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Abstract 

The aeration process is the largest energy consumer in wastewater treatment plants (WWTPs), and 

the optimization of the process based on computational models can offer significant savings for 

the plant. Recent theoretical developments have revealed that many of the parameters commonly 

assumed as constants in aeration modelling, in fact, have a dynamic nature; however, there still 

lacks a universal way to model these factors in an easy, accurate and timely manner. This work 

proposed a machine learning-based modelling approach to offer real-time estimations of the 

oxygen transfer rate, airflow demand, and energy consumption. 

Utilizing the field data collected from Adelaide WWTP (London, Ontario, Canada), the study 

developed and screened a combination of modelling approaches and input parameters for optimum 

predictive power under different data availability conditions. 

The results demonstrated that the machine learning models provided significantly higher predictive 

power than the traditional mechanism-based models. These models can provide informative 

predictions of the aeration parameters with only operational parameters and limited knowledge 

about the underlying mechanisms of the system. When integrated with the theoretical equations, 

the models still produce reasonable estimations without losing interpretability. The present finding 

confirms using the machine learning modelling approach on dynamic factors involved in the 

aeration process to be feasible and effective. It calls for further investigation into such methods to 

explore more in the field of wastewater modelling. 

Keywords: wastewater, aeration model, energy model, Dynamic model, Machine learning, alpha 

factor. 
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Summary for Lay Audience 

Just like all dogs go to doggy heaven, all drains in our city lead to a wastewater treatment plant, 

where the microorganisms break down the pollutants and turn the wastewater back into clean water 

for us to use. The aeration process is the part in which we pump air into the water to let the microbes 

breathe and do their jobs. The more air they get, the happier they are and often the cleaner the 

resulting water can be. However, pumping air is a costly process, so our plants want to minimize 

the input air without harming the outflow water quality. One potential approach is to adjust the 

airflow pumps based on need. With the water flow rate and amount of pollutants changing, it is 

difficult to determine the need manually, but this can be quickly done if we have a mathematical 

model for estimations. In this study, we present a new way to make accurate and timely estimates 

of the many factors involved in the aeration process we need to achieve this goal. 

While most previous researchers focused on describing mathematically how aeration works, an 

alternative could be to utilize machine learning methods for predictions. Machine learning models 

train themselves automatically through experience; however, we cannot easily explain the 

underlying reasoning of their predictions. To make up for this, we combined the two approaches 

and tested their performance under different scenarios.  

We found that the machine learning models doubtlessly work better most of the time, but the 

combined models are also generally acceptable and easier for human to understand. We found 

some interesting relationships between parameters that we never thought of, and we are hoping to 

have them studied further by other inspired researchers.  
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To sum up, our study offered a new way to increase the accuracy of our various predictions in 

the aeration process, to have better control over the energy use in the pumping systems, and 

hopefully to save a fortune in treating our waste soon.  
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Chapter 1  

 Introduction 

 Rationale 

As a process commonly adapted in modern wastewater treatment, research on aeration 

processes has a long tradition. Aeration is the process of delivering oxygen or air into 

wastewater treatment process units to allow aerobic biodegradation of the organic matter 

and nutrients present in the water. The blower and air support systems are major energy 

consumers in wastewater treatment plants (WWTPs) in the aeration process. On average, 

the aeration process accounts for 50% of the total energy consumption of the plants. While 

decreasing the energy use of the aeration process by replacing more efficient motors could 

lead to an annual saving of 20,000 Dollars (Government of Ontario, 2016), a much more 

significant energy saving can also be achieved by aeration process optimization without 

sacrificing water quality.  

Microorganisms in the aeration process rely on the dissolved oxygen (DO) level to perform 

biodegradation; therefore, sufficient aeration is critical for adequate wastewater treatment. 

In theory, the ideal DO concentration in the aeration process would be around 2 mg/L, 

representing equilibrium: the oxygen supplied is the same as the oxygen demand of 

biodegradation (Meng et al., 2017). However, due to the complex nature of the wastewater, 

many factors often contribute to variation in DO concentration. With the complex cross-

effect of diffuser type, wastewater loading, temperature, time of day, and many other 
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factors, estimation of the DO outcome made upon the level of airflow is often inaccurate 

and lagging (Drewnowski et al., 2019). To make up for such a lack of information, many 

WWTPs tend to over-aerate the process hoping to ensure the effluent water achieves 

effluent quality standards. For such an energy-intensive process, even aerating at 1 or 2 

mg/L over the DO setpoint may lead to a significant increase in cost (S. Bolles, 2006). 

Considering the above, we can naturally conclude that there is much room for 

improvements in the energy efficiency ratio in the aeration process.  

Over the past decades, considerable efforts have been made to design and modify the 

aeration process to reduce energy costs. The majority of the modern WWTPs utilize 

feedback control loops to control the DO. However, feedback control is often vulnerable 

to time delay and disturbance, especially at larger plants where data collected at one point 

often is not representative of the whole tank (Åmand et al., 2013). Alternatively, the 

concept of dynamic aeration modelling can further be utilized for aeration process control 

and optimization (Martin & Vanrolleghem, 2014). In this case, the dynamic aeration 

models were used to build feedforward control loops to predict DO or required airflow 

based on real-time or forecasted influent data (Åmand et al., 2013). Martin and 

Vanrolleghem (2014) demonstrated that by modifying the control system in WWTPs, the 

total energy cost of aeration could be saved by 27% on average. However, one of the 

standing research questions is the accuracy of the aeration models to capture dynamic 

aeration and energy demand within the process.  

One of the parameters that were considered to impact dynamic aeration modelling accuracy 

is the alpha factor. To date, numerous studies have investigated the correlation between the 
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alpha factor and an extensive range of operational parameters, but the existing empirical 

equations often lack precision in predicting the airflow needed for a single WWTP under 

dynamic operational conditions. One approach to address this problem is developing other 

alpha modelling concepts and using alternative data-based modelling approaches such as 

machine learning (ML) algorithms. Several studies have shown that ML is particularly 

suitable for estimating values within the environmental domain for its ability to model 

complex, nonlinear relationships among numerous variables (Guo et al., 2015). 

 

 Objective 

Although many models aimed to describe the aeration process exist, most of those are not 

efficient in dynamic modelling, especially in high sampling frequency time scale. Few 

studies have shown methods designed for airflow estimation based on real-time water 

quality measurements, but the existing empirical equations often lack precision in 

predicting the airflow needed for a single WWTP under dynamic operational conditions. 

To fill this knowledge gap, this study proposes a new framework for building a 

combination of mechanism-based equations and machine learning methods to model the 

aeration process of WWTPs. The objectives of this study were: 1). To evaluate the 

dynamics of oxygen transfer factors and develop protocols representing dynamic alpha-

factor; 2). To establish models to estimate real-time airflow demand, and 3). To assess the 

dynamic blower power consumption in the aeration process. 
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 Thesis format and organization 

This thesis is structured as follows: Chapter 1, Introduction, has provided a brief overview 

of the background, defined the research aim, and established the key objectives of this 

study. Chapter 2, Literature Review, served as an appraisal of previous studies within the 

field of aeration modelling. It covered the known mechanisms of the aeration process and 

provided a comprehensive overview of the existing modelling approaches. Chapter 3, 

Dynamic Alpha Modelling, presents our investigation on the oxygen transfer factors and 

the model established for real-time estimation. Chapter 4, Dynamic Airflow and Energy 

Modelling followed a similar research structure but focused on modelling the airflow 

demand and the energy consumption in the aeration process. This completes the second 

and third objectives of the study. Finally, Chapter 5, Conclusions and recommendation, 

summarized the main findings in this study and suggested possible directions for future 

work. 

 



 

 

5 

 

Chapter 2  

 Literature Review 

 Wastewater Treatment Modelling  

 Traditional Modelling 

2.1.1.1 Modelling background 

WWTP models are used in various applications, including plant design, operation, training, 

optimization, and diagnosis.  They are physical models that consider the mass balance of 

the treatment system and biochemical kinetic processes to simulate the operation of a 

virtual or full-scale treatment plant. The models operate by simultaneously solving a series 

of mass balance and kinetic relationships to predict the behaviour of the wastewater as it is 

processed through the plant under a given set of operating conditions. The output of these 

models, which describe the wastewater characteristics over both space (location within the 

treatment train) and time, can then be used for the purposes mentioned above. 

 

2.1.1.2 Kinetics and mass balance 

Kinetic relationships describe the transformation of materials such as organic matter and 

nutrients in the water into bacterial cells, thereby removing contaminants from a dissolved, 

unsettle-able state (organics dissolved in the wastewater) into a particulate state (contained 

within the cells) that can be removed via settling or filtering. Mass balances are applied to 
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the solid (sludge, suspended solids) and liquid flows of the wastewater. By solving the 

kinetic and mass balance equations simultaneously for a given time step, the temporal 

changes in the wastewater characteristics throughout the treatment process are predicted. 

Conservation of mass must be maintained throughout the modelled system. In its simplest 

form, this describes the flow distribution in the treatment plant; any liquids and solids 

entering the treatment plant must be expelled either in the effluent or through some removal 

mechanism along the treatment path. Mass balances included in wastewater models 

contains the followings: solid and liquid flows; physical reactions such as gas-liquid mass 

transfer, diffusion, adsorption; solids separation such as sedimentation and filtration; and 

reactor hydraulics. Equation 2.1 shows an example mass balance for a reactor with one 

influent and one effluent for a single contaminant concentration. 

𝑄𝑖𝑛𝐶𝑖𝑛 − 𝑄𝑜𝑢𝑡𝐶𝑜𝑢𝑡 + 𝑟 =
𝑑(𝐶∙𝑉)

𝑑𝑡
   (Equation 2.1) 

Where 

Qin Influent flow rate [m3/d] 

Qout Effluent flow rate [m3/d] 

Cin Influent concentration [mg/L] 

Cout Effluent concentration [mg/L] 

r Rate of reaction [g/d] 

V Liquid volume [m3] 

t Time [d] 
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2.1.1.3 Activated Sludge Models 

Biological treatment is the principal treatment method most wastewater facilities 

implement to remove organics and nutrients. Activated sludge is used as a treatment 

mechanism within which active biomass is allowed to grow under a preferential set of 

conditions to achieve specific treatment outcomes. The treatment is achieved by 

assimilating dissolved organic and nutrient components in the wastewater into bacterial 

cells, which can then be removed from the water through solids separation such as settling 

or filtration. The most commonly employed models used to describe this process include; 

variations of the activated sludge model (ASM) such as ASM1 (Henze et al., 1987), ASM2 

(Gujer et al., 1995) ASM2d (Henze et al., 1999) and ASM3 ((Henze et al., 1999); the 

Dold’s General Model (Barker & Dold, 1997); the Mantis2 Model (Hydromantis 

Environmental Software Services Inc., 2015); and the Metabolic Models (Roles, 1983). 

Differences between the models are primarily based on the number of processes included.  

The first widely accepted activated sludge model was the Activated Sludge Model No. 1 

(ASM1), developed by the international water association (IWA) task group (Henze et al., 

1987). The model incorporates the kinetic and physical processes of hydrolysis, carbon 

oxidation, nitrification, and denitrification. This model was later modified and expanded 

upon to include fermentation, biological phosphorous removal, carbon storage 

(Phosphorus removal in ASM2 and Bio-P in ASM2d), and biological phosphorous removal 

with denitrification (ASM2d only) in ASM2; and general carbon storage in ASM3.  

ASM1 has the most fundamental structure of the above-mentioned models; a system of 8 

equations describing the aerobic growth of heterotrophs, anoxic growth of heterotrophs, 

aerobic growth of autotrophs, decay of heterotrophs, decay of autotrophs, ammonification 
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of soluble organic nitrogen, hydrolysis of entrapped organics, and hydrolysis of entrapped 

organic nitrogen.  

 

 Machine Learning Models 

Other than the theory-driven traditional modelling methods, machine learning is a data-

driven approach that can rapidly process datasets and uncover the underlying patterns that 

wastewater researchers might not have yet discovered. Machine learning comprises a group 

of computational algorithms that can perform model fitting, pattern recognition and 

prediction based on existing data that are suspected to be related to the desired outcome. 

On the other hand, as the machine learning models are created by the algorithms directly 

from the data, these models are often “black-boxes,” meaning that they are often 

uninterpretable, making it hard for a human to understand how the input variables are 

linked with each other to reach the final prediction.  

The ability of machine learning models to find patterns in complicated systems provides it 

with the advantage of solving water engineering problems (Olden & Jackson, 2002). This 

is especially true within the field of wastewater process modelling, as this is a complex, 

multivariate, highly nonlinear system where limited knowledge is available. The use of 

machine learning models also allows for fast and easy development and handling, with or 

without the necessity of conducting web-lab experiments. These advantages make the 

machine learning model an effective and accurate pathway for monitoring, optimizing and 
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predicting the behaviour of the activated sludge process in WWTPs without the need to 

install additional sensors or new control systems.   

Machine learning models have been proved to be a useful tool and accurate predicting 

method in hydrological modelling, rainfall-runoff modelling, flow modelling, and many 

other fields (Kişi, 2004). Newhart et al. summarized the various data-driven models used 

in the field of activated sludge modelling (Newhart et al., 2019). Most of them are either 

deterministic first-principal models, secondary clarifier models or a combination of the 

two. To the best of our knowledge, machine learning methods have not yet been widely 

adopted within the area of activated sludge modelling. 

 

 Data Collection for Modelling 

2.1.3.1 Data Collection 

For a dynamic model to be considered for application, it must be accurate to within an 

acceptable threshold determined by the model's intended use. As a result, the model inputs 

that are required to produce accurate simulations and/or predictions must be available in 

terms of both sufficient quality (measurement accuracy and reliability) and quantity (spatial 

and temporal intervals between measurements) (Rieger et al., 2010). 

The data required is governed principally by the intended application of the model. 

However, generally, some form of influent characterization is required (either to the 

process of interest or the system as a whole), with the most critical being the most 

influential constituents (such as COD) and most actively varying (such as Flow). Flow 
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measurements are among the most critical because all concentrations must be multiplied 

by the respective flow to determine the overall loading to the plant (Rieger et al., 2010). 

Characteristics that can be easily estimated and/or remain relatively constant may not need 

to be measured as frequently or at all.  

As mentioned, the input interval for a dynamic model can vary in a range of minutes to 

weeks, depending on the application and data availability. It is infeasible to manually 

collect, analyze, and report such a large quantity of samples for a prolonged period, based 

on the labour and lab time required. Therefore, a treatment plant needs to be outfitted with 

appropriate online sensors. 

 

2.1.3.2 Data Resolution 

The complexity of a model can also be increased by discretizing the modelled period 

(timescale) into smaller time steps, where the model input and operation parameters are 

changed during each timestep. This is also termed static and dynamic modelling. A 

completely static model would have one set of input variables (such as influent 

characterization) classified at the beginning of the simulation, remaining constant 

throughout the simulation. An example of this would be a steady-state model. A dynamic 

model would have a set of input variables altered at given time intervals based on the 

available data. The complexity increases as the resolution of the dynamic data increases, 

for example, from model inputs that are varied daily or every 15 minutes.  
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Similar to the model dimensions and processes, the data resolution required for a model is 

dependent on the application. Figure 2-1 shows examples of common model applications.  

 

Figure 2-1 Common model applications 

 

Models used for Design and Training purposes often rely on static datasets to reproduce 

steady-state scenarios which provide information on the long-term behaviour of the plant. 

Models for optimization and operation require dynamic datasets to predict the behaviour 

of the plant under short-term variable conditions (Rieger et al., 2010). The resolution of 

these dynamic datasets is dependent on data availability and application and can vary 

between weekly, daily, hourly, and 15-minute data sets.  

The resolution of the model input limits the resolution of the model output. Therefore 

applications that require model outputs on the scale of hours to minutes should implement 

equally or further discretized input datasets. The availability of accurate high-resolution 

data has been the limiting factor in creating influent data sets for dynamic modelling. With 
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the increased availability of online sensors, high-resolution data has become more readily 

available. However, when datasets become too discretized and the temporal resolution 

becomes very small (for example 15-minute data), input data can become excessively 

“jagged” in which case implementing moving averages (for example 2-hour moving 

average) can result in a smoother dataset (Martin & Vanrolleghem, 2014). There is 

currently no standard for determining the optimal data resolution that should be used for 

dynamic modelling. There is also little literature comparing the accuracy of models as the 

data resolution increases. 

 

2.1.3.3 Data Preprocessing 

The result of data-driven research depends highly on the quality of the input datasets. 

However, raw datasets collected directly from WWTPs and labs are often corrupted with 

inconsistencies, noise, and missing values. Without proper treatments, these datasets could 

introduce bias and/or cause under-coverage to the results and conclusions.   

Data preprocessing is a set of techniques used to clean, transform, and encode raw datasets 

to reflect the actual condition of the inspected variables and can be easily parsed by the 

algorithms. Generally, it consists of four main stages: data cleaning, data integration, data 

transformation and data reduction. In wastewater research, the input data are limited and 

are often collected from a single source. Therefore, integration, transformation and data 

reduction are usually less concerned, leaving data cleaning the primary focus in data 

preprocessing procedures.   
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Data cleaning includes filling missing values, eliminating the noise in data, and treating 

inconsistent data based on external references and knowledge of the typical data range for 

each parameter collected. The missing value issue can be solved by either ignoring the 

tuples containing missing values or filling the gap in various ways. Common methods 

include filling the values manually, replacing them with data attributes like average values, 

and predicting the missing values with regression, maximum likelihood or other statistical 

methods (Kang, 2013). The noise in a measured variable is the abnormal entries caused by 

random errors or variance. Besides removing the erroneous data manually, it can be 

achieved through techniques like binning, regression model fitting and clustering. After 

these steps, the resulting dataset should have enough accuracy and reliability in terms of 

information and be ready to be fed into the models. 

 

 Model Evolution 

After the parameters are chosen, and the appropriate model is applied, we unavoidably 

come to the question: how reliable are the predictions of our model? This is essential for 

several purposes, including model validation, evaluation, comparisons and out-of-sample 

comparisons. One common evaluation of models is the goodness-of-fit measurement, 

which summarizes the discrepancy between the observed and the predicted values 

generated by the model. As questions in the field of wastewater modelling often fall in the 

scope of regression analysis, a list of potential goodness-of-fit measures is summarized by 

Ahnert et al. (Ahnert et al., 2007). This list includes the R-squared measure, Root-mean-
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square-error (RMSE) and coefficient of efficiency (E) and is continuingly growing as new 

applications emerge.   

 

 Wastewater Aeration Oxygen Transfer Efficiency 

A widely used practice is activated sludge treatment, a process during which a bulk liquid 

consisting of new wastewater and recycled sludge from the secondary clarifiers is aerated 

using air. This process maintains a high concentration of biomass in the mixed liquor. The 

biomass uses contaminants in the wastewater as substrate and dissolved oxygen as an 

electron acceptor. The resulting biomass growth removed contaminants from the bulk 

liquid, which is separated using settling or filtration. The process must provide sufficient 

oxygen to facilitate an optimal amount of biomass growth; blowers and diffusers are 

implemented to continuously re-oxygenate the bulk liquid.  

 

 Aeration Theory and Modelling 

Bubble aeration systems in activated sludge processes serve two main functions: meet 

process oxygen demand and provide mixing. The required oxygen volume for mixing is 

significantly less than the amount required for biomass growth; therefore, oxygen 

requirement is calculated based on optimizing biomass growth. Estimating the oxygen 

demand of the system and modelling the aeration process is useful for design, reducing 

operating costs, energy footprints, and/or carbon emissions and research.  
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Conventionally the desired DO concentration for aerobic conditions is 2 mg/L (Amand et 

al., 2013), below which the growth rate of organics may become limited by oxygen 

availability. Ideally, this condition will provide sufficient oxygen required by organisms, 

keep solids in suspension, and create sufficient residual dissolved oxygen levels in the tank 

effluent to satisfy downstream processes. When the oxygen concentration is exceeded, it 

may cause lower denitrification and higher energy demand. However, if the aeration 

system does not meet the demands, it may cause poor downstream and effluent water 

quality, filamentous bulking, poor settling, and growth inhibition (Amand et al., 2013). The 

amount of DO to meet treatment requirements can be determined using process models 

and/or steady-state calculations. Following this, an appropriate aeration method needs to 

be selected to deliver the required DO.  

Several kinds of aeration methods are implemented in wastewater treatment facilities, 

including passive aeration (eg. surface aeration) and active aeration (e.g. paddle aeration, 

fine/coarse bubble aeration). The most commonly used method is fine bubble aeration, 

where bubbles are formed by pushing pressurized air through porous materials. The amount 

of oxygen transferred from the gas phase to the liquid phase in clean water is described by 

Equation 2.2 (Pittoors et al., 2014)  
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𝑑𝐶

𝑑𝑡
= 𝐾𝐿𝑎 ∙ (𝐶𝑠 − 𝐶)  (Equation 2.2)                                                                                        

Where 

𝑑𝐶

𝑑𝑡
 

Change in concentration over time [mg/L∙h] 

𝑘𝐿𝑎 Overall oxygen mass transfer coefficient of liquid [h-1] 

𝐶s Saturation concentration of oxygen in test liquid under 

equilibrium 

[mg/L] 

C The concentration of dissolved oxygen in test liquid [mg/L] 

Under 1 standard atmosphere condition, Saturation concentration of oxygen (CS) can be 

calculated based on Equation 2.3 (VLMP, 2014) 

𝐶𝑠 = 14.189𝑒−0.022𝑇  (Equation 2.3)                                    

Where  

T Temperature of test liquid [℃] 

 

In clean water,  𝑘𝐿𝑎  can be estimated using a mass transfer model by de-oxygenating and 

measuring the dissolved oxygen while re-oxygenating the water (American Society of Civil 

Engineers, 2007). Compared to clean water transfers, the amount of oxygen transferred in 

wastewater treatment processes is lower as it is impacted by various factors, including the 

aeration equipment, operating conditions and process design (Pittoors et al., 2014).  
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 Factors Affecting Oxygen Transfer Efficiency (OTE) 

Oxygen Transfer Efficiency (OTE) is a percentage describing how much of the oxygen 

bubbled through the tank transfers from the bubbled gas phase to the bulk liquid. Figure 

2-2 and Equation 2.4 show the gas phase mass balance and corresponding derivation of 

OTE, respectively (Boyle et al., 1989).  

 

Figure 2-2 Gas Phase Mass Balance 

𝑂𝑇𝐸 =
𝑀𝑎𝑠𝑠 𝑂𝑥𝑦𝑔𝑒𝑛 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑

𝑀𝑎𝑠𝑠 𝑂𝑥𝑦𝑔𝑒𝑛 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑑
=

𝑀𝑎𝑠𝑠 𝑂𝑥𝑦𝑔𝑒𝑛 𝐼𝑛 − 𝑀𝑎𝑠𝑠 𝑂𝑥𝑦𝑔𝑒𝑛 𝑂𝑢𝑡

𝑀𝑎𝑠𝑠 𝑂𝑥𝑦𝑔𝑒𝑛 𝐼𝑛
 

𝑂𝑇𝐸 =
𝜌(𝑞𝑖𝑌𝑅−𝑞𝑂𝑌𝑂𝐺)

𝜌𝑞𝑖𝑌𝑅
        (Equation 2.4) 

Using mass oxygen transferred (Equation 2.2), OTE can also be expressed as Equation 2.4.  

𝑂𝑇𝐸 =
𝛼(𝑘𝐿𝑎)𝑤𝑤∙(𝐶𝑆−𝐶)𝑉

𝜌𝑞𝑖𝑌𝑅
      (Equation 2.5) 

where  

OTE Oxygen transfer efficiency  [-] 

𝜌 Density of oxygen at temperature and pressure at which gas 

flow is expressed 

[m3/d] 

𝑞𝑖 Total gas volume flow rates of inlet gases [m3/h] 
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𝑞𝑜 Total gas volume flow rates of outlet gases [m3/h] 

YR Volumetric fractions of oxygen gas in inlet gases [-] 

YOG Volumetric fractions of oxygen gas in outlet gases [-] 

α Alpha factor [-] 

(𝐾𝐿𝑎)𝑤𝑤 Overall oxygen mass transfer coefficient of wastewater [h-1] 

𝐶𝑆 Saturation concentration of oxygen in test liquid under 

equilibrium 

[mg/L] 

C The concentration of dissolved oxygen in test liquid [mg/L] 

V The volume of aeration tank [m3] 

 

OTE can also be expressed in terms of standard oxygen transfer efficiency (SOTE), which 

is the oxygen transfer rate in clean water conditions, and various correction factors. 

Equation 2.6 shows the oxygen Transfer Efficiency in Wastewater (Yoon, 2016).  

𝑂𝑇𝐸 = 𝛼 ∙ 𝜃(𝑇−20) ∙ 𝐹 ∙ 𝑆𝑂𝑇𝐸 ∙ (
𝛽∙𝐶𝑆−𝐶

𝐶20
s )  (Equation 2.6) 

where  

OTE Oxygen transfer efficiency under field condition [-] 

α Alpha factor [-] 

θ Theta factor [-] 

T Temperature of aeration tanks [℃] 

F Fouling factor [-] 
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SOTE Oxygen transfer efficiency under standard condition [-] 

β Beta factor [-] 

𝐶𝑆 Saturation concentration of oxygen in test liquid under 

equilibrium 

[mg/L] 

C The concentration of dissolved oxygen in test liquid [mg/L] 

𝐶20
S  Saturation concentration of oxygen in test liquid in 

equilibrium with exit gas at 20 ºC, 1 atm, and zero salinity 

[mg/L] 

 

The correction factors account for discrepancies between the SOTE in clean water and the 

OTE in wastewater. OTE is a highly variable property dependent on the treatment process's 

physical, environmental, and operational state. Physical properties such as diffuser type 

and depth (Table 2-1), distribution, fouling, airflow rate, and reactor properties such as 

depth, volume, and type of reactor affect SOTE and alpha (Tchobanoglous et al., 2003). 

The impact of environmental factors such as temperature and pressure are directly 

referenced using the beta and theta factors. Operating conditions such as SRT, temperature, 

turbulence, and wastewater composition affect the alpha factor as well as the saturated 

oxygen concentrations (Pittoors et al., 2014).  

Table 2-1 Diffuser Standard Oxygen Efficiency Source (Yoon, 2016) 

Diffuser Type 
SOTE at 4.5m submergence  

ceramic discs 
0.26-0.33 
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ceramic domes  
0.27-0.29 

porous plastic discs 
0.28-0.32 

perforated membrane tubes 
0.22-0.29 

coarse bubble diffusers  
0.09-0.13 

 

Environmental Factors are not under the control of the operator or designer of the treatment 

plant. Higher water temperature negatively impacts the solubility of oxygen, thereby 

decreasing 𝐶𝑠  and negatively impacting OTE (Jenkins, 2013). Barometric pressure and 

salinity also influence the OTE, as 𝐶𝑠  decreases when the atmospheric pressure below 

1atm or the salinity is high (Baquero-Rodriguez et al., 2018). Process Conditions of the 

system may or may not be under the control of the operator or designer. The presence of 

surfactants in the water can accumulate at the bubble surface and negatively influence the 

OTE (Chern et al., 2001; Rosso et al., 2008; Baquero-Rodriguez et al., 2018). While the 

operator cannot directly control the presence of these surfactants, introducing a higher SRT 

enhances the degradation of more complex substances, including surfactants. Increasing 

SRT results in a higher MLSS concentration. This may also influence the OTE; at high 

MLSS concentrations, solids accumulating on the bubble surface reduce the permeability, 

and OTE is reduced (Henkel et al., 2011; Krampe & Kreauth, 2003; Germain et al., 2007). 

Combing the results of several studies has shown a general trend in which up to a threshold 

of approximately 4 g/L an increase in MLSS increases OTE, while concentrations in excess 

of 4 g/L subsequently decrease the OTE. Finally, bubble size, impacting the specific 
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surface area, is dependent on the airflow rate (Baquero-Rodriguez et al., 2018). An increase 

in airflow makes the bubble size bigger, negatively impacting the OTE (EPA, 1989). Finer 

bubbles create a larger surface area and longer residency time, thereby improving the 

oxygen transfer. It is of note that bubble size and shape, and consequently interfacial 

surface area, are impacted by the presence of surfactants. Finally, the age and cleaning 

frequency of the diffusers impacts the fouling of the diffusers. As fouling decreases the 

number of available pores for diffusion, the pressure increases results in larger bubbles, 

decreasing OTE.  
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2.2.2.1 Correction Factors 

Several factors are used to account for the observed discrepancy between clean water and 

wastewater OTE, including alpha, beta, gamma, and omega. These correction factors are 

introduced to increase the accuracy of the calculated OTR in wastewater. Alpha accounts 

for tank and wastewater and sludge characteristics, beta for salinity and surface tension, 

gamma for temperature and omega for pressure.  

Beta, gamma, and omega can all be determined based on a singular, easily measurable 

property (salinity, temperature, and pressure respectively) and remain relatively constant 

within a typical municipal plant (Pittoors et al., 2014). The presence of dissolved solids 

such as NaCl in industrial wastewater may require the use of a beta factor if industry 

provides a significant amount of the inflow to a municipal plant, however, generally, the 

use of a constant factor of 0.99–1 is applicable (Tchobanoglous et al., 2003). Gamma can 

be calculated based on the wastewater temperature, which may vary slightly seasonally. 

Pressure is based on the ambient barometric pressure and remains constant at any given 

location. Table 2-2 summarizes the typical ranges of the correction factors in wastewater. 

For typical wastewater beta, gamma, and omega only vary slightly compared to alpha. 

Therefore, the impact of these factors is often ignored, and emphasis is placed on the alpha 

factor.  
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Table 2-2: Correction factors Sources: (Pittoors et al., 2014), (Yoon, 2016) 

Correction Factor Accounts For Range Typical Value for 

diffused aeration in 

WWTP 

Alpha Tank and wastewater 

characteristics 

0.3-1.2 0.4-0.8 

Beta Salinity and surface 

tension 

0.7-1.0 0.99-1.00 

Gamma Temperature 1.015-1.04 1.024 

Omega Pressure 0.82-1.0 0.99-1.00 

Fouling Buildup on diffuser 0.5-1.0 0.7-0.9 

 

Alpha accounts for variations in both tank and wastewater characteristics. Both properties 

encompass a wide range of individual measures, each of which influences the factor to 

varying degrees. As a result, the type of direct calculation applied to the other correction 

factors is not viable for the alpha factor because the properties it describes cannot be 

simplified into one singular measurement 
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 Alpha Factor 

In wastewater applications, alpha is cited to vary between 0.3 for fine bubbles, up to 0.85 

(Baquero-Rodriguez et al., 2018) and from 0.6 (conventional activated sludge) to 0.5 

(membrane bioreactor) (Henkel et al., 2011). Alpha represents the reduction in oxygen 

transfer efficiency in the mixed liquor compared to clean water and can be defined as 

shown in (Pittoors et al., 2014).  

𝛼 =
𝑘𝐿𝑎𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟

𝑘𝐿𝑎𝑐𝑙𝑒𝑎𝑛 𝑤𝑎𝑡𝑒𝑟
          (Equation 2.7) 

Where 

α Alpha factor [-] 

𝑘𝐿𝑎𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟 Overall oxygen mass transfer coefficient of wastewater [h-1] 

𝑘𝐿𝑎𝑐𝑙𝑒𝑎𝑛 𝑤𝑎𝑡𝑒𝑟 Overall oxygen mass transfer coefficient of clean water [h-1] 

 

As discussed in section 2.2.1, alpha is a correction factor that accounts for the discrepancies 

between the OTE in clean versus process water, the most cited in the literature as being 

dynamic. 

Conventionally in modelling applications, alpha is assumed to be a constant value, which 

is calibrated to match model outputs to plant performance. However, the alpha factors vary 

temporally (or spatially) in pilot and full-scale treatment plants. Literature has mentioned 

a temporally varying alpha for over 30 years (Boyle et al., 1989) however, research of a 

variable alpha in modelling has only been conducted in the last two decades (Gunder, 2001; 
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Krampe & Kreauth, 2003; Henkel et al., 2011; Amerlink et al., 2016; Jiang et al., 2017; 

Ahmed et al., 2021). These studies attempt to determine and implement an empirical 

relationship between a process condition and the alpha factor to improve the modelled 

dissolved oxygen (DO) accuracy. Ahmed et al. (2021) confirmed the existence of the COD-

alpha relationship and further investigated the correlation between the alpha factor and the 

real-time sCOD in the bioreactor level using data obtained from sequencing batch reactors.   
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Table 2-3 summarizes the proposed empirical alpha factor correlations published between 

2003 – 2021. It should be noted that the reasoning for developing an empirical relationship 

between alpha and a process condition in favour of directly measuring alpha is the intensive 

process required in obtaining an alpha measurement. The use of an off-gas hood is 

considered the most accurate method for determining alpha (Boyle et al., 1989). This 

equipment presents a high overhead cost as well as additional maintenance requirements 

for a treatment plant.  

All seven publications agree that wastewater characteristics affect the alpha factor. 

However, there is no consensus regarding which characteristic is predominantly 

responsible for affecting alpha, nor regarding the nature of the relationship (Figure SD 1). 

Krampe and Kreauth (2003) conclude that there is an inverse relationship between MLSS 

and alpha, while Henkel et al. (2011) determines that the spread is too large to associate a 

relationship and MLVSS is a better indicator. Moreover, Baquero-Rodriguez et al. (2018) 

concludes that a double exponential equation best represents the relationship between 

MLSS and alpha. Ahmad et al. (2021),  Rosso et al. (2005) and Henkel et al. (2011) all 

compared alpha to the SRT; however, while Rosso argues for an exponential relationship, 

Henkel determines a linear relationship is more representative using a collection of data 

sets, including Rosso’s. Finally, Jiang et al. (2017) argues that COD can be used to estimate 

alpha using an inverse relationship. Ahmed et al. (2021) confirmed the existence of the 

COD-alpha relationship and further investigated the correlation between the alpha factor 

and the real-time sCOD in the bioreactor level using data obtained from sequencing batch 

reactors.   
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Table 2-3: Empirical relationships used to estimate alpha based on dynamic 

conditions (MLSS: concentration of mixed liquor suspended solids, SRT: solids 

retention time, Qair: airflow flow rate, COD: chemical oxygen demand) 

Empirical Relationship Definitions Source  

𝛼 = 𝑒−0.0771∙𝑀𝐿𝑆𝑆 MLSS [0-30g/L] (Gunder, 2001)  

𝛼 = 𝑒−0.08788∙𝑀𝐿𝑆𝑆 MLSS  [0-30g/L] (Krampe & Kreauth, 

2003) 

 

𝛼 = 0.505 − 0.062 ∙ 𝑀𝐿𝑉𝑆𝑆

+ 0.019 ∙ 𝑆𝑅𝑇 

MLVSS [1-12 g/L] 

SRT [1-30 days] 

 (Henkel et al., 2011)  

𝛼 = 0.172 ∙ log
𝑆𝑅𝑇

𝑄𝑎𝑖𝑟
− 0.131 

Qair [m
3/s] 

SRT [day] 

(Rosso et al., 2005)  

𝛼 = 𝑒(−1.82∙10−3∙𝐶𝑂𝐷−0.213) COD [mg/L] (Jiang et al., 2017)  

𝛼 = (𝑢/(𝑢 − 𝑣))

∙ (𝑒−𝑣∙𝑀𝐿𝑆𝑆

− 𝑒−𝑢∙𝑀𝐿𝑆𝑆) 

MLSS  [0-30 g/L] 

u = 0.507248767 

v = 0.1043568988 

(Baquero-Rodriguez 

et al., 2018) 

 

𝛼 = 4.275 ∙ 𝑠𝐶𝑂𝐷−0.557 sCOD[mg/L] (Ahmed et al., 2021)  
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In some studies, portions of the relationship curve determined are predominantly 

influenced by a single dataset. For example, in Figure SD 1c), Baquero-Rodriguez bases 

the 0-4 CODg/L portion of the curve on data from a single study which does not overlap 

with any data from the other studies used. In Figure SD1g) the same phenomenon is 

observed in which Jiang’s data is segregated into two distinct sources which do not overlap, 

one set of data determining the 200-600 CODmg/L portion of the curve and the other study 

determining the 700-1700 CODmg/L portion of the curve. This illustrates the need for 

additional data that spans the proposed relationship's entire range to ensure consistency.  

 

 Energy Consumption by Aeration Process 

 Aeration Energy Consumption 

Energy usage represents a significant percentage of treatment plant operation costs. The 

energy consumption of treatment plants is rising due to more rigorous effluent quality 

requirements demanding additional treatment, enhanced treatment of biosolids to reduce 

landfill volume, ageing collection systems allowing inflow and infiltration and leading to 

higher volumes of raw wastewater and increasing electricity rates (EPA - Office of 

Wastewater Management, 2010). In 1999 the annual energy costs of a treatment plant were 

reported to contribute to 5-10% of the overall operating budget (Novak, 1999). Based on a 

study in 2016, the average energy costs of a treatment plant represent 26% of the total 

operating budget, as seen in Table 2-4 (Lorenzo-Toja, 2016). This means that energy 

requirements have more than doubled in the last 17 years. 
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Moreover, of the energy demand, the majority is consumed by the aeration process. The 

aeration process typically takes 50-56% of WWTPs’ operational energy (Government of 

Ontario, 2016). This energy-intensive process requires mechanical energy to provide head 

to wastewater or air. The typical distribution of energy consumption in an activated sludge 

treatment plant in Ontario is shown in Table 2-5. 

 

Table 2-4: Average Operation Cost Breakdown based on 22 European Wastewater 

Treatment Plants Source: (Lorenzo-Toja, 2016) 

Category 
% of Total Cost 

Materials 
6.19% 

Chemicals 
2.18% 

Energy 
26.16% 

Personnel 
27.67% 

Waste 
5.43% 

Fees 
13.34% 

Maintenance 
18.29% 

Lab Analysis 
0.73% 
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Table 2-5: Typical Energy Consumption Distribution within WWTPs Source: 

(Government of Ontario, 2016; Panepinto et al., 2016; Henriques & Catarino, 2017)  

Process Typical Energy Consumption 

Screening & Grit Removal 1.5% 

Clarifiers 1.2-3.3% 

Aeration 50-56% 

Solids Dewatering 0.1-15% 

Solids Digestion 14% 

Tertiary Treatment 0.3-0.5% 

Lighting & Buildings 8% 

Pumping & Conveyors 9-15% 

Nutrient Removal 8% 

 

 Aeration Energy Optimization 

Aeration provides DO for aerobic organisms performing BOD removal and nitrification. 

In this process, oxygen availability is a rate-limiting step; therefore, sufficient DO must be 

present in the mixed liquor to maximize the treatment capabilities of the organisms. 

Providing oxygen to the system is energy intensive. Therefore, DO should be held at a 
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minimum in which it is no longer rate-limiting so that increasing oxygen concentration 

would have little to no impact on plant performance. It was reported that between the 

concentration of 4-8 mg/L of DO, COD, and NH3 removals reach their highest level, that 

is, 93% and 83% (Meng et al., 2017). However, if energy cost is considered, the range of 

DO that provides the best performance-to-price ratio drops to 2-4 mg/L (Meng et al., 2017). 

Traditionally, controllers are implemented to maintain a desired DO concentration or 

treatment level using feedback and/or feedforward control philosophy (Table 2-6). 

However, such control systems often involve continuously changing the airflow input 

based on the control parameter. It is also difficult to estimate the airflow demand for a 

longer timeframe. These deficiencies can all be resolved if we can accurately estimate the 

required airflow input based on a pre-set desired DO standard. In this way, we can easily 

adjust the airflow input based on the current operational condition of the plant and the DO 

needed, cutting out unnecessary energy waste during the aeration process. 
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Table 2-6: Aeration Controller Mechanisms, listed in order of lowest to highest 

complexity/control (Amand et al., 2013; Rieger et al., 2014)  

 Control Mechanism Equipment Required 

1) Manual Aeration Control None 

2) DO Cascade Control DO sensor 

3) Ammonium Feedback Control * NH4 and DO Sensor 

4) Ammonium Feedforward Control * Model and NH4 and DO Sensor 

5) Advanced Controllers Advanced Model and Applicable Sensors 

 

 Machine Learning (ML) 

 What is ML? 

As defined by the pioneer of artificial intelligence research, Arthur Samuel, “machine 

learning (ML)” refers broadly to the many methods that give the computer the ability to 

learn without being explicitly programmed (Vestby, 2020). 

Nowadays, ML is being increasingly integrated into all research areas and industries 

because of its irreplaceable ability to automate manual labor and to discover patterns 

hidden in huge amounts of data. 
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 What can ML do? 

The machine learning approach of model building is especially preferable when the 

relationships among the various features of the source data are too complex or are unclear, 

as ML can be used to build black boxes without the necessity to have prior knowledge of 

the relationships described mathematically in detail.  

Relationships in the wastewater treatment processes often possess these properties: the 

physio-chemical interactions processes of accumulation, transportation and degradation of 

the pollutants are usually unique for each wastewater treatment plant and are not usually 

well-understood. 

The data-driven ML models can replace the labor-intensive manual calibration process of 

the kinetic models traditionally used in the field with a more customized and time-efficient 

pipeline.  

 

 How does ML Work? 

The establishment of a ML model can be divided into three processes: training, validation 

and testing. Similar to the learning process of humans, ML also starts with gaining 

information from the input training data and finding patterns with it. During this process, 

the parameters inside the algorithm are automatically adjusted to improve its performance 

in estimating the correct outcome. This initial process is known as the learning process. 

Usually there is also a separate collection of data called the validation dataset that is used 
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to monitor but not influence the training process to continuously evaluate the performance 

of the algorithm. Finally, a testing dataset is fed into the ML algorithm to test whether the 

algorithm works correctly. If the predictions made during this process and the pre-defined 

answers do not match, the algorithm would be continuously re-trained until the desired 

outcome is obtained. Otherwise, the ML model developed in this process would be reported 

as a satisfactory solution and can be used with more data to make predictions.  

 

 Key Concepts in ML 

To further understand the techniques behind ML, we must first introduce a few key 

concepts within this field.  

 

2.4.4.1 Hyperparameters 

Hyperparameters are parameters whose value is used to control the learning process. The 

values of the hyperparameters do not change during the learning process, but they can be 

adjusted manually for each model before the training begins.  

Some common examples of hyperparameters include the number of threads used in 

building the models (how much computational power can be used by the model training 

process) and learning rate for gradient descent models (how quickly the model is adapted 

to the problem). 
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2.4.4.2 2 Major Approaches in ML: Supervised and Unsupervised Learning 

There are two major approaches in ML, supervised and unsupervised learning. The two 

approaches differ in whether a set “correct answers” are there for the ML algorithms to 

learn from.  

Supervised: Supervised learning is characterized by the process of fitting a model to data 

that has been labelled, I.e., data that is already tagged with the correct answer. Most of the 

wastewater modelling problems fall into this category. Examples include water effluent 

quality predictions (Guo et al., 2015) and wastewater treatment process efficiency (Harpaz 

et al., 2022). In both cases, the raw data is already tagged with plant measurements or 

efficiency factors that are derived ultimately from observations.  

Unsupervised: On the contrary, unsupervised models work on their own to discover 

information, often from unlabeled data. Unsupervised learning can help researchers to find 

features which can be useful for categorizations, but it is generally more computationally 

complex and is less accurate and trustworthy than supervised learning. Unsupervised 

learning can be used to detect pH anomalies in WWTPs (Gigante et al., 2021) and to select 

the most efficient aeration strategies based on weather (Borzooei et al., 2020). 

 

2.4.4.3 3 Major Types of ML Problems: Classification, Regression and Clustering 

Problems 
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When judging from the type of output variable and the type of problem that needs to be 

addressed, we can roughly divide the ML algorithms into three categories: classification, 

regression and clustering. 

Classification is a supervised technique that predicts the category to which a new data 

belongs based on its experience gained from existing data that are labelled. Classification 

can be used to estimate categorical variables, for example the state of the activate sludges 

wastewater treatment processes (Khan et al., 2018). 

Regression technique predicts a single, continuous output value using the training data. 

This technique can be used to predict a variety of wastewater quality indicators such as the 

biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total 

suspended solids (TSS) (Granata et al., 2017). Due to its ability to predict parameters that 

gives a measure of the main pollutants in the wastewater and therefore directly reflecting 

the performance of the treatment process, regression models are vastly studied and used in 

the field of wastewater modelling.  

Clustering is the major unsupervised machine learning algorithm type that we would 

discuss here. It explores input data by identifying clusters of data points with shared 

similarities. Implications of the clustering algorithm were discussed in the unsupervised 

ML section and therefore will not be repeated here.  

 

2.4.4.4 2 Sources of Poor Predictions: Overfitting and Underfitting 
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Poor ML model performance is usually caused by either overfitting or underfitting. The 

goal of supervised ML models is to approximate a target function that maps input variables 

to an output variable.  

Overfitting happens when a model is too adapted to the training data, learning noise to the 

extent that it negatively impacts the performance of the model on other datasets. This is 

often caused by excessive flexibility (e.g., too many parameters) used in the model. 

On the contrary, underfitting happens when the model fails to capture the relationship 

between the input examples and the target values. It is usually a problem that can be easily 

detected given a good performance metric. Underfitting can usually be solved by loosening 

the time requirements of the training process, adding more parameters, or switching to a 

more suitable model type for the data. 

 

 Different Types of ML Models 

We will finish this section on ML by briefly discussing several key ML methods, with an 

emphasis on their strengths, weaknesses and potential use cases in wastewater treatment 

studies.  

Support vector machine (SVM) is a supervised ML model that solves classification 

problems. It transforms the raw data into an n-dimensional (n is number of features) space 

where each feature in the input dataset is tied to a particular set of coordinates. It then 

separates the data with a gap that is made as wide as possible. Compared to newer 
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algorithms like neural networks, SVM is generally faster and may perform better when 

there is a limited amount of data to analyze. SVM has been widely used in wastewater 

research. Many WWTP operational parameters, such as nitrate, nitrite, BOD and TSS, have 

aroused great interest in real-time predictions due to the potential benefits they could bring 

to the wastewater control systems. This requirement meets just the strengths of SVM and 

it has been successfully applied (Yang et al., 2006; Ribeiro et al., 2013). 

 

Decision tree is one of the most popular ML algorithms in use nowadays. It is a supervised 

classification algorithm that works well with both categorical and continuous target 

variables. It follows a flowchart-like structure by continuously splitting the input data into 

many homogeneous sets based on their most significant attributes. Decision tree models 

are white-box models, that is, the results are usually simple to understand and interpret. It 

also handles nonlinear relationships between parameters well. However, decision trees are 

sensitive to small variations in the data and often require methods such as bagging or 

boosting to reach higher accuracy. To our knowledge, pure decision trees are not as widely 

used as the more complex models as follows, however, studies have shown that these 

models are able to make accurate predictions on operational conditions of the plant such as 

bulking sludge (Atanasova & Kompare, 2002; Deepnarain et al., 2019). 

 

Gradient boosting is an ensemble learning algorithm that combines the predictive power of 

several weak base estimators (typically decision trees) to improve robustness. It can be 
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used with regression and classification tasks, among others. Gradient boosting models are 

usually blessed with higher accuracy; they typically outperform random forests when 

decision trees are used as the weak learners. However, its advantages come with the 

sacrifices of intelligibility and interpretability. Gradient boosting models usually have a 

higher computational demand as well. The gradient boosting method has been reported to 

achieve great accuracy in estimating the efficiency in anaerobic bio-waste and co-digestion 

facilities (De Clercq et al., 2019). 

 

The k-nearest neighbour algorithm (KNN) is a supervised learning method used for both 

classification and regression, although it is used more frequently to solve classification 

problems in the industry. KNN works by storing all available cases and classifying new 

cases by taking a majority vote of its k neighbours. KNN models adapt instance-based 

learning. It, therefore, does not explicitly require a training step and can constantly evolve. 

However, KNN requires all variables to be normalized and pre-processed to avoid bias in 

the result. It is also computationally expensive. KNN has been used to predict the flow rate 

and quality of water flow in WWTP (Kim et al., 2016; Wang et al., 2022). Wang et al. Has 

reported that kNN and gradient boosting decision tree have outperformed many other 

algorithms including SVR and decision tree in the effluent water quality prediction models 

(Wang et al., 2022). 
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 Research Gap 

Although the specific type of fine bubble aerators used throughout the studies is not 

consistent, Rosso noted that the type of fine bubble diffuser used (ceramic dome, disk, 

plate, or membrane tube, disk or panel) had no impact on alpha (Rosso et al., 2005). 

Additionally, except for studies that consisted of consolidation of results and the method 

for measuring alpha was not explicitly mentioned, all studies conducted after (and 

including) 2005 report using the off-gas method for determining alpha. Finally, none of the 

studies that propose an empirical relationship are limited to one dataset; they all involve 

the evaluation of more than one treatment plant.  

There is a distinct lack of confirmation through additional studies for any of the proposed 

relationships (Amerlink et al., 2016) that implement the relationship determined by (Rosso 

et al., 2005) and conclude that direct measurements of alpha are significantly superior in 

improving model accuracy. Henkel, Cornel and Wagner (2011) and Baquero-Rpdriguez, 

et al. (2018) also conclude that there is a need for validation and the procurement of 

additional data sets.  

A complete and easy-to-use framework for dynamic aeration modelling has not yet been 

widely adopted in the practical application of the wastewater treatment processes. Though 

empirical equations describing the influence of potential characteristics of the wastewater 

on the various factors involved in the aeration process exist, optimization of the energy use 

in the plants requires an accurate and robust prediction of the alpha-factor and an estimate 

of the airflow needed to meet effluent wastewater standards. The purpose of this study is 
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to establish such a framework and apply it to estimate the values of the dynamic alpha-

factor and the aeration airflow with operational data through a case study in the Adelaide 

WWTP. 
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Chapter 3  

 Dynamic Alpha Modelling 

 Introduction  

Aeration accounts for 50 to 70% of the energy cost in activated sludge processes treating 

municipal wastewater (Henderson, 2002; Schierholz et al., 2006; Zuluaga-Bedoya et al., 

2018). While the primary function of aeration is to supply oxygen to satisfy the aerobic 

bacteria demand, it also provides the desired complete mixing in activated sludge 

processes. Typically for activated sludge processes, aeration systems are designed to 

maintain at least a dissolved oxygen (DO) concentration of 2 mg/L (Meng et al., 2017). 

Combined with subsequent processes, contaminants such as organics and nutrients can be 

removed from the wastewater. However, an over-aeration approach vastly practiced in 

wastewater operations increases energy demand and negatively impacts the overall energy 

performance of the plants (Drewnowski et al., 2019). Over the past decades, considerable 

efforts have been made to design and modify the aeration process to reduce energy costs. 

The majority of the modern WWTPs utilize feedback control loops to control the DO. 

However, feedback control is often vulnerable to time delay and disturbance, especially at 

larger plants where data collected at one point often is not representative of the whole tank 

(Åmand et al., 2013). Alternatively, the concept of dynamic aeration modelling can further 

be utilized for aeration process control and optimization (Martin & Vanrolleghem, 2014). 

In this case, the dynamic aeration models were used to build feedforward control loops to 
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predict DO or required airflow based on real-time or forecasted influent data (Åmand et 

al., 2013).  Martin and Vanrolleghem (2014) demonstrated that by modifying the control 

system in WWTPs, the total energy cost of aeration could be saved by 27% on average. 

However, one of the standing research questions is the accuracy of the aeration models to 

capture dynamic aeration demand within the process. 

The most accepted aeration models are based on the oxygen mass transfer model (Equation 

3.1). The transfer resistance at the gas film is generally considered negligible due to the 

low oxygen solubility in water (Garcia-Ochoa & Gomez, 2009). Therefore, the driving 

force for oxygen transfer in this model solely depends on the concentration gradient 

between the oxygen saturation concentration (C*) and the actual oxygen concentration (C) 

that is typically reported as DO in routine measurements. The overall oxygen mass transfer 

coefficient (KLa) partially reflects the difference in oxygen transfer rate in wastewater and 

clean water. The KLa in wastewater can be expressed with equation 3.2 by introducing 

several correction factors (Mueller, Boyle & Popel, 2002). Table 2-2 (in chapter 2) lists 

these correction factors and their typical values in municipal wastewater. 
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𝑂𝑇𝑅 = 𝐾𝐿𝑎(𝐶𝑆 − 𝐶)    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1) 

(𝐾𝐿𝑎)𝑤𝑤 = 𝛼𝛽𝛾(𝐾𝐿𝑎)20°𝐶    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.2) 

Where 

OTR Oxygen transfer rate [g/h] 

𝐾𝐿𝑎 Overall oxygen mass transfer coefficient [h-1] 

𝐶𝑆 Saturation concentration of oxygen in test liquid under equilibrium [mg/L] 

C The concentration of dissolved oxygen in test liquid [mg/L] 

(𝐾𝐿𝑎)𝑤𝑤 Overall oxygen mass transfer coefficient of wastewater [h-1] 

α Alpha factor [-] 

β Beta factor [-] 

𝛾 Gamma factor [-] 

(𝐾𝐿𝑎)20°𝐶 Overall oxygen mass transfer coefficient of clean water at standard 

condition 

[h-1] 

 

The alpha, beta, and gamma factors are directly involved in calculating the overall oxygen 

mass transfer rate; these factors can be adjusted to improve the aeration models (equation 

3.2) in supporting document).  The alpha factor (α) is defined as the volumetric mass 

transfer ratio of oxygen between wastewater and clean water. The beta factor (β), also 

known as the salinity-surface tension correction factor, is the ratio of saturation DO 

concentration between wastewater and clean water. The beta factor represents the impact 
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of constituents, such as salts and suspended solids, on the solubility of dissolved oxygen 

(Pittoors et al., 2014). It is well-studied that beta only influences 0.05% or less of total mass 

transfer so that it can be ignored in most cases (Rodríguez et al., 2012). The gamma factor 

(γ) represents the influence of temperature (T) on the oxygen, 𝛾 = 𝜃20°𝐶−𝑇 . The theta 

factor lies 1.016-1.024 (Water Environment Federation, 2010).  Therefore, the gamma 

factor only depends on the water temperature T within this temperature range. The only 

and most uncertain correction factor left is the alpha factor, with all other factors 

eliminated. Alpha factor represents the effect of diffuser design, tank geometry and water 

constituents on the overall oxygen transfer performance in wastewater (K. Al-Ahmady, 

2011).  While the alpha factor was traditionally considered a constant value, recent studies 

suggest that alpha factors fluctuate daily and seasonally and should be considered a 

dynamic factor (Leu et al., 2009). However, there is still no universally valid approach 

directly to measure the alpha factor. In practice, the overall oxygen mass transfer 

coefficient can be indirectly determined through the off-gas method using equation 3.3 

(Mueller et al., 2002).  This equation is established based on the gas mass balance at a 

steady state, assuming that both CO2 and nitrogen are conservative. With this equation, 

KLa may be estimated based on the measurement values of the total gas volume flow rate 

of inlet and outlet gases, volumetric fractions of oxygen in them, and DO. The estimation 

of oxygen mass transfer based on this theory has been referred to as the off-gas method. 

The off-gas method has proven to offer a practical and accurate estimation under process 

conditions (Iranpour et al., 2000).Combining equations 3.2 and 3.3, we can calculate the 

alpha factor indirectly through equation 3.4. 
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𝜌

𝑉
(𝑞𝑖𝑌𝑅 − 𝑞𝑜𝑌𝑂𝐺) = (𝐾𝐿𝑎)𝑤𝑤(𝐶𝑆 − 𝐶)    (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.3) 

𝛼 =
𝜌(𝑞𝑖𝑌𝑅 − 𝑞0𝑌𝑂𝐺)

𝑉𝜃(20℃−𝑇)(𝛽𝐶𝑆 − 𝐶)(𝐾𝐿𝑎)20℃

  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4) 

Where 

𝜌 Density of oxygen at temperature and 

pressure at which gas flow is expressed 

(Constant) [g/L] 

𝑞𝑖 Total gas volume flow rates of inlet gases (Dynamic measured) [m3/h] 

𝑞𝑜 Total gas volume flow rates of outlet gases (Dynamic measured) [m3/h] 

YR Volumetric fractions of oxygen gas in inlet 

gases 

(Constant) [-] 

YOG Volumetric fractions of oxygen gas in outlet 

gases 

(Measured or 

modelled) 

[-] 

(𝐾𝐿𝑎)𝑤𝑤 Overall oxygen mass transfer coefficient of 

wastewater 

(Calculated) [h-1] 

𝐶𝑆 Saturation concentration of oxygen in test 

liquid under equilibrium 

(Constant measured) [mg/L] 

C The concentration of dissolved oxygen in 

test liquid 

(Dynamic measured) [mg/L] 

𝛼 Alpha factor (Calculated or 

modelled) 

[-] 

V The volume of aeration tank (Constant) [m3] 
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𝜃 Theta factor (Constant) [-] 

T Temperature of aeration tanks (Dynamic measured) [℃] 

(𝐾𝐿𝑎)20℃ Overall oxygen mass transfer coefficient of 

clean water at standard condition 

(Constant) [h-1] 

 

Although entirely accurate, this method is expensive to adapt during operation as it requires 

additional sensors to measure the volumetric fraction of the outlet gas fraction (𝑦𝑖 ). 

Besides, the alpha factor measured with this method can only represent the water column 

of the sampled niche, which may not be representative for other regions in the aeration 

tanks. Therefore, numerous attempts have been made to predict the alpha factor’s change 

with more accessible and cheaper parameters to measure under field conditions (Baquero‐

Rodríguez et al., 2018; L. Jiang et al., 2017; Amerlinck et al., 2016).  It has generally been 

agreed that the impact of surfactants is responsible for the dynamic nature of the alpha 

factor (Rosso & Stenstrom, 2006b; Schierholz et al., 2006). Therefore, many of these 

empirical (regression) models utilized routine measurements that reflect the level of 

surfactants such as mixed liquor suspended solids (MLSS) and chemical oxygen demand 

(COD), as input parameters (Amerlinck et al., 2016; Baquero‐Rodríguez et al., 2018; 

Günder, 2001; L. Jiang et al., 2017; Krampe & Krauth, 2003). However, the resulting 

predictions are often too inaccurate due to many assumptions and over-simplification that 

must be made while utilizing these empirical equations. 
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Like the previous regression models, machine learning (ML) allows engineers to develop 

data-based analytical models. ML models make predictions based on real-time 

relationships between input and output data instead of formulated mechanisms. However, 

the ML models make significantly fewer assumptions and are proved to be more robust, 

comprehensive, and suitable for representing wastewater process units or components 

where detailed mechanisms remain unclear (Guo et al., 2015). In such a rapidly developing 

field, however, numerous ML models exist that each features unique characteristics and 

has various hyper-parameters to be set for optimal performance. It is increasingly 

unrealistic for wastewater engineers to incorporate all the best practices in ML model 

development into their models. The Automatic Machine Learning (AutoML) framework 

offers an easy-to-use toolset for general ML model developers to flatten the learning curve. 

AutoML automatically determines the best model and the corresponding hyper-parameters 

to yield the best performance based on the input dataset. The model development process 

can be easily replicated or transferred to a completely different WWTP using site-specific 

input parameters without substantial loss of predictability. 

To date, numerous studies have investigated the correlation between the alpha factor and 

an extensive range of operational parameters, but the existing empirical equations often 

lack precision in predicting the airflow needed for a single WWTP under dynamic 

operational conditions. The objectives of this paper were to (i) develop accurate models 

and alternative approaches to predict dynamic alpha factor in aeration systems; (ii) assess 

wastewater parameters that influence dynamic alpha factor values; and (iii) assess the 

optimal timescale for dynamic alpha modelling. 



 

 

50 

 

 Methods 

 Research site description 

This research was conducted at the Adelaide pollution control plant (PCP) (London, 

Ontario, Canada). The Adelaide PCP is an activated sludge process treatment plant that 

was designed for a maximum daily flow capacity of 29,600 cubic meters per day (m3/d) 

with an approved peak flow rate of 59,200 m3/d. In 2017, the plant was operating at 90.8% 

capacity with an average flow of 26,882 m3/d (City of London, 2018). The coldest and 

warmest month in 2017 was March and September, with an average stream temperature of 

12.4 °C and 20.7 °C, respectively. The geometric properties of the unit processes of 

Adelaide PCP are summarized in Figure 3.1a. The wastewater treatment process related to 

this study consists of primary clarifiers, aeration chambers and secondary clarifiers. 

 

 Data Collection 

The Adelaide PCP is equipped with DO, ammonia, TSS, phosphorus and density sensors 

integrated into the Supervisory Control and Data Acquisition (SCASA) System. The data 

used for the modelling were obtained from two sources: the existing online sensors and a 

field sampling campaign. The sampling frequency, sampling location and analysis/sensor 

types are summarized in Table 3-1. The online sensor data were collected every 15 minutes 

from the raw wastewater channels, primary clarifier effluent channels, aeration tanks, and 
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plant effluent channels. The average measurement results corresponding to the field 

campaign period are presented in Table 3-1.  

The 50-day field campaign collected dynamic COD, NH3-N, off-gas oxygen fraction, TSS 

and VSS data. An autosampler was installed during the campaign to collect hourly samples 

daily from the primary influent and aeration tanks. Each hourly sample was collected from 

4 sub-samples that were grabbed by the autosampler every 15 minutes. The daily-24 field 

samples were immediately transported to the lab and analyzed for COD (HACH number 

8000), NH3-N (HACH number 10031) and TSS/VSS (US EPA Method 1684). During the 

field campaign, an INVENT ALPHAMETER® (32013_REV 2018) was also deployed at 

one of the aerations tanks near the DO sensors to sample the off-gas oxygen concentration 

released from the aeration tank (Figure 3.1b). The alphameter has a net surface intake of 

1m2 and was used to take measurements at 3/4 part of the tank (Figure 3.1b). The 

alphameter was connected to the measurement array on the walkway via PVC tubing and 

was equipped with a dedicated data acquisition system. The constant saturation DO (CS) 

used in this study was also measured  at 3/4 part of the tank. 
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(a) 

 

(b) 

Figure 3-1 Adelaide pollution control plant (a) Layout and (b) Off-gas measuring 

alpha-meter in place in Tank 5 of Adelaide.  
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Table 3-1 Adelaide WWTP Sampling Frequency, Location and Analysis Methods.  

Location Parameters Unit Interval Source Method Avg Stdev median max min 

Plant influent Liquid flow 

rate 

m3/d 15 

minutes 

Adelaide 

WWTP 

SCADA 

online  

287.0  49.7  284.3  712.5  162.0  

Post-primary 

clarifier/Aeration 

influent 

Chemical 

oxygen 

demand 

mg/

L 

1 hour Field 

Campaign 

HACH 

Method 

(2125915-

CA) 

277.6  44.4 274.0  406.0  126.0 

Phosphate mg 

P/L 

15 

minutes 

Adelaide 

WWTP 

SCADA 

online 

measurements 

3.5  0.7  3.4  8.4  0.1  

Ammonia mg 

N/L 

15 

minutes 

Adelaide 

WWTP 

SCADA 

online  

13.7  3.9  14.3  22.7  1.7  

Total 

suspended 

solids 

mg/

L 

15 

minutes 

Adelaide 

WWTP 

SCADA 

online  

145.0  160.7  141.6  7708.4  59.9  

Aeration tank Mixed liquor 

suspended 

solids 

mg/

L 

15 

minutes 

Adelaide 

WWTP 

SCADA 

online 

measurements 

1380.4  61.9  1380.8  2339.6  7.7  

Ammonia mg 

N/L 

15 

minutes 

Adelaide 

WWTP 

SCADA 

online  

3.7  2.5  3.4  12.1  0.5  

Temperature °C 15 

minutes 

Adelaide 

WWTP 

SCADA 

online  

20.5  0.6  20.5  21.6  19.1  

Airflow m3/d 15 

minutes 

Adelaide 

WWTP 

SCADA 

online  

12565.8  2158.2  13211.4  16366.6  5652.2  

Other Off-gas 

oxygen 

fraction 

% 15 

minutes 

Field 

Campaign 

(InventTM 

Alpha-Meter) 

19.2  0.4  19.3  19.9  17.9  
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 Outlier Removal 

All the collected data were first preprocessed by the density-based cluster analysis “Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN)” filter for outlier removal (Ester et al., 

1996). As a density-based clustering algorithm, DBSCAN classifies a set of points based on their 

distance to each other. Points that lie alone in low-density regions are marked as outliers. DBSCAN 

requires the user to define two factors: eps and minPts. The minPts, the minimum number of 

neighbours within a defined radius “eps,” were set to be 5 for all datasets treated. The values of 

eps were chosen by finding the first strong bend on a k-distance graph for each dataset. This paper 

performed DBSCAN with the Python package scikit-learn (Pedregosa et al., 2011). Missing data 

were treated with the mean substitution method, as suggested by Kang (2013). 

 

 Parameter Calculation 

The alpha factor (α), hydraulic retention time (HRT) and soluble chemical oxygen demand (sCOD) 

were calculated. The α factor was calculated as the overall transfer coefficient (KLa) ratio between 

wastewater and clean water, based on the off-gas oxygen fraction obtained during the field 

campaign and other plant operational data (Equation 3.4). HRT was calculated as (volume of 

aeration tank)/(influent flow). Due to the lack of soluble chemical oxygen demand (sCOD) sensor 

on-site, our raw dataset was complemented with sCOD estimations made by an aeration tank 

model generated with GPS-X version 7.0 (Hydromantis, 2017). The GPS-X model was built 

following the procedures and specification listed in the Adelaide Operational Report provided by 
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City of London (Hydromantis, 2013). It was calibrated with the daily operational measurements 

retrieved from Adelaide WWTP from September 2018 to October 2018 to reflect the condition of 

the plant during the studied period, the sampling frequency, sampling location and data analysis 

are summarized in Table 3-2. After visual validation, raw dataset obtained in the sampling 

campaigns were fed into the GPS-X model to generate the sCOD estimations. A summary of the 

estimated sCOD dataset is presented in Table 3-2. The GPS-X model export operational 

parameters listed in appendix figure SD4 (a) to SD4(p).  
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Table 3-2 Adelaide WWTP monthly operational report dataset 

Location Parameters Unit Interval Avg Stdev Median Max Min 

Plant influent Liquid flow rate m3/d 1d 25360.2 2814.8 25016 40823 19884 

Biological oxygen demand 5 mg/L Twice per week 258.5 59.6 267.0 365.0 132.0 

Total suspended solids mg/L Twice per week 309.2 98.9 313.0 472.0 148.0 

Total kjeldahl nitrogen mg/L Once per week 50.6 8.3 48.2 64.0 42.1 

Ammonia mg/L Twice per week 29.6 6.7 26.6 43.9 23.3 

Phosphate mg/L Twice per week 8.4 1.3 8.2 10.6 6.4 

pH - Twice per week 7.5 0.2 7.5 7.8 7.2 

Post-primary 

clarifier/Aeration 

influent 

Biological oxygen demand mg/L Twice per week 168.4 74.0 146.0 342.0 98.4 

Total suspended solids mg/L Twice per week 114.8 41.2 103.0 228.0 59.0 

Aeration tank Airflow m3/d 1d 13240.0 1625.1 13153.0 17561.0 9678.0 

Temperature °C 1d 19.7 0.7 19.6 21.4 18.0 

Mixed liquor suspended 

solids 

mg/L Twice per week 

1427.1 132.8 1480.0 1600.0 1200.0 
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Mixed liquor volatile 

suspended solids 

mg/L Twice per week 

1074.8 111.0 1110.1 1212.8 867.6 

Return activated sludge flow m3/d 1d 20560.8 1386.4 20465.0 25886.0 16705.0 

Return activated sludge 

concentration 

mg/L Twice per week 

2795.3 447.8 2820.0 3760.0 2180.0 

Return activated volatile 

sludge concentration 

mg/L Twice per week 

2126.9 354.9 2102.4 2861.4 1584.9 

Waste sludge flow m3/d 1d 1158.6 370.0 1263.0 1777.0 505.0 

Dissolved oxygen mg/L 1d 4.7 0.6 4.6 6.5 3.8 

Plant effluent Biological oxygen demand 5 mg/L Once per week 1.1 0.2 1.0 2.0 1.0 

Total suspended solids mg/L Once per week 4.9 5.7 1.5 22.0 1.5 

Total kjeldahl nitrogen mg/L Once per week 1.7 0.4 1.5 2.5 1.3 

Ammonia mg/L Once per week 0.4 0.4 0.2 1.2 0.1 

Nitrite mg/L Once per week 0.4 0.2 0.4 0.8 0.2 

Nitrate mg/L Once per week 10.9 2.1 9.7 14.4 8.5 

Phosphate mg/L Once per week 8.4 1.3 8.2 10.6 6.4 

pH - Once per week 7.3 0.1 7.3 7.5 7.0 
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Table 3-3 Exported sCOD data summary from GPS-X model 

Location Unit Interval Avg Stdev median max min 

Post-primary mg/L 1h 142.7 23.6 142 205 64.4 

Aeration Tank mg/L 1h 50.4 9.7 49.4 83.1 20.9 

 

 

 Optimal Sampling Frequency Determination 

The optimal timescale of the input dataset for model development was assessed by averaging and 

transforming the original data recorded every 15 minutes intervals to 1 hour, 2 hours, 3 hours, 4 

hours, 6 hours, and 8 hours. The resulting new datasets were used to generate pioneer AutoML 

models, and ten replicate models were built for each timescale tested. The accuracy of each model 

was calculated to quantify the effect of sampling frequency on the model’s performance.  

 

 Auto-Machine Learning Processes 

The AutoML models were developed with the AutoGluon-Tabular package, an efficient and easy-

to-use Python framework developed by Amazon Web Services (AWS) (Van Rossum & Drake Jr., 

1995; Erickson et al., 2020). The input parameters used to develop the model, and their value range 
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is summarized in Table 3-1. The performance of the models is evaluated by the root mean squared 

error (RMSE) during training. The train-test-split configuration was set as a training: testing ratio 

of 8:2. As the dataset was initially arranged by time, the order in which data was fed per epoch 

(iteration) could potentially influence the model, increasing the training and testing error. Each 

split was randomly shuffled before each epoch to avoid bias during training and testing datasets.  

 

 Regression Model Development 

In addition to the AutoML models, existing exponential alpha models were explored per the 

models developed by Krampe and Krauth (2003) and Jiang et al. (2017) using the current dataset. 

The models were expressed as: 

𝛼 = 𝐴 ∗ 𝑒−𝐾𝑎∗[𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟]  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.5) 

Whereby A and Ka are constants adjusted by residuals minimization.  

α Alpha factor (Calculated) [-] 

A Constant adjusted by residuals minimization (Constant) [-] 

Ka Constant adjusted by residuals minimization (Constant) [-] 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 Operational parameter of wastewater 

treatment process 

(Dynamic measured) [mg/L] 

 

Whereby A and Ka are constants adjusted by residuals minimization.  
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The current study used sludge and wastewater characteristics, including MLSS and COD, as input 

parameters to calibrate existing regression models. The considered regression models include 

MLSS based by Baquero-Rodríguez et al. (2018), Günder (2001) and Krampe and Krauth (2003) 

and COD based by Jiang et al. (2017) (Table 3.2).  

 

 Parameter Sensitivity Analysis 

The permutation-shuffle importance score built in the AutoGluon package was used to determine 

the sensitivity of the AutoML models to each available input parameter (Van Rossum & Drake Jr., 

1995; Erickson et al., 2020). The permutation importance score is defined as the decrease in model 

performance (as in RMSE in this study) when a single feature value is randomly shuffled (Breiman, 

2001). All permutation importance scores were calculated on the validation set in this study. The 

modelling approach is summarized in Figure 3.2.  

 

Figure 3-2 Alpha modelling process flow chart 
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 Model Performance Evaluation 

To assess the performance of each model, the researchers followed the procedures for goodness-

of-fit measures in dynamic wastewater modelling, suggested by Ahnert et al. (2007). After visual 

evaluation and tests for fitting the time-dependent behaviour, the three criteria: Root Mean Square 

Error (RMSE), Nash-Sutcliffe efficiency (NSE), and Index of Agreement (d) were applied (N.ash 

& Sutcliffe, 1970; Willmott, 1981): 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑚

𝑡 − 𝑥𝑜
𝑡 )2𝑇

𝑡=1

𝑇
  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.6) 

𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑚

𝑡 − 𝑥𝑜
𝑡 )2𝑇

𝑡=1

∑ (𝑥𝑜
𝑡 − 𝑥𝑜)2𝑇

𝑡=1

  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.7) 

𝑑 = 1 −
∑ (𝑥𝑂

𝑡 − 𝑥𝑚
𝑡 )2𝑇

𝑡=1

∑ (|𝑥𝑚
𝑡 − 𝑥𝑜| + |𝑥𝑜

𝑡 − 𝑥𝑜|)2𝑇
𝑡=1

  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.8) 

where  

𝑥𝑚
𝑡  modelled parameter at time t [-] 

𝑥𝑜
𝑡  observed parameter at time t [-] 
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 Results and Discussion 

 Data Preprocessing and Wastewater Characterization 

All operational parameters used in this study were preprocessed with the DBSCAN clustering 

algorithm to remove outliers. After outlier removal, the average hourly data with standard 

deviation were plotted to assess each parameter’s variability within 24 hours. The average value 

of off-gas oxygen fraction, airflow, aeration temperature, HRT, MLSS, COD, sCOD, primary 

effluent phosphorus and ammonia are 19.21±0.32%, 12545.79±1903.46 m3/h, 20.46±0.58 C, 

5.45±1.01 mg/L, 1380.92±51.97 mg/L, 276.50±46.14 mg/L, 142.70±23.63 mg/L, 3.50±0.59 mg/L 

and 13.67±3.37 mg/L, respectively (Table 3.1).  

As shown in Fig. 3.2, significant daily fluctuations were observed in the parameter(s) used to 

estimate alpha, supporting alpha’s dynamic nature in aeration systems. The off-gas oxygen fraction 

and the HRT showed the most robust daily fluctuation trend among the assessed parameters. The 

off-gas oxygen fraction was the highest early in the morning, reaching its peak at around 7:00 am, 

then decreasing to its minimum at around 1:00 pm before climbing back. A potential cause of such 

fluctuation could be the daily change in wastewater influent loading. The higher loading would 

cause an increased concentration in the aeration tanks, which leads to a lower oxygen concentration 

in the wastewater and, therefore, a higher oxygen transfer rate at the water surface. This is also 

supported by the daily average of HRT, which shows a similar trend as the off-gas oxygen fraction.  

Several other parameters, such as the temperature, MLSS, PO4 and NH3, did not show significant 

daily fluctuations (Figure SD2, in supporting document). This suggests that these parameters may 
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not reflect the daily fluctuation in the alpha-factor, and therefore models built with them may show 

limited predictability.  

The off-gas fraction, alpha factor, NH3, MLSS, COD,  and temperature data were plotted against 

time to show the data variability during the field campaign period (Figures SD2a to SD2k). Most 

of the wastewater and operating parameters showed a higher variability during the field campaign 

period. The oxygen fraction and alpha-factor varied from 18 to 20% and 0.3 to 0.9, respectively, 

confirming alpha the dynamic nature of an alpha. When the overall dataset was considered, a 

strong relationship was observed between HRT, temperature, HRT, TSS and COD with the 

measured off-gas fraction (Figures SD2c to h).   

 

(a) 



 

 

 

52 

 

 

(b) 

Figure 3-3 Daily dynamic change of operational parameters in Adelaide PCP: (a) HRT and 

(b) exhaust air Oxygen fraction. 

 Optimal Sampling Frequency Determination 

While developing models to describe wastewater treatment processes, one crucial question is how 

to deal with the uncertainties within the input dataset. Currently, existing alpha models are often 

built upon daily, monthly, or yearly average values from several wastewater treatment plants, 

causing them to be generalizable and lack precision when predicting the dynamic behaviour of a 

specific plant.   

This study conducted an analysis to accurately identify an optimal sampling frequency to describe 

the oxygen transfer’s dynamic behaviour accurately. The analysis of the performance of models 

was built with seven different sampling frequencies (15 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 
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6 hours, and 8 hours), each with 5 replicates. The 1-hour interval group performs better than the 

15-min interval group. The average RMSE, NSE and index of the agreement for the 1-hour interval 

group, were 0.06, 0.68 and 0.89, respectively (Figure 3.4). However, increasing the sampling 

frequency to 15 minutes lowered the model performance. The poor performance at 15 minutes 

data scale shows that the wastewater data collected at shorter times could be unstable, introducing 

noise when the sampling frequency was higher. In addition, some data were collected by sensors 

and analyzers; in this case, the sensors are distributed along with the treatment processes, causing 

unignorable time lag in some datasets hence supporting deficient performance/agreement at shorter 

timescales.  

Reducing the sampling frequency to 2-hours caused the NSE to drop by 0.08 and the index of an 

agreement to drop by 0.05. The model performance for the 8 hours sampling frequency was almost 

halved compared to that of the 1-hour interval models, decreasing the accuracy of the models. The 

latter result showed that decreasing sampling frequency affected the prediction accuracy, as it may 

have caused oversimplification of the input data. In summary, the models developed based on the 

input dataset of 7 sampling frequencies indicated that the optimal sampling interval for alpha 

modelling in Adelaide PCP is 1 hour.  
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Figure 3-4 Goodness-of-fit (Index of Agreement and Nash-Sutcliffe efficiency) performance 

of AutoML built with input data of different sampling frequencies. 

 

 Model Performance 

As aeration is both a critical process and is heavily energy-intensive in wastewater treatment, 

considerable effort has been made to develop models to predict the dynamic behaviour of the 

process. Among numerous factors involved in oxygen mass transfer efficiency in aeration, the 

alpha factor, which is dynamic by nature, is the most uncertain parameter. One popular theory is 

that the alpha factor is most closely related to the concentration of organic surfactants (Rosso & 

Stenstrom, 2006b; Sardeing et al., 2006; Gillot & Héduit, 2008). Based on this theory, various 

attempts to model the alpha factor with parameters reflecting surfactants have been developed 
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(Günder, 2001; Krampe & Krauth, 2003; Amerlinck et al., 2016; L. Jiang et al., 2017; Baquero‐

Rodríguez et al., 2018). Most of these models are empirically derived; however, they often lack 

precision due to the time-varying and highly nonlinear characteristics of wastewater treatment 

processes. 

On the other hand, machine learning and deep learning are practical and efficient when dealing 

with complicated systems. Like the previous alpha models, these models do not depend on specific 

theories and generally do not make assumptions about underlying mechanisms except when 

selecting input parameters. In this study, the AutoML models were used to develop two different 

models that are robust with extreme input values, an essential characteristic when dealing with 

wastewater measurements. The first set of models referred to as the “direct AutoML alpha model” 

directly estimated alpha from some measurable wastewater parameters (model output=alpha; 

model inputs=Aeration NH3, MLSS, HRT, COD, Post Primary TSS, Post Primary COD, Post 

Primary PO4). The second set of AutoML models (referred to herein as the hybrid AutoML-

mechanistic alpha model) was developed to estimate the off-gas aeration fraction from wastewater 

parameters and subsequently calculated alpha using the estimated off-gas fraction using equation 

3.4. The off-gas fraction was developed using wastewater parameters inputs  (aeration temperature, 

aeration NH3, MLSS, HRT, COD, Post Primary TSS, Post Primary COD and Post Primary PO4) 

and an off-gas fraction as an output.  

Figures 3.5(a) to 3.5(c) show the performance of three models built in this study: (a) the direct 

AutoML alpha model and (b) the hybrid AutoML-mechanistic alpha model, and (c) recalibrated 

published regression models (regression models are shown in Table 3-2). The results were based 
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on the 20% test datasets. It can be seen how the hybrid AutoML-mechanistic and AutoML models 

showed a slight discrepancy throughout the long-term sampling period between the measured 

(scattered-blue) and modelled (line-orange) alpha factor values, indicating a successful prediction 

for the long term. The hybrid alpha model (Figure 3.5(b); RMSE = 0.03, NSE = 0.94, d = 0.98) 

performed better than the direct model (Figure 3.5(a); RMSE = 0.07, NSE = 0.67, d = 0.88), 

possibly because of the limited ability of the latter AutoML algorithm to model extreme values. 

Several alpha-factor peaks were often recorded in the afternoon (i.e., from 13:00 to 17:00), 

reaching a maximum of 0.96. The calculation from the off-gas oxygen fraction to the alpha factor 

could amplify the extreme values from the oxygen fraction outputs, allowing a better fit for more 

extreme value points. It is important to recognize that the hybrid alpha model estimated the off-

gas fraction using AutoML models and used the modelled off-gas fraction to calculate further the 

alpha factor based on established mechanistic equations. The modelling approach primarily 

provided an alternative to the actual measurement of off-gas fractions which were deemed difficult 

to conduct routinely in the wastewater treatment environment.  To the authors’ best knowledge, 

the approach of estimating air fraction has never been considered before and introduced in this 

study for the first time. 

In this study, the empirical equations were recalibrated using the current dataset for Adelaide PCP 

based on these formulations by fitting the coefficients through residual minimization. The resulting 

recalibrated models and performance of the models are shown in Table 3-2 and Figure 3.5(c), 

respectively. Comparatively, the recalibrated regression models reflect only the average of the 

alpha factor compared to the AutoML models that successfully captured the daily dynamics of 

alpha.  
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The alpha values directly estimated with these equations have shown significant deviation from 

the measured values, possibly because of the difference in the range of input parameters. Three 

out of the four equations listed above estimated the alpha factors with MLSS measurements 

(Günder, 2001; Krampe & Krauth, 2003; Baquero‐Rodríguez et al., 2018). The average value for 

MLSS at Adelaide PCP is 1.4 g/L. Although most studies that reported an Alpha-MLSS 

relationship claimed to be applicable for ranges between 0-30 g/L of MLSS, the input dataset they 

used to develop these models are often from high strength wastewater or processes that make use 

of membranes that yields above 7 g/L for MLSS, which is significantly higher than the 

measurements at Adelaide PCP (Günder, 2001; Krampe & Krauth, 2003). Baquero-Rodriguez et 

al. (2018) supplemented their input dataset with data collected from a full-scale test by Diago 

Rosso in 2005, with MLSS in the range of 1-4 g/L. They also introduced a second coefficient in 

the equation. However, when adjusting the coefficients with the dataset from Adelaide WWTP 

(this study), it is found that removing the second coefficient results in a better fit, which results in 

a similar formula to the ones developed by Gunder (2001) and Krampe & Kreauth (2003). In 

comparison with the models developed with AutoML, it is evident that these suggested empirical 

models based on MLSS captured less dynamic behaviour of the alpha factor in the long term. Thus, 

results from such models can only be used to estimate average alpha values that may not be 

beneficial for dynamic aeration modelling; however, the values can still be beneficial for design 

purposes that require average alpha values.  

Jiang et al. (2017) suggested an empirical relationship between the alpha factor and post-primary 

COD to estimate the dynamic behaviour of the former.  The COD raw data they used to train their 

model was the range of 200-1600 mg/L (Jiang et al., 2017), which covers the COD level of 130-
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400 mg/L in the Adelaide plant. Although developed in a similar range, this model also did not 

exhibit a strong enough prediction of the dynamic alpha factor. One possible explanation is that 

COD at Adelaide PCP lacked variation in value over the long term, which affected its ability to 

act as an indicator of the alpha factor. Thus, the complexity of the water condition in full-scale 

wastewater treatment facilities such as Adelaide PCP might require the involvement of multiple 

parameters to make an accurate prediction of the alpha factor.  

A novel approach using the bioreactor sCOD as an indicator of the dynamic changes in the alpha 

factor was recently reported by Ahmed et al. (2021). Our investigation demonstrated that although 

showing some short-term dynamics in alpha, this empirical equation still fails to capture the 

extreme measurements. Moreover, potentially due to a combined effect of the lack of coverage in 

sCOD values over the entire study period and the fact that the sCOD-alpha correlation equation 

was developed in batch rather than WWTP, it also tends to be fluctuating around a constant, 

average alpha level, instead of reflecting its dynamic long-term change.  

 

Table 3-4 Re-calibrated published regression equations for dynamic alpha-factor modelling 

(MLSS: concentration of mixed liquor suspended solids, COD: chemical oxygen demand) 

Empirical Relationship Original 

Coefficient 

Fitted 

Coefficient 

Performance Source 

𝛼 = 𝑒−𝑘⋅𝑀𝐿𝑆𝑆, MLSS [g/L] k = 0.0771 k = 5.08E-4 RMSE = 0.1284 (Günder, 2001) 
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𝛼 = 𝑒−𝑘⋅𝑀𝐿𝑆𝑆, MLSS [g/L] k = 0.08788 NSE = -0.0154 

d = 0.1350 

(Krampe & 

Krauth, 2003) 

𝛼 =
𝑢

𝑢 − 𝑣
(𝑒−𝑣⋅𝑀𝐿𝑆𝑆

− 𝑒−𝑢⋅𝑀𝐿𝑆𝑆) 

MLSS [g/L] 

u = 0.5072 

v = 0.1044 

u = 0.4551 

v = 0.0001 

RMSE = 0.2839 

NSE = -3.9644 

d = 0.3830 

(Baquero ‐

Rodríguez et 

al., 2018) 

𝛼 = 𝑒𝑘⋅𝐶𝑂𝐷−𝑏, COD [mg/L] 

 

k = -1.82E-3 

b = 0.213 

k = 3.34E-4 

b = 0.792 

RMSE = 0.1284 

NSE = -0.0154 

d = 0.1072 

(L. Jiang et al., 

2017) 
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(c) 

 

Figure 3-5 Comparison of the modelled and measured alpha-factor (a) direct alpha AutoML 

model (b) hybrid AutoML – mechanistic alpha model (c) alpha estimated using recalibrated 

published regression models 

 

 Parameter Sensitivity Analysis 

In the current study, the AutoML and hybrid AutoML-mechanistic models used several parameters 

to estimate and capture alpha’s dynamic nature successfully. The study also assessed the sensitivity 

of the models to each input parameter. The current study used the ML method to plot the desired 

factor (alpha) against all potential parameters and then remove the least important ones through 
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sensitivity analysis. Several parameters were identified to be correlated with the alpha factor; some 

of these parameters were never considered in previous studies. A total of ten input parameters were 

fed into the ML models: HRT, Temperature, primary effluent (PE) total COD, PE sCOD (based 

on influent fractionation), and aeration tank sCOD (simulated), PE PO4, PE and aeration tank NH3, 

PE TSS and MLSS concentration. Several other parameters, such as DO and airflow, were not 

used to estimate the alpha factor as those were directly involved in calculating the experimentally 

determined alpha values. The feature importance rankings for the AutoML and hybrid models built 

in this paper are summarized in Figures 3.7(a) and (b). For prediction of the alpha factor directly 

(AutoML model), aeration NH3 was always the most critical parameter, followed by aeration COD 

and primary effluent PO4 (Figures 3.7a). Regarding oxygen fraction prediction (hybrid model), the 

influence of temperature overweighted all other parameters, but HRT and aeration TSS was still 

crucial for prediction accuracy (Figures 3.7(b)).  

The results showed that parameters measured within the unit (aeration) processes matter 

significantly. In alpha prediction models (direct AutoML alpha models), the importance of NH3 

dropped when replacing the aeration dataset with primary effluent NH3 measurements. Aeration 

sCOD calculated from GPS-X simulation was not as crucial as measured aeration COD. This is 

observed in both alpha and oxygen fraction models. Assorted studies showed that surfactants 

significantly impact bubble diameter and reduce Kla (Gillot & Héduit, 2008; Rosso & Stenstrom, 

2006a; Sardeing et al., 2006; Stenstrom & Gilbert, 1981). MLSS, TSS, COD and sCOD could 

therefore be seen as appropriate parameters to characterize the behaviour of oxygen transfer rate 

in the aeration process. Several other parameters that were not reported to impact oxygen transfer 

were also correlated with the alpha factor in this study. The concentration of NH3 in the aeration 
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tank depends on the nitrification efficiency of the plant; the ammonia concentration may influence 

the oxygen demand by altering the chemical driving force in the reaction, therefore influencing the 

alpha factor. HRT has been proved to influence the COD and NH3 load to the plant, and it could 

influence the DO needed for the biological reactions and influence the oxygen transfer rate 

(Sözüdoğru et al., 2020; Dong et al., 2016). The temperature of the wastewater also impacts the 

oxygen transfer rate. The temperature would influence the rate of the reactions during the aeration 

process, which changes the DO consumption rate and the dissolution rate of oxygen. In summary, 

it was found that the data measured from influent flow or primary effluent flow, the data directly 

measured from the aeration tank, would improve the modelling accuracy. Since most WWTP focus 

more on the quality of influent and effluent flow, many fail to access the information within the 

aeration section. Therefore, it is recommended for modern WWTPs to install more sensors to 

monitor the aeration process to provide a more accurate prediction of the oxygen transfer rate or 

have a virtual WWTP running in parallel that could provide information on the aeration tank 

process parameters. 
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Figure 3-6 Sensitivity rank of input variables estimating alpha using direct alpha AutoML 

model: (a)  inputs=aeration NH3, PE total COD, TSS and PO4, MLSS and HRT ; (b) replaced 

PE tCOD with PE sCOD; (c) replaced PE total COD with aeration sCOD; (d) replaced 

aeration NH3 with PE NH3 
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Figure 3-7 Sensitivity rank of input variables estimating alpha using hybrid AutoML-

mechanistic alpha model: (a)  inputs=aeration TMP and NH3, PE total COD, TSS and 

PO4, MLSS and HRT ; (b) replaced PE tCOD with PE sCOD; (c) replaced PE total 

COD with aeration sCOD; (d) replaced aeration NH3 with PE NH3  
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 Conclusion 

This study developed a new framework for efficient and robust modelling of the dynamic 

alpha-factor by estimating the off-gas oxygen fraction from activated sludge plants using 

machine learning. The estimated off-gas fraction was then used to calculate alpha-factor 

and compared with the alpha estimates directly from wastewater characteristics using 

published recalibrated regression equations and a machine learning approach. The results 

showed that: 1) the proposed approach of estimating off-gas fraction showed superior 

performance compared to directly estimating the alpha; 2) the hybrid-AutoML and 

AutoMLmodels were reliable to predict trends of the alpha factor in aeration; 3) except for 

the traditionally acknowledged parameters that were used to predict dynamic alpha change, 

aeration tank and plant parameters such as temperature, HRT, NH3 and PO4 were found 

crucial to predict dynamic off-gas fraction, and 4) the optimal sampling frequency for 

model development could be different from the raw sampling frequency of the sensors for 

the input parameters.  

This study showed that AutoML models could be an economical, efficient, and reliable 

method for alpha modelling to optimize the aeration process. Although AutoML models 

have shown high efficiency and accuracy in alpha prediction, it has the limitation to 

produce only black-box models, and therefore there has yet to elucidate the cause-and-

effect relationship in the aeration process. Therefore, a future effort is necessary to validate 

the models in other plants under different process conditions. Furthermore, the underlying 

mechanisms of the correlation between alpha and the new measurable parameters found in 
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this study could be explored in further investigations. Parameter analyses based on a larger 

sample pool of plants could be conducted, which may also allow for the identification of 

more potential input parameters for alpha modelling with increased accuracy. 
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Chapter 4  

 Dynamic Airflow and Energy Modelling  

 Introduction 

In conventional wastewater treatment plants, the secondary treatment is conducted 

biologically where the microorganisms degrade the organic matter and nutrients in aeration 

tanks. The aeration tank affords the bioenvironmental conditions for the microorganisms 

to survive, reproduce and utilize the carbon and ammonia to grow, decreasing the 

biochemical oxygen demand (BOD) and ammonia level in the wastewater. In this process, 

ammonia is converted to nitrate during aerobic nitrification, followed by the subsequent 

anaerobic denitrification, which removes the resulting nitrate and releases the ammonia as 

the nitrogen gas (Samer, 2005). Dissolved oxygen (DO) concentration in the aeration tanks 

is of vital importance to the biodegradation process, and therefore greatly influences the 

overall performance of the wastewater treatment system (Fan et al., 2017). DO dynamics 

in aeration tanks is generally described with the oxygen mass balance equation: 

𝑑𝐶

𝑑𝑡
= 𝐼𝑛 − 𝑂𝑢𝑡 + 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1) 

As municipal wastewater influent is often poor in oxygen, the input term in this equation 

can usually be ignored (Holman & Wareham, 2005).. The output term in this equation 

stands for the quantity of oxygen present in the effluent water of the aeration tank. DO 

concentration in the effluent flow is considered to be always the same as that in the aeration 
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tank and therefore cannot be directly altered. The term generation in this equation refers to 

the dissolved oxygen transferred from the gas phase as supplied by the airflow. The 

microorganisms consume oxygen in the tank to allow biodegradation to occur. The oxygen 

consumption rate by the microorganisms is also known as the oxygen uptake rate (OUR), 

that is, the respiration rate of organisms in the aeration tank. OUR is directly related to the 

degradation speed of the organic matter in the wastewater. As the organic matter and 

nutrients being treated in the aeration process mainly consists of the biochemical oxygen 

demand (BOD) and ammonium nitrogen (NH4-N), OUR can usually be estimated from the 

consumption rate of BOD and NH4-N by microorganism (Garcia-Ochoa et al., 2010). 

To minimize energy waste during the aeration process, various research has been done to 

provide an estimation of the optimum airflow needed to meet the effluent quality standards 

(Thunberg et al., 2009). The optimum airflow supply is traditionally calculated from the 

estimated oxygen demand with this equation:  

𝐺 =
𝑂𝑇𝑅

𝑂𝑇𝐸 ∙ 𝐶𝐹
            (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.2) 

Oxygen transfer rate (OTR) is the measurement of the amount of oxygen gas that can be 

dissolved in water over a given time. It is often used as an indicator for oxygen supply. 

Oxygen transfer efficiency (OTE) reflects the proportion of oxygen transferred by blowers. 

This equation also contains a conversion factor (CF) to account for air density, molecular 

weight, and O2 fraction under standard conditions. These parameters can be calculated 
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with the following equations, respectively (Hydromantis Environmental Software 

Solutions Inc., n.d.): 

𝑂𝑇𝑅 = 𝛼𝜃(𝑇−20)𝐹(𝑘𝐿𝑎)20℃(𝛽𝐶𝑆 − 𝐶) ∙ 𝑉           (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.3) 

𝑂𝑇𝐸 =
𝑌𝑅 − 𝑌𝑂𝐺

𝑌𝑅
          (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.4) 

𝐶𝐹 =
𝑌𝑅𝑀𝑊𝑂2𝑃𝑑

𝑅𝑇
 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.5) 

Where 

G Airflow rate under field condition (Dynamic measured or 

modelled) 

[m3/h] 

OTR Oxygen transfer rate (Calculated) [g/h] 

OTE Oxygen transfer efficiency under field 

condition 

(Calculated) [-] 

CF Conversion factor (Calculated) [m3/g] 

𝛼 Alpha factor (Calculated or 

modelled) 

[-] 

𝜃 Theta factor (Constant) [-] 

T Temperature of aeration tank (Dynamic measured) [℃] 

F Fouling factor (Constant) [-] 
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(𝑘𝐿𝑎)20℃ Overall oxygen mass transfer 

coefficient of clean water at standard 

condition 

(Constant) [h-1] 

𝛽 Beta factor (Constant) [-] 

𝐶𝑆 Saturation concentration of oxygen in 

test liquid under equilibrium 

(Constant measured) [mg/L] 

C The concentration of dissolved 

oxygen in test liquid 

(Dynamic measured) [mg/L] 

V The volume of aeration tank (Constant) [m3] 

𝑌𝑅 Volumetric fractions of oxygen gas in 

inlet gas 

(Constant) [-] 

𝑌𝑂𝐺 Volumetric fractions of oxygen gas in 

outlet gas 

(Dynamic measured or 

modelled) 

[-] 

𝑀𝑊𝑂2 Molecular weight of oxygen (Constant) [g/mol] 

𝑃𝑑 Pressure of post blower gas (Dynamic measured) [kPa] 

R Ideal gas constant (Constant) [m3∙Pa/K∙mol] 

 

As discussed in chapter 3, the overall transfer coefficient (kLa) consists of various factors 

that are often dynamic under operational conditions: 

(𝑘𝐿𝑎)𝑤𝑤 =
𝜌𝐺

𝑉

(𝑌𝑅 − 𝑌𝑂𝐺)

(𝐶𝑆 − 𝐶)
            (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.6) 
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Where  

(𝐾𝐿𝑎)𝑤𝑤 Overall oxygen mass transfer coefficient of 

wastewater 

(Calculated) [h-1] 

𝜌 Density of oxygen at temperature and 

pressure at which gas flow is expressed 

(Constant) [g/L] 

G Airflow rate under field condition (Dynamic measured 

or modelled) 

[m3/h] 

𝑌𝑅 Volumetric fractions of oxygen gas in inlet 

gas 

(Constant) [-] 

𝑌𝑂𝐺 Volumetric fractions of oxygen gas in 

outlet gas 

(Dynamic measured 

or modelled) 

[-] 

V The volume of aeration tank (Constant) [m3] 

𝐶𝑆 Saturation concentration of oxygen in test 

liquid under equilibrium 

(Constant measured) [mg/L] 

C The concentration of dissolved oxygen in 

test liquid 

(Dynamic measured) [mg/L] 

 

With most of the parameters mentioned earlier being dynamic and closely related to the 

real-time condition in the aeration tank, we would naturally find that the relationship 

between oxygen demand and the airflow supply is not strictly linear. As a result, the 

required airflow supply is estimated, assuming that all constant factors may lie far from 
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reality. To account for the discrepancy between airflow estimation and the actual airflow 

demand, wastewater treatment plants tend to supply excessive airflow to ensure the quality 

of the effluent flow meets the standards (Steven, 2006). This approach could bring 

tremendous energy waste to the system. 

This chapter aimed to introduce a dynamic method to estimate the real-time airflow supply 

and energy use during the wastewater aeration process. The approach involved estimating 

airflow through a hybrid mechanistic and the machine learning method, with the dynamic 

nature of OTR in mind. The hybrid approach is further compared with another new method 

to predict the required amount of energy to deliver the estimated airflow supply with 

machine learning algorithms and mechanistic models. 

 

 Methods 

 Data Collection 

All raw data used in this study was obtained from Adelaide Pollution Control Plant (PCP), 

located in London, Ontario. A detailed description of the plant can be found in Chapter 3. 

Adelaide WWTP is equipped with the Supervisory Control and Data Acquisition 

(SCADA) system, allowing it to present high-quality measurements with a raw resolution 

of 15 minutes. The field sampling campaign datasets and parameters from online sensors 

shown in Chapter 3 (Aeration NH4-N, Temperature, DO, MLSS, Airflow; Post Primary: 

PO4-P, TSS, COD; and HRT) were used in this study. Further, additional datasets, 
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including post blower pressure, delivered power, modelled alpha, and off-gas oxygen 

fraction (Chapter 3 section 3.3), were acquired for dynamic aeration and energy modelling. 

All raw datasets used in this study were collected during September - October 2018. The 

raw dataset is summarized in Table 4-1.  

 

 Data Preprocessing 

Data preprocessing in this study followed the methodology established in Chapter 3. All 

raw datasets were cleaned with the DBSCAN algorithm to remove outliers and minimize 

measurement errors' influence on the study results. The resolution of the model input was 

determined following the same procedure described in Chapter 3. In brief, the raw dataset 

with its original sampling frequency of 15 minutes was averaged down to new datasets 

with different time intervals, which were then used to build ML tester models. The time 

interval that provides the model of the highest performance among the tester models is 

chosen as the optimum data resolution, which in this case is one hour. The dataset with a 

one-hour resolution was used as the input dataset for all models built in this study.  The 

induced parameters, including the alpha factor and the hydraulic retention time (HRT), 

were calculated following the same procedure as in Chapter 3.  
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Table 4-1 Chapter 4 raw dataset summary   

Location Parameters Unit Avg Stdev Median Max Min 

Plant influent Liquide flow rate m3/d 28611.56 4954.84 28263.54 40356.42 767.15 

Post primary 

clarifier/Aeration 

influent 

Phosphate mg P/L 3.50 0.59 3.41 5.96 1.78 

Total suspended solids mg /L 141.49 30.27 141.69 213.94 62.23 

Chemical oxygen demand mg/L 259.23 53.46 265 400 126 

Post blower Airflow m3/d 12579.86 1870.3 13144.56 15716 7633.92 

Pressure kPa 147.89 1.43 148.23 151.43 142.47 

Aeration tank Mixed liquor suspended solids mg /L 1380.93 51.95 1381.29 1519.46 1272.26 

Ammonia mg N/L 3.68 2.46 3.37 11.84 0.55 
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Temperature °C 20.46 0.58 20.54 21.58 19.07 

Dissolved oxygen mg/L 2.10 0.46 2.24 3.92 0.71 

N/A Alpha factor Measured - 0.53 0.11 0.52 0.99 0.25 

Modelled - 0.53 0.095 0.53 0.90 0.28 

Off-gas oxygen fraction Measured % 19.21 0.34 19.27 19.84 17.98 

Modelled % 19.21 0.32 19.27 19.83 18.01 

Other Delivered power kW 216.62 31.39 220.37 289.14 126.36 
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 Model Buildup 

Two sets of models were built in this study, aiming to estimate aeration airflow and energy 

consumption, respectively. Each set of models can be classified into mechanistic-based and 

machine learning models (Figures 4.1). All machine learning models shown in this study were 

implemented with the Python package AutoGluon (Nick et al., 2020). Details of the machine 

learning procedure used were similar to the one discussed earlier (Chapter 3 section 2.6). 

 

Figure 4-1 Flow chart of chapter 4 airflow and energy modelling 
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The mechanistic-based airflow models were built upon equations 4.7: 

𝐺 =
𝐹𝑅(𝑘𝐿𝑎)20℃𝑉

𝑀𝑊𝑂2
∙

𝛼𝑇𝜃(𝑇−20)(𝛽𝐶𝑆 − 𝐶)

(𝑌𝑅 − 𝑌𝑂𝐺)𝑃𝑑
        (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.7) 

 

G Airflow rate under field condition (Dynamic measured 

or modelled or 

calculated) 

[m3/h] 

F Fouling factor (Constant) [-] 

R Ideal gas constant (Constant) [m3∙Pa/K∙mol] 

(𝑘𝐿𝑎)20℃ Overall oxygen mass transfer 

coefficient of clean water at 

standard condition 

(Constant) [h-1] 

V The volume of aeration tank (Constant) [m3] 

𝑀𝑊𝑂2 Molecular weight of oxygen (Constant) [g/mol] 

𝛼 Alpha factor (Dynamic calculated 

or modelled) 

[-] 

T Temperature of aeration tank (Dynamic measured) [℃] 

𝜃 Theta factor (Constant) [-] 

𝛽 Beta factor (Constant) [-] 

𝐶𝑆 Saturation concentration of oxygen 

in test liquid under equilibrium 

(Constant measured) [mg/L] 
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C The concentration of dissolved 

oxygen in test liquid 

(Dynamic measured) [mg/L] 

𝑌𝑅 Volumetric fractions of oxygen gas 

in inlet gas 

(Constant) [-] 

𝑌𝑂𝐺 Volumetric fractions of oxygen gas 

in outlet gas 

(Dynamic measured 

or modelled) 

[-] 

𝑃𝑑 Pressure of post blower gas (Dynamic measured) [kPa] 

 

The independent variables in the mechanism-based models include the alpha factor, temperature, 

DO, off-gas oxygen fraction and pressure. Table 4-2 summarizes a list of the constants involved 

in the calculation and their assumed values. One model assumed all parameters but the DO was 

built as a baseline for model performance comparison (Airflow Model 1). There were two models 

taking all the independent variables in this study: one with all real-time measurements including 

alpha (Airflow Model 2), and another with its hybrid alpha model (Airflow Model 3) replaced by 

the estimations generated by the hybrid ML models presented in Chapter 3 (Section 3.3). The 

hybrid ML alpha model was developed in this study by estimating off-gas fraction using AutoML 

models and calculating alpha factor using mechanistic models. Using the modelled alpha in the 

analysis aimed to test the generalizability of the developed model in plants that lack off-gas 

measurements. The fourth model ignored using mechanistic airflow models and built complete 

ML-based airflow models that used airflow data and the same set of operational and process 

parameters used for the ML models in Chapter 3 (Aeration: NH4-N, Temperature, DO, MLSS; 

Post Primary: PO4-P, TSS, COD; HRT).  
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The development of energy models also follows the same strategy (Figure 4.1). With airflow data 

known, the delivered power (DP) of blowers can be estimated using the mechanistic model as 

(Hydromantis Environmental Software Solutions Inc., n.d.): 

𝐷𝑃 =
𝑤𝑅𝑇

𝐾
[(

𝑃𝑑

𝑃𝑎
)

𝐾

− 1]  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.8) 

Where 

DP Delivered power of blowers (Dynamic measured or 

calculated) 

[kW] 

w Molecular mass flow rate of air (Dynamic measured or 

calculated or modelled) 

[mol/s] 

R Ideal gas constant (Constant) [m3∙Pa/K∙mol] 

T Temperature of aeration tank (Dynamic measured) [℃] 

K K=R/CP where Cp is the heat 

capacity of air at constant pressure 

(Constant) [-] 

Pd Absolute pressure downstream 

(outlet) of blower 

(Dynamic measured) [kPa] 

Pa Absolute pressure upstream (inlet) 

of blower 

(Constant) [kPa] 

 

The mechanism-based energy model (equation 4.8) requires input air pressure, airflow, and 

temperature. The model performance was assessed by considering several options: Energy Model 
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1): measured dynamic airflow rates, constant downstream blower pressure and dynamic 

temperature; Energy Model 2): measured dynamic airflow rates, dynamic blower pressure and 

dynamic temperature; and Energy Model 3): hybrid model with modelled dynamic airflow 

(Airflow Model 4), dynamic pressure and dynamic temperature.  

Further, a new ML energy model (Energy Model 4) was developed using the same set of 

wastewater process and operational parameters by using the same input parameters as Airflow 

Model 4.  
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Table 4-2 Constant values in chapter 4 

Parameter Description or Equation Value Source Units Reference 

F Fouling factor 1 GPS-X - (Hydromantis Environmental 

Software Solutions Inc., n.d.) 

R Ideal gas constant 8.314 Online Database m3∙Pa/K∙mol (Engineering ToolBox, 2004) 

𝛽 Beta factor: salinity-surface tension 0.99 Literature - (Tchobanoglous et al., 2003) 

𝑘𝐿𝑎20℃ Overall oxygen mass transfer 

coefficient of clean water 

12.53 Literature h-1 (Lee, 2017) 

V Volume of aeration tank 9484 Plant data m3 - 

𝑀𝑊𝑂2 Molecular weight of oxygen 32 Literature g/mol (National Center for 

Biotechnology Information, n.d.) 
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𝑌𝑅 Volumetric fraction of oxygen in the 

air   

20.946 Online Database % (Engineering ToolBox, 2003) 

𝜃 Theta factor  1.024 Literature - (Iranpour et al., 2000) 

𝐶𝑆 Saturation concentration of oxygen 

in test liquid in equilibrium with exit 

gas 

𝐶𝑆

= 14.189

∙ 𝑒−0.022𝑇 

Literature g/m3 (Benson & Krause, 1980) 

K For U.S. standard air 0.283 GPS-X - (Hydromantis Environmental 

Software Solutions Inc., n.d.) 

Pa Absolute pressure upstream of the 

blower 

101.325 Online Database kPa (Engineering ToolBox, 2004) 
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 Model Performance Evaluation 

Similar to Chapter 3, the performance of each model followed the goodness-of-fit procedures, 

including three criteria: Root Mean Square Error (RMSE; Chapter 3 equation 3.6), Nash-Sutcliffe 

efficiency (NSE; Chapter 3 equation 3.7), and Index of Agreement (d; Chapter 3 equation 3.8). 

 

 Results and Discussion 

 Airflow and blower data characteristics  

The daily trend and the dynamic fluctuation of the airflow, blower pressure and blower power 

during the sampling period are plotted in Figure SD2 and SD3 in the supporting document. A 

summary of their data characteristics is listed in Table 4-1. The aeration airflow came in a wide 

range, increasing from around 8,000 m3/h to over 16,000 m3/h during the sampling period. 

However, the airflow did not show a clear daily changing trend aside from its rapid increase. On 

the other hand, the airflow pressure is stable at around 147.89 kPa. Throughout the days, the 

pressure decreases in the morning, reaching its valley point of about 146 kPa at 8:00, then gradually 

increasing until its stable point at 15:00. The post blower power usage demonstrated a similar trend 

as the airflow, which increases in the long-term but does not change significantly throughout the 

days. 
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 Airflow Models 

Compared with the traditional mechanism-based model that assumes both the alpha factor and the 

OTE to be constant (RMSE=2110.42, NSE=-0.26, d=0.38), the model built with dynamic 

measurement data (OTE and alpha factor) is substantially more accurate in predicting airflow 

(RMSE=2046.35, NSE=-0.19, d=0.79) (Figures 4.2 a and b). Not only did it describe the general 

rising trend of airflow over the months, but it also captured the daily fluctuations in the data (Figure 

4.2 b). On the contrary, the airflow estimation made by the mechanism-based model with all 

constant inputs lie almost strictly around 13,400 m3/h (11,410.2-16,076.4 m3/h) over the study 

period and failed to predict the increasing trend in October (last month of the field campaign) 

(Figure 4.2 a). Although offering some insights on the daily change of the airflow (6,959.5-

22,822.6 m3/h), its predictions are far from the actual valley values measured (7,633.9-15,716.0 

m3/h).  

When real-time measurements of the alpha-factor and the off-gas oxygen fraction are not available 

in WWTP, airflow estimations made upon modelled parameters might be of interest. Our results 

showed that the mechanism-based airflow model based on hybrid ML predictions of the alpha-

factor and OTE (generated with the AutoML model described in Chapter 3) demonstrated similar 

predictive power to the one built upon on-site measurements (RMSE=1974.16, NSE=-0.11, 

d=0.78) (Figure 4.3 c). While its estimations are generally more dispersive (e.g. Figure 4.2 c during 

Sep 8 – Sep 10), it still offered decent predictions and captured most of the valley measurements.  

The overshooting problem was one major drawback of both mechanism-based models with 

dynamic alpha and OTE inputs. This problem arose on September 13 and persisted until October 
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14 (Figure 4.2 b). The vast majority of such events took place from the midnights, starting at 0:00 

am, to the mornings around 10:00 am. During this period, the mechanism-based models showed 

many prediction points, mostly with values above 16,000 m3/h, exceeding their targets. It is 

suspected that this was caused by the assumption of the constant KLa20 value involved in the 

calculation of the OTR. As reported by Özbek and Gayik (2001), KLa20 (clean water) can take a 

wide range of values from 0 to 360 h-1, depending on many parameters, including the mixing 

speed, airflow rate, and water viscosity. However, due to the lack of a well-tested universal 

equation describing the change of KLa20 in clean water, we treated the KLa20 as a constant in all 

mechanism-based models in this study. The influent flow for Adelaide WWTP usually carries a 

significantly smaller amount of organic matter during the nights, which can be reflected in the 

dynamic change of the ammonia level. A lower loading would result in a smaller OTE level, as 

the lower oxygen demand pushes the oxygen solubility balance away from dissolution. The 

constant parameters we assumed in the calculation of the airflow would not have the ability to 

reflect such dramatic changes, which could therefore cause the deviation. Future research on such 

overshooting phenomenon might extend our explanation.  
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Figure 4-2 Dynamic airflow simulation using mechanistic airflow equation: (a) Constant 

(average) alpha and OTE (RMSE=2110.42, NSE=-0.26, d=0.38); (b) Measured dynamic 

alpha and OTE (RMSE=2046.35, NSE=-0.19, d=0.79); and (c) ML Modelled dynamic alpha 

and OTE inputs (RMSE=1974.16, NSE=-0.11, d=0.78) 

The machine learning airflow model, on the other hand, demonstrated the highest predictability 

among all airflow models built in this study (Figure 4.3 a; RMSE=744.71, NSE=0.84, d=0.95). 

The ML airflow model successfully captured both the long-term rising trend and the short-term 

daily fluctuations in airflow. It also showed high robustness throughout the study period.  

The NH4-N recording in the aeration tank provided the most predictive power among all input 

parameters, followed by temperature and the TSS measurement from the influent flow of the 

aeration tank (Figure 4.3 c). As one of the primary purposes of the aeration process, ammonia-

nitrogen removal efficiency is directly correlated with the oxygen demand of the microorganisms 
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present in the aeration tank. TSS and COD played similar roles showing the level of loading in the 

wastewater. This observation demonstrated a close relationship between the airflow and the 

nitrogen level present in the aeration tank, which confirmed the importance of the demand-related 

operational parameters in airflow prediction models. Our findings on the correlation between 

temperature and airflow agree with previous research on the factors affecting OTE (Chapter 3 

section 3.4). The results confirm that the inclusion of the simple temperature measurement can 

dramatically improve the overall quality of airflow predictions for wastewater practitioners.  

It is worth discussing these interesting facts revealed by the low importance of DO in airflow 

predictions. Although directly involved in the calculation of the mechanism-based models, the 

contributions DO make to the overall predictive power of the airflow ML model are very limited. 

Such observation could potentially relate to the fact that the blowers in Adelaide WWTP are 

controlled in response to the DO level detected. Due to this characteristic of the plant, the DO level 

in Adelaide WWTP is relatively more stable in comparison to other operational parameters, 

causing it to supply less information for the prediction. This contrary might be of interest in future 

studies, where this modelling framework can be applied to other plants with more significant 

variability in DO. 
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Figure 4-3 Dynamic wastewater aeration airflow consumption simulation using: (a) Using 

ML  (RMSE=744.71, NSE=0.84, d=0.95); (b)Airflow Mechansitic Model  (RMSE=2046.35, 

NSE=-0.19, d=0.79) and ML Model compare with measured airflow; and (c) Input 

parameter importance score 

 

 Energy Models 

The mechanism-based energy model provided decent predictability even with the assumed 

constant post-blower pressure input (Figure 4.4a; RMSE=31.88, NSE=-0.03, d=0.70). The 

mechanism-based energy model built with dynamic post-blower airflow pressure, in fact, showed 

slightly lower performance when the turbo energy was relatively stable before October (Figure 4.4 

b; RMSE=29.62, NSE=0.11, d=0.77). However, the dynamic model appears to be more accurate 
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as energy usage rises. Based on the goodness-of-fit measurements, we can tell that the adaptation 

of dynamic parameters does lead to good results for the energy model as well, even if the 

improvement is negligible. 
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Figure 4-4 Dynamic wastewater aeration energy consumption simulation using: (a) 

mechanistic model with constant pressure and measured dynamic airflow (RMSE=31.88, 

NSE=-0.03, d=0.70) (b) mechanistic model with measured dynamic pressure and dynamic 

airflow (RMSE=29.62, NSE=0.11, d=0.77)  

The two ML-based energy models showed similar predictive power (Figures 4.5 a and b). The 

model derived from the airflow ML estimations devotedly followed the overall trend of the 

dynamic change in energy; however, there seems to exist a small gap between the measured peak 

values and the predictions (RMSE=26.35, NSE=0.34, d=0.81). The ML model directly built upon 

the operational parameters showed better performance. Although losing points below 180 kW, this 

model accurately predicted the overall energy change during the study period, mainly featuring 

the rising period starting from October, where all other models fail to capture most of the peaks 

(RMSE=16.56, NSE=0.70, d=0.91). Comparisons revealed that the ML models directly built upon 

operational parameters have the highest prediction accuracy and can provide reliable estimations 

even in the face of substantial changes in energy.  

The importance scores of the input parameters revealed that the temperature, HRT and aeration 

NH3-N are the top three most important factors to predict energy. The importance of the 

temperature poses no surprise as it is also an important factor involved in the mechanism equations 

of blower energy usage. The importance ranks of NH3-N, TSS and MLSS agree with the ML 

airflow model. However, we do not yet know the theoretical reason behind the high correlation 

between HRT and blower energy. We suspect that it is related to the extra energy expenditure used 

to stir up the wastewater at a higher flow rate, but future investigations are necessary for this issue. 
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Figure 4-5 Dynamic wastewater aeration energy consumption simulation using: (a) 

mechanistic model with measured pressure and ML modelled dynamic airflow (Airflow 

Model 4) (RMSE=26.35, NSE=0.34, d=0.81); (b) ML aeration energy model using process 

and operating paramters (RMSE=16.56, NSE=0.70, d=0.91); (c) Energy mechanistic model 

(RMSE=29.62, NSE=0.11, d=0.77) and energy ML model compare with measured energy; 

and (d) Dynamic aeration energy consumption ML input parameter importance score 

 

 Conclusion 

To optimize oxygen supply and minimize energy waste in the aeration process, it is necessary to 

have an accurate real-time estimation of the airflow supply requirement for successful control 

strategies. While most traditional airflow models tend to estimate the airflow supply based on the 

oxygen demands of the microorganisms as a correlation to the level of nutrients present, this 

method fails to take the dynamic nature of the oxygen transfer efficiency into consideration. As a 

result, the traditional airflow models often lack accuracy and precision.  

This work proposed a new modelling approach utilizing both the conventional mechanism-based 

equations and the state-of-the-art machine learning algorithms to predict the dynamic airflow 

supply and the corresponding blower energy consumption. The developed model emphasizes the 

importance of dynamic oxygen transfer rate and the operational parameters in calculation. With 

the support of the machine learning method, it can be adapted in plants without long-term off-gas 

measurements. The promising results confirm that the machine learning method is significantly 

more accurate than pure mechanism-based estimations. It is able to estimate long-term changes as 
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well as daily fluctuation cycles. Besides, the models developed also cast a new light on the 

correlation between airflow and some new parameters that have not been previously acknowledged 

to show effects on the biodegradation process. Regardless, the presented modelling approach 

provides an accurate alternative to monitor real-time airflow demand and blower energy 

consumption, which improves aeration operation control strategies.  

Future investigations are necessary to validate the new relationships discovered in this study. 

Furthermore, we believe that more work could be established in the field of wastewater modelling 

with the aid of machine learning methods. 
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Chapter 5  

 Conclusion and Recommendation 

To minimize energy consumption while meeting the stringent requirements for effluent 

quality, modern WWTPs must optimize the control strategies for the aeration process with 

advanced modelling approaches. Although widely studied, traditional mechanistic-based 

models often fail to cover all the complicated interactions among the various parameters 

involved in the dynamic process conditions. Therefore, hybrid machine learning methods 

have been used to model aeration processes to avoid such shortcomings. 

In this study, a modelling framework that combines mechanism-based mathematical 

models and ML algorithms has been developed to estimate the dynamic changes of various 

parameters involved in the aeration process. The proposed models demonstrated 

significantly increased accuracy over traditional models in capturing the daily fluctuations, 

long-term changes and peak values, as demonstrated by a case study on the Adelaide 

WWTP. The generalizability of the models was tested on parameters including the alpha 

factor in oxygen transfer rate calculation, the airflow demand of the aeration tank, and the 

power consumption of the aeration blowers. The significant findings were as follows: 

- The optimum sampling frequency for maximum model performance is not 

necessarily the highest available. Excess data resolution may cause the model to 

suffer from overfitting and reduce its accuracy.  

- The alpha factor is dynamic and can be best estimated with the hybrid ML model 

using a novel concept of predicting off-gas fractions used as an input for 
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mechanistic alpha models. ML alpha-factor models can predict the real-time 

fluctuations of the alpha factor based on operational measurements from full-scale 

WWTP. 

- The dynamic airflow demand in aeration can be estimated based on the oxygen 

transfer rate and other operational parameters. While the ML model demonstrated 

the best performance among all the modelling methods tested, the combination of 

ML and mechanism-based models also offered decent predictions. 

- The ML modelling framework can also be applied to estimate the energy 

consumption of the airflow blowers in the aeration process. Furthermore, our results 

suggest that the parameters that provided the most predictability for the energy and 

the airflow models could be different. 

The resulting model of our work could be implemented in the control loops of the daily 

workflow for the WWTPs to test its ability on energy saving in a real-life scenario. Further 

research on the use of machine learning modelling methods might expand the research field 

to other parameters in the wastewater treatment processes. The methodology developed in 

this study can also be applied with input datasets from different plants, sites, or periods to 

further validate the models' robustness. Furthermore, the study suggests that the 

combination of machine learning methods and mechanistic equations may produce higher 

predictability and increased interpretability. We encourage future researchers and 

wastewater treatment practitioners to validate further the combined modelling approach in 

different areas of wastewater treatment modelling. Our findings on the new operational 

factors that influence aeration can also be interesting. Research should further develop and 

confirm these initial findings by analyzing the theory behind them.  
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Potential limitations of this study mainly rooted in the data collection process. The 

estimations of the model are made based on the operational data collected only in the 

Adelaide WWTP.  The model and the associated modelling method may therefore lack 

generalizability for other plants. A model developed through a similar process to ours for 

another WWTP may show limited accuracy because of but not limited to the following 

conditions: (1) when manual control is extensively used; (2) when the sensors installed fail 

to capture the parameters that are more closely related to the outcome; and (3) when the 

randomness in the recorded data outweighs the trend. Similarly, the temporal limitation on 

the input dataset for the model also limited the generalizability of the model to other times 

of the year. The input dataset used in this study covers only the period of Sep-02 to Oct-

17, i.e., less than two months in Autumn. Many parameters, e.g., temperature, may be 

heavily correlated with the sampling time of the year. Thus, data collected in such a short 

time frame may not accurately reflect all operational conditions throughout the year. The 

model induced from such data therefore may be prone to bias and lose accuracy when 

predicting a different season. Moreover, the types of input data are limited by the types of 

parameters available in Adelaide WWTP. We might be unaware of some other measurable 

parameters that more accurately reflect the dynamic changes in our desired outcome 

parameter. Finally, the lack of previous research studies on the topic may hinder the 

credibility and scope of this project. Prior research studies that focused on aeration 

modelling with the machine learning approach are limited. We therefore suggest further 

research to continue exploring this field and to assess the performance of the ML model 

with an enlarged dataset. 
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Appendices  

Appendix A Plots of alpha empirical equation studies 

Plots of alpha empirical equation studies 

 

a) (Krampe and Kreauth 2003) 

 

b) (Henkel, Cornel and Wagner 

2011) 

 

c) (Baquero-Rodriguez, et al. 2018) 
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d) (Henkel, Cornel and Wagner 

2011) 

 

e) (Rosso, Iranpour and Stenstrom 

2005) 

 

f) (Henkel, Cornel and Wagner 

2011) 

 

g) (Jiang, Garrido-Baserba and 

Nolasco 2017) 

Figure SD 1. alpha factor dependency based on literature between 2003 and 2018 
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Table SD1. Typical KLa correction factors for domestic wastewater (Bewtra et al., 1970; 

Tewari and Bewtra, 1982) 

Correction factor Equation Typical values 

Alpha factor 
𝛼 =

(𝐾𝐿𝑎)𝑤𝑤

𝐾𝐿𝑎
 

0.3-1.2 

Beta factor: salinity-surface tension 
𝛽 =

𝐶∗
𝑤𝑎𝑠𝑡𝑒𝑤𝑎𝑡𝑒𝑟

𝐶∗
𝑐𝑙𝑒𝑎𝑛𝑤𝑎𝑡𝑒𝑟

 
0.7-1.0 

Gamma factor: temperature factor 𝛾 = 𝜃20°𝐶−𝑇 𝜃 = 1.016-1.024 

 

Appendix B Figures SD2(a) to SD2(i) show average daily fluctuations in wastewater, 

aeration tank and operating parameters 

(a)  
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(b) 

 

 (c) 
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 (d) 

 

 (e) 
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(f) 

 

(g) 
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(h) 

 

(i) 
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Figure SD2. Daily dynamic change of operational parameters in Adelaide PCP: (a) Post-

primary COD (b) Post-primary sCOD (c) Post-primary PO4 (d) Post-primary NH3 (e) 

MLSS (f) Alpha factor (g) Post blower pressure (h) Delivered power (i) Post blower airflow 

Appendix C Figures SD3(a) to SD3(k) show hourly fluctuations in process and 

operating parameters during the study period. 

(a) 
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(d) 
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(f) 

 

 

 

(g) 
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(h) 

 

 

 

(i) 
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(j) 
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(l) 

 

 

(m) 
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(n) 

 

Figure SD3 Wastewater and operating condition profile during the study period: (a) off-

gas fraction (b) dynamic alpha (c) HRT (d) Temperature (e) Primary effluent COD (f) 

Aeration tank sCOD (g) Primary effluent TSS  (h) MLSS   (i) Primary effluent NH3    (j) 

Aeration tank NH3  (k) Primary effluent PO4. (l) Post blower pressure with atm (m) 

Delivered Power.  (n) Airflow Figures SD3a to SD3k show hourly fluctuations in process 

and operating parameters during the study period. 
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Appendix D Figures SD4(a) to SD4(p) exported operational parameters from GPS-X 

model (input parameters: inf BOD, inf TSS, inf flow, inf PO4-P, inf NH4-N, Pri eff 

TSS, Pri eff BOD5, MLSS, MLVSS, DO, RAS, WAS, eff BOD, eff PO4-P, eff NH4-N, 

eff NO3-N, eff NO2-N, eff TSS, temperature) 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 
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(f) 

 

(g) 
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(h) 

 

(i) 
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(j) 

 

(k) 
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(l) 

 

(m) 
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(n) 

 

(o) 
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(p) 

 

 

Figure SD4 GPS-X model export modeled operational parameters verses measured, for 

extracting sCOD data (a) Influent TSS and VSS (b) Influent flow rate (c) Influent BOD5 

and COD (d) Influent TKN and NH4-N (e) Influent TP and SP (f) Post-primary TSS (g) 

post-primary BOD5  (h) MLSS and MLVSS   (i) Return activate sludge TSS and VSS (j) 

dissolved oxygen at different position  (k) Effluent TSS and VSS. (l) effluent BOD5 and 

COD (m) effluent TKN and NH4-N.  (n) Effluent TN, NO2-N, and NO3-N. (o) Effluent 

pH and alkalinity (p) Effluent TP and SP 
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Appendix E ML modelled alpha and O2 fraction vs measured SD5 (a) (b) 

(a) 

 

(b) 

 

Figure SD5 ML modelled off-gas oxygen fraction and alpha vs measured coefficient of 

determination (a) Off-gas oxygen fraction (b) Alpha  
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