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Abstract

Concussion is a traumatic brain injury usually caused by a direct or indirect blow to the head

that affects brain function. The maximum mechanical impedance of the brain tissue occurs at

450±50 Hz and may be affected by the skull resonant frequencies. After an impact to the head,

vibration resonance of the skull damages the underlying cortex. The skull deforms and vibrates,

like a bell for 3 to 5 milliseconds, bruising the cortex. Furthermore, the deceleration forces the

frontal and temporal cortex against the skull, eliminating a layer of cerebrospinal fluid. When

the skull vibrates, the force spreads directly to the cortex, with no layer of cerebrospinal fluid to

reflect the wave or cushion its force. To date, there is few researches investigating the effect of

transient vibration of the skull. Therefore, the overall goal of the proposed research is to gain

better understanding of the role of transient vibration of the skull on concussion. This goal will

be achieved by addressing three research objectives. First, a MRI skull and brain segmenta-

tion automatic technique is developed. Due to bones’ weak magnetic resonance signal, MRI

scans struggle with differentiating bone tissue from other structures. One of the most important

components for a successful segmentation is high-quality ground truth labels. Therefore, we

introduce a deep learning framework for skull segmentation purpose where the ground truth

labels are created from CT imaging using the standard tessellation language (STL). Further-

more, the brain region will be important for a future work, thus, we explore a new initialization

concept of the convolutional neural network (CNN) by orthogonal moments to improve brain

segmentation in MRI. Second, the creation of a novel 2D and 3D Automatic Method to Align

the Facial Skeleton is introduced. An important aspect for further impact analysis is the abil-

ity to precisely simulate the same point of impact on multiple bone models. To perform this

task, the skull must be precisely aligned in all anatomical planes. Therefore, we introduce

a 2D/3D technique to align the facial skeleton that was initially developed for automatically

calculating the craniofacial symmetry midline. In the 2D version, the entire concept of using

cephalometric landmarks and manual image grid alignment to construct the training dataset

was introduced. Then, this concept was extended to a 3D version where coronal and trans-
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verse planes are aligned using CNN approach. As the alignment in the sagittal plane is still

undefined, a new alignment based on these techniques will be created to align the sagittal plane

using Frankfort plane as a framework. Finally, the resonant frequencies of multiple skulls are

assessed to determine how the skull resonant frequency vibrations propagate into the brain

tissue. After applying material properties and mesh to the skull, modal analysis is performed

to assess the skull natural frequencies. Finally, theories will be raised regarding the relation

between the skull geometry, such as shape and thickness, and vibration with brain tissue injury,

which may result in concussive injury.

Keywords: Convolutional Neural Network, Skull Segmentation, Brain Segmentation, Or-
thogonal Moments, Geometric Moments, Cephalometric analysis, STL, MRI, CT, ICA, PCA,
k-NN, k-Means, Finite Element Analysis, Modal Analysis
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Summary for Lay Audience

A concussion is a traumatic brain injury usually caused by a direct or indirect blow to the

head that affects brain function. As the maximum mechanical impedance of the brain tissue

occurs at 450±50 Hz, skull resonant frequencies may play an important role in the propagation

of this vibration into the brain tissue. The overall goal of the proposed research is to gain a

better understanding of the role of transient vibration of the skull on concussion. This goal

will be achieved by addressing three research objectives: I) develop an automatic method to

segment/extract skull and brain from magnetic resonance imaging (MRI), II) create a novel

2D and 3D automatic method to align the facial skeleton, and III) identify the skull resonant

frequencies and raise the theory of how these vibrations may propagate into brain tissue. For

objective 1, 58 MRI and their respective computed tomography (CT) scans were used to create

a convolutional neural network framework for skull and brain segmentation in MRI. Moreover,

an invariant moment kernel was introduced to improve the brain segmentation accuracy in

MRI. For objective 2, a 2D and 3D technique for automatically calculating the craniofacial

symmetry midline from head CT scans using deep learning techniques was used to precisely

align the facial skeleton for future impact analysis. In objective 3, several skulls segmented

were tested to identify their natural resonant frequencies. Those with a resonant frequency of

450±50 Hz were selected to improve understanding of how their shapes and thickness may

help the vibration to propagate deeply in the brain tissue. The results from this study will

improve our understanding of the role of transient vibration of the skull on concussion.
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Chapter 1

Introduction

As any structure, the skull has several resonant frequencies that are excited when it is struck

and transiently vibrates at its resonant frequencies [1–6]. The resonant frequencies correspond

to specific deformation modes that are determined by the geometric shape of the skull and the

distribution of bone thickness. The brain tissue has a maximum mechanical impedance (0.11

Ns/m) near 450±50 Hz [7,8], and any vibrations near this frequency are likely to propagate into

the brain. If the propagating vibrations can constructively interfere and cause damage to brain

tissue when they meet in different regions of the brain, then it is possible that axons crossing

these junctions might experience shearing forces resulting in the axons stretching and tearing.

This is a possible mechanism by which concussion injury to the brain occurs.

Concussion is a traumatic brain injury that affects brain function [9–13]. Symptoms are

usually temporary but can include headaches, difficulty concentrating, loss of memory, drowsi-

ness, dizziness, sensitivity to light, and feeling slowed down. The brain has the approximate

consistency of gelatin and is protected from everyday jolts and bumps by cerebrospinal fluid

inside the skull. Despite the natural protection, a significant direct or indirect blow to the head

or upper body can cause the brain to move back and forth against the inner walls of the skull.

As the brain moves back and forth within the skull, areas of varying density in the brain slide

over each other at different velocities. This shearing effect leads to extensive deformation of

the brain structure and micro-tears to the underlying axon fiber bundles. When severe, this is

known as axonal shearing or diffuse axonal injury (DAI) [14]. DAI is a severe traumatic brain

1
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injury with profound symptoms. Concussion is a much milder brain injury. However, shearing

or stretching of the axons in a concussion can disrupt communication among neurons in the

brain by creating gaps in the cellular membrane of the axon and leakage of the ions needed for

transmitting action potentials.

Vibration of the skull after impact could be the cause of damage to the the underlying

cortex. The skull deforms and vibrates, like a bell [15] for 3 to 5 milliseconds after impact [16],

perhaps bruising the cortex [17]. When the skull vibrates, the vibration could be spread through

the thin layer of cerebral spinal fluid and into the cortex, and as the vibrations propagate deep

into the brain, concussion might occur deep within the brain or closer to the periphery. It would

all depend on where the vibrations constructively interfere, so, as to increase the amplitude of

tissue deformation locally.

The rationale for this thesis is to examine the role that vibration, excited by impact to the

skull, could have on concussion injury to the brain. This thesis models the resonant frequencies

excited by direct impact to the brain and the relationshp between skull shape, thickness, stiff-

ness, and the frequencies and mode shapes that individual skull possess. Figure 1.1 illustrates

the strategy for accomplishing this goal.

Therefore, the overall purpose of the proposed research is to determine how the vibrations

of the skull resonant frequencies propagate in the brain tissue. This goal will be achieved by

addressing three research objectives: I) Develop an automatic method to segment the skull and

brain from MRI, II) Create a novel 2D and 3D automatic method to align the facial skeleton,

and III) Determine how the vibrations of the skull resonant frequencies propagate in the brain

tissue.

• Objective I – Create an Automatic Method to Segment/Extract Skull and Brain

from MRI

The goal of this objective is to present an automatic method to extract the skull and

brain from MRI. This goal is critical since extracting the skull from CT exposes patients

to a certain amount of ionizing radiation, MRI scans are much safer for the patient but
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Figure 1.1: Magnetic resonance images (MRI) are taken from a group of individuals. (1) An
algorithm extracts the skull from the MRI in the STL file format. (2) These skulls are then
aligned using an algorithm. (3) Modal analysis assesses the natural frequency of skulls to
distinguish between different skulls with similar natural frequencies.

pose their own difficulties. Due to the weak magnetic resonance signal from bones, MRI

scans have difficulty in distinguishing bone tissue from other tissues. As a result, bone

segmentation from MRI is a challenging task. Additionally, a strategy that enhance brain

segmentation in MRI benefits the skull segmentation in MRI by reducing image infor-

mation through brain removal, and also helps the improvement of neurological diseases

assessment.

• Objective II – Create a Novel 2D and 3D Automatic Method to Align the Facial

Skeleton

The goal of this objective is to introduce a 2D and 3D technique using an invariant

moment and convolutional neural network, respectively, to automatically align the trans-

verse, sagittal, and coronal planes. Both techniques are introduced in this paper for the

automatic calculation of the craniofacial symmetry midline and midplane. However,
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these methods are critical for conducting a future impact analysis as the perfect model

alignment is important for consistent simulations of multiple models.

• Objective III – Determine how the skull resonant frequency vibrations propagate

into the brain tissue

The goal of this objective is to determine how the natural frequencies of multiple skulls

may propagate deep into the brain tissue causing the concussive injury. Since brain

tissue has a maximum mechanical impedance at around 450 Hz, any vibrations near this

frequency may easily propagate into the tissue. Therefore, from the data and results

acquired in this objective, it is expected to raise a theory regarding the relation between

the skull geometry (shape and thickness), skull material properties (density and Young’s

modulus), and its vibration with brain tissue injury.

1.1 Concussion

A concussion, also known as mild traumatic brain injury (mTBI), is a form of traumatic brain

injury caused by a biomechanical force that interferes with neurologic normal function which

typically occurs in the absence of detectable brain injury [18]. Headaches, difficulty concen-

trating, loss of memory, drowsiness, dizziness, sensitivity to light, and feeling slowed down,

are some examples of clinical, functional, and cognitive symptoms that may occur as a result of

mTBI [19, 20]. Depending on the severity, these symptoms last anywhere from a couple days

to a few months [21]. Concussions are commonly produced by a direct or indirect contact to

the person that ultimately leads to a force transmission through the neck/head region generally

caused by falls, motor vehicle incidents, or sport related injury.

The probability of sustaining a concussion is influenced by linear and rotational accelera-

tion, which causes a temporary increase in intracranial pressure and a strain effect, respectively.

Initially, linear acceleration was believed to be the most significant mechanism, whereas nega-

tive pressure, cavitation, and rotational acceleration were believed to be minor or nonexistent.
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For instance, Ommaya (1966) [22] suggested that rotation itself cannot generate the same levels

of injury as direct impact and showed that indirect impact requires twice the rotational velocity

to cause a concussion. Ono (1980) [23] performed a number of experiments with primates

and discovered no association between rotational acceleration and the incidence of concussion.

The concussion was determined to be caused by linear acceleration from a direct impact.

Further research found that rotation could account for approximately half of the risk for

brain injury [24]. Gennarelli (1972) [25, 26] indicated that horizontal head translation resulted

in predominantly local effects, such as intracerebral hematomas and well-circumscribed cere-

bral contusions, while DAI were only observed when a rotational component was included.

This indicated that concussion could only be generated when linear and rotational motion were

combined rather than linear motion alone [27].

The first to identify rotational acceleration with or without direct impact as a major mech-

anism in brain injury was [28], theorizing that tensile and shear strain generated by rotation

alone may cause cerebral concussion and contrecoup contusion [29]. Furthermore, [25,30–33]

reported that rotational acceleration contributes more than linear acceleration to the develop-

ment of concussions, diffuse axonal injuries, and subdural hematoma, based on the assumption

that these injuries were caused by the shear strain induced by rotational acceleration and stated

that rotational acceleration may cause most forms of brain damage. Regardless of the fact that

it is typically evaluated in combination, rotational acceleration is considered to be the major

force responsible for concussion and has been definitively detected in severe traumatic brain

injury [34]. For linear acceleration, pressure gradient seems to be the major mechanism, while

shear stress, which originates from differential motion between the brain and skull, appears to

be the key mechanism for purely rotational acceleration [35]. In addition, increasing rotation

duration reduces brain tolerance and causes more significant damage [34].

After a shock to the head, computer models suggest four injuries ( [19]):

• Impact - impact generates a millisecond-long shockwave throughout the brain, which

is transmitted via the ventricles and repeatedly reflected and refracted by the skull and
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the boundaries between structures. As a result, the waves interefere so their crossings

augment and cancel each other. Patches of neurons are damaged all over the brain (in-

cluding the cerebellum and brainstem) where negative pressure waves coincide. As a

consequence, even minor concussions are associated by extensive neuronal damage. The

negative phase of the wave is the most damaging, producing microsecond bubbles that

tear blood vessels and pull tissues apart, potentially causing extradural clots, and tearing

or stretching structures such as proteins, cell walls, and deoxyribonucleic acid (DNA)

chains.

• Deceleration - for traumatic brain damage, deceleration is common (but not essential).

The corticospinal tracts and the reticular formation are stretched and torn when the cere-

brum swings on the brainstem resulting in spasticity and loss of consciousness. For

instance, newborns can die from brainstem traction alone by a shake, without any im-

pact [36].

• Rotation - Brain tissue deforms more readily in reaction to shear forces than other bi-

ologic tissues due to the general highly organized nature of the brain and its physical

properties. Shear forces are generated throughout the brain by rapid head rotations,

hence rotational accelerations have a significant risk of causing shear-induced tissue

damage [37]. Since the impact is not always centralized, rotation may occur that causes

the axons crossing the hemispheres to stretch.

• Vibration - The underlying cortex is bruised by the vibration (resonance) of the skull af-

ter an impact. For 3–5 milliseconds [16], the skull deforms and vibrates like a bell [15],

damaging the cortex [17]. The brain is gelatinous in texture and is cushioned from or-

dinary bumps and jolts by cerebrospinal fluid inside the skull. As a result of the decel-

eration, the frontal and temporal cortex has already swung violently against the skull,

impacting the cerebrospinal fluid. Because there is no layer of cerebrospinal fluid to de-

flect or reduce the wave or cushion its force, skull vibration is transmitted directly to the
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cerebral cortex.

After a blow to the head, neck, or upper body, the brain can deform back and forth forcefully

against the inner walls of the skull. When this occur, areas of varying density in the brain, such

as the white and gray matter, slide over each other at different speeds ( Figure 3.1). The shearing

forces experienced by axons crossing these junctions lead them to stretch and tear apart from

the cell body. This is called axonal shearing or diffuse axonal injury with moderate to severe

symptoms such as brief loss of consciousness, impaired long-term memory, reduced problem-

solving ability, lower social inhibition, attention/perception problems, increasing headache,

repeated vomiting, slurred speech, confusion, unusual behaviors, seizures, and limb weakness

or numbness. This shearing action causes serious brain deformation and micro-tears in the un-

derlying axon fiber bundles. Inertial forces applied to the head upon impact produce stretching

of the deep and subcortical white matter, which is the major mechanical mechanism in DAI.

This can lead to a breakdown of communication among neurons in the brain (Figure 3.2). Toxic

amounts of chemicals called neurotransmitters are released into the extracellular area when the

torn axons degenerate. Over the next 24 to 48 hours, many of the surrounding neurons begin

to die.

Numerous mTBI patients experience severe post-concussion symptoms, that can include

somatic symptoms including nausea, dizziness, headache, blurred vision, auditory disturbance,

and fatigue, cognitive complaints such as memory and executive function, and emotional and/or

behavioural problems the same as disinhibition and emotional lability [38]. The most common

post-concussive symptom is headache, followed by dizziness, which is more commonly a sen-

sation of disequilibrium and imbalance than objective vertigo [10].

The average recovery period is not scientifically defined and is impacted by factors such as

age, gender, and previous concussion history. Concussions generally recover on their own with

adequate physical and cognitive rest until symptoms diminish. Approximately 10% of athletes

experience concussion symptoms that last longer than two weeks. When it comes to non-sport-

related concussions, most individuals recover entirely within the first three months, however, up
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Figure 1.2: Grey and white matter in the crossing junction.

Source: Adapted from https://www.youtube.com/watch?v=55u5Ivx31og
https://www.youtube.com/watch?v=7Lfc7aZfd0Y&ab channel=CBCNews

Figure 1.3: Grey and white matter in the crossing junction.

Source: Adapted from https://www.youtube.com/watch?v=k MktbTuEdI&ab channel=brainlinebrainline



1.2. Feature Extraction 9

to 33% may continue to experience symptoms beyond that [39]. The persistence of symptoms

beyond the generally accepted recovery time period may indicate a sustained concussion or

the development of post-concussion syndrome (PCS). An overload of subconcussive hits is

linked to a degenerative brain disease known as Chronic Traumatic Encephalopathy (CTE),

also known as dementia pugilistica or fistfighter’s dementia, boxer’s madness, or punch drunk

syndrome. CTE result in symptoms more severe and may lead to dementia.

One strategy for revealing critical information of head structures is the use of medical

imaging techniques such as computed tomography (CT) and MRI. When adopting medical

imaging techniques to assess neurological disorders, the initial step is to isolate regions of

interest (ROIs) using image processing techniques such as feature extraction. Since feature

extraction is the process of transforming a large set of data into a set of feature vectors of

reduced dimension, multi-dimensional datasets, such as those encountered in CT and MRI

modalities, benefits from its use.

1.2 Feature Extraction

In medical imaging, feature extraction is an important step to obtain feasible information for

diagnostics, classification, recognition, and detection tasks. A number of effective performance

classification system relies on the feature extractor. Consequently, researchers and developers

are devoting efforts to improve recognition and classification. Despite the fact that researchers

have developed a number of feature extraction methods, there is still opportunity to improve

both the feature extraction techniques and the classifier system [40]. A typical solution to the

problem of multi-dimensional datasets is to search for a projection of the data onto a reduced

number of features that preserves as much information as possible [41].

In computer vision, the data set is composed of images that, in theory, include various ir-

relevant information, which makes any computational calculation more time-consuming. In

this context, feature extraction may be considered as a method of generating a new set of vec-



10 Chapter 1

tors that represent an observation while summarizing the information contained in the original

feature set. As a result of the feature extraction, a new set of data is obtained with a reduced di-

mensionality than the original set, thus, reducing the computational cost required in the recog-

nition process. Furthermore, in pattern recognition problems, it is desirable to extract features

that introduce high discrimination between different classes, eliminating redundant features

that do not contribute to the classification process. However, decreasing the data size should

not compromise the performance of the classification system. Instead, the feature extraction

process should be directed so that the generated features allow the classifier to efficiently gen-

eralize the problem and obtain a high accuracy rate. In essence, the fundamental objective of a

feature extractor is to reduce the complexity of a feature vector that represents an observation

while maintaining the ability to discriminate across classes.

1.2.1 Geometric Moments

Invariant moments have been extensively used in feature extraction, pattern recognition, and

object classification. One of the most significant features of the moments is its invariance to

affine transformations, such as rotation, translation, and scale invariance. Moments are scalar

quantities used to characterize a function and capture its most significant features [42]. From a

mathematical point of view, moments are projections of a function on a polynomial basis.

The concept of moments was initially introduced by Hu (1962) [43], and has been widely

used in the field of image analysis and pattern recognition such as in character recognition [44–

46], facial recognition [47–49], fingerprint recognition [50, 51], medical image analysis [52,

53], and industrial applications [54,55]. Hu (1962) [43] introduced 2-D geometric moments of

a distribution function for an image as a structured element, called the moment invariants [56].

Hu (1962) [43] also employed algebraic function theory to create a set of Moment Invariants

that describe the orthogonal invariants to linear transformation was employed, that are rotation,

translation, and scaling factors. This function is also known as Geometric Moments (GM).

The general formulation of GM function mpq of the order (p + q) for two-dimensional
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continuous function f (x, y) for p, q = 0, 1, 2, 3. . . . are defined as [57, 58]

mpq =

∫ ∞

−∞

∫ ∞

−∞

xpyq(x, y)dxdy. (1.1)

Similarly, mpqr denotes the three-dimensional continuous function with an order of (p + q + r)

defined as

mpqr =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

xpyqzr(x, y, z)dxdydz. (1.2)

In digital image analysis, equations 1.1 and 1.2 can be represented as

Mpqr =
∑

x

∑
y

xpyqI(x, y), (1.3)

Mpqr =
∑

x

∑
y

∑
z

xpyqzrI(x, y, z). (1.4)

where x = 0, 1, ..., N-1, y = 0, 1, ..., M-1, and z = 0, 1, ..., D-1, (x, y, z) are the image coordinates,

and I(x, y, z) is a digital image defined over the discrete square domain N×M×D.

This equation allows for the calculation of the center of mass of an image, and of a region

by [59]

x̄ =
M10

M00
and ȳ =

M01

M00
. (1.5)

x̄ =
M100

M000
, ȳ =

M010

M000
, and z̄ =

M001

M000
. (1.6)

The drawback of GM is that they are not orthogonal since they are based on the projection

of an image’s intensity function onto specific monomials, that do not form an orthogonal basis

[56]. As a result, GM suffer from a high degree of information redundancy and those of a

higher order are sensitive to noise [60, 61]. This disadvantage of the GM can be solved by

using the orthogonal moments since their kernels are based on orthogonal polynomials.
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1.2.2 Orthogonal Moments

Several research studies have been conducted in order to enhance and establish new types of

moment invariants. Based on the theory of continuous orthogonal polynomials, Teague (1980)

[62] introduced the Zernike and Legendre moments, and Mukundan (2001) [63] presented the

Tchebichef moments. Through the property of orthogonality, the corresponding moments are

given the feature of minimum information redundancy or overlapping of information between

moments with different orders and repetitions. In other words, the different parts of the image

are represented by distinct moment orders.

1.2.2.1 Zernike and Pseudo-Zernike Moment

The Zernike Moments (ZM) were first introduced by Teague (1980) [62], which were ob-

tained from continuous orthogonal Zernike polynomials, and were developed to improve on

traditional GM, particularly for rotation applications. ZM are more robust in the presence of

noise, and reduce the invariant properties error even though the image is under the influence

of independent features. Since ZM is defined using a polar coordinate system, ZM are usually

applied in rotation recognition tasks which requires rotation invariance [64] such as analysing

and understanding images systems [65–67], medical image analysis [68–70], recognition sys-

tems [71–73], and so forth.

To compute ZM, the image or ROI is initially projected onto a unit circle, with the image’s

centre correponding to the circle’s origin. Pixels that are outside the circle are ignored in the

computation. The coordinates are then defined by the size of the vector from the origin to the

coordinate point. To include these pixels, the disc can be expanded so that the image function

I(x,y) is completely enclosed inside the disc (Figure 1.4). This approach can be performed by

xi = −

√
2

2
+

√
2

N − 1
x, and y j =

√
2

2
−

√
2

N − 1
y, (1.7)

where x = y = 0, 1, ..., N-1, (xi, y j) are the image coordinates, and I(x,y) is defined over the
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discrete square domain N×N.

Figure 1.4: (a) Image mapped over and (b) enclosed in a unit disc.

Computing ZM for an image consists of three steps; calculating the radial polynomial,

calculating the Zernike base functions, and calculating the ZM by projecting the image to the

base functions. Obtaining the ZM of an image begins with the calculation of radial Zernike

polynomials Rpq(ρ) of order p and q

Rpq(r) =

p−|q|
2∑

s=0

c(p, q, s)ρp−2s, (1.8)

where

c(p, q, s) = (−1)s (p − s)!

s!( p+|q|
2−s )!( p−|q|

2−s )!
, (1.9)

where ρ is the length of the vector from the origin to the pixel (x,y)

ρxy =

√
(2x − N + 1)2 + (N − 1 − 2y)2

N
, (1.10)

where p is a non-negative integer and q is an integer satisfying 0 ≤ |q| ≤ p. Figure 1.5 shows

the radial polynomials from 0 to 5 order in the interval 0 ≤ ρ ≤ 1.

For the Zernike base functions, Teague (1980) [62] introduced a complex set of Zernike
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Figure 1.5: Zernike radial polynomials Rpq(r) of order 0 to 5 and repetitions 0 and 1.

polynomials that form a complete orthogonal set on the interior of a unit circle x2 + y2 = 1,

Vpq(x, y) = Vpq(ρ, θ) = Rpq(ρ)e jqθ, (1.11)

where j =
√
−1 and θ is the angle between ρ and x axis.

The final step consists of calculating the ZM. The discrete shape of the ZM of an image

size of N×N is expressed as

Apq =
p + 1
π

N−1∑
i=0

N−1∑
j=0

I(xi, y j)V∗pq(xi, y j)∆xi∆y j, (1.12)
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where

xi = −

√
2

2
+

√
2

N − 1
x, and y j =

√
2

2
−

√
2

N − 1
y, (1.13)

V∗pq are the complex conjugate of the Zernike polynomials (Vpq) in Equation(1.11) and p−|q| =

even.

Pseudo-Zernike Moments (PZM) are obtained by removing the condition p − |q| = even

from the ZM. It leads to a reduction in time complexity [74], more feature vectors since there

are (p + 1)2 linearly independent pseudo-Zernike polynomials of orders ⩽ p as compared to

1
2 (p + 1)(p + 2) of Zernike polynomials [75], less sensitive to image noise [76], and a robust

orthogonality property that makes the individual order moments more independent character-

istics of the image [77]. Therefore, Equation(1.11) is also applied to PZM with q = –p, –p+1,

..., p. Equation(1.11) can then be rewritten as

Rpq(r) =
p−|q|∑
s=0

(−1)s (2p + 1 − s)!
s!(p+ | q | +1 − s)!(p− | q | −s)!

r(p−s). (1.14)

Due to the higher computational cost of the PZM, most of the attention has been focused on

ZM. Recently, instead of using the direct formula presented in Equation(1.14), efficient tech-

niques to determine pseudo-Zernike polynomials have been proposed to improve the computa-

tional time of the PZM. Among these methods, [78] introduced a p-recursive method defined

by

Rqq(r) = rq, (1.15)

R(q+1)q(r) = (2q + 3)rq+1 − 2(q + 1)rq, (1.16)

Rpq(r) = (k1r + k2)R(p−1)q(r) + k3R(p−2)q(r), p = q + 2, q + 3, ..., pmax, (1.17)

where

k1 =
2p(2p + 1)

(p + q + 1)(p − q)
, (1.18)

k2 = −2p +
(p + q)(p − q − 1)

(2p − 1)
k1, (1.19)
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k3 = (2p − 1)(p − 1) −
(p + q − 1)(p − q − 2)

2
k1 + 2(p − 1)k2. (1.20)

1.2.2.2 Legendre Moments

The Legendre Moments (LM) were other moments introduced by Teague (1980) [62] and

were created based on the continuous orthogonal Legendre polynomials [56]. There have been

several papers describing the application of the LM in image processing [79–81]. LM are

produced from the recursive relation of the p-order Legendre polynomial which is defined

as [82]

Pp(x) =
(2p − 1)xPp−1(x) − (p − 1)Pp−2(x)

p
, (1.21)

where p is a non-negative integer, 0 ≤ |q| ≤ p, P0(x) = 1, P1(x) = x, and p > 1. The Legendre

polynomial set are defined on the interval between [-1,1]. Figure 1.6 shows the Legendre

polynomials of order 0 to 5.

Figure 1.6: Legendre polynomials Pp(x) of p-order 0 to 5.
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The two-dimensional discrete Legendre moments of order (p+q) are expressed as

Lpq = λpq

N−1∑
i=0

N−1∑
j=0

Pp(xi)Pq(y j)I(xi, y j), (1.22)

where I(x, y) is defined over N×N size, λpq is a normalizing constant defined as

λpq =
(2p + 1)(2q + 1)

N2 , (1.23)

and xi and y j are the normalized pixel coordinates from [-1,1] given as

xi =
2i

N − 1
− 1, and y j =

2 j
N − 1

− 1. (1.24)

1.2.2.3 Tchebichef Moments

The orthogonal moments described above have the following limitations; Zernike and pseudo-

Zernike polynomials are defined within a unit circle, and Legendre polynomials are only valid

within the interval [-1, 1]. As a result, calculating these moments requires a coordinate trans-

formation and appropriate approximations from continuous moments. Due to numerical ap-

proximations of continuous moments, this will result in a discretization inaccuracy [83]. The

implementation of Tchebichef moments (TM), or Chebyshev Moments, does not involve any

numerical approximation since their base set is orthogonal in the discrete domain of the image’s

spatial coordinates.

The discrete Tchebichef moments (TM) of order (p+q) are constructed under the Tchebichef

polynomials defined by Erdelyi (1953) [84]. The scaled Tchebichef polynomials were intro-

duced in [85] as

tp(x) =
(2p − 1)t1(x)tp−1(x) − (p − 1)(1 − (p−1)2

N2 )tp−2(x)
p

, (1.25)

where p = 2,3,...,N-1, t0(x) = 1, and t1(x) =
2x + 1 − N

N
. Figure 1.7 shows the Tchebichef
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polynomials of order 0 to 5.

Figure 1.7: Tchebichef polynomials tp(x) of p-order 0 to 5.

The squared-norm of the scaled polynomials is then modified accordingly to

ρ(p,N) =
N(1 − 1

N2 )N(1 − 22

N2 )...N(1 − ρ
2

N2 )
2p + 1

, (1.26)

where p = 0, 1,..., N-1. Finally, Tchebichef moments can be constructed as

Tpq =
1

ρ(p,N)ρ(q,N)

N−1∑
i=0

N−1∑
j=0

tp(xi)tq(y j)I(xi, y j). (1.27)

1.2.3 Principal Component Analysis

Principal Component Analysis (PCA) was introduced by Pearson (1901) [86] and indepen-

dently developed and named by Hotelling (1933) [87] and in Hotelling (1936) [88]. PCA is

an orthogonal linear transformation method for reducing the dimensionality of large data sets

by transforming a number of variables into a reduced number of variables while preserving

the essential information. It transforms the data into the new coordinate system wherein the
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highest variance is positioned on the first coordinate, the second highest variance is located on

the second coordinate, and so forth [89]. In summary, the objective of PCA is to reduce the

number of variables in a data set while conserving as much information as possible. In order

to achieve these goals, PCA computes new variables called principal components (PCs) which

are formed as linear combinations of the original variables.

Since PCA is sensitive to the variances of the initial variables, the first step in calculating

PCA for a data set X is to normalise the range of the continuous initial variables ensuring that

they all contribute equally to the analysis. Mathematically, this can be achieved by

M = X − E{X}. (1.28)

To evaluate whether there is any correlation between the variables with regard to each other,

the covariance matrix of M with n samples is calculated as

CM =
1

n − 1
MMT . (1.29)

In order to determine the PCs of the data, the covariance matrix CM is decomposed by

eigenvalue decomposition

CM = EΛET , (1.30)

where the eigenvectors {e1, e2, ..., em} of CM are arranged as columns in E and Λ is a diagonal

matrix containing the eigenvalues {λ1, λ2, ..., λm} of CM. The first l(l<m) greatest columns in E

are considered as PCs, where l denotes the number of PCs and m the number of variables in M.

The last step aims to reorient the data from the original orientation to the orientation re-

flected by the PCs using the eigenvectors of the covariance matrix. Since the obtained PCs

constitute the subspace, data matrix M can be projected into the subspace as

Y = Ẽ
T
l M, (1.31)
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where Ẽ is the reordered and reduced eigenvector matrix

1.2.4 Independent Component Analysis

Independent Component Analysis (ICA) is a mathematical technique for determining compo-

nents behind a set of random variables that are assumed to be mutually statistically independent

and non-gaussian. In other words, it is a statistical signal processing technique whose objective

is to linearly decompose a random vector into components that are not only uncorrelated, as in

PCA, but also as independent as possible [90]. As a result, ICA is considered a generalization

of PCA. PCA aims to develop a representation of inputs from uncorrelated variables, whereas

ICA provides a representation based on statistically independent variables [91].

Given a series of random variable observations {x1(t), x2(t), ..., xn(t)}, where t is the time or

sample index, it is assumed that these are generated as a linear combination of independent

components {s1(t), s2(t), ..., sn(t)} [92]

x = [x1(t), x2(t), ..., xn(t)]T ,

x = A[s1(t), s2(t), ..., sn(t)]T ,

x = As, (1.32)

where A is an unknown m×n matrix of full rank called the mixing matrix [93]. This model

is considered a generative model meaning that it describes how observed data are generated

by a process of mixing the independent components (ICs), s. ICs are latent variables which

means they cannot be directly observed. As a result, the basic challenge of ICA is to estimate

the underlying ICs, or equivalently to estimate the mixing matrix A when only x is observed.

Moreover, the model requires that the ICs have non-Gaussian distributions, or at most one of the

ICs is Gaussian. ICs can be discovered by finding a separation matrix W to linearly transform
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x in such a way that the output components are as mutually independent as possible [90]. The

problem given by equation(1.32) can then be reformulated, after estimating the matrix A, as

u = A−1x =Wx, (1.33)

such that a linear combination u =Wx is the optimized estimate of the signals from indepen-

dent sources s. If the linear transformation W satisfies W ≈ A−1, than u ≈ s.

In order to find W, two widely used preprocessing methods are performed to make the

computation easier. First, the mean of the data x is subtracted to centre the data on the source

so that the data x is a zero-mean variable, in other terms

m = x − E{x}. (1.34)

The second preprocessing is to whiten the observed variables. This step linearly transform

the observed vector x into a new vector v with uncorrelated components and unit variances. It

removes all linear dependencies in a data set and normalizes the variance across dimension, or

in other words, whitening transforms the data into a spherically symmetric distribution [94].

This problem has a direct solution in terms of PCA expansion, which results in

v = Vm, (1.35)

where V is the whitening matrix and v the whitened data. Therefore, equation(1.33) is rewritten

as

u =Wv. (1.36)

ICA applications on image processing require the random variables to be the training im-

ages. Assuming a vectorized image xi, the training image set can be constructed with n random

variables which are assumed to be the linear combination of m vectorized unknown indepen-

dent components s, and denoted as x = {x1, x2, ..., xn}
T and s = {s1, s2, ..., sm}

T . Each image
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xi is therefore represented as a linear combination of s1, s2, ..., sm with weighting coefficients

ai1, ai2, ..., aim, associated to the matrix A. The features of all training images are represented

by the columns of A or Atrainand the coefficients s signal the presence and the amplitude of

the features in the observed data xtrain [90, 95]. Consequently, xtest must be multiplied by s to

generate Atest as

Atest = xtests−1. (1.37)

Figure 1.8 illustrates the application of this method to extract image features. The FastICA

[96] algorithm was chosen to compute ICA in this study since it is simple and enables for

programming code modification.

Figure 1.8: Steps of the classification process.

1.3 Classifiers

The final stage in most of the image processing systems is classification in which unknown

pattern is attributed to a class. The complexity of the classification problem is determined by

the variation of feature values of samples relating to the same class compared to the variation

in feature values of samples relating to different classes [57]. As a result, the better the data can

be represented by the features extractor in this stage, the better the classification will be. On the

other hand, the influence of the classifier itself to the classification efficiency plays a important

role. This capability is characterized by the ability to distinguish interclass similarities while

disregarding possible intraclass differences. In this study, k-Nearest Neighbours (k-NN), k-
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Means, and Convolutional Neural Network (CNN) were chosen.

1.3.1 k-Nearest Neighbours

The first studies of a nearest neighbour decision rules were described in a series of two publica-

tions [97] and [98] for k → ∞, followed by a research in [99] for fixed values of k, and finally

established in [100] a generalized classifier for multiple classes. The k-Nearest Neighbours

(k-NN) method is considered to be one of the oldest, simplest and most well-known methods

for pattern recognition.

The training set is formed by n-dimensional vectors and each element of this vector repre-

sents a point in n-dimensional space. To determine the class of an element that does not belong

to the training set, the k-NN classifier searches for k elements of the training set that are nearest

to this unknown element, that is, that have the smallest distance. These k elements are called

k-nearest neighbours. The classes of these k neighbours are verified and the most frequent class

is assigned to the unknown element class. In general, the k-NN method performs the following

procedures to determine the class of an unknown test set:

• the k value is defined. Usually after a few trials, the value of k is chosen according to the

results obtained;

• Distance measurement is selected (such as Minkowski, Cosine, and Correlation);

• The distances obtained are sorted in ascending order and k minimum distances are cho-

sen;

• Classes of k nearest neighbors are identified [101].

There are several methods used to measure the distance between sets of different classes in the

feature space. They will briefly be summarized below.



24 Chapter 1

1.3.1.1 Minkowski Distance

Minkowski distance is a metric designed for real-valued (Normed) vector spaces, in which

a distances can be represented by a positive vector. Let A and B be represented by feature

vectors A = {x1, x2, ..., xm} and B = {y1, y2, ..., ym}, respectively, where m is the feature space’s

dimensionality [102]. The distance between A and B can be calculated using

dist(A, B) =

 m∑
i=1

|xi − yi|
r

1/r . (1.38)

The value of r can be maipulated and three different distances can be calculated; Manhattan or

City Block Distance - (r=1), Euclidean Distance - (r=2), and Chebychev Distance - (r = ∞).

1.3.1.2 Correlation Distance

The correlation distance is a scaled version of the Pearson distance, with a distance metric

ranging from zero to one [103].

dist(A, B) =
∑m

i=1(xi − x)(yi − y)(∑m
i=1(xi − x)2∑m

i=1(yi − y)2)1/2 , (1.39)

where x and y are the mean values of xi and yi respectively.

1.3.1.3 Cosine Distance

The cosine or Angular distance is produced from the cosine similarity, which quantifies the

angle between two vectors, and is estimated by subtracting the cosine similarity from one.

dist(A, B) = 1 −
∑m

i=1(xiyi)(∑m
i=1 x2

i
∑m

i=1 y2
i

)1/2 . (1.40)
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1.3.1.4 Hamming Distance

Hamming distance is a distance metric that provides the number of values that diverge between

two vectors.

dist(A, B) =
m∑

i=1

1xi,yi . (1.41)

1.3.2 k-Means

A popular and simple unsupervised algorithm in machine learning is the k-Means [104]. k-

Means is a clustering approach that separates n variables into k groups with a high level of

similarity between members in one cluster and low level of similarity between members of

other clusters [105]. Initially, random k observations are chosen to represent the initial cluster

focal points. Second, according to the criterion of minimal distance chosen, such as Euclidean

distance, the remaining observations are aggregated to its closest cluster centre. The initial

classification is then obtained, and if it is unreasonable, cluster focal points are calculated

repeatedly until a reasonable classification is achieved [106] (Figure 1.9).

1.3.3 Convolutional Neural Network

Convolutional Neural Network (CNN) is a class of artificial neural network (ANN) that has be-

come a prominent approach in computer vision problems since the remarkable results presented

on the object identification competition ImageNet Large Scale Visual Recognition Competition

(ILSVRC) in 2012 [107]. CNN is a deep learning model for processing data with a grid pattern

that was created to learn spatial hierarchies of information automatically and adaptively, from

low- to high-level patterns, based on the organization of animal visual cortex [108]. CNN is

typically comprised of three types of layers [109]:
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Figure 1.9: k-Means algorithm. Training observations are shown as points and cluster centroids
as crosses. a) Original dataset, b) initial cluster centroids, and c) and d) are illustrations of k-
means running.

1.3.3.1 Convolution Layer

Convolution is a linear operation used for feature extraction that involves applying a small

array of numbers called a kernel over a tensor or array of numbers. A feature map is created

by calculating a dot product between the kernel and the input tensor at each location of the

tensor and combined to obtain the output value in the corresponding position of the output

tensor (Figure 1.10a). This approach is repeated with several kernels to create a number of

feature maps that reflect different features of the input tensors; therefore, different kernels can

represented distinct characteristics (Figure 1.10b).

The spatial of the output is determined by some hyperparameters [110]:

• Stride - is the step each time the filter is slid or is the distance between two consecutive

kernel positions;
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Figure 1.10: a) Example of convolution operation and b) multiple kernels creating different
characteristics.

• Padding - the convolution process prevents the kernel from overlapping the outermost

element, reducing the output height and width in comparison to the input tensor. Padding

is a method for dealing with this problem that involves adding rows and columns of zeros

on each side of the input tensor in order to fit the centre of a kernel on the outermost ele-

ment while preserving the same input-output dimensions during the convolution process;

• Kernel - number and size of kernels;

• Activation Function - is a nonlinear activation function that receives the outputs of a

linear operation and determines whether or not it should activate (Figure 1.11).
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Figure 1.11: Example of nonlinear activation functions.

1.3.3.2 Pooling Layer

A pooling layer decreases the number of learnable parameters by performing a downsampling

operation on the feature maps, reducing the output dimensionality and introducing translation

invariance to small shifts and distortions (Figure 1.12).

Figure 1.12: Example of a 2×2 max pooling and average pooling and 1×1 global max and
global average pooling extracted from a 4×4 input tensor.

1.3.3.3 Fully-Connected Layer

The final convolution or polling layer is generally transformed into a one-dimensional vector

of numbers, and connected to one or more fully-connected layers, with each input connected to

each output by a learnable weight. Just the features extracted and downsampled are produced

in the previous layers, they are projected to the final outputs of the network by a subset of fully
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connected layers, such as the probabilities for each class in classification tasks. The number

of output nodes in the final fully - connected layer is usually equivalent to the total of classes.

After each fully-connected layer, a nonlinear function is applied [109].

Usually, the activation function for the final fully-connected layer is selected according to

each task. Softmax is a common choice for the last layer activation function to calculate the

class probabilities from the class scores. It condenses the class scores into values between 0

and 1 that sum up to 1 [111].

During the training process, kernels and weights are adjusted to minimise the discrepan-

cies between predicted and ground truth outcomes. The backpropagation algorithm is a typical

approach for training neural networks where gradient descent optimization and loss function

play a crucial roles. A loss function measures the coherence between output predictions via

forward propagation and assigned ground truth labels. Gradient descent is a classic optimiza-

tion algorithm that iteratively adjusts the kernels and weights of the network to minimize the

loss.

In addition to the aforementioned techniques, batch normalization is a method for training

very deep neural network to enhance performance and speed, and deliver more reliable mod-

els. It reduces the number of training epochs in the training phase and stabilizes the learning

process. During the training phase, as the parameters of the preceding layers change and, con-

sequently, the distribution of inputs changes, the current layer needs to be updated regularly and

readjusted to the current distributions. Batch normalization normalizes the output of the prior

activation which result in the weights of the next layers to become no longer optimal. Thus,

batch normalization adds two parameters to each layer, multiplying the normalized output by

a standard deviation parameter and adding a mean parameter.

1.3.3.4 U-Net

A very popular segmentation CNN model in medical imaging is the U-Net [112]. The U-

Net architecture complements a basic CNN by consecutive layers that gradually downsample
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or encode, to capture anatomical context, and upsample or decode to allow for precise loca-

tion, enabling the incorporation of a multiscale spatial context. To integrate various levels of

information, high resolution feature representations from the contracting path are combined

with upsampled feature maps, allowing the learning of context information. The upsampling

path allows the network to transmit context information to higher resolution layers. As a con-

sequence, the upsample and downsample paths produce a u-shaped architecture. The term

”U-Net” derives from the similar shape to a ”U”. Figure 1.13 shows an example of U-Net

architecture. .

Figure 1.13: U-Net architecture.

Source: Adapted from ”U-Net: Convolutional Networks for Biomedical Image Segmenta-
tion”, by Ronneberger, O., et al., 2015, In Proceedings of the Medical Image Computing and
Computer-Assisted Intervention—MICCAI 2015, pp. 234-241. doi:10.1007/978-3-319-24574-
4 28

1.3.3.5 U-Net++

To improve segmentation accuracy in medical images, [113] proposed a novel segmentation

framework based on nested, dense skip connections, and deep supervision called U-Net++
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(Figure 1.14).

Figure 1.14: U-Net++ architecture where: black - represents a U-Net architecture, green - a
redesigned skip pathways, blue dense skip connections, and red - deep supervision.

Source: Adapted from ”UNet++: A Nested U-Net Architecture for Medical Image Segmen-
tation”, by Zhou, Z., et al., 2018, Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support, pp. 3-11. doi:10.1007/978-3-030-00889-5 1

In the skip connections employed in U-Net, the decoder receives the encoder feature maps

directly resulting in a fusing of semantically different feature maps. The skip pathways pro-

posed in U-Net++ are added to connect the semantic gap between the encoder and decoder

subpaths, bringing the semantic level of the encoded feature closer to that of the feature maps

waiting in the decoder. As a result, when the received encoder and the associated decoder

feature maps are semantically identical, the optimizer may have an easier optimization issue to

solve.

U-Net++ additionally uses a deep supervision strategy introduced in [114], which allows

for an accurate mode, in which an average of all segmentation branches outputs is performed,

or a fast mode, in which just one segmentation branch is used to select the final segmentation
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map. Therefore, the model size and speed gain are determined by this choice.

1.3.3.6 U-Net3+

Recently, a modified version of U-Net was introduced by [115] named U-Net3+ (Figure 1.15).

U-Net++ takes advantage of nested and dense skip connections, however it does not expand

deep enough into full scale information. U-Net3+ combines low-level details with high-level

semantics from feature maps at various scales and learns hierarchical representations from

full-scale aggregated feature maps.

Figure 1.15: U-Net++ architecture where: black - represents a U-Net architecture, green - a
redesigned skip pathways, blue dense skip connections, and red - deep supervision.

Source: Adapted from ”U-Net 3+: A Full-Scale Connected U-Net for Medical Image Segmen-
tation”, by Huang, H., et al., 2020, In Proceedings of the ICASSP 2020–2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. doi:
10.1109/ICASSP40776.2020.9053405

U-Net3+ transforms interconnection between encoder and decoder and also intraconnec-

tion between decoder sub-networks using full-scale skip connections. Both U-Net and U-

Net++ fall short of extracting substantial information from full scales, failing to learn the po-
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sition and boundary of a ROI. To address this issue, each decoder layer in U-Net3+ comprises

both small and regular scale feature maps from encoder and larger-scale feature maps from

decoder.

Moreover, the U-Net3+ uses full-scale deep supervision to build hierarchical representa-

tions from the full-scale aggregated feature maps. Each decoder step in U-Net3+ generates

a side output that is supervised by the ground truth. The last layer of each decoder stage is

input into a simple 3×3 convolution layer followed by bilinear up-sampling and a sigmoid

function, to provide deep supervision. To enhance boundary condition, a multi-scale structural

similarity index is applied. Finally, to solve false-positives in a non-organ image, typically

produced by noisy information from background, an extra classification task is added, where

a 2-dimensional tensor is produced after passing a series of operations (dropout, convolution,

maxpooling and sigmoid). Then, a 2-dimensional tensor is converted into a single output of 0

or 1, denoting with or without organs, using an argmax function.

1.4 Modal Analysis

When any structure is struck with a force, it will vibrat transiently until the vibration is absorbed

by the structure. The vibration will occur at a set of nature frequencies that are related to the

structural geometry and stiffness. A modal analysis determines the natural frequencies and the

modes or shapes of the deformation.

Modal analysis plays a significant role in vibration control and damage detection in struc-

tures, bridges, and buildings, as well as in the design and optimization of health monitoring.

Modal analysis uses the stiffness matrix of the structure to determine mode frequencies and

shapes to assess the dynamic behaviour of structures that have been subjected to vibrational

mechanical excitation. It shows the movement of distinct sections of a mechanical structure or

component under dynamic loading conditions by revealing the natural frequencies, vibration

characteristics, and mode shapes of the structure. [116].
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Its implementation is based on the presence of specific orthogonality correlations between

system eigenvectors (mode shapes), which separates the original equations of vibration into a

set of independent differential equations. By solving these separated equations, it produces the

response in a series of system eigenvectors called modal expansion or eigenfunction expansion

[117].

When exposed to any external forces, all physical structures have natural frequencies which

will tend to vibrate. The dispersion of mass and stiffness within the structure determines the

frequency of these vibrations. Natural frequencies occur in all physical objects and can reso-

nante under the right conditions. Resonance occurs when a dynamic force causes a structure

to vibrate at its natural frequency. As a result, a small force can cause a significant vibration

response when a structure is in resonance. Figure 1.16 shows the displacement of three distinct

points assessed of a single degree of freedom system response.

Figure 1.16: Displacement response of a mass-spring-damper system.

Source: Adapted from https://youtu.be/DyZFt3WQ3B8

To determine the natural frequencies and mode shapes, the equation of motion for a multi-
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degree-of-freedom damped system is utilized [118, 119]

Mẍ(t) + Cẋ(t) +Kx(t) = f(t), (1.42)

where M, C, and K are the mass, damping, and stiffness matrices respectively, and x(t) and

f(t) are the nodal displacement and excitation force vectors respectively. To obtain the homo-

geneous eigenvalues (natural frequencies), for undamped free vibration system (C = 0 and

f(t) = 0), hence the resultant equation can be considered in the form

x = Xeiωt, (1.43)

where X is the mode shape and ω represents the correponding frequency of each eigenvector

or the frequency of mode (natural frequencies). By dividing the equation (1.42) of mass M and

considering ω =
√

k
m , C = 0, and f(t) = 0, is obtained

ẍ(t) = −ω2Xeiωt. (1.44)

Finally, substituting equations (1.43 and 1.44) in equation (1.42), the general eigenvalue/eigenvector

problem can be written as

(K − ω2M)Xeiωt = 0. (1.45)

By solving equation (1.45), the natural frequencies ω and corresponding mode shapes X

can be obtained.

1.5 Importance of Research

This work focuses on engineering principles to improve our knowledge over mild traumatic

brain injuries like concussions. Though this work, novel skull and brain segmentation tech-

niques were developed that may lead to a new research trend. Additionally, a new concept of
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alignment of the coronal and transverse planes was introduced which provides a more accurate

alignment method. A future sagittal alignment will be introduced, which will be expected to

incorporate and improve the alignment of the coronal and transverse planes. With this addi-

tional alignment, it is expected that this method can be implemented in other bones and not

just restricted to the skull. A study on the geometry and material properties of the skull was

explored and the findings are expected to raise a whole new perspective on how the skull and

its natural frequency might generate concussive injury. In the future, this skull can be incorpo-

rated into a head model to investigate how the vibrating transient propagates in the brain tissue.

This research provides a better understanding of the mechanism that leads to concussive injury

and may be used for improving current helmet designs.
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Chapter 2

Development of a Convolutional Neural
Network-Based Skull Segmentation in
MRI Using Standard Tesselation
Language Models

2.1 Introduction

Image segmentation is the process of partitioning an image into multiple sections to simplify

the image into something more meaningful so that we can easily locate regions of interest

(ROI). In medical imaging and analysis, these ROI, identified by the segmentation process in

an image scanning system, can represent various structures in the body such as pathologies,

tissues, bone, organs, prosthesis, and so forth.

Magnetic resonance imaging (MRI) and computed tomography (CT) are the most common

medical image scanning systems used to reveal relevant structures for automated processing

of scanned data. Both techniques are excellent in providing noninvasive diagnostic images of

organs and structures inside the body. However, CT is not favorable for routine anatomical

imaging of the head as it exposes the patient to small doses of ionizing radiation each visit,

putting the patient at risk for developing diseases such as cancer. For instance, the study in [1]

pointed out that the risk to develop leukemia and brain tumors increases with the radiation ex-

posure from CT scans. On the contrary, MRI scans have difficulty identifying different tissues

52
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because of the low signal-to-noise ratio of MRI. Additionally, due to bones’ weak magnetic

resonance signal, MRI scans struggle with differentiating bone tissue from other structures.

Specifically, as different bone tissues have the tendency to differ more in appearance from

one another than from the adjacent muscle tissue, segmentation approaches must be robust to

account for the variations in the structure [2]. Thus, bone segmentation from MRI presents

a challenging problem. Current biomedical imaging segmentation methods take advantage of

deep learning with convolutional neural networks (CNNs) [3], as seen in [4] where they trained

a large deep CNN to classify over 1 million high-resolution images with top-1 and top-5 test

set error rates of 37.5% and 17.0%, respectively, much better than the previous state-of-the-art

technique.

In CNN, each layer contains various neurons fixed in subsequent layers and sharing weighted

connections. During training, these layers extract features (such as horizontal or vertical edges)

from the training images that allow the CNN to perform certain tasks such as segmentation by

recognizing these features in subsequent images. The advantage of CNN over other techniques

is that convolutional image filters are learned and adapted in an automated process for a high-

level description in the finest optimization process.

With recent advances in graphical processing units and improvements in computational ef-

ficiency, CNNs have achieved excellent results in biomedical image segmentation where deep

learning approaches can be performed in an efficient and intelligent way. CNN has been ex-

tensively applied in musculoskeletal image segmentation tasks such as brain and spine seg-

mentation [5], acute brain hemorrhage [6], vessel segmentation [7], skull stripping in brain

MRI [8], knee bone and cartilage segmentation [9], segmentation of craniomaxillofacial bony

structures [10], proximal femur segmentation [11], and cardiac image segmentation [12].

A review on deep learning techniques has been performed by Garcia et al. [13] where the

authors highlight a promising deep learning framework for segmentation tasks known as U-

Net [14]. U-Net is a CNN which uses an encoding downsampling path and an upsampling

decoding path for segmentation tasks to increase the resolution of the output, which has shown
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high performance when applied on biomedical images [7].

Although numerous MRI segmentation techniques are described in the literature, few have

focused on segmenting the skull in MRI. One approach to segment the skull in MRI is mathe-

matical morphology [15]. The authors describe a method where they first remove the brain by

using a surface extractor algorithms and mask the scalp using thresholding and mathematical

morphology. During the skull segmentation process, the authors use mathematical morphol-

ogy to omit background voxels with similar intensities as the skull. Using thresholding and

morphological operations, the inner and outer skull boundaries are identified, and the results

are masked with the scalp and brain volumes to establish a closed and non-intersecting skull

boundary. Applying this segmentation method to 44 images, the authors were able to achieve

mean dice coefficients of 0.7346, 0.6918, and 0.6337 for shifts CT of 1 mm, 2 mm, and 3 mm,

respectively.

Wang et al. [16] utilized statistical shape information in 15 subjects, where the anatomy

of interest is differentiated in the CT data by means of constructing an active shape model of

the skull surfaces. The automatic landmarking on the coupled surfaces is optimized in statis-

tical shape information by minimizing the description length that included the local thickness

information. This method showed a dice coefficient of 0.7500 for one calvarium segmented.

A support vector machine (SVM) combining local and global features is used in [17]. Feature

vectors are constructed from each voxel in the image that is used as the first entry. The second

input for this method uses a combination of intensities of a set of nearby voxels and statistical

moments of the local surroundings. This feature vector is then introduced to a trained SVM

that classifies the image as either a skull, or something else. By using SVM, the authors found a

dice function mean of 0.7500 (0.68 minimum and 0.81 maximum) from 10 patients in a dataset

of 40 patients.

The work in [18] introduced a convolutional restricted Boltzmann machine (cRBM) for

skull segmentation. This technique incorporates a cRBM shape model into Statistical Paramet-

ric Mapping 8 (SPM8) segmentation framework [19, 20] applied in 23 images. This method
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reached a median dice score for T1-weighted of 0.7344 and for T1-w + T2-w, 0.7446.

Most recently, the authors of [21] analyzed three methods of skull segmentation and iden-

tified multiple factors contributing to the enhancement of the standard of segmentation. Using

a data set obtained from 10 patients, they concluded that improved skull segmentation was ac-

complished by FSL [22] and SPM12 [23], achieving a mean dice coefficient of 0.76 and 0.80

respectively.

These techniques present an effective method with a mean DSC of 0.75 for small datasets;

however, for larger datasets or when extended to images collected from different MRI devices

where the image suffers from noise and variation in the choice of parameter values, this effec-

tiveness may be compromised.

Arguably, one of the most important components in machine learning and deep learning

is the ground truth labels. Careful collection of data and high-quality ground truth labels that

will be used to train and test a model is imperative for a successful deep learning project,

but comes with a cost in computation energy and may become very time-consuming [24].

Minnema et al. [25] displayed a high overlap with gold standard segmentation by introducing

a CNN for skull segmentation in CT scans. In the image processing step, a 3D surface model,

which represents the label, was created in the standard tessellation language (STL) file format,

a well-established method to represent 3D models [26–29]. To convert the files from CT to

STL, segmentation of a high-quality gold standard STL model was performed manually by an

experienced medical engineer. The results show a slight one voxel difference between the gold

standard segmentation and the CNN segmentation, with a mean dice similarity coefficient of

0.9200.

Therefore, this work aims to introduce the deep learning approach, more precisely U-Net,

for the skull segmentation purpose where the ground truth labels are created from CT imaging

using the STL representation file format. Figure 2.1 presents the schematic overview of the

proposed study. First, STL models are created from 58 CT scans. After being converted into

matrices, these images are then overlapped with the MR images to create the gold standard
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and the first dataset. Then, using dataset 1, the first CNN is created. To improve the accuracy,

62 MR images are used to generate brain STL models. The models are then converted into

matrices to create a set of brain gold standard and a second dataset. A brain segmentation

algorithm using a second CNN is created and, through this CNN model and manual corrections,

the brain is removed from dataset 1. Finally, this new dataset is presented again to the first CNN

topology.

Figure 2.1: (1) Standard tessellation language (STL) models are produced from 58 CT scans
and then overlapped with the MR images to create the first dataset. (2) Sixty-two MR images
are used to create brain STL models, and a brain segmentation algorithm is created. The brain
segmentation algorithm is combined with manual corrections to remove the brain from dataset
1 to create dataset 2. (3) Finally, these 2 datasets are compared using the same CNN topology.

2.2 Materials and Methods

2.2.1 Dataset

We used the cancer imaging archive data collections (TCIA) [30] to search for reliable datasets

that contain CT and MRI from the same patient and a minimum variation in the coronal, sagit-

tal, and transverse plane. Fifty-eight volumetric CT and MR images were selected from 4

datasets to meet these criteria:
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• CPTAC-GBM [31]: this dataset contains collection from the National Cancer Institute’s

Clinical Proteomic Tumor Analysis Consortium Glioblastoma Multiform cohort. It con-

tains CR, CT, MR, and SC imaging modalities from 66 participants, totaling 164 studies.

• HNSCC [32–34]: this collection contains CT, MR, PT, RT, RTDOSE, RTPLAN, and

RTSTRUCT from 627 subjects in a total of 1177 studies.

• TCGA-HNSC [35]: the cancer genome atlas head–neck squamous cell carcinoma data

collection 479 studies from 227 participants from CT, MR, PET, RTDOSE, RTPLAN,

and RTSTRUCT modalities.

• ACRIN-FMISO [36–38]: the ACRIN 6684 multicenter clinical trial contains 423 studies

applied in 45 participants using CT, MR, and PET modalities.

2.2.2 Data Processing I

As this study aims to use CT scans to create ground truth labels, the first step was to generate

the STL models. To perform this task, CT images were imported into Mimics Medical Imaging

Software (Materialise, Leuven, Belgium). By using individual global thresholding in combi-

nation with manual corrections, the 3D model mesh was built, which allowed the STL model

to be constructed (Figure 2.2a–c).

Then, to convert the geometric information (STL model) into a solid domain (matrix), vox-

elization was performed using the method in [39] on MATLAB R2019B software (Figure 2.2d).

To generate the MRI labels, the STL models extracted from CT ground truth were over-

lapped into each MRI slice in 3-modal MRI (T1, T2, and FLAIR) using a combination of

manual translations, rotations, and scaling. These manual alignments were followed by visual

inspection and fine adjustment to ensure good quality (Figure 2.3). T2-weighted scans were

included because the border between the skull and cerebrospinal fluid (CSF) can be better de-

lineated, as CSF appears bright in T2-weighted scans and has presented good results in [18,21].
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Figure 2.2: (a) Thresholding applied in CT scan, (b) region growing, (c) 3D mesh model (STL
model), and (d) STL model converted into matrix.

Figure 2.3: (a) CT scan, (b) MRI, and (c) STL model extracted from CT scan overlapped in
MRI.
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Finally, all images were normalized between the range of 0 and 1 and then resized to 256

× 256 using the nearest neighbor interpolation method to improve the processing time.

2.2.3 Data Processing II

To generate a second comparison, which can lead to an improvement in the accuracy, a reduc-

tion in the dataset information was performed by removing regions of non-interest. The idea

is to reduce the information content in the dataset by removing the gray and white matter. To

perform this task, 62 volumetric MR images were randomly chosen and, in a similar manner

explained in Section 2.2.2, brain gold standard labels were created from the MR image. The

creation of brain labels is easily performed in MRI as the brain is easy to identify in magnetic

resonance. The processing initially starts with the application of the thresholding, followed by

region growing, and then creation and extraction of the STL models from the MRI (Figure 2.4).

Figure 2.4: (a) Thresholding applied in MRI, (b) region growing, (c) 3D mesh model (STL
model), and (d) STL model converted into matrix.
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2.2.4 CNN Architecture and Implementation Details

The deep learning framework chosen in this paper was U-Net, which was introduced by Ron-

neberger et al. [14]. This type of CNN was chosen because it works well with very few training

images, yields more precise segmentation, and has been used in a number of recent biomedi-

cal image segmentation applications [5, 9–11, 40]. This network allows for a large number of

feature channels in the upsampling procedure, which contribute in the propagation of context

information to the highest resolution layers. The result is a more symmetric expansive path and

a U-shaped architecture.

In our implementation, we adopted a 3D U-Net initially developed for brain tumor seg-

mentation in MRI [41]. To avoid class imbalance when using conventional cross entropy loss,

a weighted multiclass dice loss function was used as the general loss of the network [42]. Ta-

ble 2.1 shows the implementation parameter chosen for the skull segmentation. The parameters

were chosen to avoid computational error, improve the robustness and generalization ability of

the CNN, and obtain a good accuracy for the training set explored in this work.

Table 2.1: Skull segmentation implementation details.

Parameter Value
Optimizer Adam

Encoder Depth 4
Filter Size 3

Number of First Encoder Filters 15
Patch Per Image 1
Mini Batch Size 128

Initial Learning Rate 5 × 10−2

The CNN model was performed on Intel i7-9700 (3.00 GHz) workstations with 64 GB of

ram and two 8GB VRAM graphic cards from NVIDIA (RTX 2070 SUPER and RTX 2080).

The code was implemented in MATLAB R2019B.



2.3. Results and Discussion 61

2.2.5 Model Performance Evaluation and Statistical Analysis

To evaluate the CNN segmentation, Dice Similarity Coefficient (DSC) [43], Symmetric Volume

Difference (SVD) [44], Jaccard Similarity Coefficient (JSC) [45], Volumetric Overlap Error

(VOE) [46], and Hausdorff distances (HD) [47] methods were used.

The dice similarity coefficient is a spatial overlap index that varies from the ranges 0, in-

dicating no spatial overlap between two sets of binary segmentation results, to 1, indicating

complete overlap [48]. SVD gives the symmetric difference of the shape and segmentation in

terms of dice-based error metric. JSC is a similarity ratio which describes the intersection be-

tween the ground truth and the machine segmentation regions over their union. It ranges from

0% to 100% of similarity. VOE is the corresponding JSC error measure. Finally, to measure

the segmentation accuracy in terms of distance between the predicted segmentation boundary

and the ground truth, Hausdorff distances using Euclidean distance are used.

2.3 Results and Discussion

2.3.1 Performance Analysis

The 58 volumetric CT and MR images were randomly divided into 49 for training and 9 for

validation/testing. Table 2.2 presents the statistical analysis of the 9 test images after being

trained and tested 10 times for 600 epochs. DSCs, SVDs, JSCs, VOEs, and HDs are calculated

from the gold standard labels and predicted labels. DSCs of the skull varies from 0.6847 to

0.8056, with a mean ± SD of 0.7300 ±0 .04, and from 0.9654 to 0.9833 for background, with

a mean ± SD of 0.9740 ± 0.007.

To improve the results, by a reduction of regions of non-interest, a 3D U-Net task was

performed by using the same software/equipment previously used. The differences between

these two methods rely on the creation of the gold standard from different image modalities

and 3D U-Net parameters. This approach does not require the CT and MRI scans to overlap in
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order to create MRI gold standard labels. Instead, this approach uses it own volumetric MRI

to create the labels through the same processing presented previously.

Using the same datasets from the cancer imaging archive data collection, 62 different vol-

umetric MRI were used to create the brain dataset, where 53 were used for training, three for

validation, and six for testing purpose. Table 2.3 shows the CNN implementation details of

the brain segmentation, and the statistical analysis of the six tested images is presented in the

Table 2.4 after 10 rounds of testing. DSCs, SVDs, JSCs, VOEs, and HDs are calculated from

the brain gold standard labels and brain predicted labels.

Table 2.2: Statistical analysis of the first dataset.

DSC DSC SVD JSC JSC VOE HD
(Skull) (Background) (Skull) (Skull) (Background) (Skull) (Skull)

0.8056 ± 0.02 0.9833 ± 0.001 0.1944 ± 0.02 0.6746 ± 0.02 0.9672 ± 0.003 0.3254 ± 0.02 18.25 ± 0.81
0.7706 ± 0.02 0.9805 ± 0.002 0.2294 ± 0.02 0.6267 ± 0.02 0.9618 ± 0.003 0.3733 ± 0.02 23.48 ± 3.44
0.7667 ± 0.02 0.9807 ± 0.002 0.2333 ± 0.02 0.6217 ± 0.02 0.9622 ± 0.003 0.3783 ± 0.02 15.41 ± 3.18
0.7366 ± 0.01 0.9779 ± 0.001 0.2634 ± 0.01 0.5830 ± 0.01 0.9568 ± 0.001 0.4170 ± 0.01 19.66 ± 2.32
0.7177 ± 0.01 0.9731 ± 0.001 0.2823 ± 0.01 0.5597 ± 0.01 0.9476 ± 0.001 0.4403 ± 0.01 40.01 ± 3.33
0.7014 ± 0.02 0.9673 ± 0.001 0.2986 ± 0.02 0.5401 ± 0.03 0.9366 ± 0.001 0.4599 ± 0.03 19.38 ± 3.29
0.6940 ± 0.01 0.9672 ± 0.001 0.3060 ± 0.01 0.5314 ± 0.01 0.9366 ± 0.001 0.4686 ± 0.01 28.41 ± 0.57
0.6917 ± 0.02 0.9654 ± 0.001 0.3083 ± 0.02 0.5287 ± 0.02 0.9331 ± 0.002 0.4713 ± 0.02 39.65 ± 3.00
0.6847 ± 0.01 0.9707 ± 0.001 0.3153 ± 0.01 0.5206 ± 0.01 0.9430 ± 0.001 0.4794 ± 0.01 34.85 ± 2.93
0.7300 ± 0.04 0.9740 ± 0.007 0.2700 ± 0.040 0.5763 ± 0.051 0.9494 ± 0.012 0.4237 ± 0.051 26.57 ± 8.98

Table 2.3: Brain segmentation implementation details.

Parameter Value
Optimizer Adam

Encoder Depth 3
Filter Size 5

Number of First Encoder Filters 7
Patch Per Image 2
Mini Batch Size 128

Initial Learning Rate 10−3

These results show an accuracy rate of 0.9244 ± 0.04; however, the brain must be perfectly

extracted. Therefore, after CNN was tested on the 58 initial volumetric MRI, the labels gener-
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Table 2.4: Statistical analysis of the brain segmentation.

DSC DSC SVD JSC JSC VOE HD
(Brain) (Background) (Brain) (Brain) (Background) (Brain) (Brain)

0.8547 ± 0.02 0.9724 ± 0.001 0.1453 ± 0.02 0.7465 ± 0.03 0.9463 ± 0.001 0.2535 ± 0.03 22.59 ± 4.63
0.9053 ± 0.01 0.9769 ± 0.001 0.0947 ± 0.01 0.8270 ± 0.01 0.9548 ± 0.003 0.1730 ± 0.01 13.96 ± 0.40
0.9436 ± 0.01 0.9910 ± 0.002 0.0564 ± 0.01 0.8934 ± 0.02 0.9821 ± 0.003 0.1066 ± 0.02 10.91 ± 1.84
0.9464 ± 0.01 0.9894 ± 0.002 0.0536 ± 0.01 0.8984 ± 0.02 0.9790 ± 0.003 0.1016 ± 0.02 11.41 ± 0.63
0.9469 ± 0.01 0.9887 ± 0.002 0.0531 ± 0.01 0.8992 ± 0.02 0.9776 ± 0.005 0.1008 ± 0.02 17.78 ± 1.95
0.9491 ± 0.02 0.9888 ± 0.004 0.0509 ± 0.02 0.9035 ± 0.04 0.9778 ± 0.008 0.0965 ± 0.04 14.89 ± 2.34
0.9244 ± 0.04 0.9845 ± 0.008 0.0756 ± 0.04 0.8613 ± 0.06 0.9696 ± 0.015 0.1387 ± 0.06 15.26 ± 4.37

ated in this process were manually corrected using the Matlab program created in [49] in order

to optimize brain removal.

After removing the gray and white matter, the modified 58 volumetric images—49 for train-

ing and 9 for validation/testing—were then presented to the CNN using the same parameters

shown in Table 2.1, and the statistical analysis of the 9 tested images is shown in Tables 2.5

and 2.6.

Table 2.5: Statistical analysis of the second dataset.

DSC DSC SVD JSC JSC VOE HD
(Skull) (Background) (Skull) (Skull) (Background) (Skull) (Skull)

0.8288 ± 0.03 0.9857 ± 0.002 0.1712 ± 0.03 0.7076 ± 0.01 0.9719 ± 0.003 0.2924 ± 0.01 09.89 ± 1.58
0.8095 ± 0.01 0.9845 ± 0.001 0.1905 ± 0.01 0.6800 ± 0.01 0.9695 ± 0.001 0.3200 ± 0.01 11.05 ± 0.50
0.8038 ± 0.01 0.9846 ± 0.001 0.1962 ± 0.01 0.6719 ± 0.01 0.9696 ± 0.001 0.3281 ± 0.01 12.32 ± 0.43
0.8052 ± 0.03 0.9839 ± 0.003 0.1948 ± 0.03 0.9684 ± 0.005 0.6739 ± 0.04 0.3261 ± 0.04 10.69 ± 2.25
0.7904 ± 0.01 0.9812 ± 0.001 0.2096 ± 0.01 0.9631 ± 0.003 0.6534 ± 0.01 0.3466 ± 0.01 18.33 ± 0.92
0.7587 ± 0.01 0.9758 ± 0.001 0.2413 ± 0.01 0.9528 ± 0.001 0.6112 ± 0.09 0.3888 ± 0.09 14.09 ± 0.31
0.7627 ± 0.01 0.9756 ± 0.001 0.2373 ± 0.01 0.9523 ± 0.003 0.6164 ± 0.01 0.3836 ± 0.01 14.50 ± 1.33
0.7532 ± 0.03 0.9753 ± 0.003 0.2468 ± 0.03 0.9518 ± 0.006 0.6042 ± 0.03 0.3958 ± 0.03 23.71 ± 1.71
0.7310 ± 0.02 0.9772 ± 0.001 0.2690 ± 0.02 0.9554 ± 0.001 0.5760 ± 0.03 0.4240 ± 0.03 24.91 ± 1.74
0.7826 ± 0.03 0.9804 ± 0.004 0.2174 ± 0.03 0.6439 ± 0.041 0.9617 ± 0.01 0.3561 ± 0.04 15.50 ± 5.28

From Tables 2.5 and 2.6, it can be stated that the reduction in the information contained in

the images, such as the removal of the brain, helps in improving the segmentation of the skull

bones. In fact, the DSC improvement varied from 2.31% to 7.27% for the skull and 0.24%
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Table 2.6: Differences between Dataset 2 minus Dataset 1.

DSC DSC SVD JSC JSC VOE HD
(Skull) (Background) (Skull) (Skull) (Background) (Skull) (Skull)
0.0231 0.0024 −0.0231 0.0046 0.0331 −0.0331 −08.36
0.0390 0.0040 −0.0390 0.0077 0.0533 −0.0533 −12.43
0.0371 0.0038 −0.0371 0.0074 0.0503 −0.0503 −03.09
0.0686 0.0060 −0.0686 0.0116 0.0909 −0.0909 −08.96
0.0727 0.0081 −0.0727 0.0155 0.0937 −0.0937 −21.68
0.0573 0.0086 −0.0573 0.0162 0.0711 −0.0711 −05.29
0.0687 0.0083 −0.0687 0.0157 0.0850 −0.0850 −13.91
0.0616 0.0099 −0.0616 0.0187 0.0755 −0.0755 −15.94
0.0463 0.0065 −0.0463 0.0124 0.0555 −0.0555 −09.94
0.0527 0.0064 −0.0527 0.0122 0.0676 −0.0676 −11.07

to 0.99% for the background, which demonstrates that the removal of information in images

inherently affects the segmentation of the skull directly. Thus, the initial DSC mean for skull

and background improved from 0.7300 ± 0.04 and 0.9740 ± 0.007 to 0.7826 ± 0.03 and 0.9804

± 0.004, respectively, with a decrease in the standard deviation.

The results represented by DSCs from Table 2.2 in this present study are marginally lower

to those reported in [15–18], who achieved mean DSCs of (0.7346, 0.6918, 0.6337), 0.75, 0.75,

and (0.7344, 0.7446), respectively, that are lower than those reported in [21] of (0.76 and 0.80).

However, the interpretations of the different results found in these studies must be evaluated

with caution due to the differences between the databases used, computational methods, and so

forth.

This distinction may be attributed to the size of the dataset used. The authors of [40, 50]

reported mean dice coefficients of 0.9189 and 0.9800 for CT skull segmentation using CNN

when a dataset of 195 and 199 images was used, and the authors of [50] attributed this high

DSC to the dataset size and image resolution when compared to other study [25]. Thus, a

change in the size of the dataset may have contributed to the improvement in the values of the

DSCs. In addition, the geometric disparity, variations, and deformity between the skulls sets

become more evident as the dataset increases. As the related works used small datasets, this
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aspect may have led to the high DSCs reported.

Furthermore, we used 4 distinct datasets [31, 32, 35, 36] that use different CT and MRI

devices with a variety of parameters. These datasets included variations in age, ethnicity, and

medical history. In addition, several patients have undergone cephalic surgical treatment which

may have altered the skeletal structure of the skull. In total, 40 images have part of the skull

removed due to brain abnormalities. These removals may have affected the performance of the

segmentation.

From Table 2.6, JSC and HD improved from the initial values (Dataset 1), while SVD and

VOE decreased from the initial values. These improvements and reductions can be due to the

fact that there is less overlap between the ground truth and the predicted segmentation in the

brain region as there is no brain.

One drawback of the presented method occurs during the creation of the gold standard STL

model. An expert manually corrected the models by edge smoothing or noise residue removal

which may prompt the CNN to learn the defects the expert may have created. Furthermore,

during the conversion from the STL model into labels (voxelisation), a quantity of information

from the skull-voxel may have been erroneously labeled as background when converted into

imaging-voxel. Another disadvantage regards the number of training images. Unfortunately,

the amount of usable data that can be acquired from the same patient for both CT and MR

images is small because of alignment issues and commonly limited due to ethical and privacy

considerations and regulations.

The results found in this article reflect a long-standing search for the development of a

technique for bone segmentation in MRI; however, the proposed method DSC (0.7826 ± 0.03)

does not exceed the performance of current CT techniques, with a DSC of 0.9189 ± 0.0162

[40]), DSC of 0.9200 ± 0.0400 [25]), and DSC of 0.9800 ± 0.013 [50]).
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2.3.2 Comparison between U-Net, U-Net++, and U-Net3+

Further comparison is necessary to see how the DSC behaves in various deep learning meth-

ods. U-Net was compared to U-Net++ [51], an encoder–decoder network where a series of

dense skip pathways are connected in the encoder and decoder subnetworks, and U-Net3+,

a deep learning approach that uses the full-scale aggregated feature map to learn hierarchical

representations while, using feature maps in various scales, incorporate low-level details with

high-level semantics [52]. Table 2.7 compares U-Net, U-Net++, and U-Net3+ architecture in

terms of segmentation accuracy measured by dice similarity coefficient on both datasets 1 and

2. The parameters for each CNN were identical, with an encoder depth of 3, a mini batch size

of 16, an initial learning rate of 0.005, and the training was carried out in 100 periods.

Table 2.7: Comparison between U-Net, U-Net++, and U-Net3+ in 4 samples.

Dataset 1 Dataset 2
Samples U-Net U-Net++ U-Net3+ U-Net U-Net++ U-Net3+

A 0.6913 ± 0.003 0.5670 ± 0.011 0.7235 ± 0.050 0.8144 ± 0.005 0.5915 ± 0.015 0.8141 ± 0.003
B 0.6545 ± 0.013 0.6292 ± 0.016 0.6589 ± 0.005 0.7462 ± 0.004 0.6393 ± 0.008 0.7567 ± 0.003
C 0.7068 ± 0.005 0.5835 ± 0.087 0.7194 ± 0.004 0.8562 ± 0.007 0.6672 ± 0.017 0.8560 ± 0.006
D 0.6886 ± 0.005 0.5189 ± 0.091 0.6997 ± 0.002 0.7500 ± 0.003 0.6315 ± 0.008 0.7503 ± 0.005

As seen, U-Net3+ outperformed U-Net and U-Net++, obtaining an average improvement

over U-Net of 1.51% and 0.26% in datasets 1 and 2. The U-Net algorithm took about an hour

to train the 100 epochs, and U-Net3+ took about 2.5 times longer. Therefore, if the training

time of the U-Net3+ is disregarded, this network may be used to slightly improve segmentation

results.

2.4 Conclusions

This study presents a 3D CNN developed for skull segmentation in MRI where the trained

labels were acquired from the same patient CT scans in standard tessellation language. This

method initially demonstrated a skull DSC overlap of 0.7300 ± 0.04 and 0.9740 ± 0.007 for
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background; however, after the removal of the gray and white matter, DSC reached an average

of 0.7826 ± 0.03 and 0.9804 ± 0.004, respectively. Due to the limited number of datasets

tested, further research may be undertaken to improve the mean DSC. In summary, the present

method is a step forward in the improvement of bone extraction in MRI using CNN to achieve

average DSC rates similar to those obtained in CT scans.
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Chapter 3

Enhanced Pre-Processing for Deep
Learning in MRI Brain Segmentation
using Orthogonal Moments

3.1 Introduction

Segmentation is a very useful technique that may be used to separate and reveal the inner

regions of the human body. In several medical imaging analyses, the segmentation of brain

structures in Magnetic Resonance Images (MRI) is the first integral step for the assessment of

neurological disorders [1, 2]. A fast, accurate, reliable, and automated segmentation method

of the brain structure can improve the diagnosis, evaluation, and treatment of the neurologi-

cal diseases. Furthermore, automated methods can assist specialists in manual segmentation

since the computational resources for performing manual segmentation at large scale are time

consuming, can lead to human errors, and demand sophisticated software. This has prompt re-

searchers to investigate the use of deep neural networks as an approach for learning to predict

the outcome of a segmentation processing task to improve accuracy while decreasing overall

run time.

In recent years, Convolutional Neural Networks (CNN’s) have been very successful in

the field of medical image processing [11], especially in tasks involving brain segmenta-

tion [1, 4–7, 9, 15]. [10] proposed a 3D deep convolutional network (3D DCNN) for brain
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segmentation that uses more layers and larger patches than current 3D DCNN’s, allowing the

network to model complex relationships required for fine-grained brain structures identifica-

tion. For training such complex models, the proposed work uses deep learning methodology to

initialize weights, adjust for internal covariate transition, and minimize overfitting. When com-

paring the mean dice similarity coefficient (DSC) to FreeSurfer, a commonly used brain seg-

mentation software with a DSC of 81.90%, the 3D DCNN showed an improvement of 10.1%

(92.00%). A 3D U-Net based architecture was presented in [11] for infant brain segmenta-

tion that includes DenseNet, ResNet, and a dimensionality reduction module. The architecture

presents densely connected blocks in the encoder path and dimensionality reduction ResNet,

as well as upsampling layers in the decoder path. The proposed method outperformed the

3D U-Net architecture as compared to other recent methods, with an average DSC of 92.77%

compared to 91.59% of the 3D-U-Net, a 1.18% improvement.

A whole-brain segmentation brain imaging framework based on a neural network model

that stimulates local and global competitiveness in the dense block and skip-connections, is

introduced in [12]. This framework, named FastSurferCNN, incorporates efficient spatial in-

formation processing and dense blocks to enhance data retrieval and increase network con-

nectivity. FastSurferCNN demonstrated a performance in the cortical and subcortical DSCs

of 84.55% and 88.74%, respectively, indicating a slight improvement compared to the perfor-

mance of 3D U-Net, with cortical and subcortical DSCs of 83.90% and 87.27%, respectively.

A split-attention U-Net (SAU-Net) was introduced in [13]. This architecture was inspired by

ResNet and U-Net++, where the class distinction between feature maps of the layer is enhanced

by performing the split-attention module of ResNet to the output of the U-Net++ model and

evolving normalization and rectified linear unit (ReLU). With this method, a small number of

three-dimensional training batches is possible. This approach increased the mean DSC from

89.20% (U-Net), 88.40% (U-Net++), and 88.40% (FastSurfer), to 89.70% when compared to

other methods.

One approach to increase DSC accuracy is to solve problems with discontinuous and ill-
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defined boundaries of the structures, low contrast, heterogeneity of voxels in the tissue region

associated with changes in the magnetic field and sensitivity during resonance scans magnetic,

and low signal-to-noise ratio. This has the consequence of increasing intraclass heterogeneity

while decreasing interclass distance. Additionally, the variability within patients (age, sex,

ethnicity) present structures with varying shapes and sizes, resulting in repetitive and noisy

features that significantly reduce efficiency. It is evident that selecting substantial features is a

complex task [20]. A further approach is to use random feature kernels as initial parameters for

convolution [14]. This approach is not hierarchical to adapting to the layered CNN model since

the kernels are selected from the normal distribution. Invariant moments are a well-known tool

for shape descriptors that can reflect details in both a global and finer form of an image. To

obtain hierarchical function learning, invariant moments have a pyramidical architecture, from

which the initial filter kernel parameters can be extracted by varying the moment orders as

applicable to the different levels of CNN [14].

The challenge of segmenting brain becomes increasingly difficult when diverse scanners

are used with different parameters during acquisition. It typically results in intensity hetero-

geneity, contrast fluctuations, and various forms of noise. Despite the importance of extracting

the entire brain region to remove extraneous information in applications such as brain tumor

or lesion segmentation, few studies have addressed preprocessing to enhance whole brain seg-

mentation. Furthermore, unlike in CT, MRI are not calibrated in Hounsfield units and lacks a

clear physical interpretation based on the absorption of X-rays in skull bones [15].

In [16], two distinct preprocessing pipelines were investigated to evaluate how they in-

fluenced deep CNN performance. The idea is to apply a basic standardization pipeline first

and then compare its performance with a second registration-based pipeline. To make the net-

work segmentation brain tissue classes robust to intensity inhomogeneity artifacts, [17] trained

a network using slices containing simulated intensity inhomogeneity artifacts. The artifacts

were created by combining linear gradients with random offsets and orientations on a slice

without intensity inhomogeneity artifacts. Furthermore, [17] used data augmentation as input,
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in addition to the given multi-modal images. The augmentation was accomplished by removing

a gaussian smoothed version and performing histogram equalization using the contrast-limited

adaptative histogram equalization to improve local contrast. Thereafter, the network is trained

using both the generated and original volumes.Nevertheless, the real effect of this type of aug-

mentation was not reported in their research. To enhance the diagnosis and the classification

accuracy rate, [19] developed an adaptive bilateral filtering preprocessing method for remov-

ing undesired noise and image resizing while maintaining the threshold information in an MR

image. While these studies demonstrate the influence of preprocessing in certain domains,

the findings may not be generalizable. As there is no consensus on which of these reported

preprocessing methods should be applied in medical image analysis, preprocessing must be

investigated individually for each application.

Among preprocessing methods, orthogonal moments are mathematical methods that can be

used to acquire important information on an object. Orthogonal moments unique properties,

including orthogonality, geometric transformation invariance, and noise robustness, making

them particularly useful for dealing with image noise and geometric distortions which may be

benefical for the CNN since CNN are not scale and rotation invariant. Orthogonal moments

are found to be less susceptible to noise and have an effective function representation capabil-

ity. In addition, it presents the unique combination of low information redundancy and high

discriminative capacity that makes them widely used due to minimal redundancy. Therefore,

they can reflect the properties of an image with no duplication of information or redundancy

across the moments.

In a variety of medical image segmentation algorithms, moment invariant features of pixels

have been used as part of the feature set for training data. To assess the form of the brain

structures at various scales, [20] used geometric moments as input features and the signed

distance function of the structure as outputs of an artificial neural networks (ANNs). The

outputs of the ANNs are then combined with the outputs of another ANN to classify the voxels.

This method outperformed 4 (out of 5) approaches, [21–24], with a DSC of 88% against 82%,
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78%, 85%, and 0.79%, respectively. The fifth method, evaluated its approaches on its own

datasets, making the possibility of comparison difficult.

A new approach for blood vessel segmentation is presented in [25]. To determine whether

pixels correspond to a real blood vessel, the feature descriptors are created using gray-level

and moment invariant-based features. When accuracy is compared between 4 supervised tech-

niques, [26–29], this method obtained an accuracy of 0.9452% against 0.9441%, 0.9417%,

0.9466%, and 0.9595% respectively, for one database. Additionally, when trained on one

dataset and tested on a different databases this method outperformed [29] with 0.9448% against

0.9266% and 0.9526% against 0.9452%. The research in [30] introduce a powerful pre-

processing technique to refine the blood vessels by using high-order moments to accurately

differentiate thinner blood vessels from the background to create an effective training set. The

technique computes an 11-D feature vector that includes both statistical and shape-based in-

formation, using Zernike moments, to perform pixel-wise classification. This approach outper-

formed 3 and 4 (out of 5) approaches analyzed on two datasets, with precision of 94.50% and

94.35%, respectively.

In CNN’s, the initial convolutional layers learn how to represent low-level features such as

edges and corners, whereas the subsequent layers learn how to represent higher-level features

for the specific problem. By feeding the base-level features with considerably sophisticated

information acquired by an initial filter, the obtained knowledge allows the model to converge

earlier and improve the classification success of the new model over the classical model which

may ultimately improve the diagnosis, evaluation, and treatment of the neurological diseases.

Therefore, given the necessity for a model with initialization for transfer learning, this paper

explores pre-processing convolutional neural networks by orthogonal moments, which removes

the necessity for a numerical approximation and satisfies the orthogonality property. Three

moments among the orthogonal moments are used: Legendre, Tchebichef, and Pseudo-Zernike

moments. For each of these moments, datasets are generated from the original datasets. These

datasets are then presented to a convolutional neural network to assess the performance of each
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method. By improving the dataset before presenting the image to the CNN, we expect to see

an improvement in DSC accuracy. Figure 3.1 presents the schematic diagram of the method

proposed.

Figure 3.1: Overview of the proposed method. From the original image, 3 new image sets are
created using Legendre, Tchebichef, and Pseudo-Zernike moments of first order. All image
datasets (including the original image) are then presented to a convolutional neural network
and, a series of statistical analysis are performed.

3.2 Materials and Methods

3.2.1 Dataset

To validate our approach, three distinct datasets were chosen:

• The Neurofeedback Skull-stripped (NFBS) repository [31] - a 125 T1-weighted MRI

scan database with size of 512×512×192;

• The Open Access Series of Imaging Studies (OASIS-1) [32] - contains T1-weighted MRI

scan cross-sectional collection of 416 subjects aged 18 to 96 with size of 256×256×176;

• The cancer imaging archive data collections (TCIA) [33] - this dataset contains T1, T2,
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and FLAIR MRI scan modalities. We used 62 volumetric images that were explored

by [34] with size of 512×512 and variable depth.

All images were normalized between the range of 0 to 1 and, to reduce the computational

and processing time, all images were reduced to 256×256 using nearest neighbor interpolation

method.

3.2.2 Orthogonal Moments

Moments are a projection of an image’s intensity onto a suitable polynomial basis employed

in a variety of image processing applications. In [35], the authors define invariant moments as

features of an image that remain unchangedwhen scaling, translation, or rotation is introduced.

Orthogonal moments are moments obtained using orthogonal polynomials such as Leg-

endre, Tchebichef, Pseudo-Zernike, and Zernike. As the orthogonal moments minimize the

amount of information redundancy through approximation, they have been applied as a method

of reducing image moment calculation complexity.

3.2.2.1 Legendre Moments

The construction of the Legendre moments (LMs) are performed through the calculation of the

Legendre polynomial basis of order p and repetition q [36]

Pp(x) =
(2p − 1)xPp−1(x) − (p − 1)Pp−2(x)

p
, (3.1)

where p is a non-negative integer, 0 ≤ |q| ≤ p, P0(x) = 1, P1(x) = x, and p ¿ 1. The Legen-

dre polynomial set are defined on the interval between [-1,1]. The two-dimensional discrete

Legendre moments of order (p+q) are expressed as

Lpq = λpq

N−1∑
i=0

N−1∑
j=0

Pp(xi)Pq(y j)Ii j, (3.2)
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where Ii j is the discretized image intensity function with N×N size, λpq is a normalizing con-

stant defined as

λpq =
(2p + 1)(2q + 1)

N2 , (3.3)

and xi and y j are the normalized pixel coordinates from [-1,1] given as

xi =
2i

N − 1
−1, and y j =

2 j
N − 1

−1. (3.4)

The direct computation of LMs requires approximately O(M2N2) additions and multipli-

cations for an image of NxN pixels size and where M is the maximum order of LMs to be

calculated [37]. The pseudo code for computing LMs can be seen in the algorithm 1.

Algorithm 1 Legendre Moments Pseudo Code
Function LegendreMoments(pmax, qmax)
for p = 1 to pmax do

for i = 1 to N do
x← 2i

N − 1
P(0, i)← 1
P(1, i)← x
P(p, i)← (2p−1)xP(p−1,i)−(p−1)P(p−2,i)

p

end
end
for p = 0 to pmax do

for q = 0 to qmax do
sum←

∑N−1
i
∑N−1

j P(p, i)P(q, j)I(i, j)
Legendre(p, q)← (2p+1)(2q+1)

N2 · sum

end
end
return Legendre
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3.2.2.2 Tchebichef Moments

The discrete Tchebichef moments (TMs) of order (p+q) are constructed under the Tchebichef

polynomials defined by [38]. The scaled Tchebichef polynomials were introduced in [39] as

tp(x) =
(2p − 1)t1(x)tp−1(x) − (p − 1)(1 −

(p − 1)2

N2 )tp−2(x)

p
, (3.5)

where p = 2,3,...,N-1, t0(x) = 1, and t1(x) =
2x + 1 − N

N
. The squared-norm of the scaled

polynomials is then modified accordingly to

ρ(p,N) =
N(1 −

1
N2 )N(1 −

22

N2 )...N(1 −
ρ2

N2 )

2p + 1
, (3.6)

where p = 0,1,...,N-1. Finally, Tchebichef moments can be constructed as

Tpq =
1

ρ(p,N)ρ(q,N)

N−1∑
i=0

N−1∑
j=0

tp(xi)tq(y j)Ii j, (3.7)

where i, j = 0,1,...,N-1.

For a N×M image, the complete computation for one 2D TMs of order (p+q) is (3M-4)N

multiplications and (2M-3)N additions [40]. TMs pseudo code is shown in algorithm 2.

3.2.2.3 Pseudo-Zernike Moments

Pseudo-Zernike Moments (PZMs) [41] are a derivation of the Zernike Moments first introduced

by [14]. The first step to obtain the PZMs of order p with repetition q of an image, is to calculate

the Pseudo-Zernike polynomials (PZP) Vpq(xi, y j) defined as

Vpq(xi,y j) = Rpq(r)e jqθ, (3.8)
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Algorithm 2 Tchebichef Moments Pseudo Code
Function TchebichefMoments(pmax, qmax)
t(0,x) ← 1
t(1,x) ←

2x+1−N
N

for p = 2 to pmax do
for x = 1 to N do

t(p, x)←
(2p−1)t1(x)tp−1(x)−(p−1)(1− (p−1)2

N2 )tp−2(x)

p

end
end
R← 1
for p = 0 to pmax do

r ← 1 − (p+1)2

N2

R← R · r
ρ(p + 1)← N·R

2p+1

end
for p = 0 to pmax do

for q = 0 to qmax do
sum←

∑N−1
i
∑N−1

j t(p, i)t(q, j)I(i, j)
Tchebiche f (p, q)← 1

ρ(p)·ρ(q) · sum

end
end
return Tchebichef
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where θ = tan−1(y/x), θ ∈ [0,2π], and r =
√

x2
i + y2

j . Vpq(xi,y j) is a complex function with radial

polynomials Rpq(r) and angular functions e jqθ = (cosθ + j sinθ)q polynomials in cosθ and sinθ.

Radial polynomials are defined as

Rpq(r) =
p−|q|∑
s=0

(−1)s (2p + 1 − s)!r(p−s)

s!(p+ | q | +1 − s)!(p− | q | −s)!
. (3.9)

For Rpq(r) = Rp,−q(r), we can consider q ≥ 0 and rewrite Equation(5.9) as

Rpq(r) =
p∑

s=q

Bpqsrs, (3.10)

where

Bpqs =
(−1)p−s(p + s + 1)!

(p − s)!(s + q + 1)!(s − q)!
. (3.11)

Focusing on reducing time complexity by using a hybrid approach to compute the Pseudo-

Zernike radial polynomials, [30] introduced a p-recursive method which is defined as

Rqq(r) = rq, (3.12)

R(q+1)q(r) = (2q + 1)rq+1 − 2(q + 1)rq, (3.13)

Rpq(r) = (k1r + k2)R(p−1)q(r) + k3R(p−2)q(r),

p = q + 2, q + 3, ..., pmax,

(3.14)

where

k1 =
2p(2p + 1)

(p + q + 1)(p − q)
, (3.15)
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k2 = −2p +
(p + q)(p − q − 1)

(2p − 1)
k1, (3.16)

k3 = (2p − 1)(p − 1) −
(p + q − 1)(p − q − 2)

2
k1 + 2(p − 1)k2. (3.17)

Finally, PZMs of order p and repetition q of an image function Ii j over a unit disc in a

discrete domain can be calculated by

Apq =
p + 1
π

N−1∑
i=0

N−1∑
j=0

I(xi, y j)V∗pq(xi, y j)∆xi∆y j, (3.18)

where V∗pq are the complex conjugate of the PZP (Vpq) in Equation(5.8), xi = −
√

2
2 +

√
2

N−1 x,

y j =
√

2
2 −

√
2

N−1y, x = y = 0, 1, ..., N-1, xi, and y j are the image coordinates, and Ii j is defined

over the discrete square domain N×N.

The computational complexity of Pseudo-Zernike moments is O(p2), as shown by [44],

where the number of required multiplications for computing the radial polynomial Rpq is ap-

proximately (p+1)(4p)(p-1), where p is the moment order.

The pseudo code for PZMs is described in algorithm 3.

3.2.3 Moment Kernel

Initially, the volumetric images acquired from datasets 1, 2, and 3 are normalized between the

range of 0 to 1. Calculating higher order moments are computationally expensive. Obtain-

ing approximations of low-order moments are less cumbersome, thus, to avoid computational

complexity during moment estimation, only the first order (order-0, repetition-0) LM, TM, and

PZM , which represents the center of mass of an image, is calculated.

To generate the image moment, first a 3×3 window size is extracted from the original image

and the first-order moment is calculated using equations (5.1)-(3.18) or algorithms 1, 2, and

3. A 3×3 window size was chosen to reduce computational time. The result of the first-order
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Algorithm 3 PseudoZernike Moments Pseudo Code
Function Pseudo-ZernikePolynomials(s,p,q)
PZP← 0
for r = 0 to p−q

2 do
V ← (−1)s (2p+1−s)!

s!(p+|q|+1−s)!(p−|q|−s)!

PZP← PZP + V ∗ r(p−s)

end
return PZP
Function PseudoZernikeMoments(p,q)
PZM ← 0
cnt ← 0
for y = 0 to N-1 do

for x = 0 to N-1 do
a← −

√
2

2 +
√

2
N−1 x

b← −
√

2
2 −

√
2

N−1y
r ←

√
a2 + b2

if r ≤ 1 then
PZP← PseudoZernikePolynomial(s, p, q)
θ ← tan−1(b

a )
PZM ← PZM + I(x, y) · PZP · eiqθ

cnt ← cnt + 1
end

end
end
return p+1

cnt · PZM
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moment calculated is a single pixel in the moment image. This moment calculation is repeated

from the center pixel of the window to each sliding window. These pixels generate a moment

image that represents the first order moment extracted from each pixel of the original image

by a 3×3 window size. When all slides of the original volumetric image are calculated, a

volumetric moment image is created, as shown in Figure 3.2. Figure 3.3 shows the images

created from a single original image.

Figure 3.2: From each pixel of the original image, a 3×3 image size is used to create the
moment representation. This produces a moment image for each pixel and, subsequently, a
volumetric moment image.

Figure 3.3: Original image and Pseudo-Zernike image (PZ) of order 0 and repetition 0 to 2
created from the TCIA dataset.

3.2.4 CNN Framework and Implementation Details

The CNN framework adopted in the first part of this work was U-Net [11]. U-Net works well

with a small training set, produces precise segmentation, and has been applied in a variety of
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biomedical image segmentation applications [13, 34, 45–48]. The key concept is to add layers

to a traditional contracting network. In the upsampling procedure, this network allows for a

large number of feature channels, which facilitate in the transmission of context information

to the highest resolution layers. As a result, these layers may improve the output resolution.

Furthermore, based on this knowledge, a subsequent convolutional layer will learn to assemble

a precise output. Consequently, the network produces a more symmetrical expansive direction

and a U-shaped architecture.

The framework adopted was initially implemented for brain tumor segmentation in MRI

[16], with a MATLAB (The MathWorks, Natick, MA) version found in [50]. The model

uses a patch size of 128×128 with hyper-parameters illustrated in Figure 3.4 where, CONV-

convolution (5×5×5), BN-batch normalization, RELU-rectified linear units, CH-channels, MP-

max pooling, DECON-transposed convolution (2×2×2), CONC-concatenation, and GDL-generalized

dice loss. In total, the framework has 55 layers. Table 5.1 presents the parameters selected for

the whole brain segmentation in all datasets. These parameters were chosen to improve accu-

racy for the training set used in this study, prevent computational error/crash, and enhance the

ability and robustness of the U-Net.

Figure 3.4: Schematic representation of the deep learning architecture used based on 3D brain
tumor segmentation U-net.

The U-Net was performed on Intel i7-9700 (3.00 GHz) processor with 64 GB of ram, and
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Table 3.1: Whole Brain Segmentation CNN Implementation Details.

Parameter Value
Optimizer Adam
Encoder Depth 3
Filter Size 5
Number of First Encoder Filters 6
Patch Per Image 1
Mini Batch Size 128
Initial Learning Rate 1·10−3

Epochs NFBS 125
Epochs OASIS 35
Epochs TCIA 200

two 8GB VRAM graphic cards from NVIDIA (RTX 2070 SUPER and RTX 2080). Part of the

code was implemented in MATLAB R2019B.

3.2.5 Statistical Modeling

Dice Similarity Coefficient (DSC) [20], Symmetric Volume Difference (SVD) [21], Jaccard

Similarity Coefficient (JSC) [53], Volumetric Overlap Error (VOE) [54], and Hausdorff dis-

tances (HD) [55] methods, were used to evaluate the CNN segmentation. DSC is a spatial

overlap index between two distinct sets. It ranges from 0, to indicate no spatial overlap, to a

maximum 1, that indicates complete overlap. Equation (3.19) presents the definition of DSC.

DS C =
2T P

2T P + FP + FN
. (3.19)

where the TP is the number of true positives, FP false positives, and FN false negatives.

In terms of DSC-based error metric, SVD gives the symmetric difference of the structure

and segmentation (equation (3.20)).

S VD = 1 − DS C. (3.20)
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JSC, in equation (3.21), is a similarity ratio that represents the intersection of the ground

truth and the system segmentation regions over their union. It ranges from 0% to 100% of

similarity.

JS C =
T P

T P + FP + FN
, (3.21)

VOE is the JSC correspondent error metric (equation (3.22)).

VOE = 1 − JS C. (3.22)

Finally, Hausdorff distances uses Euclidean distance to calculate the segmentation preci-

sion in terms of distance between the predicted segmentation boundary and the ground truth

(equation (3.23)).

HD(X,Y) = max(max
x∈X

min
y∈Y
∥x − y∥2,max

y∈Y
min
x∈X
∥x − y∥2). (3.23)

3.3 Results and Discussion

3.3.1 Performance on Datasets

The NFBS dataset was randomly divided into 115 images for training and 10 images for vali-

dation and testing. These images were then trained and tested 10 times. To analyze the initial

segmentation performances, the DSC metric was chosen due to its simple validation metric

of reproducibility and partial overlap accuracy. Table 5.2 presents DSCs and their respective

standard deviations (SD) from the test set of CNN’s predicted segmentations, where, Original

Image (O), Legendre Moment Image (L), Tchebichef Moment Image (T), and Pseudo-Zernike

Moment Image (PZ). As O + T and O + PZ performed well, we tested a combination of O + T

+ PZ which obtained the best mean DSC. The respective DSCs, SVDs, JSCs, VOEs, and HDs

values are shown in Table 5.3.
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The OASIS dataset was randomly divided into 396 images for training and 20 images for

validation and testing. The images were trained and tested 10 times. Table 5.2 presents DSCs

and their respective standard deviations (SD) from the test set of CNN’s predicted segmenta-

tions. As O + T and O + PZ performed well, we tested a combination of O + T + PZ. Similarly,

O + T + PZ images obtained the best mean DSC. Their respective DSCs, SVDs, JSCs, VOEs,

and HDs are presented in Table 5.3.

The TCIA dataset was randomly divided into 56 images for training and 6 images for vali-

dation and testing. The images were trained and tested 10 times. Table 5.2 presents DSCs and

their respective standard deviations (SD) from the test set of CNN’s predicted segmentations.

As O + T and O + PZ performed well, we tested a combination of O + T + PZ. Again, O +

T + PZ images acquired the best mean DSC. Their respective DSCs, SVDs, JSCs, VOEs, and

HDs are presented in Table 5.3.

Table 3.2: Mean DSCs - Statistical Analysis on the NFBS, TCIA, and OASIS datasets.

O O+L O+T O+PZ O+T+PZ
NFBS 0.8983 ± 0.02 0.7632 ± 0.08 0.9212 ± 0.02 0.9156 ± 0.02 0.9395 ± 0.01
OASIS 0.9370 ± 0.01 0.9066 ± 0.02 0.9547 ± 0.002 0.9358 ± 0.008 0.9561 ± 0.004
TCIA 0.9044 ± 0.01 0.8751 ± 0.02 0.9117 ± 0.002 0.9104 ± 0.008 0.9149 ± 0.004

Table 3.3: O and O + T + PZ - Statistical Analysis on the NFBS, OASIS, and TCIA datasets.

DSC DSC SVD JSC VOE HD
(Brain) (Background) (Brain) (Brain) (Brain) (Brain)

NFBS
O 0.8983 ± 0.02 0.9844 ± 0.004 0.1017 ± 0.02 0.8173 ± 0.03 0.1827 ± 0.03 8.89 ± 1.62
O+T+PZ 0.9395 ± 0.01 0.9914 ± 0.001 0.0605 ± 0.01 0.8864 ± 0.02 0.1136 ± 0.02 6.98 ± 0.85

OASIS
O 0.9370 ± 0.01 0.9771 ± 0.003 0.0630 ± 0.01 0.8820 ± 0.02 0.1180 ± 0.02 15.50 ± 2.35
O+T+PZ 0.9561 ± 0.004 0.9835 ± 0.001 0.0439 ± 0.004 0.9161 ± 0.007 0.0839 ± 0.007 10.91 ± 0.86

TCIA
O 0.9044 ± 0.01 0.9797 ± 0.003 0.0956 ± 0.01 0.8281 ± 0.02 0.1719 ± 0.02 19.24 ± 2.22
O+T+PZ 0.9149 ± 0.04 0.9827 ± 0.003 0.0851 ± 0.02 0.8448 ± 0.03 0.1552 ± 0.03 17.24 ± 2.60

For the TCIA dataset, Figure 3.5a illustrates how each set converges in 200 epochs, whereas

Figure 3.5b displays the first 20 epochs. All approaches converged faster than O images, as can
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be observed in Figure 3.5b. The best convergences are achieved by O+T and O+PZ, but after

10 epochs, they are outperformed by O+T+PZ, which continued to achieve the best accuracies

for the remaining epochs.

Figure 3.5: a) shows the accuracy×epochs for dataset TCIA in 200 epochs and b) presents an
enlarged version for the first 20 epochs.

For LM, the computation is in general a time-consuming process. To reduce the process-

ing, their equation is solved by closed form representations for orthogonal polynomials, and

taking less care to the precision of the quadrature formulas used to approximate integrals [56].

This equation discretization may affect their image discretization process which may cause

numerical errors in the computed moments, thus affecting its segmentation performance.

From Table 5.3, there was an improvement in all statistical modeling measure compo-

nents. In fact, the DSCs from NFBS, OASIS, and TCIA datasets improved 4.12%, 1.91%, and
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1.05% respectively. The conventional input does not provide full features to the U-Net first

layer which compromise the segmentation performance due to a lack of local details whereas

our proposed pre-processing method shows performance improvements. Furthermore, the dif-

ferences in the performance of the dataset may be due to the dataset size and different MRI

modalities such as T1, T2, and FLAIR. Factors such as multiple modalities, small dataset,

variations in medical history, ethnicity, and age, make the segmentation task difficult. More-

over, this dataset is part of the cancer imaging archive and contains a variety of patients with

undergoing cephalic surgery, which may change their brain structure.

As the JSC measures the similarity and diversity of sample sets, its value gives an idea of

how similar the O or O + T + PZ are to the ground truth. From Table 5.3, an improvement of

6.91% for NFBS, 3.41% for OASIS, and 1.67% for TCIA were performed.

For the spatial distance based metrics HD, a 1.91%, 4.59%, and 2% reduction was observed.

As this metric gives a boundary delineation information of the contour, these results show that

the addition of T+PZ images provide a shape information significantly better than the single

O image, which contributed to the improvement of the edge information. Furthermore, HD

is generally sensitive to noise and outliers [57], which are common in medical segmentation.

[58] addresses outliers by using the Hausdorff quantile method. Therefore, applying an orthog-

onal moments pre-processing improves the noise redundances and consequently improve edge

information.

3.3.2 Inter-Dataset Analysis

An essential technique to be addressed is the transfer learning or the transferability of the

trained network when processing images from different databases with an emphasis on vali-

dating the stability and robustness. To perform this experimentation, TCIA dataset was chosen

to train the CNN since it comprises diverse MRI scan modalities (T1, T2, and FLAIR). There-

fore, 62 volumetric images were used for training and, from these images, 6 new sets of 62

volumetric moment images were generated using Tchebichef and Pseudo-Zernike moments.
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These 6 sets represents the following moment order p and repetition q - (p,q); 1-(0,0), 2-(0,1),

3-(0,2), 4-(0,3), 5-(1,0), and 6-(1,1). The identical U-Net described inthe subsection 3.2.4 and

detailed in Table 5.1 was adopted.

Tables 5.4 and 5.5 illustrate the results achieved after training, using TCIA dataset, and

testing 10 times on 85 images from the NFBS and OASIS datasets. When trained with or-

der and repetition (p,q)-(0,1) and (1,1), the CNN had the best performance. As a result, an

additional scenario (O+T7+PZ7 = O+T2+T6+PZ2+PZ6), was investigated.

Table 3.4: Inter-Dataset Statistical Analysis on the NFBS dataset.

DSC DSC SVD JSC VOE HD
(Brain) (Background) (Brain) (Brain) (Brain) (Brain)

O 0.5157 ± 0.09 0.8088 ± 0.13 0.4843 ± 0.09 0.3576 ± 0.08 0.6424 ± 0.08 40.37 ± 13.1
O+T1+PZ1 0.5651 ± 0.08 0.8789 ± 0.09 0.4349 ± 0.08 0.4009 ± 0.07 0.5991 ± 0.07 36.05 ± 8.18
O+T2+PZ2 0.5809 ± 0.05 0.8921 ± 0.05 0.4191 ± 0.05 0.4149 ± 0.05 0.5851 ± 0.05 35.96 ± 5.75
O+T3+PZ3 0.5313 ± 0.04 0.8830 ± 0.04 0.4687 ± 0.04 0.3653 ± 0.04 0.6347 ± 0.04 32.45 ± 5.00
O+T4+PZ4 0.5534 ± 0.05 0.8985 ± 0.03 0.4466 ± 0.05 0.3844 ± 0.05 0.6156 ± 0.05 30.37 ± 6.23
O+T5+PZ5 0.5752 ± 0.06 0.9024 ± 0.04 0.4248 ± 0.06 0.4085 ± 0.06 0.5915 ± 0.06 29.35 ± 7.07
O+T6+PZ6 0.5881 ± 0.07 0.9028 ± 0.05 0.4119 ± 0.07 0.4215 ± 0.06 0.5785 ± 0.06 28.14 ± 7.61
O+T7+PZ7 0.6144 ± 0.05 0.9262 ± 0.02 0.3856 ± 0.05 0.4465 ± 0.05 0.5535 ± 0.05 23.89 ± 4.01

Table 3.5: Inter-Dataset Statistical Analysis on the OASIS dataset.

DSC DSC SVD JSC VOE HD
(Brain) (Background) (Brain) (Brain) (Brain) (Brain)

O 0.6658 ± 0.07 0.7420 ± 0.15 0.3342 ± 0.07 0.5041 ± 0.08 0.4959 ± 0.08 52.23 ± 12.05
O+T1+PZ1 0.6958 ± 0.07 0.8057 ± 0.12 0.3042 ± 0.07 0.5379 ± 0.08 0.4621 ± 0.08 51.08 ± 9.88
O+T2+PZ2 0.7166 ± 0.05 0.8318 ± 0.07 0.2834 ± 0.05 0.5617 ± 0.06 0.4383 ± 0.06 50.47 ± 7.22
O+T3+PZ3 0.6649 ± 0.04 0.7884 ± 0.08 0.3351 ± 0.04 0.5002 ± 0.05 0.4998 ± 0.05 48.70 ± 6.79
O+T4+PZ4 0.6420 ± 0.05 0.7555 ± 0.09 0.3580 ± 0.05 0.4761 ± 0.05 0.5239 ± 0.05 50.98 ± 7.28
O+T5+PZ5 0.7162 ± 0.06 0.8398 ± 0.07 0.2838 ± 0.06 0.5612 ± 0.06 0.4388 ± 0.06 44.54 ± 7.98
O+T6+PZ6 0.7240 ± 0.05 0.8414 ± 0.07 0.2760 ± 0.05 0.5712 ± 0.06 0.4288 ± 0.06 45.42 ± 8.83
O+T7+PZ7 0.7434 ± 0.04 0.8725 ± 0.05 0.2566 ± 0.04 0.5944 ± 0.05 0.4056 ± 0.05 41.74 ± 6.40

According to Table 5.4, it can observed that an improvement of 7.24% in DSC accuracy oc-

curred between O and O+T6+PZ6 with a 0.02 reduction in STD. Furthermore, when using the

combination of O+T2+T6+PZ2+PZ6 (O+T7+PZ7), a greater improvement occurred of 9.87%
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with a 0.04 reduction in STD. A similar behavior was found in Table 5.5 where O+T6+PZ6

improved over O by 5.82% with a 0.02 decrease in STD and O+T7+PZ7 improved by 7.76%

with an STD reduction of 0.03. Not only DSC improved ,but all other metrics presented im-

provements and reductions when compared to O, as shown in Table 3.6.

Table 3.6: Comparison between O+T6+PZ6 and O+T7+PZ7 over O on the NFBS and OASIS
datasets.

DSC DSC SVD JSC VOE HD
(Brain) (Background) (Brain) (Brain) (Brain) (Brain)

NFBS
O+T6+PZ6 0.0723 0.0940 −0.0723 0.0639 −0.0639 −12.22
O+T7+PZ7 0.0986 0.1174 −0.0986 0.0889 −0.0889 −16.48

OASIS
O+T6+PZ6 0.0582 0.0994 −0.0582 0.0671 −0.0671 −6.81
O+T7+PZ7 0.0776 0.1305 −0.0776 0.0902 −0.0902 −10.49

Also, Figures 3.6 and 3.7 show the 85 images DSC accuracies of the NFBS and OASIS

datasets, where the red line on each box represents the median, while the top and bottom blue

margins of the box reflect the 75th and 25th percentiles, respectively. The bars extend to the

most extreme data points not considered outliers, and the outliers are represented individually

using the red cross marker symbol. In general, O+T2+PZ2 and O+T6+PZ6 had the best per-

formed in terms of maximum and median accuracy when compared to O. The combination of

both (O+T7+PZ7), outperformed all scenarios in both accuracy and median.

Orthogonal moments can be used to obtain pertinent information about an object. Their

unique rotation, scaling, and translation properties for dealing with geometric distortions, allow

them to represent the properties of an image with no duplication of information or redundancy

across the moments. Additionally, other properties, such as noise robustness, orthogonality,

low information redundancy, and high discriminative capacity makes them widely used for

feature extraction.

This initialization process with their multilevel image structure are significant in providing

both global and detailed shape characteristics of an image that make them suitable to be em-

ployed in CNN architecture. Further improvements can be implemented to address limitations
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Figure 3.6: Boxchart of NFBS dataset.

Figure 3.7: Boxchart of OASIS dataset.

such as application of 3D invariant moments, which can improve processing time and cover

more image information as of its 3D kernel.
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A future investigation will aim to segment distinct brain region using the approach intro-

duced in this work. Orthogonal moments can provide image information regarding shape and

robustness over scale, translation, rotational distortions, as well as noise, orthogonality, mini-

mal information redundancy, and high discriminative capacity. By incorporating the informa-

tion obtained from the orthogonal moments, it is expected to improve the CNN accuracy, based

on the input information, by adding additional information acquired during the moment image

pre-processing. Furthermore, the incorporation of orthogonal moments in the deep layers of

the CNN is a future research also to be addressed.

To sum up, due to pre-processing transformation of the original image, that transformed the

original image into a new version with greater discriminative capacity, the knowledge obtained

by feeding the CNN with sophisticated information acquired by an orthogonal moment filter

allowed the model to improve the classification success of the new model.

3.3.3 CNN Framework Comparisons

A final test is performed to study the differences between different frameworks when orthogo-

nal moment images are applied. For this purpose, we included U-Net, U-Net++, and U-Net3+.

U-Net++ is a U-Net based framework introduced by [59] with an inclusion of dense block and

convolution layers between the encoder and decoder to improve segmentation accuracy. The

theory behind this design is that when high-resolution feature maps from the encoder net-

work are increasingly enriched prior to fusion with the corresponding semantically rich feature

maps from the decoder network, the model can effectively capture fine-grained descriptions

of foreground objects. [60] presents a CNN, named U-Net3+, to make full use of the multi-

scale features by introducing full-scale skip connections, which combine low-level details with

high-level semantics from feature maps in full sizes, but with less parameters. This approach

optimizes a hybrid loss function to maximize the organ boundary by learning hierarchical rep-

resentations from the full-scale aggregated feature maps. Table 3.7 compares U-Net, U-Net++,

and U-Net3+ framework in terms of segmentation accuracy measured by DSC on datasets 1,2,



100 Chapter 3

and 3. The parameters chosen for each CNN were identical with Adam optimizer, an encoder

depth of 3, filter size of 5, mini batch size of 16, an initial learning rate of 0.005, and training

was carried out in 6 epochs for NFBS and OASIS datasets, and 11 epochs for TCIA.

Table 3.7: Comparison between U-Net, U-Net++, and U-Net3+ in four samples.

U-Net U-Net++ U-Net3+

NFBS
O 0.9666 ± 0.006 0.8132 ± 0.034 0.9707 ± 0.009
O+T+PZ 0.9777 ± 0.002 0.8168 ± 0.010 0.9801 ± 0.001

OASIS
O 0.9648 ± 0.032 0.5514 ± 0.023 0.9662 ± 0.005
O+T+PZ 0.9766 ± 0.001 0.7269 ± 0.039 0.9764 ± 0.001

TCIA
O 0.9254 ± 0.022 0.7883 ± 0.027 0.9393 ± 0.006
O+T+PZ 0.9500 ± 0.005 0.8285 ± 0.075 0.9579 ± 0.002

Table 3.7 shows that U-Net3+ outperformed U-Net and U-Net++ obtaining for O(O+T+PZ)

an average DSC improvement of 0.41%(0.23%), 0.14%(-0.02%), and 1.38%(0.79%) for the

NFBS, OASIS, and TCIA datasets respectively. The training time for the U-Net algorithm was

half of the U-Net3+ algorithm, however, if training time is ignored, U-Net3+ can be applied to

slightly improve performance.

U-Net++ improves segmentation outcomes by redesigning the dense skip connection to

eliminate the gap semantic between encoder and decoder features. U-Net++ builds rough

segmentation borders by using dense skip connections at various scales. Consequently, the

number of parameters increases. In the literature, U-Net++ seems to perform better than U-

Net, however, for certain datasets, U-Net++ performed worse than U-Net [61]. Although the

causes are still being debated, we can assume that the proposed technique contributes to a

decrease in the DSC generated in the dense layers of the U-Net++.

With a DSC improvement of 4.12%, 1.91%, and 1.05% compared to the original results,

the findings in this study contribute to the long-standing search for the development of a pre-

processing technique for whole brain segmentation in MRI. Using CNN and orthogonal mo-

ments to enhance DSC rates is a step forward in improving whole brain segmentation in MRI.
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3.4 Conclusion

This study introduces a method to initialize CNN’s using orthogonal moments for whole brain

segmentation in MRI. This technique obtained a mean brain DSC improvement of 4.12%,

1.91%, and 1.05% for three different datasets. Other statistical analyses were performed where

we can highlight the reduction in the HD values which demonstrates a decrease between the

predicted and ground truth distances. A further inter-dataset analysis was conducted where

Tchebichef and Pseudo-Zernike moments of various orders and repetitions (O+T6+PZ6), out-

performed the regular input image (O) by an maximum improvement of 7.23% on the NFBS

and 5.82% on the OASIS datasets, using TCIA dataset for training. Furthermore, the combi-

nation of O+T2+T6+PZ2+PZ6 achieved a even higher improvement of 9.86% (NFBS) and

7.76% (OASIS). A final test using three different CNN frameworks showed that U-Net3+ out-

performed U-Net with a final average DSC of 0.64% for the original image and 0.33% for a

combination of original, Tchebichef, and Pseudo-Zernike images.
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Chapter 4

Application of a Novel Automatic Method
for Determining the Bilateral Symmetry
Midline of the Facial Skeleton Based on
Invariant Moments

4.1 Introduction

Bilateral symmetry refers to a structure of interest having two sides, with one side being the

mirror image of the other. A good example is the human skull, which has bilateral symmetry of

its left and right sides. The goal of reconstructive surgery for clinical pathologies of the cran-

iofacial skeleton, whether boney deformities, mandibular alterations, tumors, or trauma, is to

restore bilateral symmetry in order to restore function. Similarly, clinical diagnosis and treat-

ment for orthodontics [1], maxillofacial [2], cosmetic [3], and plastic reconstructive surgery [4]

seek to restore craniofacial bilateral symmetry. In preceding studies, a method for finding the

midline of the craniofacial skeleton was developed by the authors of [5]. This is now a gener-

ally accepted method for establishing the midline of the face. However, accurately locating the

craniofacial midline is essential for correctly forming an intact template for correcting facial

malformations or trauma and for the planning of procedures in the reconstruction process. To

date, the most common method for locating the midline for a two-dimensional image, or the

midsagittal plane (MSP) for a three-dimensional object, has been the method proposed by the
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authors of [6].

Midline symmetry planes have been calculated as a perpendicular midpoint for a stack

of horizontal lines crossing bilaterally across the facial skeleton containing boney landmarks

or by using boney landmarks to construct a midline that best represents facial symmetry [7].

A simple way to define the midline has been to manually select a number of cephalometric

boney landmarks in the dataset, either directly on the plane or at equal distances on either

side of the midline plane. However, this requires great attention and care during the selection

process by an expert user. Manual selection of skeletal landmarks is time-consuming and

unreliable, which results in less accurate estimations of symmetry. In addition, the results have

been dependent on the user’s ability to find appropriate landmarks, the landmark availability

and the visibility of the anatomical landmarks [8].

Methods with some amount of automation have been attempted for finding the midline

plane. The authors of [9] described a semi-automatic approach for calculating the symmetry

plane of the facial skeleton using principal component analysis (PCA) and the iterative closest

point (ICP) alignment method along with surface models reconstructed from computed tomog-

raphy image data. The initial step was to determine the precise position of the mirror plane

using PCA in order to approximately align the mirrored mesh and the original mesh. The ICP

algorithm was then used to get a refined registration [10]. The disadvantage of this method was

the need for a central point of the image for the calculation of the symmetric plane. This point

was obtained using the average of the vertices of the facial mesh. If this point was not provided

or if the point was in wrong location, in case of imperfect symmetry, this method could lead

to an error in the construction of the symmetric plane. A second limitation lied in the lack of

self-learning or the ability to learn. Once applied to an image, the subsequent image will not

learn or improve its performance based on the previous data.

Most recently, an upgraded version of a mirroring and registration technique for auto-

matic symmetry plane detection of 3D asymmetrically scanned human faces was discussed

in [11]. This work described an ICP-based method that uses particle swarm optimization.
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This method starts from a 3D discrete model and evaluates the symmetry plane by a prelimi-

nary first-attempt, carried out with a PCA algorithm, which is then refined iteratively until its

final estimation obtained by a Levenberg–Marquardt algorithm. This new proposed method

was claimed to improve upon the limitations from the authors’ previous algorithm [12]; how-

ever, the new model still has limitations and fails to incorporate self-learning to improve the

model’s outcome. For instance, in the case of craniofacial dysmorphism, this model requires

the user to interactively segment the area to solve the asymmetry. However, if the algorithm is

presented a similar image again, another intervention is required to select the area.

The aim of this study was to present a technique for the automatic calculation of the cranio-

facial symmetry midline using invariant moments. Figure 4.1 shows the steps of the proposed

algorithm. First, based on the cephalometric landmarks, the image is rotated so that the midline

passes through the center, i.e., 0◦. The image is then duplicated and a dataset of 30 images of

1◦ resolution is created from −14◦ to 15◦. This set of images is then passed through different

feature extractors and then to the k-nearest neighbors classifier. In the classification phase,

pseudo-Zernike moments (PZMs) and PCA were selected after going through the independent

component analysis (ICA) feature extractor. A second set of images of 0.5 degrees resolu-

tion was taken from the centered images to test the PZMs and PCA. PZMs were selected for

having achieved the best accuracy. After the classifier determines the rotation degree of these

images, their midpoints are found. Finally, by joining the midpoints and grades described by

the classifier, the midlines can be constructed.

4.2 Materials and Methods

4.2.1 Image Creation

To create the dataset, the IdentifyMe database [13] was used. This database contains 464 skull

images composed of skull and digital face images (real-world examples of solved skull identi-

fication cases) and unlabeled supplementary skull images. The database also contains several
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Figure 4.1: Steps of the proposed method.

unsuitable images that needed to be corrected before being added to the dataset. Additionally,

this step intended to eliminate regions of non-interest through cropping and the correction of

image rotation so that the processing efficiency of the system could be enhanced (Figure 4.2).

Figure 4.2: An example of images in the IdentifyMe database that required pre-processing in
which the image was (a) cropped, (b) rotated clockwise, and (c) rotated counter clockwise.

As the cropping process can be easily solved, the focus was to create a method to correct the

rotation, since it will be necessary for training purpose. The first step was to manually identify

six cephalometric landmarks (1-Crista Galli, 2-Frontozygomatic Suture, 3-Orbitale, 4-Anterior
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Nasal Spine, 5-Subspinale, and 6-Prosthion) (Figure 4.3a). Then, using a grid as reference, the

images were rotated using the nearest neighbor interpolation technique so that landmarks 1, 4,

5, and 6 were vertically aligned and landmarks 2 and 3 were horizontally aligned with their

respective counterpart as in Figure 4.3b. These images were used as a gold standard to create

the rotated images.

Figure 4.3: Pre-processing step to vertically align images. (a) The six cephalometric landmarks
are identified. (b) A grid is then added to the image and rotated so that the landmarks can be
horizontally and vertically aligned.

After the images were vertically aligned, 367 images were selected as suitable for use.

Based on each image, 30 images were created with inclination angles from −14 to 15 degrees

with 1 degree of variation along the sagittal plane, totaling 11,010 images (Figure 4.4) . Those

angles were also used as the image labels in the classification step. Finally, the images were

resized to 128 × 128 using the nearest neighbor interpolation method. A resolution of 128

× 128 was selected so as to reduce the processing time and computational energy during the

creation of PCA and ICA feature vectors. Due to the limitations of the i7-8850H CPU (2.60

GHz) with 16 GB RAM computer used, a resolution of 256 × 256 resulted in the computer

crashing.
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Figure 4.4: The unrotated image (original) was labeled as “0” and subsequent images were
labelled based on the angle of rotation.

4.2.2 Feature Extractors

Three feature extraction methods (PZMs, ICA, and PCA) were compared to determine the

method with the leading accuracy. The resultant method was then used for the algorithm to

determine the midpoint to generate the final midlines.

4.2.2.1 Pseudo-Zernike Moments-PZMs

Zernike moments (ZMs) were first introduced in computer vision by the authors of [14] and

are widely used to identify and highlight global features of an image in image processing and

machine learning applications [15]. Zernike moments map an image into a set of complex

Zernike polynomials. As these Zernike polynomials are orthogonal to each other, Zernike mo-

ments can represent the properties of an image without redundancy or overlap of information

between moments. Pseudo-Zernike moments are a derivation of the Zernike moments that was

shown to be more robust and less sensitive to image noise [16].

Pseudo-Zernike moments, i.e., pseudo-Zernike polynomials, are one of the best invariant

image descriptors belonging to a family of circularly orthogonal moments due to their min-



4.2. Materials andMethods 117

imal information redundancy, robustness to image noise, provision of twice the number of

moments, and having more low-order moments. In addition to being rotational invariants,

they can be made into scale and translation invariants after certain geometric transformations.

PZMs have been used in numerous machine learning and image analysis applications, such as

cephalometric landmark detection [17], Alzheimer’s disease detection ( [18–20]), medical im-

age retrieval [21], detection of tumors and brain tumors ( [22–24]), facial expression [25] and

facial age recognition [26], facial recognition ( [27,28]), and other industrial applications [29].

As described by the authors of [15], to calculate the PZMs, the image (or region of interest)

is initially mapped into a unit disc, where the center of the image is the origin of the disc

(Figure 4.5a). Pixels that are outside the disc are not used in the calculation. To include these

pixels (Figure 4.5b) the disc can be expanded so that the image function f(x,y) is completely

enclosed inside the disc by performing the following

xi = −

√
2

2
+

√
2

N − 1
x, and y j =

√
2

2
−

√
2

N − 1
y, (4.1)

where x = y = 0, 1, ...(N-1), xi, and y j are the image coordinates, and the image function f(x,y)

is defined over the discrete square domain N×N.

Figure 4.5: (a) Image mapped over and (b) enclosed in a unit disc.
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Obtaining the PZMs [15] of an image begins with the calculation of the pseudo-Zernike

polynomials (PZP) Vpq(xi,y j) of order p and repetition q

Vpq(xi,y j) = Rpq(r)e jqθ, (4.2)

where p is a non-negative integer, 0 ≤ |q| ≤ p, θ = tan−1(y/x), θ ∈ [0,2π], and r =
√

x2
i + y2

j .

The complex function Vpq(xi,y j) has two separate parts: the radial polynomials Rpq(r) and the

angular functions e jqθ = (cosθ + j sinθ)q polynomials in cosθ and sinθ. The radial polynomials

are expressed as

Rpq(r) =
p−|q|∑
s=0

(−1)s (2p + 1 − s)!
s!(p+ | q | +1 − s)!(p− | q | −s)!

r(p−s). (4.3)

Since Rpq(r) = Rp,−q(r), we consider q ≥ 0 and rewrite Equation (3) as

Rpq(r) =
p∑

s=q

Bpqsrs, (4.4)

where

Bpqs =
(−1)p−s(p + s + 1)!

(p − s)!(s + q + 1)!(s − q)!
. (4.5)

A p-recursive method focusing on reducing time complexity through the fast computing

of the pseudo-Zernike radial polynomials using a hybrid method was presented by the authors

of [30], where

Rqq(r) = rq, (4.6)

R(q+1)q(r) = (2q + 3)rq+1 − 2(q + 1)rq, (4.7)
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Rpq(r) = (k1r + k2)R(p−1)q(r) + k3R(p−2)q(r),

p = q + 2, q + 3, ..., pmax,

(4.8)

where

k1 =
2p(2p + 1)

(p + q + 1)(p − q)
, (4.9)

k2 = −2p +
(p + q)(p − q − 1)

(2p − 1)
k1, (4.10)

k3 = (2p − 1)(p − 1) −
(p + q − 1)(p − q − 2)

2
k1 + 2(p − 1)k2. (4.11)

The PZMs of order p and repetition q of an image function f(xi,y j) over a unit disc are

represented in a discrete domain by

Apq =
p + 1
π

N−1∑
i=0

N−1∑
j=0

f (xi, y j)V∗pq(xi, y j)∆xi∆y j. (4.12)

4.2.2.2 Independent Component Analysis—ICA

ICA is a blind source separation or statistical signal processing technique where a given mea-

surement is represented by a linear composition of statistically independent components (ICs)

that aims to linearly decompose a random vector into components that are as independent as

possible [31]. Given a set of random variables {x1(t), x2(t), ..., xn(t)}, where t is time or the

sample index, it is assumed to be generated as a linear mixture of ICs {s1(t), s2(t), ..., sn(t)}

x = (x1(t), x2(t), ..., xn(t))T = A(s1(t), s2(t), ..., sn(t))T = As, (4.13)
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where A is an unknown mixture matrix A Rn×n. The FastICA algorithm [31] was used to

perform the task through the columns of its mixture matrix, which contain the main feature

vectors.

4.2.2.3 Principal Component Analysis—PCA

PCA, first introduced by the authors of [32] and then independently developed by the authors

of [33], is a technique that preserves the variation present in a large number of interrelated

variables of a dataset while reducing the dimensionality. This is achieved by transforming the

dataset into a new ordered set of uncorrelated variables or principal components (PCs), so that

all the original variables can be represented by the first few variables that maintained the most

important features [34].

4.2.3 Geometric Moments—Central Point

In current applications, the central point of the face is obtained manually. Thus, we propose

the application of the geometric moments method for the automatic extraction of the central

point. Geometric moments are a popular method of moments and have been used to identify

the image centroid in a number of image processing tasks [35, 36].

Two-dimensional (p+q)th order moments of a digitally sampled N×M image that has the

gray function f(x,y), (x, y = 0,... M-1) [37] is given as

Mpq =
∑

x

∑
y

xpyq f (x, y),

p, q = 0, 1, 2, 3, ... .

(4.14)

As described in [38], the mass and area of the zeroth order moment, M00, of a digital image

is defined as

M00 =
∑

x

∑
y

f (x, y). (4.15)
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The center of mass of the image f(x,y) is represented by the two first moments

M10 =
∑

x

∑
y

x f (x, y), (4.16)

M01 =
∑

x

∑
y

y f (x, y). (4.17)

Thus, the centroid of an image can be calculated by

x̄ =
M10

M00
, and ȳ =

M01

M00
. (4.18)

As best practice, the center of mass was chosen to represent the position of an image in

the field of view. The centroid of the image f(x,y), given by Equation (4.18), can be used to

describe the position of the image in space by using the point as a reference point.

4.3 Results and Discussions

4.3.1 Classification

PZMs feature vectors were generated through the first 20 PZM orders and repetitions, based

on Equations (4.1)–(4.12), totalizing 121 features. After several tests, the 24 best features were

selected to represent PZMs.

Before being presented to the ICA and PCA feature extractors, the images were vectorized.

For ICA, the mixing matrix A, described in Equation (4.13), was used as its feature vectors.

For PCA, the eigenvectors based on eigenvalue order on the covariance matrix or its principal

components were used. In total, feature vectors of size 35 were used to represent ICA and

PCA.

To make a reasonable comparison among the descriptors, the feature vectors were presented

uniquely to the k-nearest neighbors classifier (k-NN) using the Euclidean distance and the eight
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nearest neighbors (k=8). In order to evaluate the performance of the feature extractors, the size

of the training sets was varied from 10% to 80% of the available database and the rest was

used for testing purposes. The k-NN outputs were the predicted images angles and Figure 4.6

presents the comparison of the accuracy rate among ICA, PCA, and PZMs. Accuracy was

calculated using the following model

Accuracy =
CorrectPredictions
TotalPredictions

=
T P + T N

T P + T N + FP + FN
, (4.19)

where TP—true positives, TN—true negatives, FP—false positives, and FN—false negatives.

The extractor based on the ICA obtained a low accuracy rate with a maximum accuracy

of 14.5% after training, making it unviable for this application. Thus, a further comparison

could be carried out with PZMs versus PCA only to evaluate and finally select the best feature

extractor.

Using the selected 367 images and the same inclination angles (−14◦ to 15◦), a new set of

59 images from the original images was created with a 0.5 degree resolution, totaling 21,653

images, and the results are presented in Figure 4.7. From these results it can be seen that:

1. PCA performed well, but it required more coefficients to achieve a performance similar

to pseudo-Zernike moments (Figures 4.6 and 4.7);

2. In Figure 4.6, ICA estimation achieved a bad performance in the experiment. We at-

tributed this to the fact that it is inherently affected by the rotation of the images, which has

been already explored in [39];

3. In Figures 4.6 and 4.7, pseudo-Zernike moments outperformed ICA and PCA, as PZMs

maintained almost all of the images’ features in a few coefficients.

An initial conclusion is that the rotation invariant feature descriptors in the image plane

can be effectively developed using the pseudo-Zernike moments method, which has performed

well in these scenarios. Thus, the superiority and choice of the feature extraction based on

pseudo-Zernike moments in this application became obvious.
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Figure 4.6: Classification accuracy for different feature descriptors, using k-NN and Euclidean
distance for images rotated from −14◦ to 15◦ with a resolution of 1◦.

4.3.2 Midpoint Calculation

By using Equations (4.15)–(4.18), the center of the image was calculated. To validate the accu-

racy of the midpoint technique, visual correctness was used compared with the cephalometric

landmarks. However, a calculation of the image center may be performed manually and com-

pared with the midpoint. Figure 4.8 shows three images with rotations of 0◦, 3◦, 6◦, 9◦, 12◦, and

15◦ with centers (midpoints) represented by red stars and the angle directions obtained in the

process of classifying by the pseudo-Zernike moments represented by black dots. To calculate

the PZMs, the 21,653 images dataset (obtained from a 0.5 degree resolution) was divided into

80% for training and 20% for testing, with a total of 4331 testing images. The PZMs method’s

accuracy was 98.64%, and 1.36% of the images received wrong labels (59 images). The images

with wrong labels obtained an error of 0.5◦ for 33 images, 1◦ and 1.5◦ for four images each, 2◦,

2.5◦, 10◦, 13.5◦, 14◦, and 15◦ for one image each, 3.5◦ for three images, and 3◦ for two images.

Once the midpoints (red stars) and the angles predicted by k-NN based on PZMs (black



124 Chapter 4

dots) were calculated (Figure 4.8), the symmetrical line could be easily constructed.

Figure 4.7: Classification accuracy for different feature descriptors, using k-NN and Euclidean
distance for images rotated from −14◦ to 15◦ with a resolution of 0.5◦.

The proposed technique presented good results in obtaining the bilateral symmetry mid-

line of the images. However, there are a few limitations to the proposed technique. A small

deviation in obtaining the center line could be seen in 59 images. This error is likely due

to the fact that some images suffer from a small rotation in the sagittal plane. Additionally,

if the images suffer from deformation, incompleteness, or non-uniform brightness, the image

center calculus becomes difficult to perform since the moment is a quantitative measure of the

function or shape of an image. Furthermore, the algorithm was not tested on non-symmetrical

skull images due to a lack of non-symmetrical skull datasets. Our lab will be collecting non-

symmetrical skull images to test the algorithm further. Another limitation for the proposed



4.3. Results and Discussions 125

Figure 4.8: Center of the images calculated using the moment technique. The symmetrical line
is constructed by connecting the midpoint (red star) to the PZMs results (black dots).

method is the resolution size of the images (128 × 128). This resolution was selected as any

resolution higher than this resulted in an error from the PC (not enough memory). A higher

resolution may result in more accurate results. However, using the lower resolution of 128 ×

128 created acceptable results.

From the viewpoint of the angles, PZMs performed with 98.64% accuracy in the angles

and 1.36% (59 images) with wrong angles. However, 33 of the images (55.93%) had an error

of only 0.5◦. The majority of this error could be found in −0.5◦, 0◦, and 0.5◦, where 14 images

(42.42% of the 33 images related to 0.5◦) had an error of 0.5◦.

It is possible to state that the required resolution of 0.5◦ reduces the accuracy of the feature

extractor, and this error can be related to the image size, which was resized to improve the
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processing of the image matrices. However, these errors can be disregarded as they would be

imperceptible to the human eye.

4.4 Conclusions

This study proposed an automatic technique for determining the bilateral symmetry midline of

the facial skeleton based on invariant moments. A total of 367 skull images were evaluated after

preprocessing using the IdentifyMe database. A comparative study between pseudo-Zernike

moments, independent component analysis, and principal component analysis as feature de-

scriptors of images using k-nearest neighbors and Euclidean distance was performed and the

study of the feature extraction step revealed that pseudo-Zernike moments for feature descrip-

tion had the best performance. PZMs offer an alternative to conventional landmark-based sym-

metry scores that depends on the general positions of cephalometric landmarks. PZMs are also

an alternative to PCA-ICP techniques, which depend on the manual selection of the central

point and cannot be improved. With the proposed technique, the central point could be found

as the centroid of an image, and then the symmetrical midline could be constructed.

In this study, we have shown the proposed technique to be reliable and to provide the mid-

line symmetry plane with great accuracy, which can be used to aid surgeons in reconstructive

craniofacial surgeries.
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Chapter 5

Convolutional Neural Networks and
Geometric Moments to Identify the
Bilateral Symmetric Midplane in Facial
Skeletons from CT Scans

5.1 Introduction

Craniomaxillofacial reconstructive surgery is a complex and difficult multidisciplinary tech-

nique due to the intricate anatomy of the skull. The aim of craniomaxillofacial reconstruction

surgery is to preserve the patients appearance, strengthen facial functions, and regain the bi-

lateral symmetry of the craniofacial. However, craniomaxillofacial reconstructive surgery may

lead to complications such as bone disorders, congenital deformities, trauma, pathologies, ge-

netic abnormalities, and cancers. A precise recognition of the bilateral symmetry facial mid-

plane is an imperative step for pre-surgical planning and implant design techniques. For facial

restoration, this midplane plays a major role when one side of the image is replicated and used

as a guide to recreate the deformed or injured side. The authors of [1], have established a

widely agreed approach for defining the midline of the craniofacial skeleton. To date, however,

the most popular two-dimensional image application method, or the midsagittal plane (MSP)

for a three-dimensional object, is the method introduced by [2].

There are a few approaches that aim to simplify the task of locating the midline plane of

133
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the facial skeleton. One technique proposed by [3], describes a semiautomatic system that, in

conjunction with surface models reconstructed from computed tomography images (CT), uses

principal component analysis (PCA) and the iterative closest point (ICP) alignment method.

The first step is to determine the direction of the mirror plane correctly. This was achieved by

using PCA to match the replicated mesh and the initial mesh roughly. Then, the ICP algorithm

was described by a refined registration. The downside of this approach was the dependency

on the central point of the image for the approximation of the symmetrical plane (obtained

using the average of the vertices of the facial mesh). If the central point was in the wrong

position due to any external factors (such as imperfect symmetry), this approach would lead to

a symmetrical plane in the wrong direction and position . In addition, this algorithm is not able

to adjust and learn from previous images to improve its performance, limiting its capabilities.

Alternatively, [4] determines the midline symmetry plane by using boney landmarks to cre-

ate a midline representing facial symmetry. For a stack of horizontal lines crossing bilaterally

through the facial skeleton containing boney landmarks, this approach essentially measures

the midline symmetry plane as a perpendicular midpoint. This approach involves the manual

collection of a variety of cephalometric boney landmarks in the dataset by either specifically

locating the landmarks on the plane (which requires great attention by an expert user) or by us-

ing the midline as a reference and locating the landmarks at equal distances from the midline.

However, manual skeletal landmark selection is ineffective, time-consuming, and reliant on an

expert operator, resulting in errors in the measurement of the symmetry plane.

[5] outlines an ICP-based process for automated symmetry plane detection of 3D asym-

metrically scanned human faces that uses particle swarm optimization. This approach starts

with a discrete 3D model. The symmetry plane is tested by a tentative first attempt using a

PCA algorithm. The model is then refined iteratively by a Levenberg-Marquardt algorithm

before its final prediction is obtained. This revised version enhances the shortcomings of [6],

but the current implementation also struggles to integrate self-learning to maximize the result

of the model and misses the ability to learn from previous versions.
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By minimizing the error-index of the symmetry plane, an automated method based on an

iterative process was recently proposed by [7]. To automatically correct the initial symmetry

plane, with a significant contribution to the use of the rotation matrix derived from the regis-

tration process, this method performs analytical data analysis in 3D point sets derived from CT

images. First, the plane was divided into two groups by the initial symmetry plane estimated by

the PCA and the collection of skull points. Then, to match two point-sets, the ICP registration

method was used.

Most recently, [8] introduced a novel automatic concept for determining the bilateral sym-

metry midline of the facial skeleton based on invariant moments. This technique creates a

dataset from images aligned using cephalometric landmarks. The images are then rotated from

−14◦ to 15◦ with a resolution of 0.5◦ degree. Then, after comparing different feature extractors,

pseudo-Zernike moments were selected for having the best accuracy using k-nearest neighbors

classifier. Finally, after detecting the rotation degree of the image, the midpoint is calculated

using geometric moments. However, this model still has some limitations. For instance, this

method uses 2D images with an image resolution of 128×128 which become difficult in real

applications on different image modalities such as computed tomography and magnetic reso-

nance imaging (MRI). Additionally, this technique was not tested on non-symmetrical skull

images which may affect its results.

Thus, this study aims to present a 3D technique for automatically calculating the cran-

iofacial symmetry midplane from CT scans using convolutional neural network (CNN) and

geometric moments. Figure 5.1 shows the overview of the proposed method. First, using 3D

U-net, the skull is removed from CT images to create a dataset. Then, based on the cephalo-

metric landmarks, the CT image is aligned in the coronal and transverse planes. The image

is then duplicated and 2 datasets of 441 images, per image, of 0.5◦ resolution is created from

−5◦ to 5◦. These sets of images are presented to a 3D rotation invariant CNN. After CNN

determines the rotation degree of these images in the coronal and transverse planes, the skull

midpoints are calculated using 3D geometric moments. Finally, by joining the midpoints and
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grades described by the CNN, the midplanes can be constructed.

Figure 5.1: Overview of the proposed method.

5.2 Materials and Methods

5.2.1 Data Processing

The dataset used to validate the proposed method was acquired from the qure.ai CQ500 dataset

[9]. From this dataset, 195 images with 512×512 and varied depths were selected for training,

validation, and test purpose. To create the ground truth labels, CT images were imported into

Mimics Medical Imaging Software (Materialise, Leuven, Belgium). First, individual thresh-

olding with manual corrections was applied for each of the 3D volumetric CT images. Then,

region growing was applied to create the 3D model mesh. This process allowed for the cre-

ation of the standard tessellation language (STL) file format which was converted into a matrix

using voxelization method [10] so we can easily process the file in MATLAB R2019b software

(Mathworks, Natick, USA) (Figure 5.2).

5.2.2 CNN Architecture and Implementation Details

5.2.2.1 CNN Framework for Biomedical Image Segmentation

The framework chosen in this paper for biomedical image segmentation was the U-Net [11]. U-

Net has been used in a number of biomedical image segmentation applications such as kidney

segmentation [12], prostate and prostate zones segmentation [13], brain tumor segmentation
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Figure 5.2: a) CT scan, b) thresholding applied, c) region growing, and d) 3D mesh model.

[14], brain segmentation [15], and so forth. Its name emerged from the idea of a U-shape

architecture where in the first step, downsampling path, the spatial information is reduced

while feature information is increased. In the next step, upsampling path, contracting path

concatenate high-resolution features with spatial information and features. The result is a CNN

that can work with few training samples and the possibility to apply large images. We adopted a

3D U-net modified version of the code [16] initially implemented for brain tumor segmentation

in MRI. The parameters adopted in this work is presented in Table 5.1. These parameters were

chosen to avoid computational crash and error, while obtaining a good accuracy for the training

set explored in this work.

Table 5.1: Skull CT Segmentation Implementation Details.

Parameter Value
Optimizer Adam
Encoder Depth 4
Filter Size 5
Number of First Encoder Filter 6
Patch Per Image 4
Min Batch Size 128
Initial Learning Rate 10−2
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5.2.2.2 CNN Framework for Rotation Invariant

By nature, CNN are not rotation invariant, however, with a combination of convolutional,

max pooling, average pooling, relu, and fully-connected layers, the CNN framework can be

transformed into rotation invariant. A number of papers have exploited the rotation invari-

ant [17–19], however, the adopted framework presented in Table 5.2 worked very well in the

dataset proposed using Adam optimizer and mini-batch size of 128. Both CNN models were

performed on Intel i7-9700 (3.00 GHz) computer with 64 gigabyte (GB) of ram memory, and

two 8GB Video RAM graphics processing units (GPUs) from NVIDIA (one RTX 2070 SUPER

and one RTX 2080). The source code was implemented and tested in MATLAB R2019b.

Table 5.2: Rotation-Invariant CNN Framework Adopted.

Layers Size Number Filter Stride

1
3D Conv 1x1 3 1

BN + Relu - - -
3D Max pooling 5x5 - 2

2
3D Conv 5x5 8 1

BN + Relu - - -
3D Max pooling 5x5 - 2

3
3D Conv 7x7 16 1

BN + Relu - - -
3D Max pooling 3x3 - 2

4
3D Conv 5x5 32 1

BN + Relu - - -
3D Max pooling 2x2 - 2

5
3D Conv 5x5 64 1

BN + Relu - - -
3D Average pooling 2x2 - 2

6 3D Conv 1x1 128 1
BN + Relu - - -

7 FC (25 neurons) - - -
Relu - - -

8 FC (50 neurons) - - -
Relu - - -

9 FC (labels neurons) - - -
Softmax - - -

∗Conv–Convolutional, BN–Batch Normalization
FC–Fully-Connected
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5.2.3 Model Performance Evaluation and Statistical Analysis

For biomedical segmentation evaluation, the Dice Similarity Coefficient (DSC) [20] is the most

popular metric to evaluate segmentation models. DSC is a statistical method to gauge the

similarity between two sample sets. In biomedical segmentation, DSC measures the overlap

between the ground truth and the predicted segmentation where 0 represents no overlap and 1

indicates complete overlap. Equation (5.1) defines DSC, where the area of overlap is divided

by the total pixels combined (TP-true positives, FP-false positives, and FN-false negatives).

DS C =
Area of Overlap

Total Pixels Combined
=

2T P
2T P + FP + FN

. (5.1)

Symmetric Volume Difference (SVD) [21, 22] is the corresponding error metric.

S VD = 1 − DS C. (5.2)

Hausdorff Distance (HD) is a size-based method that describes the maximum distances

between the boundaries of the segmented regions and the ground truth. This metric can be

defined as:

HD = max(h(S ,GT ), h(GT, S )), (5.3)

where h(S,GT) = maxa∈S minb∈GT ∥ a − b ∥ [23].

To evaluate the performances of the CNN framework for rotation invariant, we imple-

mented the following measures: average difference (AD), image quality index (IQI), Laplacian

mean square error (LMSE), maximum difference (MD), mean-squared error (MSE), normal-

ized absolute error (NAE), normalized cross-correlation (NK), structural content (SC), and

structural similarity index (SSIM). To evaluate the classification, a sensitivity analysis was per-

formed by using positive predictive value (PPV) and negative predictive value (NPV) defined

as:
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S ensitivity =
T P

T P + FN
, (5.4)

S peci f icity =
T N

T N + FP
, (5.5)

PPV =
T P

T P + FP
, (5.6)

NPV =
T N

T N + FN
. (5.7)

5.2.4 hline

To avoid manual intervention, 3D geometric moments are applied for the automatic extraction

of the central point. Three-dimensional (p+q+r)th order moments of a digitally sampled 3D

image that has the gray function f(x,y,z) [24] is given as:

Mpqr =
∑

x

∑
y

∑
z

xpyqzr f (x, y, z), (5.8)

where p, q, r = 0, 1, 2, 3, .... As described in [25], the mass and area of the zeroth order

moment, M000, of a digital image is defined as:

M000 =
∑

x

∑
y

f (x, y, z). (5.9)

The center of mass of the image f(x,y,z) is represented by the two first moments:

M100 =
∑

x

∑
y

∑
z

x f (x, y, z), (5.10)

M010 =
∑

x

∑
y

∑
z

y f (x, y, z), (5.11)
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M001 =
∑

x

∑
y

∑
z

z f (x, y, z). (5.12)

Thus, the centroid of an image can be calculated by:

x̄ =
M100

M000
, ȳ =

M010

M000
, and z̄ =

M001

M000
. (5.13)

As best practice, the center of mass was chosen to represent the position of an image in

the field of view. The centroid of the image f(x,y,z), given by Equation (5.13), can be used to

describe the position of the image in space by using the point as a reference point.

5.3 Results and Discussion

5.3.1 Skull Segmentation

CT volumetric dataset and 3D mesh models were presented to the 3D U-Net with the param-

eters described by Table 5.1. From the 195 images, 190 were for training and 5 for valida-

tion/testing. Table 5.3 shows the DSCs, SVDs, and HDs, in terms of mean± standard deviation

(SD) after being trained and tested 10 times, acquired from the testing set. When using 2 GPUs

as specified, the CNN took 57 minutes in 15 epochs to converged.

Table 5.3: Skull and Background DSCs, SVDs, and HDs Values of 5 samples and their mean.

DSC-Skull DSC-Background SVD-Skull HD-Skull
0.8993±0.004 0.9927±0.0003 0.1007±0.004 67.17±09.20
0.9093±0.008 0.9948±0.0005 0.0907±0.008 27.81±31.19
0.9150±0.008 0.9941±0.0006 0.0850±0.008 38.78±20.26
0.9349±0.008 0.9958±0.0005 0.0651±0.008 49.92±37.69
0.9362±0.006 0.9953±0.0004 0.0638±0.006 39.99±44.40
0.9189±0.0162 0.9945±0.0012 0.0811±0.0162 44.73±14.79

These results are close to those DSCs reported by [26] (mean DSC of 0.92), and slightly

lower than the results reported by [27] (mean DSC of 0.98). Regarding HD, its discrepant val-

ues may be directly related to segmentation errors due to bright artifacts found in the original
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image, which may be caused by dental filling and components of CT scan machine, Figure 5.3.

However, any necessary modification was performed by manual corrections after the segmen-

tation. These predicted labels play an important role in the coronal and transverse alignment.

Figure 5.3: Errors in the predicted images caused by machine components and dental fillings.

5.3.2 Transverse and Coronal Angles

To identify the transverse and coronal angles through the 3D CNN, 101 volumetric images,

from the 195 segmented images, were selected to create a database. The first step was to

identify cephalometric landmarks to help align the predicted labels (Figure 5.3a). In the coronal

plane, we selected the 1-crista galli, 2-frontozygomatic suture, and 3-orbitale while in the

sagittal plane, we selected 4-lambda and 5-opistocranion. To identify these points and make

the necessary alignment, two grids were generated as a reference in the transverse and coronal

planes. A number of slices were verified, and the necessary adjustments were performed (

Figure 5.4b and Figure 5.4c).
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Figure 5.4: a) Identification of cephalometric landmarks in coronal (top) and sagittal plane
(bottom), b) CT slices misaligned, and c) CT slices after the alignment procedure (coronal
plane-top and transverse plane-bottom).

After the alignment, for each of the 101 images, a set of 441 images with inclination angles

from −5 to 5 degrees, with 0.5-degree increments, along the coronal and transverse planes

was created. In total, 44541 images were created and were divided in 21 labels. These labels

represented the 0.5◦ of variation in the coronal and transverse planes from −5◦ to 5◦, Figure 5.5.

To reduce the computational and processing time, these images were reduced to 128×128

using nearest neighbor interpolation method. Additionally, the volumetric image was divided

into four rectangular sub-cubes and only one-quarter of the whole image space was used to pre-

dict the angles as shown in Figure 5.6. As this step aims to identify the coronal and transverse

angles in symmetrical skulls, these steps do not affect the output image. Figure 5.7 summarizes

this process.

In this phase, we used the 3D rotation invariant CNN introduced in section 2.2.2 and de-

tailed in Table 5.2. To optimize the CNN convergence, computational time, and accuracy, 2

identical datasets were created using the 44541 images and represented by 21 labels. Thus, 21
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labels represents the rotation in the transverse plane and 21 labels in the coronal plane. 90%

of the dataset was used for training, 10% for validation/testing.Training and testing were per-

formed 10 times. Table 5.4 shows the analytical performance for these 2 CNNs. It took 30

minutes in 5 epochs for the transverse and 70 minutes in 12 epochs for the coronal CNN to

converge using 2 GPUs.

Figure 5.5: Examples of images rotated in the coronal and transverse planes where parentheses
represents (Coronal,Sagittal) respectively.

As seen in Table 5.4, we can see that CNN performed well and can represent a rotation

invariant image descriptor for these scenarios. In fact, the accuracy reached ≈99% with simple

hyperparameter, which allows the construction of a simple 3D CNN. After the discovery of the

transverse and coronal deviation angles, the original image was then rotated accordingly with

these two found angles.
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Figure 5.6: Volumetric image divided into rectagular subcubes and the selected one-quarter
subcube.

Figure 5.7: Flowchart representing the process of transversal and coronal alignment and
database creation.
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Table 5.4: Statistical analysis of the Coronal and Transverse CNNs.

Index Ideal Value Coronal CNN Value Transverse CNN Value
Accuracy 1 0.9909±0.0038 0.9947±0.0034
Sensitivity 1 0.9811±0.0170 0.9969±0.0054
Specificity 1 0.9982±0.0012 0.9994±0.0005
PPV 1 0.9646±0.0236 0.9892±0.0106
NPV 1 0.9991±0.0009 0.9998±0.0003
AD 0 0.0124±0.0085 0.0004±0.0095
IQI 1 0.9979±0.0014 0.9994±0.0004
LMSE 0 0.9926±0.6717 0.9571±0.0814
MD 0 11.667±1.1547 9.3333±5.6862
MSE 0 0.2710±0.1883 0.0723±0.0561
NAE 0 0.0030±0.0018 0.0012±0.0007
NK 1 0.9985±0.0010 0.9998±0.0004
SC 1 0.9982±0.0008 1.0000±0.0008
SSIM 1 0.9285±0.0313 0.9523±0.0290

5.3.3 Geometric Moments - Image Centre

Finally, to calculate the center of the volumetric images, equations 5.8 to 5.13 were used. As

there are no patterns to validate the accuracy of the center-point, visual evaluation was used and

compared with cephalometric landmarks. Figures 5.8 and 5.9 show the cross-sectional plane

created from the geometric moments. Figure 5.9a presents the perspective view and 5.9b shows

the front view of one aligned sample with measured dimensions of frontozygomatic suture and

orbitale in the sagittal plane displayed in Materialise MiniMagic software. We used [28] to

convert from voxel into stl file format.

5.3.4 Deformed Skull Test

To validate this method in deformed images, 8 defected CT images were used from two dif-

ferent datasets [29–32] found in the cancer imaging archive data collections (TCIA) [33]. In

the first step, STL files were generated by the 3D U-Net using the same parameters as the

Table 5.1. DSCs, SVDs, and HDs result are presented in Table 5.5 and a sample is shown in
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Figure 5.8: 12 samples with their respective cross-sectional plane created using geometric
moments.

Figure 5.9: a) Perspective and b) front view.

Figure 5.10.

CQ500 database does not contain deformed images which may have caused the discrep-

ancy in the DSCs results. Unfortunately, there are no databases of deformed skull for analysis.

Furthermore, the 195 images used for training were not enough to improve the 3D U-Net pre-

diction. [27] reported a 6% mean improvement compared to [26] and associated the improve-

ment with the size of the image dataset for training purpose. Moreover, in the sampled image,

Figure 5.10, part of the vertebral column and small segmented parts that do not belong to the
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skull were segmented by mistake, which generated the worst DSC value and high HDs values.

This is likely associated with the C1 vertebrae labeled during the creation of the ground truth

and small bright artifacts on the outside of the skull in the CT scans. Even though it seems like

an error, this can be disregarded since Figure 5.10 shows that the ground truth and predicted

label to be very close.

Table 5.5: Skull and Background DSCs, SVDs, and HDs Values of the 8 defected skulls and
their mean.

DSC-Skull DSC-Background SVD-Skull HD-Skull
0.8206±0.080 0.9902±0.0003 0.1794±0.080 52.75±03.69
0.8114±0.005 0.9831±0.0011 0.1886±0.005 49.52±06.21
0.8294±0.012 0.9875±0.0007 0.1706±0.012 47.55±08.61
0.8625±0.016 0.9890±0.0008 0.1375±0.016 46.77±07.76
0.8973±0.011 0.9946±0.0004 0.1027±0.011 45.65±10.86
0.8302±0.011 0.9817±0.0010 0.1698±0.011 65.05±07.55
0.7888±0.010 0.9898±0.0004 0.2112±0.010 48.28±09.57
0.8360±0.014 0.9891±0.0012 0.1640±0.014 50.22±14.06
0.8346±0.0330 0.9881±0.0041 0.1654±0.0330 47.86±06.21

Figure 5.10: a) Ground truth and b) predicted.

Finally, using the 8 models predicted, transverse and coronal angles were calculated, and

the center of the image was acquired using 3D geometric moments. Figure 5.11 shows the

results for the deformed images.
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Figure 5.11: Assymetric images.

The proposed method shows good results in obtaining the bilateral symmetric midplane of

regular/symmetric images. However, for deformed images, it failed in identify the rotation for

some images along with the image center. These errors are likely due to some factors:

• the small database size, which is already reported in [27];

• to the best of our knowledge, there are no deformed CT database available which restricts

the possibility to train the system with deformed images;

• during the ground truth segmentation process and voxelization, a few regions of interest

(ROIs) may have not been incorporated in the 3D model. The first may be caused by

the manual selection of the ROI, performed by an expertise, which leads to the CNN

generating the defects. Secondly, a quantity of information from the skull-voxel may

be lost due to the smoothing of the edges and noise residuals removal performed in the

segmentation process;

• regarding the center of the 3D images, as reported by [8], when the image suffers from

lack of symmetry, non-uniform brightness, deformation, interference, or incompleteness,

the calculation of the image center using geometric moments becomes complex and finds

some restrictions as this technique is a quantitative measure of an image’s function or

structure.
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It is possible to state that the proposed method obtained good results from symmetric CT

images datasets. However, for deformed images, an improvement is necessary to achieve better

results. For this purpose, an increase in the CT database size may be performed as well as the

inclusion of non-uniform and deformed CT images which may also lead to an improvement

in the detection of the transverse and coronal angles. Finally, a modification in the method to

identify the center of the image may be carried out by creating a 3D U-net to segment the nasal

bone instead of the presented geometric moments technique. This method will allow for the

definition of the center of the image using the center of the nasal bone.

5.4 Conclusions

This study aimed to introduce a 3D automatic technique for determining the craniofacial sym-

metry midplane from CT scans using convolutional neural network and geometric moments. A

total of 195 symmetric CT images was used to evaluate this method using the CQ500 database

while eight asymmetric CT images from TCIA database were used to evaluate the performance

in asymmetric images. For symmetric images, this method obtained results close to 99%.

However, for asymmetric images, the method needs further development to improve its results.

CNNs offer an effective alternative to the pseudo-Zernike moments method and conventional

landmark-based symmetry scores that depends on the general positions of cephalometric land-

marks. CNNs are also an alternative to PCA-ICP techniques, which depend on the manual

selection of the central point which cannot be improved. With the proposed technique, the cen-

tral point could be found as the centroid of an image, and then the symmetrical midplane can be

constructed for symmetric images. In this study, we have shown the proposed technique to be

reliable and to provide the midplane symmetry plane with great accuracy in symmetric images.

This method can be used as a tool to aid surgeons in reconstructive craniofacial surgeries.
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Chapter 6

The Role of Transient Vibration and Skull
Properties on Concussion: A
Computational Analysis

6.1 Introduction

Concussion is a traumatic brain injury (TBI) that affects brain function [1–3]. Symptoms are

usually temporary but can include headaches, difficulty concentrating, loss of memory, drowsi-

ness, dizziness, sensitivity to light, and feeling slowed down [4,5]. The brain is protected from

everyday impacts (either direct or indirect) to the head and neck by cerebrospinal fluid inside

the skull. Despite the protection, this impact can cause the brain to move back and forth against

the inner walls of the skull [6]. As the brain moves back and forth along the inner surface of

the skull walls, the brain slides over itself at various speeds due to differences in brain den-

sity [7]. This shearing effect leads to deformation of the brain structure and stretching to the

underlying axon fiber bundles. This effect is known as axonal shearing or diffuse axonal injury

(DAI) when it is severe [8]. The axon stretching can lead to a breakdown of communication

among neurons in the brain. This causes gaps to form in the cellular membrane of the axon

and leakage of the ions needed for transmitting action potentials.

In in-vivo head impact conditions, [9] investigated the dynamic characteristics of the com-

plex nonlinear brain-skull system of 189 head impact kinematics (187 noninjury and 2 injury
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collisions). The author observed that brain’s displacement modes were amplified around 30

Hz. It was also shown that combining modes with frequencies up to 33 Hz may contain 75% of

the total brain displacement energy. [9] concluded that multimodal behavior occurs in greater

strain areas as higher skull kinematics produce larger tissue deformations, amplify the effects

of nonlinear material behavior and geometric nonlinearities, and increase the resultant oscilla-

tions in the frequency domain. Furthermore, multimodal brain activity creates local dynamics

that may stimulate potentially severe oscillations in deep brain regions.

The skull has several resonant frequencies that are excited when struck [10–15]. The res-

onant frequencies correspond to specific deformation modes that are determined by the geo-

metric shape of the skull and its distribution of bone thickness. Skull vibration applied in the

z-axis (anterior-posterior direction) using a piezo-electrically-driven biting bar device induced

a distinct shear wage propagation pattern in a ferret brain [18]. The principal displacement

component of this shear wave propagated along the z-axis with a maximum magnitude of ap-

proximately 11.2 µm for 400 Hz and 7.4 µm for 600 Hz. With a lower amplitude and shorter

wavelength, the displacement field at 800 Hz is qualitatively similar. The strain amplitudes at

800 Hz were found to be significantly lower than at 400 Hz.

The human brain has a maximum mechanical impedance at around 450 Hz, and vibrations

near this frequency may cause a much larger propagating vibration into the brain tissue caus-

ing axon damage [16, 17]. The propagating vibrations can constructively interfere when they

meet in different regions of the brain. Axons crossing these junctions experience tremendous

shearing forces causing them to stretch and tear from the cell body, causing the concussive

injury. After an impact, vibration resonance of the skull might bruise the underlying cortex.

The skull deforms and vibrates, like a bell [19] for 3 to 5 milliseconds [20], pushing inward on

the cortex [21]. As the vibrations propagate into the brain, concussion may occur deep within

the brain tissue or closer to the periphery.

Given the maximum mechanical impedance of the brain tissue and the skull resonance fre-

quencies, this study investigates the correlation between skull resonance frequencies and skull
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geometry, thickness, and material properties using finite element (FE) modelling techniques.

To accomplish this task, 45 segmented skulls were extracted from CT scans. Initially, one seg-

mented skull is selected as a gold standard for identifying its diploe/cortical bone and was used

to develop a specific material mapping algorithm that simplifies the material model. This was

done to reduce the pre-processing time of extracting the trabecular and cortical bone, which

is a time-consuming task. Once a material model is selected, the natural frequencies of all

skulls were determined, and different densities and stiffness were simulated to evaluate how

these parameters influence natural frequencies. Skulls with a natural frequency of 450±50 Hz

were selected as a threshold to assess their thickness and conduct a statistical shape analysis.

Principal Component Analysis (PCA), Independent Component Analysis (ICA), t-distributed

Stochastic Neighbor Embedding (t-SNE), and k-means are employed in this statistical shape

analysis to determine the relationship between shape and natural frequencies (Figure 6.1).

Figure 6.1: Overview of the proposed method.
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6.2 Materials and Methods

6.2.1 Dataset and Preprocessing

The dataset used to validate the proposed method was acquired from the qure.ai CQ500 dataset

[26]. From this dataset, 45 CT volumetric images with pixel size (width×height×depth) of

512×512 and varied depths, and spatial resolution of 0.625 mm were selected. Slice thickness,

as previously reported [27], has the greatest influence on the accuracy of 3D-CT volume esti-

mations. Thinner slices provide greater image quality details and less partial volume averaging

over a series. [28]. The authors [29] quantified the tolerance of routinely used thicknesses

greater than 0.625 mm and indicated that 1.25 mm slices are similarly viable for 3D rendering,

and that thinner slices (1 mm) may diminish surface area measurement errors.

To create the models, CT images were imported into Mimics Research 20.0 Software (Ma-

terialise, Leuven, Belgium). First, individual thresholding with manual corrections was applied

for each of the 3D volumetric CT images. Then, region growing was applied to create the 3D

part model. This process allowed for the creation of the standard tesselation language (STL)

file format which was converted into a matrix using voxelization method [30] to process the

file in MATLAB R2019b software (Mathworks, USA). The 3D part model was then used to

create a 3D mesh model with voxel grouping X, Y, and Z resolutions of 3, smoothing iteration

count of 3, smoothing factor of 0.5, and meshing using hexahedral elements. The mesh was

then exported as an ASCII data file (INP). The mandible was not included in the model since

some images showed distortion, cuts, and a loss of mandible.

One CT image was selected as the gold standard image since it had no deformities or

incompletion in the image. As such, a three-layered gold standard model was created. This

model had the cortical and diploe bones segmented separately and resulted in two 3D mesh

models with 227831 elements for cortical bone and 85182 elements for diploe. Single-layer

models were also created for all 45 3D mesh models, with an average number of elements of

141466 (max - 241383 and min - 85927).



160 Chapter 6

6.2.2 Material Properties, Modal Analysis, Steady-State Dynamics Anal-

ysis

The skull bone is a complex material consisting of a 3-layered structure [31–33]. The human

skull bone has a 3-layered sandwich structure, where the middle layer can be considered as a

liquid filled spongy bone (diploe), whereas the external and internal layers of this bone consist

of compressed and dense bone (cortical bone).

For the FE simulation, a single-layered material model with unique material properties

between models will be used. This process has been commonly adopted to help reduce pre-

processing time. [22–25]. To obtain an accurate representation of a single-layered material

skull model for the FE simulation, the gold standard model was used for a deep material prop-

erty study. The gold standard model was replicated and two material models were explored: 1

- the three-layered material model were the material properties were averaged from the work

of [33–43], and 2 - the single-layered material model were the unique material properties were

used (Table 6.1). Both models were assessed on Abaqus 20 software (Simulia, Providence, RI,

USA). As adopted and determined by numerical experiments in [22,23,44,45], this study also

considered the skulls as an isotropic homogeneous linear elastic material.

For the three-layered model, the INP files were imported into a single Abaqus model with

two different parts containing the cortical bone and dipole. Two different material properties

were created and assigned to cortical bone (outer and inner bone) and diploe (Table 6.1). Tie

constraints were created where the cortical surface was assigned as master and diploe as slave.

For the single-layered model, the same steps were followed with no constraint between the

bone region (as there exist only one model).

For both material models, boundary conditions were created using symmetry/antisymmetry/encaste

type and were applied on the base of the skull at the rear of the cranium, which is formed by

occipital bone and rely on first vertebra of the spinal cord (Atlas - C1) (Figure 6.2). This loca-

tion was fixed from all displacements and rotations. A step linear perturbation frequency was

created to identify the natural frequencies from the range of 0 Hz to 900 Hz. No external load
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or damping were included in this simulation. The simulation was performed on a Intel i7-9700

(3.0 GHz) processor with 64 GB of ram and took around 4 minutes to complete.

Figure 6.2: Fixed boundary condition highlighted at the rear of the cranium relying on the
Atlas (C1).

From this deep material study, the 2 material models share a close natural frequency, with

a maximum variance of ±34 Hz. As such, the single layer material model was determined to

be acceptable and was used for the remaining 44 models (Table 6.1).

Table 6.1: Material Properties of the single and three layers skull.

Skull Model Density (Kg/m3) Young’s Modulus (GPa) Poisson’s Ratio
Single Layer 2000 4 0.182
Three Layers - Cortical Bone 2197 11.45 0.278
Three Layers - Diploe 1522.33 0.5842 0.182

6.2.3 Statistical Shape Analysis

Skeletal structure is determined by many factors such as subject’s genetic background, en-

vironment, and exercise level in vivo. To analyze the differences of vibrational excitation

between subjects, a statistical shape model analysis was performed. To evaluate the differ-
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ences between thickness and natural frequencies, all 45 3D part models were imported into

3-matic Research 12.0 (Materialise, Leuven, Belgium) as STL files and one image was chosen

as the gold standard for alignment purpose as this image shows a great alignment in the frontal

plane. Then, taking the gold standard as a reference, cephalometric landmarks (1-Crista Galli,

2,3-Frontozygomatic Suture, 4,5-Orbitale, and 6-Subspinale) were selected in both the gold

standard and in the desired image to be aligned (Figure 6.3). After the alignment, the wall

thickness of all images were analyzed for thickness shape analysis.

Figure 6.3: a) gold standard and b) designed image to be aligned with cephalometric landmark
highlighted, c) the result of the alignment, and d) result for thickness analysis.

All final aligned STL files were imported into MATLAB and using a voxelization method

[30], STL files were converted into matrices for easier processing in MATLAB. All matrices

were then vectorized so PCA, ICA, and t-SNE algorithms could extract the principal compo-

nents (PCs), the mixing matrix (A), and the components of t-SNE, respectively.

PCA, first introduced by the authors of [46] and then independently developed by the

authors of [47], is a widely used technique for statistical shape analysis in the biomedical

field [48–52]. It is an orthogonal linear transformation technique that maintains the variation

present in a large number of associated variables of a data whilst reducing the dimensionality

by transforming the data into a new coordinate system of uncorrelated variables or principal

components (PCs) [53]. PCs are ordered by the eigenvalues, which reflect the relative impor-

tance such that the biggest variance is on the first coordinate or the first principal component,

the second greatest variance on the second coordinate and so forth. The direction of maximum

variance within the data is usually expressed by the first principal component. In the context of
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anatomical data, this component usually defines size disparities between subjects. In addition,

since it is orthogonal to the first principal component, the second principal component reflects

the direction that maximizes the data variance. Therefore, PCA is a descriptive technique that

enables a systematic investigation of shape variance analysis of a model [54].

PCA produces vectors that describe global shape variations while removing more local

differences. In other scenarios, the correct contours cannot be identified locally because the

model does not provide local deformations. For statistical shape purposes, information on the

locality and amplitude of shape variations is extremely important. An alternative technique

for statistical shape analysis is ICA [55], which has demonstrated advantages in terms of ob-

taining meaningfully unique features and utilizing these features for subsequent classification

purposes, making ICA a feasible option to PCA in some scenarios depending upon the appli-

cation [56, 57]. In order to present the inherent patterns in a linear combination, ICA attempts

to linearly divide a random vector into a linear combination of several statistically independent

components (ICs) [58]. Given a set of random variables {x1(t), x2(t), ..., xn(t)}, where t is time

or the sample index,it is assumed that is composed of a linear combination of ICs {s1(t), s2(t),

..., sn(t)}:

x = (x1(t), x2(t), ..., xn(t))T = A(s1(t), s2(t), ..., sn(t))T = As, (6.1)

where A is an unknown mixture matrix A Rn×n. The ICA algorithm chosen was the FastICA

[58], where its mixture matrix A, which contain the main feature vectors, was used to perform

the statistical shape analysis.

t-SNE [59], an enhanced version of the SNE algorithm [60], is a statistical approach for

transforming high-dimensional observations into a matrix of pairwise correlations. t-SNE re-

veals local and global structures of the high-dimensional data. t-SNE selects two similarity

measures across data points, one for high-dimensional data and one for 2-dimensional em-

bedding. The method then seeks to produce a 2-dimensional embedding that minimizes the
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probability distribution between the vector of similarities between data points in the origi-

nal dataset and the similarities between data points in the embedding. This is a non-convex

optimization problem and t-SNE computes a reasonable solution using gradient descent with

random initialization. In this work, euclidean distance is the metric adopted.

6.3 Results

6.3.1 Modal Analysis - Natural Frequency

The natural frequencies of all 45 3D mesh models were acquired using the same procedure

mentioned in section 2.2 using Abaqus software. The result from 400 Hz to 900 Hz are pre-

sented in Figure 6.4. In addition, Figure 6.5 shows the effective mass and Figure 6.6 the

participation factor represented in x, y, and z direction.

Figure 6.4: Frequency versus skull models.

Natural frequencies between 400 Hz and 500 Hz were observed in 12 skulls, whereas natu-
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Figure 6.5: Frequency versus effective mass.

Figure 6.6: Frequency versus participation factor.

ral frequencies over 500 Hz were present in the remaining skulls. These 12 skulls were chosen

for a further test as gold standards for determining what causes the natural frequency withing

the range of 400 Hz to 500 Hz.

To analyze the skull displacement at each frequency from 400 Hz to 900 Hz, a steady-state

dynamics analysis was performed. Following the modal analysis, the steady-state dynamic step

was incorporated without structural damping and a gravity load of 9.81 kg/m2 in the Z negative

direction was applied, based on the coordinate system defined in Figure 6.2. To analysis the

displacement response in the 12 skulls with natural frequencies between 400 Hz to 500 Hz, 5

points were selected on the skull surface at the Frontal, Occipital, Parietal, and Temporal bones.



166 Chapter 6

As the temporal bone is composed of 2 bones located on each side of the skull, one point was

selected for each of the temporal bones and was defined as left (X-) and right (X+). Figure 6.7

shows the displacement at each frequency from 400 to 900 Hz and Figure 6.8 presents a box

chart describing the median of each displacement in the x, y, and z axes for all investigated

bones from the range 400 Hz to 500 Hz.

Figure 6.7: Displacement versus frequency for the 12 skulls with natural frequency ranging
from 400 Hz to 900 Hz.
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Figure 6.8: The median displacement in x, y, and z, of the 12 skulls in the frequency range of
400 Hz to 500 Hz, and the red crosses represent the outliers.

6.3.2 Density and Stiffness

The natural frequency is highly influenced by material properties and boundary conditions [61].

To better understand the behavior of different densities and stiffness on natural frequency, five

3D mesh models were selected for a modal analysis test where density and Young’s Modulus

were varied. As all models presented the same behavior when density and Young’s modulus

were varied, one 3D mesh model was selected to display the common alteration behavior.

Therefore, for this 3D mesh model, density was varied from 1000 to 2000 kg/m3 (Figure 6.9)

and Young’s Modulus from the range 1 to 10 GPa (Figure 6.10).
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Figure 6.9: Frequency versus different densities.

Figure 6.10: Frequency versus different Young’s Modulus.

6.3.3 Shape Analysis

The thickness of the 12 skulls with natural frequencies near 450±50 Hz were compared to the

thickness of the remaining skulls in 3-matic software, as explained in section 2.3 (Figure 6.11).
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Figure 6.11: Example of skulls with a) natural frequency near 450±50 Hz, b) natural frequency
greater than 500 Hz, and c) sharing the same characteristics as skull with natural frequency near
450±50 Hz but the thicker maxilla bone and natural frequencies near 600 Hz.

The STL skulls aligned in the thickness analysis were used to assess the statistical shape

analysis in Matlab using PCA, ICA, t-SNE, and k-means (Figure 6.12). After being vectorized

in Matlab, the 12 skulls with natural frequencies between 400 Hz to 500 Hz were used as gold

standard to analyze any pattern changes in the skulls with natural frequencies greater then 500

Hz. Firstly, all skulls were presented to the PCA algorithm with cumulative variances shown

in Figure 6.13. 90% and 95% of the variation can be explained by the first 21 and 29 principal

components, respectively. PCs were computed with dimension 45×45, which represents the

45 samples and 45 characteristics. The PCs were then presented to the k-Means algorithm and

Figure 6.14a, 6.14b, and 6.14c, shows the results for k equal to 2, 3, and 4, respectively, where

the 12 skulls with natural frequency of 450±50 Hz are circled in red.

Similarly, the skulls were presented to the ICA algorithm and a 45×45 mixing matrix A

were obtained. This matrix was then presented to the k-Means and Figure 6.15a, 6.15b, and
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6.15c, show the results for k equal to 2, 3, and 4, respectively. In addition, the skulls were

presented to the t-SNE algorithm, which produced a 45×2 matrix. This matrix was presented

into the k-Means algorithm, and Figures 6.16a, 6.16b, and 6.16c show the results for k equal

to 2, 3, and 4, respectively.

Figure 6.12: Statistical shape analysis processing.

Figure 6.13: Cumulative variance of the skulls by number principal components following a
principal component analysis (PCA) to describe the different skeletal models.
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6.4 Discussion

According to Figure 6.8, each bone can be interpreted individually based on its outliers. Con-

sidering the greatest outliers, Frontal and Occipital bones showed the most quantity of displace-

ment in (x+, y+, y-,z+) and (x+, x-, y-, z) directions respectively, followed by the Temporal-left

bone (y+, z+, z-), and Parietal (y-, z) and Temporal-right bones (x+, y+).

The modal effective mass is a metric that may be used to assess the relevance of a vibration

mode. Mode shapes with high effective masses will produce high reaction forces at the base,

whereas mode shapes with low effective masses will produce low reaction forces at the base.

According to Figure 6.5, modes with natural frequencies greater than 500 Hz had experienced

the highest effective mass, whereas modes with natural frequencies between 400 Hz to 500

Hz presented the lowest. In general, the z component showed the dominating effective mass

between 500 Hz to 700 Hz, whereas the y component dominated in the range 700 Hz to 900

Hz.

Participation factor measures the amount of mass moving in a certain direction, which

means a high value will excite the mode in that direction. From Figure 6.6, all modes have a

similar participation factor, indicating that they all behave in a similar pattern when stimulated

in different directions. Through investigation, the outliers found in Figures 6.5 and 6.6 were

associated with a great displacement in the occipital bones, which is attributed to bone thick-

ness in the region. This may be associated with subject specific factors such as ethnicity, age,

gender, and external factors (such as sport, previous injury etc.).

From Figures 6.9 and 6.10, it can be observed that increasing density lowers the value of

natural frequencies while increasing Young’s Modulus raises the value of natural frequencies.

Furthermore, it was observed that when density and Young’s Modulus alter, higher frequencies

exhibit more variance than lower frequencies.

As can be observed in Figure 6.11a, the frontal, parietal, and occipital bones of all 12 skulls

were thicker, but the temporal, sphenoid, and maxilla bones were thin. The remaining skulls

featured thinner frontal, parietal, and occipital bones, thin temporal and sphenoid bones, and
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thicker maxilla bones compared to the 12 skulls (Figure 6.11b). There were few exceptions

which shared a similar characteristic as the 12 skulls but featured thicker maxilla bone and

presented natural frequencies of around 600 Hz (Figure 6.11c). This variance in certain bone

thickness may indicate a pattern in how specific skulls present a tendency for producing natural

frequencies of 450±50 Hz. However, due to the dificult to perform a bone thickness correlation

analysis, further investigation is required to support this finding.

It is noticeable from Figures 6.14 and 6.15 that there is no correlation between shape

and natural frequency. When performing ICA (Figure 6.15a) and t-SNE (Figurere 6.16a),

it can be seen that there are at least two possible shape patterns, whereas when using PCA

(Figurere 6.14a), there is no consistent pattern among skull shapes. PCA is generally used

to reduce dimensionality into a smaller set of variables with less redundancy, as determined

by data correlations, based exclusively on second order statistics, which lack information from

higher order statistics. For ICA, which is a generalization of PCA, its goal is to separate data by

transforming the input space into a basis that is maximally independent. ICA extracts hidden

components from data by transforming a set of variables into a new maximally independent

set, using a non-gaussianity measure to do so. Therefore, ICA is computed not just from the

second order statistics, as in PCA, but also from higher order [62]. However, even using higher

order statistics, ICA was unable to identify any pattern among the 12 skulls. In comparison to

PCA, t-SNE is a non-linear dimensionality reduction technique that retains the local structure

of high-dimensional data while presenting the data points [63]. However, even when employing

local structure, t-SNE was unable to establish a pattern among the 12 skulls. To summarize,

in all three scenarios (k=2, 3, and 4), PCA, ICA, and t-SNE were unable to establish a shape

pattern for the 12 skulls.

The FE method presented in this study has an advantage over the experimental approach

in terms of repeatability. Though this experiment, it was shown that skull properties affect

the vibration within the skull. Nevertheless, since this is a numerical approximation, there are

certainly some limitations to the current study. Simplifications were made in the model by us-
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ing a single-layered material approach rather than segmenting a 3-layered material map which

provides a more accurate approximation of real-life behavior. However, based on the deep

material study performed, the single-layered model was an acceptable assumption. CQ500

database does not provide subject specifications, such as age and gender, which would be help-

ful to study the differences during the thickness and shape analysis. Furthermore, the exper-

iment was conducted by only using computational methods and was not validated by in-vivo

or in-vitro tests. Real models are difficult to evaluate due to the specimen limitations, which

are frequently limited due to ethical, privacy considerations, and regulations. However, the

findings of articles that used in-vivo or in-vitro simulations were comparable to those in this

paper [22,23,64,65]. Furthermore, during the facial alignment, cephalometric landmarks were

selected as gold standards and if a unique image was misalignment, an error may occur in the

PCA, ICA, t-SNE, and k-Means calculation resulting in an incorrect statistical shape analy-

sis interpretation. However, this is unlikely as all procedures were cautiously carried out and

3-matic is a well-established software.

The model will be further improved in future investigations by using a comprehensive

head model (including the scalp, meninges, and white and gray matter). Material properties

and a validation experiment, with subject specific modelling, will be conducted to allow a

more accurate analysis. The bone and soft tissues can be modeled in Mimic with an impact

that induces a skull vibration near 450 Hz. A comprehensive theory on how skull vibration

propagates into the brain tissue can be developed.

6.5 Conclusion

The present study aims to identify the correlation between natural frequency versus density,

stiffness, thickness, and shape of skulls to better understand the mechanism that triggers a

concussive injury. It was found that density and stiffness have a strong correlation with nat-

ural frequencies values, where increasing density and Young’s Modulus reduce and increase
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the natural frequencies, respectively. It was also identified that some skulls with natural fre-

quency of 450±50 Hz kept a pattern regarding their thickness in certain cranial and part of the

viscerocranium bones whereas skull with natural frequency over 500 Hz presented a different

pattern. Statistical shape analysis was conducted using PCA, ICA, and k-means and no re-

lationship was observed between skulls with natural frequency around 450±50 Hz with skull

shape. In conclusion, our finding support the idea that density, stiffness, and thickness affect

natural frequencies in skulls and may contribute to concussive injury.
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Figure 6.14: First versus second principal components (PCs) for k equal to a) 2, b) 3, and c) 4.
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Figure 6.15: First versus second columns of mixing matrix A for k equal to a) 2, b) 3, and c) 4.
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Figure 6.16: First versus second t-SNE output components for k equal to a) 2, b) 3, and c) 4.
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Chapter 7

Conclusion

7.1 Summary

The main goal of this thesis was to establish a hypothesis that describes the relationship be-

tween geometric shape, material properties, and skull resonant frequencies, with concussive

injury based on the brain mechanical impedance limits. Therefore, a means of supporting this

theory was through the use of machine learning, deep learning, image processing, statistical

analysis, and finite element analysis.

In Chapter 2, as segmentation is essential in medical imaging analysis to help extract re-

gions of interest from different imaging modalities, a 3D CNN for skull segmentation in MRI

was developed. CT scans are the most common medical imaging scanning technique for re-

vealing bone structures; however, it is not favorable for routine anatomical imaging since CT

exposes the patient to a small dosage of ionizing radiation, making MRI the ideal image modal-

ity for routinely application. The problem with MRI is the weak magnetic resonance signal of

bones making it difficult to distinguish bone tissue from other structures. To overcome this

issue, 58 gold standard volumetric labels were created from CT in STL models. These STL

models were converted into matrices and overlapped on the 58 corresponding MR images to

create the MRI gold standards labels. A CNN was trained with these 58 MR images and a DSC

of 0.7300±0.04 was achieved. A further investigation was carried out where the brain region

was removed from the image with the help of a 3D CNN and manual corrections by using only
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MR images. This new dataset, without the brain, was presented to the previous CNN which

reached a new DSC of 0.7826±0.03. These findings were found to be a step forward in im-

proving bone extraction in MRI using CNN to achieve average DSC rates comparable to those

obtained in CT scans.

In Chapter 3, a method to initialize CNN using orthogonal moments for brain image seg-

mentation in MRI was developed. To transform the original image into a modified version

with orthogonal moment properties, the approach employs kernel windows based on orthog-

onal moments. The transformed image contains the optimal representation of the Legendre,

Tchebichef, and Pseudo-Zernike moments coefficients. The method was validated on three

different datasets and achieved a 4.12%, 1.91%, and 1.05% improvementl. In addition, the best

image representors, a combination of Pseudo-Zernike and Tchebichef moments, were used to

test alternative CNN frameworks. One particular framework, U-Net3+, demonstrated a slight

improvement over the primary CNN used, U-Net, with an improvement of 0.64% when tested

in the original images and 0.33% whem tested using the best image representors.

In Chapter 4, this study aimed to automatically locate the bilateral symmetry midline of

the facial skeleton based on an invariant moment technique using pseudo-Zernike moments. A

total of 367 skull 2D images were evaluated using a pseudo-Zernike moments, ICA, and PCA

as feature descriptors of images using k-NN using Euclidean distance. The results revealed

that pseudo-Zernike moments outperformed conventional landmark-based symmetry scores

and PCA-ICP techniques, which rely on the general positions of cephalometric landmarks and

manual selection of the central point. The technique was found to be reliable and provided

good accuracy.

In Chapter 5, this study aimed to present a 3D technique using CNN and geometric mo-

ments to automatically calculate the craniofacial midline symmetry of the facial skeleton from

CT scans. To perform this task, a total of 195 skull images were assessed to validate the pro-

posed technique. For symmetric images, this approach achieved an accuracy of ≈99%. This

method offers a more accurate approach to the pseudo-Zernike moments method presented in
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Chapter 4, to the conventional landmark-based symmetry scores, and to PCA-ICP techniques.

In the symmetry planes, the technique was found to be reliable and provided good accuracy.

In Chapter 6, the overall goal is to gain a better understanding of the relationship between

transient vibration of the skull and the severity of a concussion. 45 CT scans were used to

test, where an initial natural frequency investigation established the material properties of a

1-layer skull based on a 3-layer skull (cortical, diploe, and cortical bone) for FE analysis.

The identified material properties were then applied to all 45 skulls and modal analysis was

conducted to determine their natural frequencies. The relationship between different densities

and Young’s modulus versus natural frequencies were tested to identify any alteration in natural

frequencies. Skull thickness was also analyzed, and shape analysis was conducted using PCA,

ICA, and k-Means. A direct correlation between density, Young’s modulus, and thickness with

variations in natural frequency behaviour was found. No correlation was found between shape

of the skull and natural frequency.

7.2 Strengths and Limitations

The work presented in this thesis provides a novel insights into the image processing, machine

learning, and shape analysis of the skull with respect to its image segmentation, alignment, and

relation between shape and material property with resonance frequency for concussion study

purpose, incorporating probabilistic methods to account for variability in anatomical shape and

material properties.

In Chapter 2, to the author’s knowledge, this is the first study to apply STL models extracted

from CT scans overlapped on MRI. The drawback of this work may be related to the sample

size. As the dataset size increases, the various geometric disparity, variations, and deformity

between the skulls sets become more evident. This aspect may have led to the high DSC

reported in the related works as they used small datasets. Additionally, four different datasets

were used contained differences in ethnicity, age, and medical history. Furthermore, several
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patients have undertaken cephalic surgery, which may have altered the cerebrofacial skeleton

structure, affecting the performance of the segmentation. Moreover, during the creation of the

gold standard STL models, corrections were performed manually which may included some

defects during the edge smoothing or noise residue removal. Therefore, the CNN may have

learned the defect regions as ground truth leading to an error in the segmentation. Also, when

transforming the STL model into matrix for execution in Matlab, a voxelisation algorithm was

applied, which may have induced a quantity of information being incorrectly labeled when

converted from skull-voxel to imaging-voxel.

In Chapter 3, to the authors knowledge, this was the first study to use orthogonal moments

as an initialize input in CNN for MRI brain segmentation. This pre-processing transforms the

original image into a new version with a robust discriminative capacity and it has been demon-

strated to improve brain segmentation in MRI. The orthogonal moments unique translation,

rotation, and scaling invariances allow them to describe image attributes with no duplication

of information or redundancy among the moments, and deal with geometric distortions. More-

over, they are commonly employed for feature extraction since they offer orthogonality, noise

robustness, high discriminative capacity, and low information redundancy. One limitation is

the employment of 2D orthogonal moments, which is time consuming and only covers one

image slice each interaction.

In Chapter 4, invariant moments were used to introduce a novel approach to identify the

bilateral symmetry midline of the facial skeleton. This method demonstrated great potential

in determining the bilateral symmetric midline of the face and allowed the algorithm to learn

as additional data is collected, which was not feasible with previous methods. However, there

are a few limitations. Since this method was only performed in 2D images, some of them

were rotated in the sagittal plane, resulting in errors in obtaining the centre line. Furthermore,

when images contain deformation, incompleteness, or non-uniform brightness, calculating the

centre of the image becomes challenging since this approach uses the shape of the image as

reference to calculate the centre. Furthermore, due to lack of non-symmetrical skulls, there
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was no testing in non-symmetrical images. Also, to avoid computational crash/error during the

moment calculus, the images were downsized to 128×128, which may result in less accurate

finding as a higher resolution image offers more visual information.

In Chapter 5, deep learning was used to provide a novel 3D approach for automatically

determining the craniofacial symmetry midline of the facial skeleton from CT images. This

proposed method showed good results in obtaining the bilateral symmetric midline of regu-

lar/symmetric images. However, it failed to determine the rotation and the image centre for

some deformed images. These inaccuracies are most likely due to a small database size, a

lack of a deformed CT database which restrings the ability to train the system with deformed

images, and the generation of ground truth and voxelization which may have omitted some

crucial image features. Furthermore, when the image has a lack of symmetry, deformation,

incompleteness, non-uniform brightness, or interference, the computation of the image center

becomes complex and finds some limitations as this approach is a quantitative measure of an

image’s function or structure.

In Chapter 6, a new concept on the role of transient vibration and skull geometry on con-

cussion was introduced. This study identified that the skull thickness, density, and Young’s

Modulus may play an important role on natural frequency to a near threshold that may trig-

ger concussive injury. For statistical shape analysis, no relation was find among the skull that

describes a shape pattern for natural frequency near 450±50 Hz. One limitation to the pro-

posed method is the simplification of the material model. A drawback in this approach may

be attributed to its model. To reduce the overall time required for simulation, a single-layered

material method was adopted. A 3-layered material map would provide a more accurate rep-

resentation of real life behaviour but requires more time in the segmentation of each material

layer. Furthermore, cephalometric landmarks were used as gold standards during the facial

alignment. If a single image was misaligned, an error could be generated in the statistical

shape analysis interpretation.
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7.3 Future Work

In future work, many different adaptations, testing, and experiments will be explored along

with a deeper analysis of certain mechanisms. The following ideas may be tested in a future

work:

Chapter 2: a strategy to improve CNN accuracy is to implement a procedure where CT and

MRI would be scanned from the same patient and, through a fixture, the patients head

would be perfectly aligned. As a result, all images would have the same orientation and

possible scale. With a number of additional images, the CNN may be able to learn new

features and improve its segmentation accuracy.

Chapter 3: a 3D orthogonal moments can be investigated to enhance accuracy and time con-

sumption. The CNN would be able to learn features from a 3D kernel rather than a single

slice in this manner. In addition, instead of applying pre-processing to the input image,

this strategy might be implemented as a CNN filter.

Chapter 4 and 5: as chapter 4 and 5 share the same principal, this approach would benefit

both methods. Increasing database size, as well as the addition of non-uniform and

deformed images, may be advantageous. Identifying a method to calculate the precise

center of the image would also be a significant improvement. For a 3D images, instead

of applying the geometric moments approach, a 3D CNN might be trained to segment

the nasal bone and therefore find the image center.

Chapter 6: regarding the brain mechanical impedance limits and skull resonant frequencies,

there is a continuing desire to study, understand, and develop a system that can simulate

an impact that triggers the skull resonant frequency near this threshold in a safe and

repeatable manner. Therefore, future work aims on determining how the vibrations of

the skull generated by an impact can constructively create resonant frequencies that may

propagate into the brain tissue which might induce mild traumatic brain injury. This
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work can be performed by using the method introduced in this thesis.

Those skulls with a resonant frequency of 450±50 Hz identified in Chapter 6, would

be selected for an impact analysis. Then, using the automatic algorithm developed in

chapters 4 and 5, skulls would be aligned for the impact investigation. This step has the

goal to precisely simulate the same impact point in all models. These brains associate

with the skull selected from Chapter 6 would be extracted, as in Chapter 3, imported into

Mimics software, and material properties and mesh would be applied using descripted

properties already used in the literature [1–5]. Cerebro-spinal fluid would be created

from MRI by excluding the volume of the skull and brain [6]. Then, the models would

be imported into Abaqus FEA software where impact simulation wouldl be assessed to

identify whether the impact can generate the 450±50 Hz resonant frequency found in

Chapter 6 and whether the skull vibration can propagate into the brain tissue. From the

data and results acquired in this step, it is expected to raise a theory regarding the relation

between the skull geometry and its vibration with the brain tissue injury, which might

optimize helmet design (Figure 7.1).

These suggestions represent a narrow sample of the potential impact of the tools devel-

oped in this thesis. As the ability to further automate skull and brain segmentation in

MRI, bone alignment, and the skull modal analysis continue, the true potential of the

combination of computational methods and biomechanics will be realized.
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Figure 7.1: (1) An algorithm extracts the skull from the MRI in the STL file format, (2) these
skulls are then aligned using an algorithm, and (3) modal analysis assesses the natural fre-
quency of skulls to distinguish between different skulls with similar natural frequencies. Fi-
nally, impact simulations will be performed on a whole head model. Based on the data col-
lected, helmets can be redesigned to provide better protection against concussive traumatic
injuries.
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