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Abstract

Ruin theory studies the riskiness of an insurance portfolio by investigating the evolution

of an insurer’s surplus. The existing models often assume stationary increments of the

surplus process, which is not always appropriate to describe the actual experience. In this

thesis, we consider some modifications that are inspired by a real-life one-year term auto

insurance data set to the existing risk models and investigate how these modifications

affect ruin theory results.

We first explore potential surplus modelling improvements by investigating how well

the available models describe an insurance risk process. To this end, we obtain and ana-

lyze a real-life data set that is provided by an anonymous insurer. Based on our analysis,

we discover that both the purchasing process and the corresponding claim process have

seasonal fluctuations. Some special events, such as public holidays, also have impact

on these processes. In the existing literature, the seasonality is often stressed in the

claim process, while the cash inflow usually assumes simple forms. We further suggest a

possible way of modelling the dependence between these two processes. A preliminary

analysis of the impact of these patterns on the surplus process is also conducted. As

a result, we propose a surplus process model which utilizes a non-homogeneous Poisson

process for premium counts and a Cox process for claim counts that reflect the specific

features of the data.

Next, we study a risk model with stochastic premium income. It is assumed that both

the premium arrival process and the claim arrival process are modelled by homogeneous

Poisson processes, and that the premium amounts are modelled by independent and

identically distributed random variables. After reviewing various known results of this

model, a simulation approach for obtaining the probability of ultimate ruin based on

importance sampling is derived. We demonstrate this approach by examples where the

distribution of the sampling random variable can be identified. We then give other

examples where we use fast Fourier transform to obtain an approximation of the sampling
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random variable. The simulated results are compared with known results in the existing

literature.

In the last part of the thesis, we consider a risk model where both the premium income

and the claim process have seasonal fluctuations. We obtain the probability of ruin based

on the simulation approach presented in Morales (2004). We also discuss the conditions

that must be satisfied for this approach to work. We give both a numerical example that

is based on a simulation study and an example using a real-life auto insurance data set.

Various properties of this risk model are also discussed and compared with the existing

literature.

Keywords: Insurance, premium, risk theory, seasonality, simulation, surplus process.
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Summary for Lay Audience

Insurance companies operate by charging their customers premiums, investing these pre-

miums in the financial market, setting aside a sufficient amount of funds to pay out

claims if the customers suffer certain losses. An insurance company must hold sufficient

reserve so that it can settle claims at any given time. If the insurance company is not

able to pay a claim, we say the insurance company is ruined. Ruin theory is a branch

of actuarial science that studies an insurer’s insolvency risk. A key component of such

studies is to build a model to describe how the available funds to the insurer, or the

surplus, changes over time. In the existing literature, many models have been built and

various conclusions have been obtained.

In this thesis, we investigate how well the existing models fit the actual data. To this

end, we obtained and analyzed a real-life insurance data set. We discovered that both

the premium income and the claim payment have seasonal fluctuations. Some special

events, such as major public holidays, also have impact on the cash flow of an insurer.

We demonstrate how these features affect the insurance company’s insolvency risk via

a simulation example. We then study two different models, each featuring one of the

characteristics of the data set. Specifically, we study a model under which the premium

income is stochastic, and a model under which both the premium income and the claim

payment have seasonal fluctuations. We show how to obtain the probability of ruin

under these models via simulation. The behaviours of these models are demonstrated by

numerical examples.
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Chapter 1

Introduction

Uncertainty is an inherent trait of human lives. An individual could suffer loss or injury

when adverse events happen. The possibility of such consequences is called risk. The

practice of pooling and redistributing risks to protect against contingent financial loss

has a history of many centuries. With the development and maturity of the insurance

industry followed the need for rigorous study of an insurer’s financial risk, that is the

possibility of loss due to disadvantageous events. An insurer’s insolvency risk is especially

of interest, that is the possibility that the insurer is unable to completely fulfill its future

financial obligations. These studies are now known collectively as ruin theory or risk

theory. The earliest attempt in this field is attributed to Lundberg (1903) who proposed

what is now known as the classical compound-Poisson risk model. Under this model, the

funds available to an insurer, or the surplus, are modelled by a stochastic process

U(t) = u+ ct−
N(t)∑
k=1

Yk, (1.1)

where u is the initial surplus, c is the premium rate, N(t) is a homogeneous Poisson

process that counts the number of claim arrivals up to time t, and Yk is the amount of

the kth claim arrival. No investment income is considered under this model. Figure 1.1

gives a sample trajectory of this process.

1



2 Chapter 1. Introduction

t

U(t)

0

u

T

Figure 1.1: A sample trajectory of the classical compound-Poisson model

A negative surplus at any given time implies that the insurer does not have sufficient

funds to settle the last claim. In this case, we say the insurer experiences ruin. The

time of ruin is defined as T := inf{t > 0 : U(t) < 0}. A key quantity of interest is the

probability of ruin,

ψ(u) = P{T <∞|U(0) = u }.

Given that insurers usually charge a sufficiently large premium, the surplus process (1.1)

has a positive drift and hence the probability of ruin is less than 1. Many ruin theory

results under the classical model have been derived using probabilistic arguments. Over

the years, many researchers attempted to generalize the surplus process and make it

more pertinent to the actual practice. One notable attempt in this direction was made

by Andersen (1957), where a renewal process is used to model the arrival of claims. More

recently, many other extensions to the classical model have also been considered, see,

for example, Schlegel (1998) who considered a risk model with a perturbation process,

Morales (2004) who considered a risk model with periodic claim arrival intensity, Al-

brecher et al. (2011) derived explicit ruin formulas for models with dependence among

claim sizes and among claim inter-occurrence times, Sendova et al. (2018) where the
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authors studied the impact of a constant dividend barrier under different risk processes

with Parisian ruin, Yang et al. (2020) studied threshold dividend strategy under the dual

Lévy risk model, among many others.

Since the advent of risk theory more than a century ago, many external factors have

changed fundamentally. The insurance market has evolved and matured, and many new

insurance products emerged. These new insurance products cover distinct perils and

have drastically different cash flow patterns. The financial market has developed. New

financial instruments have been designed and standardized, giving insurers higher flexi-

bility to invest and to manage their financial risk. Consumer behaviour today is different

from the 1900s, which affects all aspects of the economy. The changes in the physical

environment have a strong impact on insurance practice. For instance, climate change

alters the frequency and the severity of natural disasters, posing challenges to catastrophe

insurance and property and casualty insurance. See, for example, the Actuaries Climate

Index1 for a monitoring tool of climate trends. Furthermore, the regulatory system is

constantly developing. The goal of insurance regulation is focused primarily on solvency.

This requires insurers to have a clear understanding of their assets and liabilities. All

these changes require us to have better models to describe the operation of an insurer to

better understand the risks an insurer takes.

The rapid advancements of information technology enabled storing and analyzing

insurance data. One would be able to investigate how well the existing risk models

describe the actual insurance practice with the help of data. Regrettably, most insurance

data sets remain proprietary. Openly accessible insurance data sets are scarce and often

contain only partial information on the business. For example, a compilation of insurance

data sets is given in Dutang and Charpentier (2020). However, most insurance data sets

contained in this R package have only claim information of an insurer. Furthermore,

the data sets are often aggregated on an annual basis, meaning the timing of the claim

1url: https://actuariesclimateindex.org/home/
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occurrences is not known. From a risk theory point of view, the granularity of these data

sets is not sufficiently fine for validating existing risk models. Assuredly, an appropriate

insurance data set containing all the necessary information is valuable to a researcher and

can inspire new research. Some recent examples of research supported by real-life data set

include a study of a fire insurance data set using a Cox process in Albrecher et al. (2021),

and a study of an auto insurance data set using a Markov-modulated non-homogeneous

Poisson process in Avanzi et al. (2021a).

We start this thesis by analyzing a real-life insurance data set. We obtained the

data set from an anonymous insurance company. The data set contains one-year auto

insurance records from the year 2013 to the year 2015. The sizes and the arrival times

are recorded for both premiums and claims, making this data set appropriate for fitting

a risk model. To investigate how well the existing models describe the actual data, we

conducted an exploratory data analysis, which revealed the following characteristics:

• Seasonal effects are observed for both premium income and claim payments. For

this specific data set, both the volume of insurance sales and the volume of claims

are higher in winter and lower in summer. The length of one cycle is approximately

one year. This indicates that it may be appropriate to consider a periodic structure

in the risk model.

• The variability among premium amounts is high. This suggests that another

stochastic process may be utilized to model the premium income.

• Both the premium and the claim processes exhibit increasing intensities, indicating

that the insurance company grew during the study period.

• Extreme values are observed for both premium amounts and claim sizes. This

means that both distributions have heavy tail property, meaning extreme values

are likely to happen.
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• Some other external factors, such as major public holidays, have impact on the

surplus process. For this data set, we observe elevated volume of sales prior to

major public holidays.

To the authors’ knowledge, explicit solutions under risk models featuring these charac-

teristics are usually difficult to obtain. In fact, the derivation of quantities of interest

under mathematically tractable models often relies on the fact that the surplus process

has stationary and independent increments, meaning it essentially restarts at each claim

arrival with a new initial surplus. Given the features of the data set, these models may

not always be appropriate.

For models with the aforementioned features, some results have been derived in the

existing literature. These works are reviewed in Section 3.1 and Section 4.1 of this thesis.

These theoretical results usually concern the bounds and some asymptotic properties of

the probability of ruin. Some of these works studied the Gerber-Shiu function under

different models and derived equations satisfied by the Gerber-Shiu function. Explicit

expressions are derived for special cases, such as the case with exponentially distributed

claim sizes. Although such results provide a great deal of insight into how these models

behave, it remains challenging to implement the results in practice. Practitioners may

find it difficult to compare different risk models and fine-tune them to fit their needs,

much less use these models to assist risk management. In this thesis, we attempt to

incorporate different characteristics of the data set and provide intuitive methods to

investigate the impact of these features.

The rest of this thesis is structured as follows. In Chapter 2, we introduce and

analyze a real-life insurance data set. Based on both exploratory analysis and quantitative

methods, we summarize the characteristics of the data set. We suggest a possible way

of modelling the dependence between the premium arrivals and the claim arrivals. We

demonstrate how these features affect the riskiness of a portfolio by a simulation study

of the probability of ruin within finite time horizon. Inspired by the findings here, we
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consider two different risk models in Chapter 3 and Chapter 4, each incorporating one

feature of the data set. In Chapter 3, we consider a risk model with stochastic premium

income. After reviewing the results in the existing literature, we derive an estimator based

on importance sampling to obtain the probability of ruin. For cases where the importance

sampling distribution is not easily identifiable, we propose to use fast Fourier transform as

an approximation. Numerical examples are given to illustrate various results. In Chapter

4, we propose a risk model whose premium rate is periodic. After proving the equivalence

of this risk model and the risk model proposed by Morales (2004), we demonstrate how to

obtain the probability of ruin using the method therein. We also identify the condition

that must be satisfied for this approach to work. We also fit different risk models to

the data set for comparison. Finally, we end with conclusions and discussions of future

research topics in Chapter 5.



Chapter 2

Some observations on the temporal

patterns in the surplus process of an

insurer

2.1 Introduction

Modelling the cashflows of an insurer is the foundation of a substantial amount of actu-

arial research. Among many different branches of actuarial science that require a surplus

process model, ruin theory is a branch that studies the risks leading to and resulting

from possible insolvency of an insurer. The classical ruin model, also known as the

compound-Poisson risk model, is given by

U(t) = u+ ct−
N(t)∑
i=1

Yi, u ≥ 0,

where u represents the initial surplus of the insurer, c is the continuous premium rate,

N(t) is a counting process with initial value N(0) = 0 which counts the number of claims

up to time t, and Yi is the ith claim severity. Under the classical model, N(t) is a

homogeneous Poisson process. The homogeneous Poisson process has some properties

7



8 Chapter 2. Observations on the surplus process

that make mathematical analysis simpler compared to other counting processes. This is

why it has been thoroughly studied. See, for example, Lundberg (1903), Cramér (1955),

Dickson (1992), Gerber and Shiu (1998), and Lin andWillmot (2000) among many others.

Over the years, this model has been extended in many directions. In particular,

Cramér (1955) introduced an aggregate premium process to replace the deterministic

premiums. In 1957, Sparre Anderson proposed to use a renewal process for the claim

counting process. Asmussen (1989) introduced a Markovian environment where the claim

inter-arrival times, the claim sizes and the premiums were influenced by an external

Markovian process. Embrechts and Schmidli (1994) studied a risk model where borrow-

ing, investment and inflation were incorporated. Yang and Zhang (2001) proposed to

model the insurer’s surplus by a spectrally-negative Lévy process. Lin et al. (2003) intro-

duced an absorbing barrier to model a dividend strategy. Subsequently, Lin and Pavlova

(2006) extended this model to a threshold dividend strategy. Albrecher and Boxma

(2004) and Boudreault et al. (2006) explored dependence structures linking interclaim

times and claim amounts. Dassios and Wu (2008) allowed the insurer to have negative

surplus for a fixed amount of time called Parisian delay. These are all theory-driven

extensions of the classical ruin model.

In this chapter, we offer some data-driven extensions of the classical model. We

study two data sets containing premium payments and claim payments for auto insurance

policies. The goal of our study is to verify to what extent the assumptions in the classical

ruin model and its variants, especially the assumptions on the counting processes, reflect

the main features exhibited by the data.

The first data-driven modification of the classical model that we propose is related

to the aggregate premiums. Namely, under the compound Poisson surplus process, the

cumulative premium at time t is assumed to be equal to ct, which implies that the

insurer collects premiums at a constant rate. This condition is also assumed in most

of the ruin theory research. In practice, business growth is standard, i.e., insurers sell
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policies at increasing rates. This is supported by the data that we analyze in this paper.

Moreover, our studies reveal seasonality in the premium process. These characteristics

would alter the rate at which the insurer collects premiums. These findings agree with

findings presented in previous works, such as Ellis (1974), where the author analyzes

the time patterns of an American life insurance product. To model these features, it

may be appropriate to choose another stochastic process for the premium income. The

major theoretical advances in this direction come from the model proposed by Cramér

(1955) where the premium process is a compound-Poisson process. This model has been

studied in further depth by Boikov (2003), Labbé et al. (2011), Zhao and Yin (2012)

and several others. After analyzing our data, we propose to generalize the aggregate

premium process by replacing the homogeneous Poisson premium-counting process by a

non-homogeneous Poisson process.

Secondly, we show that similar behaviours are also exhibited in the claim process.

Consequently, we explore how this model should be further adapted to reflect the specific

features of the data. This choice of a claim-counting process is supported by the studies

of Lu and Garrido (2005) who demonstrate that such a model is an appropriate fit to

hurricane data. Moreover, as noted in Beard et al. (1984) and Daykin et al. (1994),

the insurer’s risk process is often affected by long-term trends and short-term variations:

features that are also prominent in our data, which exhibits a notable upward trend and

seasonality. Our choice of claim-counting process is further supported by Morales (2004)

who demonstrates how seasonality may be incorporated in a non-homogeneous Poisson

process.

Finally, incorporating the policy purchasing process and the claim process, we propose

a new surplus process model. Special consideration is given to the dependence between

the purchasing and the claims. Under this new framework, the claim counting process

becomes a Cox process, or doubly stochastic Poisson process, which has been constructed

via different approaches in the existing literature, see for example Asmussen (1989),
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Guillou et al. (2015), Albrecher et al. (2021), and Avanzi et al. (2021a). This framework

provides an intuitive way of incorporating the risk exposure born by the insurer into

the surplus process model, and allows for separate consideration of time patterns in

the purchasing process and the claim process. A comparison of goodness-of-fit between

different candidate models shows that the proposed model captures more of the exhibited

features in our data sets than other models that have been considered in the past. A

simulation study is also conducted to evaluate some quantities of interest under the new

model.

It should be noted that we are not aiming at providing an in-depth statistical analysis

of the data; this should be done in a subsequent study. Instead, we want to verify to what

extent theory-driven ruin models are supported by the data that we have. Subsequently,

we suggest ways of improving the existing models that would account for specific features

of the data. Again, further theoretical study of this model is delegated to subsequent

works.

this chapter is structured as follows. The data set is described briefly in Section

2.2. In Section 2.3, we study temporal patterns of the premium-counting and claim-

counting processes implied by the data sets. We propose a new surplus process model

to incorporate the characteristics that we find. In Section 2.4, we obtain some ruin

theory results using simulation. We also compare the proposed model with some existing

models. Conclusions are drawn in Section 2.5.

2.2 Concise description of the data set

We obtained two data sets for the purpose of this chapter. Both data sets are provided

by a regional insurance company who wishes to remain anonymous.

The first data set contains detailed information on the timing of the cash flows,

including the timing of premium payments and claim payments. Consequently, the first
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data set is useful for building counting processes, which is the main goal of this chapter.

For this reason, the first data set is used extensively in this chapter. We present this

data set in this section.

The second data set is from a different region. It contains more details on the pre-

mium, such as when the premium was paid, and when the coverage started. Since it

lacks necessary details on the claim payments, it is not used for the purpose of building

counting processes in this chapter. Instead, it is used to validate the assumptions we use

in the modelling process. This data set is described in Subsection 2.3.3.

The first data set contains 54,218 records of a one-year auto-insurance policy. The

coverages of these policies started between January 1, 2013 and December 31, 2015. The

policies are bundles of compulsory third-party liability coverage and additional coverage

chosen by the policyholder. The covered perils include damage suffered by a third party

and damage suffered by the policyholder.

The recorded information is:

• Vehicle identifier that uniquely identifies the vehicle.

• Premium is the single premium for the policy. The premium is paid in a lump sum.

• Premium date is the date when the premium was collected.

• Accident date is the date when an accident occurred. There are multiple records

associated with the same policy if multiple accidents occur during the effective

period.

• Claim date is the date when the claim was paid out.

• Claim amount is the full or partial amount that was paid to the policyholder to

cover accident-related expenses.

The exact effective dates of these policies are not known, only the years in which these

policies became effective are recorded. We use the premium date as a proxy to calculate

the exposure at any given time.

This data set provides detailed information on premium date and claim date. Hence
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it is useful for building models for the premium-counting process and the claim-counting

process. Although it is not the goal of this chapter and is not performed in this chapter,

we may also build models for premium sizes and claim severities from recorded premium

amounts and claim sizes. From ruin theory perspective, this should be sufficient to fit a

risk model.

A brief summary of the first data set is given in Table 2.1.

Table 2.1: Summary of the first data set

Year Number of records Number of claims
2013 13,180 4,442
2014 17,632 5,527
2015 23,406 4,792

It may be further deduced that, based on the vehicle identifier, 6,152 customers

who purchased this policy in 2013 also purchased a policy in 2014; 9,223 customers who

purchased this policy in 2014 continued their coverage in 2015. There are 4,808 customers

who appeared in all three years.

2.3 Characteristics deduced from the data sets

The second data set provides much more details on the timing of premiums, but little

information on accident time and claim sizes. As a result, unless specifically stated, the

following conclusions are all deduced from the first data set.

Specifying the premium process and the claim process should be sufficient for mod-

elling the surplus process as the latter can be derived directly from the first two processes.

2.3.1 Characteristics of the premium arrival process

To verify how appropriate the classical ruin model is with respect to real premium pro-

cesses, we first examine the premium process of our data. In the classical model, this
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process is simply represented by a straight line ct. Using the data, the cumulative pre-

mium over time may be easily obtained. A plot is given in Figure 2.1.
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Figure 2.1: Cumulative premium with dashed auxiliary lines to show the convexity of
the plot

Two dashed parallel auxiliary lines are added to emphasize the convexity of the cu-

mulative premium. The convexity in the plot suggests that the insurer collects premium

at an increasing rate. Increasing premium amount and/or increasing purchasing rate

may cause the convexity that is observed on the graph. To investigate whether there

is a change in the premium amount, we group the data by policy year and analyze the

premium distribution for different years. The empirical distributions of the premiums

are given in Figure 2.2.
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Figure 2.2: The empirical distribution of the premium sizes for different years

There is no evidence from the empirical distribution that the premiums are different
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for different years. More specifically, a summary of the data is given in Table 2.2.

Table 2.2: Summary of premium sizes by year

Year 1st quartile Median Mean 3rd quartile
2013 2282 3047 3668 4392
2014 2290 3039 3593 4363
2015 2370 3084 3571 4364

We may conclude then that the premium amount does not change over time, as all

these statistics essentially point in that direction. It is also noteworthy that the inflation

rate in the region where the insurer operates was relatively low during the studied period

(1% − 2% annual inflation rate, source: World Bank). The impact of inflation on the

premium amounts over such a short period is negligible.

To check the trend in the purchasing process, we first investigate the daily sales of the

policy which are illustrated in Figure 2.3. Since most sales happened during workdays,

we see a strong weekly pattern. To show the yearly fluctuation, a 7-day moving average is

added. The figure shows significant time structures, suggesting a more flexible premium

income model would be more realistic.
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Figure 2.3: Left: Observed daily sales of the policy with 7-day moving average; Right:
Observed cumulative sales of the policy, vertical short lines indicate public holidays

One way to extend the classical risk model is to use another compound Poisson process
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for the premium income. This model was proposed at the beginning of the 21st century,

and has since generated some research. See, for example, Boikov (2003), Labbé and

Sendova (2009), and Temnov (2014). We extend the model considered in these works by

using a non-homogeneous Poisson process to allow for seasonal variations.

Different algorithms are developed to estimate the intensity function of a non-homogeneous

Poisson process. For early references, see for example, Leemis (1991), Arkin and Leemis

(2000), and Henderson (2003). Asymptotic properties of these estimators are derived in

those works. Chernobai et al. (2007) demonstrated that when dealing with one realiza-

tion of a non-homogeneous Poisson process, the cumulative number of arrivals can be

used as an estimate of the cumulative intensity function. A detailed algorithm is also

given therein. Using daily data, the plot of the estimated cumulative intensity function

is given in the right panel of Figure 2.3. On this plot, we use vertical short solid lines to

indicate public holidays in the region where the insurance company operates.

Some patterns of the data set are immediately noticeable on Figure 2.3. There is a

clear yearly cycle in the sales of the policy, which means that the premium income is

not uniform in a year. The estimated cumulative intensity function is convex, suggesting

that the corresponding intensity function is increasing. Peaks are also observed around

major public holidays, suggesting that these events affect the premium income.

We may also carry out quantitative analysis to investigate the temporal patterns of

the purchasing process. We want to emphasize that the goal here is to simply observe

whether there is any temporal pattern in the purchasing process. Using more sophisti-

cated predictive models may be useful in prediction problems, but the complexity of such

models blurs the characteristics of the data.

To estimate the cumulative intensity function, we first apply a polynomial regression

model. We obtain the smoothly increasing component of the cumulative intensity func-

tion, and by subtracting this growth component from the overall intensity, we obtain the
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remaining cyclical component. To this end, we fit the curve

f(t) = γ0 + γ1t+ γ2t
2

by minimizing the squared error.

We also apply certain time-series techniques to separate the long-term trend and

the seasonality. Detrending is a topic that is explored in the time-series literature and

that is often needed in practice. Different algorithms are developed, and many of them

are readily available in various statistical programming languages. We use the mFilter

package in R for our analysis. The filters we use are

• Hodrick-Prescott filter. This model assumes that a time series yt can be viewed as

the sum of a trend component gt, and a cyclical component ct,

yt = gt + ct + ϵt, t = 1, . . . , T.

In addition, the trend component is assumed to be smooth. The objective is to

find the trend component

gt = argmin

{
T∑
t=1

(yt − gt)
2 + λ ·

T−1∑
t=2

[(gt+1 − gt)− (gt − gt−1)]
2

}
,

where the positive parameter λ controls the smoothness of gt. A closed-form ex-

pression for gt exists and may be expressed as matrix calculation. For the detailed

algorithm, see Hodrick and Prescott (1997). Ravn and Uhlig (2002) showed that

the parameter λ should be adjusted according to the fourth power of the frequency

of observations. Based on this result, we choose λ = 1600 × 904 = 1.04976 × 1011

for our daily data.

• Christiano-Fitzgerald filter. This is a special case of the band-pass filters. It is an

approximation to the ideal infinite band pass filter. This method analyzes cycles

with different frequencies in a time series data set. By setting cutoff frequencies, we

may separate short-term shock and long-term trend. For details, see Christiano and
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Fitzgerald (2003). As it is clear from Figure 2.3 that the period of the seasonality

is approximately one year, we define cycles with period greater than 365 days to

be long-term trend, and other cycles to be seasonality.

The seasonality and long-term trend of the cumulative intensity function captured by

different algorithms are given in Figure 2.4.
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Figure 2.4: Left: Comparison of the long-term trend of the cumulative intensity function
of insurance policy purchases captured by different algorithms. Right: comparison of the
seasonalities of the cumulative intensity function of insurance policy purchases captured
by different algorithms, doted vertical lines mark the public holidays in the region where
the insurance company operates.

The long-term trends captured by different algorithms are practically identical. The

convexity of the trend implies that the insurance company sells policies at an increasing

rate. Both the HP filter and the CF filter yield virtually identical seasonalities, while

the polynomial regression model yields a slightly different result. This is expected since

the HP filter and the CF filter are non-parametric estimates and hence, they tend to be

more flexible. All three curves have similar shapes. The derivatives of these curves are

positive at the beginning and at the end of a year, and are negative in the middle of a

year. Since the derivative of the cumulative intensity function is the intensity function,

this result means that less policies are sold in the middle of a year compared to other
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times of the year.

We observe that there are peaks on the seasonality curve in Figure 2.4. Although

public holidays usually fall on the same dates from year to year and hence, are themselves

periodic, we may separate these events from the overall seasonality and quantify their

impact. Two types of holidays are observed in the region where the insurance company

operates. Most public holidays are 3 days in length, i.e., long weekends, while two

holidays are 7 days in length. We only consider major public holidays that are 7 days in

length. As these holidays are longer, they have larger impact on consumer behaviours.

We study the change of policy purchases for three periods around a holiday: 7 days

prior to a public holiday, during public holidays, and 7 days immediately after a public

holiday. We choose 7 days to eliminate possible weekly fluctuation in purchases. Figure

2.5 gives an illustration of these three periods assuming that October 1 – October 7 is a

public holiday.

September 24 October 1 October 8 October 15

pre-holiday holiday post-holiday

Figure 2.5: Illustration of three time periods around a public holiday, assume October 1
- October 7 are public holidays

Analyzing the impact of a specific event is frequently conducted across different dis-

ciplines. For count data, a generalized linear model is often used. Since we use a non-

homogeneous Poisson process to model the sales of the policy, it is natural to use a

Poisson regression model. This approach and its variations are explored in many works,

see for example Chang et al. (2018). In light of our findings so far, we incorporate in

our analysis components that reflect the long-term trend, the seasonality, the impact of

weekends, together with the impact of public holidays. We assume
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
H(t) ∼ Poisson(ζ(t))

log ζ(t) = β0I0(t) + β1I1(t) + β2I2(t) + β3I3(t) + γ0 + γ1t+ γcos cos
(

2π
365
t
)
+ γsin sin

(
2π
365
t
)
,

(2.1)

where H(t) is the number of policies sold in day t, and I0, I1, I2, I3 are indicator functions

defined as

I0(t) =


1 day t is in a pre-holiday period

0 otherwise

,

I1(t) =


1 day t is holiday

0 otherwise

,

I2(t) =


1 day t is in a post-holiday period

0 otherwise

,

I3(t) =


1 day t is weekend

0 otherwise

.

The maximum likelihood estimates of these parameters are given in Table 2.3. The

p-values for the null hypothesis that the coefficients equal to 0 are also present in this

table.

The values of βi, i = 0, 1, 2, 3, capture the impact of public holidays and weekends.

On average, there is a 31% increase of the daily policy arrivals compared to the base level

prior to a holiday, an 84% decrease during a holiday, and an 8% decrease after a holiday.

These fluctuations explain the peaks that we observe in Figure 2.4. We also notice that

there is a 67% decrease on weekends, which explains the pattern observed in Figure 2.3.

The phase of the seasonality may be obtained by the estimates of γcos and γsin. By
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Table 2.3: Estimated results with corresponding significance level obtained using Poisson
regression. Significance level: *** p-value < 0.1%, ** p-value < 1%, * p-value < 5%.

Coefficients Estimate exp(Estimate) p-value Significance level
β0 0.2701 1.310039 < 2× 10−16 ***
β1 -1.8147 0.162894 < 2× 10−16 ***
β2 -0.0872 0.916525 0.000175 ***
β3 -1.1192 0.326527 < 2× 10−16 ***
γ0 3.5940 36.37954 < 2× 10−16 ***
γ1 0.0008 1.000787 < 2× 10−16 ***
γcos 0.2486 1.282246 < 2× 10−16 ***
γsin 0.0062 1.006248 0.114185

trigonometry, we have

γ̂cos cos

(
2π

365
t

)
+ γ̂sin sin

(
2π

365
t

)
= α cos

(
2π

365
t+ ω

)
,

where

ω = arctan

(
− γ̂sin
γ̂cos

)
= −0.0249 ≈ −0.0079π, (2.2)

α =
γ̂cos

cos(ω)
= 0.2487.

Equation (2.2) indicates that the seasonality component is a cosine function. This is

consistent with the seasonality obtained in Figure 2.4.

Using the estimates in Table 2.3, the intensity function (2.1) becomes

log ζ(t) = 0.27I0(t)− 1.81I1(t) +−0.09I2(t)− 1.12I3(t)

+ 3.5940 + 0.0008t+ 0.2487 sin

(
2π

365
(t+ 89.8)

)
.

In this section, we considered different components in the purchasing process. As

shown in Figure 2.3, Figure 2.4, and subsequent analysis, the intensity function of the

Poisson process should incorporate long-term trend, seasonalities, and impact of public

holidays. This analysis could be performed periodically to ensure the estimate reflects

the latest trends.
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2.3.2 Characteristics of the claim count process

We next analyze the patterns exhibited by the claim process over time. In this subsec-

tion, we study the claim process as a stand-alone process. In Subsection 2.3.3, we explore

a possible relationship between the purchasing process and the claim process. Analyzing

and improving the claim process of a risk model is the focus of a great deal of research.

As shown in many papers, the seasonal trend in the claim process is prominent. As

the technique we use here is identical to that in Subsection 2.3.1, we omit the technical

details and simply state the results.

Table 2.4 summarizes the claims by year and season. As shown in this table, more

claims happened in winter. A chi-square test on the null hypothesis that the claim arrivals

are uniformly distributed throughout a year yields a test statistic of 117.02 with 3 degrees

of freedom. The corresponding p-value is almost 0. We reject the null hypothesis that

the claims are uniformly distributed within a year and believe that the claim frequency

varies by season.

Table 2.4: A summary of the claims by season, spring: March–May, summer: June–
August, fall: September–November, winter: December–February

Year Spring Summer Fall Winter Total
2013 1,072 1,003 1,094 1,273 4,442
2014 1,334 1,221 1,335 1,637 5,527
2015 1,088 1,165 1,211 1,328 4,792
Total 3,494 3,389 3,640 4,238 14,761

Percentage 23.67% 22.96% 24.66% 28.71%

Using the same algorithms, the estimated cumulative intensity function and the sea-

sonality are plotted in Figure 2.6. The cumulative intensity function is again convex,

which means that claims are paid more and more frequently. A possible explanation

is explored in Subsection 2.3.3. Also, there are more claims in winter than in summer,

which is consistent with Table 2.4.
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Figure 2.6: Left: estimated cumulative intensity function. Right: seasonal patterns of
the claim process

We notice that the seasonal pattern in the first year is different from that in the

last two years. As mentioned in Section 2.2, only policies that became effective after

the year 2013 are included in the data set. As a result, the claim information for the

policies that became effective in the year 2012 but extended to the year 2013 are not

available. In other words, the data set does not contain all the claims for the year 2013.

The incomplete claim information needs to be considered in tandem with the purchasing

information to be reasonable. We commence this analysis in the next section.

2.3.3 Relations between the two processes

In this subsection, we investigate a possible relation between the two counting processes.

We discover in Subsections 2.3.1 and 2.3.2 that both counting processes have increasing

intensity, and that seasonal patterns are present in both processes. It is natural that both

the arrival of premiums and the arrival of claims become more frequent as the business

grows. On the other hand, it is not immediately evident whether the same driver causes

the seasonalities in both premiums and claims. Indeed, if the insurer is responsible for

more policyholders for some time of a year, then one would expect more claims in that
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period. In view of this, we explore the evolution of the exposure of the insurer over time.

This is a natural extension to the collective risk model, see Chapter 9 of Klugman et al.

(2012).

Let M(t) denote the non-homogeneous Poisson process for the premium arrivals, let

µ(t) be the intensity function of M(t). Based on the results in Subsection 2.3.2, let

µ(t) = κ+ g(t) + s(t),

where κ is a constant representing the initial business scale, g(t) and s(t) are two generic

functions representing the growth component and the seasonality component respectively.

Let s(t) have a period of 1, i.e., s(t + 1) = s(t) for all t ≥ 0. Let ℓ be the term of

the insurance policy. We further assume that the policy is in force immediately upon

purchasing. The exposure of the insurer at time t, denoted by ξ(t), is then

ξ(t) =


M(t), t ≤ ℓ

M(t)−M(t− ℓ), t > ℓ

. (2.3)

Notice that the exposure is again a stochastic process that is driven by M(t). The

expected exposure at time t and its derivative is then

E[ξ(t)] =


∫ t

0
µ(r)dr, t ≤ ℓ∫ t

t−ℓ
µ(r)dr, t > ℓ

,

d

dt
E[ξ(t)] =


κ+ g(t) + s(t), t ≤ ℓ

[g(t)− g(t− ℓ)] + [s(t)− s(t− ℓ)], t > ℓ

. (2.4)

Consider [s(t) − s(t − ℓ)] in equation (2.4). This component equals 0 if and only if the

term of the insurance policy is an integer. The result may be easily extended to the

scenario where s(t) has a period other than 1. We conclude that the exposure process

does not have seasonality if the term of the insurance policy is a multiplier of the period
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of the seasonality exhibited in the premium arrival process. Given that the period of

both the premium arrival process and the claim process is 1 year in the data set, the

exposure process does not have seasonal fluctuation. Figure 2.7 is the observed exposure

from the data set. A linear function is fitted to the estimated exposure using the least-

squared-error estimates. There is no apparent yearly fluctuation.
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Figure 2.7: Estimated exposure, using policy purchasing dates as effective dates

Another simplification assumption we make is that an insurance policy becomes ef-

fective immediately upon purchasing. Usually a policy is purchased some days prior to

when it becomes effective. We note that the date of purchasing is usually a good proxy

for the effective date. To this end, we examine the second data set which contains both

the date when a policy is sold and the date when the policy becomes effective. Figure

2.8 gives the histogram of the difference between these two dates. More precisely, 56%

of the policies became effective on the same day or the second day of purchasing, while

80% of the policies became effective within one week.

In conclusion, if the seasonal fluctuation remains the same for different years, and

the term of the insurance policy is a multiplier of the period of the seasonality of the

premium process, then the exposure does not have seasonal fluctuations. Otherwise,

the seasonality in the premium process will impact the claim process. One may track

different causes of seasonality for different processes and determine whether there is an

interaction between them based on the specification of the portfolio.
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Figure 2.8: Histogram of the time difference between purchasing and effective date

2.3.4 A Cox process modeling the claim arrivals

We argue in Subsection 2.3.3 that the claim process needs to be considered in tandem

with the purchasing process. We now explore an alternative model for the claim process

which encompasses the intrinsic interactions between the purchasing of insurance and

the resulting claims, namely a Cox process model.

We assume that the claim experiences for different policyholders are independent,

and that the claim arrivals for each exposure follows a non-homogeneous Poisson process

with intensity function r(t). As before, suppose the exposure at time t is ξ(t). Let N(t)

be the total number of claims at time t for the entire portfolio. We have the following

proposition.

Proposition 2.1. Suppose N1, N2, · · · are independent non-homogeneous Poisson pro-

cesses with common intensity function r(t), and let ξ(t) be a stochastic process with

integer values. Then
∑ξ(t)

i=1Ni is a Cox process.

Proof. It is known that the superposition of independent non-homogeneous Poisson pro-

cesses is a non-homogeneous Poisson process. Suppose ξ(t) = k, then the claims resulting

from these k exposures follow a non-homogeneous Poisson process with intensity func-

tion k · r(t). The claim-counting process, conditional on the exposure ξ(t), is a Poisson

process, and thus, the unconditional process is a Cox process.
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To compare the performance of different models, various models are fitted to the first

data set introduced in Section 2.2. The models for the claim process are 1) compound

Poisson process (HPP) 2) non-homogeneous Poisson process with seasonal claim rate

(NHPP) 3) Cox process. Notice that among the three models, only the Cox process

model allows for the adjustment to the exposure. Since we only have partial information

for the exposure for year 2013, the other two models would be unsuitable. For comparison

reasons, all three models are fitted to the data from the last two years that are available

and then projected to all three years.

The estimates are obtained by maximizing the likelihood function in a similar way as

was done the analysis in Subsection 2.3.1. While fitting the Cox process, the observed

exposure, as shown in Figure 2.7, is used as the offset. Figure 2.9 compares the outputs of

the three different models. The Cox model is sufficiently flexible for modelling both the

increasing trend and the seasonality in the claim process. Furthermore, the Cox model

predicts more variability in the claim process caused by the fluctuations in the exposure.

Among these three different models, the Cox model provides the closest fit to the data.

Some basic statistics are provided in Table 2.5. We compare the sum squared error

and the Akaike Information Criteria (AIC) for different models. As shown by these

statistics, the Cox process yields the smallest error, and hence, is the closest to the data.

Table 2.5: Summary statistics for model comparison

HPP NHPP Cox∑
e2i 72361 71664 68724

AIC 6250 6221 6083

(a) statistics for 2014-2015

HPP NHPP Cox∑
e2i 120737 119788 80018

AIC 11205 11154 8123

(b) statistics for 2013-2015

Remark 2.2. The differences between any two models in terms of error statistics for this

data set is relatively small. This is because the data set covers a short time period. The

increment in the exposure is relatively small compared to its magnitude, and as a result,

all three models provide a reasonable fit. We choose the Cox model because it is closest
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Figure 2.9: Comparison of three different numbers of claims. Three models are fitted to
the data, then the predicted number of claims are calculated and plotted for each model.

to the data, and it allows us to investigate the dependence between the purchasing process

and the claim process. We also point out that by allowing the claim rate to increase with

time, we could obtain better results under the NHPP model. But doing so implies that

the claim experience is deteriorating indefinitely, which is not realistic.

2.4 A surplus process model with dual seasonalities

and simulation studies

Integrating our findings in the previous sections, we propose to modify the classical ruin

model in the following way to reflect the patterns exhibited in the data set:

U(t) = u+

M(t)∑
k=1

Xk −
N(t)∑
i=1

Yi, u ≥ 0, (2.5)

where u is the initial surplus,M(t) is a non-homogeneous Poisson process that counts the

number of policies sold by time t, Xk is the premium charged for the k-th policy, N(t)
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is a Cox process that counts the number of claims by time t, and Yi is the size of the ith

claim. Denote the intensity functions of M(t) and N(t) by µ(t) and ν(t), respectively.

The dependence structure between M(t) and N(t) is given by

ν(t) = r(t) · ξ(t) = r(t) · [M(t)−M(t− ℓ)],

where ξ(t) is the exposure at time t, ℓ is the duration of the insurance policy, and r(t) is

a periodic function that accounts for different claim rates in a year.

We illustrate some properties of this model by employing Monte-Carlo simulation. We

first investigate how the proposed model affects quarterly risk measures. We consider

three different surplus process models: Model 1 (M1) has dual seasonalities and Cox claim

arrivals, Model 2 (M2) uses stochastic premiums but the seasonality is only present in the

claim process, and Model 3 (M3) has dual seasonalities and uses deterministic premium

income and non-homogeneous Poisson claim arrivals. For simulation purposes, we use the

previous estimate (4.12) without the terms representing growth or impact of holidays.

An estimate of the claim rate function r(t) is also obtained from the data set. More

specifically, the intensity functions used in the simulation are

µ(t) = 365 exp(3.5940 + 0.2487 · sin(2π(t+ 0.246027))), (2.6)

ν(t) = ξ(t) · [0.488972 + 0.074706 · sin(2π(t+ 0.120373))], (2.7)

where ξ(t) is the exposure at time t. Notice that to determine the evolution of the expo-

sure, we need to know when the existing policies expire which depends on the premium

arrivals in the previous year. To this end, for models using Cox process, we simulate the

premium arrivals for the interval [−1, 1] in order to obtain a sample path of the expo-

sure on [0, 1]. Finally, we use the empirical premium-size distribution and the empirical

claim-size distribution. We simulate 1,000,000 sample paths for each surplus model. To

show how the seasonalities change the risk within a year, we obtain the quarterly risk

measures from the simulation. The risk measures considered are value at risk (VaR) and
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tail value at risk (TVaR). These risk measures have intuitive interpretations and are used

in many regulation systems. The results are given in Table 2.6.

Table 2.6: VaR and TVaR of loss in millions at quarter ends under different models

quarter measure M1 M2 M3
Q1 VaR(99.5) - 2.790 -0.849 -2.863

TVaR(99.5) -2.354 -0.432 -2.450
Q2 VaR(99.5) -4.690 -4.619 -4.804

TVaR(99.5) -4.081 -3.424 -4.197
Q3 VaR(99.5) -7.874 -9.729 -7.993

TVaR(99.5) -5.964 -5.690 -6.019
Q4 VaR(99.5) -13.855 -13.876 -13.975

TVaR(99.5) -8.499 -7.205 -8.559

Since the insurer charges sufficiently high premiums for this policy, all the risk mea-

sures are negative. The differences between Model 1 and Model 2 are due to the effect of

the seasonality in the premium arrivals, while the differences between Model 1 and Model

3 are due to the effect of using a stochastic premium process. We observe that the season-

ality in the premium arrivals causes differences in the risk measures. The impact of using

a stochastic premium process is mild in this case. This is because the intensity functions

used in the simulation have very large values. Consequently, the non-homogeneous Pois-

son premium arrivals may be well approximated by a deterministic function. For further

discussion, see Temnov (2004), Section 5. We note that the differences between Model

1 and Model 3 may be greater for other types of insurance whose premium arrivals and

claim arrivals are less frequent.

We may also consider the probability of ruin, that is the probability that an insurer

is depleted of available funds to settle claims. For the following simulation, we allow the

seasonal components of equations (2.6) and (2.7) to shift horizontally. In other words,

the intensity functions we use in the following simulation are

µ(t) = 365 exp(3.5940 + 0.2487 · sin(2π(t− a))),

ν(t) = ξ(t) · [0.488972 + 0.074706 · sin(2π(t− b))],
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where ξ(t) is the exposure at time t calculated by equation (2.3) . We allow the sinusoidal

functions to shift horizontally to capture the impact of different combinations of season-

alities. Although in the data set that we analyzed, premium arrivals and claim arrivals

have peak seasons around the same time in a year, it is possible that the two seasonalities

are overall unsynchronized. By shifting the functions representing the seasonalities along

the horizontal axis, we are able to accommodate for such a difference. The initial surplus

u is assumed to be 0 in the simulation, and empirical distributions are used for premium

sizes and claim sizes. We define the time of ruin τ as the first passage time when the

surplus drops below 0, i.e.,

τ = inf{t : U(t) < 0}.

The one-year ruin probability is then

Ψ(u; 1) = P{ τ ≤ 1|U(0) = u }.

We consider different combinations of a and b. The one-year ruin probability is given

in Figure 2.10. Previously, similar work has been done for the case where seasonality

is only present in the claim process. See, for example, Morales (2004). Figure 2.10

shows that the seasonality in the premium process also has impact on the riskiness of the

business.

2.4.1 Discussions and comparisons

We note that the seasonality in the claim process is well observed, and has been the

focus of many industry studies and research papers. For example, an industry study

jointly conducted by the Casualty Actuarial Society, the Property Casualty Insurers

Association of America, and the Society of Actuaries in 20181 examines the drivers of

1Auto Loss Cost Drivers: Physical Damage, August 2018, url:
https://www.soa.org/globalassets/assets/files/resources/research-report/2018/auto-loss-cost-
drivers.pdf
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Figure 2.10: contour plot of one-year ruin probability with different combinations of
seasonalities: a represents the initial season of the premium process, b represents the
initial season of the claim process.

collision and comprehensive frequency and severity. A number of externals factors, such

as natural disasters and hailstorms, are identified to have impact on the claim process.

Clear seasonal fluctuations are also documented. Many researchers use non-homogeneous

Poisson process to model these characteristics. For example Lu and Garrido (2005) use a

NHPP with both long-term trend and short-term fluctuation to model hurricane arrivals.

Morales (2004) considers a risk process where the claim arrivals are modelled by a periodic

NHPP and derives a simulation method to obtain the probability of ruin.

If the claim process is assumed to be directed by an observable or unobservable driver,

then a more flexible counting process than NHPP is needed. Specifically, if the driver is

itself stochastic, then a Cox process is a natural choice for modelling. Albrecher et al.

(2021) construct a Cox process by using a subordinator and demonstrate the success of

this model using Dutch fire insurance claims. Avanzi et al. (2021a) construct a Markov-

modulated Poisson process to account for both known information and unobservable

driver where the underlying environmental process that impacts the event arrival intensity
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is assumed to be unobservable and is modelled by a continuous-time Markov chain, while

the known exposure process serves as input in the hidden Markov chain calibration.

While the model is different, similar results are obtained in this chapter. Other research

projects are dedicated to improve premium modelling. The seasonality in the premium is

discussed by Asmussen and Rolski (1994) where the constant premium income is replaced

by a deterministic periodic function. The authors point out that one may obtain an

equivalent risk model with constant premium rate by using a change of timeline technique.

This approach works if the premium is deterministic. Some recent papers study the

stochastic premium model, see for example Boikov (2003), Labbé and Sendova (2009),

and Temnov (2014). These studies use homogeneous Poisson processes to model both the

premium arrival and the claim arrival, and some theoretical results are obtained. While

this approach extends the classical model, the premium arrival is assumed stationary,

and the premium and the claims are assumed independent. Consequently, these models

are unable to capture more variability in the risk process, such as seasonalities and

dependence between premiums and claims.

By using the proposed model (2.5), we are able to incorporate the characteristics of

the data set in the risk model, as well as to explicitly connect the claim process with the

premium. The dependence has impact on the riskiness of the portfolio, especially when

the premium arrivals have larger variation. For example, assume the intensity function

for the premium arrivals is given by

µ(t) = 100 + 25 cos(2π(t− a)) + 25 cos

(
2πt

5

)
,

where an additional periodic function is added to represent economic cycles. This addi-

tional component adds more variation to the premium arrivals. Recall that in this case,

the term of the insurance policy is not a multiplier of the period of the seasonality, and

hence, the exposure itself has fluctuations. Consider two different claim arrival process:

Cox model: ν(t) = ξ(t) · [0.1 + 0.05 cos(2π(t− b))],
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NHPP model: ν(t) = 100 · [0.1 + 0.05 cos(2π(t− b))],

i.e., the dependence between the premium and the claim is only considered in the Cox

model. The 10-year ruin probabilities using these two models are given in Figure 2.11.

In this scenario, the model with dependence is able to capture the additional risk.

0.4

0.5

0.6

0.7

0.8

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

10−year ruin probability with Cox process

a

b

0.4

0.5

0.6

0.7

0.8

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

10−year ruin probability with NHPP

a

b

Figure 2.11: contour plot of 10-year ruin probability with different combinations of sea-
sonality of the premiums (a) and seasonality of the claims (b). Left: the claim arrivals
form a Cox process, right: the claim arrivals form a NHPP.

One possible application of the proposed model is to provide insights into how to

determine the capital that an insurer is required to hold. Insurance companies are sub-

ject to the regulations applicable in the jurisdiction where they operate. For instance,

Solvency II codifies the European Union insurance regulations, insurers in the United

States are required to meet the risk-based capital (RBC) requirements, while the Life

Insurance Capital Adequacy Test (LICAT) developed by Canadian regulators measures

the capital adequacy of an insurer. These insurance regulations are focused primarily

on solvency. Using Solvency II as an example, insurers are required to hold eligible

own funds covering the Solvency Capital Requirement (SCR). An insurer may use full

or partial internal models, upon approval from supervisory authorities, to better align

the SCR calculation to its operation. The proposed model in this paper may contribute
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to the understanding of various components of the calculation. For example, the model

directly contributes to the understanding of “the risk of loss resulting from fluctuations

in the timing, frequency and severity of insured events, and in the timing and amount

of claim settlements” (Solvency II, Article 105). The proposed model may also serve

to link different components of the SCR. For example, insurers are required to consider

the operational risk. During peak seasons, due to the elevated pressure on the resources

needed for processing new policy purchases or settling claims, the insurer might face

higher operational risk. An industry study2 found that among insurance companies who

use internal models for operational risk, a significant proportion of them are taking the

approach of modelling frequency and severity separately. The proposed model allows an

insurance company to investigate the correlation between the operational risk and other

risks, which improves the accuracy of the internal models.

2.5 Conclusion

In this chapter, we study the time patterns of the premium and the claim processes

of an insurer. We find that both processes exhibit increasing intensities with seasonal

fluctuations. Major public holidays also have impact on these intensities. Further, we

find that under certain conditions, the seasonality in the claim process is independent

of the seasonality in the purchasing process. Based on these characteristics exhibited

in the data set, we propose a new model for the surplus process that utilizes both a

non-homogeneous Poisson process and a Cox process as counting processes.

The model suggested in this chapter allows one to gain more flexibility in modelling

the surplus process. The special choice of non-homogeneous Poisson process for the

purchasing process reflects the arrival of purchasing more closely. The Cox process used in

the claim process takes into consideration the change of exposure over time and therefore

2Operational risk modelling: common practices and future development,
url:https://www.theirm.org/media/6809/irm operational-risks booklet hi-res web-2.pdf
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is capable of modelling more variability. As this model is intuitive and each component

in it has a direct interpretation, the parameters of this model are also easy to estimate

from the data.

A possible application of this result is to help insurers better manage their assets.

Insurers need to set aside reserves according to regulations to meet their future obliga-

tions. By studying the time patterns of cash inflow and cash outflow, insurers are in a

better position to optimally manage their assets, both to achieve higher profitability and

financial security.

Due to the lack of appropriate data, we did not examine data from different regions.

Although the proposed model is general enough to handle different situations, it might

be the case that the specific time patterns are different in different regions. To this end,

more data sets should be examined. Theoretical results are yet to be derived under this

model. Simulation techniques may be employed to obtain the results of interest.



Chapter 3

A simulation approach to a risk

model with stochastic premium

income

3.1 Introduction

Modelling the cashflow of an insurer is at the core of much actuarial research. The

study of this subject dates back to the early 1900s by the work of Lundberg (1903). To

model the cashflow of an insurer, it suffices to consider the premium income and the

claim payment. In the most basic setting, the investment is not considered, the rate at

which the insurer collects premium is assumed to be constant, and the claim arrivals

are modelled by homogeneous Poisson process. This model is known as the classical risk

model, also known as the compound-Poisson risk model. Under this model, the surplus

process of an insurer is given by

U(t) = u+ ct−
N(t)∑
k=1

Yk, (3.1)

36
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where u is the initial surplus of the insurer, c is the continuous premium rate, N(t) is a

homogeneous Poisson process which counts the number of claim arrivals up to time t, and

Yk is the amount of the kth claim. The mathematical properties of homogeneous Poisson

process make the analysis of this model tractable. Consequently, many theoretical results

under this model have been obtained using probabilistic arguments. An important ad-

vancement in this filed is made by Gerber and Shiu (1998), where the analysis of various

quantities in interest, such as the probability of ruin, the time of ruin, the deficit at ruin,

etc., are summarized systematically by the discounted penalty function, as known as the

Gerber-Shiu function,

m(u) = E
[
e−δTw(U(T−), |U(T )|)1(T <∞)|U(0) = u

]
,

where T = inf{t : U(t) < 0} is the time of ruin, the penalty function w is a bi-variate

function of the surplus just before ruin and the deficit at ruin. By setting different values

of w and δ, the Gerber-Shiu function reduces to different quantities in interest. See, for

example, Asmussen and Albrecher (2010) Chapter XII for a summary.

The classical model (3.1) is mathematically convenient. However, the assumptions

of this model are rather restrictive and unrealistic. Over the years, much research was

dedicated to relaxing some assumptions of the classic model. An early attempt is An-

dersen (1957) where the author replaced the homogeneous Poisson process by a renewal

process. Although a renewal process is a generalization of homogeneous Poisson process,

it is still incapable of capturing some of the patterns, such as time-inhomogeneity, that

one would expect from an insurance portfolio as some researchers have pointed out. One

extension in this direction is to consider a periodic environment. Asmussen and Rolski

(1994) considered a risk model where the surplus process is periodic, and Morales (2004)

demonstrated how to obtain the probability of ruin of this periodic model by simulation.

In recent years, the use of Cox process has attracted research interest. Different models

with different Cox processes have been proposed. Noted choices include shot-noise Cox



38 Chapter 3. On a risk model with stochastic premium

process that features random jumps in its intensity function, see, for example, Dassios

and Jang (2003), Albrecher and Asmussen (2006), Dassios et al. (2015), Avanzi et al.

(2021b), among many others. Another choice is Markov-modulated Poisson process, see,

for example, Asmussen (1989), Lu and Li (2005), Avanzi et al. (2021a). Non-stationary

Cox process has also been considered in Albrecher et al. (2021). These are all improve-

ments on the claim modelling.

The premium income, on the other hand, is often assumed to have the same form as

the classical model (3.1). Existing modification includes using a periodic (but determinis-

tic) function, such as Asmussen and Rolski (1994). Replacing the deterministic premium

income by a stochastic process is another way to modify the classical model. This model

is referred to as the stochastic premium model in this chapter. Some theoretical results

are known for this model. Boikov (2003) derived an integral equation satisfied by the ulti-

mate survival probability and an integro-differential equation satisfied by the finite-time

survival probability under this model. Closed-form expressions of the probability of ruin

for two special cases are also derived. Temnov (2004) further derived limiting behaviour

of the model and presented more examples. Labbé and Sendova (2009) studied the ex-

pected discounted penalty function under this model where both a renewal equation and

an integral equation are established. Albrecher et al. (2010) provided an alternative ap-

proach to establish certain results concerning the expected discounted penalty function

by first deriving closed-form expressions for exponential claim sizes and subsequently

reformulating this results to apply to general cases. Vidmar (2018) considered stochastic

dependence between premium and the claim arrivals.

In this chapter, we present a simulation-based method to obtain the probability of ruin

under the stochastic premium model. As discussed in Asmussen and Binswanger (1997),

this is a rare event simulation problem with infinite time horizon. One needs to apply

certain simulation technique to conduct the simulation. See Asmussen and Albrecher

(2010) Chapter XV for a review of available simulation techniques. In this chapter,
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we consider the drop of surplus upon each claim arrival. Taking advantage of the fact

that this random variable may be expressed as a compound-geometric distribution, we

derive a simulator based on importance sampling. With certain simple distributions, one

may identify the exact distribution of the sampling random variable using the importance

sampling. We give two examples of such cases to demonstrate how this simulation works.

For more general cases with other premium size distributions, it may be challenging to

identify the distribution of the sampling random variable from its moment generating

function. Various approximation techniques are available for these cases. In this chapter,

we use the fast Fourier transform to obtain an approximation. Examples concerning this

scenario are also given. The simulated results are compared with known results. We also

comment on the application of this model in practice.

The chapiter is structured as follows. Some useful mathematical tools and their

properties that are used in this chapter are reviewed in Section 3.2. In Section 3.3, we

formally introduce the risk model with stochastic premium income, and briefly summarize

known results in the existing literature. A simulator based on importance sampling is

derived in Section 3.4. An approximation method based on fast Fourier transform is also

presented in this section. Examples are given to demonstrate the simulation approach.

Conclusions are drawn in Section 3.5.

3.2 Preliminaries

In this section, we present some useful mathematical results that will be used later in

the paper.
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3.2.1 Moment generating function and cumulant generating func-

tion

One convenient way to represent a random variable is through its generating functions.

Let X be a random variable. Its moment generating function MX and its cumulant

generating function ΓX are defined by

MX(t) = E
[
etX
]
, (3.2)

ΓX(t) = logMX(t).

These two functions are not defined for all distributions. For example, they are not

defined for Cauchy distribution. Notice that it is possible that the expectation (3.2)

diverts to infinity for some t ∈ R, i.e., the generating functions are only defined on a

subset of R. We have the following definition.

Definition 3.1. The domain of a function f , denoted by D(f), is the subset of R where

the value of the function is finite, i.e.,

D(f) = {x ∈ R : |f(x)| <∞}.

Moment generating functions and cumulant generating functions are convenient be-

cause they provide a systematic way to calculate the moments of a random variable. If

there exists ϵ > 0 such that (−ϵ, ϵ) ⊆ D(ΓX), then we have the following convenient

results

ΓX(0) = logE[exp(0 ·X)] = 0,

Γ′
X(θ) =

M ′
X(θ)

MX(θ)
=

E[X exp(θX)]

exp(ΓX(θ))
= E[X exp(θX − ΓX(θ))] for all θ ∈ D(ΓX), (3.3)

Γ′
X(0) = E[X].
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3.2.2 Importance sampling and Esscher transform

Importance sampling is an important simulation technique. It is often used to achieve

variance reduction in rare event simulations.

Definition 3.2 (Importance sampling). Suppose X is a R-valued random variable defined

on a measurable space (Ω,F). Let P and Q be two measures on the same measurable

space. Let h : R → R be a measurable function. Then we have

EP[h(X)] =

∫
Ω

h(X(ω))dP(ω) =
∫
Ω

h(X(ω)) · dP(ω)
dQ(ω)

· dQ(ω) = EQ[h(X) · L] (3.4)

where L(ω) = dP(ω)/dQ(ω) is the Radon-Nykodym derivative and is called the likelihood

ratio.

If the random variable in Definition 3.2 has probability density function f under

measure P and has probability density function g under measure Q, then the likelihood

ratio is f/g, i.e., equation (3.4) becomes

EP[h(X)] =

∫
h(x) · f(x)dx =

∫
h(x) · f(x)

g(x)
· g(x)dx = E

[
h(X̃) · f(X̃)

g(X̃)

]
(3.5)

where X̃ has density function g.

A major benefit of importance sampling is variance reduction. Suppose we are inter-

ested in estimating h(X) by simulation. We may simulate X under probability measure

P, calculate h(X), repeat this procedure n times and calculate the average of these n

different realizations. To reduce the variance of the estimator, we simply increase the

number of simulations n. This approach is called the crude Monte Carlo method or the

näıve Monte Carlo method. Under certain circumstances, this method is not efficient.

These situations usually concern simulating some rare events with very small proba-

bilities. A number of variance reduction techniques exist for rare event simulation, see

Bucklew (2013) for more details. When using importance sampling, we simulate X under

probability measure Q. The new estimator is h(X) · L. We may choose an appropriate
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Q such that the variance of the estimator is smaller than that of the crude estimator.

The key to importance sampling is to specify a new probability measure under which

the random variable X has a new distribution. If the original distribution is absolutely

continuous, i.e., the density function exists, then it suffices to specify the new density

function under the new measure. The importance sampling for this case is given by

equation (3.5). We next introduce a method to define a new probability measure.

Definition 3.3 (Esscher transform). Let X be a R-valued random variable defined on a

measure space (Ω,F ,P). Suppose X has moment generating function MX and cumulant

generating function ΓX . The Esscher transform of the measure P, denote by Pθ, is given

by the likelihood ratio

dPθ

dP
(x) =

exp(θx)

MX(θ)
= exp(θx− ΓX(θ)), (3.6)

where θ is the parameter of the Esscher transform.

In this chapter, we denote a transformed random variable by tilde. It is easy to show

that the moment generating function of the transformed distribution, denoted by M̃X , is

M̃X(t) =

∫
Ω

etXdPθ =

∫
Ω

etX
dPθ

dP
dP =

∫
Ω
e(θ+t)XdP
eΓX(θ)

=
MX(θ + t)

MX(θ)
. (3.7)

Furthermore, if a random variable X has density function f , then the density function

of the transformed distribution, denoted by f̃ , is given by

f̃X(x) =
f(x) exp(θx)

MX(θ)
.

Some common distributions are invariant under Esscher transform. For example, if X

is exponentially distributed with parameter λ, then its Esscher transform with parameter

θ < λ is also an exponential distribution with parameter λ̃ = λ− θ. If X is geometrically

distributed with parameter p, then its Esscher transform with parameter θ is also a

geometric distribution with parameter p̃ = 1 − (1 − p) exp(θ). For more details on the

Esscher transform and its applications, see, for example, Asmussen and Glynn (2007).
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Esscher transform is a convenient choice for importance sampling. If the likelihood

ratio of the importance sampling is defined by equation (3.6), then we have

EPθ
[X] =

∫
Ω

XdPθ =

∫
Ω

X · dPθ

dP
· dP

=

∫
Ω

X · exp(θX − ΓX(θ))dP

= EP[X exp(θX − ΓX(θ))]. (3.8)

By equation (3.3) and equation (3.8), we have

Γ′
X(θ) = EPθ

[X]. (3.9)

Equation (3.9) establishes a relationship between the expected value under the new prob-

ability measure and the cumulant generating function under the original probability mea-

sure. This relationship is utilized to derive the estimator of the probability of ultimate

ruin in Section 3.4.

Theorem 3.4 extends equation (3.8) to a random number of random variables.

Theorem 3.4. If a random variable τ is a stopping time, i.e., the event {τ < n} is

measurable with respect to the algebra generated by {X1, X2, · · · , Xn}, then

E[f(X1, X2, · · · , Xτ )] = EPθ

[
f(X1, X2, · · · , Xτ ) exp

(
−θ

τ∑
i=1

Xi + τΓ(θ)

)]
.

3.2.3 Fourier transform and fast Fourier transform

Fourier transform is a useful tool that is used extensively in science and engineering. It

studies how a function may be approximated by a sum of trigonometric functions.

Definition 3.5 (Fourier transform). Let f : R → C be an integrable function, the Fourier

transform of f , denoted by Ff , is given by

Ff(ω) =

∫ ∞

−∞
f(x)eiωxdx,
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where ω ∈ R. The inverse Fourier transform of a function g, denoted by F−1g is defined

by

F−1g(x) =
1

2π

∫ ∞

−∞
g(ω)e−iωxdω.

Remark 3.6. There are different definitions of Fourier transform and its inverse. Gener-

ically, Fourier transform can be defined as

Ff(ω) =
1

A

∫ ∞

−∞
f(x)eiBωxdx,

where A and B are two constants. For possible combinations of these two constants

and their properties, see Osgood (2019) Chapter 2.4. We choose A = B = 1 because

under this definition the Fourier transform of a probability function is the characteristic

function of the distribution.

The discrete Fourier transform is performed in many practical applications. Suppose

instead of a continuous function f , we have n <∞ equally-spaced samples, i.e.

f0 = f(x0), f1 = f(x1), f2 = f(x2), · · · , fn−1 = f(xn−1).

where xk − xk−1 = xj − xj−1 for all k, j ∈ N+, k, j ≤ n− 1.

Definition 3.7 (Discrete Fourier transform). For a finite sequence (f0, f1, · · · , fn−1), the

discrete Fourier transform and its inverse are defined as

(Ff)k =
n−1∑
j=0

fje
−i2πjk/n,

fk =
1

n

n−1∑
j=0

(Ff)je
i2πjk/n.

Discrete Fourier transform, which operates on a finite discrete sequence, may be

viewed as a discretization of Fourier transform, which operates on a continuous inte-

grable function. As the number of samples increases, the discrete Fourier transform

converges to the Fourier transform. Discrete Fourier transform is of great practical value
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because it can be implemented through a highly efficient algorithm, called fast Fourier

transform. A direct implementation of discrete Fourier transform has computational

complexity of O(n2), while an implementation using fast Fourier transform has compu-

tational complexity of O(n log n). For more details, see for example Cooley and Tukey

(1965), Brigham (1988), and Osgood (2019) Chapter 7.

In risk theory, Fourier transform is often used to evaluate the probability function of

a compound distribution of the form S =
∑N

i=1Xi, where N is a non-negative integer-

valued random variable, Xi’s are independent and identically distributed positive random

variables. To obtain the exact density function or mass function of the compound dis-

tribution, one needs to evaluate the self-convolution of Xi, which is often cumbersome if

possible at all. Some approximation methods exist. Examples of these approximations

include normal approximation, gamma approximation, and Esscher approximation. For

a review on this topic, see Hardy (2006). Under certain conditions, exact numerical

methods also exist, notably the Panjer recursion, see Klugman et al. (2012) Chapter 9.6

and Sundt and Jewell (1981).

Using discrete Fourier transform, one may obtain an approximation of the proba-

bility mass function of the compound distribution S =
∑N

i=1Xi. We assume that the

compounded random variable Xi has mass at equally-spaced points x0, x1, · · · , xn−1 with

probability q0, q1, · · · , qn−1. Notice that we assume that the support of the distribution

is discrete. If the distribution of the compounded random variable Xi is continuous, then

it is discretized first. Under this assumption, the compound random variable is discrete.

For all k = 0, 1, 2, · · · , n− 1, denote

qk = P{X1 = xk},

sk = P{S = xk}.

Let (Fq)k and (Fs)k be the kth expression of the discrete Fourier transform of the

sequence {q} and the sequence {s} respectively. These two sequences are approximations
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of the characteristic functions ofX1 and S. To obtain an approximation of the probability

mass function of S, one first obtains the sequence Fq, then calculate

(Fs)k = PN [(Fq)k],

where PN is the probability generating function of N . Finally, the mass function of S is

sk = F−1(Fs)k.

For more details of this algorithm, see, for example, Albrecher et al. (2017) Chapter

6.4 and Asmussen and Glynn (2007) Chapter 2e. We also note that this algorithm

yields an approximation of the actual mass probability. The error introduced by the

approximation is studied in Grübel and Hermesmeier (1999), where a procedure to reduce

the approximation error is also presented.

3.3 A risk model with stochastic premium income

One way to extend the classical model (3.1) is to replace the deterministic premium

income by a stochastic process. The surplus process is defined by

U(t) = u+

H(t)∑
k=1

Xk −
N(t)∑
k=1

Yk, (3.10)

where u ≥ 0 is the initial surplus, the premium counting process H(t) is a homogeneous

Poisson process with rate µ, the claim counting process N(t) is a homogeneous Poisson

process with rate λ, Xk > 0 is the amount of the kth premium arrival, and Yk > 0 is the

size of the kth claim arrival. We assume that H(t), N(t), Xk’s, and Yk’s are mutually

independent. We make the following assumptions on the surplus process.

Assumption 3.1. The relative security loading is positive, i.e., µE[X1] > λE[Y1].

Assumption 3.2. The moment generating function of X1 and Y1, denoted by MX(t)

and MY (t) respectively, exist. Furthermore, for all γ ∈ R, there is a tX,γ ∈ D(MX) and
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a tY,γ ∈ D(MY ) such that MX(tX,γ) > γ and MY (tY,γ) > γ.

Since the classical model has been thoroughly studied, it often serves as the benchmark

model for comparison. We are interested in how much additional risk the stochastic

premium model (3.10) can capture compared to the classical model (3.1). To this end,

we need to change only the premium process of these two models while holding other

factors unchanged. We call the classical model (3.1) and the stochastic premium model

(3.10) comparable if c = µE[X1] while N and Yi’s are the same in these two models.

Some ruin theory results have been derived for the stochastic premium model using

both probabilistic arguments and through Gerber-Shiu function. The next theorem is a

collection of known results pertinent to the contents of this chapter.

Theorem 3.8. For the stochastic premium model (3.10), define the time of ruin

T := inf{t ≥ 0 : U(t) < 0|U(0) = u}.

The probability of ruin is ψ(u) = P{T < ∞|U(0) = u}. Let φ(u) = 1 − ψ(u) be the

survival probability. Then

1. (Boikov (2003)) The survival probability satisfies

(λ+ µ)φ(u) = λ

∫ u

0

φ(u− x)dF (x) + µ

∫ ∞

0

φ(u+ x)dG(x),

where F is the cumulative distribution function of the claim size random variable

Y1, and G is the cumulative distribution function of the premium amount random

variable X1.

2. (Boikov (2003)) Let R∗ be a positive root of

µ[Ee−RX1 − 1] + λ[EeRY1 − 1] = 0, (3.11)

then by a martingale argument we have

ψ(u) ≤ e−R∗u.



48 Chapter 3. On a risk model with stochastic premium

3. (Temnov (2004)) Let ψCL(u) be the probability of ruin under the classical model

(3.1) with c = µE[X1], then ψ(u) > ψCL(u) for all u ≥ 0.

4. (Temnov (2004)) The classical model may be expressed as a limiting case of the

stochastic premium model. The ruin probability satisfies

lim
µ→∞

µE[X1]=c

ψ(u) = ψCL(u).

for all u ≥ 0.

For the proof of these results, the reader is referred to the original papers.

3.4 A simulation approach

In this section, we derive a simulation approach to obtain the probability of ruin. We

first obtain an expression of the probability of ruin using a change of measure argument.

The derivation is similar to Pham (2007), Asmussen and Albrecher (2010), and Grandell

(2012).

In the classical model, the surplus increases linearly between two claims and drops at

the arrival of a claim. In the stochastic premium model, the surplus has an upward jump

at the arrival of a premium and has a downward drop at the arrival of a claim. Figure

3.1 gives a sample trajectory of the surplus process under the stochastic premium model.

Let Ek be the time between the k − 1st claim arrival and the kth claim arrival (let

the 0th claim arrival be 0). Since N(t) is a homogeneous Poisson process with rate λ, we

know that Ek’s have independent and identical exponential distribution with parameter

λ. Let Zk be the kth drop of the surplus process, i.e.

Zk = U

(
k−1∑
j=1

Ej

)
− U

(
k∑

j=1

Ej

)
= Yk −

ξk∑
i=1

Xi, (3.12)

where ξk is the number of premium arrivals between the k− 1st claim and the kth claim
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Figure 3.1: A sample trajectory of the surplus process

which may be expressed as

ξk = H

(
k∑

j=1

Ej

)
−H

(
k−1∑
j=1

Ej

)
.

Since the premium arrival H follows a homogeneous Poisson process with intensity

µ, we know that ξk follows a Poisson distribution given Ek,

ξk|Ek ∼ Poisson(µ · Ek).

Using moment generating function, it is easy to prove the following result.

Lemma 3.9. ξk is geometrically distributed with success probability λ/(λ+ µ).

Proof. The moment generating function of ξk, denoted by Mξ(t), may be obtained by

using the law of total expectation,

Mξ(t) = E
[
etξk
]
= E
[
E
[
etξk |Ek

]]
= E
[
eµ(exp(t)−1)·Ek

]
=ME(µ(e

t − 1)) =
λ

λ− µ(et − 1)

=
λ/(λ+ µ)

1− [µ/(λ+ µ)]et
. (3.13)

Equation (3.13) is the moment generating function of a geometric distribution with suc-

cess probability λ/(λ + µ). By the uniqueness of the moment generating function, we
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establish the lemma.

Lemma 3.9 indicates that the total premium amount between two claim arrivals in

equation (3.12) has a compound geometric distribution. This property is convenient

since a number of methods exist for estimating the density function of this compound

distribution.

As in the classical model, ruin can only happen when there is a claim arrival. Con-

sequently, it suffices to consider the embedded discrete-time surplus process defined at

each claim arrival, namely,

Un = u−
n∑

k=1

Zk, (3.14)

where Un is the surplus at the nth claim arrival, Zk is the drop of surplus defined in

equation (3.12). The discrete time of ruin, defined as the number of claim arrivals at

time of ruin, is then

τ := inf{k ∈ N+ : Uk < 0} = inf{k ∈ N+ :
k∑

j=1

Zj > u}. (3.15)

A Lundberg-type upper bound for the probability of ruin is given in Theorem 3.10

Theorem 3.10. Suppose that a stochastic premium model satisfies assumption 3.1 and

assumption 3.2, then the probability of ultimate ruin satisfies

ψ(u) ≤ e−R∗u,

where R∗ is the positive root of the equation

ΓZ(R) = ΓY (R) + logPξ(MX(−R)) = 0, (3.16)

where ΓZ and ΓY are the cumulant generating function of Z1 and Y1 respectively, Pξ is

the probability generating function of ξ1, and MX is the moment generating function of

X1.
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Proof. We first prove that equation (3.16) has a root in D(ΓZ)∩ (0,∞). Assumption 3.1

indicates that

E[Z1] = E[Y1]− E[ξ1] · E[X1] = E[Y1]−
1− λ/(λ+ µ)

λ/(λ+ µ)
· E[X1] =

λE[Y1]− µE[X1]

λ
< 0.

By definition of cumulant generating function, we immediately have

ΓZ(0) = 0,

Γ′
Z(0) = E[Z1] < 0,

therefore there exists a ϵ1 > 0, such that Γ(ϵ1) < 0. By assumption (3.2), ΓZ(R) goes

to infinity when R approaches the endpoint of its domain. Consequently, there exists

a ϵ2 > 0, such that ΓZ(ϵ2) > 0. By the continuity of ΓZ , we may conclude that there

exists a positive root of equation (3.16) in the interval (ϵ1, ϵ2) ⊆ D(ΓZ) ∩ (0,∞). Figure

3.2 gives an illustration of equation (3.16). By the convexity of the cumulant generating

function, it is easy to show that

Γ′
Z(R

∗) > 0.
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Figure 3.2: left: an example of equation (3.16); right: a comparison of adjustment
coefficients under the classical model and under the stochastic premium model

Consider a new probability measure defined by Esscher transform with parameter R∗.
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By equation (3.9), we have

ER∗ [Z] = Γ′
Z(R

∗) > 0, (3.17)

i.e., the random walk
∑k

j=1 Zj in equation (3.15) has a positive drift after the Esscher

transform, and consequently for any positive u, the event {τ < ∞} is certain. By

Theorem 3.4, the probability of ultimate ruin under the original probability measure P

may be expressed as

ψ(u) = P(τ <∞) = E[1τ<∞]

= ER∗

[
1τ<∞ · exp

(
−R∗

τ∑
j=1

Zj + τΓZ(R
∗)

)]
= ER∗

[
exp

(
−R∗

τ∑
j=1

Zj

)]
. (3.18)

By the definition of time of ruin (3.15), we know that

τ∑
j=1

Zj > u ≥ 0,

and substituting the summation in equation (3.18) by u, we have

ψ(u) ≤ ER∗[exp(−R∗ · u)] = e−R∗·u.

Remark 3.11. Equation (3.16) is equivalent to equation (3.11). Using Lemma 3.9,

equation (3.16) may be rewritten as

logMY (R) + log

(
λ/(λ+ µ)

1− [µ/(λ+ µ)]MX(−R)

)
= 0.

Exponentiating the equation yields

MY (R) =
1− [µ/(λ+ µ)]MX(−R)

λ/(λ+ µ)
=
λ+ µ− µMX(−R)

λ
,

which yields equation (3.11) after rearranging.

Corollary 3.12. The upper bound in Theorem 3.10 is greater than or equal to the Lund-
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berg upper bound for the comparable classical model.

Proof. It suffices to show that the adjustment coefficient of the stochastic premium model

is smaller than or equal to the adjustment coefficient of the comparable classical model.

The Lundberg equations, expressed in terms of moment generating functions, for the

classical model (3.1) and the stochastic premium model are given by

Classical λ[MY (R)− 1] = cR, (3.19)

Stochastic premium λ[MY (R)− 1] = −µ[MX(−R)− 1]. (3.20)

Denote the right hand side of these equations by ζ1(R) = cR, ζ2(R) = −µ[MX(−R)− 1].

At R = 0, we have 
ζ1(0) = 0 = ζ2(0),

ζ ′1(0) = c = µE[X] = ζ ′2(0),

ζ ′′1 (0) = 0 > ζ ′′2 (0) = −µE[X2],

i.e., ζ1 and ζ2 have the same value and the same slope at 0, but ζ1 is a straight line while

ζ2 is a concave function (notice the negative sign in MX). Consequently, ζ1(R) > ζ2(R)

for all R ∈ D(ΓZ)∩ (0,∞). It follows that the positive root for equation (3.19) is greater

than the positive root for equation (3.20). We finish the proof. Figure 3.2 illustrates

equation (3.19) and (3.20).

We showed in the proof of Theorem 3.10 that ruin is certain under the new proba-

bility measure defined by the Esscher transform with parameter R∗. Theoretically, this

enables us to simulate the probability of ruin. To this end, we need to simulate the Es-

scher transformed random variable Zk. Since Zk is a linear combination of two random

variables, Lemma 3.13 holds.

Lemma 3.13. Let X1, X2, · · · , Xn be independent random variables. Let a1, a2, · · · , an

be a sequence of real numbers. Let X = a1X1 + a2X2 + · · · anXn. Assume the moment
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generating function of X exists. The Esscher transform of X with parameter θ ∈ D(MX)

has the same distribution as a1X̃1 + a2X̃2 + · · · + anX̃n, where X̃k’s are independent

random variables, and X̃k is the Esscher transform of Xk with parameter akθ.

Proof. By the independence of anXn’s, we have

MX(t) = E

[
exp

(
t ·

n∑
k=1

akXk

)]
= E

[
n∏

k=1

exp(aktXk)

]

=
n∏

k=1

E[exp(aktXk)] =
n∏

k=1

Mk(akt),

where Mk is the moment generating function of Xk. By equation (3.7), the moment

generating function of the transformed distribution is

M̃X(t) =
MX(θ + t)

MX(θ)
=

n∏
k=1

Mk(akθ + akt)

Mk(akθ)
. (3.21)

On the other side of the equation, the moment generating function of an individual

random variable Xk after the Esscher transform with parameter akθ is

M̃k(t) =
Mk(akθ + t)

Mk(akθ)
.

Consequently, the moment generating function of akX̃k is

E
[
exp(t · akX̃k)

]
= M̃k(akt) =

Mk(akθ + akt)

Mk(akθ)
,

which is the kth term in equation (3.21). By the uniqueness of the moment generating

function, the Esscher transform of X has the same distribution as a1X̃1 + a2X̃2 + · · · +

anX̃n.

Lemma 3.13 indicates that the transformed random variable Zk may be simulated

by simulating the transformed Yk and
∑ξk

i=1Xi separately, and the parameter of the

Esscher transform applied to Yk is R∗ as defined in equation (3.16) while the parameter

for
∑ξk

i=1Xi is −R∗. This immediately allows us to conduct the simulation study for

some special cases. The algorithm for these cases is
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(i) Calculate the root R∗ to equation (3.16).

(ii) Identify the distribution of the sampling random variables Z̃k = Ỹk −
∑̃ξk

i=1Xi by

applying Esscher transform with parameter R∗ to Yk and with parameter −R∗ to∑ξk
i=1Xi.

(iii) Simulate Z̃k until
∑
Z̃k > u. Return exp

(
−R∗ ·

∑
Z̃k

)
.

(iv) Repeat step (iii) sufficiently many times so that the relative error of the estimate

of the probability of ruin is small.

(v) The probability of ruin is the average of the return values.

Example 3.14 (exponential). Suppose that the premiums are exponentially distributed

with mean 1/a, and the claims are exponentially distributed with mean 1/b. This special

case has been studied in Boikov (2003) where the author derived the exact ruin probability

as

ψ(u) =
(a+ b)λ

(λ+ µ)b
e−R∗u. (3.22)

Consider the simulation approach. We simulate the transformed Zk by simulating Yk

and
∑ξk

i=1Xi separately. It is well known that the Esscher transform of an exponential

distribution is an exponential distribution, hence we have Ỹk ∼ exp(b − R∗). On the

other hand, consider the moment generating function of the compound geometric random

variable
∑ξk

i=1Xi,

M(t) = E

[
exp

(
t

ξk∑
i=1

Xi

)]
= Pξ(MX(t)) =

p

1− (1− p) · a
a−t

=
a− t

a− t/p
, (3.23)

where Pξ is the probability generating function of ξ1, MX is the moment generating

function of X1, and p = λ/(λ+µ) is the success probability of ξ1. The moment generating

function after the Esscher transform with parameter −R∗, denoted by M̃ , is then

M̃(t) =
M(−R∗ + t)

M(−R∗)
=

(a+R∗ − t)(ap+R∗)

(ap+R∗ − t)(a+R∗)
=

(a+R∗)− t

(a+R∗) (ap+R∗−t)
ap+R∗
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Figure 3.3: the simulated probability of ruin vs. the theoretical probability of ruin for
the exponential example

=
(a+R∗)− t

(a+R∗)− t
(ap+R∗)/(a+R∗)

. (3.24)

Observing that equation (3.24) has the same form as equation (3.23), we conclude that the

Esscher transformed compound geometric-exponential distribution is still a compound

geometric-exponential distribution, with

ξ̃k ∼ geometric

(
p̃ =

ap+R∗

a+R∗

)
,

X̃i ∼ exp(ã = a+R∗).

Now all the components of the transformed surplus process may be simulated. Sup-

pose a = 0.01, b = 0.002, µ = 10000, λ = 1000. It may be calculated that the adjustment

coefficient R∗ = (bµ−aλ)/(λ+µ). The theoretical probability of ruin by equation (3.22)

is then

ψ(u) =
6

11
exp

(
− 1

1100
u

)
.

We conduct the simulation study by using 100,000 sample paths. The simulation results

are plotted against the theoretical result in Figure 3.3.

In the next example, we consider the case where the premium is a constant a. In



3.4. A simulation approach 57

some jurisdictions the premiums for obligatory liability insurance are fixed or tiered,

which may be modelled by the next example. We have the following lemma about this

model.

Lemma 3.15. If the premium is a constant a, and the claim size distribution is expo-

nential with mean 1/b, then the probability of ultimate ruin is

ψ(u) =
b−R∗

b
exp(−R∗u) (3.25)

where the adjustment coefficient R∗ is the root of the equation

λb

b−R
= λ+ µ− µ exp(−aR). (3.26)

Proof. We first derive an integral equation satisfied by the survival probability φ(u) =

1 − ψ(u). Considering the events in a short time interval (0,∆t) similarly to Boikov

(2003), we have

φ(u) = (1− λ∆t)(1− µ∆t) · φ(u)+

λ∆t(1− µ∆t)

∫ u

0

b exp(−bx) · φ(u− x)dx+ (1− λ∆t)µ∆t · φ(u+ a) + o(∆t). (3.27)

Rearranging equation (3.27) and expressing terms with (∆t)2 by o(∆t) yields

(λ+ µ)∆tφ(u) = λ∆t

∫ u

0

b exp(−bx)φ(u− x)dx+ µ∆tφ(u+ a) + o(∆t).

Dividing by ∆t and letting ∆t→ 0 yields

(λ+ µ)φ(u) = µφ(u+ a) + λ

∫ u

0

b exp(−bx)φ(u− x)dx. (3.28)

One may verify that

φ(u) = 1− b−R∗

b
exp(−R∗u) (3.29)

is the solution to equation (3.28) where the adjustment coefficient R∗ is determined by

equation (3.26).
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Figure 3.4: the simulated ruin probability vs. the theoretical ruin probability for the
fixed premium example

Example 3.16 (fixed premium). The simulation for this case is straightforward. The

random variable Zk = Yk − aξk is a linear combination of random variables. By Lemma

3.13, the transformed Zk may be simulated by Z̃k = Ỹk − aξ̃k where Ỹk ∼ exp(b − R∗)

and ξ̃k ∼ geometric(p̃) where p̃ = 1− (1− p) exp(−aR∗).

Suppose a = 100, b = 0.002, µ = 10000, λ = 1000, it can be calculated that R∗ ≈

9.516623×10−4. A comparison of the simulated ruin probability and the theoretical ruin

probability is given in Figure 3.4.

The simulations in Example 3.14 and 3.16 may be done since the exact distribution of

the Esscher transformed random variables Z̃k may be identified. Specifically, the trans-

formation of the compound random variable
∑ξk

i=1Xi is known to be another compound

random variable. This allows us to simulate it by simulating ξ̃k and X̃i’s sequentially.

Notice that in this case, one does not need the probability density function of
∑ξk

i=1Xi

to conduct the simulation. With arbitrary Xk, the Esscher transformed distribution may

not be identified. In this case, only the moment generating function of the new distri-

bution is known which is given by equation (3.7). Some techniques exist for simulating

random variables from moment generating functions. For example, McLeish (2014) dis-

cusses the use of the saddlepoint approximation to simulate a random variable from its
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moment generating function. Various possible different approaches are also compared

therein. However, this type of approximation often relies on the assumption that the

distribution is close to a known distribution, such as normal distribution, and its ac-

curacy varies in different settings. Taking advantage of the fact that the
∑ξk

i=1Xi is a

compound geometric distribution, we next present an approximation method based on

fast Fourier transform which allows us to conduct the simulation for any legible premium

size distribution.

For the cases where the exact distribution of the Esscher transform of
∑ξk

i=1Xi can

not be identified, the algorithm is:

(i) Choose a sufficiently large truncation point Π. Choose equally spaced x0 = 0, x1, x2, · · · , xn =

Π, calculate

qi =


0 i = 0,

P(xi−1 < X1 ≤ xi), i = 1, 2, · · · , n.

(ii) Obtain a discretization of
∑ξk

i=1Xi by fast Fourier transform.

(a) obtain Fq, the fast Fourier transform of qi’s.

(b) Calculate (Ff)i = p/[1−(1−p)(Fp)i] as the approximation of the characteristic

function.

(c) Inverse the fast Fourier transform to obtain fi = F−1(Ff)i. fi’s are the dis-

cretization of the compound distribution.

(iii) Calculate the positive root R∗ to equation (3.16).

(iv) Simulate Z̃k until
∑
Z̃k > u, where

∑̃ξk
i=1Xi is approximated by a discrete random

variable G with P(G = xi) = fi exp(−xiR∗). Return exp(−R∗ ·
∑
Z̃i).

(v) Repeat step (iv) sufficiently many times so that the relative error of the estimated

probability of ruin is small.
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(vi) The probability of ruin is the average of the return values.

The approximation approach has two main sources of error. The first source of error

is discretization. One may prove that the discretized random variable converges to the

original random variable in distribution as the grid of the discretization gets finer, i.e., as

x1−x0 approaches 0. The second source of error is fast Fourier transform. To apply fast

Fourier transform, one needs to truncate the original distribution at the chosen truncation

point Π. Due to the periodic nature of Fourier transform, the density function beyond

point Π is “wrapped around” and appears in f0, f1, · · · , fn. This error is usually termed

the aliasing error. For demonstration, consider a compound Poisson-logarithmic distri-

bution. It is known that this compound distribution is a negative binomial distribution.

We obtain the mass function of the compound distribution using fast Fourier transform

with different truncation point Π. Since Poisson distribution is in (a, b, 0) class, we may

also obtain the mass function using Panjer’s recursion. The results are plotted in Figure

3.5. We observe that the aliasing error decreases as the truncation point Π increases.

Both fast Fourier transform and Panjer’s recursion can yield highly accurate approxima-

tion. However, it is known that the computation complexity of fast Fourier transform is

O(n log n) while the computation complexity of Panjer’s recursion is O(n2). When there

are many points to evaluate, fast Fourier transform has computational advantage over

Panjer’s recursion. For more detailed comparison between fast Fourier transform and

Panjer’s recursion and an algorithm for reducing the aliasing error, see Embrechts and

Frei (2009).

Example 3.17. In this example, we consider gamma claim sizes and exponential pre-

mium sizes. For the claim process, let the intensity of N(t) be λ = 1000 and let

Yk ∼ gamma(α, α/100) so that λE[Y1] = 100000; for the premium process, let the inten-

sity of H(t) be µ and let Xk ∼ exp(µ/200000) so that µE[X1] = 200000 which implies a

relative security loading of 1. We vary two key parameters of the model:

• α: this parameter controls the shape of the claim size distribution. Notice that since
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Figure 3.5: fast Fourier transform with aliasing error

the expected value of the claim size distribution is kept constant, the distribution

has heavier tail with smaller α.

• µ: we let µ→ ∞ to observe the limit behaviour of the model.

For each claim size distribution, we also consider the ruin probability under the clas-

sical model with the premium rate c = 200000. Notice that this probability is not a

function with respect to µ. The simulation results with µ = 100, 500, 3000, 100000 and

α = 0.25, 0.75, 1, 5, 10 are given in Figure 3.6.

Remark 3.18. Various known behaviours of the stochastic premium model may be ob-

served in Example 3.17. For each gamma distribution, we see that the ruin probability

under the stochastic premium model is greater than the ruin probability under the clas-

sical model for all u, regardless of µ. This is result 3 in Theorem 3.8. We also observe

that as µ increases, the ruin probability under the stochastic premium model converges

to the ruin probability under the classical model, consistent with 4 in Theorem 3.8.

Remark 3.19. Some cases in Example 3.17 are extreme and unlikely to happen in

practice. Notice that the expected number of premium arrivals in one period of time is

E[H(1)] = µ. For an established insurer whose business does not vary dramatically on
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Figure 3.6: the simulated ruin probability with gamma claim sizes under the stochastic
premium model (solid lines) and the classical model (dashed lines)

a year-to-year basis, µ is also approximately the portfolio size. Since all the claims are

from the portfolio, the average number of claims per period of time from each policy is

E[N(1)]/µ = λ/µ, which means that the average number of claims per policy is 10 when

µ = 100 and is 0.01 when µ = 100000. Based on some industry studies such as APCIA

et al. (2020), the claim frequency per exposure varies based on physical environment and

covered peril. As a result, we expect the impact of adopting the stochastic premium

model to differ among different insurance portfolios.

3.5 Conclusion

In this chapter, we derive a simulation approach to obtain the probability of ruin under

the stochastic premium model. We first analyze some analytical properties of this model,

specifically the drop of surplus at each claim arrival. A new probability measure is defined

through Esscher transform under which ruin is certain. The simulation is done under
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the new probability measure, and the probability of ruin under the original probability

measure is obtained. For cases where the sampling distribution is not identifiable, we take

advantage of the fact that the drop of surplus may be expressed as a compound geometric

distribution and use fast Fourier transform as an approximation. Some theoretical results

pertinent to this model are reviewed and demonstrated through examples.

By using special cases whose theoretical probability of ruin is known, we discover that

the simulation approach is fast and is capable of producing highly accurate results. The

simulation approach may be readily extended to more general cases as well. We also dis-

cover that the differences between the stochastic premium model and the classical model

vary based on a number of factors, such as the heaviness of tail of the distributions and

the claim frequency per exposure. This means that the impact of adopting the stochastic

premium model varies among different insurance portfolios and that the applicability of

this model in practice is worth further investigation.



Chapter 4

On a risk model with dual

seasonalities

4.1 Introduction

Modelling the cashflows of an insurance portfolio is at the core of a great amount of ac-

tuarial research. In particular, ruin theory studies the riskiness of an insurer by studying

its surplus process. The customers of an insurance policy pay premiums to the insurance

company in exchange for the contingent reimbursements of potential future loss. Under

the classical ruin model, also known as the compound-Poisson risk model, the surplus

process is modelled by

U(t) = u+ ct−
N(t)∑
k=1

Yk, (4.1)

where u represents the initial surplus of the insurer, c is the continuous premium rate,

i.e., the amount of premium that is collected by the insurer per unit of time. N(t) is a

Poisson process which counts the number of claims up to time t, and Yi is the ith claim

size, and Yi’s and N(t) are mutually independent. This model dates back to the early

1900s and has been studied thoroughly afterwards. For early references, see for example

64
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Lundberg (1903), Cramér (1955), and Gerber and Shiu (1998).

The classical model has the advantage of being mathematically tractable. The theo-

retical analysis is made easy due to the properties of the Poisson process. On the other

hand, the assumptions of the classical model are rather restrictive and unrealistic. Over

the years, many modifications have been made to the classical model to address dif-

ferent concerns. For example, to improve the claim counting process, Andersen (1957)

proposed to use a renewal process in place of the Poisson process, Asmussen (1989) in-

troduced a Markovian environment where the claim inter-arrival times, the claim sizes,

and the premiums were influenced by an external Markovian process, Albrecher and As-

mussen (2006) used a Poisson shot noise intensity process to capture the effect of sudden

increases of the claim intensity.

One direction of such modification is to introduce periodic fluctuations to the surplus

process. It is well known that the risk process is influenced by a number of external

factors and is consequently subject to continual changes in risk propensity. The impact

of such fluctuations is studied in a number of works. Berg and Haberman (1994) used

a non-homogeneous Poisson process to incorporate trends in the claim process, Morales

(2004) used a non-homogeneous Poisson process to address the seasonal fluctuations in

the claim process, Albrecher et al. (2021) used a non-stationary Cox process to address

the patterns arising in the claim process.

While the periodicity in the claim process has been introduced, the premium income

is often assumed stationary. Some recent research and industrial studies point out that

the premium income also has seasonal fluctuations. Several different models are able

to capture this feature in the surplus process. For instances, Cramér (1955) relaxed

the constant premium rate assumption by introducing an aggregate premium process to

replace the deterministic premiums, Asmussen and Rolski (1994) used a deterministic

function for the premium income and derived several asymptotic results.

In this chapter, we investigate how the seasonality observed in the premium income
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affects the probability of ruin in the presence of periodicity in the claim process. We

incorporate the seasonal fluctuation in the premium income by replacing the ct component

in equation (4.1) by a deterministic function. We then prove that the new model has

the same probability of ruin as the model introduced in Morales (2004). Subsequently,

we use the simulation algorithm presented therein to obtain the probability of ruin.

After demonstrating various results by a numerical example, we examine a real-life auto

insurance data set. We use the data to fit different surplus process models and obtain

corresponding results. We compare the results from different models to show the potential

impact of the seasonality in the claim process.

this chapter is structured as follows. We introduce the model with dual seasonalities

in Section 4.2. The model specification is given in Subsection 4.2.1. The equivalent

single-seasonality model is given in Subsection 4.2.2. We discuss a simulation approach

in Chapter 4.3. In Subsection 4.4.1, we illustrate various results using a numerical ex-

ample. An example using a real-life auto insurance data set is given in Subsection 4.4.2.

Conclusions are drawn in Section 4.5.

4.2 A surplus process model with dual seasonalities

4.2.1 Model specification

We introduce the seasonal fluctuations into the surplus process. To this end, we extend

the classical risk model (4.1). The new surplus process is defined by

U(t) = u+ cP (t)−
N(t)∑
k=1

Yk, (4.2)

where u is the initial surplus, P (t) is a periodic distortion function as described in Defini-

tion 4.1, {Yk} is a sequence of independent and identically distributed random variables

with mean µ that represents the sizes of the claim arrivals, N(t) is a non-homogeneous

Poisson process with periodic intensity function λ(t) which satisfies λ(t) = λ(t+1) for all
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t > 0. Let Λ(t) denote the cumulative intensity function of N(t), i.e. Λ(t) =
∫ t

0
λ(s)ds.

Furthermore, let Λ̄ = Λ(1). Using the periodicity of λ(t), it is easy to verify that

Λ(n) = nΛ̄, for all n ∈ N. (4.3)

Using a non-homogeneous Poisson process with periodic intensity function for the claim

arrivals is a common approach to model the seasonal fluctuation, see, for example,

Morales (2004) and Albrecher et al. (2021).

To model the seasonal effect in the premium income, we extend the idea of distortion

function in the existing literature, such as Balbás et al. (2009), and define

Definition 4.1. A periodic distortion function P : [0,∞) → [0,∞) is a continuous

monotonically increasing function such that P (0) = 0, P (1) = 1, its derivative exists

almost everywhere except on a set E with Lebesgue measure 0, and satisfies P ′(t) =

P ′(t+ 1) for all t ∈ R+\E.

Table 4.1 provides three examples of periodic distortion functions and their plots.

Proposition 4.2. For any n ∈ N and ϵ ∈ [0, 1), we have P (n+ ϵ) = n+ P (ϵ).

Proof. It is easy to show this result using the periodicity of the derivative of P (t). We

have

P (n+ ϵ) =

∫ n+ϵ

0

P ′(s)ds =
n∑

k=1

∫ k

k−1

P ′(s)ds+

∫ n+ϵ

n

P ′(s)ds

=
n∑

k=1

∫ 1

0

P ′(w)dw +

∫ ϵ

0

P ′(w)dw = n · P (1) + P (ϵ) = n+ P (ϵ).

Since P is monotonically increasing, its inverse P−1 exists. It is easy to show that

P−1 is also a periodic distortion function using the inverse function theorem. As a result,

Proposition 4.2 also holds for P−1.
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Table 4.1: Examples of periodic distortion functions and their derivatives

P ′(t) Plot of P ′(t) Plot of P (t)

1 + cos(2πt)

0 1 2 0 1 2

1

2

0.5 + I(t− ⌊t⌋ ≥ 0.5)

0 1 2 0 1 2

1

2

(et−⌊t⌋)/(e− 1)

0 1 2 0 1 2

1

2

In essence, P (t) defines the rate at which premiums are collected. One advantage of

this definition is that we have cP (t+1)−cP (t) = c, i.e., the total amount of premium per

period remains unchanged after the seasonal effect is introduced. This allows us to use

the definition of the premium rate c without any modification. We define the premium

rate as c = (1 + θ)µΛ̄, where θ and µ are defined in the same way as in the classical

model (4.1).

4.2.2 An equivalent surplus process

Both the premium income and the claim process have seasonal fluctuations in Model

(4.2). These behaviours are likely driven by different factors. For example, Copeland

et al. (2011) documented that the activities of the automobile market have seasonal fluc-

tuations, which could in turn cause fluctuations in the demand of auto insurance. On

the other hand, the road conditions in different seasons may contribute to the seasonal

variation of the accident rate. One may investigate the different drivers for the seasonali-
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ties in the premium income and the claim process and choose two periodic functions that

best describe an insurer’s experience. We may also investigate the relationship between

the seasonalities in different processes by studying the evolution of the exposure, that is

the number of policies that are in force at any given time. Suppose the coverage of an

ℓ-year term insurance starts at time t, then this policy expires at time t + ℓ. Let H(t)

be the number of policies sold up to time t, let E(t) be the exposure at time t, then

we have E(t) = H(t) − H(t − ℓ). It is apparent that if ℓ is a multiple of the period of

H(t), then the exposure E(t) does not have any seasonal fluctuation. In other words, the

seasonalities in this case are independently determined in relationship to their particular

cause. One such example is auto insurances which commonly have a one-year term in

many parts of the world. For other types of insurance policies, such as travel insurance or

health insurance, the two seasonalities may be dependent. In this paper, we assume the

exposure does not exhibit seasonal fluctuations, which allows us to separate the seasonal

component of the premium income and the seasonal component of the claim process. We

next show that the probability of ruin under model (4.2) is the same as the one under a

risk model with constant premium rate and seasonal claim intensity.

For model (4.2), the transformed surplus process is defined as

Ǔ(t) = U(P−1(t)) = u+ ct−
Ň(t)∑
k=1

Yk, (4.4)

where

Ň(t) = N(P−1(t)). (4.5)

The transformed surplus process has constant premium rate c. To examine the new

counting process Ň , we use the following lemma from Çinlar (2013) (Corollary 7.8 there).

Lemma 4.3. {T1, T2, · · · , } are the arrival times of a non-homogenous Poisson process

with cumulative intensity function Λ if and only if {Λ(T1),Λ(T2), · · · } are the arrival

times of a homogeneous Poisson process with rate 1.
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Proposition 4.4. Ň is a non-homogeneous Poisson process with cumulative intensity

function Λ ◦ P−1.

Proof. Let Tn be the nth arrival time of N , and let Ťn be the nth arrival time of Ň . By

equation (4.5), P−1(Ťn) has the same distribution as Tn, i.e., P
−1(Ťn)

D
= Tn. By Lemma

4.3, we have

Tn
D
= Λ−1(E1 + · · ·+ En),

where Ei’s are independent and identically distributed exponential random variables with

rate 1. Consequently,

Ťn
D
= P (Tn)

D
= P (Λ−1(E1 + · · ·+ En)).

Therefore,

(Λ ◦ P−1)(Ťn)
D
= E1 + · · ·En.

Finally, by Lemma 4.3, we establish that Ň is a non-homogeneous Poisson process with

cumulative intensity function Λ ◦ P−1.

By employing this change-of-time technique, we are able to simplify the premium

income. Given that both Λ and P−1 are periodic functions with period 1, it is easy to

prove that for all n ∈ N and ϵ ∈ [0, 1),

(Λ ◦ P−1)(n+ ϵ) = nΛ̄ + (Λ ◦ P−1)(ϵ). (4.6)

The expected number of claims per period of the transformed surplus process remains

unchanged since (Λ ◦ P−1)(n) = nΛ̄.

We now show that the original model (4.2) and the transformed model (4.4) are

equivalent in terms of the probability of ruin. Define the time of ruin as the time when

the surplus drops below 0 for the first time. Let T be the time of ruin of the original

model, and let Ť be the time of ruin of the transformed model, i.e., T = inf{t : U(t) < 0},
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and Ť = inf{t : Ǔ(t) < 0}.

We have the following result. Suppose the underlying probability space is (Ω,F ,P).

By fixing ω ∈ Ω, we fix a specific sample path, i.e., we fix the values of claim sizes

Y1, Y2, · · · and the claim arrival times T1, T2, · · · for U . Also notice that the transforma-

tion of the time is deterministic. As a result, once the sample path of U is fixed, the

corresponding Ǔ is fixed as well.

Lemma 4.5. For all ω ∈ Ω, we have Ť (ω) = P (T (ω)).

Proof. By definition, we have

P (T (ω)) = P (inf{t : U(t;ω) < 0}).

Since P is a monotonically increasing function, we have

P (T (ω)) = inf{P (t) : U(t;ω) < 0} = inf{z : U(P−1(z);ω) < 0}

= inf{z : Ǔ(z;ω) < 0} = Ť (ω).

Proposition 4.6. The probability of ruin remains unchanged after the change of time,

i.e., P{T <∞} = P
{
Ť <∞

}
.

Proof. By Proposition 4.2, we have

Ť = P (T ) = P (⌊T ⌋+ T − ⌊T ⌋) = ⌊T ⌋+ P (T − ⌊T ⌋),

where ⌊x⌋ = max{y ∈ Z : y ≤ x}. Since T−⌊T ⌋ ∈ [0, 1), we have P (T−⌊T ⌋) < P (1) = 1.

Consequently, Ť < ∞ if and only if ⌊T ⌋ < ∞, which is equivalent to T < ∞. Therefore

P{T <∞} = P
{
Ť <∞

}
.

Proposition 4.6 implies that we may study the transformed model in place of the

original model (4.2). In the next Section, we review a simulation method to study the

probability of ruin.
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4.3 A simulation approach

In Section 4.2, we showed that we may consider the transformed surplus process Ǔ instead

of U . We also showed that the transformed cumulative intensity function is Λ◦P−1. One

difficulty with this approach is that the transformed cumulative intensity function is

complex. In the existing literature, the analytical results usually rely on the renewal

property of the counting process. For surplus processes with arbitrary counting process,

we usually obtain the quantity of interest by simulation.

The probability of ruin is difficult to obtain using näıve Monte-Carlo simulation. As

pointed out by Asmussen and Binswanger (1997), we often face two difficulties:

• The time horizon of the simulation is infinite, making it difficult to define the stop-

ping condition. Since ruin is not certain, the surplus for some simulated trajectories

is positive for all t > 0, meaning the stopping condition is never met for these paths.

• The variance of the simulator might be too large such that it is difficult to obtain

a reliable result. Specifically, the relative error could be unbounded, meaning the

error could not be reduced by simply increasing the number of simulations.

One way to solve these problems is to apply the importance sampling technique,

see, for example, Rubino and Tuffin (2009), Chapter 2. The idea is to increase the

claim severity and the claim frequency at the same time so that the probability of ruin

becomes 1. The original probability of ruin may be obtained subsequently using the

Radon-Nikodym theorem.

There are already a number of papers using the importance sampling technique to

conduct simulation studies. The following estimator is from Morales (2004). For deriva-

tion and proofs, we refer the readers to the original paper.
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Lemma 4.7 (Morales (2004)). Consider the surplus process

U(t) = u+ ct−
N(t)∑
k=1

Yk,

where N(t) is a non-homogeneous Poisson process with periodic intensity function λ(t)

and cumulative intensity function Λ(t). Let Λ̄ = Λ(1) be the expected number of arrivals

of N per unit of time. Yk’s are independent and identically distributed claim sizes with

common density function f(y) and mean µ. The premium rate is c = (1 + θ)Λ̄µ where θ

is the relative security loading. Suppose the moment generating function of the claim-size

distribution exists and is denoted by M . The probability of ruin as a function of the

initial surplus u, denoted by ψ(u), may be simulated by

ψ(u) = E

[
exp

(
−R ·

[
τ̃∑

k=1

Ỹk − (1 + θ)µη
τ̃∑

k=1

Ẽk

])]
, (4.7)

where η = inf0≤t<1{Λ̄t/Λ(t)}, R (if exists) is the positive root of the equation

M(x) = 1 + (1 + θ)µηx. (4.8)

Ỹk is the Esscher transform of the kth claim size with parameter R, i.e., the density

function of Ỹk is given by

f̃(y) =
eRyf(y)

M(R)
.

Ẽk’s are independent exponential random variables with parameter 1 + δ where δ = (1 +

θ)µηR. Finally, τ̃ is the number of claims at the time of ruin, i.e.,

τ̃ = inf

{
n ∈ Z : u+ cΛ−1

(
n∑

k=1

Ẽk

)
−

n∑
k=1

Ỹk < 0

}
. (4.9)

Remark 4.8. Notice that 0 is always a root of equation (4.8), however only strictly

positive root can be used in the simulation. It is easy to verify that no transformation is

performed with R = 0, and consequently ruin is not certain with this choice.
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Remark 4.9. In Morales (2004), the estimator depends on a specific family of intensity

functions, namely the bell-shaped intensities. The advantage of this family of intensity

functions is that the inverse of the cumulative intensity function has a closed-form ex-

pression, and hence, it is easy to simulate the non-homogeneous Poisson process using

the inversion method in equation (4.9). However, this is not a necessary condition.

We emphasize that the following condition must hold for this approach to work.

Proposition 4.10. Let R be the positive root of equation (4.8). Ruin is certain after the

transformations defined in Lemma 4.7 if and only if M ′(R) > (1 + θ)µ.

Proof. Let T̃n be the time of the nth claim arrival, which is simulated by

T̃n = Λ−1(Ẽ1 + · · ·+ Ẽn),

where Ẽk ∼ exp(1 + δ) for all k. Consequently, we have

Λ(T̃n) = Ẽ1 + · · ·+ Ẽn
D
=
E1 + · · ·+ En

1 + δ
.

Thus,

(1 + δ)Λ(T̃n)
D
= E1 + · · ·+ En,

where Ek ∼ exp(1) for all k. By Lemma 4.3, we conclude that T̃n is the nth arrival time

of a non-homogeneous Poisson process with cumulative intensity function (1 + δ) · Λ(t).

It follows that the expected number of claims per period of time is

E
[
Ñ(1)

]
= (1 + δ) · Λ̄.

On the other hand, the expected value of the transformed claim-size distribution is

E
[
Ỹk

]
=
M ′(R)

M(R)
.
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Consequently, the total expected claim per period is

E
[
Ñ(1)

]
· E
[
Ỹ1

]
= (1 + δ) · Λ̄ · M

′(R)

M(R)
= Λ̄ ·M ′(R).

To guarantee that ruin is certain under the transformation, we need

E
[
Ñ(1)

]
· E
[
Ỹ1

]
= Λ̄ ·M ′(R) > c = (1 + θ)Λ̄µ,

or equivalently,

M ′(R) > (1 + θ)µ, (4.10)

which concludes the proof.

Remark 4.11. Proposition 4.10 implies that the simulation approach does not work for

all combinations of intensity function and claim-severity distribution. This is a differ-

ence from the classical model. For the classical model with homogeneous Poisson claim

arrivals, Proposition 4.10 holds as long as θ > 0. See for example Klugman et al. (2012),

p. 279. In practice, this condition is not highly restrictive, as the insurers usually charge

sufficient amount of premium, and the seasonal effect is usually mild to moderate. We

demonstrate this by examining a real-life data set in Section 4.4.2.

4.4 Two examples

We have showed that the dual-seasonality model (4.2) may be transformed into a single-

seasonality model (4.4), and that the probability of ruin of the single-seasonality model

may be simulated using Lemma 4.7, given that condition (4.10) holds for the transformed

model. In this section, we first give a numerical example to illustrate various options.

We then proceed to apply the simulation method to a real-life auto insurance data set.
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4.4.1 A numerical example

We consider three different cases for the dual-seasonality model

U(t) = u+ cP (t)−
N(t)∑
k=1

Yk.

The periodic distortion function P and the Poisson intensity function λ(t) are specified

in Table 4.2. Notice that Model 1 is the classical model, Model 2 is the single-seasonality

Table 4.2: Specifications of the seasonal components of the three models

Model 1 Model 2 Model 3
P ′(t) 1 1 1 + 0.1 sin(2π(t− s1))
λ(t) 1000 1000 + 50 sin(2π(t− s2)) 1000 + 50 sin(2π(t− s2))

model in the existing literature, and Model 3 is the dual-seasonality model. For all three

models, the expected number of claims per period is Λ̄ = 1000. For all three models, the

claim sizes are assumed to be exponential with mean 100. The relative security loading θ

is assumed to be 0.4, 0.8, 1.2, and 1.6, and the premium rate c = (1 + θ)µΛ̄ is calculated

accordingly. We obtain the probability of ruin via simulation with initial surplus 0, 250,

500, and 1000. The introduction of s1 and s2 allows us to consider different locations for

peak seasons by shifting the seasonal components horizontally. Figure 4.1 presents claim

arrival intensities with seasonalities that peak at different times of year.
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Figure 4.1: the intensity function λ(t) with different s2
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We show the results with relative security loading 0.8 and initial surplus 0. The full

simulation results may be found in Appendix A. For Model 1, since the claim sizes are

exponentially distributed, it is well known that the probability of ruin is

ψ(u) =
1

1 + θ
exp

(
− θ

(1 + θ)µ
· u
)

and therefore, ψ(0) = 0.5556. For Model 2, the probability of ruin is simulated using

Lemma 4.7. For Model 3, we first transform the surplus process according to (4.4), and

then apply Lemma 4.7. The results with u = 0 are given in Figure 4.2.
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Figure 4.2: the probability of ruin for Model 2 (upper left) and Model 3 (upper right and
bottom) with u = 0

Remark 4.12. We may verify that condition (4.10) holds for all combinations of P , λ
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and relative security loading θ.

Remark 4.13. For Model 1, the probability of ruin is 0.5556. For Model 2, the minimum

probability of ruin is 0.5278 when s2 = 0.25, and the maximum probability of ruin is

0.5843 when s2 = 0.75. For Model 3, the minimum probability of ruin is 0.4781 when

s1 = 0.75 and s2 = 0.25, and the maximum probability of ruin is 0.6477 when s1 = 0.25

and s2 = 0.75. Depending on the combination of the two seasonal components, the

seasonality in the premium income may amplify or reduce the impact of the seasonality

in the claim process.

Remark 4.14. It may be observed from the simulation results that the insurer is subject

to a significant risk of ruin if they do not hold sufficient initial surplus. This is true even

if the insurer charges very high premium, i.e., the relative security loading is high. This

result stresses the importance of holding sufficient reserve by insurance companies so that

the insolvency risk is properly managed.

We next examine another important factor that affects the probability of ruin, namely

the heaviness of the tail of the claim-size distribution. We fix s1 = 0.25 and s2 = 0.75,

i.e., the combination corresponding to the maximum probability of ruin. The claim sizes

are now assumed to follow a gamma distribution with density function

f(y) =
βα

Γ(α)
yα−1e−βy, y > 0.

To make the results comparable, we require that β = α/100 such that the expected value

of the gamma distribution is α/β = 100. Let α = 0.1, 0.5, 1, 2, 5. Notice that α = 1 is

the exponential case considered in the previous simulation. We hold other parameters of

the model unchanged. The probabilities of ruin under three models and their logarithms

are given in Figure 4.3.

Remark 4.15. As the initial surplus increases, the probability of ruin decreases. Among

all the claim-size distributions used in the simulation, those with heavier tail result in
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Figure 4.3: the probabilities of ruin (top) and their logarithms (bottom) with different
initial surplus and claim-size distribution

lower decreasing rate of the probability of ruin, while those with lighter tail result in

higher decreasing rate of the probability of ruin. Also, the probability of ruin decreases

at an exponential rate with large initial surplus regardless of the claim-size distribution.

This is consistent with the results presented in Asmussen and Rolski (1994).

4.4.2 A real-life example

In this section, we apply the simulation technique to a real-life auto insurance data set

that is provided by an anonymous insurer. A more detailed analysis of the data set may

be found in Miao et al. (2021). The original data set contains the premium data and the
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claim data for the period of 2013 to 2015. The data set is extracted by the effective date

of the policies, i.e., it contains only the policies that became effective after January 1,

2013. Consequently, the policies that became effective in 2012 and expired in 2013 are

not included. In other words, the claim data for 2013 is not complete. For this reason

we use only the data for years 2014 and 2015. Table 4.3 gives a brief summary of the

data set.

Table 4.3: description of the data set

year 2014 2015
total premium 59,779,468 78,186,959

number of claim 4,847 5,976
total claim 18,370,311 24,824,995

Plots of the observed premium income and the claim arrivals are given in Figure 4.4.

Notice that the 7-day moving averages are used for both premium and claim arrivals to

remove the weekly pattern observed in the data set.
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Figure 4.4: estimated premium income (left) and estimated intensity function for N(t)
(right)

All components of Model 4.2 may be estimated from the data set. The relative security

loading may be calculated from Table 4.3. The estimated relative security loading is 2.25
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for 2014 and is 2.15 for 2015. We use θ = 2 in the simulation. The distortion function for

the premium and the intensity function for the claim arrivals may be fitted to the data set.

For the premium income component cP (t), we first obtain c by calculating the average

annual premium amount from the data set, we then use the method of least squares

to estimate the unknown phase and the magnitude of the seasonality of the distortion

function P (t). Similar procedure is applied to obtain an estimate of the intensity function

of the claim counting process N(t). For a discussion on how to estimate the intensity

function from the data, see Chernobai et al. (2007). The estimates are

P ′(t) = 1 + 0.2 sin(2π(t− 0.70)), (4.11)

λ(t) = 5414 + 515 sin(2π(t− 0.78)). (4.12)

For the claim-size distribution used in the simulation, we use both the empirical dis-

tribution obtained directly from the data set, and a gamma distribution with parameters

estimated by matching the first two moments. For the empirical distribution case, a

procedure similar to the one introduced in Grandell (1979) is used to estimate R. We

use a gamma distribution here because it is mathematically convenient due to the fact

that the sampling random variables Ỹk’s also follow a gamma distribution. One could fit

a better parametric model for the claim size distribution to obtain a better estimate of

the probability of ruin, however the two distributions we use for the simulation should

suffice to illustrate how the proposed model compare with alternative models.

Three different models similar to those defined in Table 4.2 are considered. We obtain

the probability of ruin with different initial surplus u. The result is given in Figure 4.5. In

this case, the seasonality in the premium income reduces the probability of ruin. Among

these three models, the single-seasonality model yields the highest probability of ruin,

while the dual seasonal model yields the lowest probability of ruin.

We may also calculate the required amount of initial surplus such that the probability

of ruin is under certain level. Table 4.4 lists the required initial surplus in thousands
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Figure 4.5: the probability of ruin for three models using different initial surplus

with which the probability of ruin is less than 0.01 under three different models with two

different claim-size distributions. Among the three models, the dual-seasonality model

yields the lowest required initial surplus. This is consistent with previous results where

the dual-seasonality model yields the lowest probability of ruin among the three models.

Table 4.4: required initial surplus in thousands such that the probability of ruin is lower
than 0.01

Model
claim-size distribution

empirical distribution gamma distribution
classical 495 325

single-seasonality 525 345
dual-seasonality 460 305

Remark 4.16. Using the parameters estimated from this particular data set, the sea-

sonality in the premium income offsets the impact of the seasonality in the claim process.

Since we are assuming a positive relative security loading, the surplus process has a posi-

tive drift. Consequently, the surplus would increase to infinity almost surely. This is true
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even in the cases when ruin occurs in finite time as long as we allow the surplus process

to continue evolving after it hits 0. This implies that the risk of ruin is more pronounced

for small t. It is clear from Figure 4.4 that both the premium income and the claim

arrivals have a high season around time 0. While a higher volume of claim arrivals is

especially risky when the insurer does not have sufficient time to build an ample reserve,

more premium income at this period of time provides some additional safety buffer. This

clarifies why the risk of ruin is higher under Model 2 than under Model 3. This reasoning

also explains the patterns in Appendix A.

4.5 Conclusion

In this chapter, we extend the classical ruin model to allow for seasonal fluctuations in

the premium income. We propose a method to incorporate the seasonal component in

the premium income without affecting other components of the surplus process model.

We show that employing a certain change-of-time technique, the dual-seasonality model

is equivalent to a single-seasonality model, which is easier to analyze. We then review and

apply a simulation technique utilizing importance sampling. Some ruin theory results

are demonstrated using a numerical example and a real-life auto-insurance example.

We discover that, depending on the relative position of the peak season of the premium

and the peak season of the claim, the seasonality in the premium income may either

increase or reduce the probability of ruin. Specifically, the probability of ruin is sensitive

to the initial condition, i.e., whether one has a peak season or a low season for the

premium and the claim around t = 0. The probability of ruin decreases with the initial

surplus at a rate that is related to the specific claim-size distribution. Furthermore,

the way the probability of ruin decreases is not exponential for smaller u, but it is

approximately exponential as u→ ∞.
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Plots of additional simulation results

84
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Table A.1: Simulation results with relative security loading θ = 0.4

Initial surplus Model 1 Model 2 Model 3
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Table A.2: Simulation results with relative security loading θ = 0.8

Initial surplus Model 1 Model 2 Model 3
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Table A.3: Simulation results with relative security loading θ = 1.2

Initial surplus Model 1 Model 2 Model 3
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Table A.4: Simulation results with relative security loading θ = 1.6

Initial surplus Model 1 Model 2 Model 3
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Chapter 5

Summary and future research

In this thesis, we have investigated a real-life insurance data set and studied some risk

models inspired by the characteristics of the data set. We summarize our results as

follows.

In Chapter 2, we studied the time patterns of the premium and the claim processes of

an insurer. We applied and compared several different statistical techniques to separate

long-term trends and short-term fluctuations. We concluded that both the premium and

the claim processes exhibit evident time patterns. Specifically, both processes exhibit

increasing intensities with seasonal fluctuations. We proposed to model the dependency

between these two processes through the exposure. Based on these findings, we proposed

a risk model that utilizes both a non-homogeneous Poisson process and a Cox process

as counting processes. A preliminary simulation study on the probability of finite-time

ruin was conducted to demonstrate how this new model could potentially capture more

risks. As this new model offers greater flexibility than the existing risk models, it may

fit real-life insurance data sets better.

In Chapter 3, we studied a risk model with stochastic premium income. This model

has been studied in the existing literature and various results have been obtained. We

first studied the drop of surplus at each claim arrival. Exploiting the fact that this

89
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random variable may be expressed as the difference of a known random variable and a

compound geometric random variable, we derived a simulation method based on impor-

tance sampling to obtain the probability of ultimate ruin under this model. For cases

where the sampling distribution is not easily identifiable from its moment generating

function, we proposed to use fast Fourier transform to obtain an approximation. Numer-

ical examples were given to demonstrate the behaviour of this model. Simulated results

are compared with known theoretical results. The proposed method allows one to obtain

the risk measure of interest for a wider range of distributions and provides more insight

on the insolvency risk of an insurance portfolio.

In Chapter 4, we studied a risk model incorporating seasonal fluctuations in both the

premium and the claim processes. We replaced the constant premium rate in the classi-

cal model by a deterministic periodic function. By a change-of-time technique similar to

Asmussen (1989), we proved the equivalence of the proposed model and the model pro-

posed in Morales (2004). We analyzed the simulation approach therein and identified the

condition that must be satisfied for this approach to work. We then demonstrated how

to obtain the probability of ruin under this model via several numerical examples. We

also fitted the model to the real-life insurance data set and compared the probability of

ruin under different models. The analysis in this Chapter demonstrates how seasonalities

affect the riskiness of a portfolio.

To conclude, we studied risk models driven by real-life data in this thesis. These

models may better describe the evolution of an insurer’s surplus since they allow for

characteristics that we observe in the real-life data. Hence, insurers could gain a better

understanding of the risks they are taking. Future research topics in this direction include

• In Chapter 2, we only showed the probability of finite-time ruin. With a long time

horizon, this probability should be close to the probability of ultimate ruin. One

could potentially simulate the latter by employing simulation techniques.

• In Chapter 3, we showed the simulated results. We observed some distinct be-
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haviours of this model. Only some of these behaviours can be explained by known

theoretical results. One could investigate from a theoretical point of view why these

behaviours occur.

• In Chapter 4, we used a periodic but deterministic function to replace the constant

premium rate. One could further assume that the premium income is modelled

by a compound Poisson process with periodic intensity function. Both simulation

methods and theoretical methods are yet to be derived for this model.
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under the dual Lévy risk model. Insurance: Mathematics and Economics, 90:135–150,

2020.

H. Yang and L. Zhang. Spectrally negative Lévy processes with applications in risk
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