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This work is part of Ferguson’s PhD, integrating ecophysiology, thermal biology, and 20 

ecoimmunology. We measured insect immune performance across temperatures, finding that 21 

thermal performance does not consistently respond to acclimation among, or even within, 22 

physiological systems. Paradoxically, cold acclimation decreases low temperature immune 23 

performance, revealing that cold tolerance trades off with immunity in the cold. Thus, 24 

physiological systems differ in their responses to temperature, and conclusions about the impacts 25 

of climate change cannot be based on a single performance measure. 26 
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Abstract 32 

 33 

Winter is accompanied by multiple stressors, and the interactions between cold and pathogen 34 

stress potentially determine the overwintering success of insects. Thus, it is necessary to explore 35 

the thermal performance of the insect immune system. We cold-acclimated spring field crickets, 36 

Gryllus veletis, to 6°C for 7d and measured the thermal performance of potential (lysozyme and 37 

phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. 38 

Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25°C  to -2.1 ± 0.18°C, 39 

and chill coma recovery time after 72 h at -2°C from 16.8 ± 4.9 min to 5.2 ± 2.0 min.  Measures 40 

of both potential and realised immunity followed a typical thermal performance curve, 41 

decreasing with decreasing temperature.  However, cold acclimation further decreased realised 42 

immunity at low, but not high, temperatures; effectively, activity became paradoxically 43 

specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal 44 

responses between locomotor and immune systems, as well as within the immune system itself. 45 

We conclude that cold acclimation in insects appears to preferentially improve cold tolerance 46 

over whole-animal immune performance at low temperatures, and that the differential thermal 47 

performance of physiological responses to multiple pressures must be considered when 48 

predicting ectotherms’ response to climate change.  49 

 50 
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Introduction  52 

Ectotherms can respond to seasonal changes by maintaining homeostasis via phenotypic 53 

or developmental plasticity. In insects, the cues that govern acclimation (in the laboratory) or 54 

acclimatisation (in the field), such as temperature or photoperiod, often coordinate diverse 55 

physiological adjustments to suit a new set of environmental conditions (Harrison et al. 2012). 56 

For example, cold-acclimation of the beetle Dendroides canadensis elicits antifreeze protein 57 

synthesis, removal of ice nucleators (Olsen and Duman 1997), and modification of epicuticular 58 

waxes (Olsen et al. 1998) - all of which contribute to improved cold tolerance. In addition to 59 

cold, there are multiple abiotic and biotic stressors associated with winter (Williams et al. 2015), 60 

and these can select for thermal plasticity in multiple physiological systems. For instance, cold-61 

acclimation often increases desiccation resistance in insects, likely because of the high water 62 

vapour deficits experienced during overwintering (Sinclair et al. 2013; Terblanche et al. 2005). 63 

Biotic stressors, such as pathogens, are also likely to affect the success of insects at low 64 

temperatures (Hokkanen 1992; Riedel and Steenberg 1998; Webberley and Hurst 2002; Williams 65 

et al. 2015), yet the ability of insects to manage cold-related pathogen stress, and the role of 66 

phenotypic plasticity in this response, is unclear.   67 

Some insect pathogens are cold-active [e.g. fungi in the genera Beauveria and 68 

Metarhizium (Fernandes et al. 2008)], or have increased virulence at low temperatures [e.g. the 69 

bacterium  Yersinia entercolitica (Bresolin et al. 2006)]; thus there is capacity for these cold-70 

adapted pathogens to contribute to mortality of insects at low temperatures (Hokkanen 1992; 71 

Steenberg et al. 1995). However, cold exposure appears to upregulate the insect immune system, 72 

which may allow insects to respond to cold-associated pathogen stress (Sinclair et al. 2013). For 73 

example, cold exposure increases fungal resistance in Pyrrharctia isabella caterpillars (Marshall 74 



 
 

and Sinclair 2011) and adult Drosophila melanogaster (Le Bourg et al. 2009), and upregulates 75 

genes encoding antimicrobial peptides in both D. melanogaster (Zhang et al. 2011) and the 76 

solitary bee Megachile rotundata (Xu and James 2012). Further, this increased immunity appears 77 

to translate into fitness: water striders (Aquarias najas) with stronger immune responses have 78 

higher overwinter survival (Krams et al. 2011). Although cold-induced upregulation of immunity 79 

may be a non-adaptive by-product of responses to cold (Fedorka et al. 2013; Sinclair et al. 2013), 80 

the potential for conflicts between the energetic costs of immune responses (Ardia et al. 2012; 81 

Freitak et al. 2003; Schmid-Hempel 2003) and energy conservation in the cold (Sinclair, in press) 82 

instead suggest that the immune system is upregulated as an adaptive response to low-83 

temperature pathogen pressure (Irwin and Lee 2003; Sinclair, in press ; Williams et al. 2012). 84 

However, most studies have been performed upon re-warming from cold exposure, and do not 85 

necessarily reflect immune activity at low temperatures. Thus, to determine the ability of insects 86 

to combat low-temperature pathogen stress, we must first explore the low-temperature 87 

performance of the immune system, as well as the role of acclimation in shaping this 88 

performance. 89 

We expect the insect immune system to have reduced performance in the cold because it 90 

relies on cellular and enzymatic processes that are likely temperature-sensitive (Collazos et al. 91 

1994; Le Morvan et al. 1998; Marnila et al. 1995; Somero 1995). Indeed, phagocytosis and 92 

encapsulation decrease at 4 °C in diapausing pupae of the giant silk moth, Samia cynthia pryeri, 93 

although some immune function is maintained (Nakamura et al. 2011). However, this loss of 94 

performance has the potential to be mitigated through phenotypic plasticity, including the 95 

expression of cold-active isoforms of immune-related enzymes, or an increase in the 96 

concentration of cells and molecules necessary for an immune response (Angilletta 2009; 97 



 
 

Somero 1995). In either case, if there is an adaptive advantage to improved immunity at low 98 

temperatures, then cold-acclimation would be expected to modify the thermal performance of the 99 

immune system to increase activity at low temperatures (Angilletta 2009).  100 

Thus, to understand the potential interactions of cold and immune stress in insects, and to 101 

understand the role of biotic interactions in shaping ectotherm performance in a changing 102 

climate, it is necessary to explore the thermal biology of the insect immune system. We explored 103 

the thermal sensitivity and plasticity of the insect immune system by measuring the thermal 104 

performance of immune-related enzymes in vitro, and immune responses in vivo [i.e. potential 105 

immunity and realised immunity, respectively (Fedorka et al. 2007; Gershman 2008)] in warm- 106 

and cold-acclimated spring field crickets (Gryllus veletis). We used a short-term acclimation to 107 

explore the possibility of thermal plasticity in the immune system, as a first step in understanding 108 

how the thermal biology of the immune system might impact the ecology of overwintering 109 

insects. Cold acclimation differentially affected realised and potential immunity, in a direction 110 

that is not predicted by the whole-organism response to cold acclimation. We suggest that 111 

pathogen stress may be most prevalent upon re-warming from cold, and conclude that divergent 112 

thermal performance of distinct stress responses must be considered when predicting ectotherms’ 113 

responses to climate change. 114 

 115 

Material and Methods 116 

We studied the thermal biology of the immune system in the spring field cricket, Gryllus 117 

veletis. Gryllus veletis overwinters as a late-instar nymph in temperate North America 118 

(Alexander 1968), and has a cold acclimation response (Coello Alvarado et al. 2015).  Our 119 

cricket colony was derived from a population collected in Lethbridge, Alberta, in 2010, and were 120 



 
 

reared from egg to nymph at 25 °C (14 L:10 D) as described by Coello Alvarado et al. (2015). 121 

We haphazardly assigned female 6th instar nymphs (the overwintering stage) into individual 180 122 

mL clear plastic cups and provided ad libitum rabbit chow (Little Friends Rabbit Food, Martin 123 

Mills, Elmira, ON, Canada) and water, with cardboard shelters. We cold-acclimated (CA) 124 

individuals at 6 °C on a short light cycle (10 L: 14 D) or maintained them at rearing conditions 125 

(warm-acclimated, WA) for 7 d.  126 

 127 

Thermal limits of locomotor activity 128 

 We measured the critical thermal minimum (CTmin, the temperature at which an insect 129 

enters chill coma) following MacMillan and Sinclair (2011), and chill-coma recovery (CCR) time 130 

following MacMillan et al. (2012). Briefly, we cooled crickets at 0.25 °C/min from 22 °C to the 131 

temperature at which movement ceased. Similarly, we measured the critical thermal maximum 132 

(CTmax) by increasing temperature at 0.25 °C/min from 22 °C until we visually observed the 133 

onset of spasms (Lutterschmidt and Hutchison 1997).  For CCR, we cooled crickets at 0.25 134 

°C/min from 22 °C to -2 °C and held them at -2 °C for 72 h. Crickets were returned to room 135 

temperature and  we recorded the time taken to achieve a coordinated righting response. 136 

 137 

Potential Immune Response 138 

We collected haemolymph for measuring potential humoral immunity following Adamo 139 

(2004), and all measurements of potential immunity at different temperatures were tested on 140 

extracted hemolymph. We pierced the membrane under the pronotum and collected 2 μL of 141 

haemolymph with a micropipette. We mixed 2 µL of haemolymph with either 2 μL of 142 

anticoagulant buffer (98 mM NaOH, 186 mM NaCl, 1.7 mM EDTA, 41 mM citric acid, pH 6.8; 143 



 
 

for lysozyme activity) or 50 μL of phosphate-buffered saline [PBS; for phenoloxidase (PO) 144 

activity] and snap-froze it in liquid nitrogen, followed by storage at -80 °C. 145 

 To estimate the bactericidal activity of lysozyme, we followed Vilcinskas and Matha 146 

(1997), with some modifications. We added 4 µL of the haemolymph-anticoagulant-buffer 147 

suspension to 2 mm diameter wells on a petri plate containing Micrococcus lysodeikticus (luteus) 148 

agar (1 % agar; 67 mM potassium phosphate, pH 6.4, 0.1 mg/mL streptomycin sulfate; 5 mg/ml 149 

M. lysodeikticus). Plates were sealed with Parafilm® and incubated at one of 0, 6, 12, 18, 25 or 30 150 

°C (MIR-153 incubators, Sanyo Scientific, Bensenville, IL, US).We then measured the area of 151 

the cleared region around each well 24 and 48 h later using NIS Elements Imaging Software 152 

(Nikon Instruments Inc, Melville, NY, USA).  153 

 Total PO activity, which indicates a potential broad-spectrum immune response, was 154 

measured spectrophotometrically (Adamo 2004). Briefly, we mixed 25 μL of thawed 155 

hemoymph/PBS mixture with 70 μL alpha-chymotrypsin (1.3 mg/ mL in PBS) and incubated it 156 

for 20 min at room temperature (22 °C) before adding it to 0.9 mL of L-DOPA (4 mg/mL in 157 

PBS). The rate of increase in absorbance was measured over 60 min at one of 6, 12, 18, 25, or 30 158 

°C (Carey 100 Spectrophotometer with Peltier-effect Temperature Controller, Agilent, Santa 159 

Clara, CA, USA).  160 

 Higher haemolymph protein concentration is linked to stronger immune responses in 161 

insects, especially the melanisation response (Adamo 2004). To measure haemolymph protein 162 

concentration, we followed methods as described by Adamo (2004) with some modifications. 163 

Briefly, we used 10 μL of the haemolymph/PBS mixture in a Bicinchoninic Acid kit (BCA; Life 164 

Technologies, Carlsbad, CA, USA) and measured absorbance at 562 nm in a microplate 165 

spectrophotometer (SpectraMax, Molecular Devices, Sunnyvale, CA, USA). We then converted 166 



 
 

absorbance to concentration values using a standard curve created from bovine serum albumin.  167 

 168 

Realised Immune Response 169 

As an estimate of a broad-spectrum, realised immune response, we measured 170 

melanisation by inserting a 2 mm piece of nylon filament (Krams et al. 2011) under the 171 

pronotum and placing crickets at  0, 6, 12, 18, 25 or 30 ºC for 12 h. We removed the filament 172 

after 12 h, photographed it from two different angles at 30× magnification using a Nikon DSFI1 173 

camera (Nikon Instruments Inc. Melville, NY, USA) attached to a stereomicroscope, and 174 

determined the darkness of each filament using the average grey value calculated in ImageJ 175 

(Rasband 1997-2014). We calculated relative melanisation as 255 - the grey value, such that a 176 

higher number indicates more melanisation.  177 

We measured the in vivo ability of crickets to clear Staphylococcus aureus (strain 178 

Newman with chromosomally-encoded tetracycline resistance) from haemolymph following 179 

(Haine et al. 2008). Briefly, we diluted S. aureus (grown overnight at 37 °C in tryptic soy broth) 180 

to 1 × 109 CFU/mL in PBS and injected 2 μL of suspension into the thorax under the pronotum 181 

(Adamo 2004) via a 30 G needle. Following 24 h post-challenge at 0.5, 4, 12, 18, 25, or 30 °C, 182 

we homogenised whole crickets in 900 μL of PBS to ensure that we captured all remaining 183 

bacteria (including those associated with tissue). We diluted and spotted of the homogenate on 184 

tryptic soy agar (TSA) containing 2 μg/mL tetracycline and averaged the number of CFU over 185 

four replicate spots, following 24 h at 37 °C. We homogenised a subset of crickets 1 min 186 

following injection to obtain the true number of CFU injected and calculate percent clearance 187 

(Haine et al. 2008). Control crickets injected with sterile PBS did not demonstrate any bacterial 188 

growth on TSA containing tetracycline.  189 



 
 

 190 

Statistical analyses 191 

All analyses were performed in R v3.1.2 (Team 2010) and preliminary data exploration was 192 

conducted according to (Zuur et al. 2010). We compared CTmin, CTmax, CCR, and protein 193 

concentration between CA and WA crickets using Welch’s two-sample t-test. We compared the 194 

performance curves of immune activity between WA and CA crickets using ANOVA (Angilletta 195 

2006). Where necessary, response variables were square-root- (lysozyme, phenoloxidase), 196 

arcsine- (bacterial clearance), or log-transformed (melanisation) to satisfy the assumptions of the 197 

ANOVA. We assessed the assumptions of ANOVA by plotting residuals against fitted values to 198 

confirm homogeneity of variance, and standardised residuals against theoretical quantiles to 199 

assess normality (Crawley 2007).  We used polynomial contrasts (Lenth 2013) to compare means 200 

between warm and cold-acclimated crickets at each temperature.  201 

 202 

3. Results  203 

 204 

Thermal limits of locomotor activity 205 

 Cold-acclimation enhanced low temperature locomotor activity of G. veletis and 206 

shortened recovery time after cold exposure. The CTmin of WA crickets was significantly higher 207 

than that of CA crickets (t14.46 = 5.53, p < 0.001; Fig. 1A); however, there was no difference 208 

between the CTmax of WA and CA crickets (Fig. 1B; t5 = 0.11, p = 0.45). Chill coma recovery 209 

time was lower in CA crickets than WA crickets (Fig. 1C; t5.34 = 2.19, p = 0.04).  210 

 211 

Potential Immune Response 212 

Potential humoral immunity was sensitive to temperature but remained unaffected by acclimation 213 



 
 

(Table 1). Specifically, both lysozyme and phenoloxidase activities decreased with decreasing 214 

temperature in both WA and CA crickets (Fig. 2); however, there was no overall difference in the 215 

activity of either enzyme in WA compared to CA crickets (Table 1). Haemolymph protein 216 

concentration of CA and WA crickets did not differ significantly (t22 = 0.59, p = 0.28).  217 

 218 

Realised Immune Response 219 

Temperature also significantly affected realised immunity, including both bacterial 220 

clearance and melanisation (Table 1). In addition, and in contrast to potential immunity, 221 

acclimation had a significant effect on realised immunity (Table 1). Specifically, melanisation 222 

and bacterial clearance were decreased in CA crickets at low temperatures, but largely 223 

unchanged at warm temperatures (Fig. 3).   224 

 225 

Discussion  226 

 We explored the capacity for cold-acclimation of the immune system in G. veletis using 227 

an acclimation regime that improved locomotor activity at low temperatures [decreased CTmin 228 

and CCR, recognised proxies for cold tolerance in insects (Andersen et al. 2015)], but had no 229 

effect on heat tolerance (CTmax). Cold acclimation did not affect potential immunity nor realised 230 

immunity at higher temperatures; however, realised immunity decreased in the cold in CA 231 

crickets. We suggest that decreased activity in the cold may result from trade-off between some 232 

components of immune activity and other physiological responses initiated by cold acclimation.  233 

Theory suggests three ways by which the thermal performance of immunity could shift in 234 

response to acclimation, if increased low temperature performance were important in the cold: 1) 235 

a shift in the thermal performance curve (TPC) where Topt decreases (i.e. beneficial acclimation; 236 



 
 

Fig. 4A); 2) a shift in the TPC where Topt is unchanged but maximal activity is higher across all 237 

temperatures (i.e. colder is better; Fig. 4B); or 3) a reduction in thermal sensitivity, whereby the 238 

TPC encompasses a larger range of activity, but maximal activity at the Topt is lower [i.e. 239 

generalist vs. specialist; Fig. 4C (Angilletta 2009)]. However, we found that cold-acclimation 240 

resulted in a paradoxical narrowing of the TPC of realised immune responses in crickets, 241 

whereby activity was specialised to higher instead of lower temperatures, and the Topt and 242 

maximal activity at the Topt were unaffected (Fig. 3, 4D). Decreased performance in the cold may 243 

result from trade-offs between the increased energy demands of improving cold tolerance (e.g. 244 

production of cryoprotectants) and the immune system (Sinclair, in press).  For example, 245 

infection decreases CCR time in Drosophila melanogaster (Linderman et al. 2012), suggesting 246 

that immune activity conflicts with cold tolerance. Thus, cold acclimation may preferentially 247 

improve cold tolerance over whole-animal immune performance at low temperatures.   248 

In addition to a decrease in realised immunity, cold acclimation produced mismatches 249 

between potential and realised immunity. First, acclimation appeared only to decrease realised 250 

immune responses in the cold, while potential immunity remained unchanged. Realised immune 251 

responses, such as bacterial clearance, are generally mediated by the combined activity of 252 

haemocytes, enzymes, and antimicrobial peptides (Gillespie and Kanost 1997), while the 253 

potential immunity that we measured focused on the activity enzymes in isolation. Decreased 254 

realised immune responses that are not paralleled in potential responses suggest that cold 255 

acclimation has a stronger effect on cellular activity than it does on the activity of enzymes or 256 

antimicrobial peptides, although we caution that we did not measure all components of the 257 

immune system. Differences in potential and realised immune activity can create a disparate 258 

estimate of overall immunocompetence (Fedorka et al. 2007), yet also hint at the relative 259 



 
 

contributions of different immune components to protection against pathogens. In this case, 260 

overall immunocompetence may decrease in the cold (realised immunity), yet a basal level of 261 

protection may persist through the activity of enzymes and antimicrobial peptides (potential 262 

immunity).  We suggest that measuring multiple components of the immune system provides a 263 

more comprehensive picture of the effects of thermal acclimation on immune performance, and 264 

that both potential and realised responses should be considered when assessing the impact of the 265 

abiotic environment on immunity.  266 

Second, although PO activity and melanisation are linked as an immune response 267 

(González-Santoyo and Córdoba-Aguilar 2012) their thermal optima were disparate; PO activity 268 

peaked at 25 °C, whereas melanisation peaked at 18 °C, in both CA and WA crickets [similar to 269 

phagocytic capacity in mosquitoes (Murdock et al. 2012)]. The lower Topt of melanisation 270 

compared to that of PO activity appears to reflect a disconnect between the Topt, or thermal 271 

sensitivity, of different components of the overall melanisation response. Temperature is likely to 272 

drive the local adaptation of hosts and pathogens (Sternberg and Thomas 2014) and may have 273 

driven the selection of G. veletis immune performance to a thermal optimum lower than enzyme 274 

activity would predict. Thus, using thermal performance curves, we may gain insight into the 275 

evolution of thermal sensitivity and plasticity of immune activity, and can begin to predict the 276 

capacity for hosts to respond to pathogens under climate change scenarios.  277 

 Pathogen growth generally increases as temperatures increase (Harvell et al. 2002); thus, 278 

re-warming from cold exposure is likely to lead to an increase in pathogen pressure, and require 279 

an increase in immune activity. Despite decreased immune activity in the cold, realised immune 280 

activity in CA crickets was maintained at optimal temperatures, which suggests that immune 281 

activity may be required following, but not during, cold exposure. Seasonal immune activity in 282 



 
 

other ectotherms, including fish [e.g. Sparus aurata (Tort et al. 1998)] and frogs [e.g. Rana 283 

pipiens (Maniero and Carey 1997)], follows a pattern that reflects the effects of a short-term 284 

acclimation on immune activity in crickets; specifically,  immune activity decreases during the 285 

winter but rapidly recovers, and even increases beyond control levels, upon re-warming. In 286 

hibernators, such as the golden-mantled ground squirrel (Spermophilus lateralus), interbout 287 

euthermia is accompanied by an increase in immune activity, thereby allowing the animal to 288 

combat pathogens that have established in the cold (Prendergast et al. 2002). The thermal 289 

performance of immune activity in G. veletis following a short acclimation to low temperatures 290 

may thus reflect a seasonal pattern of immune activity in insects that fluctuates with seasonal 291 

shifts in pathogen pressure. 292 

The contrast between decreased immune activity in the cold and maintained immune 293 

activity at high temperatures suggests that fluctuating temperatures will affect the ability of cold-294 

acclimated insects to fight cold-active pathogens and survive at low temperatures. Transient 295 

increases in environmental temperature may facilitate a response to cold-active pathogens by 296 

allowing for increased immune activity. For example, the expression of genes encoding immune 297 

peptides in M. rotundata increases under warming provided by fluctuating thermal regimes 298 

(Torson et al. 2015). Conversely, increased immune activity under periods of re-warming is 299 

likely to decrease the energy available for responses to other stressors, such as cold. Further, 300 

immune activity can trade-off with components of fitness, such as growth (Rantala and Roff 301 

2005) and reproduction (Adamo et al. 2001; Ahmed et al. 2002); thus fluctuations in temperature 302 

may create conflict between the response to pathogens and fitness- or stress-related physiological 303 

processes. If climate change-related warming leads to an increase in both pathogen pressure and 304 

immune activity, both transient and seasonal periods of re-warming will affect the interactions 305 



 
 

between energy expenditure and pathogen response, thereby contributing to the impacts of cold 306 

and winter on insects. We do caution, however, that the acclimation used in our study does not 307 

reflect the type of long-term, seasonal acclimation that an insect would experience in preparation 308 

for overwintering (Tauber et al. 1986), and thus we are limited in using our results to predict the 309 

outcome of insect-pathogen responses in the wild.  310 

As global temperatures shift with climate change, it is increasingly important to 311 

understand the physiological capacity of organisms to respond to changes in their environment 312 

(Araújo and Luoto 2007; Chown et al. 2010). Ecological physiology often quantifies this 313 

capacity of ectotherms to respond to environmental change by measuring the thermal sensitivity 314 

and plasticity of one trait or system; for example, thermal limits to activity (Terblanche et al. 315 

2008) or reproduction (Cudmore et al. 2010). However, multiple abiotic and biotic pressures co-316 

occur, and we must instead consider what phenotypes are produced by the simultaneous activity 317 

of multiple physiological systems in response to these pressures. Increased cold-tolerance, 318 

coupled with decreased immune activity at low temperatures in cold-acclimated G. veletis, 319 

demonstrates that thermal plasticity was disconnected among and within physiological systems; 320 

this suggests that plasticity in one trait does not necessarily reflect the response of the whole 321 

organism to connected shifts in its abiotic and biotic environment. Thus, to predict the phenotype 322 

of an organism that will succeed under climate change scenarios, we must begin to measure 323 

multiple physiological traits that correspond to multiple, integrated pressures in a changing 324 

environment.    325 

 326 

Conclusions 327 



 
 

We show that cold acclimation improves cold tolerance in G. veletis, does not affect the 328 

activity of immune enzymes in vitro (potential immunity), and decreases realised immune 329 

activity at low temperatures. Thus, measures of whole-animal immune performance appear to 330 

trade-off with cold tolerance, and we suggest that pathogen stress may be more prevalent upon 331 

re-warming. Climate change will result in alterations to the interactions among multiple 332 

stressors, such as between temperature and pathogens (Todgham and Stillman 2013), and the 333 

thermal performance of the responses to these stressors will contribute to success under new 334 

environmental conditions. However, we show that thermal performance does not consistently 335 

respond to acclimation among – or even within – physiological systems. Therefore we caution 336 

against predicting responses to climate change based on thermal performance of a single 337 

physiological system. 338 
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Figures and Tables 526 

Fig. 1 Locomotor activity related to cold tolerance in warm- and cold-acclimated Gryllus veletis. 527 

(A) The critical thermal minima, or the temperatures at which crickets entered chill coma (n = 9 528 

WA, 8 CA). (B) The critical thermal maxima, or temperatures indicating the onset of heat spasms 529 

(n = 6 WA, 5 CA). (C) Time taken to recover from 72 h in chill coma at -2 °C (n = 5 per 530 

acclimation) 531 

 532 

Fig. 2 Potential immune activity in warm- and cold-acclimated Gryllus veletis. (A) Lysozyme 533 

activity in vitro, measured as the zone of inhibition of Micrococcus luteus from 24 h - 48 h (n = 534 

6-8 per acclimation, per temperature) (B) Total phenoloxidase activity measured in vitro as an 535 

increase in absorbance at 495 nm (n = 4-5 per acclimation, per temperature). Points represent 536 

mean ± SEM 537 

 538 

Fig. 3 Realised immune activity in warm- and cold-acclimated Gryllus veletis. (A) Melanisation, 539 

represented as a reverse grey value, of an implanted nylon filament (n = 4-5 per acclimation, per 540 

temperature) (B) The proportion of Staphylococcus aureus cleared from the haemolymph in vivo, 541 

24 h following inoculation (n = 4-8 per acclimation, per temperature). Points represent mean ± 542 

SEM. Asterisks indicate significant differences between warm- and cold-acclimated crickets, p < 543 

0.05 544 

 545 

Fig. 4 Thermal performance curves of the potential outcomes of cold-acclimation on immune 546 

activity. A) The Beneficial Acclimation Hypothesis B) The Colder is Better Hypothesis C) The 547 

Generalist-Specialist hypothesis D) Paradoxical narrowing of the TPC, representing 548 

specialisation of activity to temperatures not predicted by acclimation temperature 549 

 550 
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