [64]: C11=143.5 GPa, C33=164.9 GPa, C12=72.5 GPa, C13=65.4 

GPa, and C44=32.1 GPa. The objective rate of Kirchhoff stress, in Eq. (3-7), is defined 

with respect to an observer attached to the crystal lattice: 

𝝍ෙ =  𝝍̇ −  𝜴𝒆𝝍 +  𝝍𝜴𝒆 (3-8) 

3.3.2 Modeling twins 

The developed non-local model is used to study the formation of localized stress and 

dislocation fields in the vicinity of twin tips. Following the procedure suggested in 

Kumar et al. [65], individual twins are modeled by manual reorientation of the identified 

twin domain and applying the characteristic twin shear (𝛾௧௪) to the reoriented zone. The 

twin domains are identified from the measured EBSD map as shown in Fig. 3.1b. It is 

assumed that formation of twins can be modeled in two independent steps; in the first 

step, the measured orientation of the twin is assigned to the elements of the twinned zone. 

In the second step, the twin transformation strain was applied to the same domain over 

the time interval of 𝑇்்ௌ following Eq. (3-9): 

𝛾̇௧௪ =  
0.169

𝑇்்ௌ
   

 𝑫௧௪ =  𝑷௧௪  𝛾̇௧௪ 

(3-9)  

where 𝑷௧௪ is the twin Schmid tensor. It was assumed that the transformation strain was 

applied at the same strain rate as the uniaxial tensile strain rate, hence 𝑇்்ௌ in Eq. (3-9) is 

3060 seconds. Although this does not capture the real dynamic process of twinning, it 

helps overcome the possible numerical instabilities resulting from the significant shear 

applied to the twinned zones. The effects of 𝑇்்ௌ on the numerical results are discussed in 
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section 3.5.2. The calculated 𝑫௧௪ is an inelastic deformation rate, which can be added to 

the elastic and plastic deformation rates to constitute the total deformation rate tensor as: 

𝑫 =   𝑫௘ +   𝑫௣ +   𝑫௧௪ (3-10)  

Eqs. (1)-(10) are used in both conventional and non-local CPFE models, however, in this 

chapter, the difference between the two approaches is in the evolution of CRSS. 

3.3.3 The evolution of CRSS: Conventional plasticity 

The current strength of each slip system is assumed to follow an extended Voce 

hardening [62]:  

𝑔ఈ =  𝑔଴
ఈ + (𝑔ଵ

ఈ +  𝜃ଵ
ఈ  Γ) ቆ1 − exp ቆ−

𝜃଴
ఈ Γ

𝑔ଵ
ఈ ቇ  ቇ 

(3-11) 

where 𝑔ఈ is the updated CRSS, 𝑔଴
ఈ is the initial CRSS and 𝜃଴

ఈ is initial hardening rate. 𝑔ଵ
ఈ 

and 𝜃ଵ
ఈ  are asymptotic characteristics of hardening and Γ is accumulated shear strain on 

all slip systems. This equation is proven effective in modeling deformation of zirconium 

polycrystals [16,56]. Differentiation of Eq. (3-11) with respect to time provides: 

𝑑𝑔ఈ

𝑑𝑡
= 𝑞ఈఉ

𝑑𝑔ఈ

𝑑Γ

𝑑Γ

𝑑𝛾ఉ

𝑑𝛾ఉ

𝑑𝑡
 (3-12) 

with summation convention over 𝛽. A hardening matrix 𝑞ఈఉ is introduced to consider the 

effects of self and latent hardening. 

The value of 𝑔଴
ఈ in Eq. (3-11) depends on grain size through the Hall-Petch equation: 

𝑔଴
ఈ = 𝑔∗,଴

ఈ +  
𝐻ఈ

√𝐷
  

(3-13) 
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Where 𝑔∗,଴
ఈ  and 𝐻ఈ are material parameters for slip system 𝛼 and 𝐷 is the equivalent 

grain diameter.  

3.3.4 The evolution of CRSS: Strain-gradient plasticity 

The evolution of CRSS for each slip system is generally related to the accumulation of 

dislocations and the interaction among them. The interaction among dislocations of the 

same and different slip systems lead to self and latent hardening, respectively. Depending 

on the material and the mechanisms of dislocation interactions, different formulations are 

suggested for the evolution of CRSS. For example, Zhang et al. assumed that the total 

dislocation density accumulated on all slip systems determines the development of CRSS 

[66]. Here, it is assumed that CRSS correlates with the density of GNDs and SSDs 

following [28,67]: 

𝑔ఈ =  𝑔଴
ఈ + ζ𝐺𝑏ఈ  ඩ෍ 𝑞ఈఉ  ቀ𝜌ீே஽

ఉ
+  𝜌ௌௌ஽

ఉ
ቁ

ே

ఉୀଵ

 

(3-14) 

where 𝐺 is the shear modulus, 𝑏ఈ is the size of the Burgers vector, ζ is a material 

constant, 𝜌ீே஽
ఈ  is the GND density, 𝜌ௌௌ஽

ఈ  is the SSD density for the slip system 𝛼, and 

𝑞ఈఉ is the hardening matrix that represents both self and latent hardening. 

The distribution of GNDs is related to the lattice curvature through Nye analysis [68]. 

𝜌ீே஽
ఈ  for each slip system can be decomposed into three components, one for screw type 

dislocation 𝜌ீே஽,௦
ఈ  with the dislocation line vector along the slip direction, 𝑚ఈ, and two 

edge type dislocations, 𝜌ீே஽,௘௡
ఈ  and 𝜌ீே஽,௘௧

ఈ  with dislocation line vectors along the slip 

normal and 𝑡ఈ = 𝑚ఈ × 𝑛ఈ, respectively. Different approaches are suggested to correlate 



38 

 

 

 

 

 

the Nye tensor to dislocation density [39,69,70]. Following [34,39], the total GND 

density on all slip systems is related to 𝑐𝑢𝑟𝑙(𝑭௣೅
) as: 

ቀ𝑐𝑢𝑟𝑙൫𝑭௣೅
൯ቁ

்

=  ෍൫𝜌ீே஽,௦
ఈ  𝑏ሬ⃗ ఈ⨂𝑚ሬሬ⃗ ఈ + 𝜌ீே஽,௘௧

ఈ  𝑏ሬ⃗ ఈ⨂𝑡ఈ  

ே

ఈୀଵ

+  𝜌ீே஽,௘௡
ఈ  𝑏ሬ⃗ ఈ⨂𝑛ሬ⃗ ఈ൯ 

(3-15) 

For N number of slip systems, this second order tensorial equation has 9 components 

with 3×N unknowns. Therefore, for materials with more than three slip systems, Eq. (3-

15) will be an under-determined system of linear equations with infinite solutions. One 

solution can be obtained by minimizing the sum of the squares of GND densities [39]: 

{𝜌ீே஽
ఈ } = 𝑨்(𝑨𝑨்)ିଵ𝑩 (3-16) 

where {𝜌ீே஽
ఈ } is 3N×1 column vector containing edge and screw components of GND 

for slip system 𝛼, 𝑩 is a 9×1 vector, containing the components of the tensor in the left 

hand side of Eq. (3-15), and 𝑨 is a 9×3N matrix containing the basis tensors of right hand 

side of Eq. (3-15). 

The evolution of SSDs are not as much characterized as GNDs; this is due to the lack of 

experimental data and complexity in determining the density of SSDs. Various 

formulations are suggested in literature, for example, Zhang et al. assumed that the 

density of SSDs simply  depends on the effective plastic strain [66]. Kocks and Mecking 

suggested that the evolution of the dislocation density on a given slip system follows a 

storage step and a subsequent dynamic recovery step [71]. Evers et al. [28] and Cheong et 

al. [72] assumed that the generation and annihilation rates of SSDs are the same for all 
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slip systems. Here, it is assumed that the evolution of SSDs for each slip system depends 

on the density of dislocations for the same slip system: 

𝜌̇ௌௌ஽
ఈ =  

|𝛾̇ఈ|

𝑏ఈ
 ቀ𝐾ఈඥ𝜌ௌௌ஽

ఈ + 𝜌ீே஽
ఈ − 2𝑦௖

ఈ 𝜌ௌௌ஽
ఈ ቁ 

(3-17) 

where 𝐾ఈ is a material constant representing the rate of accumulation of SSDs, and 𝑦௖
ఈ is 

the critical annihilation length of the dislocations with opposite Burgers vector. 

3.3.5 Numerical implementation 

The UMAT developed in [57] is updated to include the non-local effects using Eqs. (3-

14)-(3-17). As shown in Eq. (3-15) and (3-16), for implementing the non-local effects, it 

is necessary to calculate the curl of 𝑭௣: 

(𝑐𝑢𝑟𝑙 𝑭௣)௜௝ = 𝜖௜௥௤

𝜕𝑭௝௤
௣

𝜕𝑥௥
 (3-18) 

where 𝜖௜௥௤ is the permutation tensor. Following the method described in [20,73,74], the 

gradient of 𝑭௣ can be calculated using the element shape function: 

𝜕𝑭௝௤
௣

𝜕𝑥௜
=  ෍

𝜕𝑁௞

𝜕𝑥௜

௔

௞ୀଵ

 𝑭௝௤
௣  

(3-19) 

where 𝑁௞ represents the shape function of the element with “a” nodes and 𝑥௜ represents 

the global coordinate. Since 𝑭௣ is calculated at each integration point (IP) within the 

UMAT, an internal element is introduced inside the original element where the nodes of 

the internal element coincide with the IPs of the original one [20,73]. Therefore, the 

shape function 𝑁௞ and nodal coordinates 𝑥௜
௞ in Eq. (3-19) are for the internal element. 

The spatial derivative of the shape function can be calculated using the chain rule as: 
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𝜕𝑁௞

𝜕𝑥௜
=  

𝜕𝑁௞

𝜕𝜉௝
 
𝜕𝜉௝

𝜕𝑥௜
 

(3-20) 

where 𝜉௝ represents the local element coordinate system. In Eq. (3-20), 
డకೕ

డ௫೔
 is the inverse 

of the element Jacobean matrix, which can be calculated using: 

𝜕𝑥௜

𝜕𝜉௝
=  

𝜕

𝜕𝜉௝
 ෍ 𝑁௞  𝑥௜

௞

௡௢.௜௣

௞ୀଵ

= ෍
𝜕𝑁௞

𝜕𝜉௝
 𝑥௜

௞

௡௢.௜௣

௞ୀଵ

 
(3-21) 

For calculating the element Jacobean matrix in Eq. (3-21) and the gradients of 𝑭௝௤
௣  in Eq. 

(3-19), it is necessary to use the updated 𝑥௜ and 𝑭௣ values for all of the IPs within the 

same element. Therefore, at the end of each increment, 𝑭௣ of each IP is stored in a 

common block variable and is used in the next time increment.  Since the calculated 

GND density in each time increment is based on the 𝑭௣ of the previous time increment, it 

is necessary to ensure that the selected time increments are small enough to guarantee 

convergence for the calculated GND densities. In addition, it can be seen that the lower-

order strain gradient theory is used in the current formulation. This is to avoid modifying 

the force-equilibrium equations and to avoid using second order gradients.   

Table 3.1 shows the flowchart of the non-local model. At the beginning of each time 

increment, Abaqus FE solver provides the total strain increment, rotation increment, 

deformation gradient, solution dependent state variables (SDVs), and updated coordinate 

of each IP. 𝑭௣of the last time increment is restored from the common block variables and 

used to evaluate 𝑐𝑢𝑟𝑙൫𝑭௣೅
൯ and GND densities using Eq. (3-15)-(3-21). The Newton-

Raphson method is used to calculate the increments of shear strain for each slip system 

(∆𝛾ఈ), and update CRSS, the density of SSDs, stress, orientation, and the material 
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Jacobean matrix. Finally, 𝑭௣is updated and stored in a common block variable for the 

next time increment.  

Table 3.1 Flow chart of the Non-local CPFE model 

(1) Abaqus FE solver provides total strain increment, rotation increment, and deformation gradient for the 
time increment i, as well as stress (𝝈௜ିଵ) and state variables (𝑆𝐷𝑉𝑠௜ିଵ) for time increment i-1. 

(2) If manual twining is activated and if the element is in the identified twin domain, reorient and apply 
twin shear using Eq. (3-9)-( 3-10). 

(3) Calculate 𝑐𝑢𝑟𝑙(𝑭௣,௜ିଵ) using Eq. (3-18)-( 3-21) 
(4) Calculate  𝜌ீே஽ using Eq. (3-15)- (3-16) 
(5) Using Eqs. (3-3)–(3-8) calculate plastic and elastic strain increments (∆𝑡𝑫𝒆, ∆𝑡𝑫𝒑) using the Newton-

Raphson method until convergence of the shear strain increments (∆𝛾𝜶) 
(6) Update the 𝑆𝐷𝑉𝑠௜  (𝜏ఈ, 𝑔ఈ, 𝛾ఈ, 𝑛ఈ, 𝑚ఈ), 𝜌ௌௌ஽

௜ , stress (𝝈௜) and material Jacobean matrix 
(7) Evaluate 𝑭௣,௜ from Eqs. (3-1)-( 3-2) and store them in a common bock variable for the next time 

increment 

 Results 

3.4.1 Determination of the single crystal parameters 

Since the performance of the non-local model will be compared against that of the 

conventional model, the non-local model is calibrated such that it reproduces identical 

stress-strain curves to those from the conventional model for zirconium single crystals. 

The single crystal parameters for the conventional model were previously calibrated 

using a comprehensive data set for lattice strains measured during an in-situ neutron 

diffraction experiment conducted on Zircaloy-2 [56]. In section 3.4.2, the data from the 

same experiments are used to validate the non-local model. In the absence of twinning, 

plastic deformation in zirconium is generally controlled by 18 slip systems, i.e. three 

prism, three basal and twelve pyramidal <c+a> slip systems. As shown in Table-2, the 

same strain rate, self, and latent hardening parameters are used in both models. The 

parameters for the Hall-Petch effects, 𝐻ఈ and 𝑔∗,଴
ఈ ,  are extracted from the CRSS values 

reported for two independent experiments conducted on the same material but with grain 

sizes of 20 𝜇𝑚 and 50 𝜇𝑚 [56,75]. For the non-local model, only the parameters for the 
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evolution of SSDs are calibrated, i.e., 𝐾ఈ and 𝑦௖
ఈ, which are provided in Table 3.3. 

Further, the shear modulus, G in Eq. (3-14), is assumed to be the average of the C44, C55 

and C66 [76]. The material constant ζ is assumed to be 0.5. 

Table 3.2 Strain rate parameters and hardening matrix of Zircaloy-2 single crystals 

  n 𝛾̇଴
ఈ  (𝑆ିଵ) 𝑞௦௦ 

(self) 

𝑞௦௧ 

(t=prism) 

𝑞௦௧ 

(t=basal) 

𝑞௦௧ 

(t=pyramidal) 

Prism 20 3.5e-4 1 1 1 0 

Basal 20 3.5e-4 1 1 1 0 

Pyramidal 20 1.0e-4 1 0 0 1 

In Fig. 3.2, the results from the non-local model are compared against those from the 

conventional model. Results are for single crystals Zircaloy-2 with different c-axis 

misorientations with respect to the loading direction. The grain size of 20 𝜇𝑚 was used in 

all cases to be consistent with the grain size measured for the material used for the 

neutron diffraction experiment. Single crystals are deformed up to 5% with the strain rate 

of 5 × 10ିହ 𝑠ିଵ. The applied boundary conditions are shown in Fig. 3.2a. Uniaxial 

tensile deformation is applied onto the surface DCGH along the X-direction. The 

displacement on the ABFE, EFGH, and AEHD surfaces are fixed along X, Y, and Z 

directions, respectively. The single crystal is discretized to 1000 quadratic brick C3D20R 

elements, with 10 elements in each direction. The maximum time increment allowed is 5 

seconds. This time increment is obtained from a convergence study, ensuring that the 

calculated GND densities are independent from the size of the time increment.  
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a. 

 

b. 

 

c.

 

Figure 3.2 Results of the conventional and non-local CPFE models for zirconium 

single crystals. (a) Applied boundary conditions, (b) average stress-strain curve at 

three different misorientation angles (θ) of 0o, 45o and 90o and (c) relative activity of 

basal, prism and pyramidal slip systems. 𝜽 is the misorientation between the c-axis 

of the HCP crystal and the loading direction 

In Fig. 3.2b, the stress-strain curves calculated with the non-local model for different 

crystal orientations are shown and compared against those from the conventional model. 

The c-axis of the crystal is rotated from 0° to 90° using a 10° increment. To avoid busy 

figures, only three curves are shown, but the calculated relative activities of each slip 

system from both models are provided in Fig. 3.2c. Relative activities are calculated by 

dividing the resolved shear strain (𝛾ఈ) calculated for each slip set to the total shear strain 

calculated for all slip systems at the applied strain of 5%. It can be seen that with the 

fitted single crystal parameters, identical stress-strain curves as well as slip activity are 

achieved for crystals with different orientations. 
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Table 3.3 The single crystal parameters used in the conventional and non-local 

models 

 Burgers 
vector 
(nm) 

Hall-Petch parameters used 
in both models 

Conventional hardening  
Non-local 
hardening 

𝐻ఈ  (𝑀𝑃𝑎 √𝑚) 𝑔∗,଴
ఈ  (𝑀𝑃𝑎)  𝑔ଵ

ఈ  (𝑀𝑃𝑎) 𝜃଴
ఈ  (𝑀𝑃𝑎) 𝜃ଵ

ఈ  (𝑀𝑃𝑎)  𝐾ఈ 𝑦௖
ఈ  (𝑛𝑚) 

Prism 0.323 0.109 95 1650 50 0 0.05 5 

Basal 0.323 0.146 135 1100 250 0 0.05 5 

Pyramidal 0.608 0.292 266 270 620 280 0.30 10 

3.4.2 Development of internal strains 

The performance of both conventional and non-local models for simulating the 

development of internal elastic lattice strains is investigated in this section. The lattice 

strains were measured in a set of in-situ neutron diffraction experiments conducted on 

Zircaloy-2 samples. The initial texture of the samples is shown in Fig. 3.1a and is 

discretized to 1872 orientations which are used to generate the input FE model shown in 

Fig. 3.3a. Since in these experiments the positions and shapes of the grains were not 

measured, grains are assumed to have cubic shapes scattered randomly in the simulated 

volume. The side length of the cubic model is 200 µm, which leads to an average grain 

size of 20 µm, in agreement with the one measured prior to the experiment. The model is 

meshed with 13,824 quadratic brick C3D20R elements. The boundary conditions used 

are similar to the ones presented in Fig. 3.2a, yet the tensile and compressive loads are 

along the RD and ND planes, respectively (see Fig. 3.3a). That is, the displacement along 

ND, TD, and RD are fixed on the ABFE, AEHD, and EFGH surfaces, respectively, while 

tensile or compressive loads are applied on the ABCD and DCGH surfaces as shown in 

Fig. 3.3a.  In addition, periodic boundary conditions, similar to the ones described in [56], 
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were also applied the results of which showed minor changes compared to those 

presented here. 

Since the specimens were initially heat treated at 650 °C, this step was included in the 

CPFE modeling, before applying the mechanical load. The coefficients of thermal 

expansion for HCP zirconium crystals are 10.1 × 10ି଺𝐾ିଵ and 5.3 × 10ି଺𝐾ିଵ along 

and perpendicular to the crystal c-axis, respectively [77]. The thermal residual strains 

resulting from this anisotropy affects the elastic lattice strains, but such effects on the 

crystal orientations are negligible. In Fig. 3.3b and 3.3c, the average stress-strain curves 

from the non-local and conventional CPFE models are compared to the measured ones 

for compression along ND and tension along RD. The macroscopic stress-strain curves 

are measured by a strain gauge attached to the specimens and a remote load cell. The 

activity of deformation twinning is substantially low in these two directions, but the 

effects of twinning will be studied in the next section. The agreement between the non-

local model and experiment is much better, compared to the conventional model for 

compression ND. This is in terms of both actual stress-strain curve and the hardening 

rate. However, for tension along RD, while the average stress from the conventional 

model deviates from the experiment after 4% applied strain, the prediction of the non-

local model improves. More importantly, the average hardening rate or the slope of the 

stress-strain curve in the plastic zone is better predicted by the non-local model. The 

average hardening rates from both models are shown by the dashed lines in Fig. 3.3c 

where a line is fitted using the stress-strain data above 1% strain.  
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a. 

 

b. 

 

    c. 

 

Figure 3.3 a) The CPFE input model used for simulating the neutron diffraction 

experiment. Random colors are assigned to elements to distinguish grains. 

Comparison between the calculated stress-strain curves by the conventional CPFE 

model, the non-local CPFE model, the non-local CPFE model, and the measured 

ones for (b) compression along ND and (c) tension along RD. 

The results of both models for simulating lattice strains are compared against the 

measured values and are shown in Fig. 3.4. In Fig. 3.4a results for tension along RD and 

lattice strain measurement along RD, TD, and ND are provided, respectively from top to 

bottom. For the lattice strains measured along RD, a positive linear slope is observed in 

both models for all lattice strains. This is expected since the applied load is tensile and all 

lattice planes will undergo a tensile strain in the loading direction. In the TD and RD 

directions, however, lattice strains are initially developed with a negative slope until the 

yield point, where each lattice plane deviates differently from linearity. The first observed 

deviation is a result of slip activity on the prism planes which is well captured in both 

models at the applied stress of 150 MPa. For both ND and TD measurements, the (0002) 

lattice strains deviate from linearity towards more negative strains with two distinct 

inflections observed at macroscopic stress of 300 MPa and 380 MPa. The former is due 

to activation of basal while the latter is due to activation of pyramidal slip systems. These 

inflections are also observed in (202ത1) and (112ത0) lattice strains in both ND and TD 
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measurement directions. It can be seen that both non-local and conventional models 

replicate the measured trends in lattice strains with some minor differences. 

The evolution of lattice strains for compression along ND and measurement along ND, 

TD, and RD are shown in Fig. 3.4b. It is shown that both (112ത0) and (202ത1) lattice 

strains hardly deviate from linearity in the RD and TD measurements. These trends are 

well captured by both conventional and non-local models. A distinct deviation form 

linearity is observed in (0002) lattice strain for the measurement along TD where both 

models confirm that this is due to activation of slip on prism planes. For the measurement 

along ND, however, (0002) lattice strain remains linear in agreement with both models. 

Two inflections are observed in (112ത2) lattice strains measured along ND, where the 

first one is related to activation of basal and the second one is related to activation of 

pyramidal slip systems. The comparison between the simulated and measured lattice 

strains indicates that both non-local and conventional model are capable of capturing the 

trends observed with some minor differences between the two models.   
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a.  

 

b.  

 

  

  

  

Figure 3.4 The evolution of internal elastic lattice strains: comparison between the 

results from the conventional model, the non-local model, and neutron diffraction 

measurements. (a) Tension along RD and measurement along RD (RD/RD), 

TD(RD/TD), and ND (RD/ND) (b) Compression along ND and measurement along 

ND (ND/ND), TD(ND/TD), and RD (ND/RD). 
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3.4.3 CPFE vs HR-EBSD 

The imported microstructure to the FE solver is shown in Fig. 3.5a. The model thickness 

was chosen to be 50 𝜇𝑚 which is the measured average grain size of the specimen. The 

EBSD measured orientations were assigned to the grains of the CPFE model. The 

boundary conditions used is similar to the other two models presented in the previous 

sections, that is, 𝑢௫ = 0, 𝑢௬ = 0, and 𝑢௭ = 0 on the ABCD, ADHE, and ABFE surfaces, 

respectively. Two twins, T1 and T2, located in the middle of the EBSD map with their 

parent and neighbouring grains, G1, G2, and G3, are studied in detail. These grains are 

selected because they are far from the edges where it is assumed that the effects of the 

applied boundary conditions are minimized. The model is discretized using a fine mesh 

for the studied grains, G1, G2 and G3, and a course mesh for the rest of the grains as 

shown in Fig. 3.5b. 22,800 quadratic brick C3D20R elements are used with three 

elements along the thickness. A mesh sensitivity study is performed to ensure that the 

selected element size in the refined mesh region is converged. As shown in Fig. 3.5c, 

another input model with a uniform element size for all grains is generated using 50,175 

C3D20R elements. The model with uniform mesh is used to investigate the distribution 

of dislocation densities in all grains, whereas the former model is used to study stress and 

rotation fields in the vicinity of twins T1 and T2.   
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a. 

 

b. 
       

 

c.  
 

 

Figure 3.5 (a) The imported microstructure for FE analysis. (b) The model used for 

studying twins T1 and T2 with refined mesh assigned to grains G1, G2 and G3. (c) 

The input model used to study dislocation densities in all grains 

Following Kumar et al. [65], the formation of twins in the EBSD model is simulated 

using five distinct steps. In the first step, the model was cooled down from 650 °C to 

room temperature to account for thermal residual stresses that develop during the heat 

treatment process [78]. In the second step, the model was strained uniaxially at the strain 

rate of 5x10-5 s-1 by applying a velocity onto the EFGH plane (Fig. 3.5a). Once the model 

was strained to 2.7%, the velocity was set to zero to reorient the twin in step-3 and apply 

the twin transformation strain in step-4. The reorientation was set to happen over 1 

second by assigning the measured orientation from EBSD to the twin domain, while the 

twin shear transfer was set to happen over 3060 seconds. Since the HR-EBSD 

measurement was conducted on the sample after unloading, in the last step, step-5, the 

model was unloaded and allowed to relax.  

The results of the non-local model for the distribution of GNDs and SSDs at the end of 

Step-2 are shown in Fig. 3.6. The initial density of SSDs on each slip system was 

assumed to be 10ଵ଴ 𝑚ିଶ. In contrast to the SSD map, the GND map reveals the 
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formation of localized deformation zone that resembles formation of slip bands. This is 

the advantage of using non-local formulation. For example, in grains G6, G7, and G8, as 

marked in Fig. 3.6a, a distinct band is formed that spans from one side of the grain to 

another. These bands are associated with plastic shear on the prism planes. Similarly, in 

grains G3, G9, and G10, the observed bands are related to the activity of basal slip 

systems. Interestingly, in some of the hard grains where a twin is observed in the EBSD 

map, e.g. G3, G9 and G10, a high GND density in the vicinity of their grain boundaries is 

also observed in the numerical results at the end of Step-2. This means that there might 

be a relationship between GNDs and nucleation of twins.       

a.  

 

b.  

  

Figure 3.6 Distribution of total (a) GNDs and (b) SSDs at the end of step-2 obtained 

from the non-local model. The legend is in linear scale with the unit of m-2. 

The distribution of the elastic lattice rotations, dislocation densities and stresses for the 

two twinned grains, G2, G3 and the soft neighbouring grain G1, at different loading steps 

are provided in the next sections. The results from both non-local and conventional CPFE 

models are compared against HR-EBSD results. 

3.4.3.1 Elastic lattice rotation 

The results from the non-local and conventional CPFE models for the grains G1, G2, and 

G3 are provided in Fig. 3.7 and are compared to those from the HR-EBSD measurement. 
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Since measurements were done at the surface, only the in-plane component of the lattice 

rotation (𝜔ଵଶ
௘ ) is shown. It can be seen that the difference between the predictions from 

the two models at Step-2 is negligible. The elastic lattice rotation fields are significantly 

changed as a result of twin formation (Step-4), especially in the vicinity of the twin tips 

in the grain G1 (Fig. 3.7a). For example, 𝜔ଵଶ
௘  at the vicinity of twin T1 is increased, while 

it is decreased in front of T2. Although the same trend is observed for both models in 

Step-5, the non-local model predicts a more positive 𝜔ଵଶ
௘  (0.015 radians) at the vicinity of 

twin T1, compared to the conventional model (0.005 radians). This can be seen in the 

magnified figures of the elastic rotation field in front of twin T1 in Fig. 3.7a, where the 

red-colored region extends further into G1 for the non-local model. It should be noted 

that the limits of the legends are changed for the magnified figures to better demonstrate 

the differences. In HR-EBSD measurements, a reference point is selected within each 

grain to measure stresses and elastic lattice rotations with respect to this point. The 

reference point is normally selected away from grain boundaries where it is assumed that 

stress and orientation variations are minimum. These reference points are shown with red 

dots in the Fig. 3.7. Since lattice rotations from HR-EBSD are relative, the calculated 

lattice rotations at all IPs assigned to a grain are reduced from that calculated at the IP 

that coincides with the reference point. This is to provide a like-to-like comparison 

between CPFE results and the HR-EBSD measurement. Generally, both numerical and 

experimental results indicate that 𝜔ଵଶ
௘  is close to zero away from the twin tips. Further, 

the localized positive 𝜔ଵଶ
௘  at the front of the twin T1 is captured by both models, which is 

in agreement with the HR-EBSD results, however, CPFE underestimate the lattice 

rotations measured close to twin T2. It can be seen in Fig. 3.7a that the shape and the 

magnitude of relative 𝜔ଵଶ
௘  in the vicinity of T1 from non-local CPFE is in much better 

agreement with HR-EBSD measurement, compared to conventional CPFE.  
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Figure 3.7 The evolution of elastic lattice rotation 𝝎𝟏𝟐
𝒆  for the grains G1, G2 and G3: 

comparison between the results from the conventional model, the non-local model, 

and HR-EBSD measurement. Lattice rotations are given in radians. The numerical 

results are for Step-2 (after loading), Step-4 (after twin formation) and Step-5 (after 

unloading). 

 

The in-plane elastic lattice rotations for the grains G2 and G3 are shown in Fig. 3.7b and 

Fig. 3.7c, respectively. Both conventional and non-local CPFE models show similar 

distribution for 𝜔ଵଶ
௘ . In grain G2, 𝜔ଵଶ

௘  within the twinned region is affected by the twin 

shear transfer step. Similarly, for the grain G3, there is a significant drop in 𝜔ଵଶ
௘  due to 
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twin shear transfer. In agreement with HR-EBSD results, both models predict negative 

𝜔ଵଶ
௘  close to the right tip of twin T2 inside the parent grain G2. This region is shown with 

a red circle. However, the positive elastic rotations at the lower left side of the grain is 

not captured by either of the models.  

3.4.3.2 Dislocation density 

The distribution of the densities of GNDs and SSDs for the grains G1, G2 and G3 are 

shown in Fig. 3.8. GNDs are mainly concentrated at the grain boundaries, while SSDs are 

uniformly distributed within the grains. The densities of both GNDs and SSDs are 

significantly affected by the twin shear transfer step. In Fig. 3.8a, it is shown that both 

GND and SSD densities in the vicinity of twin tips increase by the end of Step-4. HR-

EBSD results also show localized GND fields at the vicinity of twin tips in the grain G1. 

In addition, lower GND density is observed within this grain, far from the twin tips and 

grain boundaries. This region is shown with a red circle in the HR-EBSD and CPFE 

results.  
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Figure 3.8 The evolution of GNDs and SSDs for the grains G1, G2 and G3: 

comparison between the results from the non-local model and HR-EBSD 

measurement. The HR-EBSD results are in logarithmic scale. The numerical results 

are for Step-2 (after loading), Step-4 (after twin formation) and Step-5 (after 

unloading). 

Fig. 3.8b shows the evolution of the dislocation densities for the grain G2. Similar to G1, 

GNDs are more localized at the grain boundaries, but several parallel bands are observed 

in the model. The densities of both GNDs and SSDs increase during the twin shear 

transfer step. The calculated density of GNDs from CPFE agrees with that from the HR-

EBSD measurement. For example, HR-EBSD results indicate a higher GND density at 

the grain boundaries. In addition, a higher GND density is measured at the interface of 

twin T1 with the grain G2, which is captured in the non-local model. The evolution of the 
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densities of GNDs and SSDs within the grain G3 is shown in Fig 8c. A much higher 

concentration of GNDs in the vicinity of the twin T2 is measured with HR-EBSD, which 

is captured in the numerical results. Further, both numerical and experimental results 

indicate a lower density for GNDs in the upper part of the grain G3. 

3.4.3.3 Stress 

Fig. 3.9 shows the stress along the loading direction for grains G1, G2, and G3. The 

general trends for the distribution of stress are the same for both non-local and 

conventional models. However, the non-local model predicts higher and more localized 

𝜎ଵଵ after the loading step. After the twin formation and with unloading the sample, a 

compressive 𝜎ଵଵ is observed within grain G1 at its shared boundaries with the twins T1 

and T2. In comparison with the conventional model, the magnitude of this compressive 

stress is higher for the non-local model. Results from HR-EBSD measurement also show 

negative 𝜎ଵଵin front of the twins similar to the model predictions. However, the 

calculated magnitudes from the non-local model are closer to the measured ones, i.e. 

about -400 MPa.  
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Figure 3.9 The evolution of σ11 for the grains G1, G2 and G3: comparison between 

the results from the conventional model, the non-local model, and HR-EBSD 

measurement. Stresses are in MPa and the reference points are shown with the red 

dots. The numerical results are for Step-2 (after loading), Step-4 (after twin 

formation) and Step-5 (after unloading) 

The distribution of 𝜎ଵଵfor the grains G2 and G3 are respectively shown in Fig. 3.9b and 

3.9c. Both models predict a relative tensile 𝜎ଵଵ in the right-hand side of the grain G2 

which is in agreement with those measured with HR-EBSD. The left-hand side of grain 

G2 is mainly stress free except for the upper part, which has compressive stress as 

observed in both numerical and experimental results. The value of the stresses measured 
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by the non-local model is closer to the experimental ones. The difference between the 

predictions from the two models is more distinct for the grain G3 (Fig. 3.9c). In the 

nonlocal model, the compressive 𝜎ଵଵobserved in the upper part of the grain G3 is more 

localized at its interface with the twin T2, which is in better agreement with HR-EBSD 

measurement. This region is shown with a red circle in Fig. 3.8c  

 Discussion 

In previous sections, it was shown that the calculated distribution of stress and elastic 

lattice rotation fields were similar from the conventional and non-local models. However, 

the predicted values from the two models are different such that the non-local model 

predicts higher localized values. The development of such localized deformation fields 

can significantly be affected by the size of the grain or by the sharpness of the plastic 

strain gradients. Such sharp gradients should be accompanied by high GND densities and 

hence by the development of high localized stress fields which may not be captured in 

conventional CPFE models due to ignoring the effects of strain gradients. Due to their 

lenticular geometry, sharp strain gradients can develop in twins. Therefore, in this 

section, numerical results for the twinned zone are compared to the experimental ones. 

This is followed by a discussion on the assumptions made in the CPFE model used for 

simulating twins. Further, a numerical study is conducted to understand when the 

geometrical effects of grain size become important in zirconium polycrystals. 

3.5.1 Stresses and GNDs within twins 

Fig. 3.10 shows the predictions of the non-local model for the density of GNDs within 

the twins T1 and T2, as well as within the neighbouring grain G1 at the vicinity of the 

twin tips. The path plots within twins are shown as “path 1” starting from point A and 

ending at point B, while the path plots within grain G1 are shown as “path 2” starting at 
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point B and ending at point C. Point B in both path plots coincide with twin tips in the 

vicinity of the grain G1. The numerical results are those from Step-5 so that a like-to-like 

comparison with HR-EBSD results can be done. The predicted densities of GNDs within 

the twins are in good agreement with HR-EBSD results both for trends and magnitudes. 

Both model and experiment show that the densities of GNDs are the highest in the 

vicinity of the twin tips within the twins (~1014.5 m-2), while they decrease by one order 

of magnitude towards the twins interior (~1013 m-2). Similarly, the densities of GNDs 

within the soft neighbouring grain G1 are the highest in the vicinity of the twin yet 

decrease much faster with distancing from the twin tip in the CPFE model. This is shown 

in the GND path 2. Grain G1, in contrast to T1 and T2, is a “big” and “equiaxed” grain 

where the effects of strain gradients diminish quickly with distancing from the grain 

boundary. In most of the studies conducted so far the calculated GNDs are an order 

magnitude lower than the measured one from HR-EBSD [79,80]; here we show that due 

to development of sharp strain gradients within the twinned zones, a better prediction of 

GNDs is achieved with the non-local model.  
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a.  

  

 
   

b.  

 

   

Figure 3.10 The variation of GND densities within twins (path 1) and in the vicinity 

of the twin tips in the neighbouring grain (path 2): comparison between the results 

of the non-local model and HR-EBSD for (a) T1 and (b) T2. 

In Fig. 3.11, the variations of “relative” 𝜎ଵଵ and 𝜎ଶଶ inside the twins T1 and T2 are 

shown. Results are for both conventional and non-local models at Step-5 which are 

compared with those from the HR-EBSD measurement. While the two models show the 

same trend for the development of stress within the twinned zone, the difference in 

calculated stress from the two models is more noticeable for the twin T2 (Fig. 3.11b). For 

example, in a 5 𝜇𝑚 distance from point A, the non-local model predicts a 𝜎ଵଵ variation of 

100 MPa, whereas the conventional model predicts a 𝜎ଵଵ variation of only 50 MPa. This 

50 MPa difference in 𝜎ଵଵ is also observed at the other side of the twin at point B. The 

same trend is observed for 𝜎ଶଶwhere the non-local model predicts higher stresses in the 

vicinity of twin tips at points A and B. These variations are the areas where strain 
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gradients are the highest and the difference between the two models becomes more 

distinct. In addition, the experimental data shows a high concentration of both 𝜎ଵଵ and 

𝜎ଶଶ in the vicinity of twin tips A and B of twin T2, while the stress within the twin 

relaxes towards the twin interior. Another observation that can be made is that both HR-

EBSD and non-local CPFE results show a significant stress heterogeneity within twin T2.  

a.  

   
b.  

 

  

Figure 3.11 The variation of σ11 and σ22  calculated with the conventional and non-

local models and measured with HR-EBSD within the twin (a) T1 and (b) T2. The 

path plots are shown in the left hand side of the figure and are from one twin tip to 

the other. 

3.5.2 CPFE vs HR-EBSD 

Many assumptions are made in simulating formation of twins with the non-local CPFE 

model. First, all grains measured by EBSD were extruded along the z-axis as shown in 

Fig. 3.5a. Many studies have shown that the sub-surface microstructure may affect the 
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spatial distribution of stress fields at the surface [81–85]. Since in an EBSD measurement 

the information regarding subsurface grains is missing, some studies have used samples 

with significantly large grains. This is to ensure that only one grain spans over the sample 

thickness. For example [82–84] studied polycrystals with average grain size of 1mm, 

which was as big as the sample thickness. In the current study, the average grain size is 

50 µm which is much smaller than the sample thickness of 1 mm. The extent to which the 

calculated stress or rotation fields will vary due to sub-surface grains is unknown in the 

current study. Although, it was shown by Zhang et al. that changing the sub-surface 

microstructure for an HCP polycrystal mostly affects the magnitudes of the GND 

densities, elastic rotations, and strain fields, but not necessarily the observed trends at the 

free surface [79]. In addition, since the strains induced by twin formation are very 

localized, deformation fields at the vicinity of the twins are likely less affected by the 

arrangement of the sub-surface grains.  

The modeling strategy used in this chapter is not to simulate nucleation of twins, rather to 

study stress field around them after the propagation and thickening stages. The twin 

domain is selected based on the observation made in the EBSD measurement and that the 

twins should be far from the edges of the EBSD map. The choice of reorienting twin 

domain after 2.7% is to be consistent with the applied strain in the experiment. Our study 

shows that as long as the twin is created at strains higher than 1%, the trends observed in 

the vicinity of twins in the simulated map do not significantly depend on the value of 

applied strain before the reorientation step. This is because zirconium does not undergo 

significant hardening during plastic deformation- see Fig. 3.2a. Although, the stress fields 

around the twin after nucleation change significantly with resuming the applied strain. In 

addition, the dynamic effects of twin formation are ignored in the current study as twin 

transformation strain was applied over 3060 seconds. To consider such effects, explicit 

finite element procedures should be used. Nevertheless, in another simulation, the twin 
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transformation strain was applied over only 1 second to study its possible effects. CPFE 

results for this simulation are shown in Fig. 3.12 and are compared to those for TTTS= 

3060. The same limits for the legends are used in each sub-figure to highlight the 

differences. It is shown that while the magnitude of the 𝜎ଵଵ at the end of Step-4 is 

significantly affected, minimum variation is observed after unload. That is, stress, 

rotation, and GND densities at the unload are not significantly affected by the rate at 

which the twin transformation strain is applied. Interestingly, the same conclusion is 

obtained even if the external load is applied in two steps, where the twin domain 

reorientation and shear transformation steps are applied in between the loading steps. 

       𝜔ଵଶ (rad) 𝜌ீே஽ (m-2) 𝜎ଵଵ (MPa) 

                    𝑇்்ௌ = 1𝑠        𝑇்்ௌ = 3060𝑠         𝑇்்ௌ = 1𝑠           𝑇்்ௌ = 3060𝑠     𝑇்்ௌ = 1𝑠        𝑇்்ௌ = 3060𝑠 
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Figure 3.12 The elastic lattice rotation, total GND density and normal stress 

component for grains G1, G2 and G3: (a) right after applying twin transformation 

strain and (b) after unload. 

Some discrepancies are observed between the CPFE modeling results and HR-EBSD 

measurements. One source of such differences is the missing subsurface microstructure. 

However, it should be noted that HR-EBSD is a surface-based technique where Kikuchi 

patterns are cross correlated to measure rotation and stress fields. In this process it is 

possible that density of dislocations beneath the surface becomes locally high and induce 

large lattice rotations. Extracting stress or elastic strain in such cases is not straight 
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forward as the effects of elastic strains on the movement of patterns will be 

overshadowed by large lattice rotations. Lastly, lower order strain gradient theory is used 

in this study due its simplicity in incorporating the extracted constitutive equations into 

the UMAT subroutine. It is suggested that the use of higher order theory helps avoid 

formation of unrealistic plastic strain or stress fields. In this study, the results from the 

developed non-local model is compared to those from a HR-EBSD map as well as those 

from a conventional CPFE model. This comparison does not reveal formation of such 

unusual fields in the simulated map. Such effects might become clearer at much higher 

applied strain than the one used here.   

3.5.3 Effect of grain size 

In all results presented so far, the evolution of stress within a grain was affected by its 

local neighbourhood. In this section, single crystals are used to compare the results at 

different grain sizes. Only the results from the non-local model is presented in this 

section. To be consistent with the rest of the models presented, the single crystal model 

shown in Fig.3. 2a is used with no alteration made to the applied boundary conditions. A 

uniaxial load with the same strain rate is used. In Fig. 3.13, the calculated average stress 

at 1%, 2%, and 4% applied strain for the examined single crystals are shown. The 

orientation of the HCP crystal c-axis with respect to the loading direction is changed 

every 10° while the size of the single crystals is varied from 20 µm to 28 (256) µm. In 

these simulations, the Hall-Petch effects are switched off to only study the geometrical 

effects of grain size on the hardening of the single crystals. As shown, at the early stages 

of plasticity, hardly any size effects are observed, however, by increasing the applied 

strain, the crystal starts to become harder at small grain sizes. It can be seen that the 

calculated stresses are affected when the grain size is less than 8 µm. The average grain 
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size of the modeled EBSD map is much higher and hence the results obtained from the 

two models are not very different except for the zones where strain gradients are high.  

Since the Hall-Petch effects are turned off in these simulations, the trends shown in Fig. 

3.13 are a combination of both materials properties and structural properties. That is, the 

results shown may be affected with changing the applied boundary conditions. Indeed, in 

a real polycrystal, the development of strain and strain gradients depends significantly on 

the state of the neighbouring grains and the interaction among them. 

a. 

 

b. 

 

c.

 

Figure 3.13 Average stress calculated for single crystals with different sizes and c-

axis misorientation with respect to the loading direction. The non-local model 

results are presented at three different applied strains of (a) 1%, (b) 2% and (c) 4% 

with Hall-Petch effects switched off. 

 Conclusions 

A non-local crystal plasticity finite element model is developed, and its performance is 

critically examined. The results from the non-local model is compared against those from 

a conventional CPFE model as well as those from two types of diffraction experiments. It 

is shown that:  
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1. the evolution of internal lattice strains measured using neutron diffraction is well 

captured by both non-local and conventional CPFE models. The recorded 

macroscopic stress-strain curves under two different loading conditions are also 

replicated by both models. 

2. a minor difference exists between the predicted elastic lattice rotation fields from 

the non-local model and the conventional model. 

3. the distribution of stress within individual grain from both non-local and 

conventional CPFE models are quite similar, since the average grain size of the 

studied EBSD map is relatively high. However, the non-local model predicts 

localized stresses with higher magnitudes which are in better agreement with 

those from HR-EBSD measurement. The difference between the two models 

becomes clearer in the areas where the gradients of plastic shear strain are sharp. 

4. in agreement with the HR-EBSD measurement, the calculated densities of GNDs 

as well as stresses predicted by the non-local model are much higher in the 

vicinity of twin tips. Both GND densities and stresses are shown to decrease with 

distancing from the studied twin tips. 

5. while the distribution of SSDs is somewhat uniform, GNDs localize in the form of 

slip bands where higher slip activity is calculated. Further, in agreement with the 

HR-EBSD measurement, higher GND density is calculated in the vicinity of grain 

boundaries. 
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Chapter 4  

4 Strain gradient crystal plasticity finite element modeling 
of slip band formation in α-zirconium 

Two methods for the determination of geometrically necessary dislocation (GND) 

densities are implemented in a lower-order strain-gradient crystal plasticity finite element 

model. The equations are implemented in user material (UMAT) subroutines. Method I 

has a direct and unique solution for the density of GNDs, while Method II has unlimited 

solutions, where an optimization technique is used to determine GND densities. The 

performance of each method for capturing the formation of slip bands based on the 

calculated GND maps is critically analyzed. First, the model parameters are identified 

using single crystal simulations. Afterwards, the as-measured microstructure for α-

zirconium polycrystal is imported into the finite element solver to compare the numerical 

results obtained from the models to those measured experimentally using the high 

resolution electron backscatter diffraction method. It is shown that both methods are 

capable of modeling the formation of slip bands that are parallel to those observed 

experimentally. Formation of such bands are observed in both GND maps and plastic 

shear strain maps without pre-determining the slip band domain. Further, there is a 

negligible difference between the calculated grain-scale stresses and elastic lattice 

rotations from the two methods, where the modeling results are close to the measured 

ones. However, the magnitudes and distributions of calculated GND densities from the 

two methods are very different. 
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 Introduction 

Crystal plasticity is a class of constitutive equations that can be used to describe 

deformation mechanisms of polycrystalline materials at the grain-scale [1–3]. It has been 

used in many studies to understand the evolution of heterogeneous deformation fields 

within individual grains in “real” time-scale [4–7]. A significant number of crystal 

plasticity studies have focused on modeling deformation by slip, which is controlled by 

the movement of dislocations on a particular plane known as the slip plane, and in a 

particular direction known as the slip direction. The strength of the obstacles interacting 

with dislocations determines the resistance of a slip system to the movement of the 

dislocations and the consequent material hardening. These obstacles can be categorized 

into short-range barriers and the long-range barriers [8]. The intersecting dislocations are 

usually assumed as the primary short-range barriers. The long-range obstacles may 

include the elastic stress field induced by far field dislocations. The long-range obstacles 

are affected by the density of the geometrically necessary dislocations (GNDs), while the 

development of both statistically stored dislocations (SSDs) and GNDs can increase the 

short-range effects [9,10]. When conventional crystal plasticity models are used, the 

difference between these two obstacles is generally ignored and the critical resolved shear 

stress (CRSS) for the movement of the dislocations does not depend on the deformation 

state in the neighboring points. However, the plastic response of a polycrystal depends on 

both the local state of deformation and the gradients of the plastic strain. Incorporation of 

the plastic strain gradient in crystal plasticity constitutive equations makes the model 

response dependent on the neighboring elements- this is generally investigated in the 

non-local  approach of crystal plasticity [11–15]. The strain-gradient plasticity theories 

can be formulated in the lower-order and higher-order approaches [16]. In the lower-

order approach [17–19], the plastic strain gradient terms are only incorporated in the 

hardening laws. However, in the higher-order approach, the equilibrium equations are 
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also adjusted [20–23]. This chapter focuses on examining the methods available in the 

literature for calculating GND densities in the lower-order crystal plasticity framework 

by providing a direct comparison between the results of each method to those measured 

experimentally. 

GND densities are inherently linked to the lattice curvature and can be determined using 

the gradients of plastic strain [24]. The derivation of the dislocation densities from the 

“curl” of the deformation gradient in the Nye equation has been accompanied with 

inconsistencies in the literature, some of which have been reported by Das et al. [25]. 

Generally, two methods are used in the literature for extracting GNDs using Nye 

equations. In the first method, the contribution of each slip system, e.g. α, to GND 

density is assumed to be proportional to the plastic shear accommodated on the same slip 

system α. Hence, the number of linear equations that should be solved is equal to the 

number of unknowns, i.e., GNDs on each slip system α. This is called the direct method 

where the density of GNDs on each slip system is determined unambiguously. The direct 

method was initially proposed by Dai [26] and was subsequently implemented in the 

crystal plasticity finite element (CPFE) models [10,18,27–29]. In the second method, the 

cumulative contribution of plastic shears on all slip systems to the total GND densities is 

assumed to be proportional to the Nye tensor. This usually results in a set of equations 

where the number of unknowns is more than the number of equations. Two main 

approaches are suggested for determining the unknowns. In the first approach, known as 

L1, a solution is found by minimizing the dislocation line energy. In the second approach, 

known as L2, a solution is found by minimizing the dislocation densities squares 

summation [30]. Das et al. showed that the use of L2 method leads to a solution where 

dislocation densities are evenly distributed on all slip systems, while the use of L1 method 

leads to capturing some variations of GNDs between the slip systems [25]. Negligible 

difference was found between the magnitudes of the total dislocation densities obtained 
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from the two minimization approaches. The L2 minimization approach has been widely 

used in the CPFE models [31–34]. In contrast to the direct method which provides a 

unique solution for the GND density on each slip system, both minimization approaches 

lead to non-unique solutions. Therefore, an investigation is required to compare the 

magnitudes and distributions of the obtained GND densities from these two methods. 

The measurement of internal stress and dislocation densities helps validate dislocation-

based crystal plasticity models. Diffraction methods can be used for measurement of the 

elastic lattice strains [35–38], stress distributions [38,39] as well as the dislocation 

densities [40]. For example, the dislocation densities y of slip bands were measured using 

micro X-ray diffraction [41].Although a three-dimensional view of the dislocation 

densities are provided, only a few grains can be studied in this technique. High angular 

resolution electron back scatter diffraction (HR-EBSD) technique can be used to measure 

“relative” elastic strains and rotations, and “absolute” GND densities for many grains, yet 

close to the sample surface. Diffraction patterns are collected and then cross correlated 

using a reference pattern. The deformation gradient tensor is then calculated, and used to 

determine the relative elastic strain tensor [42–45] and GND densities using Nye tensor 

[46]. Many studies have used HR-EBSD to compare the numerically obtained GND 

densities from CPFE models to the measured ones [47–50]. 

The objectives of this chapter are to compare the GND densities calculated using the 

direct method to those obtained from the minimization-based method and investigate the 

capability of the GND-based CPFE models in capturing the formation of slip bands in an 

α-zirconium polycrystal. Hence, the direct and the minimization-based methods for 

calculating GND densities are formulated and implemented in a lower-order strain-

gradient CPFE model. After calibrating single crystal parameters, the evolution of GND 

and SSD densities predicted by each method is studied in detail using single crystal FE 
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models. The capability of the developed non-local models in capturing the experimentally 

observed slip bands of a deformed polycrystalline α-zirconium is subsequently 

investigated. This is followed by comparing the results of the models for GND densities, 

stresses, and elastic rotations to those measured by HR-EBSD. 

 Sample preparation and experimental set-up 

Blocks of α-zirconium material were firstly annealed at 700 °C and then air cooled to 

relieve residual stresses as much as possible. A dog-bone sample was subsequently made 

with gauge length of 20 mm. The sample was mechanical polishing down to 4000 grit, 

followed by polishing in a 50 nm colloidal silica suspension, and electropolishing in a -30 

°C solution of 90% methanol and 10% perchloric acid for 60 s at 25 V. The cross section 

of the sample after polishing was measured to be 0.5 × 0.5 mm2.  

The sample was uniaxially deformed at room temperature under strain control to a tensile 

strain of 1.2% using strain rate of 2.6×10-5 s-1. The EBSD measurement was performed in 

a Zeiss MERLIN field emission gun scanning electron microscope (FEG-SEM) with 20 

keV beam energy, 15 nA probe current, and at the working distance of 18 mm. 

Diffraction patterns were collected every 0.5 𝜇𝑚 using a Bruker high resolution EBSD 

detector. Following the method developed by Wilkinson et al. [42], elastic strain and 

lattice rotations were calculated by cross correlating the collected 800 × 800 pixels 

Kikuchi patterns [51]. An EBSD map of the deformed sample with the coordinate system 

used is shown in Fig. 4.1a. As shown, the x-axis coincides with the loading direction, z-

axis is along the electron beam direction and sample thickness, and y-axis is defined by 

the cross product of the other two axes. In addition, as shown in Fig. 4.1b, the c-axis of 

the HCP crystals is oriented towards the z-axis with a little spread towards the x-axis. 

Since the specimen was only deformed to 1.2% and the c-axis of most of the crystals are 

perpendicular to the loading direction, deformation twinning was not active in this 
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experiment. No twin was observed in the EBSD and the ARGUS images taken from 

sample after deformation (see Fig. 4.5c and 4.5d). As such the effects of twinning are 

ignored in all mathematical formulation and CPFE modeling. 

 

Figure 4.1 (a) An inverse pole figure-Z of the sample with the corresponding pole 

figure shown in (b). 

 Crystal plasticity formulation and input model 

In this section the constitutive equations implemented for calculating GND densities 

using both the direct and minimization-based methods are described. Here, the direct and 

minimization-based methods are called “Method I” and “Method II”, respectively. These 

equations are implemented in a User MATerial (UMAT) subroutine originally developed 

by Abdolvand et al. [52] and recently updated by Sedaghat and Abdolvand [47]. After 

describing the implemented constitutive equations, the steps followed to prepare the FE 

input model are presented. 

4.3.1 Crystal plasticity constitutive equations 

The total deformation gradient (𝑭) can be decomposed to the elastic (𝑭𝒆) and plastic (𝑭𝒑) 

parts: 
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𝑭 =  𝑭𝒆𝑭𝒑 (4-1) 

The total velocity gradient tensor (𝑳) in the current configuration can be divided into the 

elastic (𝑳𝒆) and plastic (𝑳𝒑) parts as: 

𝑳 =  𝑭̇𝑭ି𝟏 =  𝑭̇𝒆𝑭𝒆ି𝟏 +  𝑭𝒆𝑭̇𝒑𝑭𝒑ି𝟏𝑭𝒆ି𝟏 =  𝑳𝒆 + 𝑳𝒑 (4-2) 

The total velocity gradient tensor can be divided into its symmetric part, i.e. deformation 

rate tensors (𝑫௘ , 𝑫௣), and asymmetric part, i.e. spin tensors (𝜴௘ , 𝜴௣). The time 

integration of deformation rate tensor and spin tensor, respectively provides the 

increments of the strain and rotation tensors. The plastic part of the velocity gradient 

tensor is calculated using the following equation [53]: 

𝑳𝒑 = 𝑫௣ + 𝜴௣ = ෍ 𝛾̇ఈ𝑚ሬሬ⃗ ఈ ⊗

ே

ఈୀଵ

𝑛ሬ⃗ ఈ (4-3) 

where 𝑚ሬሬ⃗ ఈ, 𝑛ሬ⃗ ఈ and 𝛾̇ఈ respectively represent the slip direction, the slip plane normal, and 

the shear rate on the 𝛼th slip system for the 𝑁 number of active slip systems. 𝑚ሬሬ⃗ ఈ ⊗ 𝑛ሬ⃗ ఈ is 

known as the Schmid tensor of the slip system 𝛼. The shear rate on the slip system 𝛼 is 

calculated based on the resolved shear stress (𝜏ఈ) acting on the same slip system [53]: 

𝛾̇ఈ =  𝛾̇଴
ఈ sign(

𝜏ఈ

𝑔ఈ
) ฬ

𝜏ఈ

𝑔ఈ
ฬ

௡

 
(4-4) 

where 𝛾̇଴ is a reference shear strain rate, 𝑛 represents the sensitivity of the material to a 

strain rate and 𝑔ఈ is the CRSS of the slip system 𝛼. The resolved shear stress acting on 

the slip system 𝛼 is proportional to Kirchhoff stress (𝝍) through the following equation 

[54]: 
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𝜏ఈ =  𝑷𝜶: 𝝍 (4-5) 

where 𝑷𝜶 is the symmetric part of the Schmid tensor. The Jaumann rate of the Kirchhoff 

stress tensor (𝝍ෙ ) is related to the elastic part of the deformation rate tensor (𝑫௘) and the 

elastic stiffness tensor (ℂ) of the HCP crystal after rotation to the deformed configuration 

as: 

𝝍ෙ =  ℂ ∶ 𝑫௘ (4-6) 

The elastic modulus of zirconium HCP crystals used in this study is the one determined 

by Fisher and Renken [55]: C11=143.5 GPa, C33=164.9 GPa, C12=72.5 GPa, C13=65.4 

GPa, and C44=32.1 GPa. The objective rate of Kirchhoff stress, in Eq. (4-6), is defined as: 

𝝍ෙ =  𝝍̇ −  𝜴𝒆𝝍 +  𝝍𝜴𝒆 (4-7) 

The strength of each slip system (𝑔ఈ) in Eq. (4-4) follows a dislocation-based hardening 

law [10–12,27]: 

𝑔ఈ =  𝑔∗,଴
ఈ +  

𝐻ఈ

√𝐷
+ 𝜉𝐺𝑏ఈ  ඩ෍ 𝑞ఈఉ  ቀ𝜌ீே஽

ఉ
+  𝜌ௌௌ஽

ఉ
ቁ

ே

ఉୀଵ

=  𝑔∗,଴
ఈ +  

𝐻ఈ

√𝐷
+ 𝜉𝐺𝑏ఈ ඥ𝜌் 

(4-8) 

where 𝑔ఈ is the updated CRSS, 𝑔∗,଴
ఈ  is the initial CRSS, 𝐷 is the equivalent grain 

diameter, 𝐻ఈ is Hall-Petch parameter for slip system 𝛼, 𝜉 is a material constant, 𝐺 is the 

shear modulus, 𝑏ఈ is the size of the Burgers vector for the slip system 𝛼, 𝜌ீே஽
ఉ  and 𝜌ௌௌ஽

ఉ  

are the GND and SSD densities on the slip system 𝛽. A hardening matrix 𝑞ఈఉ is 
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introduced to consider the effects of self and latent-hardening. For the sake of simplicity 

in deriving a solution, the term under the radical is called 𝜌் . It is assumed that the GND 

and SSD densities have the same hardening matrix 𝑞ఈఉ. The shear modulus, G in Eq. (4-

8), is assumed to be the average value of C44, C55, and C66 [56]. The material constant 𝜉 is 

assumed to be 0.5. 

It is assumed that the evolution of SSD densities follows the equation below [10,57]: 

𝜌̇ௌௌ஽
ఈ =  

|𝛾̇ఈ|

𝑏ఈ
 ቀ𝐾ఈඥ𝜌ௌௌ஽

ఈ + 𝜌ீே஽
ఈ − 2𝑦௖

ఈ 𝜌ௌௌ஽
ఈ ቁ 

(4-9) 

where 𝐾ఈ is the dislocation accumulation constant and 𝑦௖
ఈ is the dislocation annihilation 

length. The first term in the right-hand side of the Eq. (4-9) is the dominant term at the 

early stages of plasticity while with further loading, the effects of the second term will be 

non-negligible. In the following sub-sections, the two methods used for calculating GND 

densities are presented. 

4.3.1.1 Method I 

In the first method, the GND density of the slip system 𝛼 is uniquely correlated with the 

resolved shear strain accumulated on the same system [26]: 

𝜌̇ீே஽
ఈ =  

𝛾̇ఈ

𝑏ఈ
ห𝐶𝑢𝑟𝑙ൣ𝑛ሬ⃗ ௝

ఈ  𝑭௝௜
௣

൧ห =
𝛾̇ఈ

𝑏ఈ
อ𝜖௜௞௤

𝜕൫𝑛ሬ⃗ ௝
ఈ  𝑭௝௤

௣
൯

𝜕𝑥௞
อ (4-10) 

where 𝜖௜௞௤ is the permutation tensor. Hence, 𝜌ீே஽
ఈ  has a unique solution. For 

implementing Eqs. 8-10 into the UMAT, the time derivative of Eq. (4-8) is firstly 

calculated and coupled with Eqs. (9) and (10) to solve for the increments of shear strains 

using the Newton-Raphson iterative algorithm. The evolution of CRSS can be 

reformulated by taking the time derivative of Eq. (4-8): 
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𝑔̇ఈ = 𝜉𝐺𝑏ఈ  
𝜌்̇

2ඥ𝜌்

,    where  𝜌்̇ =  ෍ 𝑞ఈఉ  ቀ𝜌̇ீே஽
ఉ

+ 𝜌̇ௌௌ஽
ఉ

ቁ

ே

ఉୀଵ

 (4-11) 

By substituting Eqs. (4-9) and (4-10) into Eq. (4-11) we have: 

𝑔̇ఈ = ෍ ൥𝑞ఈఉ
𝜉𝐺𝑏ఈ

2𝑏ఉඥ𝜌்

 ൭อ𝜖௜௞௤

𝜕൫𝑛ሬ⃗ ௝
ఈ 𝑭௝௤

௣
൯

𝜕𝑥௞
อ + 𝐾ఉට𝜌ௌௌ஽

ఉ
+ 𝜌ீே஽

ఉ

ே

ఉୀଵ

− 2𝑦௖
ఉ

 𝜌ௌௌ஽
ఉ

൱൩ 𝛾̇ఉ 

(4-12) 

The complexity of implementation of this method in the UMAT subroutine is calculation 

of the gradient term, which was originally developed by Abdolvand [58]. 

4.3.1.2 Method II 

In the second method, the density of GNDs on the slip system 𝛼 is defined as [30]: 

ቀ𝑐𝑢𝑟𝑙൫𝑭௣೅
൯ቁ

்

=  ෍൫𝜌ீே஽,௦
ఈ  𝑏ሬ⃗ ఈ⨂𝑚ሬሬ⃗ ఈ + 𝜌ீே஽,௘௧

ఈ  𝑏ሬ⃗ ఈ⨂𝑡ఈ  

ே

ఈୀଵ

+  𝜌ீே஽,௘௡
ఈ  𝑏ሬ⃗ ఈ⨂𝑛ሬ⃗ ఈ൯ 

(4-13) 

𝜌ீே஽
ఈ  for each slip system can be decomposed into three components, one for screw type 

dislocation 𝜌ீே஽,௦
ఈ , and two edge types dislocations, 𝜌ீே஽,௘௡

ఈ  and 𝜌ீே஽,௘௧
ఈ  with 𝑡ఈ =

𝑚ఈ × 𝑛ఈ, respectively. In contrast to method I, method II has infinite solutions where a 

minimization scheme is usually used to find a solution. Eq. (4-13) can be solved by 

minimizing the sum of the squares of GND densities [19]: 
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{𝜌ீே஽
ఈ } = 𝐴்(𝐴𝐴்)ିଵ𝐵 (4-14) 

where {𝜌ீே஽
ఈ } is 3N×1 column vector including the components of GND for slip system 

𝛼, 𝐵 is a 9×1 vector, containing the curl function components in Eq. (4-13), and 𝐴 is a 

9×3N matrix with the basis tensors of Eq. (4-13). The time derivative of Eq. (4-13) is 

determined as: 

ቀ𝑐𝑢𝑟𝑙൫𝑭̇௣೅
൯ቁ

்

=  ෍൫𝜌̇ீே஽,௦
ఈ  𝑏ሬ⃗ ఈ⨂𝑚ሬሬ⃗ ఈ + 𝜌̇ீே஽,௘௧

ఈ  𝑏ሬ⃗ ఈ⨂𝑡ఈ  
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(4-15) 

By substituting Eq. (4-15) and (4-9) into Eq. (4-11), we have: 
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(4-16) 

Similar to method I, the first term in the right-hand side of Eq. (4-16) shows an explicit 

correlation between the shear strain rate 𝛾̇ఉ and 𝑔̇ఈ, but the second term represents the 

effects of GND evolution rate on 𝑔̇ఈ. Therefore, both GND density and the rate of GND 

density evolution should be determined in Method II. Further, a minimization approach 

must be followed to determine the two tensors. Accordingly, the implementation of 

Method II is relatively more complicated and computationally costly compared to 

Method I. Here, the method originally developed by Abdolvand [58] was adopted to 
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calculate the curl of 𝑭𝒑 which was subsequently implemented in the UMAT as described 

in [47].  

The single crystal parameters used for HCP zirconium for each method are provided in 

Table 4.1. The single crystal parameters for method II model were calibrated using a 

comprehensive data set measured in a series of in-situ neutron diffraction experiments 

conducted on HCP zirconium polycrystals [59]. Measured macroscopic stress-strain 

curves, lattice strains, and texture development were used to calibrate the model 

parameters as explained in [47]. The model parameters for method I are calibrated such 

that they reproduce identical stress-strain curves to those from the model with method II. 

The initial SSD density is set at 1010 m-2 for both methods. The effects of twinning is 

ignored in the simulations since no twin was observed in the experiment. Here, only the 

single crystal parameters for the method I requires calibration. The process of calibration 

is discussed in section 4.4.1.  

Table 4.1 Single crystal parameters used in the hardening law for HCP zirconium 

from Sedaghat and Abdolvand [47] 

 Prism Basal Pyramidal 
n 20 20 20 
𝜸̇𝟎

𝜶 (𝑺ି𝟏) 3.5e-4 3.5e-4 1.0e-4 
𝒒𝒔𝒔 (self) 1 1 1 
𝒒𝒔𝒕 (t=prism) 1 1 0 
𝒒𝒔𝒕 (t=basal) 1 1 0 
𝒒𝒔𝒕 (t=pyramidal) 0 0 1 
Burgers vector (nm) 0.323 0.323 0.608 
𝑯𝜶 (𝑴𝑷𝒂 √𝒎) 0.109 0.146 0.292 
𝒈∗,𝟎

𝜶  (𝑴𝑷𝒂) 95 135 266 

MI 
𝑲𝜶 0.07 0.07 0.30 

𝒚𝒄
𝜶 (𝒏𝒎) 5 5 10 

MII 
𝑲𝜶 0.05 0.05 0.30 

𝒚𝒄
𝜶 (𝒏𝒎) 5 5 10 
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4.3.2 Input models 

4.3.2.1 Single crystal 

The evolution of GND and SSD densities as well as the CRSS of each slip system is 

studied using the single crystal model. This is to provide a comparison between the two 

methods used. A cube-shaped single crystal with the side length of 20 𝜇𝑚 is used for the 

FE input model. The cube is deformed uniaxially to 5% applied strain at the strain rate of 

10-5 s-1. Uniaxial tensile strain is applied on the surface DCGH along the X-direction 

(Figure. 2a). Fixed displacement boundary conditions are applied on the ABFE, AEHD, 

and EFGH surfaces along X, Y, and Z directions, respectively. The model is discretized 

with 1000 quadratic brick elements with reduced integration points (C3D20R), with 10 

elements in each direction. The c-axis of the HCP crystal was rotated with respect to the 

loading direction from 0° to 90° at the step size of 22.5°. As shown in Fig. 4.2a, the 

misorientation between the loading direction and crystal c-axis is presented by θ. 

4.3.2.2 Polycrystal 

The measured EBSD map shown in Fig. 4.1a is imported into the ABAQUS FE solver. 

The imported polycrystal model is shown in Fig. 4.2. The as measured strain and strain 

rates are applied to the FE model. The boundary conditions used are 𝑢௫ = 0 and 𝑢௬ = 0 

on the ABCD and CGHD surfaces, respectively, and 𝑢௭ = 0 on the AD and DH edges. 

The model is extruded in the z direction to the thickness of 50 𝜇𝑚 to be consistent with 

the measured average grain size of the specimen. After conducting mesh sensitivity study 

to ensure that FE results are converged, the model was discretized to 65,157 C3D20R 

brick elements. Three elements along the model thickness are used. The EBSD measured 

grain orientations are assigned to each modeled grain. The model was deformed in two 

steps; in Step-1, 1.2% uniaxial strain was applied to the model in the global x-direction 

and in Step-2, the model is unloaded and allowed to relax. In all simulations presented, 
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the maximum time increment allowed is 5 seconds to ensure that the calculated GND 

densities are independent from the size of the selected time increment and are converged. 

a. 

 

b.  

 

c. 

Figure 4.2 (a) Applied boundary conditions for the single crystal model. (b) The 

EBSD-measured microstructure imported into the finite element solver with the 

meshed map shown in (c). 

 Results 

A single crystal model is firstly used to calibrate the single crystal parameters for the 

Method I of the CPFE model. This is followed by comparing the results of the CPFE 

models to those measured by HR-EBSD for stress, lattice rotations, and GND densities 

within the polycrystal. The capability of each method in determining slip activity and 

capturing slip bands is also discussed. 

4.4.1 Single crystal 

The single crystal model shown in Fig 2a is used to calibrate the single crystal parameters 

for the Method I of the CPFE model. The calculated stress of this method is compared to 

the one from Method II of the CPFE model. In addition, the calculated slip activities and 

GND densities are compared between the two methods. This is to understand the 

differences between each method at the single crystal level and to establish a foundation 

for the differences observed in the polycrystalline simulations. 
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In Fig. 4.3a, the stress-strain curves calculated with the CPFE model using both Methods 

I and II at five different crystal orientations are shown. In addition, the calculated relative 

activities of each slip system from both methods are provided in Fig. 4.3b. Relative 

activities are the resolved shear strain (𝛾ఈ) for each slip set divided by the total shear 

strain at the applied strain of 5%. It is shown that identical stress-strain curves and slip 

activities are obtained for different crystals orientations. 

Fig. 4.3c compares the calculated relative GND density of each slip system from both 

methods of CPFE model. Relative GND densities are determined by dividing the total 

GND density calculated for each slip set to the total GND density calculated for all slip 

systems. The calculated relative GND densities from Method I follows the same trends 

captured for the slip activities. However, the relative GND densities of Method II follows 

a nearly horizontal line, which is independent from the misorientation angle θ and the 

calculated slip system activity. Moreover, the relative GND density of the pyramidal slip 

system is almost four times higher than those from prism and basal slip systems. The 

relative GND densities calculated for prism and basal slip systems from Method II are 

identical. These two curves are overlapped in Fig. 4.3c. The relative GND densities 

calculated using Method II for each slip set is proportional to the number of variants for 

each slip set. That is, GND densities are evenly distributed on all variants of a slip system 

when method II is used. 
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a. 

 

b.  

 

c.  

 

Figure 4.3 (a) The average stress-strain curve, (b) relative slip activity and (c) 

relative GND density calculated for a single crystal with different c-axis 

misorientation with the loading direction (θ). Comparisons are made for the Method 

I (M I) as well as Method II (M II) of the CPFE model. 

The evolution of the average GND and SSD densities of each slip set from the two 

methods implemented in the CPFE framework is compared in Fig. 4.4. For each slip set, 

the total calculated dislocation density, either GND or SSD, is divided by the by the 

number of variants in the same slip set, i.e. M in 
∑ ఘಸಿವ

ഀಾ
ഀసభ

ெ
 is 3, 3, and 12 for prism, basal, 

and pyramidal slip systems, respectively.  Results are for three different misorientation 

angles (θ). In addition, the calculated total dislocation densities, GNDs plus SSDs, from 

the two methods are compared. Although both methods predict identical average stress-

strain curves (Fig. 4.3a), a significant difference in the predicted GND densities is 

observed. The SSD and GND densities from Method II have the same order of 

magnitude. However, in Method I, SSD densities are at least two orders of magnitude 

higher than GND densities. This means that the hardening of slip systems from Method I 

is mainly driven by SSD densities as the contribution of GND densities is almost 

negligible. The cumulative dislocation densities calculated from both SSDs and GNDs 

are almost equal to those calculated from Method II. This results in calculating the same 

evolution for CRSS using both methods. 
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Figure 4.4 The evolution of the average GND density, average SSD density, and total 

dislocation density of prism, basal and pyramidal slip systems at different crystal c-

axis misorientations with the loading direction (θ). Results are for CPFE model 

using Methods I and II. M is 3, 3, and 12 for prism, basal and pyramidal slip 

systems. 

4.4.2 Polycrystal 

Results presented in this section are from the CPFE model using both Methods I and II. 

The CPFE results for GND densities are presented and compared to those measured by 
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HR-EBSD. In addition, the capability of both methods in simulating formation of slip 

bands is evaluated by comparing the numerical results to those from SEM images of the 

deformed specimen. Finally, the distribution of calculated stresses and elastic lattice 

rotations are compared to those measured by HR-EBSD.  

4.4.2.1 GND density and slip activity 

The distributions of total GND densities after the unload step for Methods I and II are 

shown in Fig. 4.5a and 4.5b, respectively. The total GND density from Method I is about 

an order of magnitude smaller than that calculated using Method II. For example, in 

grains G2, G3, and G5, marked in Fig. 4.5a, a significant portion of the grains have GND 

densities lower than 109 m-2 when Method I is used. Moreover, the maximum GND 

density from Method I is about 4×1012 m-2, but it is ~7×1014 m-2 when Method II is used. 

Although, there is a noticeable difference in the magnitudes of calculated GNDs, the 

predicted trends are quite similar between the two methods. For example, most of the 

grain boundaries have high GND densities. In addition, both methods predict highly 

localized GND concentration sites at the top-right sections of grains G1 and G2, upper 

side of grain G3, and right side of grain G6. These areas are shown by the white circles in 

Fig. 4.5a. HR-EBSD measurement also shows high GND density at these regions, as 

shown in Fig. 4.5c. However, the magnitudes of GND densities from HR-EBSD are 

higher than those from both CPFE methods, but much closer to those from Method II. In 

comparison to Method-I, the magnitude of GND densities from Method II is closer to 

those measured with HR-EBSD. This is not surprising because in the calculation of GND 

densities from HR-EBSD measurements, Method II is used along with L1 optimization 

scheme. As a result, it is expected to have a better agreement between HR-EBSD 

measurements for GNDs and those from Method II of the CPFE model. The effects of 

using L1 and L2 optimization schemes in determining GND densities from HR-EBSD are 
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discussed elsewhere [60,61]. In addition, Method I cannot be used for HR-EBSD 

measurement as the plastic resolved shear strain on each slip system (𝛾ఈ) cannot be 

directly extracted with this technique (see Eq. 4-10). 

Fig. 4.5d shows an ARGUS image of the deformed polycrystal, in which slip bands can 

be observed in most of the grains. For better visualization, the orientations of slip bands 

are shown with the black dotted lines. Interestingly, CPFE results from both Methods I 

and II also show GND density localization in the form of slip bands. For example, in 

grains G1, G2, G3, and G4, a distinct slip band is formed that spans from one side of the 

grain to another, as shown with the white dotted lines in Fig. 4.5b. The orientations of 

these bands are in agreement with those observed in the SEM image in Fig. 4.5d. In 

addition, both CPFE methods have captured the crossing of the two separate slip bands 

observed in grain G7. The two slip bands can also be observed in the ARGUS image. The 

CPFE results reveal that these slip bands are associated with the localization of plastic 

shear on the prism planes. This is also consistent with the measured grain orientations as 

shown in Fig. 4.5d. For example, in grains G2, G3, and G4, the observed slip bands of the 

ARGUS image are parallel to ones of the variants of the prism planes of the illustrated 

HCP crystals. Therefore, both Methods I and II are equally effective when predicting the 

direction of slip bands. 
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Figure 4.5 The distribution of total GND density from (a) CPFE model using 

Method I, (b) CPFE model using Method II and (c) HR-EBSD. (d) SEM-ARGUS 

image of the deformed sample. In (d) slip bands are shown with the black dashed 

lines and crystal orientations are shown using HCP crystals. 

In order to determine the relationship between the observed slip bands and active slip 

systems, the average resolved shear strain and GND density of each slip set are extracted 

from the CPFE results and are shown in Table 4.2. These values are calculated by taking 

the volume average of the resolved shear strains, or GNDs, calculated at all integration 

points assigned to each grain. The calculated average value for each slip set is the 

summation over all variants, i.e. 3 variants for basal or prism, and 12 variants for 

pyramidal <c+a>. Table 4.2 summarizes the amount of slip and GND density 
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accumulated on the prism, basal, and pyramidal slip systems of grains G1 to G5. The 

predominant slip system with the highest value is presented in bold. Both methods 

confirm that the predominant slip system for all five selected grains is slip on the prism 

planes. For example, for grain G4 almost all plastic deformation is accommodated by 

prism slip systems whereas for grain G3 both basal and prism slip systems are active with 

prism being the most active one. Although these trends are also observed for the GND 

densities obtained from Method I, the pyramidal slip system accommodates most of the 

GNDs calculated in Method II. In fact, the GND density from method II is almost evenly 

distributed on all eighteen variants, but since the pyramidal slip system has 12 variants, it 

always has the highest GND density once the summation is done over all 12 variants. 

These results are consistent with the trends observed for the single crystal model. The 

heterogeneous distribution of the GND densities on the different slip variants in Method I 

is more reasonable compared to Method II where the GND densities on individual slip 

variants are always equal, regardless of the applied loading conditions. 

Table 4.2 Average resolved shear strains and GND densities from the CPFE models. 

Results are for grains G1 to G5 of the polycrystalline model at 1.2 % applied strain. 

The predominant slip system is shown in bold. 

Grain ID GND 
Method 

Cumulative resolved shear strain  GND density m-2 
Prism Basal Pyr  Prism Basal Pyr Total 

1 I 4.8×10-2 3.6×10-3 <10-4  1.6×1011 1.5×109 1.3×106 1.6×1011 

II 4.4×10-2 2.4×10-3 <10-4  3.8×1011 3.8×1011 2.1×1012 2.9×1012 

2 I 2.4×10-2 1.2×10-3 <10-4  3.7×109 1.4×108 4.1×105 3.9×109 

II 2.3×10-2 1.1×10-3 <10-4  1.8×1011 1.8×1011 9.1×1011 9.5×1011 

3 I 7.0×10-2 3.2×10-2 <10-4  1.2×1010 1.4×1010 4.5×106 2.6×1010 

II 6.9×10-2 3.0×10-2 <10-4  1.9×1012 1.9×1012 8.8×1012 1.3×1013 

4 I 1.1×10-1 5.5×10-3 <10-4  7.7×1010 5.1×109 9.2×107 8.2×1010 

II 1.2×10-1 5.3×10-3 <10-4  2.1×1012 2.1×1012 1.2×1013 1.6×1013 

5 I 2.4×10-2 1.2×10-3 1.2×10-4  2.6×109 1.2×109 4.5×108 4.3×109 

II 2.3×10-2 0.9 ×10-3 1.1×10-4  4.2×1011 4.2×1011 2.5×1012 3.3×1012 
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Fig. 4.6 shows the distribution of resolved shear strains on the first and second most 

active slip variants. Results are for grains G2, G3, and G4. All variants are related to the 

slip on prism, except for the grain G3 where its second dominant variant belongs to the 

basal system (see Table 4.2). Shear strain localization in the form of slip bands is 

observed in all three grains. These slip bands are shown with a red dotted lines in Fig. 

4.6. These bands are parallel to the ones observed in the GND maps in Fig. 4.5a and 4.5b 

as well as those observed in the ARGUS image of Fig. 4.5d. 
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Figure 4.6 The distribution of resolved shear strain on the most active (first row) 

and the second most active (second row) slip systems. Results are for the CPFE 

model with Method I shown in the right column and Method II in left column. 

Grain IDs are shown on the top of each grain. 

4.4.2.2 Stress 

The normal stress component along the loading direction (𝜎ଵଵ) and the in-plane shear 

stress component (𝜎ଵଶ) of grains G3, G4, and G5 are shown in Fig. 4.7 and 4.8, 

respectively. The distribution of 𝜎ଵଵ is almost identical between Methods I and II. After 

unloading, the normal stress drops significantly. The distributions of 𝜎ଵଵ from HR-EBSD 

are also shown in the last row of Fig. 4.7. In an HR-EBSD measurement, a reference 

point is selected within each grain to measure “relative” stresses and elastic lattice 



98 

 

 

 

 

 

rotations with respect to this point. The reference point is normally selected far from the 

grain boundaries, where it is assumed that stress and orientation variations are minimum. 

These reference points are shown with the red dots in the Fig. 4.7. Since stresses from 

HR-EBSD are relative, the calculated stresses at all integration points assigned to a grain 

are reduced from those calculated at the integration point that coincides with the HR-

EBSD reference point. This is to provide a like-to-like comparison between CPFE results 

and the HR-EBSD measurement.  

For grain G2 of Fig. 4.7, a tensile stress field is predicted in the lower half of the grain 

where the stress magnitude increases toward the grain boundary. This is in agreement 

with HR-EBSD measurement. In addition, two compressive stress fields are observed in 

the upper half of the grain. In comparison to the measurement, the size of these two fields 

are overestimated in CPFE results, although the trends are the same. Grain G3 can be 

divided into three regions, i.e. top, bottom and middle regions. Calculated stress 𝜎ଵଵ is 

tensile in the top and bottom regions, while it is compressive in the middle region. This is 

in agreement with the HR-EBSD measurement. For grain G4, the left side of the grain 

has a compressive stress field, and the bottom side of the grain has a tensile stress field in 

both model and experiment. 
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Figure 4.7 The normal stress component along the loading direction for grain G2, 

G3 and G4. A comparison between Method I (right column) and Method II (left 

column) of the CPFE model and HR-EBSD (last row). 

In Fig. 4.8, it is shown that the distribution of shear stress 𝜎ଵଶ is nearly identical between 

method I and II. For grain G2, a negative shear stress band is observed in the CPFE 

results on the top-left side of the grain. This band is also observed in the HR-EBSD 

measurement. In addition, a positive 𝜎ଵଶ region, at the top-right side of the grain is 

calculated in both CPFE models which is also observed in the HR-EBSD measurement. 

However, there are regions in grains G3 and G4 where the calculated shear stress 𝜎ଵଶ do 

not match with those from HR-EBSD measurement. The magnitude and distribution of 

calculated normal (Fig. 4.7) and shear stresses (Fig. 4.8) are quite similar between the 

two Methods I and II. 

Method II Method I Method II Method I Method II Method I 

G4 G
3 

G2 
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Figure 4.8 The in-plane shear stress component of grain G2, G3 and G4. A 

comparison between Method I (right column) and Method II (left column) of the 

CPFE model and HR-EBSD (last row) 

4.4.2.3 Lattice rotations 

The in-plane elastic rotation component of grains G2, G3, and G4 are shown in Fig. 4.9 

and the results of Methods I and II are compared with those from HR-EBSD. Since 

measurements were done at the surface, only the in-plane component of the lattice 

rotation (𝜔ଵଶ
௘ ) is shown. The relative values with respect to the reference point are 

presented in the last row of the simulation results. No difference is observed between the 

two methods in all the three grains after the loading and unloading steps. This means that 

although different GND densities are calculated in these two methods, the parameters are 

calibrated well, such that the resulting deformation tensors are almost identical from the 

G4 G3 G2 
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two methods. The relative values with respect to the reference point of the EBSD follow 

the same trend as the HR-EBSD measurement. For example, both CPFE and HR-EBSD 

results show positive elastic rotation 𝜔ଵଶ
௘  in the left half of the grain G2. In addition, in 

both model and experiment, the top side of the grain G3 has negative elastic rotation𝜔ଵଶ
௘ . 

Furthermore, the CPFE results show negative 𝜔ଵଶ
௘  on the top right side and positive 𝜔ଵଶ

௘  

on the lower left side of the grain G4 which agrees with the HR-EBSD measurement. 
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Figure 4.9 The elastic rotation component 𝝎𝟏𝟐
𝒆  of grain G2, G3 and G4. A 

comparison between Method II (left column) and Method 1 (right column) of the 

CPFE model and HR-EBSD (last row). The lattice rotations are in radians. 

Method II Method I Method II Method I Method II Method I 

G4 G3 G2 
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 Discussion 

A lower-order strain-gradient crystal plasticity finite element model was developed in 

which two different methods were used to describe the evolution of GND densities. In 

Method I, a definite value was calculated for the magnitude of GNDs on each slip 

system, whereas in Method II, a minimization approach was used to solve for an under 

determined system of equations. The performance of CPFE models were examined both 

for single crystal models and for polycrystalline models. In addition, the as-measured 

microstructure of a deformed α-zirconium sample was imported to the FE solver to 

compare the calculated grain-scale stresses, elastic lattice rotations, and GNDs to those 

measured using HR-EBSD. 

Results shown in all previous sections were for single or polycrystalline models with the 

average grain size more than 20 µm. The results of the strain-gradient CPFE model, 

however, are length-scale dependent and are highly sensitive to the size of the studied 

grains [47]. Such a size dependency originates from the accumulated GND density which 

is a function of plastic strain gradients. Since the magnitudes of GND densities from 

Methods I and II are very different, it is important to check the effects of grain size on the 

results obtained. To do so, the single crystal model used in section 4.3.1 is also used here, 

but the model is scaled so that different grain sizes can be studied. The model is scaled to 

ten different sizes from 0.125 µm to 64 µm and the calculated stresses, GND, and SSD 

densities from Methods I and II are compared. The misorientation between the c-axis of 

grain and the loading direction is set at 22.5o, 45o, and 67.5o. The macroscopic strain 

applied to the polycrystal is 5%. The Hall-Petch effects are switched off to only study the 

geometrical effects on the materials hardening.  
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a. 

 

b. 

 

c.  

d. 

 
e.  

f.  

Figure 4.10 A comparison between the results of the CPFE model, using Methods I 

and II, for the single crystal model in Fig. 4.2a at ten different grain sizes. Stress 

along the loading direction for the misorientation angles of (a) 22.5o, (b) 45o, and (c) 

67.5o. GND and SSD densities for the misorientation angles of (d) 22.5o, (e) 45o, and 

(f) 67.5o. The values on the x-axis represent the size of the single crystal. Hall-Petch 

effects are switched off. 

 Figs 10a, 10b, and 10c show that the average stress for the single crystal with 

misorientation angle of 22.5o, 45o, 67.5o, respectively. It is shown that the stress 

magnitude is highly affected by the model size when Method II is used, particularly when 

the grain size is smaller than 10 µm. Although Method I also shows some dependency on 

the grain size, the magnitude of the stress is only significantly affected by the grain size 

for the grains smaller than 1 µm. This is the reason why the stresses obtained from the 

two methods for the polycrystal, presented in section 4.2.2 with the average grain size of 

50 µm, are not that different. Figs 10d, 10e, and 10f show that the average GND and SSD 

density for the single crystal with misorientation angle of 22.5o, 45o, 67.5o, respectively. 
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It is shown that the calculated GND density has a linear relation with the grain size in the 

log-log scale. Interestingly, the slops of these two lines are the same for the two methods 

used. In contrast to GNDs, SSDs are almost unaffected by the grain size. Therefore, the 

hardening of bigger grains is SSD driven, while that of smaller grains is GND driven. 

This means that SSDs are as much important in determining stress development. Hence, 

when the formulation provided here is used to study fracture of polycrystals at grain scale 

[31,32], it is very important to fully characterize the contribution of both GNDs and SSDs 

to material plastic deformation. 

A lower-order strain-gradient crystal plasticity model is used here, where the material 

hardening law is modified by including the strain gradient terms. One of the 

disadvantages of this approach is the formation of unrealistic localized deformation fields 

as described in [16]. Further, when lower-order formulation is used, CPFE results are 

mesh-size dependent; on the other hand, when higher-order formulation is used, CPFE 

results are almost mesh independent [62].  

The simulation results obtained from CPFE models showed several discrepancies with 

respect to those from HR-EBSD. The observed discrepancies could be due to ignoring the 

sub-surface grain structures in the CPFE results. As shown in Fig. 4.2, a columnar grain 

structure was assumed in the CPFE model by extruding the measured EBSD map along 

the z-axis. This is because the EBSD measurement does provide the information about 

the sub-surface grains. Although, ignoring the sub-surface grain structures may affect the 

stress values at the free surface in the CPFE results [63–65], Zhang et al. showed that the 

calculated trends in the GND densities and strains are not much affected by the sub-

surface microstructure [48]. 

Table 4.3 summarizes the results of the comparisons made between Method I and II. The 

effectiveness of the two methods can be assessed using two different perspectives: 
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implementation and performance. From the implementation point of view, Method I is 

more straightforward and can be used for developing higher-order non-local CPFE 

models. This method is also computationally efficient since no optimization is required to 

determine the density of GNDs. In terms of performance, the use of Method II leads to 

closer numbers to those measured with HR-EBSD for GND density but results in uniform 

distribution of GNDs on all slip variants. Finally, when larger grain sizes are used, 

typically more than 10 µm, there is no difference between the two methods.  

Table 4.3 A comparison between Method I and II for determining GND densities 

Implementation 

Lower order  
non-local CPFE  

Both methods can be implemented, but the 
implementation of Method I is more straightforward 
than Method II 

Higher order  
non-local CPFE Only Method I  

Performance 

Total GND density Results from Method II are closer to those measured 
with HR-EBSD. 

GND density on  
each slip system  

Method I: The calculated values are proportional to the 
cumulative slip for each slip variant 
Method II: almost equal for all slip systems 

 Conclusions 

A user material (UMAT) subroutine is updated to include the strain-gradient effects. Two 

different methods are used for determining GND densities. The performance of the two 

methods for simulating the formation of slip bands in a deformed α-zirconium specimen 

is investigated. Numerical results are compared with those measured with HR-EBSD. It 

is shown that: 

 

1. The GND maps calculated from the strain-gradient CPFE models using both 

methods show formation of localized GND lines within the grains of the 
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polycrystalline model. These GND lines are parallel to the slip bands observed in 

the deformed specimen using electron microscopy. The slip bands can also be 

seen in the calculated shear strain maps of the CPFE results. 

2. The use of the minimization-based approach for the determination of GND 

densities (Method II) leads to an even distribution of GNDs on all slip systems, 

whereas when the direct approach (Method I) is used, the magnitude of the 

calculated GNDs on each slip system is proportional to the plastic shear strain 

accumulated on the same slip system. 

3. Although the magnitudes of GND densities are different from the two methods, 

the trends observed for the calculated grain-scale stresses and lattice rotations are 

the same for the polycrystal. This is because for the studied microstructure, where 

the average grain size is 50 µm, the calculated total dislocation density, GND plus 

SSD, from the two methods is almost the same. 

4. When a smaller grain size is used, the calculated average stresses from the two 

methods are different. The critical grain size below which the geometrical effects 

become significant is higher in Method II, compared to Method I.  

5. The dislocation-based hardening law used here is SSD driven for larger grains and 

GND driven for smaller grains and accurate implementation of both mechanisms 

is important when different grain sizes exist in the microstructure. 
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Chapter 5  

5 Dislocation-based crystal plasticity finite element 
modeling of irradiation growth in α-zirconium 

A mechanistic model for simulating irradiation growth strain in zirconium alloys is 

integrated into a non-local crystal plasticity finite element model. The results of the 

model are firstly compared to the previously published measurements of growth strain in 

both annealed single crystals and annealed as well as cold worked polycrystalline α-

zirconium specimens irradiated with neutrons. This is followed by conducting a 

sensitivity analysis to characterize the evolution of average growth strain in polycrystals 

as a function of average grain size, texture, and prior cold work. The distributions of 

growth strain within and across the grains of the polycrystals are critically analyzed. It is 

shown that due to the heterogeneous distribution of the dislocation line densities at the 

grain level, a noticeable non-uniformity in growth strain is observed. In addition, it is 

shown that growth strain can be localized at grain boundaries. The magnitude of the 

localized growth strain significantly depends on the grain size, the magnitude of prior 

cold work, and irradiation dose. 

 Introduction 

In nuclear reactors, zirconium alloys are exposed to an intensive neutron flux from fission 

reactions. During irradiation, neutrons pass through zirconium cladding and knock atoms 

off from their regular positions in the lattice towards interstitial sites and leave vacancies 

behind. This phenomenon, also known as irradiation damage, results in the formation of 

two different types of dislocation loops in hexagonal closed-pack (HCP) zirconium 

crystals: interstitial loops and vacancy loops [1–4]. Formation of the interstitial and 

vacancy loops is accompanied by expansion and contraction of HCP crystals along the 
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crystal a-axis and c-axis, respectively. This anisotropic, but volume conserving 

dimensional change that takes place in the absence of an external load is known as 

irradiation growth. For the safe and efficient operation of a nuclear reactor, it is important 

to assure that the core components subjected to irradiation have dimensional stability 

over the effective lifetime of the reactor. This study focuses on the development of a 

mechanistic model for understanding and simulating the effects of irradiation growth at 

the grain and macroscopic scales.   

The effects of irradiation damage on the deformation mechanisms of zirconium alloys 

have been experimentally studied over the last decades. A review of such effects can be 

found in [5]. Irradiation growth strain is affected by neutrons fluence and energy, the 

operating temperature of the reactor, as well as zirconium’s composition, texture, prior 

cold work, and average grain size. For example, it was shown that irradiation growth in 

annealed polycrystalline zirconium is generally about ten times greater than that of single 

crystals [6]. This study showed that grain boundaries are strong sinks for irradiation-

induced defects. In another study by Fidleris [7], it was shown that irradiation growth is 

inversely dependent on grain size in annealed polycrystalline zirconium. Murgatroyd and 

Rogerson [8] also observed a significant grain size dependence, with specimens having 5 

μm grains exhibiting a higher strain than those with 40 μm grains. However, Cann et al. 

[9] showed that growth strain may not be affected by grain size for specimens with grain 

sizes bigger than 50 μm. Prior cold work can also have a significant influence on the 

growth strain of zirconium. An experimental study by Rogerson showed that cold-worked 

specimens with smaller grain sizes have significantly higher growth strain compared to 

annealed ones with bigger grain sizes [6]. It was also shown that with cold working 

zirconium and increasing stored dislocation density, irradiation growth strain increases 

[10,11].  
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In addition to the macro-scale experimental measurements, several micro-scale 

investigations have been conducted on irradiated samples. For example, Griffith et al. 

[12] analysed the dislocation loops sponge and crystal-bar zirconium, neutron irradiated 

to a fluence of 4.5×1025 nm-2 and 1.6×1026 nm-2, respectively, using transmission electron 

microscopy (TEM). It was shown that while the mid-grain region contains equal number 

of vacancy and interstitial loops, the regions adjacent to the grain boundary contains only 

vacancy loops. Furthermore, cavities (vacancy clusters) were found close to the grain 

boundaries, but not in the mid-grain regions. Recently, an in-situ TEM study on electron 

irradiated magnesium was conducted by Dong et al. [13]. It was shown that dislocation 

loops preferentially nucleate and grow only in 10-200 nm from grain boundaries. 

Therefore, the presence of grain boundaries was seen to locally accelerate the formation 

of dislocation loops. In another study by Zhang et al. [14], dislocation loops were 

analysed in an ion irradiated nano layered Zr-2.5Nb specimen using TEM. A dislocation 

loop denuded zone was found close to the beta-phase, within the alpha phase. The width 

of this defect free zone was measured to be 30-40 nm, and it was shown to decrease with 

decreasing the size of the alpha phase. Although these TEM measurements have been 

conducted to study the distribution of dislocation loops within grains, there is a lack of 

information on the distribution of the resulting growth strain at the grain level. Modeling 

techniques can be helpful for such investigations. In addition, numerical models may be 

used for predicting the long-term effects of irradiation damage on the core components of 

next generation nuclear reactors. 

There are two general approaches for modeling irradiation growth in the literature: 

empirical and mechanistic. Empirical models mainly use measured data for curve fitting 

of the model parameters. For determining irradiation growth strain, several empirical 

models have been proposed [15–17]. Although these models account for texture, 

irradiation dose, and temperature effects, they are mainly valid for the range of the test 
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conditions used for model calibration. While being simple and fast, these empirical 

models neglect the interaction between crystallographic texture, grain morphologies, and 

irradiation damage at the grain scale. Another approach for simulating the effects of 

irradiation damage is to use physically-based mechanistic models. Molecular dynamics 

(MD) and dislocation dynamics (DD) are the two nanoscale approaches used to 

understand the interaction between dislocations with point defects, as well as to calculate 

their densities or distributions during irradiation cascades [18–24]. Such atomistic 

simulations provide crucial insight towards understanding the nature of the interaction 

between point defects and line defects or how dislocations climb. However, there is a 

need for linking the nanoscale simulations to macroscale models. This is to ensure that 

the time scale used in modeling is representative of the process, and the effects of 

materials texture and microstructure are included by studying the response of many 

grains.   

Crystal plasticity is a class of constitutive equations that can be used to study the 

heterogeneous deformation of individual or cluster of grains. It is a mesoscale modeling 

approach where plastic strain is calculated by determining the amount of slip that occurs 

on all active slip systems within individual grains of the polycrystal [25–27]. Crystal 

plasticity has been implemented in different frameworks, e.g., self-consistent [28,29], fast 

Fourier transform (CP-FFT) [30,31], and finite element (CPFE) [32–34]. In the self-

consistent framework, each grain interacts with a homogenous medium that represents 

the average properties of the aggregate except for the grain that is investigated. The 

limitation of this framework is that it cannot capture the “true” interaction among 

neighboring grains. Unlike the self-consistent framework, local stress variations, stress 

concentration within individual grains, and the effects of the local neighborhood on the 

response of each grain can be studied using FE and FFT frameworks [35–41]. 
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The mechanistic irradiation growth models have primarily been developed based on a 

rate-theory approach [19,42–45]. The reader is referred to the reference [5] for a 

comprehensive review of the various physically-based irradiation growth models. For 

example, a reaction-diffusion model for irradiation growth of HCP materials was 

proposed by Golubov et al. [45]. In this model, the evolution of vacancy and interstitial 

loops follows a dose-dependent formulation, leading to a dose-dependent irradiation 

growth strain model for single crystal HCP zirconium. This model was implemented in a 

self-consistent crystal plasticity framework to study the evolution of grain-average 

irradiation growth strain [46]. It was shown that the effects of texture and grain size on 

the calculated growth strain are significant. However, the possible effects of the local 

grain neighborhood were ignored. In addition, the distribution of growth strain between 

and within grains was not studied. Such studies can be conducted in dislocation-based 

CPFE models. 

In this chapter, the irradiation growth model of Golubov et al. [45] is adopted to integrate 

into a dislocation-based CPFE model. The results of the new model are compared to 

those measured for both single crystals as well as polycrystals, either annealed or cold 

worked. In addition, the effects of texture, prior cold work, and average grain size on the 

average irradiation growth strain of polycrystal are investigated. The distribution of the 

growth strain between different grains and within individual grains is subsequently 

analyzed using both polycrystal and bi-crystal models. Finally, the role of grain boundary 

sink strength on the formation of localized irradiation growth strain and the effects of 

irradiation hardening on the numerical results are discussed. 
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 Model 

The constitutive equations used for crystal plasticity and irradiation growth models are 

described in this section. These equations are implemented into a user material (UMAT) 

subroutine developed by Sedaghat and Abdolvand [47]. 

5.2.1 Crystal plasticity constitutive equations  

A brief description of the key equations of the CPFE model is provided here, a 

comprehensive explanation is given elsewhere [47]. The code is a UMAT subroutine that 

calculates the stress increment, the material Jacobian matrix, and updates solution 

dependent state variables (SDVs) based on a given strain, rotation, and time increment. 

For a given strain increment we have: 

 ∆𝜺 =  ∆𝜺𝒆𝒍 + ∆𝜺𝒑𝒍 + ∆𝜺𝒈𝒓 (5-1) 

where ∆𝜺 is the total strain increment given by the FE solver, ∆𝜺𝒆𝒍 is the elastic strain 

increment, ∆𝜺𝒑𝒍
 is the plastic strain increment as a result of slip, and ∆𝜺𝒈𝒓

 is the 

irradiation growth strain. In this chapter, tensors are presented using a bold font, and 

vectors are identified with an arrow on the top. Strain rates are firstly calculated and then 

time integrated to calculate the increments. The rate of the plastic strain (𝜺̇௣) or the plastic 

part of the deformation rate (𝑫௣) can be calculated using the following equation: 

𝜺̇௣ = 𝑫௣ = ෍ 𝑷ఈ𝛾̇ఈ

ே

ఈୀଵ

 

𝑷𝜶 = 𝑠𝑦𝑚(𝑺𝜶) 𝑤ℎ𝑒𝑟𝑒 𝑺𝜶 = 𝑚ሬሬ⃗ ఈ ⊗  𝑛ሬ⃗ ఈ 

(5-2) 

in which 𝑷ఈ is the symmetric part of the Schmid tensor for the slip system α, and 𝛾̇ఈ is 

the shear rate on the same slip system. 𝑚ሬሬ⃗ ఈ and 𝑛ሬ⃗ ఈ are the slip direction and normal of the 
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slip system α, respectively. A rate-dependent equation is used to calculate the shear rate 

on the slip system 𝛼, based on the resolved shear stress (𝜏ఈ) that acts on the same slip 

system [48]: 

𝛾̇ఈ =  𝛾̇଴
ఈ sign(

𝜏ఈ

𝑔ఈ
) ฬ

𝜏ఈ

𝑔ఈ
ฬ

௡

 
(5-3) 

where 𝛾̇଴ is a reference shear strain rate, 𝑛 represents the sensitivity of the material to a 

strain rate and 𝑔ఈ is the critical resolved shear stress (CRSS) of the slip system 𝛼. The 

resolved shear stress acting on the slip system 𝛼 is proportional to Kirchhoff stress (𝝍) 

through the following equation [49]: 

𝜏ఈ =  𝑷𝜶: 𝝍 (5-4) 

The Jaumann rate of the Kirchhoff stress tensor (𝝍ෙ ) is related to the elastic part of the 

deformation rate tensor (𝑫௘) and the elastic stiffness tensor (ℂ) of the HCP crystal after 

rotation to the deformed configuration as: 

𝝍ෙ =  ℂ ∶ 𝑫௘ (5-5) 

The elastic modulus of zirconium single crystal used in this study is the one determined 

by Fisher and Renken [50]: C11=143.5 GPa, C33=164.9 GPa, C12=72.5 GPa, C13=65.4 

GPa, and C44=32.1 GPa. The objective rate of Kirchhoff stress, in Eq. (5-5), is defined 

with respect to an observer attached to the crystal lattice: 

𝝍ෙ =  𝝍̇ −  𝜴𝒆𝝍 +  𝝍𝜴𝒆 (5-6) 

where 𝜴𝒆 is the elastic part of the spin tensor and is calculated by subtracting the 

provided total spin tensor and the calculated plastic spin [47]. The strength of each slip 

system (𝛼) follows a dislocation-based hardening law [29,51–54]: 
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𝑔ఈ =  𝑔∗,଴
ఈ +  

𝐻ఈ

√𝐷
+ 𝜉𝐺𝑏ఈ  ඩ෍ 𝑞ఈఉ  ቀ𝜌ீே஽

ఉ
+  𝜌ௌௌ஽

ఉ
ቁ

ே

ఉୀଵ

+ 𝑧௟௢௢௣
ఈ 𝐺𝑏ఈ  ට𝜌௟௢௢௣

ఈ  

(5-7) 

where 𝑔ఈ is the current strength of the slip system 𝛼, 𝑔∗,଴
ఈ  is the CRSS, 𝐷 is the 

equivalent grain diameter, 𝐻ఈ is the Hall-Petch parameter, 𝜉 is a material constant, 𝐺 is 

the shear modulus, 𝑏ఈ is the size of the Burgers vector for the slip system 𝛼, 𝜌ீே஽
ఉ  and 

𝜌ௌௌ஽
ఉ  are the geometrically necessary dislocation (GND) and statistically stored 

dislocation (SSD) densities on the slip system 𝛽, 𝑧௟௢௢௣
ఈ  is the irradiation hardening 

parameter for each slip system, and 𝜌௟௢௢௣
ఈ  is the dislocation loop density on the slip 

system α. 𝑧௟௢௢௣
ఈ  is assumed to be 0.80, 0.55, and 0.40 on the prism and basal, and 

pyramidal slip systems [29]. A hardening matrix 𝑞ఈఉ is introduced to consider the effects 

of self and latent-hardening. It is assumed that the GND and SSD densities have the same 

hardening matrix 𝑞ఈఉ. The shear modulus, G in Eq. (5-7), is assumed to be the average 

value of C44, C55, and C66 [55]. The material constant 𝜉 is assumed to be 0.5. 

At the early stages of plasticity, dislocations are mainly generated but with further 

loading, dislocation density will be high enough such that dislocations with opposite 

signs are annihilated. Here, it is assumed that the evolution of SSD densities follows the 

equation below [53,56]: 

𝜌̇ௌௌ஽
ఈ =  

|𝛾̇ఈ|

𝑏ఈ
 ቀ𝐾ఈඥ𝜌ௌௌ஽

ఈ + 𝜌ீே஽
ఈ − 2𝑦௖

ఈ 𝜌ௌௌ஽
ఈ ቁ 

(5-8) 
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where 𝐾ఈ is the dislocation accumulation constant and 𝑦௖
ఈ is the dislocation annihilation 

length of the slip system α. The first term on the right-hand side of the Eq. (5-8) is the 

dominant term at the early stages of plasticity, while with further loading, the effects of 

the second term will be non-negligible. The density of GNDs on the slip system 𝛼 is 

determined using the following equation [57]: 

ቀ𝑐𝑢𝑟𝑙൫𝑭௣೅
൯ቁ

்

=  ෍൫𝜌ீே஽,௦
ఈ  𝑏ሬ⃗ ఈ⨂𝑚ሬሬ⃗ ఈ + 𝜌ீே஽,௘௧

ఈ  𝑏ሬ⃗ ఈ⨂𝑡ఈ  +  𝜌ீே஽,௘௡
ఈ  𝑏ሬ⃗ ఈ⨂𝑛ሬ⃗ ఈ൯

ே

ఈୀଵ

 
(5-9) 

𝜌ீே஽
ఈ  for each slip system can be decomposed into three components, one for screw type 

dislocation 𝜌ீே஽,௦
ఈ  with the dislocation line vector along the slip direction, 𝑚ఈ, and two 

edge types dislocations, 𝜌ீே஽,௘௡
ఈ  and 𝜌ீே஽,௘௧

ఈ  with dislocation line vectors along the slip 

normal and 𝑡ఈ = 𝑚ఈ × 𝑛ఈ, respectively. This method has infinite solutions where a 

minimization scheme is usually used to find a solution. One solution can be obtained by 

minimizing the sum of the squares of GND densities [58]: 

{𝜌ீே஽
ఈ } = 𝐴்(𝐴𝐴்)ିଵ𝐵 (5-10) 

where {𝜌ீே஽
ఈ } is 3N×1 column vector containing edge and screw components of GND 

for slip system 𝛼, 𝐵 is a 9×1 vector, containing the components of the tensor in the left-

hand side of Eq. (5-9), and 𝐴 is a 9×3N matrix containing the basis tensors of the right-

hand side of Eq. (5-9). The method developed by Abdolvand [33] was adopted to 

calculate the curl of 𝑭𝒑 which was subsequently implemented in the UMAT as described 

in [47]. 

5.2.2 Irradiation growth model 

The irradiation growth model developed by Golubov et al. [45] is used and briefly 

described in this section. The model assumptions can be summarized as follows. The 
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primary defects generated during neutron irradiation are interstitial and vacancy point 

defects, moving in 3D, and interstitial clusters, moving along the prismatic directions on 

the basal plane of the HCP crystal [59]. It is assumed that the concentrations of these 

defects have reached the steady state condition. Interstitial loops are only formed on the 

prismatic planes, while vacancy loops are formed on both prismatic and basal planes. The 

rate of irradiation growth strain can be written as [60,61]: 

𝜀௝̇
௚௥

=  ቊ
𝜌௝(𝐷௜𝐶௜ − 𝐷௩𝐶௩) + 𝐾ீ஻(𝐷௜𝐶௜ − 𝐷௩𝐶௩) +  n𝐷௖௟𝐶௖௟𝐾௖௟

ଶ  ;    𝑗 = 𝑎

𝜌௝(𝐷௜𝐶௜ − 𝐷௩𝐶௩) + 𝐾ீ஻(𝐷௜𝐶௜ − 𝐷௩𝐶௩)             ;        𝑗 = 𝑐
 (5-11) 

where j is the direction of the growth strain in the local coordinate system of the HCP 

crystal, which is either along the a-axis or c-axis. 𝐷௜ and 𝐷௩ are the diffusivity of 

interstitial and vacancy point defects, 𝐶௜ and 𝐶௩ are the concentration of the interstitial 

and vacancy point defects, 𝐷௖௟ and 𝐶௖௟ are the diffusivity and concentration of the 

interstitial clusters, 𝐾௖௟
ଶ  is the sink strength of the interstitial clusters, and 𝐾ீ஻ is the sink 

strength of the grain boundary. 𝜌௝ is the total dislocation density including dislocation 

line density (𝜌ௗ
௝ ) and dislocation loop density of both interstitial and vacancy types: 

𝜌௝ =  𝜌ௗ
௝

+ 2𝜋𝑟௜
௝
𝑁௜

௝
 + 2𝜋𝑟௩

௝
𝑁௩

௝ (5-12) 

where 𝑁௜
௝  and 𝑁௩

௝  are interstitial and vacancy loop number density, 𝑟௜
௝ is interstitial loop 

radius, and 𝑟௩
௝ is vacancy loop radius. In the absence of twinning, plastic deformation in 

α-zirconium is generally controlled by 18 slip systems, i.e. three prism, three basal, and 

twelve pyramidal <c+a> slip systems. The dislocation line density on each slip variant is 

the sum of the SSD and GND densities from Eq. (5-8) and Eq. (5-10). The calculated 

dislocation line density on each slip variant is transformed into the local crystal 

coordinate system to be used in Eq. (5-12). The dislocation line densities of basal and 
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prismatic slip systems are calculated along the crystal a-axis. However, the dislocations 

along the pyramidal slip systems have both a-type and c-type components. Therefore, 

they are projected along the crystal a-axis and c-axis, following the procedure explained 

in [46]. That is, the angle between the pyramidal Burgers vector and the basal plane 

normal (𝜃 ≈ 30°) is used. The dislocation line density on each pyramidal slip variant is 

multiplied by cos2(θ) and sin2(θ), respectively, to determine the projected components 

along the crystal c-axis and a-axis. This is to conserve the net dislocation density. Finally, 

the calculated dislocation densities along the three a-axis directions are averaged, 

assuming a uniform distribution of the dislocation densities along the prismatic 

directions.  

The sink strength of dislocations for absorbing interstitial clusters is given as: 

𝐾௖௟
ଶ = 2 ൬

2

𝜋
 𝜌௔  𝑟௖ௗ൰

ଶ

 
(5-13) 

where 𝑟௖ௗ is the capture radius of dislocations for interstitial clusters. The sink strength of 

grain boundaries (𝐾ீ஻) is calculated only for the elements located at the grain boundaries 

following [62]:  

𝐾ீ஻ = ൜
𝑧ீ஻𝜌ீ஻ ;    grain boundary elements

  0      ;    grain interior elements
 

(5-14-1) 

𝑧ீ஻ = 4𝜋𝑎 ቆ
𝑘𝑎 cosh(𝑘𝑎) − sinh (𝑘𝑎)

sinh(𝑘𝑎) − 𝑘𝑎
ቇ 

(5-14-2) 

𝜌ீ஻ =
3

4𝜋𝑎ଷ
,     𝑘 = ඥ𝜌 

(5-14-3) 



125 

 

 

 

 

 

where a is the grain size, k is the square root of the total dislocation density on all slip 

systems, 𝜌ீ஻ is the grain boundary density, and 𝑧ீ஻ is the sink strength for a given grain 

boundary. 𝐾ீ஻ is only calculated for the grain boundary elements and is set to zero for 

other elements.  

The net flux of the point defects and interstitial clusters absorbed by dislocations and 

grain boundaries (Eq.5-11) are determined using the reaction-diffusion equations of the 

point defects [44,45,60]: 

𝑑𝐶௩

𝑑𝑡
= 𝐺(1 − 𝑓௖) −  𝐷௩𝐶௩(𝜌 + 𝐾ீ஻) 

(5-15-1) 

𝑑𝐶௜

𝑑𝑡
= 𝐺(1 − 𝑓௖)൫1 − 𝑓௜

௖௟൯ −  𝐷௜𝐶௜(𝜌 + 𝐾ீ஻) 
(5-15-2) 

𝑑𝐶௖௟

𝑑𝑡
= 𝐺(1 − 𝑓௖)

𝑓௜
௖௟

3𝑛
−  𝐷௖௟𝐶௖௟𝐾௖௟

ଶ  
(5-15-3) 

where 𝐺 is the defect production rate, 𝜌 is the total density of dislocation lines and 

dislocation loops on all the slip systems, fc is the fraction of the point defects that are 

recombined and varies between 0.9 to 0.97 [46,61], and 𝑓௜
௖௟ is the fraction of the 

interstitial point defects which are clustered. Since we are assuming steady state 

condition, the left-hand side of Eq. (5-15) is zero. Therefore, the multiplication of the 

defects diffusivity and concentration is determined as a function of the total dislocation 

density (𝜌) and grain boundary sink strength (𝐾ீ஻). By knowing the radius and number 

density of dislocation loops, irradiation growth strain in Eq. (5-11) can be determined. 

Two sets of equations are required to determine the evolution of the loop number density 

and the loop size. It is assumed that loop number density saturates after a certain amount 

of irradiation. While the loop density along the a-axis is linearly proportional to 
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irradiation dose, the one along the c-axis initiates after a specific amount of irradiation 

[44,45]:  

𝑁௩,௜
௔ =  ቐ

𝑁௩,௜
௔,௠௔௫  

𝜑

𝜑௩,௜
௠௔௫          ;  𝜑 ≤ 𝜑௩,௜

௔,௠௔௫ 

𝑁௩,௜
௔,௠௔௫                     ;  𝜑 > 𝜑௩,௜

௔,௠௔௫
  

(5-16-1) 

𝑁௩
௖ =  

⎩
⎪
⎨

⎪
⎧

0                     ;        𝜑 < 𝜑௩଴
௖

𝑁௩
௖,௠௔௫

exp ቈ𝐴
𝜑 − 𝜑௩଴

௖

𝜑௩଴
௖,௠௔௫ − 𝜑௩଴

௖ ቉ − 1

exp(𝐴) − 1
  ; 𝜑௩଴

௖ ≤ 𝜑 < 𝜑௩
௖,௠௔௫

𝑁௩
௖,௠௔௫           ;     𝜑 ≥ 𝜑௩

௖,௠௔௫

 

(5-16-2) 

where 𝜑௩,௜
௔,௠௔௫ is the irradiation dose at the end of the nucleation stage of the prismatic 

loops, 𝑁௩,௜
௔,௠௔௫ is the maximum density of prismatic loops, 𝜑௩଴

௖  is the irradiation dose at 

the start of the nucleation of basal loops, and 𝜑௩଴
௖,௠௔௫ is the irradiation dose at the end of 

the nucleation of basal loops. 𝑁௩
௖,௠௔௫ is the maximum density of basal loops, and A is a 

dimensionless parameter. 

In order to find the radius of dislocation loops, a mean size approximation approach is 

used in which the mean values of radii for vacancy and interstitial loops are found via the 

relationship between the total number of defects in the loops of any particular type (S) 

and the loop number densities [44,45]: 

𝑆௩
௔ =  𝜋(𝑟௩

௔)ଶ𝑏௔𝑁௩
௔ (5-17-1) 

𝑆௜
௔ =  𝜋(𝑟௜

௔)ଶ𝑏௔𝑁௜
௔ (5-17-2) 

𝑆௩
௖ =  𝜋(𝑟௩

௖)ଶ𝑏௖𝑁௩
௖ (5-17-3) 
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The total number of defects (S) in the loops change with time according to the following 

equations [44,45]: 

𝑆̇௩
௔ = 2𝜋𝑟௩

௔𝑁௩
௔(𝐷௩𝐶௩ − 𝐷௜𝐶௜) −  𝑘௩

ଶ𝑛 𝐷௖௟  𝐶௖௟ (5-18-1) 

𝑆̇௜
௔ = 2𝜋𝑟௜

௔𝑁௜
௔(𝐷௩𝐶௩ − 𝐷௜𝐶௜) +  𝑘௜

ଶ𝑛 𝐷௖௟  𝐶௖௟ (5-18-2) 

𝑆̇௩
௖ = 2𝜋𝑟௩

௖𝑁௩
௖(𝐷௩𝐶௩ − 𝐷௜𝐶௜) (5-18-3) 

Where 𝑘௩
ଶ and 𝑘௜

ଶ are the sink strengths of vacancy and interstitial loops for interstitial 

clusters, given by: 

𝑘௩
ଶ = 2𝜋ଶ 𝑟௖௩௟𝑟௩

௔𝑁௩
௔  ቀ

𝜋𝑟௖ௗ

2
 𝜌ௗ

௔ +  𝜋ଶ𝑟௖௩௟𝑟௩
௔𝑁௩

௔ +  𝜋ଶ𝑟௖௜௟𝑟௜
௔𝑁௜

௔ቁ (5-19-1) 

𝑘௜
ଶ = 2𝜋ଶ 𝑟௖௜௟𝑟௜

௔𝑁௜
௔  ቀ

𝜋𝑟௖ௗ

2
 𝜌ௗ

௔ +  𝜋ଶ𝑟௖௩௟𝑟௩
௔𝑁௩

௔ +  𝜋ଶ𝑟௖௜௟𝑟௜
௔𝑁௜

௔ቁ (5-19-2) 

where 𝑟௖௩௟ and 𝑟௖௜௟ are the capture radii of vacancy and interstitial type prismatic loops for 

clusters. 

5.2.3 Numerical implementation and model parameters 

The UMAT developed by Sedaghat and Abdolvand [47] is updated to include the 

irradiation growth effects using Eqs. 11-19. The subroutine developed by Golubov et al. 

[45] is adopted and used for this purpose. This subroutine is modified by reading the 

dislocation line densities (GND and SSD) calculated in the UMAT at each time 

increment. Table 5.1 shows the flowchart of the model. At the beginning of each time 

increment, Abaqus FE solver provides the total strain increment, rotation increment, 

deformation gradient, and solution dependent state variables (SDVs). 𝑭௣ of the last time 

increment is restored in a common block and used to evaluate 𝑐𝑢𝑟𝑙൫𝑭௣೅
൯ and GND 
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densities using Eq. (5-9)-(5-10). Please note that 𝑭௣ only represents the plastic 

deformation by slip. The Newton-Raphson method is used to calculate the increments of 

plastic shear strain for each slip system (∆𝛾ఈ), and update the density of SSDs, stress, and 

the material Jacobean matrix. Finally, 𝑭௣is updated and stored in a common block 

variable for the next time increment.  

Table 5.1 Flow chart of the non-local CPFE model 

(1) Abaqus FE solver provides total strain increment, rotation increment, and deformation gradient for the 
time increment i, as well as stress (𝝈௜ିଵ) and state variables (𝑆𝐷𝑉𝑠௜ିଵ) for time increment i-1. 

(2) If the irradiation step is running, calculate the irradiation growth strain using Eq. (5-11)-( 5-19) in the 
crystal coordinate system. Rotate this growth strain increment to the global coordinate system. 

(3) Calculate 𝑐𝑢𝑟𝑙൫𝑭௣೅
൯ and  𝜌ீே஽ using Eq. (5-9)-( 5-10) 

(4) Using Eqs. (5-2)–( 5-7) calculate elastic and plastic strain increments (∆𝑡𝑫𝒆, ∆𝑡𝑫𝒑) using the Newton-
Raphson method until shear strain increments (∆𝛾𝜶) is converged. 

(5) Update the 𝑆𝐷𝑉𝑠௜  (𝜏ఈ, 𝑔ఈ, 𝛾ఈ, 𝑛ఈ, 𝑚ఈ), 𝜌ௌௌ஽
௜ , stress (𝝈௜) and material Jacobean matrix 

(6) Evaluate 𝑭௣,௜ from Eqs. (5-2) and store in a common bock variable for the next time increment. 

 

Crystal plasticity parameters for the slip systems of Zircaloy-2 are provided in Table 5.2. 

The single parameters were calibrated using neutron diffraction data for the same 

material [47]. For simplicity, the effects of deformation twinning are ignored in this study 

but are discussed in section 5.4. The irradiation growth parameters are provided in Table 

5.3 and are taken from [44]. 
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Table 5.2 The single crystal parameters used in the CPFE model [47] 

 Prism Basal Pyramidal 
N 20 20 20 
𝛾̇଴

ఈ  (𝑆ିଵ) 3.5e-4 3.5e-4 1.0e-4 
𝑞௦௦ (self) 1 1 1 
𝑞௦௧  (t=prism) 1 1 0 
𝑞௦௧  (t=basal) 1 1 0 
𝑞௦௧  (t=pyramidal) 0 0 1 
Burgers vector (nm) 0.323 0.323 0.608 
𝐻ఈ  (𝑀𝑃𝑎 √𝑚) 0.109 0.146 0.292 
𝑔∗,଴

ఈ  (𝑀𝑃𝑎) 95 135 266 
𝐾ఈ 0.05 0.05 0.30 
𝑦௖

ఈ  (𝑛𝑚) 5 5 10 

Table 5.3 Irradiation growth model parameters [44] 

Symbol Value description  
𝝋𝒗,𝒊

𝒂,𝒎𝒂𝒙 (dpa) 3.84 Irradiation dose at the end of the nucleation stage for the prismatic 
loops 

𝑵𝒗,𝒊
𝒂, 𝒎𝒂𝒙 (m-3) 1022 The maximum density of prismatic loops  

𝝋𝒗𝟎
𝒄  (dpa) 3 Irradiation dose at the start of the nucleation stages for the basal loops 

𝝋𝒗
𝒄,𝒎𝒂𝒙 (dpa) 23 Irradiation dose at the end of the nucleation stages for the basal loops 

𝑵𝒗
𝒄,𝒎𝒂𝒙(m-3) 1021 The maximum density of basal loops  

𝑨 5 Dimensionless parameter 
𝒓𝒄𝒗𝒍, 𝒓𝒄𝒊𝒍 (𝒏𝒎) 0.6 Capture radii of sessile vacancy/ interstitial type prismatic loops  
𝒓𝒄𝒅 (𝒏𝒎) 0.6 Capture radii of dislocations for interstitial clusters 
𝒇𝒄𝒍

𝒊  0.2 Fraction of the interstitial point defects which are clustered 

 Results 

The irradiation-CPFE model is verified in this section by comparing the numerical results 

for the evolution of the irradiation growth strain to those measured experimentally. 

Results from both single crystal and polycrystals are compared. The single crystal 

specimen is annealed, while the polycrystal specimens are both annealed and cold 

worked. In addition, a sensitivity analysis using the irradiation-CPFE model is conducted 

to study the effects of texture, prior cold work, and grain size on the magnitude of the 

growth strain in polycrystalline zirconium specimens. Finally, the distribution of the 

growth strain within and across the grains of the polycrystalline model is analysed. It 
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should be noted that the grain boundary sink strength (KGB) and the irradiation hardening 

term of Eq. (5-7) are switched off in this section. However, their effects on the numerical 

results are discussed in section 5.4. 

5.3.1 Single crystal 

The evolution of growth strain from the irradiation-CPFE model is compared to the 

measured one for an annealed single crystal Zircaloy-2 specimen irradiated at 553 K with 

neutrons of 1 MeV energy [63]. This specimen was prepared using electron beam zone 

melting from a 6 mm diameter rod. The measured strain is along the a-axis of the crystal, 

where it is expanded. The crystal was irradiated up to 2×1025 n/m2, equivalent to ~7 dpa. 

A cubic single crystal with a side length of 20 mm is used for the FE input model. The 

applied boundary conditions are shown in Fig. 5.1a. The displacement on the ABFE, 

AEHD, and EFGH surfaces are fixed along X, Y, and Z directions, respectively, but other 

surfaces are free to move. The model is discretized with 1000 brick elements (C3D20R), 

with 10 elements in each direction. The initial dislocation density on each slip system and 

fc parameter are set to 1012 m-2 and 0.9, respectively. These values are chosen to be 

consistent with the single crystal model parameters used in [44,45]. The single crystal 

model is irradiated in one step, without any prior deformation or any external load. The 

irradiation dose rate is set to 10-7 dpa/s with a total step time of 8×107 s resulting in 8 dpa 

irradiation damage.  
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a. 

 

b. 

 

Figure 5.1 (a) Applied boundary conditions for the single crystal model. (b) A 

comparison between the results of the current irradiation-CPFE model, the model 

by Golubov et al. [45], and the experiment by Carpenter et al. [63] for the 

irradiation growth strain along the a-axis of single crystal zirconium 

Fig. 5.1b compares the evolution of the irradiation growth strain along the a-axis of the 

single crystal. Results are for the current irradiation growth enhanced CPFE model, the 

model by Golubov et al. [45], and the experiment by Carpenter et al. [63]. The single 

crystal expands along the a-axis in both models and in the experiment. Results from the 

developed CPFE model perfectly match with those from Golubov et al. [45]. Both 

numerical models can replicate the evolution of measured strain. For example, 

experimental results show that the slope of growth strain increases after ~4 dpa, a trend 

observed in the irradiation-CPFE model. In addition, both model and experimental results 

show that after 7 dpa of neutron irradiation, almost 0.05% of growth strain develops 

along the crystal a-axis.  

5.3.2 Polycrystal: average response  

The measured growth strain for Zircaloy-2 polycrystals from [6] are studied and 

compared to model calculations. The two sets of experimental data used here are 

summarised in Table 5.4. The first set, called A1, is for an annealed specimen with an 
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average grain size of 20 μm. The second set is for 25% cold worked specimen with 

average grain sizes of 8 μm for the A2 specimen. All experiments were conducted at 553 

K. The measured textures of the specimens were reported using Kearns factor, which 

represents the average volume fraction of basal poles in the longitudinal (FL), transverse 

(FT), and radial (FR) directions. These values for the two specimens are shown in Table 

5.4. The growth strains were measured in the longitudinal direction of the tubes.  

Two FE input models were prepared to represent specimens A1 and A2. Each model has 

the same average grain size and Kearns factors as the ones reported in the corresponding 

specimen. Both models have 1038 grains discretized with 125,000 brick elements 

(C3D20R) as shown in Fig. 5.3a. The orientations of grains, however, are different for 

each input model. The basal pole figures of the FE models for A1 and A2 are shown in 

Figs. 2a and 2b, respectively. The calculated values of FL, FT, and FR for each 

reconstructed model are provided in Table 5.4. As shown in Fig. 5.3a, displacements on 

the ABFE, BCGD, and EFGH surfaces are fixed along X, Y, and Z directions, 

respectively. For the cold worked specimen A2, three loading steps are used. First, a 

uniaxial tensile deformation is applied onto the AEHF surface along the Y-direction 

(longitudinal direction) to the macroscopic strain of 33.3%, i.e. equivalent to 25% cross-

section area reduction. In the second step, the model is unloaded to zero macroscopic 

load. These two steps are to “resemble” the effects of prior cold work. In the last step, the 

model is irradiated to 20 dpa with an irradiation dose rate of 10-7 dpa/s. Please note that 

our CPFE simulations indicate that Kearns factors are hardly affected by the cold work or 

irradiation, especially in the absence of twinning. That is, the cold worked texture used 

before irradiation in the model is very close to the measured one in the experiment. For 

the annealed specimen A1, only one irradiation step is used, without prior loading. The 

initial dislocation line density on each slip system is set to 1010 m-2 for both models. The 

influence of the initial dislocation density for the annealed model A1 and the effects of 
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the applied boundary conditions for the cold worked model are further discussed in 

section 5.4.  

Table 5.4 Polycrystalline specimens used for the irradiation growth experiments [6] 

Specimen FL FT FR Prior irradiation 
condition 

Grain size 

Experiment A1 0.10 0.20 0.70 
Annealed 20 μm 

CPFE A1 0.09 0.22 0.69 
Experiment A2 0.10 0.50 0.40 

25% cold working 8 μm 
CPFE A2 0.09 0.56 0.35 

 

a. A1 

 

b. A2 

 

c. Random 

 

Figure 5.2 The basal pole figures of the two CPFE models that represent specimens 

(a) A1 and (b) A2. The longitudinal direction is along the Y-axis. (c) The basal pole 

figure of the CPFE model with random orientations. 

Fig. 5.3b compares the average irradiation growth strain of the two CPFE models to those 

from experiments. The experimental results show that both specimens are expanded 

along the longitudinal direction. However, cold-worked specimen A2 has higher growth 

strains compared to specimen A1. The average growth strain is calculated using all 

integration points. As shown, the results of the model are in excellent agreement with the 

experimental data. In agreement with the measurements, the calculated irradiation growth 

strains of model A1 are lower than model A2. However, some differences are observed in 
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the magnitudes of the growth strains for specimen A1. The possible sources of such 

differences between the model and experiment are discussed in section 5-4.  

a.  

 

b. 

 

Figure 5.3 (a) The CPFE input model used for simulating neutron irradiation 

effects. Random colors are assigned to elements to distinguish grains. (b) A 

comparison between the calculated average growth strains from the CPFE models 

and those measured by Rogerson [6] 

The calculated average growth strain is a function of model texture, prior cold work, and 

average grain size. A sensitivity analysis is required to quantify the contribution of each 

parameter, in the absence of the others. The model used for this purpose is the one used 

for specimen A2, but the texture of the model is altered. The textures shown in Figs. 2a, 

2b, and 2c are assigned to this model for sensitivity analysis. Fig. 5.4 compares the 

evolution of average growth strain from the models. The effect of model texture is shown 

in Fig. 5.4a where the numerical results of the three different textures in Fig. 5.2a (A1), 

Fig. 5.2b (A2), and Fig. 5.2c (random) are compared. It is shown that the model with 

random texture has nearly zero growth strain, as expected. Fig. 5.4b shows a comparison 

between the calculated growth strains for the models with cold work levels of 10%, 15%, 

and 25%. In these simulations, the texture of specimen A2 is assigned to all models, but 

A 

B 

C 

D 

E 

F 

G 

H 
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the amount of prior cold work varies. Numerical results indicate that the growth strain 

increases with cold working due to the increase in the total dislocation density.  

Fig 4c compares the growth strains from models with the same texture and the same prior 

cold work, but different average grain sizes of 4 μm, 8 μm, and 20 μm. It is shown that 

the magnitude of growth strain is inversely related to the average grain size. The effects 

of grain size are taken into account through the use of the non-local formulation in the 

current dislocation-based model. The trend observed here is due to the geometrical 

effects of grain size which interestingly appear to be consistent with the experimental 

observations [7,8]. 

a. Grain size: 8 µm, CW: 25% b. Texture: A2, Grain size: 8 µm c. Texture: A2, CW:25% 

Figure 5.4 The results of the polycrystal model for average irradiation growth 

strain: the effects of (a) texture, (b) prior cold work, and (c) average grain size. 

5.3.3 Polycrystal: local response 

The numerical and experimental results presented so far show that the magnitude of 

average growth strain is highly affected by the texture and average grain size of the 

specimen as well as by the amount of prior cold work. However, there is a lack of 

information on how the growth strain is distributed within and across grains. In this 

section, the results of model A2 are used to analyse the distribution of growth strain. All 

reported irradiation growth strains are in the local coordinate system, along the crystal a-



136 

 

 

 

 

 

axis. In addition, all reported GND and SSD densities are the total values summed over 

all slip systems. 

Fig. 5.5 shows the distribution of the growth strain as a function of the grain size. The 

grain-average growth strain, GND density, and SSD density are calculated for each grain 

at the end of the irradiation step. The calculated values are sorted based on their 

corresponding grain sizes and are categorized into five groups with an equal number of 

data points, i.e., 207 grains in each group. The results of each group are shown using box 

plots with the horizontal axis representing the average grain size. A decreasing trend is 

observed in Fig 5a, which indicates that bigger grains accommodate less growth strain 

compared to the smaller grains. This can be due to the magnitude of the GND density, 

which is lower for bigger grains (see Fig. 5.5b). The SSD density is not really affected by 

the grain size (Fig. 5.5c).  

a. b. c. 

Figure 5.5 Grain-average (a) growth strain, (b) GND density, and (c) SSD density as 

a function of grain size for the cold worked model A2. Each box represents 207 data 

points 

Fig 6 shows the spatial distribution of growth strains, GND density, and SSD density for 

model A2. Figs. 6d to 6f show the distribution of the same state variables in the mid-

height cross-section of the cubic model. The growth strain is heterogeneously distributed 

within the grains. The shape of the non-uniformity is very similar to what is captured by 
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dislocation densities. For example, the growth strain is highly localized in the vicinity of 

the grain boundaries. In addition, growth strain localization is observed where the GNDs 

are localized within grains G1 and G2 (Fig. 5.6e).  

a. Growth strain 

 

b.                GND density 

 

c.                SSD density 

 
d.  e.  f.  

Figure 5.6 Distribution of (a) growth strain (%), (b) GND density (m-2), and (c) SSD 

density (m-2) of the 3D model of A2 sample. Cross-section at the mid-height of the 

model for (d) growth strain, (e) GND density, and (f) SSD density 

Fig. 5.7 shows the spatial distribution of growth strain, GND density, and SSD density 

within one of the bigger grains of model A2 with the size of 20.8 µm. Fig. 5.7a shows 

that growth strain is localized where the GNDs are concentrated, and it is minimum 

where the GND density is minimum. The normal distribution of growth strains, GND 

density, and SSD density are respectively shown in Figs. 7d to 7f.  The blue curve is after 

irradiation and the red curve is before the irradiation step. It is shown that the average 
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SSD density is slightly increased after the irradiation step. However, the average GND 

density after irradiation is the same as the one before irradiation. Fig. 5.7i shows that the 

increase in the SSD densities is more pronounced when all grains of the polycrystal are 

taken into account. The increase in the dislocation density is due to the fact that our 

dislocation-based CPFE model is coupled with the irradiation model. Our simulations 

show that neutron irradiation induces large localized strains in the areas where the 

dislocation densities are concentrated due to prior cold work, e.g. grain boundaries or slip 

bands. Such strain localization may result in further plastic deformation and subsequently 

further increase in dislocation density. Since the irradiation hardening effects are 

neglected in the current simulations, the reported increase in dislocation densities due to 

neutron irradiation simply represents the upper bound value. The influence of the 

irradiation hardening on the simulation results is further discussed in section 5.4. 
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a.  Growth strain 

    

b.               GND density 

  

c.              SSD density 

 
d. e. f. 

g. h. i. 

Figure 5.7 Distribution of (a) growth strain (%), (b) GND density (m-2), and (c) SSD 

density (m-2) in one of the large grains of model A2. The normal distribution of (d) 

growth strain, (e) GND density (log10 m-2), and (f) SSD density (log10 m-2) for the 

same grain. The normal distribution of (g) growth strain, (h) GND density (log10 m-

2), and (i) SSD density (log10 m-2) for all integration points of the polycrystal model 

A2. 
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 Discussion 

The current model is developed by integrating the irradiation growth model of Golubov 

et al. [45] into a dislocation-based CPFE framework [47]. Several assumptions are made 

in the polycrystal simulations to study how the average growth strain is influenced by the 

grain size, texture, and prior cold work. These simulations showed a non-uniform 

distribution of growth strain within grains. In this section, the distribution of growth 

strain is further investigated using a bi-crystal model. In addition, the effects of grain 

boundary sink strength, irradiation hardening, and the applied boundary conditions on the 

CPFE results are discussed. 

 

5.4.1 Bi-crystal simulations 

A bi-crystal model is used to investigate the distribution of growth strain within the two 

grain shown in Fig. 5.8. The assumptions of section 5.3 are also used here, however, the 

effects of each assumption is further discussed. While the orientation of the front grain 

G1 is kept constant, the orientation of the grain G2 is altered to study the effects of 

crystal anisotropy. As shown in Fig. 5.8, the model is constrained from movement by 

setting 𝑢௫
஺஻ = 0, 𝑢௬

஺஽ = 0, and 𝑢௭
஺஻஼஽ = 0. The misorientation angle between the c-axis 

of the grain G2 and loading direction is set at 30°, 45°, and 60° while the c-axis of the 

grain G1 is kept parallel to the loading direction to mimic a plastically “hard” grain. The 

model is discretized with 5,200 brick elements with a refined mesh used closer to the 

grain boundary. The model is deformed in three steps. First, a 10% tensile strain is 

applied uniaxially onto EFGH surface along the Z direction. In the second step, the model 

is unloaded and in the third step, it is subsequently irradiated for 108 s with an irradiation 

dose rate of 10-7 dpa/s. The size of each crystal is set to be 20 μm.  
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Figure 5.8 The bi-crystal input model and the implemented boundary conditions 

Figs. 5.9a, 5.9b, and 5.9c show the distribution of GND densities calculated for the bi-

crystal model after the unloading step, for the three different misorientation angles of 30o, 

45o, and 60o. As shown, GNDs are localized at the grain boundary. For the models with 

30o and 45o misorientations, the top and bottom edges of the grain G2 are the sites GNDs 

localize, while for the 60o case, the sides of the grain G2 are the GND concentration sites. 

In addition, the magnitude of GND densities localized at the grain boundary is increasing 

as the misorientation angle increases from 30° to 60°. Also, GNDs localize in the form of 

slip bands that are parallel to the most active slip systems which can be seen in all three 

figures [47].  

Figs. 5.9d, 5.9e, and 5.9f show the distribution of growth strain in grain G2 after the 

irradiation step for different c-axis misorientation angles of 30o, 45o, and 60o. The grain 

boundary sink strength is still switched off for these simulations. The presented results 

are only for the soft grain G2. It is shown that growth strain tends to localize at the grain 

boundary as well as on the slip bands, where dislocation line density due to prior 

deformation concentrates.   
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a.  

         

b. 

 

c. 

 
d.  

        

e. 

 

f. 

 

Figure 5.9 Distributions of GND densities (m-2) for the bi-crystal model at the end of 

the unload step: the c-axis misorientation angle with respect to the loading direction 

for grain G2 is (a) 30°, (b) 45°, and (c) 60°. The corresponding distribution of 

growth strain (%) for grain G2 at the end of the neutron irradiation step is shown in 

(d), (e), and (f) 

5.4.2 The effects of grain boundary sink strength 

In the previous section, we showed that in a deformed bi-crystal, growth strain localizes 

in the vicinity of grain. However, the effect of the grain boundary sink strength was 

ignored. Here, the bi-crystal model shown in Fig. 5.8 is used to study the effects of grain 

boundaries acting as sinks. The misorientation angle between the c-axis of the grain G2 

and the loading direction is set to 45°. In addition, the irradiation time is increased to 

2×108 s resulting in 20 dpa irradiation dose. Simulations are conducted for different grain 

G1 
G2 
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sizes, both for the deformed condition and the un-deformed condition, where no initial 

load is applied.  

Fig. 5.10 shows the evolution of the calculated local growth strain along the crystal a-axis 

for one of the grain boundary elements. This element is marked with a red dot in Fig. 5.8. 

Results are compared to those without considering the grain boundary sink strength for 

both un-deformed (Fig. 5.10a) and deformed (Fig. 5.10b) cases. Further, grain size is 

varied from 1 µm to 10 µm. For the un-deformed case (Fig. 5.10a), when the grain 

boundary sink strength is switched off (dash line), the calculated growth does not depend 

on the grain size and the strain curves are nearly overlapped. However, a noticeable 

difference is observed when the grain boundary sink strength is switched on. The 

calculated strain curves can be divided into two regions, before and after irradiation 

dosage of ~13 dpa. When the sink strength is switched on, the calculated growth strain 

inversely correlates with the grain size and increases for the irradiation doses lower than 

13 dpa. By increasing grain size, the growth strain curve nearly overlaps with the one 

with the sink strength switched off. For irradiation doses above 13 dpa, grain size has 

opposite effects, i.e., higher growth strains are calculated for larger grains. This trend is 

observed not only for this element, but also for all the grain boundary elements. Another 

observation is that in the absence of prior deformation, the effect of sink strength is 

negligible for large grains (> ~10 µm). The annealed polycrystal model A1 has the 

average grain size of 20 µm, i.e. higher than this threshold value. Consequently, the 

effects of the grain boundary sink strength term are expected to be negligible. 

Fig. 5.10b shows the calculated growth strain after 20 dpa irradiation, when the bi-crystal 

model undergoes 10% prior plastic deformation. Both sets of simulations, i.e., with and 

without considering the sink strength, show significant grain size effect. This is due to the 

calculated magnitudes of GND densities at the grain boundary for different grain sizes 
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after 10% prior deformation. Although, the grain boundary sink strength does not appear 

to show any effects on the calculated growth strain. 

a.  b. 

 

Figure 5.10 The effects of grain boundary sink strength on the evolution of growth 

strain for different grain sizes: (a) without prior deformation and (b) with 10% 

strain prior deformation. Results are for an element located at the grain boundary. 

 

5.4.3 The effects of irradiation hardening 

Irradiation hardening is the increase in the strength of slip systems as a result of neutron 

irradiation and the formation of dislocation loops. Such effects can be incorporated into 

the hardening law- see for example [29,41]. It has been shown that irradiation hardening 

significantly alters the post-irradiation mechanical response of zirconium [64,65]. In this 

study, no external load is applied, either during or after irradiation, and such effects were 

ignored for the sake of simplicity. During the irradiation step, this assumption leads to the 

calculation of an upper bound for the magnitude of dislocation densities. In this section, 
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the effects of the irradiation hardening on the results of the polycrystalline models A1 and 

A2 are investigated by considering the last term of Eq. (5-7).  

Fig. 5.11 shows the evolution of the growth strain for the polycrsyal models A1 and A2 

when the irradiation hardening is switched on (dash line). The results are compared to the 

ones where the irradiation hardening effects are switched off (solid line). It is shown that 

taking the irradiation hardening into account decreases the calculated growth strain. This 

is due to the increase in the strength of slip systems, which results in reduced plastic 

deformation and dislocation line density. For model A1, only a small difference is 

observed for irradiation doses higher than ~13 dpa. However, this difference is more 

pronounced for the cold-worked model A2.   

 

Figure 5.11 Effect of irradiation hardening on the irradiation growth strain for the 

A1 and A2 polycrystal models 

 

5.4.4 The effects of boundary conditions 

In this study, the cold work process was modeled by a uniaxial tension, followed by an 

unload step. However, the loading condition is rarely uniaxial during a cold work. 
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Another input model is prepared in which the loading condition is biaxial compression. 

The applied strain along X and Z directions is 13.4%, which induces a 25% area 

reduction. Fig. 5.12 compares the average growth strain of the model A2 with the biaxial 

loading condition to the one undergoing a uniaxial tension. It is shown that the model 

with biaxial deformation results in slightly higher growth strains. The calculated total 

dislocation density on all the slip systems prior to the irradiation step is 6.4×1014 m-2 and 

6.2×1014 m-2 for the biaxial and uniaxial models, respectively.  

Another assumption that was made in polycrystalline simulations was that the initial 

dislocation density on each slip system was 1010 m-2. The influence of this assumption on 

the evolution of the average growth strain of the annealed polycrystal A1 is shown in Fig. 

5.12. It is shown that by increasing the initial SSD density on each slip system from 1010 

m-2 to 1012 m-2, the average growth strain is increased for irradiation doses below 12 dpa, 

which is in a better agreement with the measured one. A negligible difference is observed 

between the two simulations after 12 dpa irradiation dosage. It is worth mentioning that 

the measured dislocation density of sample A1 prior to the irradiation step was reported 

to be less than 1013 m-2 [6]. 
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Figure 5.12 The influence of initial dislocation density on the magnitude of average 

growth strain calculated for model A1 and a comparison between a uniaxial and 

biaxial loading condition for model A2 

Lastly, the contribution of twining to plastic deformation was switched off in the CPFE 

model. It should be noted that no effects of twinning were mentioned by Rogerson during 

the cold work of samples A2 [6], but if twins were formed, depending on the twin volume 

fractions, the texture and the average grain size of the specimens may be affected, which 

can consequently alter the magnitudes of the calculated growth strains. Although there 

are many studies focusing on the effect of irradiation on twinning [66,67], there is a lack 

of information on the effect of twinning on the evolution of growth strain during 

irradiation. This might be related to the study conducted by Carpenter et al. [63] in which 

it was shown that twin boundaries, with a regular arrangement of atoms, are not as 

efficient sinks as other types of  grain boundaries with more disordered structure.  

 Conclusions 

An irradiation growth model is adopted to integrate into a non-local crystal plasticity 

finite element model. The modeling results are compared against those measured for 
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neutron-irradiated single and polycrystalline zirconium specimens. The effects of prior 

cold work, as well as grain size and texture are studied in detail. It is shown that: 

1. the calculated average growth strains for both annealed single crystal and cold 

worked polycrystal models agree well with the measured ones.  

2. the average growth strains of the polycrystal models significantly depend on the 

polycrystals texture, average grain size, and prior cold work. 

3. growth strain is non-uniformly distributed among different grains. Our statistical 

analysis shows that the growth strain is mainly accommodated by smaller grains, 

in which dislocation line densities are higher. 

4. numerical results show localization of growth strains both at grain boundaries and 

on slip bands. The magnitude of localized growth strain is proportional to the 

amount of prior cold work and is inversely proportional to grain size. 

5. the effect of the grain boundary sink strength on the calculated growth strain in 

the vicinity of the grain boundary is more significant for un-deformed crystals 

compared to the deformed ones.  
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Chapter 6  

6 Nucleation and growth of {112ത2} twins in titanium: 
Elastic energy and stress fields at the vicinity of twins 

 

A crystal plasticity finite element (CPFE) model is updated to study nucleation, 

elongation, and thickening of deformation twins in a commercially pure titanium. The 

results of the CPFE simulations are compared with previously published data for an in-

situ high resolution electron backscattered diffraction experiment that was conducted on a 

titanium micro-pillar. The evolution of both local resolved shear stress and elastic energy 

during twin formation are studied in detail. It is shown that twins are nucleated at the 

locations where the strain energy and resolved shear stress are maximum. After 

nucleation, resolved shear stresses at the twin tips stay positive which provide the driving 

force required for twin elongation, however, they are negative at the twin surface for 

short twins. It is shown that three-dimensional studies are necessary to understand 

nucleation and twinning. 

 Introduction 

α-titanium has hexagonal close-packed (HCP) crystal structure and has been used vastly 

in aerospace industry due to its superior mechanical properties and light weight. 

Depending on the state of the applied stress, strain rate [1,2], temperature [3], and 

materials texture, twinning can be one of the dominant deformation mechanism in 

titanium polycrystals, where both tension and compression twins can form [4]. 

It is generally assumed that the formation of twins in HCP polycrystals follows three-

steps: nucleation, propagation and thickening [5–7]. At the nucleation step, a twin 
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embryo forms. If enough driving force is provided, it will then propagate in the parent 

grain. The second step involves generation and glide of the twin partial dislocations along 

the primary shear direction, while the third step features transverse propagation mainly 

perpendicular to the primary shear direction [8]. In the recent years, crystal plasticity 

finite element (CPFE) as well as full-field Fast Fourier Transform (FFT) models have 

focused on capturing these three steps [9–12]. For instance, Cheng et al. have used an 

image-based CPFE approach for explicit simulation of twins in Mg alloys [13,14]. It was 

shown that after twin nucleation, twin tip stress concentration drives the twin front to 

propagate forward and accounts for the high twin propagation velocity [12]. This was 

done through a CPFE formulation where the elastic theory of dislocations were adopted 

to account for the energy change during twin nucleation. 

In another study by Kumar et al [9], an elasto-visco-plastic FFT model was developed to 

study the driving forces of twin growth. It was shown that the twin transformation strain 

plays a major role in re-configuring the stress field in the parent grain. Such stress 

alteration can in fact be responsible for how a second twin nucleates in a grain [10] or 

even how they transmit across grain boundaries [15]. Furthermore, Liu et al. have 

recently used FFT model to calculate the stress distributions close to the twin tips that 

form during deformation of Mg micro-pillars [16]. The nucleation and growth of multiple 

twins in the pillar were studied particularly the effects of twins separation distance.  

In this chapter, the subroutine developed by Abdolvand and Wilkinson [17] is used to 

simulate the three steps of twin formation in a titanium micro-pillar. We focus on the 

variation of the elastic energy and stress fields close to twins. This is to show that without 

using complex formulation, and by incorporating twinning transformation strain into 

CPFE models, it is still possible to capture the observed trends in the variation of the 

stress fields close to twins. The CPFE results are compared with the previously published 
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experimental data for an in-situ High Resolution Electron BackScatter Diffraction  (HR-

EBSD) experiment that was performed on a titanium micro-pillar [18].  

 Experiment 

All of the three steps in twin formation was captured in the HR-EBSD experiment while 

the stress fields close to twins were measured in-situ. Details of the experiment can be 

found elsewhere [18]. Here a brief description is given. A titanium micro-pillar consisting 

of two grains was deformed by applying compressive load while monitoring nucleation 

and growth of twins. The pillar initially had two grains and a small twin that was formed 

during sample preparation. This twin is labeled as “top twin” as it was located close to 

the pillar’s top surface. The test set-up and orientation analysis of the grains are provided 

in the Fig. 6.1. The analysis of the grain orientations indicated that the main bigger grain 

has its crystal c-axis along the loading direction and hence, tend to twin under 

compressive loading. In this notation, y is along the pillar’s axis and coincide with the 

loading direction, x is perpendicular to y, and z is along the thickness of the pillar. HR-

EBSD was conducted on the top face of the pillar. The smaller neighbouring grain, on the 

other hand, was plastically soft. The compressive load was applied at the strain rate of 

(~10-2 s-1), but it was on-hold at different stages to measure stress fields in-situ. These 

strains are measured on the x-y surface of the pillar by cross-correlating backscattered 

diffraction patterns. A comprehensive explanation of the implemented HR-EBSD method 

is given in the references [17,19,20]. We focus on three main measurement steps which 

determine stress fields right before nucleation (EBSD-2), after elongation (EBSD-3), and 

after thickening (EBSD-4) of the “bottom twin”. These steps are shown in the Fig. 6.1d. 

Orientation analysis indicated that both top and bottom twins were the same variant of the 

{112ത2} <112ത3> contraction twin family [18]. It was observed that the bottom twin 

nucleated and elongated firstly. This was followed by thickening as more strain applied, 
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while the top-twin started to propagate and thicken. In this chapter and by the use of 

CPFE modeling, we discuss why this particular sequence was observed. 

 Model 

The measured sample geometry were used to construct the FE input model (Fig. 6.1d). 

The measured orientation of the twin and parent and the determined twin variant [18] 

were used to partition the FE model so that twin domains can be identified in 3D. To 

apply compressive load, a velocity was applied to the top of the pillar such that its 

corresponding strain rate matches with the one used in the experiment. The displacement 

measured in the experiment seem to suffer from the compliance of the nano-indentation 

device so as the measured strain, strain rate, and elastic modulus. Hence, the possible 

effects of such variations on the results are discussed.  
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e.  

 

Figure 6.1 (a) Test set-up for the in-situ high resolution Electron backscatter 

diffraction experiment [18]. (b) Sample geometry and loading direction. (c) 

Orientation map of the pillar before deformation. (d) In-situ measured engineering 

stress-strain curve. In-situ HR-EBSD measurements were performed at the 

locations marked in (d). (e) Finite element input model. Planes in (e) represent the 

twin habit planes calculated by orientation analysis of twin-parent pairs. These 

planes were used to regenerate twins’ geometries in 3D. 

𝒙

𝒚 

Front face 

Top Twin 

Bottom twin 



161 

 

 

 

 

 

The User MATerial (UMAT) subroutine developed by Abdolvand and Wilkinson [21] 

was modified for CPFE modeling. This subroutine links to ABAQUS FE solver to 

calculate stress increment, based on a given strain and time increment provided. In brief, 

for a given strain increment, the contribution of slip to plastic strain can be determined by 

knowing active slip systems and the shear that they can accommodate. This shear can be 

calculated by time integration of the slip rate determined for each slip system. Slip rate 

correlates with the resolved shear stress acting on the slip system divided by the current 

strength of the slip system [22]. Following Kumar et al. [10] we assume that for titanium, 

basal 〈112ത0〉, prism 〈112ത0〉 and pyramidal 〈112ത3〉 are the active slip systems at room 

temperature. The critical resolved shear stresses for prism, basal, and pyramidal <c+a> 

systems are assumed to be 60, 120, and 180 MPa, respectively [23]. 

Twinning was modeled in three steps. To take into account the compliance of the nano-

indenter, the nucleation step was set to happen at 1.5% applied strain. At this strain, the 

twin domain was reoriented and the twin transformation strain (∆𝛾௧௪) was subsequently 

applied. This was done under constant applied strain, i.e., the applied velocity at the top 

of the pillar was set to zero. It was assumed that the reorientation step happened over one 

second, to let the twin domain re-equilibrate, while transformation strain was applied in 

3940 seconds (𝑇்ௌ்) incrementally following Eq. 6-1 

∆𝛾௧௪ =  
0.218

𝑇்ௌ்
 ∆𝑡 

∆𝜀௧௥ =  𝑆௧௪ ∆𝛾௧௪ 

(6-1)  

Where ∆𝑡 is the time increment defined by FE solver, and 𝑆௧௪ is the twin variant Schmid 

tensor. The selected time step is to resemble quasi-static loading (𝜀̇ = 5 × 10ିହ 𝑠ିଵ ) and 

is not meant to capture the real dynamic process, but rather to overcome the possible 
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numerical instabilities resulting from significant localized deformation. At the end of the 

twin nucleation step, stress and elastic fields in the pillar are studied to decide if it is 

preferable to nucleate another twin or let the current twin propagate or thicken. For 

propagation step, twin was elongated by assigning twin orientation into the new domain 

and applying twin transformation strain, whereas in the thickening step, twin size 

increased perpendicular to the twin habit plane. 

 Results and discussion 

The results of the CPFE simulations for 𝜎௫௬ are shown in Fig. 6.2a and are compared 

with those measured with HR-EBSD (Fig. 6.2b). This stress component was particularly 

selected as stress sign alternates quite distinctly in comparison to 𝜎௫௫ or 𝜎௬௬. The 

corresponding CPFE result for each EBSD step is labeled with FE-EBSD-X where X 

represent the measurement step. In Fig 1a, the effects of twin nucleation strain and 

applied strain rate are studied in detail. In Fig. 6.2aI, the top twin is removed from the 

model, i.e. no twin exist prior to loading. FE results for applied strain of 0.6% indicate 

that under compressive force, the north part of the pillar tend to shear toward negative 𝑥. 

This is interesting as it indicates that a twin is required to accommodate such 

deformation. Both twins that formed in this pillar have a shear component in this 

direction.  

In the rest of the FE results presented, the top twin was included in the model as a grain 

that existed before any load applied. In Fig. 6.2aII, it is shown that a negative stress field 

exist right above this twin that did not exist in Fig. 6.2aI. However with further loading, 

the size and magnitude of this negative stress field decreases (see Fig 1aII-VI). It is 

shown that at the applied strain of 1.5%, a tensile stress field form at the tip of the top 

twin (Fig. 6.2aIII). This is also captured in the experiment (Fig. 6.2b) and is marked with 

a red ellipse.  
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To study the possible effects of indenter compliance on the recorded strain, various strain 

rates were used in our CPFE simulation to investigate the resulting stress fields. As an 

example, results for strain of 10-5 s-1 are shown in Fig. 6.2aIV. At the applied strain of 

1.5%, minor changes are observed in comparison to Fig. 6.2aIII. Perhaps, the most 

notifiable difference is the size of the compressive stress field that formed above the top-

twin, where a smaller field was captured for the strain rate of 10-5 s-1.  

To be consistent with the experimental observation, at the applied strain of 1.5%, the 

bottom twin zone was reoriented and twin shear was applied to the twin domain. This 

was followed by further straining to 2.8% so that the results of the CPFE can be 

compared to EBSD-3. This results are shown in Fig. 6.2aV, where a negative stress fields 

was captured close to the head of the pillar and stronger positive stress was captured 

close to both top and bottom twins. Qualitatively, these results are in agreement with the 

experimental ones, however the magnitudes of the calculated stress fields are off. One of 

the reasons for such difference is that in the experiment it is possible that piles of 

dislocations form under surface. In diffraction patterns, this will be reflected by 

significant movement of the features in the pattern which lead to measuring high stress 

and lattice rotation. Such localized stress fields resulting from dislocation pile-up cannot 

be captured in the modeling approached used here. Further, extracting elastic strain in the 

existence of large lattice rotation is not straightforward as lattice rotations are normally 

10 times bigger than elastic strains. Large lattice rotations have been reported at the 

vicinity of twins.  

 At the applied strain of 2.8%, it was allowed to have the bottom twin elongated (see 

below). This step was followed by further straining to 3.24% where EBSD-4 was 

conducted. The result of CPFE simulation for this strain is shown in Fig. 6.2aVI, where 

in agreement with experiment, a higher positive stress filed is captured at the vicinity of 
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both twins. Further, the size of the negative stress field close to the top of the pillar has 

decreased significantly, which is also in agreement with the experiment. 

 

Figure 6.2 Comparison between the CPFE and HR-EBSD results for σxy. The 

applied strain and strain rate for CPFE results are given within each sub-figure. 

Scale Factor (SF) for aI was set to 20, while for the rest of the results was set to 1.  

Black dotted lines were drawn to indicate the trace of the twin. 

Since CPFE results does not change notably between strain rates of 10-5 to 10-2 s-1, the 

measured strain rate of 10-2 s-1 was used in the rest of the simulations. So far, results are 

given in the global coordinate system (see Fig. 6.3c), however, to understand the local 

stress fields acting on both twins, a new coordinate system is determined where 1 and 3 

represent twin shear direction and normal to the twin plane, respectively. The second axis 

is determined by the cross product of the other two. Here, we focus on the shear stress 

that act on the twin plane and in the twin direction (𝜎ଵଷ
௅ ).  
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In Fig. 6.3, the calculated local shear stress (𝜎ଵଷ
௅ ) and the elastic energy (𝐸 =

ଵ

ଶ
𝜎௜௝𝜀௜௝)  at 

different applied strains are shown and compared with the measured ones. In Fig. 6.3a, it 

is shown that 𝜎ଵଷ
௅  generally increases at the vicinity of the twins as applied stress 

increases. Having positive 𝜎ଵଷ
௅  is necessary for twin nucleation and propagation. The 

other key parameter is elastic energy, as twin formation tend to reduce the total elastic 

energy of the twin-parent pair [24]. In Fig. 6.3b, a plot of the elastic energy, the 

calculated energy from resolved shear stress and elastic resolved shear strain (𝜎ଵଷ
௅ 𝜀ଵଷ

௅ ), 

and resolved shear stress (𝜎ଵଷ
௅ ) at the top right corner of the pillar is presented. CPFE 

simulation indicated that this corner is where these values peak. The distance on the 

horizontal axis is from the top right corner of the pillar toward positive z (See the blue 

arrow in Fig. 6.3c). All of the plotted parameters, E, 𝜎ଵଷ
௅ 𝜀ଵଷ

௅ , and 𝜎ଵଷ
௅ , are normalized with 

respect to their corresponding values calculated at the top left corner of the pillar, i.e., 

0.955 MJ/mm3, 0.4639 MJ/mm3, and 203 MPa, respectively. It is clear that both energy 

and 𝜎ଵଷ
௅  peak at the locations where twins nucleated. The first one is at ~4.5 𝜇𝑚 from the 

corner where the bottom twin nucleated and the second one is at ~8.5 𝜇𝑚 where the top 

twin nucleated. Further, the first twin nucleated at the location where both energy and 𝜎ଵଷ
௅  

were at their maximum.   

In Fig. 6.3c, the distributions of 𝜎ଵଷ
௅  and 𝐸 at the applied strain of 1.5% are shown. In Fig 

2c-2h, the top twin was included in CPFE simulations before any load applied. In 

agreement with EBSD-2, CPFE results show a high concentration of 𝜎ଵଷ
௅  at the head of 

the top twin on the x-y plane. Since EBSD was performed just on the front x-y surface, it 

was not possible to comment on why the second twin nucleated instead of having the top 

twin elongated. This could be misleading given that EBSD measurement does not show 

significant 𝜎ଵଷ
௅  concentration at the location where the bottom twin nucleated. CPFE 
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simulation shows that in fact, the highest local shear stress (𝜎ଵଷ
௅ ) occur on the z-y plane 

underneath the EBSD surface. This is where the second twin nucleated.  

In Fig. 6.3d, the distributions of the 𝜎ଵଷ
௅  and 𝐸 after nucleation of the bottom twin under 

constant applied strain of 1.5% are shown. It is clear that applying the 0.219 twin 

transformation strain to the twin domain has led to significant reduction of both 𝜎ଵଷ
௅  and 

𝐸. At this stage, 𝜎ଵଷ
௅  is positive only at the tip of the bottom twin. This means that the 

bottom twin tends to elongate rather than increasing its thickness. However, this might 

not be enough as the elastic energy is quite low, even close to the bottom twin’s tip. The 

𝜎ଵଷ
௅  profile right before twin nucleation and after the twin shear transfer is shown in Fig. 

6.3e. The distance is from the pillar edge and is along the red arrow, as shown in Fig. 

6.3c. It is shown that the positive resolved shear stress becomes negative in the twin 

region right after shear transfer. This is in agreement with similar study on Mg alloys [9]. 

In Fig. 6.3f it is shown that with further straining of the sample, very high 𝜎ଵଷ
௅  will 

develop close to both twin tips, but elastic energy is still maximum at the vicinity of the 

top twin, close to pillar’s top surface, and hence it is favourable for this twin to elongate. 

It is interesting to report that 𝜎ଵଷ
௅  is still quite low on the back of the bottom twin on the 

x-y surface. This means that the bottom twin should tend to elongate on this surface 

rather than increasing its thickness. This is also observed in the experiment. With further 

straining, the bottom twin elongated first and then thickened. Hence, at the applied strain 

of 2.8%, the size of the bottom twin increased to resemble elongation.  
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Figure 6.3 Comparison between measured and simulated local resolved shear 

stresses (𝝈𝟏𝟑
𝑳 ) at different stages of twin formation. (a) HR-EBSD results at different 

applied strains. (b) Calculated elastic energy (E) as a function of the distance from 

the pillar’s top right corner. This distance is shown with the blue arrow in (c). CPFE 

results for 𝝈𝟏𝟑
𝑳  (left) and elastic energy (right) are shown in c, d, f, g, I, and j. In in 

(e) and (f) calculated resolved shear stress profile along the bottom twin at different 

applied strains are shown. The distance in (e) and (f) is from the pillar edge along 

the red arrow as shown in (c). Applied strain for each case is shown at the bottom of 

the sub-figure and the dashed lines in (c) show the position of the two twins 

The distributions of 𝜎ଵଷ
௅  and 𝐸 after elongation of bottom twin under constant applied 

strain of 2.8% are shown in Fig. 6.3g. It is shown that while 𝜎ଵଷ
௅  is negative around the 

newly added section, it is still positive at the back of the twin. This means that the bottom 

twin can now thicken from the back of the twin. The 𝜎ଵଷ
௅  profile, before and after the twin 

elongation, is also shown in Fig. 6.3h. It is interesting to report that with more straining, 

𝜎ଵଷ
௅  within twin become positive, but after shear transfer, it becomes negative within the 

elongation zone. With further straining of the pillar, it was observed (red circle in Fig. 

6.2i) that the highest 𝜎ଵଷ
௅  and 𝐸 happen right at the back of the bottom twin and hence, it 

is favourable for the bottom twin to thicken. This was also observed in the experiment. 

The comparison between Fig. 6.3i and 2a indicates that high positive 𝜎ଵଷ
௅  exists both at 

the vicinity of the bottom twin and close to top twin. Further, high elastic energy is 

accumulated close to the top twin and it is possible that thickening of the bottom twin is 

accompanied with elongation or thickening of the top twin. At this stage, in CPFE 

simulation, the thickness of the bottom twin were increased by a factor of two. This step 

was followed by further straining to 4.2%. The distributions of 𝜎ଵଷ
௅  and 𝐸 at this strain are 

shown in Fig. 6.3j. It is clear that at this strain there is no driving force for having the 
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bottom twin elongated or thicken. Meanwhile, 𝜎ଵଷ
௅  and 𝐸 are quite high closer to the top 

twin. This is in agreement with the experiment where at this stage it was observed that 

the top twin elongates and thickens. 

 Conclusion 

With the aim of understanding the mechanism of nucleation, propagation, and thickening 

of twins as well as the 3D features inherent in such processes, deformation of a titanium 

micro-pillar was modeled. It is shown that twins nucleated at the locations where energy 

and twin resolved shear stress are maximum. Once twin nucleated, shear stress at the twin 

tip is positive and provides enough driving force for twin elongation. It is shown that for 

short twins, this resolved shear stress on the twin tail is quite negative and twins do not 

tend to thicken, yet tend to elongate. With applying more strain and as a twin elongates, 

the local resolved shear stress in the back of the twin becomes positive which provides 

enough driving force for twin thickening  
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Chapter 7  

7 Conclusions and future work 

 

 Conclusions 

A crystal plasticity finite element model was updated by integrating the strain-gradients 

and the resulting dislocation density terms (GNDs and SSDs) into the hardening law of 

slip systems. Two different methods were used for determining the evolution of the GND 

densities during plastic deformation of HCP zirconium. The results from the model were 

compared to those from neutron diffraction and HR-EBSD experiments. Further, the 

capability of the model in capturing the formation of localized deformation zones in 

unirradiated zirconium was examined. After validating the model for unirradiated 

zirconium, the model was further updated by integrating an irradiation growth subroutine 

with the updated hardening law. The results of the irradiation model were compared 

against those measured for neutron-irradiated single and polycrystalline zirconium 

specimens. The main conclusions of this study are summarized here. 

The steps taken for updating the model with a non-local hardening law were discussed in 

Chapter 3. The numerical results from both conventional and non-local CPFE models 

were compared. It was shown that both conventional and non-local CPFE models can 

adequately capture the macroscopic stress-strain curves, as well as the evolution of 

internal lattice strains measured using neutron diffraction. However, the predicted elastic 

lattice rotation fields from the non-local model slightly deviate from those calculated by 

the conventional model. For the studied microstructure, the stress distributions within 

individual grains from both non-local and conventional models are shown to be quite 
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similar. However, the magnitudes of localized stresses were in better agreement with 

those measured by the HR-EBSD method. The difference between the conventional and 

non-local models are shown to be more pronounced in the regions where there are sharp 

strain gradients, e.g., in the vicinity of the twin tips and grain boundaries. The calculated 

GND densities in such areas are shown to be in good agreement with those measured by 

the HR-EBSD method.  

In chapter 4, two different approaches for the determination of GND densities in the non-

local CPFE model were compared. The non-local CPFE models revealed the formation of 

localized GND lines, parallel to the slip bands observed in the deformed specimen. While 

the GND densities obtained from the minimization-based approach (Method II) were 

uniformly distributed among all slip systems, the use of direct method (Method I) led to 

the non-uniform distribution of GNDs on the slip systems. It was shown that the 

calculated GND densities from the direct method are proportional to the calculated 

activity for the slip systems. The magnitude of the GND density calculated using Method 

II was larger than the one from Method I. However, the calculated total dislocation 

density, i.e., GND plus SSD, from the two methods was almost the same for the studied 

microstructure with the average grain size of 50 µm. As a result, the trends observed for 

the calculated stresses and lattice rotations at the grain level were also the same. 

However, it was shown that the calculated stresses from the two methods were different 

for smaller grains. A threshold value for the grain size was identified below which the 

geometrical effects became significant. This critical grain size was higher in Method II, 

compared to Method I. The dislocation-based hardening law used here was SSD driven 

for larger grains and GND driven for smaller grains and accurate implementation of both 

mechanisms is shown to be important when different grain sizes exist in the 

microstructure. 
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In chapter 5, it was shown that the irradiation CPFE model can capture the evolution of 

growth strains for both annealed single crystal and cold worked polycrystal models. For 

the polycrystal models, the magnitudes of the calculated growth strains increased with 

increasing the prior cold work or decreasing the average grain size. Special attention was 

given to the distribution of growth strain. A noticeable non-uniformity for the growth 

strain was observed among different grains and within individual grains. It was shown 

that the growth strain was mainly accommodated by smaller grains, in which dislocation 

line densities were higher. CPFE results demonstrated the localization of growth strains 

both at grain boundaries and in deformation zones. The magnitude of localized growth 

strain was shown to be proportional to the amount of prior cold work and, inversely 

proportional to the grain size. Finally, it was shown that the effect of the grain boundary 

sink strength on the calculated growth strain in the vicinity of the grain boundary was 

more significant for un-deformed crystals, compared to the deformed ones.  

In chapter 6, the process of nucleation, propagation, and thickening of twins was modeled 

for a titanium micro-pillar. It was shown that twins nucleate at the locations where both 

elastic energy and twin resolved shear stress were maximum. The simulation results 

showed that once a twin is nucleated, the shear stress at the twin tip is positive, resulting 

in twin elongation. However, the resolved shear stress on the twin tail is initially 

negative, preventing the twin from thickening. As the deformation continues, the local 

resolved shear stress in the back of the twin becomes positive, providing enough driving 

force for twin thickening.  

This research presented a dislocation-based CPFE model, which considers the non-local 

effects by calculating the GND densities as a function of the strain gradient. This 

capability is important when the localized plastic deformation at the vicinity of the micro-

scale features is interested, e.g. twins, cracks, and precipitates. In addition, the size 
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dependency aspect of the current model is important, when the investigated polycrystal 

has the average grain size of less than ~10 μm, e.g. Zr-2.5Nb pressure tubes of CANDU 

nuclear reactors fuel channels. 

 Future work 

Other irradiation-induced deformation mechanisms can be added to the updated CPFE 

model. Therefore, the following studies are recommended: 

1. In order to accurately predict the possible contact between the pressure tube and 

calandria tube, both irradiation growth and irradiation-enhanced creep should be 

modeled, yet the effects of the latter were ignored in this study. Therefore, it is 

necessary to update the model by incorporating the effects of irradiation creep. 

2. The formation of the slip bands can be simulated using higher-order strain 

gradient crystal plasticity models. The incorporation of higher order terms to the 

CPFE model can be in the scope of the future studies. 
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