Pulmonary xenon-129 MRI: New opportunities to unravel enigmas in respiratory medicine

Rachel L Eddy
Grace Parraga

Follow this and additional works at: https://ir.lib.uwo.ca/biophysicspub

Part of the Medical Biophysics Commons

Citation of this paper:
Pulmonary 129Xe MRI: New Opportunities to Unravel Enigmas in Respiratory Medicine

Rachel L. Eddy, Grace Parraga

This manuscript has recently been accepted for publication in the *European Respiratory Journal*. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online.
Pulmonary 129Xe MRI: New Opportunities to Unravel Enigmas in Respiratory Medicine

Rachel L Eddy BEng1,2, and Grace Parraga PhD1,3

1Robarts Research Institute, 2Department of Medical Biophysics, 3Division of Respirology, Department of Medicine, Western University, London, Canada

Correspondence to:
G. Parraga PhD
Robarts Research Institute
1151 Richmond St N
London, Canada
N6A 5B7
Telephone: (519) 931-5265
Email: gparraga@robarts.ca

Key Words: xenon-129, magnetic resonance imaging, pulmonary disease, pulmonary functional imaging

ERJ Methods

Take Home Message:
129Xe MRI provides rapid, sensitive, non-invasive, high spatial resolution and simultaneous measurements of pulmonary ventilation, tissue microstructure and gas exchange, and is poised for routine clinical assessments in patients with chronic lung disease.
Introduction
Chest x-ray computed tomography (CT) is the imaging modality of choice for the non-invasive, quantitative evaluation of chronic lung diseases because thoracic CT protocols are nearly ubiquitously available and provide rapid, high-resolution images of airway and parenchymal structure and anatomy. Pulmonary magnetic resonance imaging (MRI) has not been used clinically, mainly because of complexity (pulmonary MRI signal decays rapidly), cost and because conventional MRI is dependent on proton-density (hydrogen atoms in tissue) which is exceptionally low (around 0.1 g/cm3) in the healthy lung because it is mainly air and not tissue or water-filled [1, 2]. Using conventional MRI methods, the lungs mainly appear as dark, signal-deficient voids and the pulmonary MRI signal is further degraded because of the millions of lung air-tissue interfaces that cause local magnetic field distortions, and respiratory and cardiac motion. While anatomical proton MRI of the lung is now developing rapidly to overcome these technical limitations, it still does not provide information beyond that of a low-dose CT so there is a drive towards functional MRI. One of these approaches involves the use of inhaled gas contrast agents, primarily hyperpolarised (or magnetised) helium-3 (3He) and xenon-129 (129Xe), both of which provide a way to rapidly (<10 s) and directly visualise inhaled gas distribution with high spatial resolution (~3 mm x, y and z planes). Pulmonary functional MRI is also possible using inhaled fluorinated gas [3], oxygen-enhanced techniques [4] and free-breathing proton methods [5, 6], however hyperpolarised inhaled gas MRI has been the most widely used and described. Because inhaled contrast gases have different resonant frequencies than hydrogen protons as used for conventional MRI, these methods inherently have no background signal and excellent contrast.
While inhalation of hyperpolarised gases to measure pulmonary function was originally discovered using 129Xe [7], the field was dominated by 3He MRI until recently because of superior 3He MRI image quality with low volume (<500 mL) inhaled doses. However, the limited worldwide supply of 3He [8] has driven the field back to 129Xe gas because it is naturally abundant and turnkey polarisation technologies have significantly advanced [9-11]. 129Xe also has modest solubility in biologic tissues and resonates at different frequencies when dissolved in different tissues, so it provides novel alveolar tissue and capillary blood information. Here, we provide an overview of the key concepts and methods for 129Xe MRI, discuss the current state-of-the-art and how 129Xe MRI may be applied in the future.

How does 129Xe MRI work?

129Xe MRI is dependent on equipment that polarises 129Xe atoms which effectively increases the nuclear polarisation by ~100,000 times. Commercial (Polarean Inc., Durham, NC; Xemed LLC, Durham, NH) and custom-built [10, 11] polariser systems operate via spin-exchange optical pumping [12] whereby circularly polarised light bombards a glass cell housing rubidium and 129Xe. The circularly polarised light is absorbed by rubidium and subsequent collisions between polarised rubidium and 129Xe transfer angular momentum to 129Xe and increase its nuclear-spin polarisation. Typically, isotopically enriched 129Xe (~86% by volume) is used to further increase the fraction of 129Xe atoms that are polarised in a given volume. 129Xe flows through the glass cell at a constant rate and the hyperpolarised 129Xe is frozen as it leaves the cell and remains frozen until the desired amount is accumulated, upon which it is thawed and dispensed into a bag for patient inhalation. The 129Xe flow rate through the cell can be adjusted to accumulate the desired 129Xe dose within a desired time frame. 129Xe doses vary from 250 mL up to 1.0 L [13],
and doses are typically diluted up to 1.0 L using medical-grade nitrogen (N$_2$) or helium-4. 129Xe hyperpolariser equipment is typically located in a small room adjacent to the MRI suite, within close proximity to deliver the polarised gas to the patient as quickly as possible.

129Xe MRI is feasible on both 1.5 T and 3.0 T field strength scanners. To acquire the signal however, a radiofrequency coil is fitted around the patient chest and this is specifically tuned to the resonance frequency of 129Xe. There are a number of different 129Xe coils, however as shown in Figure 1, the most common are quadrature rigid birdcage or flexible vests (Clinical MR Solutions, Brookfield, WI; RAPID Biomedical, Rimpar, Germany). Rigid birdcage coils provide more homogeneous MRI signal throughout the lungs (ie, no artifactual differences in MRI signal that are unrelated to anatomy) and increased signal-to-noise but they have patient size limitations; flexible vest coils can accommodate a larger range of patient sizes but may require additional image corrections after MRI acquisition [14] to account for signal differences caused by the way the patient and coil interact. Additional receive array-coils may be placed on the patients’ chest inside the rigid or flexible design coils and this improves signal-to-noise ratios and accelerates acquisition times which enables very short breath-hold scans (~5 seconds). Figure 1A shows 129Xe MRI equipment including hyperpolariser, gas delivery bag and radiofrequency coils, and patient set-up in MRI scanner.

129Xe MRI is primarily performed under breath-hold conditions, though dynamic multi-breath protocols have also been applied [15]. While laying supine, patients are coached to inhale the gas mixture from passive end expiration or functional residual capacity and hold their breath while the image is acquired, which may take from 5-16 seconds. Pulmonary 129Xe MRI
acquisitions may include static ventilation, diffusion-weighted or dissolved-phase. Static ventilation images are the most commonly reported 129Xe MRI acquisition and this provides regional maps of pulmonary gas distribution. A conventional proton (1H) image is also typically acquired in the same scanning session and at the same lung volume so that the anatomical and functional images may be co-registered to distinguish the edges of the thoracic cavity during image analysis and segmentation. Figure 1B shows a 129Xe gas static ventilation coronal image (cyan) and corresponding anatomical proton image (greyscale), and the two co-registered demonstrating a regional ventilation map. A corresponding CT slice is also shown in Figure 1 as well as the 3D segmented airway tree (yellow) which may be co-registered to the ventilation map to demonstrate structure-function relationships.

Diffusion-weighted 129Xe MRI methods may also be employed and these estimate the self-diffusion of 129Xe gas within the terminal airways and their restriction within the airspaces on a voxel-wise basis [16], which provides an excellent surrogate measurement of alveolar and terminal bronchiole enlargement.

129Xe has a large, loosely-bound electron cloud, making it sensitive to its surroundings and soluble in biological tissue; once dissolved in biological tissues, 129Xe exhibits a different resonance frequency. Thus, 129Xe MRI can also provide in vivo measurements of pulmonary gas exchange [17, 18]. The so-called dissolved-state refers to 129Xe dissolved in the alveolar membrane and in red blood cells. 129Xe that has diffused into biological tissues experiences a different chemical environment and this is reflected via a shift in the 129Xe resonance frequency (chemical shift) from gaseous 129Xe, as shown in Figure 2B. In the same manner, there is also a difference in the resonance frequency between 129Xe in the tissue and 129Xe in the blood, which
enables simultaneous, independent imaging of these three states or compartments: 1) gas, 2) tissue barrier plus plasma, and 3) red blood cell. The gas state reflects the inhaled gas and has the largest measurable signal. 129Xe dissolved in the tissue barrier and blood plasma have indistinguishable chemical shifts and combine for the second largest measurable signal with a ~197 ppm shift from gaseous 129Xe [19]. 129Xe dissolved in red blood cells exhibits an additional ~20 ppm shift beyond the tissue-plasma signal and makes up the smallest, measurable 129Xe signal [19]; moreover, the red blood cell signal is oxygen-dependent and may undergo another measurable ~5 ppm shift based on blood oxygenation [20]. Tuning the scanner allows acquisition of images of all three compartments, and acquisition protocols have been developed to simultaneously acquire quantitative images from all three compartments within a single breath-hold [18].

Current state-of-the-art

129Xe MRI methods have an excellent safety profile in patients with respiratory disease [21, 22], including asthma [23-25], COPD [16, 26-29], cystic fibrosis [30-32], pulmonary vascular disease [33], idiopathic pulmonary fibrosis [34, 35], lung cancer [36] and lymphangioleiomyomatosis [37].

In healthy volunteers, 29Xe gas distribution is typically highly homogeneous and gas signal fills the entire lung whereas in patients with lung disease such as in Figure 1, focal MRI signal voids or ventilation defects and patchy gas distribution are often observed. Ventilation defects are commonly quantified as the ventilation defect percent (VDP) [38] – the volume of ventilation defects normalised to the thoracic cavity volume. In a similar manner, using diffusion-weighted MRI, the apparent diffusion coefficient (ADC), a measure of airspace enlargement, may be
estimated. 129Xe ADC is low in healthy participants and increases with increasing airspace size and the extent of emphysema [16, 26]. Diffusion-weighted MRI may also be used to generate morphological airspace measurements [39, 40], for example mean linear intercept analogous to histology. Normalised biomarkers of the ratio of 129Xe dissolved in the tissue barrier and red blood cells [18], have been shown to be particularly relevant in pulmonary fibrosis. A unique feature of 129Xe MRI is that it provides a way to regionally quantify gas exchange [17, 41] in regions of the lung that are ventilated and models have been developed to extract subcomponents of gas exchange and structural measurements [42-44].

At the current time, 129Xe MRI is approved for clinical use in the United Kingdom and clinical approval is pending in the United States.

How is 129Xe MRI likely to be used in the future?

The infrastructure needed to enable 129Xe MRI is available in ~12 respiratory imaging sites worldwide using a wide variety of different scanners, polarisers and coils. Whilst technical developments will enable faster 129Xe polarisation times and larger volumes of polarised gas, multi-centre clinical trials are now poised to demonstrate the inter- and intra-site reproducibility of 129Xe MRI biomarkers so that clinical trials of new treatments and interventions using MRI may be powered. A comprehensive 129Xe examination (including localiser scan, anatomical scan, ventilation, diffusion-weighted, perfusion and gas exchange scans) in a patient may be easily performed within 15 minutes, often with patients inside the MRI bore for approximately 5 minutes and this is certainly compatible with current clinical imaging workflows.

Highly sensitive 129Xe MRI VDP promises therapy studies utilising smaller sample sizes to evaluate response to therapy. The broad array of 129Xe MRI biomarkers may provide endpoints
for clinical trials of novel treatments for asthma, COPD, cystic fibrosis and especially pulmonary fibrosis. The spatially resolved functional information provided by 129Xe MRI may perhaps guide placement of endobronchial valves, which are currently guided using structural information from CT. Moreover, 129Xe MRI may provide a way to generate quantitative pathological evidence for treatment responses, for example following bronchial thermoplasty [45, 46] or novel biologic treatments for asthma [47], where patients experience improved quality of life and reduced exacerbation frequency often in the absence of FEV$_1$ improvements. Another valuable application of 129Xe MRI may be in the prediction of pulmonary exacerbations, which has been demonstrated using 3He MRI [48, 49]. Because 129Xe MRI appears to be more sensitive to ventilation abnormalities [23, 26], it is expected to also predict or explain pulmonary exacerbations of COPD, cystic fibrosis and asthma.

It remains difficult to predict response to treatment in many respiratory diseases, which is becoming increasingly important as novel, expensive therapies continue to be developed. Imaging phenotypes are widely recognised in COPD and pulmonary fibrosis and the combination of available 129Xe MRI biomarkers may provide novel phenotypes to support regulatory and treatment decisions. Moreover, 129Xe MRI provides a regional map of lung structure-function that can be likened to a fingerprint or “lung-print”, to support individualised therapy decisions or n=1 studies in individual patients.

129Xe MRI is particularly invaluable for longitudinal monitoring of disease progression, disease phenotypes and/or treatment response (in and outside of clinical trials) because it poses no radiation burden on patients. The lack of ionising radiation is particularly needed for examinations in vulnerable populations such as children with chronic lung disease.
In summary, 129Xe MRI provides rapid, sensitive, non-invasive and simultaneous measurements of pulmonary ventilation, lung tissue microstructure as well as diffusion within the alveolus and into the alveolar tissue and red blood cells, providing new opportunities to more deeply investigate lung diseases and unravel enigmas in respiratory medicine.
REFERENCES

Figure 1. 129Xe MRI infrastructure requirements and image acquisition
(A) 129Xe hyperpolariser, gas delivery bag, radiofrequency coils (flexible vest and rigid birdcage), and patient set-up for MRI. (B) 129Xe gas, anatomical proton (1H), and CT airways (yellow) images co-registered (cyan), with 129Xe gas, tissue plus plasma and red blood cell (RBC) spectrum.