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Abstract
Hybrid simulation (HS) is a promising technique for studying wind turbines due to the pres-
ence of scaling errors in wind tunnel testing. However, HS of wind-loaded structures is
limited by the current practice of using lower-accuracy, “pre-calculated” aerodynamic loads,
which uncouple the aerodynamic loading from the structural response. This thesis presents
six stand-alone studies that collectively build towards a novel HS framework that employs a
computational fluid dynamics (CFD) based surrogate model to generate higher-accuracy aero-
dynamic loads within the HS loop. An experimentally-validated residential wind turbine model
equipped with an external damping system was used to illustrate the proposed framework.

Development of the proposed HS framework occurred in the following stages: firstly, the
limitations of the existing HS framework were identified and quantified through a numerical
case study of an industrial wind turbine. The aerodynamic surrogate model was developed
through CFD simulations of airfoils to determine optimal test parameters, followed by the
identification of an optimal convolutional neural network (CNN) architecture to act as the sur-
rogate model. The test case for the HS was chosen based on a numerical study of semi-active
tuned mass damper (STMD) systems for reducing turbine tower vibrations. A dynamic nu-
merical model was developed of a 1.1 m residential wind turbine on a rotating base validated
through a set of full-scale aeroelastic wind tunnel tests.

These components were ultimately combined for a series of twelve artificial HS to compare
the effectiveness of the proposed surrogate model-based HS framework to the existing “pre-
calculated” technique. A number of CFD simulations were performed to generate the training
data for the CNN surrogate model, which was combined with the dynamic turbine model to
act as the numerical HS substructure. This was paired with the optimized STMD acting as the
virtual experimental substructure, including simulated equipment delays and measurement er-
rors. The results of these HS indicate that the proposed framework has improved aerodynamic
accuracy and aeroelastic fidelity compared to the existing technique, though it faces hurdles
from computationally costly CFD data generation. This framework offers a promising tool for
future HS of wind turbines and other wind engineering applications.

Keywords: Real-time hybrid simulation, semi-active damping systems, wind turbine tower
vibrations, neural network-based surrogate model, full-scale aeroelastic wind tunnel testing,
computational fluid dynamics
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Summary for Lay Audience
Hybrid simulation (HS) is a structural engineering research technique that tests a structure as
two components: a physical component in a laboratory and a simulated component on a com-
puter. This allows complex, hard-to-simulate structural elements to be tested without having
to recreate the entire structure. Wind turbines (WT) are a promising option for this technique
because the standard method for testing wind-sensitive structures – wind tunnel testing – strug-
gles to accurately capture the resulting wind forces, creating the need for an alternative physical
testing method.

Unfortunately, existing HS of WTs have been limited. Since the HS components run in
tandem with each other, the program hosting the simulated component must run quickly –
delays in the program will cause de-syncing with the physical component and lead to inaccurate
results. Thus, in an HS of a WT, the simulated component must be able to quickly predict the
wind forces. Various methods exist to predict wind forces, however, they generally prioritize
either speed or accuracy, not both. Therefore, HS of WTs have historically been limited to
low-accuracy wind force predictions, reducing the technique’s utility.

This thesis explores a method to incorporate an improved simulated component into HS,
using a tool called a neural network (NN) to act as a surrogate model. NNs are artificial intel-
ligences that are trained to predict outputs based on inputs without performing the underlying
calculations, acting as a high-speed surrogate to other models. Computational fluid dynamics
(CFD) is a time-consuming method to simulate high-accuracy wind forces; by training a NN
on CFD data, a program for predicting wind forces that is both high-speed and high-accuracy
can be created and incorporated into HS of WTs.

This thesis presents six papers that detail the investigation and development of this sur-
rogate model, culminating in a series of HS of a WT equipped with a vibration-suppressing
damping system to investigate the effectiveness of the model. Ultimately, the upgraded HS
technique presented here is identified as a promising option for effectively studying wind-
loaded structures which warrants further investigation.
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Chapter 1

Introduction

With the ongoing threat of climate change driving the need for renewable energy sources, wind
turbines have seen a marked increase in adoption around the world. According to the latest
reports (Lee and Zhao, 2021), 2020 saw a remarkable 14.3% increase in the global cumulative
wind power capacity, including a 1.2% increase in Canadian capacity to 13.6 GW and a 22.0%
increase in Chinese capacity to 288.3 GW. While these increases in adoptions are undoubtedly
a positive trend, current wind turbine designs continue to be limited to a relatively short service
life due to fatigue loading, and are at at risk of failure in high-intensity wind events. Future
engineering research could aid in pushing back against these limitations, and thus should be
facilitated as much as possible.

A promising technique for such research is hybrid simulation (HS): a joint experimental-
numerical testing technique. HS excels at facilitating experimental-level results in highly non-
linear test cases such as complex external damping systems or member failure. Wind tur-
bines in particular are a promising candidate because, unlike most structures, they experience
scaling-based errors in small-scale wind tunnel tests, meaning that an alternative experimental-
level testing technique is particularly valuable. However, current HS frameworks face limita-
tions when studying wind-loaded structures, and thus an improved HS framework that incorpo-
rates advanced computational wind engineering (CWE) methods is needed to truly maximize
the technique’s potential for studying wind-loaded structures, particularly for wind turbines.

This thesis presents a collection of six research papers that each present unique, stand-alone
research while collectively building towards an proposed, novel HS framework that incorpo-
rates a surrogate model for real-time, high-accuracy, in-the-loop aerodynamic calculations.
These chapters define the need for the proposed framework and the components required to
investigate it, including the development of both the aerodynamic thrust model using neural
networks (NN) trained on computational fluid dynamics (CFD) data, an appropriate test case
for the HS in the form of a semi-active tuned mass damper, and an aeroelastic structural model
trained on wind tunnel data. Finally, artificial HS are performed using the proposed framework
to investigate its efficacy. This chapter goes into more detail of the motivations of this research,
the objectives, and the structure of this thesis including a description of each of the six research
papers.

1



2 Chapter 1. An overview of wind tunnel testing and hybrid simulation

1.1 Motivation
The motivation for this research is fully detailed in Chapter 2, but a summarized version is
presented here. The need for a new hybrid simulation framework that includes improved aero-
dynamic modelling for studying wind turbines can be identified via four observations:

1. Hybrid simulation is able to improve upon existing types of studies as well as facilitate
new ones. By combining experimental and numerical models into a single simultaneous,
real-time test, the scope and scale can be improved compared to traditional experimental
tests while achieving improved accuracy compared to traditional numerical tests. This
technique is particularly effective in highly non-linear scenarios where the accuracy of
numerical testing would be particularly low, such as complex external dampers or mem-
ber failure. The main limitation of HS is the requirement for testing to be in real-time,
meaning that any calculations in the numerical side of the test must be able to be run
extremely quickly.

2. There are unique challenges faced when implementing HS for wind-loaded structures,
due to the fact that high-accuracy aerodynamic load calculation is a very time-intensive
process. While simplified aerodynamic models such as the standard drag equation are
very simple and quick to compute, they have been shown to be notably lower in accu-
racy compared to intensive CWE techniques such as CFD. Since running these intensive
CWE techniques is significantly time-consuming, they are too slow to be paired directly
into a real-time HS. As a result, existing HS of wind-loaded structures often use lower-
accuracy aerodynamic models which are used to “pre-calculate” the wind loading time
history prior to the HS itself. Pre-calculating the wind loads refers to the technique of
performing aerodynamic analysis of the structure prior to the HS using a simplified nu-
merical model, then using the resulting load time history within the HS. This technique
is computationally efficient and allows for real-time aerodynamic loads to be easily ap-
plied to the structure during the HS, but these pre-calculated loads are not able to react to
the true structural responses that occur during testing. This means that the relationship
between the aerodynamics and the structural response is severed, and thus aeroelastic-
ity can not be properly modeled. For a highly-flexible wind-loaded structure such as
a wind turbine, this limitation can affect results significantly – as will be quantified in
Section 2.8, pre-calculating wind loads can result in errors of 10-70% depending on how
the pre-calculation process is performed and the response index in question.

3. Neural networks (NNs) are trained machine learning models that can be used to relate
input and output data without directly performing the underlying computations. For ex-
ample, when properly trained on a large, diverse set of sample data, a NN could be used
to accurately predict the aerodynamic loads on a turbine blade based on the wind speed
without the use of an aerodynamic model. Such a trained NN can be referred to as a sur-
rogate model, that is, a model that acts as a surrogate to the direct calculation. The major
advantage that these surrogate models offer for this application is that the NN calculation
is computationally light and can be run very quickly. Thus, NN-based surrogate models
offer a method for time-consuming aerodynamic calculations to be pre-calculated, while
still allowing them to be directly integrated into a real-time HS loop.
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4. Wind tunnel testing is the most common technique for experimentally studying wind-
loaded structures, where the models for these structures must typically be scaled-down
significantly to fit in the wind tunnel. The Reynolds number (Re) is a nondimensional
parameter that describes the turbulence in a given flow and is proportional to the structure
size and the wind speed. If a structure is scaled down by 50%, the wind speed must be
doubled to maintain the same Re. This means that is is essentially impossible to maintain
Re-similitude in most structural wind tunnel tests due to very large geometric scaling
factors. Unfortunately, wind turbine blade airfoils are very sensitive to changes in Re,
meaning that geometrically-scaling an industrial turbine down to wind tunnel size will
result in errors in the prediction of thrust and power production of the rotor. There are
techniques to minimize these errors, but none completely eliminate them. Therefore, it
can be said that traditional experimental studies of wind turbines are limited by scaling
errors in wind tunnel tests, and thus an alternative testing technique capable of generating
experimental-level results without the use of the wind tunnel would be very beneficial.

Based on these four observations, a clear direction for research can be seen: to use high-
accuracy CFD data to train a neural network-based surrogate aerodynamic model to study
wind turbines using HS. To perform such testing, the surrogate aerodynamic model will need
to be paired with a structural turbine model as well as a test case for the HS, such as an external
damping system.

1.2 Objectives
Given the clear need for a modified HS framework that incorporates improved aerodynamics
modelling, the overall objectives of this research can be specified. There are four research
areas that must be studied to be able to create and test the proposed surrogate model-based HS
framework:

1. A proper understanding of background theory is required.

2. The surrogate aerodynamic model of the turbine rotor must be developed and validated.
This entails the generation of a robust data set using validated and optimized CFD sim-
ulations of the turbine rotor, followed by the training of a NN with optimal type and
architecture to create the surrogate model.

3. The test case for the HS must be chosen and validated. It was decided that the test
case employed in this research would be a complex external damping system for the
wind turbine, therefore this damper must be validated then built or modelled. In a true
HS, this damper would be tested experimentally, however in the artificial HS that were
ultimately performed here, the damper was instead modelled numerically.

4. A structural model of the turbine tower and blades must be developed and validated,
ideally using experimental results. In a true HS, the structure could be modelled experi-
mentally, however for the proposed test case it would typically be modelled numerically,
as was done for the artificial HS performed in this research.
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With these four areas in mind, the goals of this research are as follow:

1. The errors caused by pre-calculating wind loads must be quantified to justify the need
for the proposed surrogate model-based HS framework.

2. The complex aerodynamic behaviour of airfoils that introduce the scaling errors in wind
tunnel testing also makes them challenging to test using CFD. Using well-documented
experimental data, an optimal set of CFD settings must be found such that accurate drag
and lift loads can be predicted by the simulations.

3. The process of developing a NN-based surrogate aerodynamic blade model must be de-
veloped and validated. This includes generating the large amount of required testing
data, and determining an optimal type and architecture for the NN.

4. The optimized CFD settings must be used to generate aerodynamic rotor data of the test
turbine, which will then be used to train a NN with the optimal type and architecture.
This will be the surrogate model ultimately used in the final HS.

5. A complex external damping system must be modelled and optimized for its effective-
ness at controlling wind turbine vibrations, with the goal of applying this damping system
as the test case for the final HS.

6. A dynamic structural model of a turbine must be developed. For maximal accuracy, a set
of aeroelastic wind tunnel tests will be performed and the results will be used to define
the properties of the turbine model, which will then be applied in the final HS.

7. The final HS will be performed of the structural model equipped with the optimized
damper, with loading determined both using the existing HS framework that employs
pre-calculated wind loads from a lower-accuracy aerodynamic model, as well as the
novel, proposed framework that incorporates improved aerodynamic modelling via the
NN-based, CFD-trained surrogate model.

1.3 Structure
Figure 1.1 identifies the six research papers presented in this thesis, and organizes them ac-
cording to the four research areas identified in the previous section. While each paper stands
on its own as independent research, Chapters 2-6 can also be classified as pertaining to one of
the four research areas that directly contribute to the final artificial HS simulation performed
in Chapter 7. Finally, Chapter 8 will summarize the findings of the previous six chapters and
propose directions for future research. A brief summary is presented here for each of the six
research papers.

1.3.1 Chapter 2: Wind turbines and hybrid simulation: an overview of
research, opportunities and limitations

This chapter presents an introduction to wind turbine research, followed by a literature review
of traditional experimental and numerical turbine testing, hybrid simulation in structural en-
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gineering, and HS of wind turbines. Finally, the limitations of the current HS framework for
wind turbines are shown via a numerical study that gauges the impact of aeroelasticity in the
response of wind turbine blades. It is shown that the current technique of pre-calculating wind
loads in hybrid simulations can introduce notable error into the results.

1.3.2 Chapter 3: Investigation of the drag and lift coefficient curves of
the NACA 0012 airfoil using CFD and a novel synthesis method

This chapter studies the pre- and post-stalling behaviour of the NACA 0012 airfoil in flows
where the Reynolds number ranges from 105 to 106. Due to complexity of stalling behaviour
on an airfoil in these conditions, a previous consensus has not been reached about the exact
expected behaviour. This chapter firstly collects the drag and lift coefficient curves reported by
existing experimental wind turbine studies and numerical simulations, and develops a series
of piecewise polynomial systems to synthesize the average predicted curves as a function of
the Re of the flow. This chapter secondly performs a number of CFD simulations to attempt
to identify the optimal simulation parameters to generate results that match the synthesized
average drag and lift coefficient curves. This includes the comparison of 2D and 3D CFD
simulations, turbulence models (steady-state RANS, URANS and LES), and RANS closure
equations (Spalart–Allmaras, k-ε, k-ω). Overall it was found that 3D URANS simulations
with k-ω was most effective by balancing accuracy and computational requirements.

1.3.3 Chapter 4: Optimizing the type and architecture of neural network-
based surrogate aeroelastic wind turbine blade models

This chapter trains and compares six different NNs using numerical aeroelastic blade data.
The NNs include four multilayer perceptron (MLP) configurations, a long short-term mem-
ory (LSTM) network, and a convolutional neural network (CNN). Over 30 million data points
of aeroelastic time history information of an operational 5 MW wind turbine were numeri-
cally generated for training these networks. The architecture, input and output data, and the
optimization and training processes are provided in detail for each network, and the resulting
accuracy and computation times are analyzed and compared. Ultimately, it was found that both
the trained full-input MLP and the CNN were particularly accurate surrogate models, with av-
erage normalized root mean square errors of 1.11% and 0.66% respectively. While the CNN
surpasses the full-input MLP in accuracy, the latter is simpler to train and faster to run, thus
both are compelling options for future researchers.

1.3.4 Chapter 5: A comparison of passive and semi-active tuned mass
damper systems for wind turbines

This chapter investigates a 1.5 MW wind turbine controlled by eight different types of tuned
mass damper systems using a lumped-mass 3D finite element model. The turbines are sub-
jected to loading and operational case combinations including service wind loads on opera-
tional turbines, seismic loading with service wind on operational turbines, and high-intensity
storm wind loads on parked turbines. Ultimately, it was found that all the semi-active TMD
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systems outperformed the passive systems. It was also shown that by reducing the mass of
the TMD and adding a second smaller TMD below, the vibrations near the mid-point could be
greatly reduced at the cost of a slightly lower reduction in vibrations at the tower top.

1.3.5 Chapter 6: Development of a rotating-base residential wind turbine
model based on aeroelastic wind tunnel tests

This chapter develops an experimentally-validated numerical structural turbine model to create
an ideal testbed for future HS. Firstly, two rounds of wind tunnel testing are described and
catalogued of a full-scale 1.1 m residential wind turbine installed on a custom aeroelastic ro-
tating base. A 1-DOF numerical structural model is then developed and validated based on the
observed experimental behaviour of the turbine. The basic structural properties, the sources of
loading, and the damping properties are then derived and validated from the experimental data.
Finally, the developed structural model is applied in a representative numerical study that tests
the effectiveness of passive and semi-active tuned mass dampers at controlling the structural
rotation. The detailed structural model is shown to match the experimental results well and is
effective in the representative case study.

1.3.6 Chapter 7: Development of a novel hybrid simulation framework
employing a CFD-based surrogate model to study a semi-actively
damped wind turbine

This chapter investigates a novel HS framework incorporating a CFD-based surrogate aero-
dynamic model, replacing the existing technique of pre-calculating aerodynamic loads. This
study combines the findings of the previous chapters to perform twelve artificial HS of a resi-
dential wind turbine with an aeroelastic rotating base equipped with a STMD. Firstly, the de-
velopment of the surrogate aerodynamic turbine blade model employing the findings of Chap-
ters 3 and 4 is detailed including the description and validation of 24 URANS CFD simulations
at a variety of wind speeds, tip speed ratios (TSRs) and base rotations. These CFD results are
then used to train a CNN as a surrogate model capable of quickly estimating the blade thrust
based on the wind speed, rotor speed and blade position. The novel framework employing this
surrogate model is combined with the structural model developed in Chapter 6 and the optimal
STMD developed in Chapter 5 to perform the AHS under three wind speed/TSR combinations.
This is compared to AHS employing pre-calculated thrust time histories of varying aeroelas-
tic fidelity. The predicted rotor thrust, base rotation, and effectiveness of the STMD across
the twelve AHS are then compared to evaluate the effectiveness of the proposed framework;
these observations indicate that the proposed surrogate model-based framework is feasible and
a likely improvement over the existing framework.



Chapter 2

Wind turbines and hybrid
simulation: an overview of
research, opportunities and
limitations

Summary

This chapter presents an overview of wind turbine research techniques including the recent ap-
plication of hybrid simulation. Wind turbines are complex due to their large size, slenderness,
and dynamic behaviour, which limits applicable research techniques. Traditionally, numerical
simulation is widely used to study turbines while experimental tests are rarer and often face
cost and equipment restrictions. Hybrid simulation is a relatively new simulation method that
combines numerical and experimental techniques to accurately capture unknown or complex
behaviour by modelling portions of the structure experimentally while numerically simulating
the remainder. This can allow for increased detail, scope, and feasibility in wind turbine tests.
Hybrid simulation appears to be an effective tool for future wind turbine research, and the few
studies that have applied it have shown promising results, though they are not without their
own limitations. This paper presents an introduction to turbine research, followed by a litera-
ture review of experimental and numerical wind turbine testing, hybrid simulation in structural
engineering, and hybrid simulation of wind turbines. Finally, the limitations of current imple-
mentations of hybrid simulation for wind turbines are shown via a numerical study that gauges
the impact of aeroelasticity in the response of wind turbine blades. It is shown that the current
technique of pre-calculating wind loads in hybrid simulations can introduce notable error into
the results.
This chapter is heavily based on updated reproductions of the author’s published papers
“Wind turbine testing methods and application of hybrid testing: A review” (Lalonde
et al., 2019) and “Effect of aeroelastic blade deflections on the overall response of a 5 MW
wind turbine tower” (Lalonde et al., 2020a).

8
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2.1 Introduction
Driven by the threat of climate change, wind energy has seen a major expansion of use in recent
years (GWEC, 2017). One consequence of this large expansion of wind power is the required
use of higher risk locations for wind farms. Near-shore and offshore turbines typically face
higher typhoon and hurricane risks, and onshore turbines are prevalent in seismic-prone areas
such as northern China, California, and Japan. High-intensity wind events such as typhoons
are responsible for the majority of the numerous wind turbine failures each year (Chou and
Tu, 2011) and are likely to increase in intensity in the future due to climate change (Haldar
and Basu, 2016). Research has also shown that earthquake loading may govern for turbines in
high-seismic areas (Diaz and Suarez, 2014; Mardfekri and Gardoni, 2015). Furthermore, since
identical turbines are often used in a given wind farm, mass failure is risked in a single extreme
event. Many of the most common wind turbine design codes (IEC, 2005; Riso, 2002; GL,
2010) lack explicit guidelines for certain aspects of design (Diaz and Suarez, 2014; Katsanos
et al., 2016) and the structural design codes of some countries will result in unsafe wind turbine
designs (Song et al., 2013; Stamatopoulos, 2013). Overall, the wind turbine industry faces
serious challenges from structural failures, and given the growth of this industry, further studies
of wind turbines will be of great value.

From an engineering perspective, wind turbines are challenging structures to study, which
limits the types of testing available to researchers. Wind turbines are large, slender, hollow, and
uniquely shaped structures with little redundancy and whose behaviour will greatly vary de-
pending on operational states as well as loading type and direction. Due to their high flexibility,
their lifespan is limited by fatigue failure from dynamic wind and (for offshore turbines) wave
loading, which is difficult behaviour to model and test. Additional structural damping is often
added to turbine towers to combat fatigue loading – a summary of the mainstream vibration
control methods for wind turbines can be found in Rezaee and Aly (2016) – which can further
complicate testing.

There are two primary categories of testing performed in structural engineering: exper-
imental tests and numerical tests. Experimental (or physical) testing analyzes full-sized or
scaled-down physical models to determine structural behaviour. This type of testing can accu-
rately capture nonlinear or poorly-understood behaviour by testing real replicas of the struc-
ture, but the maximum scale of the model is often restricted by test budgets and equipment
limitations, and smaller-scale models often struggle to accurately simulate structural proper-
ties. Alternatively, numerical (or analytical) testing, typically performed via computational
analysis, allows for structures to be modelled at full scale with no real cost or equipment re-
strictions, however unknown or complex behaviour is difficult to capture as incorrect or flawed
models will produce inaccurate outputs. Due to this, complimentary experimental or field re-
search is often used to validate new numerical models, and cheaper and repeatable numerical
testing can be used to design experimental tests. It should be noted that numerical and ex-
perimental testing are not mutually exclusive: an experimental study may employ numerical
models for prototyping and validation, while a numerical study may employ models that were
derived from experimental results. Generally, however, most studies can be classified as being
primarily experimental or numerical.

For wind turbine studies, the advantages and challenges of both experimental and numerical
testing are present: the large size of turbines means that experimental tests are either extremely
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costly or heavily scaled down, and the complex behaviour of turbines can present challenges
in numerical modelling. However, an alternative research method exists that appears quite
promising for wind turbine studies: hybrid simulation. Hybrid simulation (or hybrid testing)
combines experimental and numerical testing by modelling portions of the structure that un-
dergo nonlinear or poorly-understood behaviour experimentally while the remainder of the
structure is captured in numerical models. As a result, hybrid simulation allows for accurate
physical simulation of complex behaviour, such as nonlinear damping or failure, at large scale
with reduced costs and equipment requirements. Hybrid simulation may enable wind turbine
research that is poorly suited for traditional numerical or experimental studies.

This overview will explore wind turbine research and the possible application of hybrid
simulation via literature review as well as a numerical study: the following two sections intro-
duce the fundamentals of wind turbines and wind turbine modelling. The following sections
will then present reviews of numerical and experimental wind turbine studies respectively and
discuss the advantages and challenges of each method. The development and capabilities of hy-
brid simulation for general structural engineering research will then be presented, followed by
an examination of hybrid simulation for wind turbines in particular. This review will highlight
the limitations in existing hybrid simulations of wind turbines: the use of reduced aeroelastic
fidelity and pre-calculated wind loads. To quantify the effect of these limitation, a numerical
study is performed on a tuned mass damper-equipped wind turbine. Finally, this chapter will
finish with a summary of the drawn conclusions and propose future research directions.

2.2 Wind turbine parts, types and frames of reference
Here, the fundamentals of wind turbines that will be referenced throughout this thesis are pre-
sented. This consists of the parts of a turbine, the different types of turbines, and the various
frames of references when performing structural analyses of wind turbines. The turbines dis-
cussed here are all horizontal-axis wind turbines – the most common type of turbines used
for large-scale applications. More complex aspects of wind turbine design such as pre-coning,
tilting, and teetering are excluded here for simplicity.

Figure 2.1 lists the main components of a wind turbine: the tower, nacelle, and rotor. The
tower is hollow to allows workers to reach the nacelle for maintenance, includes a door at
ground level, and is in a fixed position. The nacelle houses the generator system and is capable
of rotating (or yawing) towards the wind to maximize energy production, though this rotation
can be braked in high-intensity wind situations. The rotor consists of the hub and the blades,
and rotates about the rotor axis, which can also be braked. Wind turbine blades are typically
hollow and made from balsa frames covered in fiberglass.

The azimuth, twist, and pitch are all common angle measurements: the azimuth refers to
the position of the blade within the rotor plane, which is equal to 0◦ when the blade points
straight up. The blade twist refers to the rotation of the airfoils along the length of the blade,
which is fixed when the blades are built. The blade pitch refers to the ability of the blade to
rotate axially, the optimal pitch angle will depend on the blades and wind speed. During high-
intensity wind events, the blades are “feathered” which means they are rotated and locked to a
pitch of 90◦ to minimize wind loads and protect the turbine.

Figure 2.2 shows the different types of wind turbines. While onshore turbines are most com-
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Figure 2.1: Parts of a horizontal-axis wind turbine

mon, offshore wind turbines are seeing increased implementation due to higher wind speeds
and greater available space. Depending on the depth of the water where offshore turbines are
built, they can either be fixed or floating. Fixed offshore wind turbines are generally cheaper,
however are impractical when water depths exceed 40-50 m. Floating offshore turbines in-
clude barge, buoy, and tension leg systems. Offshore turbines must consider wave loading
in addition to the standard loads on wind turbines, while floating offshore turbines must also
consider mooring loads and much greater deflections. When performing numerical or experi-
mental analysis of onshore or fixed offshore turbine, the soil-structure interaction (SSI) of the
base may or may not be considered. While SSI is often ignored, it can be accounted for nu-
merically using relatively simple flexible bases (shown in Figure 2.2) and experimentally using
soil tanks.

Figure 2.3 shows the different frames of reference when studying wind turbines. Firstly
there is the fixed frame of reference from the turbine base that is relative to cardinal directions.
More importantly, however, is the nacelle frame of reference, which is relative to the rotor axis
and the wind direction. Since the nacelle yaws to face the direction of the wind during opera-
tional conditions, this is the most important frame of reference for most turbine analysis. The
nacelle frame of reference yields the following loading directions: fore-aft/along-wind loading
is parallel to the rotor axis, side-side/across-wind loading is horizontal and perpendicular to
the rotor axis, and axial/vertical loads is perpendicular to the ground. Thrust (T ) and torque
(Q) capture the sum of the rotor loads in the nacelle frame of reference, where thrust is the
along-wind force, while torque is the moment about the rotor axis and is directly related to the
power production of the turbine.

Three different frames of reference are also commonly used when analyzing turbine blades.
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Figure 2.2: Different types of turbines with possible bases and modelling methods

The global blade frame of reference is used to determine the thrust and torque loads. Here, the
loading directions are the along-wind, the rotor and the axial directions, where the along-wind
loads are used to calculate the thrust, the rotor loads are used to calculate torque, and the axial
direction follows the axis of the blade as it rotates. The 2D airfoils that run along the wind
turbine blades each have two local frames of reference: one for the drag, lift and axial loads
and one for the edgewise, flapwise and axial loads. In both, the axial loads are identical, while
the drag and lift loads are relative to the relative wind direction (which includes both the natural
wind plus the relative wind from the blade rotation). Conversely, the edgewise and flapwise
loads are relative to the chord of the airfoil. Should the relative wind angle line up with the
chord line of the airfoil, these values are identical. Drag and lift loads are used to characterize
the airfoils (see Section 2.3.2) while the edgewise and flapwise loads are more easily converted
to the other frames of reference since the blade twist is fixed while the relative wind angle
changes with time.

2.3 Numerical characterisation of wind turbines
This section will briefly present the fundamental behaviour of wind turbines – how they convert
wind flow into mechanical energy – in numerical form. Understanding this is key for under-
standing and designing experimental studies, and these numerical representations are often
directly employed in numerical studies. Betz’s actuator disk model and the power coefficient
of a turbine from momentum theory, as well as the lift and drag coefficients of an airfoil will
be discussed herein.
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Figure 2.3: Standard frames of reference for structural analysis of wind turbines

2.3.1 Actuator disc model and momentum theory
The actuator disc model, whose development is usually attributed to Betz (1926), can be used
to characterize the power production of a wind turbine rotor as the loss of power in wind flow
from upstream to downstream. For a more detailed explanation of the concept, the reader is
directed to Refan (2009) or any of the introductory textbooks on wind turbine behaviour.

This model assumes an ideal turbine in incompressible, steady, uniform flow, with an infi-
nite number of blades and no friction. Consider a circular stream of wind of varying radius that
maintains a constant mass flow rate as shown in Figure 2.4. At any cross-section of the stream,
the mass flow rate can be calculated as ρAU where ρ is the air density, A is the cross-sectional
area, and U is the velocity of the flow. With conservation of mass flow rate and incompressible
flow, it can be written that:

ρAuUu = ρArUr = ρAdUd (2.1)

Here, the subscript u refers to the upstream region; r refers to the stream at the rotor (where Ar

is the swept area of the rotor); and d refers to the downstream region. Finally, let a refer to the
axial induction factor such that:

Ur = Uu(1 − a) (2.2)

Based on the decrease in flow velocity from the upstream flow, the power production of the
turbine thus be determined.
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Figure 2.4: Actuator disk model and the locations of the three cross-sections of interest

Firstly, the thrust (the along-wind force) T on the rotor can be calculated as the mass flow
rate times the drop in wind velocity between the upstream and downstream sections:

T = ρArUr · (Uu − Ud) (2.3)

The source of the thrust can equally be considered as the sum of a positive pressure on the
upwind face of the rotor plane and a negative pressure of the downwind face, the difference
between which is shown as ∆pr:

T = ρAr · ∆pr (2.4)

Secondly, by modelling the upstream and downstream portions of the wind stream using
Bernoulli’s equation and subtracting these two equations, it can be shown that:

∆pr =
1
2
ρ(U2

u − U2
d) (2.5)

By combing Equations 2.2 - 2.5:

Ud = Uu(1 − 2a) (2.6)

Finally, the power P extracted from the stream by the rotor is equal to the thrust times the
air velocity, using Equations 2.2 and 2.6:

P = TUr = ρArU2
r (Uu − Ud) = 2ρArU3

ua(1 − a)2 (2.7)

The power coefficient Cp is typically used to nondimensionalize the power production of a
turbine. It is the ratio of power production over the total power in the wind:

CP =
P

1
2ρU

3
u Ar

(2.8)
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By combining Equations 2.7 and 2.8 we find that:

CP = 4a(1 − a)2 (2.9)

By analyzing CP as a function of a, it can be found that the maximum possible power
coefficient is achieved when a = 1

3 , which yields CP = 0.593. This is known as the Betz limit
– the maximum possible efficiency of a propeller. Note that in reality it is impossible for a
turbine to achieve this level of efficiency, as there will always be losses from unsteady flow,
mechanical friction, etc. The goal of wind turbine design is to maximize the power coefficient
thus maximizing the efficiency at which a turbine can extract power from the wind.

For a non-idealized turbine, the maximum possible Cp will depend on the design of the
turbine as well as the tip speed ratio the turbine operates under. The tip speed ratio (TSR)
relates the wind speed to the rotation speed of a turbine, as shown in Equation 2.10:

TSR =
ωR
U

(2.10)

Here, ω is the rotation speed of the turbine and R is the radius of the turbine rotor, thus ωR is
the tip speed of the given rotor; and U is the wind speed. For a given size of turbine in a given
wind speed, the optimal tip speed ratio will identify the ideal rotation speed of the turbine.
There is a classic figure in many wind turbine textbooks that compares the maximum power
coefficients of various turbines versus their tip speed ratio to Betz’s theoretical max Cp – it
is reproduced here in Figure 2.5 from Hau (2006). From this figure, it can be seen that of the
designs, the modern 3-bladed turbine is able to achieve the maximum possible Cp at a tip speed
ratio of about 7.

Figure 2.5: The maximum power coefficients as a function of tip speed ratio (λ) of various
turbine designs. Reproduced from Hau (2006) with permission from Springer Nature©



16 Chapter 2. An overview of wind tunnel testing and hybrid simulation

2.3.2 Airfoil lift and drag
In reality, the power of a turbine must be determined by studying the airfoils that make up
the turbine blades. Airfoils are curved cross-sections that generate lift from incoming wind,
famously employed in airplane wings, propellers, and turbine blades.

Figure 2.6a shows the relevant parameters of an airfoil in air flow: the wind passing over
the airfoil generates a parallel drag force (FD) and a perpendicular lift force (FL). In a wind
turbine, the lift force is generally responsible for driving the rotor. The amount of lift and drag
produced by an airfoil is a function of the wind speed, the airfoil shape, the chord length (c) and
the angle of attack (α). Figure 2.6b shows a very simple explanation of how lift is generated
by an airfoil using Newton’s third law: the flow being deflected downwards applies an equal
upwards reaction on the airfoil. Figure 2.6 also shows the two types of airfoils: symmetrical
and cambered. The main differences between these two is that a cambered airfoil will generate
lift at an angle of attack of 0◦ and and are capable of achieving higher maximum lift, thus they
are typically employed in wind turbine applications.

Figure 2.6: a) Behaviour and parameters of an airfoil. b) Lift force explanation

As the power was nondimensionalized previously, the same can be done to the lift and drag
forces on an airfoil. Equations 2.11 and 2.12 define the drag and lift coefficients of an airfoil:

Cd =
FD

1
2ρU

2A
(2.11)

Cl =
FL

1
2ρU

2A
(2.12)

Here, Cd and Cl are the drag and lift coefficients, respectively, while FD and FL are the respec-
tive drag and lift forces. ρ is the density of the air, U is the wind speed, and A is the surface
area – for an airfoil the chord length (c) times the airfoil width is used.

The drag and lift forces acting on an airfoil are difficult values to calculate directly. Instead,
plots of the drag and lift coefficients of an airfoil as a function of the angle of attack are derived
via experimental or numerical simulation. Example plots of the drag and lift coefficients of
the symmetrical NACA 0012 airfoil are reproduced in Figure 2.7 from Sheldahl and Klimas
(1981). These plots are dependent on the turbulence of the flow and the magnitude of the
wind speed, which are characterized by the nondimensional parameters the Reynolds number
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(Re) and the Mach number (Ma). For wind turbines, the Mach number is of little concern,
however the impact of the Reynolds number is notable, as will be discussed in greater detail in
Section 2.5.1.1.

Figure 2.7: a) Drag coefficient and b) Lift coefficient versus angle of attack plots of the
NACA0012 airfoil. Reproduced from Sheldahl and Klimas (1981) with permission from U.S.
Gov.©; with clarified axes and legend

By studying Figure 2.7, the relationship between the lift coefficient and the angle of attack
can be studied. It can be seen that as α increases, Cl also increases, up to an angle of attack
around 10-15◦, where the Cl peaks. This is known as the stall angle of the airfoil and occurs
when the flow separates from the top of the airfoil. The post-stall behaviour of the airfoil sees
the Cl decreasing then eventually increasing and decreasing again as the angle of attack contin-
ues to increase, however due to the transient, separated flow, it is more challenging to capture
this complex behaviour in testing. Further, while industrial turbine blades can experience very
high angle of attacks in high winds, these angles are rarely encountered in aeronautics. These
together mean that the post-stall behaviour of airfoils is often under-reported in literature – this
topic is investigated further in Chapter 3. In wind turbine design, the rotation speed, airfoils,
blade twist, and pitch of the blades are carefully chosen in an attempt to control the angle of
attack thus optimizing the resulting lift on the blade.

2.4 Traditional numerical turbine studies
Numerical testing of wind turbines consists of simulating the behaviour of wind turbines us-
ing a series of numerical approximations. A simple example could be modelling the turbine
tower using Euler-Bernoulli beam theory, a model which has been rigorously validated in pre-
vious literature. Unlike experimental testing, numerical simulations have no need of expensive
lab equipment beyond a computing platform and are particularly suited for investigatory and
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parametric analyses where models are cheap to iterate and have no risk of being permanently
damaged. An additional advantage of numerical testing is the ability to control the required
fidelity based on the scope of the project – degrees of freedom (DOF) that are not relevant to
a given study will often be excluded from the model to reduce computational costs. The major
limitation of numerical simulations is that results are only as accurate as the models used to
generate them, for example, should the turbine tower be subjected to significant twisting or
plastic yielding, the Euler-Bernoulli model would become invalid and fail to accurately cap-
ture the tower’s behaviour. Thus, particularly complex and nonlinear behaviour can often be
challenging to accurate capture using numerical simulations.

The following subsections will introduce some of the fundamental techniques used in nu-
merical simulations of wind turbines, including finite element (FE) modelling, the blade ele-
ment momentum theory (BEM) and computational fluid dynamics (CFD). Finally, a summary
of recent examples of numerical studies of wind turbines will be presented and analyzed.

2.4.1 Finite element modelling
Finite element (FE) modelling is a technique used in numerical simulation to solve complex
behaviour. By taking a system that in reality is governed by a series of extremely complex
equations and splitting it into a series of small, interconnected elements, these behavioural
equations can be solved instead as a series of simple, linear equations. For example, a long
beam with complex 2D behaviour can be simplified into a series of small beam elements with
four degrees of freedom each (vertical displacement and rotation at each end), allowing the
overall behaviour behaviour to be found as a simple system of linear algebraic equations. Sec-
tion 5.2.1 in this document uses this technique to model the tower of a wind turbine, and for a
more thorough explanation of the technique the reader is directed to one of the many textbooks
that provide an introduction to this topic such as Reddy (1993).

FE analysis includes a number of types of elements of varying complexity – the more
complex an element is, the more DOF it has and thus the more computationally intensive it is
to solve the resulting system of linear equations. For the purposes of this section, two types
of elements will be discussed: simpler beam elements used in elastic analysis of beam-like
structural members such as towers and blades, as well as more complex shell elements which
are used for stress and strain analysis of surfaces such as the walls of a turbine tower or the
shell of a blade. Generally speaking, for wind turbine analysis, beam element models will be
used to study the overall structural response while shell elements will be used to investigate
local damage from fatigue or other sources. The numerical studies presented in Section 2.4.4
that use FE models will be presented as either beam element-based or shell element-based.

2.4.2 Blade element momentum theory
Calculating the wind loads on turbine blades represents the most challenging aspect of wind
turbine simulation. Industrial wind turbine blades have significant variation in their chord
length and twist, and are often built of different airfoils with different drag and lift coefficient
curves. When aeroelasticity is considered by allowing the blades to flex under the wind loads,
it becomes an even more complex process as turbine blades are irregular, composite structures
made from fiberglass and wood, and the resulting deformations will modify the angle of attack
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of the wind, thus affecting the loads. In practice, the principles of FE analysis are carried over
into the calculations; by dividing the blade into a series of uniform airfoil cross-sections, the
drag and lift can be determined on each element and summed along the length of the blade to
determine the overall loading. This technique is referred to as the blade element momentum
(BEM) theory.

BEM builds upon the momentum theory discussed previously and can be used to estimate
the wind loads on a turbine blade and the resulting power generation. Originally developed
by Glauert (1935) for use in aeronautics, the derivation of this technique is somewhat lengthy,
thus it is excluded here for brevity in favour of a brief summary, but the derivation can be easily
found in literature (Refan, 2009) or online. The technique consists of using an iterative method
to solve for the axial induction factor a and the angular induction factor a′, which in turn can
be used to estimate the true angle of attack of the wind on a blade. Then, using the lift and drag
coefficient curves, the lift and drag forces as well as the resulting thrust and torque on the blade
section can be found. By performing this analysis along the length of the blade, the total forces
can be found. However, this theory has a number of limitations stemming from the fact that it
is fundamentally a 2D analysis of the forces on a turbine blade. To account for this, there are a
number of typical correction factors that are applied to account for tip losses and stall delays,
among other effects. Modern researchers are still attempting to improve this method (Maheri
et al., 2006; Madsen et al., 2007; Macquart et al., 2012), including developing unified models
that combine the numerous proposed corrections (Liu and Janajreh, 2012).

BEM theory is highly valued for its simplicity and fast computational times. While direct
aeroelastic analysis is extremely computational intensive, BEM approximation is significantly
faster to perform and easy to incorporate into numerical models. As a result, BEM theory is
used in the majority of numerical wind turbine studies, which will be shown in Section 2.4.4.

2.4.3 Computational fluid dynamics
Computational fluid dynamics (CFD) offers an alternative to BEM for aerodynamic simulations
of turbine blades. CFD is a modern numerical analysis technique that can simulate the flow
of fluid around objects and determine the resulting loads. CFD uses an FE-like process of
splitting the fluid domain into a number of small elements and solving for the behaviour of
each element to characterize the behaviour of the full, complex system. CFD has seen a large
amount of use for structural analysis of wind-loaded structures – a review of which can be
found in Dagnew and Bitsuamlak (2013). Martinez-Tossas and Leonardi (2012) have likewise
prepared a review of CFD used for wind turbine studies; such studies will be explored in more
detail in Section 2.4.4.

If CFD analysis is performed correctly, it can yield extremely precise results, often compa-
rable to the results from wind tunnel experiments, which greatly exceeds the accuracy of other
numerical aerodynamics models such as BEM. Lee et al. (2017) found that when comparing
CFD and BEM results to an experimental wind turbine test, that the accuracy of the CFD sim-
ulations was at least 5% greater than the BEM simulations. The main limitations of CFD are
its relative difficulty to learn, and its extreme computational intensivity. In fact, large CFD
simulations often require days or weeks to run on super-computing platforms, hampering it as
an option for less-equipped researchers.

CFD functions by iteratively solving the flow and pressure behaviour within each element
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of the fluid domain. The specific equations to solve depend on the turbulence model used in the
analysis – Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), large eddy
simulation (LES) and detached eddy simulation (DES) are all common models. Deriving these
turbulence models is a lengthy process, thus they are excluded for brevity, but the derivations
can be easily found in literature (Versteeg and Malalasekera, 2007) or online. Instead, each of
these models are summarized here:

• RANS: The RANS equations are the most common approach to turbulence modelling.
They consist of a series of time-averaged equations of motions for fluid flow, which
means that RANS is best suited to steady-state problems. The RANS equations intro-
duce Reynolds stresses into the equation of motions, which in turn must be solved using
additional turbulence models including Spalart-Allmaras (SA), k-εand k-ωmodels. In
addition to being the foundation for all mainstream CFD turbulence models, the main
advantage of RANS simulations are that they are computationally light compared to the
alternatives.

• URANS: For unsteady simulations, RANS can be used to approximate a time-history
analysis as URANS. For situations where the time scale of the turbulence is much smaller
than the time scale of the flow, URANS can find a time history of steady-state solu-
tions that approximates the true unsteady time history while remain relatively lightweight
computationally. An airfoil in the post-stall regime is an example of a situation where a
URANS simulation would be preferable to RANS.

• LES: LES modifies the RANS equation by performing low-pass filtering to remove very
small-scale turbulence, allowing true time-history simulations to be performed in a fea-
sible amount of time. LES is more computationally intensive than RANS, particularly
because it requires a more refined grid in the fluid domain to ensure accuracy, but is
capable of achieving time-history results with a greater level of accuracy.

• DES: DES combines RANS and LES by performing a RANS simulation that switches to
LES in regions with very fine grids, reducing the overall computational costs compared
to LES. However, it is more challenging to generate the fluid domain grid for DES, and
to transition the turbulence between the RANS and LES models.

Chapters 3 and 7 of this thesis explore the use of CFD for determine aerodynamic loads on
a turbine rotor and simulating the aeroelastic response of a wind turbine.

2.4.4 Summary of numerical tests
A collection of modern numerical wind turbines is presented in Table 2.1. It would be impos-
sible to provide a thorough summary of the thousands of turbine studies in print, thus this table
has been curated to emphasize the general trends the author finds notable. Table 2.1 presents
the study, a general synopsis, the type of turbine tested (see Section 2.2), the types of applied
loads, the structural and aerodynamic models used (if any), the testing indices, and finally a
general category that the study falls in to. This section will discuss the trends presented by this
table.
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Many of these tests use the open-source turbine simulator OpenFAST Jonkman et al. (2021),
which employs a beam-element-based FE model for the turbine, including an improved beam
element for the blades (Wang et al., 2014), and the BEM theory for aerodynamic blade loads.
Further, its partner-program TurbSim (Kelley and Jonkman, 2012) can be used to easily gen-
erate wind field for use by OpenFAST. Studies that used OpenFAST are listed in Table 2.1 in
the OpenFAST? column. OpenFAST can be used solely for load generation (Lalonde et al.,
2020b), but is more typically used for both load evaluation and dynamic structural analysis.

From Table 2.1, the following trends can be drawn:

• It can be seen that numerical simulation is very flexible in what research it applies to.
However, we see that the literature can be classified into a few broad categories: be-
haviour evaluation, the evaluation of the response of a turbine under certain conditions;
control, the evaluation of a control technique for turbines, often vibration control via
tuned mass damper (TMD) or similar system; model evaluation, the development and
testing of new numerical representations of physical phenomenal; and validation, us-
ing numerical simulation to validate observed physical results. The different numerical
simulations performed throughout this thesis meet all four of these categories, includ-
ing Section 2.8 for behaviour evaluation, Chapter 5 for vibration control, Chapter 4 for
model evaluation, and Chapter 6 for validation.

• While many researchers study offshore turbines, the default structure in these tests are
onshore wind turbines. While soil-structure interaction (SSI), i.e. the understanding
that a turbine foundation in soil is not truly fixed, has been shown to have an impact
on the response behaviour of both onshore (Adhikari and Bhattacharya, 2011) and fixed
offshore (Alkhoury et al., 2020) turbines, most researchers opt to use the simpler model
of a fixed foundation.

• It can be seen that service wind loads, the most common type of loading a wind turbine
will experience during its lifetime and the most relevant to power production, is the most
common test case in numerical turbine simulations. High-intensity wind and earthquake
loading appear more often in vibration control tests as well as tests where member stress
is being evaluate to assess the fatigue or ultimate limit states. Offshore wind turbines
are often also subjected to wave loading. Studies that evaluate the natural frequencies of
turbines typically use artificial harmonic loading. It is clear that a numerical simulation
only requires an aerodynamic model if the turbine is subjected to service or high-intensity
wind loads.

• FE analysis is generally used for dynamic turbine models. A clear line can be drawn
between the type of FE models and the performance indices in this table: when simpler
beam models are used, generally only the response of the turbine (the displacement,
acceleration, etc.) is of interest, whereas when researchers are interested in element
stress more complex shell models are employed. Sometimes models combine both beam
and shell elements, such as by modelling the blades as beams and the tower as a shell
(Smith and Mahmoud, 2016).

• BEM theory is the most common aerodynamic model employed in numerical simula-
tions, partially due to its inclusion in OpenFAST, and particularly due to its simplicity



2.5. Traditional experimental turbine studies 23

and accuracy compared to the alternative methods. Such alternative methods include
performing a simple drag calculation, which fails to account for the angular momentum
of the rotating turbine blades as well as coming with all the limitations of the 2D-based
BEM theory.

• CFD is employed in a minority of wind turbine studies, though its popularity is increas-
ing as more researchers gain access to sufficiently powerful computer systems. It can
also be seen that RANS is the most common type of CFD, though LES and DES are
increasing in popularity with time as well. For nearly all the CFD studies, they are not
paired with a dynamic structural model. To include a flexible structure in a CFD sim-
ulation requires a moving mesh and a coupled dynamic model, greatly increasing the
complexity and overhead of an already complex process. Pairing CFD with a dynamic
model is commonly referred to as fluid-structure interaction (FSI) studies, which are
fairly uncommon (Lee et al., 2017; Grinderslev et al., 2021).

• The limitations of traditional numerical turbine simulations can be inferred from the
table. It can be seen that are very few dynamic analyses of turbine blades in particular
due to the limitations in BEM as well as the relative material complexity of the wood
and fiberglass that makes up the blades. Further, there are very few numerical studies
of turbines with complex vibration damper systems until recently. These both represent
scenarios where numerical simulations are the weakest: when complex non-linearity
lacks an effective numerical model thus the models are prone to a large amount of error.

2.5 Traditional experimental turbine studies
While it is employed in only a minority of wind turbine studies (Katsanos et al., 2016), ex-
perimental testing is a potent tool for researchers. It is well suited for studying nonlinear and
unknown behaviour. However, given the large size of modern wind turbines, test budgets and
equipment limitations mean that models typically require significant scaling, which makes it
difficult to accurately maintain the dynamic characteristics of the structure. The problem of
cost is further exacerbated when performing failure testing, as it limits the number of allow-
able tests.

The following subsections will introduce wind tunnels and shaking tables – two common
experimental testing environments for wind turbine studies, and will discuss the advantages
and limitations of each. Finally a representative collection of recent examples of experimental
wind turbine studies will be presented and analyzed.

2.5.1 Wind tunnel experiments
Wind tunnel testing is the standard experimental technique for testing a wind-loaded object,
including wind turbines. Wind tunnels are typically the most accurate method for studying
wind loads; only well-done CFD simulations can hope to achieve a similar level of accuracy.
Wind tunnels are very effective for testing wind turbines where scaling is not required, such as
testing a segment of a blade (Sheldahl and Klimas, 1981; Selig and McGranahan, 2004) or a
full-sized residential turbine (Shirazadeh et al., 2021). The largest full-scale wind tunnel study
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of a turbine was performed at the Ames Research Center tunnel (which houses the largest wind
tunnel in the world) on a 20 kW turbine (Leishmann, 2002).

Unfortunately, due to the large size of industrial wind turbines, model scaling is required
to test them. The airfoils of the wind turbine blades present a unique challenge for wind
tunnel studies in particular, which is detailed below. Furthermore, by requiring model scaling,
aeroelastic simulation becomes more challenging as the smaller the scale the more difficult it
becomes to match the dynamics of the full-sized structure. Ultimately, the issues around wind
tunnel testing of wind turbines could be alleviated if turbines could be tested at a larger scale,
or if accurate wind loads could be generated separately and the wind tunnel avoided entirely.

2.5.1.1 Airfoil scaling errors in wind tunnel testing

As detailed previously in Section 2.3.2, the lift and drag on an airfoil is a function of the
Reynolds (Re) number, a nondimensional value that characterizes the turbulence of a flow.
Equation 2.13 shows the calculation for the Reynolds number:

Re =
UL
ν

(2.13)

Here, U is the wind speed, ν is the kinematic viscosity of the air, and L is the characteristic
length. For airfoils, the characteristic length is the chord length.

The Re-sensitivity of airfoils is easily shown in a plot of angle of attack versus the drag
coefficient for a number of flows with different Reynolds numbers. Figure 2.8 plots the drag
coefficient curve of the NACA-0012 airfoil in a number of different flows using data gener-
ated by the program XFOIL. Here it can be seen that there are large differences between the
predicted drag coefficient at a given angle of attack depending on the Reynolds number of the
flow.

Figure 2.8: Drag coefficient plots for the NACA 0012 airfoil in flows of varying Re number

Now consider the effect scaling has on the characteristic length in Equation 2.13. If a 1:10
scale model is used, L will be reduced by a factor of ten, meaning that Re will likewise be
reduced by a factor of 10. For airfoils this 10x reduction in the Re will result in different drag
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and lift behaviour on the model airfoil, introducing error into the simulation. Alternatively, to
keep Re at the same value, the wind speed U could be increased tenfold. This would maintain
Re similitude, however if the true turbine is in wind speeds of 20 m/s, this would require gen-
erating 200 m/s winds in the tunnel, which is not feasible. Likewise, modifying the viscosity
of the flow is impractical. Thus, this error is unavoidable when placing a geometrically-scaled
turbine model in a wind tunnel.

Wind tunnel studies of traditional bluff bodies avoid this issue as they lack the Re-sensitivity
that airfoils have. Provide the Re number remains above a certain value, the drag on a rect-
angular building is independent of the Reynolds number. Instead, when wind tunnel tests of
scaled wind turbine models are performed, the tip speed ratio (defined previously in Equa-
tion 2.10) is used for scaling (Stein and Kaltenbach, 2016) and blades with different airfoils
which are designed for lower Reynolds number flow are used to approximately simulate thrust
and torque loads (McTavish et al., 2013), a technique used in many of the studies presented in
the following section.

Further consideration must be given to nondimensional parameters when studying off-
shore wind turbines in wind tunnels equipped with wave basins. Hydrodynamic similitude
is achieved in such a test by scaling according to the Froude (Fr) number, defined in Equa-
tion 2.14:

Fr =
U
√

gL
(2.14)

Here, U is the flow speed, g is gravitational acceleration, and L is the characteristic length
of the turbine. By comparing Equations 2.13 and 2.14, it can be seen that u and L occupy
opposite sides of the division sign, making Fr-scaling fundamentally incompatible with Re-
scaling. Thus, redesigned blades must once again be used, with an emphasis on matching lift
coefficients while accepting error from drag coefficient mismatching (Kimball et al., 2014).

2.5.2 Shaking table experiments

Shaking tables are typically used to subject experimental wind turbine models to seismic loads.
Shaking tables consist of a base that can be moved back in forth, replicating ground motion
during an earthquake. This is typically performed using smaller-scale turbine models, however
Prowell et al. (2009) famously tested a full-scale 65 kW wind turbine on an outdoor shaking
table. An additional advantage of shaking table tests are that since wind loading is typically
not considered, these turbine models need not worry about scaling airfoils, making small-scale
tests more feasible provided the dynamics of the turbine can be accurately captured.

The main limitation of shaking table tests for wind turbines is that seismic loading is gener-
ally of secondary concern to researchers; most wind turbine studies are primarily interested in
wind loading. This limits the breath of possible testing that shaking tables offer, however some
researchers have attempted to push these bounds by applying approximations of wind loads via
the shaking table (Chen et al., 2015b).
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2.5.3 Summary of experimental tests
A collection of modern experimental wind turbine studies is presented in Table 2.2. This table
has been partially curated by the author to emphasize certain trends which will be discussed.
Table 2.2 presents the study, the experimental model and the testing environment, the type
of turbine (see Section 2.2), the types of applied loading, the testing indices and a general
classification category.

From Table 2.2, the following trends can be drawn:

• It can be seen that in comparison to numerical testing, there is a smaller number of
collected categories of experimental tests. Behaviour evaluation is by far the most
common, but control, and material/model evaluation are also applications of experi-
mental testing. Despite it being a very popular research topic numerically, it is difficult
to perform vibration control studies on a full turbine model, primarily due to scaling
limitations.

• We can see that a number of studies use full-sized wind turbines or blades for wind
tunnel studies to side-step the scaling issues, though there remain some small scale tests
that employ redesigned, low-Re blades.

• Some wind tunnel studies are paired with additional equipment to test floating offshore
turbines, either directly using a wave basin (Kimball et al., 2014; Bayati et al., 2016)
or indirectly using a surging table (Mancini et al., 2020), which is essentially a rotating
shaking table. If scaling issues can be addressed, this appears to be an effective method
of testing multi-loaded turbines.

• Shaking table tests are more limited in their applicability and categories of tests com-
pared to wind tunnel tests. They are mostly restricted to earthquake loading.

• Some studies (Sim et al., 2014; Ma et al., 2015) directly apply loading to the turbine
tower via actuator to avoid scale-limitations imposed by shaking tables and wind tur-
bines, however this type of testing is limited to applying numerically-generated point
loads to the top of the tower.

• There exist very few experimental studies of turbines subjected to high-intensity wind
loading, again likely stemming from the difficulty in modelling aeroelasticity in small-
scale wind tunnel models.

2.6 Overview of hybrid simulation
Hybrid simulation is a relatively recent research technique that combines numerical and ex-
perimental methods simultaneously with the goal of making use of the advantages of each
systems while minimizing their limitations. As previously presented, experimental testing ex-
cels at capturing complex nonlinear behaviour, but full-scale testing is often infeasible and
small-scale testing presents challenges. Opportunely, complex structural behaviour is typically
restricted to small portions of the structure, which allows for more affordable numerical sim-
ulations to be used to model the remainder of the structure. This is the conceptual basis for
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hybrid simulation. The section presents the development of hybrid simulation, along with a
mathematical explanation of the different types of HS, the importance of control for this type
of testing, and finally a curated list of previous hybrid simulations that emphasize the trends of
this technique. HS as applied in wind turbine studies will be discussed later in this chapter.

2.6.1 Development and numerical explanation
The historical development summarized here is an abridged version. For a more detailed de-
scription, readers are directed to McCrum and Williams (2016). To fully describe hybrid sim-
ulation, an understanding of the numerical integration methods used for structural analysis is
required. In numerical structural analysis, a structure is simplified into a series of DOFs based
on the scope of the research. Connections between DOFs represent structural properties. A
simple example could be to approximate a water tower as a single degree of freedom lumped
mass structure, connected to a fixed base via a beam with stiffness and damping. To solve for
structural response due to loading, the standard equation of motion (EOM) of a structure is
used, shown here in Equation 2.15:

Mẍi +Cẋi + Kxi = Fi (2.15)

Here, M, C, and K are the matrices that describe the mass, damping, and stiffness of the
structure, respectively; ẍi, ẋi, and xi are the acceleration, velocity, and displacement vectors of
the structure at time step i respectively; and Fi is the vector of the applied force on the structure
at time step i. By employing a numerical integration technique, by knowing the state of the
system at time step i and the applied load at time step i + 1, the structural response can be
predicted at step i+ 1, which can then be used to predict the response at i+ 2, etc. This process
is continued for all time steps of the analysis to determine the time history response of the
structure.

Pseudo dynamic testing (PDT) was the original form of hybrid simulation. It was conceived
by Hakuno et al. (1969) and developed by Takanashi (1974), as explained in a summary by
Takanashi and Nakashima (1987). Originally, the entirety of the structure was modelled both
experimentally and numerically. The same numerical integration process described previously
occurs, however, the equation of motion of the structure is slightly modified, as shown in
Equation 2.16:

Mẍi +Cẋi + FRi = Fi (2.16)

Here, compared to Equation 2.15, the new term FRi has been added, which refers to the restor-
ing force vector. In PDT, the same numerical process is used to predict structural displacement
xi, but then this predicted displacement is applied to the experimental model using actuators.
The measured force of the structure resisting this displacement, FRi is then returned to the nu-
merical model and used to predict xi+1. This process is repeated for all time steps. Figure 2.9
illustrates this process using the previous water tower example – the numerical model predicts
the displacement that is applied to the experimental model which, in turn, returns the restoring
force. Pseudo dynamic testing has improved structural stiffness estimation as FRi is more accu-
rate than Kxi, particularly for plastic behaviour. Since this loading is performed quasi-statically
(i.e. loads are applied slowly such that the velocity and acceleration of the physical structure
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are essentially zero), the inertial and damping forces of the structure are exclusively simulated
in the numerical model, and thus the experimental component of pseudo dynamic testing is not
appropriate for testing structures with velocity- or acceleration-dependent behaviour such as
vibration dampers.

Figure 2.9: Theoretical pseudo dynamic test of a water tower

The development of real-time hybrid simulation (RTHS) was an important leap for hybrid
simulation as it greatly expanded the capabilities of the research method. Since this type of
testing is run at real-time, velocity- and acceleration-dependent behaviour can be captured
in the physical model which improves accuracy and allows for additional types of structures
to be tested. In RTHS, the restoring force measured from the physical model may include
stiffness, damping and/or inertial forces, depending on the test. Historically, the first example
of real-time hybrid simulation was performed by Nakashima et al. (1992). Real-time hybrid
simulation faces new challenges compared to PDT, primarily that the numerical model must
now be sufficiently lightweight and on sufficiently powerful equipment to run in real time.
Both real-time hybrid simulation and pseudo dynamic testing still see wide use in structural
engineering research, as will be shown below.

The final major evolution of hybrid simulation was the development of substructuring by
Dermitzakis and Mahin (1985). Substructuring allows multiple partial sections of the structure
to be tested separately from one another to optimize testing. Typically, this means that the
experimental substructures will consist of sections of interest of the structure where nonlin-
ear behaviour will occur, while the rest of the structure is numerically modelled. Figure 2.10
shows a theoretical substructured hybrid simulation, similar to the test performed by McCrum
and Broderick (2013), consisting of a multi-bay steel frame with a single braced bay, where the
braced bay is physically modelled and the rest of the frame is modelled numerically. Both sub-
structures are tested simultaneously and information is passed between them. Substructuring
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allows hybrid simulation to be used to perform large-scale experimental tests without physi-
cally modelling the entire structure, thus unlocking the full potential of the testing technique.
As a result, substructuring is employed in nearly all examples of modern hybrid simulation.
Distributed hybrid simulation is a specialized form of substructuring that tests multiple sub-
structures simultaneously in separate facilities, which allows researchers to take advantage of
specialized equipment available at multiple different sites (Watanabe et al., 2001; Spencer et al.,
2004; Wang et al., 2008; Ojaghi et al., 2014). However, significant timing issues are introduced
with distributed hybrid simulation, and as such it sees only occasional use.

Figure 2.10: Theoretical substructured hybrid simulation of a one-story braced frame

The hybrid simulation process shown in Figure 2.10 is the more common technique known
as displacement-control; target displacements are applied to the experimental substructure and
the resulting restoring force is measured and used by the numerical model. However, hybrid
simulation can also be performed via force-control: where a target force is applied to the exper-
imental substructure via actuators and the resulting displacement is measured and returned to
the numerical model. A comparison of the equations of motion of the structure using these two
methods can be found in Plummer (2006). Force-control can result in more precise control of
actuators (Yalla and Kareem, 2007) which is critical for fields such as robotics, and is applied
in civil engineering such as in the control of some shaking tables (Shao et al., 2011) and barges
(Ueland et al., 2018; Vilsen et al., 2019). Still, the vast majority of hybrid simulation research
uses the simpler and more stable displacement-control, as will be explored in Section 2.6.3.

2.6.2 Control in hybrid simulation

Controlling error is critical for accurate simulations. Due to the severe time requirements of
real-time hybrid simulation (RTHS), numerical algorithms for the the numerical substructure
as well as controllers for the experimental actuators must be carefully selected. Experimental
and systematic errors risk compounding over the course of a test, ruining the results.
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Numerical integration algorithms are used to solve the differential equation of motion of
a structure in dynamic analysis, as discussed in Section 2.6.1. These algorithms can either be
implicit or explicit: implicit algorithms iterate to find a solution while explicit algorithms cal-
culate a solution directly. Explicit algorithms have lower accuracy and stability but are much
quicker to compute, and as a result, RTHS almost exclusively employs explicit numerical al-
gorithms. However, since errors from these methods must be minimized and stability must be
guaranteed as much as possible, older explicit algorithms (Newmark, 1959) see infrequent use
in favour or more modern and complex algorithms (Ahmadizadeh and Mosqueda, 2007; Chen
et al., 2009; Kolay et al., 2015; Tang and Lou, 2017; Kolay and Ricles, 2017). The CR algo-
rithm by Chen et al. (2009) is highlighted as simpler method with generally acceptable accu-
racy that generates an integration parameter based on the structural properties to determine the
explicit solution. While some have argued that this CR-algorithm risks high-frequency noise
(Chang, 2012), the authors have convincingly defended the accuracy of their algorithm (Chen
and Ricles, 2012). The MKR-α algorithm by Kolay and Ricles (2017) is likewise highlighted
as a more complex but more robust explicit algorithm that employs a number of integration
parameters from the structural parameters.

Controllers are also required for the experimental actuators in a RTHS. All equipment has
some amount of time delay between sending a command signal and the equipment respond-
ing. Since RTHS is run at such small time steps, the impact of this response lag error can be
significant. As a result, many researchers have developed actuator controllers to minimize the
response lag error (Mosqueda et al., 2007; Lim et al., 2007; Phillips and Spencer, 2012a,b;
Chae et al., 2013). Unlike the numerical algorithm, however, the choice of controller will de-
pend on the experiment equipment used in the testing, and as a result, no single controller has
become the standard.

2.6.3 Example hybrid simulation applications

There have been hundreds of examples of the application of hybrid simulation in the field of
structural engineering. As the focus of this chapter is on hybrid simulation as it relates to wind
turbine studies, a collection of non-turbine hybrids simulations has not been collected. Rather,
the main categories of hybrid simulations will be highlighted with representative, modern ex-
amples. Hybrid simulation of wind turbines will be explored in Section 2.7.

The author has chosen to categorize the typical uses of hybrid simulation as behaviour
evaluation, control, and material evaluation. These categories are identical to the most com-
mon categories found in the collection of experimental tests in Table 2.2. Thus, at its most
basic level, hybrid simulation increases the scope or scale of experimental techniques where a
pure-numerical simulation would be less effective. A representative study is provided here for
each category:

• HS is used for behaviour evaluation for structures with highly non-linear behaviour, such
as member failure. Ramos et al. (2016) studied the failure behaviour of a four-story
steel frame under seismic loads using pseudo dynamic testing, and concluded that hybrid
simulation was an effective way of capturing this behaviour with limited budget and
equipment.
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• HS is used for control, particularly vibration control, when the control system is chal-
lenging to model, such as a magnetorheological (MR) damper which is known for its
esoteric hysteresis curve. Friedman et al. (2014) studied the effect of MR dampers on
the vibration response of a nine-story steel frame subjected to seismic loading, where a
three-story damped steel frame acted as the physical substructure while the remainder
was numerically simulated.

• HS is used for material evaluation when the material properties are not well known and
thus can not be modelled numerically. Hashemi et al. (2017) used pseudo dynamic hybrid
simulation to test carbon fiber reinforced polymer (CFRP) repair of seismically damaged
reinforced concrete columns. The base column of a five-story moment-resisting frame
was loaded to failure and repaired, then its fragility was analyzed.

As hybrid simulation was originally developed for the field of seismic engineering, there
exist very few example of HS that consider other forms of loading. In fact, the vast majority of
hybrid simulations considering wind-loaded structures study wind turbines specifically, as will
be seen in the following section. However, the author wishes to highlight the recent RTHS of
an aeroelastic building model in a wind tunnel by Moni et al. (2020). Here, the entire structure
was modelled numerically in the wind tunnel, but a numerical model was used to predict base
rotation which was applied in real time to the wind tunnel model. While the scaling issue of
wind turbines would still need to be accounted for, this type of testing could potentially be
applied in future wind turbine studies, though this direction is not pursued in this thesis.

Ultimately, hybrid simulation can improve the scalability and fidelity of experiments, re-
duce equipment requirements, and validate numerical models. It excels at testing nonlinear
behaviour, such as from complex vibration dampers or member failure, as well as unknown
behaviour. Hybrid simulation remains a promising candidate for future wind turbine research.

2.7 Hybrid simulation of wind turbines
Hybrid simulation has been applied to study wind turbines in a few instances. As previously
discussed, experimental testing of offshore turbines is particularly challenging due to a scaling
mismatch between aerodynamic and hydrodynamic forces. Partially as a result of this, the
majority of turbine research employing hybrid simulation has studied offshore turbines.

There are several examples of studies on the development and optimization of hybrid simu-
lation techniques for turbines. Two studies (Bachynski et al., 2015; Karimirad and Bachynski,
2017) examined the effect of limited actuation of wind loading in hybrid simulations of float-
ing and fixed offshore wind turbines, finding which DOFs were required to accurately model
wind response and which could be safely ignored. Hall et al. (2014) ran numerical simulations
in OpenFAST of various floating turbine designs under different loading conditions to predict
the required performance specifications of test equipment to ensure minimal error in theoret-
ical hybrid simulations of offshore turbines. Additionally, Koukina et al. (2015) developed a
custom loading device for applying numerical wind loads to a floating offshore wind turbine
during a RTHS, allowing for more accurate loading in this specific case.

Along-side this preparatory research, there are a few examples of actual hybrid simulation
of floating offshore wind turbines. Azcona et al. (2014) generated wind loads numerically
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and applied them to a physical floating turbine model using a fan, though the accuracy of this
loading method was quite low. Additionally, Chabaud (2016) developed a framework to test
floating offshore wind turbines. Numerically calculated wind loads were applied using a cus-
tom 6-DOF actuator while wave loads were applied using a wave basin, which avoided the
scaling problem between hydrodynamic and aerodynamic loads. Song et al. (2020) performed
a thorough study of an offshore turbine tested in a artificial/conceptual hybrid simulation: a
purely-numerical simulation that approximates a true HS by separating the structure into mul-
tiple numerical substructures and applies artificial delay and noise error. In this study, they
modelled fixed offshore turbine with an “experimental” tower and numerical rotor evaluating
its sensitivity to delays, noise, misalignment and other types of testing error.

There also exist two particularly notable cases of HS of fixed offshore turbines. Broder-
sen et al. (2016) performed RTHS of a shallow water offshore turbine equipped with a hy-
brid damper. The goal of the study was to determine the vibration reduction effect of hybrid
dampers, which involved the development of a simplified numerical turbine model. The phys-
ical substructure consisted of the hybrid damper, thus real-time testing was used for accurate
loading. The hybrid damper was shown to surpass passive dampers when tuned correctly, and
the results of the hybrid simulation showed good agreement with a concurrent numerical test.
Similarly, a research group has released two similar, detailed papers analyzing large wind tur-
bine with tuned liquid dampers (TLDs) using RTHS (Zhang et al., 2016, 2017). These papers
detail the real-time hybrid simulation of TLDs aligned to reduce the across-wind vibration of
the nacelle and compares the results of these hybrid simulations to those from an equivalent
numerical simulations. The TLD was physically built in a lab while a previously developed
(Zhang et al., 2014b, 2015) turbine model was numerically simulated. TLDs are very chal-
lenging to model numerically due the nonlinear behaviour of liquids, such as waves breaking
or splashing, though models with reasonable accuracy have been developed using simplified
assumptions (Tait et al., 2008). It was shown that the TLDs were effective in reducing across-
wind vibrations, and that there was good agreement with the numerical model for less nonlin-
ear behaviour but less agreement when behaviour was more nonlinear – such as when the wind
speed was high and the TLDs included screens.

All of the studies presented here fall into the categories of behaviour evaluation and vi-
bration control that have been discussed previously. HS has been applied to a handful of
types of turbine research to good effect. Both conceptually and in practice, hybrid simulation
allows for research whose accuracy would otherwise suffer in numerical testing, and would be
infeasible using experimental testing. That being said, there exists a major limitations to the
research presented here: the simplified aeroelastic models and the act of pre-calculating wind
loads. These errors are defined and quantified in the following section.

2.8 A study on the limitations of HS of wind turbines
The existing HS of wind turbines presented in the previous section have two major limitations:
they employ simplified aeroelastic models and pre-calculated wind loads. Simplified aeroe-
lastic models refers to the blade models used in many numerical wind turbines simulations
(as well as the numerical substructures in HS) that are lower accuracy compared to robust 3D
models. The reduced accuracy of the more common BEM technique compared to CFD is an
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example of this trend, which was touched upon in Section 2.4. “Pre-calculating” wind loads
consist of numerically predicting the structural loads from the test wind field prior to the HS
itself, then applying the time history of these loads in the RTHS. Doing so allows the time-
consuming aeroelastic calculations to be performed ahead of time, which facilitates real-time
testing, but by doing so, the aeroelasticity of the turbine is fundamentally uncoupled from the
experimental model in the HS proper. Figure 2.11 compares the components and processes of
a theoretical RTHS in both ideal conditions and the conditions employed in current studies: the
wind field time history Vw applies structural loads Fs which cause the structural response xs.
In the ideal case, the Fs calculation would be performed using a model with high aeroelastic
fidelity within the HS loop, but historically they have been performed with simplified models
outside of the loop ahead of time. It is plain to see that both limitations will inject some amount
of error into a simulation, the question is how much error.

Figure 2.11: Comparison between an ideal hybrid simulation and a real example with simpli-
fied aeroelastic model using pre-calculated wind loads

Unfortunately, there is a lack of research that attempts to quantify the error caused by these
limitations, which provides the motivation of this study. To explore the limitations present
in previous HS of wind turbines, a short numerical study of the effects of aeroelastic blade
deflections on the overall response of a wind turbine was performed. This study presents a
representative case study that serves to quantify the error caused by simplifying or decoupling
aeroelasticity in wind turbine blades as well as by pre-calculating wind loads. These tests do
not employ true hybrid simulations, rather the results of these numerical tests can be used to
quantify errors in the existing hybrid testing framework.

For convenience, aeroelastic blade models are typically simplified by assuming that only
small deflections occur in turbine blades, this includes the default settings in common turbine
modelling software such as OpenFAST. However, it has been shown that the small-deflection
assumption is invalid for large multi-megawatt wind turbine blades (Rasmussen et al., 2003;
Wang et al., 2016). When investigating the impact of this simplification, Wang et al. (2014)
found that notable error (>10%) occurred at high wind speeds in numerical simulations of a
turbines blade due to the small deflection assumption. As far as the author is aware, there have
been no studies into quantifying the impact of pre-calculating wind loads.

2.8.1 Methodology
The goal of the parametric study summarized here was to investigate the effect of aeroelastic
deflection of wind turbine blades in a multi-megawatt turbine equipped with a tuned mass
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damper (TMD) on the accuracy of the response of the overall structure. Specifically, the effects
of two modelling practices were studied: the level of blade deflection assumed and the use of
pre-calculated wind loads.

To study the effects of aeroelastic blade simplifications, three levels were considered during
testing:

• Rigid blade models (RIG): by ignoring blade deflections entirely, the computational
requirements of blade models can be greatly reduced. As seen in table 2.1, rigid blades
are often employed in studies of wind turbine farms where the far-field wake is of greater
importance, as well as modern CFD studies of turbine blades where aeroelastic analysis
is not feasible.

• Small-deflection-assumed blade models (SDA): by assuming deflections in the wind
turbine blades are small, the axial wind effects can generally be ignored as well as en-
abling the use of small-angle approximation in numerical models. Such techniques have
been widely-used historically but may overestimate power production and flapwise blade
deflection, as well as underestimate pitch moments at the blade roots (Rasmussen et al.,
2003).

• Fully-flexible blade models (FLX): modelling full flexibility in wind turbine blades
increases the complexity of the numerical model but eliminates possible error from the
previous approximations and allows for consideration of 2nd-order effects. These models
are becoming more commonly applied for studies of multi-megawatt turbines (Liu et al.,
2018) and is an option in popular software such as OpenFAST (Wang et al., 2017).

To study the effects of pre-calculating wind loads, this research considered two extreme
cases to find the bounds of error this may cause:

• No numerical damper (NND): in these cases the numerical model used in the pre-
calculation of the wind loads does not include the TMD, and thus the effect of the TMD
on the aeroelastic behaviour is totally decoupled in this HS. This represents the scenario
with the greatest expected error, where the predicted aeroelastic response should deviate
from the true response the most.

• Perfect numerical damper (PND): in these cases the numerical model includes a perfectly-
accurate numerical representation of the TMD, and thus the exact effect of the TMD on
the aeroelastic behaviour of the structure is captured in the hybrid simulation. This case
does not exist in reality, as the existence of a PND model would preclude the need for the
hybrid simulation in the first place, but it will be used as a baseline to gauge the effect of
the NND model case.

NREL’s reference 5 MW wind turbine (Jonkman et al., 2009) was used as the test structure
in this research. This turbine has a hub height of 88 m and a blade length of 62 m. It has
cut-in, target, and cut-out hub height wind speeds of 3 m/s, 11.4 m/s, and 25 m/s respectively,
and a rated rotor speed of 12.1 rpm. While this structure is typically studied as an offshore
turbine, for the purposes of this study it was assumed to be onshore in open terrain with a fixed
foundation.
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Mass (kg) 10200
Stiffness (N/m) 142000

Damping coefficient (Ns/m) 9860

Table 2.3: TMD properties

A passive 2D TMD was placed at the top of the turbine tower to act as an external damping
system for much of the testing. TMDs add an additional mass to the structure capable of mov-
ing independently to reduce the overall response of the main structure. The natural frequency
of the TMD is tuned to match that of the main structure by adjusting its mass and stiffness.
The TMD parameters shown in Table 2.3 were selected according to TMD design guidelines
from Bakre and Jangrid (2007), based on a mass ratio between the TMD and the wind turbine
of 4%, a natural frequency of 3.73 rad/s, and a TMD damping ratio of 10%.

The wind fields used in this testing were generated using the open-source program TurbSim
(Kelley and Jonkman, 2012) following standard wind turbine design guidelines (IEC, 2005).
Service-level wind fields with mean hub height wind speeds of 5 m/s, 10 m/s, 15 m/s, and
20 m/s were generated using the Kaimal turbulence model with turbulence intensity of 0.16
and a power law profile with an exponent of 0.2, over open terrain with a roughness length of
0.05 m. To ensure stability of all blade models, a small time step was used; the generated wind
field time histories were 90 s long with 0.0005 s time steps.

The open-source turbine modelling software OpenFAST was employed for studying the
effect of aeroelasticity of blade models, as well as used to pre-calculate wind loads. The differ-
ing aeroelastic fidelities of the blade models were captured using the following modules: rigid
RGD blades were modelled by disabling the DOFs of each blade within the standard ElastoDyn
module. The small deflection SDA blade models used the standard ElastoDyn module, which
is based on straight Euler-Bernoulli beams limited to moderate deflections. The fully-flexible
FLX blades were modelled with the BeamDyn module (Wang et al., 2017). The BeamDyn
module uses the geometrically exact beam theory which is more effective at capturing the
behaviour of the highly flexible, composite wind turbine blades compared to the ElastoDyn
module.

For the pre-calculated wind load cases, the time histories of the structural turbine tower
loads were extracted from OpenFAST and applied to a custom FE turbine model. This tech-
nique simulates the two-step process used in real-time hybrid simulations with pre-calculated
wind loads, and can be considered a simplified version of an artificial hybrid simulation, such
as was performed in Song et al. (2020). This custom-built 80-DOF FE turbine model was run
in MATLAB. The FE model of the turbine tower was built of twenty 8-DOF beam elements.
The mass of the nacelle and turbine blades was lumped at the top of the tower, and the TMD in
the nacelle was programmed to act against the fore-aft and side-side lateral displacements of
the top of the tower.

Table 2.4 lists the properties of the beam elements in the turbine tower, and Table 2.5
lists the other assorted properties of the turbine. The model used Rayleigh damping tuned to
the first two modes, plus additional damping in fore-aft direction to capture the aerodynamic
damping caused by rotating turbine blades, a technique employed by Zhao et al. (2019b) and
Lalonde et al. (2020b). This setup was employed to approximate the 5% fore-aft and 1% side-
side damping identified in previous research (Mardfekri and Gardoni, 2015). To eliminate the
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Tower
section

Element
length (m)

Flexural rigidity
(103 Nm2)

Linear density
(109 kg/m)

1 (top) 4.38 2.66 1.29
2 4.38 2.79 1.43
3 4.38 2.92 1.57
4 4.38 3.06 1.73
5 4.38 3.19 1.89
6 4.38 3.33 2.08
7 4.38 3.47 2.26
8 4.38 3.62 2.47
9 4.38 3.77 2.69
10 4.38 3.92 2.92
11 4.38 4.07 3.16
12 4.38 4.23 3.43
13 4.38 4.39 3.71
14 4.38 4.55 4.01
15 4.38 4.72 4.31
16 4.38 4.89 4.65
17 4.38 5.06 4.99
18 4.38 5.24 5.37
19 4.38 5.41 5.75

20 (bottom) 4.38 5.50 5.94

Table 2.4: Tower FE properties

Structural damping ratio 0.01
Fore-aft aerodynamic damping coefficient (Nm) 35500
Combined nacelle and hub mass (kg) 76800

Table 2.5: Other FE model properties

greater number of structural modes considered in the FE model compared to OpenFAST as
a source of error, a version of the FE model that used modal analysis of the first two modes
was compared to the full FE model. No significant difference in response was seen, thus
OpenFAST’s assumption that the first two modes govern the response appears valid, as is the
use of the FE model.

2.8.2 Testing and results
The different trials performed in this study are summarized in Figure 2.12. A total of twenty
wind fields (five each at 5 m/s, 10 m/s, 15m/s and 20m/s) were generated and fifteen simulations
were performed for each. In Figure 2.12:

• The first level of OpenFAST simulations considered the three levels of blade aeroelas-
ticity with and without a TMD. Both the time history of the structural loads and the
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structural response were recorded from these tests. The time history of these structural
responses was primarily used to study the impact of blade aeroelasticity fidelity.

• The second level of simulations using the FE model in MATLAB was performed by
applying the time history of the structural loads measured from OpenFAST. This was
performed in three combinations per blade model to compare the best case (the PND
case where OpenFAST and MATLAB both model the TMD), the worst case (the NND
case where only MATLAB models the TMD), and a case for validating the OpenFAST
and MATLAB models to one another (the VAL case where neither model the TMD).
The time histories of these structural responses were primarily used to study the impact
of pre-calculating wind loads.

Figure 2.12: Flowchart of calculations for a given wind field time history. Note that the MAT-
LAB simulations are only shown for the RGD blade model, but these are similarly performed
for the SDA and FLX models

Tower top displacement was chosen as the performance index for this study. The time
histories of the tower top displacement in the fore-aft and side-side directions were recorded
for all tests and compared below in Tables 2.6-2.8. Figure 2.13 presents a selected segment of
the tower top responses under a single wind load case and blade model. The values tabulated
below are the mean of the five time histories for the given wind speed. Tables 2.6-2.8 use
symbols due to space restrictions, they are defined as follows: v̄w is the mean hub height wind
speed for the given time histories; µ is the mean displacement of the turbine tower top in
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the given DOF, σ is the mean standard deviation of the displacement time histories; R̄ is the
mean root mean square error (RMSE) between the specified time histories and R̄N is the mean
normalized root mean square error (NRMSE), which are defined in the following equations:

R̄ =

√∑T
t=1(X̂t − Ŷt)2

T
(2.17)

X̂t = Xt −mean(X) (2.18)

Ŷt = Yt −mean(Y) (2.19)

R̄N =
R̄

(max(X) −min(X))
(2.20)

Here, X̂t and Ŷt are the fluctuating components of the first and second specified time histories
at time step t.

Figure 2.13: Response time history segment of tower top under 15 m/s winds with fully-flexible
blade models from OpenFAST and OpenFAST+MATLAB models (see Figure 2.12)

Table 2.6 summarizes the results of the OpenFAST-only simulations, which can be used to
investigate the effect of the aeroelastic fidelity of the wind turbine blade models. The tower top
response with rigid (RGD), small-deflection-assumed (SDA), and fully-flexible (FLX) blade
models are presented, and the RMSEs between the FLX and the other models were calcu-
lated, assuming that the FLX models provided the most accurate results. It can be seen that
the RGD blade models tend to result in overestimation of the tower top response, with NRM-
SEs around 5-20%. The SDA blade models were more accurate comparatively with NRMSEs
around 1-10%. Normalized error was greater in the side-side direction due to heightened sensi-
tivity from the smaller vibrations, though the SDA model again outperformed the RGD model.
The presence of a TMD did not have a notable effect on the results. Due to larger error, the
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RESPONSE SUMMARY DATA COMPARISON
DOF TMD V̄w RGD SDA FLX FLX vs RGD FLX vs SDA

µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) R̄ (m) R̄N R̄ (m) R̄N

5 m/s 0.103 0.011 0.101 0.011 0.091 0.010 0.004 8% 0.002 4%
No 10 m/s 0.331 0.025 0.323 0.023 0.319 0.024 0.007 8% 0.002 2%

15 m/s 0.522 0.029 0.508 0.025 0.512 0.025 0.012 9% 0.005 4%
Fore- 20 m/s 0.606 0.063 0.592 0.045 0.595 0.048 0.027 9% 0.007 2%

aft 5 m/s 0.104 0.011 0.102 0.011 0.091 0.010 0.003 8% 0.001 3%
Yes 10 m/s 0.333 0.024 0.324 0.023 0.321 0.024 0.006 7% 0.001 1%

15 m/s 0.524 0.020 0.511 0.019 0.515 0.019 0.006 6% 0.002 2%
20 m/s 0.609 0.037 0.596 0.032 0.598 0.033 0.009 6% 0.003 2%
5 m/s -0.002 0.003 -0.001 0.003 -0.002 0.003 0.002 12% 0.001 6%

No 10 m/s -0.038 0.016 -0.034 0.015 -0.035 0.014 0.006 11% 0.004 7%
15 m/s -0.096 0.039 -0.088 0.034 -0.089 0.034 0.024 19% 0.009 7%

Side- 20 m/s -0.119 0.056 -0.112 0.033 -0.112 0.043 0.048 34% 0.014 10%
side 5 m/s -0.002 0.001 -0.001 0.001 -0.002 0.001 0.001 13% 0.001 7%

Yes 10 m/s -0.038 0.008 -0.034 0.007 -0.035 0.007 0.004 12% 0.001 3%
15 m/s -0.096 0.012 -0.088 0.012 -0.089 0.012 0.008 13% 0.002 3%
20 m/s -0.119 0.013 -0.112 0.009 -0.112 0.010 0.010 22% 0.003 7%

Table 2.6: Nacelle response from OpenFAST-only simulations of undamped and damped wind
turbine with rigid (RGD), small-deflection-assumed (SDA), and fully-flexible (FLX) blade
models

RGD model is not recommended for in-depth structural analysis, but the SDA could be a valid
simplification in the right circumstances.

To validate the MATLAB model to the OpenFAST model, Table 2.7 collects the results
of the VAL tests, where OpenFAST+MATLAB were combined to model the undamped wind
turbine. The results were then compared to the OpenFAST-only results of the undamped tur-
bine presented in Table 4 to generate the RMSE and the NRMSE. The results were sepa-
rated between the three blade models, but it can be seen that the error between the Open-
FAST+MATLAB results and the OpenFAST-only results were understandably independent of
the aeroelastic fidelity of the blade model employed. Overall, very good agreement can be seen
in the side-side response of the turbine, but there are some differences in the fore-aft response,
particularly at lower wind speeds. This is likely due to the different methods of modelling
aerodynamic damping between the models, where the aerodynamic damping in OpenFAST is
a function of the velocity of the entire tower rather than just the nacelle, which reduces the
damping at low speeds. Still, the behaviour of the models was deemed sufficiently similar to
move forward with the second level of testing.

Table 2.8 shows the results of the OpenFAST+MATLAB tests of the damped turbine, us-
ing both the no-numerical-damping (NND) scenario and the perfect-numerical-damping (PND)
scenario, which should correspond to the worst and best cases respectively. The RMSE and
NRMSE were calculated between the PND and NND response time histories, assuming the
PND was correct as it more closely matched the OpenFAST-only results in Table 4. Testing
was performed using all three levels of blade aeroelasticity, but only the SDA and FLX results
are presented here for brevity. Table 2.8 shows very clearly that the fore-aft response is similar
between both techniques at low wind speeds but the error increases to over 10% at the upper
limit of service wind loads. In the side-side direction, a similar trend can be seen, but there
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RGD SDA FLX
DOF V̄w µ (m) σ (m) R̄ (m) R̄N µ (m) σ (m) R̄ (m) R̄N µ (m) σ (m) R̄ (m) R̄N

5 m/s 0.106 0.014 0.011 26% 0.107 0.015 0.011 21% 0.095 0.014 0.010 24%
Fore- 10 m/s 0.298 0.026 0.023 24% 0.296 0.025 0.020 22% 0.288 0.026 0.021 22%

aft 15 m/s 0.483 0.031 0.016 10% 0.474 0.027 0.014 11% 0.473 0.027 0.015 11%
20 m/s 0.578 0.058 0.013 3% 0.562 0.043 0.012 4% 0.563 0.046 0.012 4%
5 m/s -0.002 0.003 0.000 1% -0.001 0.003 0.001 4% -0.002 0.003 0.001 5%

Side- 10 m/s -0.039 0.017 0.001 1% -0.035 0.016 0.001 1% -0.036 0.014 0.001 1%
side 15 m/s -0.098 0.041 0.002 1% -0.089 0.036 0.002 1% -0.090 0.036 0.002 1%

20 m/s -0.121 0.059 0.003 2% -0.114 0.035 0.002 2% -0.113 0.045 0.002 2%

Table 2.7: Nacelle response from OpenFAST+MATLAB simulations of undamped wind tur-
bine, compared to equivalent OpenFAST-only results from Table 2.6

SDA BLADE MODEL FLX BLADE MODEL
DOF V̄w NND PND PND vs NND NND PND PND vs NND

µ (m) σ (m) µ (m) σ (m) R̄ (m) R̄N µ (m) σ (m) µ (m) σ (m) R̄ (m) R̄N

5 m/s 0.107 0.015 0.108 0.014 0.001 2% 0.095 0.014 0.096 0.014 0.001 1%
Fore- 10 m/s 0.296 0.025 0.298 0.025 0.002 2% 0.288 0.026 0.289 0.026 0.002 2%

aft 15 m/s 0.474 0.027 0.476 0.022 0.010 9% 0.473 0.027 0.476 0.023 0.010 8%
20 m/s 0.562 0.043 0.565 0.032 0.017 11% 0.563 0.046 0.566 0.033 0.020 12%
5 m/s -0.001 0.003 -0.001 0.001 0.002 38% -0.002 0.003 -0.002 0.001 0.002 35%

Side- 10 m/s -0.035 0.016 -0.035 0.008 0.011 34% -0.036 0.014 -0.036 0.007 0.010 31%
side 15 m/s -0.089 0.036 -0.090 0.012 0.027 42% -0.090 0.036 -0.091 0.012 0.027 43%

20 m/s -0.114 0.035 -0.114 0.009 0.029 69% -0.113 0.045 -0.113 0.010 0.038 76%

Table 2.8: Nacelle response from OpenFAST+MATLAB simulations of damped wind tur-
bine with SDA and FLX blade models comparing no-numerical-damping (NND) and perfect-
numerical-damping (PND)

exists notable error between the NND and PND results even at the minimum wind speeds in
the order of 30-40%. The larger magnitude of the NRMSE in this direction likely stems from
the smaller magnitude of overall response; since the side-side response is orders of magni-
tude smaller than the fore-aft response, a small amount of error causes a larger change in the
NRMSE. The error between the techniques appears to be independent of the level of aeroelastic
fidelity of the blade models.

2.8.3 Study conclusions
The purpose of this study was to investigate the importance of aeroelastic blade behaviour on
the overall response of a wind turbine to study limitations in current hybrid simulations of
wind turbines. Two techniques in particular were investigated: the use of various levels of
aeroelasticity in turbine blade models, and the act of pre-calculating the structural wind loads
on a turbine prior to full simulation, which inherently uncouples the blade aeroelasticity. This
testing was performed by simulating a 5 MW turbine under service wind conditions using a
combination of the turbine modelling software OpenFAST and a custom finite element model
in MATLAB.

A series of OpenFAST simulations were performed to study wind turbines equipped with
rigid (RGD), small-deflection-assumed (SDA) and fully-flexible (FLX) blade models. The
following conclusions were drawn from these simulations:
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• The response of the SDA model more closely matched the FLX model’s response than
the RGD model did, suggesting an increase in accuracy as the aeroelastic fidelity in-
creases.

• The normalized error of the SDA model compared to the FLX model was typically 1-
10%, thus the use of the simpler SDA model is not unreasonable under service wind
conditions, though better results would likely be achieved by including fully-flexible
blade models.

• The normalized error of the RGD model compared to the FLX model was typically 5-
20%, thus rigid blade models are not recommended for in-depth structural analysis of
wind turbines.

• The fore-aft response error was generally unaffected by wind speed, but the error in the
side-side response increased as the wind speed increased.

A series of combined OpenFAST+MATLAB simulations investigated the impact of pre-
calculating wind loads on a structure in hybrid simulation. Two scenarios were compared:
no-numerical-damping (NND) where the OpenFAST model that generates the structural wind
loads has no TMD, and perfect-numerical-damping (PND) where the OpenFAST model has
a perfect match of the TMD applied in the MATLAB model, which roughly correspond to
the worst case and ideal cases, respectively. The following conclusion was drawn from these
simulations:

• At low wind speeds, the difference between the NND and PND cases was very small,
however the normalized error increased up to 10% for the fore-aft response at higher
service wind speeds. The side-side response was even more sensitive, with errors of 70%
being reached between the NND and PND simulations. Thus, future hybrid simulations
should aim to replicate the PND condition as closely as possible to maximize accuracy.

In addition to highlighting current limitations in hybrid simulations of wind turbines, these
values should prove useful to future researchers for designing numerical studies, finding a
balance between a simple numerical model and level of accuracy sought.

2.9 Overall conclusions
This chapter has presented an introduction to wind turbine research as well as literature col-
lections of past wind turbine research and hybrid simulations with the goal of exploring the
potential application of hybrid simulation to future wind turbine research. Modern wind tur-
bines are unique structures which can be challenging to study. Despite this, previous wind tur-
bine studies have successfully applied both numerical and experimental research techniques.
Each of these forms of testing have advantages and disadvantages such as experimental models
capturing nonlinear behaviour well but facing financial and equipment limitations, while nu-
merical testing can struggle to model this same behaviour but excels in terms of cost, versatility,
and repeatability. Since nonlinear behaviour is often restricted to small sections of structures,
substructured hybrid simulation can be used to physically model only these areas while the
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remainder is numerically modelled. Alternatively, structures subjected to multi-hazard loading
can apply certain loads experimentally and others numerically. Several examples of the capa-
bilities of hybrid simulation, including modelling of structural failure, damped structures, and
materials with unknown structural properties, have been presented.

The complexity and scaling issues of wind turbines make them prime candidates for the
application of hybrid simulation for analysis. Other researchers agree with this observation as
both preparatory research and actual hybrid simulations of wind turbines have been recently
performed. Two sets of studies were presented of hybrid simulation of damped fixed offshore
turbines where the damper was physically substructured; these were excellent examples of the
utility and feasibility of hybrid simulation for wind turbine research.

Unfortunately, these studies were limited by the use of simplified aeroelastic models and
the use of pre-calculating wind loads. The impact of these limitations has not been well quan-
tified previously, thus a small numerical study is presented that attempts to evaluate the impact
of this error. By studying a TMD-equipped wind turbine in a conceptual hybrid simulation,
it was shown that insufficient aeroelastic fidelity can result in errors exceeding 10% and that
pre-calculated wind loads can result in errors exceeding 70%. As a result, there are signifi-
cant improvements to be made in hybrid simulation of wind turbines if a framework can be
developed that minimizes or avoids these limitations.

Additionally, as hybrid simulation of wind turbines remains in its infancy and thus there
remain many possible applications and avenues of future research of wind turbines using hybrid
simulation. Several of these are proposed here:

• Offshore turbines: Floating offshore turbines are strong candidates for the use of hy-
brid simulation as it addresses the issue of the fundamental scaling mismatch between
aerodynamic and hydrodynamic loads. Preparatory research, including determining per-
formance specifications and actuation requirements, has been performed, but there are
few published examples of actual hybrid simulation of these structures.

• Multi-hazard loading: Hybrid simulation can be used to subject wind turbines to multi-
hazard loading, including wind, wave, and seismic. Previous numerical research has
shown that coupling between wind and seismic loading (Asareh and Volz, 2013), as well
as wind and wave loading in offshore turbines (Calderer et al., 2014; Tran and Kim,
2017) plays an important role in determining the structural response of turbines but also
introduces unique challenges. Experimental testing can struggle to simultaneously apply
multiple loading types, but hybrid simulation could allow for some loading to be exper-
imentally modelled for greater accuracy while other loading is applied to the numerical
model, as has been performed previously for some floating structures (Koukina et al.,
2015; Ueland et al., 2018; Vilsen et al., 2019).

• Damped turbines: Dampers are often used to improve the service life and ultimate re-
sistance of turbines. With the growing use of more complex, nonlinear dampers such as
tuned liquid or magnetorheological, hybrid simulation can be used to physically test the
damper while numerically modelling the turbine. Tests such as these are very common
uses of real-time hybrid simulation as the simulation technique allows for cost-effective
experimental damper research.
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• Turbine failures: Hybrid simulation can be used to further study blade or tower failures
of turbines, as it allows for failure testing that uses precise numerical loading and applies
it to generate accurate experimental failure behaviour, while using a minimalist physical
model that is less costly to replace than a purely experimental test.

In addition to these specific proposals, hybrid simulation can also be used to validate com-
plex numerical turbine models. These possible avenues of future research are in no way all-
encompassing, but merely propose some of the more conspicuous applications of hybrid simu-
lation for wind turbine research. This is not to say that hybrid simulation should be applied in
all future wind turbine research; it is merely one more highly useful tool to add to a researcher’s
repertoire. Future research of wind turbines will be used to help design safer and more efficient
turbines.



Chapter 3

Investigation of the drag and lift
coefficient curves of the
NACA 0012 airfoil using CFD and
a novel synthesis method
Summary
Stalling occurs on an airfoil when the incoming wind strikes it a steep angle causing flow sep-
aration. As a result, the stall and post-stall aerodynamic behaviour of an airfoil is significantly
more complex compared to its pre-stall behaviour, and thus much more challenging to capture
using numerical simulations. Stalled airfoils see comparatively little study as they occur in-
frequently in aeronautic applications. Conversely, wind turbine blades often experience stall
as their maximum efficiency occurs when the incoming wind on the blades strikes at around
the stall angle, and as such researchers must attempt to capture this complex aerodynamic be-
haviour. This study attempts to do so for the widely-studied NACA 0012 airfoil in flows with a
Reynolds number of 105 to 106 – common values for industrial wind turbines. The first section
of this study collects previous experimental wind turbine studies and numerical simulations
that report the drag and lift coefficients curves of the NACA 0012 airfoil in the specified range
of Reynolds numbers. Numerical piecewise polynomial systems are then developed based on
the reported results to synthesize the average predicted drag and lift coefficients as a function of
the Reynolds number. In the second section of this study, 112 CFD simulations are performed
to find an optimal combination of mesh fidelity, dimensionality (2D, 3D), turbulence models
(steady-state RANS, URANS), and RANS closure models (Spalart–Allmaras, k-ε, k-ω) for
calculating coefficient curves that agree with the average predicted curves from the first sec-
tion. These simulations also included a number of preliminary LES simulations; computational
limitations restricted the allowable mesh density and thus the ultimate accuracy of these sim-
ulations. It was found that an effective, efficient model with decent matching to experimental
results can be generated using a combination of 3D simulation, URANS momentum equations,
and the k-ω turbulence closure model. This effective CFD configuration can thus be extended
to future turbine airfoil simulations.

45
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3.1 Introduction
The most basic characterization of the aerodynamic behaviour of an airfoil is through its lift
and drag coefficient curves. The lift and drag coefficients (CL and CD, respectively) quantify
the relationship between the wind speed, the geometry of a structure, and the resulting aero-
dynamic loads as defined in Equations 2.11 and 2.12. The lift and drag coefficient curves plot
these values as a function of the angle of attack of the wind, that is, the angle between the chord
line of the airfoil and the direction of the wind. While these curves are normalized across wind
speeds and chord lengths, they are heavily dependent on the Reynolds number and Mach num-
ber of the flow. Both are dimensionless parameters that characterize the turbulence and speed
of fluid flows respectively. While the Mach number is critical in aeronautics, its effect is often
insignificant for other airfoil applications. The Reynolds number, alternately, is always rele-
vant. The Reynolds number is a nondimensional parameters that relates the wind speed and
viscosity to structure size, as defined in Equation 2.13. In the case of airfoils the chord length
is used as the characteristic length for calculating the Reynolds number.

The lift and drag coefficient curves of an airfoil can be assessed through a number of exper-
imental and numerical means. By placing a prismatic airfoil section in a wind tunnel, the drag
and lift loads can be measured allowing the coefficient curves to be calculated. By rotating this
airfoil, a number of angles of attack can be tested sequentially. Numerical methods specifically
for characterizing 2D airfoils are also available, such as XFOIL (Drela and Youngren, 2000),
though these methods tend to lose accuracy at higher angles of attack. General numerical wind
engineering tools such as computational fluid dynamics (CFD) can also be used to accurately
simulate flow around objects, and can be used to characterize airfoils in 2D and 3D simulations.

The NACA 0012 airfoil is perhaps the most widely studied airfoil in literature, known for
it symmetrical profile and favourable lift to drag ratio. Developed by the National Advisory
Committee for Aeronautics, the “00” refers to the amount of the camber in the airfoil (none)
and the “12” refers to the maximum thickness of the airfoil relative to its chord length (12%).
Equation 3.1 describes the normalized coordinates of the airfoil surface:

y = ±0.6 ∗
(
0.2969

√
x − 0.1260x − 0.3516x2 + 0.2843x3 − 0.1015x4

)
(3.1)

Here, the x axis represents the chord line of the airfoil. The airfoil curve described by this
equation is shown in Figure 3.1.

Figure 3.1: NACA 0012 airfoil with a unit chord length

This paper focuses on the behaviour of the NACA 0012 airfoil in flows with Reynolds
numbers ranging from 105 to 106. This range in particular is chosen for two reasons: firstly,
the flow around industrial wind turbine blades often fall into this region. Secondly, this range
captures the transition from the subcritical to the supercritical flow regimes around a cylinder,
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which consists of a rapid change of drag coefficient depending on the surface roughness of the
cylinder, as shown in Figure 3.2 which has been reproduced from Simiu and Scanlan (1986).
This figure shows that the expected drag on cylinders can vary substantially within Reynolds
numbers of 105 to 106, and this behaviour extends from cylinders to curved airfoils as well. As
will be shown, despite the NACA 0012 airfoil having a robust amount of experimental and nu-
merical tests at a wide range of Reynolds numbers, the results from these previous studies often
fail to strongly agree. If a consensus on the lift and drag coefficient curves cannot be reached
for perhaps the most widely-tested airfoil, this is problematic for researchers attempting to
validate new testing techniques against older results.

Figure 3.2: CD on a cylinder as a function of Re, where the y-axis is CD and k/h is a measure
of the surface roughness of the cylinder. Reproduced from Simiu and Scanlan (1986) with
permission from Wiley©

This paper investigates this behaviour further in two stages: firstly, a collection of previous
studies of the NACA 0012 airfoil in flows with Reynolds numbers ranging from 105 to 106

are collected and compared in Section 3.2. The drag and lift coefficient curves reported in
these studies are synthesized to derive average predicted curves as a function of the Reynolds
number. This is performed by quantifying and averaging trends in the plotted coefficient curves
and using them to generate piecewise polynomial systems. Secondly, a number of new CFD
simulations of the NACA 0012 airfoil are detailed and presented in Section 3.3. These CFD
simulations were performed in both 2D and 3D using RANS, URANS and LES CFD models,
and the results were then compared to the predicted average curves. By comparing the results
of these two sections, conclusions are drawn and recommendations for future CFD simulations
are made, which are detailed in Section 3.4.

3.2 Synthesis of previous studies of the NACA 0012 airfoil
This section presents an overview of the aerodynamic behaviour of the NACA 0012 airfoil. It
subsequently collects the drag and lift coefficients of the airfoil in flows where Re is between
105 and 106 from previous wind tunnel tests and numerical simulations. Finally, a framework
to develop average 2D and 3D lift and drag coefficient curves for the NACA 0012 airfoil as
a function of the Reynolds number based on the existing research is presented. This consists
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of identifying and quantifying trends in the coefficient curves as a function of the Reynolds
number and using them to develop piecewise polynomial systems. This framework is then em-
ployed to generate four predicted coefficient curves for average lift in 3D simulations, average
lift in 2D simulations, average drag in 3D simulations, and average drag in 2D simulations at
Re = 5∗105. These are referred to as the “3D lift”, “2D lift”, “3D drag”, and “2D drag” curves,
respectively.

3.2.1 Overview
Stall occurs when the flow separates from the side of the airfoil. For standard airfoils in flows
ranging from Re = 105 to 106, it is generally seen that low-frequency stall begins at an angle
of attack that ranges from 12◦ to 18◦. Low-frequency stall is characterized by a decrease in lift
coefficient and an increase in the drag coefficient. Beyond 18◦, deep or post-stall occurs, which
is characterized by an increase in both lift and drag coefficients.

Wu et al. (1998) used a small number of studies of the NACA 0012 and similar airfoils to
characterize their flow response at a given Re flow and angle of attack. This figure has been
reproduced here in Figure 3.3. As can be seen in this figure, at Reynolds numbers of 105 to
106, as the angle of attack increases the flow transition from steady attached to low-frequency
steady separated (this transition occurs at higher angles of attack as Re increases) and then
finally to turbulent vortex shedding. It can be seen that these flow transitions coincide with the
stall angle and the deep stall angle where the slope of the lift coefficient curve changes from
positive to negative and back to positive.

Figure 3.3: Collection of airfoil behaviour patterns based on Reynolds number and angle of
attack (α). Reproduced from Wu et al. (1998) with permission from Cambridge University
Press©

The “low-frequency” behaviour identified in Figure 3.3 is adapted from Zaman et al. (1989).
Low-frequency separated flow is characterized by vortex shedding at stall occurring at a Strouhal
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number of 0.02 rather than the typical value of 0.15-0.20. The Strouhal number is a non-
dimensional parameter that characterizes the frequency of vortex shedding:

St =
f L
U

(3.2)

Here, St is the Strouhal number, f is the vortex shedding frequency, L is the characteristic
chord length, and U is the flow velocity. The reproducibility of the low-frequency behaviour
found by Zaman et al. (1989) was not consistent, it was only achieved by artificially increasing
the tunnel turbulence to above 0.4% or by adding acoustic excitement to the flow, thus this
behaviour is not guaranteed to be seen in all testing.

McCroskey (1987) has previously prepared a collection of studies of the NACA 0012 air-
foil, though they focused on pre-stall studies mostly performed at higher Reynolds numbers
than what is discussed in this paper. They likewise report the lack of consensus among various
studies, and support the general trends reported by Wu et al. (1998). Figure 3.4, reproduced
here from McCroskey (1987), reports the maximum lift coefficient at stall achieved by the
NACA 0012 airfoil in different Reynolds number flows. As can be seen between this and Fig-
ure 3.3, the Reynolds number of the flow controls the angle of attack where stall occurs and, as
a result, the maximum lift coefficient achievable by the airfoil.

Figure 3.4: Averaged trend of maximum lift coefficient versus Reynolds number from a num-
ber of NACA 0012 studies. Reproduced from McCroskey (1987) with permission from U.S.
Gov.©

An important consideration for numerical lift and drag studies of airfoils is the difference in
behaviour that is seen between 2D and 3D simulations. A 2D simulation assumes that no out-
of-plane flow occurs which makes computation much more efficient, but models a less-realistic,
idealized flow scenario. In reality, 3D flow along the length of the blade is a fundamental part of
aerodynamic turbulence and can strongly affects the stall angle. Compared to 3D simulations,
2D simulations often achieve higher maximum lift coefficients at higher stall angles due to the
idealized flow staying attached to the airfoil more readily. In 3D simulations, the aspect ratio of
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the airfoil must also be considered; the aspect ratio is the ratio of the span length of the airfoil
segment to its chord length. In general, as the aspect ratio increases, the results will approach
the idealized 2D results, though they are typically rather small due to being limited by the wind
tunnel dimensions in experimental tests and domain sizes in numerical tests.

While wind tunnel studies have historically been the most popular method of studying
airfoils, computational fluid dynamics (CFD), a powerful numerical tool for aerodynamic sim-
ulations, has seen use in recent years for the same purpose. However, some researchers have
argued that RANS-based CFD is not adequately equipped to completely capture the complex
behaviour of an airfoil in stall. When Eleni et al. (2012) compared the standard closure models
used in RANS simulations – Spalart-Allmaras, k-ε, and k-ω – for accurately simulating the
NACA 0012 airfoil, they concluded all three models failed to capture the stall behaviour well,
though the k-ω model fared the best of the three. Other studies including Ren et al. (2009);
Atkins (2015); Matyushenko et al. (2017) also support these general trends when studying
other airfoils.

3.2.2 Collection of previous studies
Table 3.1 collects the drag and lift coefficient curves reported by previous studies of the
NACA 0012 airfoil tested at high angles of attack in Reynolds number flows of 105 to 106.
The majority of the collected studies are from wind tunnel tests, though some CFD studies
are included as well as numerical 2D predictions of the low-angle of attack behaviour from
XFOIL. Note that a significant number of studies were excluded from this collection due to be-
ing restricted to low angles of attack, falling outside of the Re range, performing dynamic tests
where the angle of attack is varied in real-time as opposed to steady-state testing, or studies
where a finite turbine blade rather than a constant airfoil section was tested. Related studies of
the NACA 0012 airfoil that met some or all of these exclusion criteria include McAlister et al.
(1978); Shida et al. (1987); Ladson (1988); Laitone (1997); Martinat et al. (2008); Douvi et al.
(2012); Petrillu et al. (2013); Nordanger et al. (2015); and Martinez-Aranda et al. (2016).

As can be seen in Table 3.1, available lift and drag coefficient curves were ultimately ex-
tracted from seven sources. These sources consist of six published papers and reports, as well
as curves reported by Airfoil Tools (2021), which were generated using the well-documented,
2D-based XFOIL algorithm (Drela and Youngren, 2000). Table 3.1 lists the data sources, the
type of test, the testing parameters (Reynolds number, wind speed, angles of attack), and the
physical dimensions of the test including the chord length, the span length and aspect ratio
between the span and chord length in 3D tests, and the domain/wind tunnel height.

The lift coefficient curves from the sources detailed in Table 3.1 are plotted in Figure 3.5,
the exact values of which are listed in Table 3.2. In Figure 3.5, 3D tests are plotted using solid
lines while 2D tests use dashed lines. Multiple tests from the same source use the same symbol
and colour in a different shade. As can be seen, there is a significant amount of disagreement
between the various tests, even when accounting for Reynolds number and aspect ratio (which
is very similar for all 3D tests except Benyahia et al. (2003)). Still, certain general trends can
be identified, particularly for the higher-angle tests from Critzos et al. (1955) and Sheldahl
and Klimas (1981). There is an initial positive linear relationship between the angle of attack
and lift coefficient, which reaches a peak at the stall angle at 8-15◦. This is followed by a
negative linear section that reaches a minimum post-stall point at 10-17◦, then a linear positive
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Figure 3.5: Lift coefficient curves from sources detailed in Table 3.1

Figure 3.6: Drag coefficient curves from sources detailed in Table 3.1

deep-stall section. However, it can be seen that the post-stall behaviour recorded by Jacobs and
Sherman (1939) does not match these general trends seen in more modern studies. Given that
the two other studies that test beyond the stall angle (Critzos et al., 1955; Sheldahl and Klimas,
1981) agree with one another and are more recent, the post stall-behaviour reported by Jacobs
and Sherman (1939) will not be considered in the following section. These trends are used to
generate empirical models that synthesize average curves based on the collected responses, a
process which is detailed in the following sections.
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Comparing the 3D and 2D tests in Figure 3.5, it can be seen that the 2D tests predict larger
maximum lift coefficients and stall angles due to ignoring the axial effects of wind loads. This
phenomenon has been well-documented previously. As a result, separate 2D and 3D average
curves will be generated in the following sections.

The drag coefficient curves from the sources in Table 3.5 are plotted in Figure 3.6, the
exact values of which are listed in Table 3.2, though some studies did not report their drag
coefficient curves. As can be seen, all curves show exponential growth in the drag coefficient
as the angle of attack increases, however a large difference between curves is the presence of a
significant jump in the drag coefficient at the stall angle, which is seen in the 3D tests but not in
the idealized 2D environment. The results from Sheldahl and Klimas (1981) also suggests that
the drag coefficient curve is relatively independent of the Reynolds number of the flow, except
for it controlling the stall angle and thus when the jump occurs.

3.2.3 Average 3D lift coefficient curves
An average model of the 3D lift coefficient curves as a function of Re would be useful point
of comparison for future tests, given the lack of strong agreement between existing tests and
the limited amount of data available for an individual Reynolds number. To synthesize this
predicted coefficient curve, the traits that define the shape of the lift coefficient, which are
described above, can be quantified as function of Re. A piecewise polynomial curve based on
these curve traits can then be used to generate the average predicted curve for a given Re.

The quantification of the 3D lift coefficient curve is performed by extracting the 12 curve
traits shown in Figure 3.7, including the angle of attack (x), the lift coefficient (y), and the
slope (s) at the initial linear (subscript 0), the stall angle (subscript 1), the minimum post-stall
peak (subscript 2), and the post-stall linear (subscript 3) sections of the curve. While many of
the traits vary between the different curves shown in Figure 3.5, a handful of these values are
constant for all curves (x0 = y0 = s1 = s2 = 0), while x3 = 22◦ is chosen as a functional,
but arbitrary point to characterize the linear post-stall region. The remaining seven curve traits
are then tabulated from each source in Table 3.3. Note that not all curves were tested at high
enough angles of attack to report each of these traits.

Figure 3.7: Definition of the 12 traits to characterize the 3D lift coefficient curves
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Paper Jacobs and Sherman (1939) Critzos et al. (1955) Sheldahl and Klimas (1981) Johari and Durgin (1998) Benyahia et al. (2003)

Re 3.3*105 6.6*105 5.0*105 1.6*105 3.6*105 7.0*105 10.0*105 1.0*105 1.0*105 Slope Si Intercept Ii Std dev

s0 0.100 0.100 0.095 0.110 0.110 0.110 0.110 0.102 0.097 6.64 ∗ 10−9 0.101 0.006
y1 0.86 1.10 1.04 0.86 0.98 1.08 1.13 0.90 3.31 ∗ 10−7 0.836 0.043
x1 10.0 12.0 11.8 8.8 10.0 11.0 12.0 12.0 2.06 ∗ 10−6 9.969 0.985
y2 0.62 0.10 0.27 0.47 0.59 5.46 ∗ 10−7 0.113 0.120
x2 15.0 10.5 13.5 16.0 17.0 7.39 ∗ 10−6 10.378 0.773
s3 0.025 0.054 0.055 0.050 0.048 −5.70 ∗ 10−9 0.050 0.011
y3 0.690 0.696 0.720 0.740 0.760 7.68 ∗ 10−8 0.679 0.014

Table 3.3: Collected traits that define the 3D lift coefficient curves from Figure 3.7 and the
resulting slopes and intercepts of the linear trendlines

For the purposes of these models, only the difference in Reynolds number will be consid-
ered while all other differences between the tests (chord length, aspect ratio, etc.) are consid-
ered to have a minimal impact on the resulting lift coefficient curve. Ultimately, there is an
insufficient amount of data to account for any variable other than Reynolds number. Based on
the data collected in Table 3.3, a linear relationship can be found for between each variable (V)
and the Reynolds number of the flow, which is characterized by a slope (S ) and intercept (I):

Vi = S i ∗ Re + Ii (3.3)

Here, Vi is the ith variable ranging from s0 to y3 in Figure 3.7. The slope and intercept are
calculated using the following equations:

S i =
n
∑(

vi j ∗ Re j

)
−

∑
vi j

∑
Re j

n
∑

Re2
j −

(∑
Re j

)2 (3.4)

Ii =

∑
vi j − S i

∑
Re j

n
(3.5)

Here, S i and Ii are calculated from the data samples vi j, where j ranges from 1 to n and n is
the number of samples for that curve trait. Thus for calculating S 7, the slope for the seventh
variable y3, it can be seen that n = 5 and vi j are 0.690, 0.696, 0.720, 0.740, and 0.760 as listed
in the seventh row of Table 3.3.

Table 3.3 lists the calculated slopes and intercepts of the seven curve traits, which are
summarized in Table 3.4. For example, this table shows that the average stall angle (x1) for
the 3D lift coefficient curve at a given Reynolds number is x1 = 2.06 ∗ 10−6 ∗ Re + 9.969.
The standard deviation of the experimental data compared to the linear approximation is also
reported in Table 3.3, which will be used to plot uncertainty ranges for the predicted curves.

A piecewise polynomial curve can then be built from these 12 defined curve traits. Piece-
wise polynomial systems, also known as spline curves, are a technique from computer graphics
for generating complex best-fit curves based on a limited number of inputs. These systems are
built of a number of polynomial curves defined as:

yi = ai + bix + cix2 + ... (3.6)

Here ai, bi, etc., are the unknown coefficients of the curve, and i refers to the individual piece-
wise polynomial curve within the system. These individual polynomials are related and solved
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Variable Curve trait Value Standard deviation

x0 AoA = 0◦ 0 ± 0
y0 CL at AoA = 0◦ 0 ± 0
s0 Slope at AoA = 0◦ 6.64 ∗ 10−9 ∗ Re + 0.101 ± 0.006
x1 Stall angle (◦) 2.06 ∗ 10−6 ∗ Re + 9.969 ± 0.985
y1 Stall CL 3.31 ∗ 10−7 ∗ Re + 0.836 ± 0.043
s1 Slope at stall = 0 0 ± 0
x2 AoA at minimum post-stall CL (◦) 7.39 ∗ 10−6 ∗ Re + 10.378 ± 0.773
y2 Minimum post-stall CL 5.46 ∗ 10−7 ∗ Re + 0.113 ± 0.120
s2 Slope at minimum post-stall CL = 0 0 ± 0
x3 AoA = 22◦ 22 ± 0
y3 CL at AoA = 22◦ 7.68 ∗ 10−8 ∗ Re + 0.679 ± 0.014
s3 Slope at AoA = 22◦ −5.70 ∗ 10−9 ∗ Re + 0.050 ± 0.011

Table 3.4: Twelve curve traits defined in Figure 3.7 for the 3D lift coefficient curves

using boundary conditions to generate a continuous complex curve using only a limited number
of inputs. Readers are directed to House (2014) for further explanation of this technique.

For the predicted 3D lift coefficient curve, the piecewise polynomial system is made of
three curves ( f0, f1, f2) which connect x0 to x1, x1 to x2, and x2 to x3, respectively, as shown in
Figure 3.7. f0, f2, and their derivatives are defined as:

y = fi(x) (3.7)

fi = ai + bix + cix2 + dix3 (3.8)

fi
′ = bi + 2cix + 3dix2 (3.9)

fi
′′ = 2ci + 6dix (3.10)

Here, x and y refer to the angle of attack and lift coefficient respectively, ai - di are the coef-
ficients of the polynomial curve, i is 0 or 2, and fi

′ and fi
′′ are the slope and curvature of the

polynomial. As will be justified below, two additional terms are added for f1 such that:

f1 = a1 + b1x + c1x2 + d1x3 + e1x4 + g1x5 (3.11)

f1
′ = b1 + 2c1x + 3d1x2 + 4e1x3 + 5g1x4 (3.12)

f1
′′ = 2c1 + 6d1x + 12e1x2 + 20g1x3 (3.13)

To solve for the unknown coefficients, a number of boundary conditions are collected, as
summarized in Table 3.5. Since 14 boundary conditions were collected, 14 unknown polyno-
mial coefficients are required for the system to remain singular. As a result, f1 is chosen to have
six coefficients (see Equation 3.11) while f0 and f2 were assigned four each (see Equation 3.8).
This distribution was found to produce the best splines for this case. The equations in Table 3.5
are reorganized into matrix form to solve for the unknown polynomials coefficients:

{y} = [M] {c} (3.14)

[M]−1 {y} = {c} (3.15)
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Boundary condition Equation

1. f0 passes through (x0,y0) y0 = a0 + b0x0 + c0x2
0 + d0x3

0
2. Slope of f0 (= f0

′) is defined at x0 s0 = b1 + 2c1x0 + 3d1x2
0

3. f0 passes through (x1,y1) y1 = a0 + b0x1 + c0x2
1 + d0x3

1
4. f0

′ is defined at x1 s1 = b0 + 2c0x1 + 3d0x2
1

5. Curvature matches between f0 and f1 ( f0
′′ = f1

′′) at x1 2c0 + 6d0x1 = 2c1 + 6d1x1 + 12e1x2
1 + 20g1x3

1
6. f1 passes through (x1,y1) y1 = a1 + b1x1 + c1x2

1 + d1x3
1 + e1x4

1 + g1x5
1

7. f1
′ is defined at x1 s1 = b1 + 2c1x1 + 3d1x2

1 + 4e1x3
1 + 5g1x4

1
8. f1 passes through (x2,y2) y2 = a1 + b1x2 + c1x2

2 + d1x3
2 + e1x4

2 + g1x5
2

9. f1
′ is defined at x2 s2 = b1 + 2c1x2 + 3d1x2

2 + 4e1x3
2 + 5g1x4

2
10. f1

′′ = f2
′′ at x2 2c1 + 6d1x2 + 12e1x2

2 + 20g1x3
2 = 2c2 + 6d2x2

11. f2 passes through (x2,y2) y2 = a2 + b2x2 + c2x2
2 + d2x3

2
12. f2

′ is defined at x2 s2 = b2 + 2c2x2 + 3d2x2
2

13. f2 passes through (x3,y3) y3 = a2 + b2x3 + c2x2
3 + d2x3

3
14. f2

′ is defined at x3 s3 = b2 + 2c2x3 + 3d2x2
3

Table 3.5: Boundary conditions of the 3D lift coefficient curves based on Figure 3.7

inv



1 x0 x2
0 x3

0 0 0 0 0 0 0 0 0 0 0
0 1 2x0 3x2

0 0 0 0 0 0 0 0 0 0 0
1 x1 x2

1 x3
1 0 0 0 0 0 0 0 0 0 0

0 1 2x1 3x2
1 0 0 0 0 0 0 0 0 0 0

0 0 2 6x1 0 0 −2 −6x1 −12x2
1 −20x3

1 0 0 0 0
0 0 0 0 1 x1 x2

1 x3
1 x4

1 x5
1 0 0 0 0

0 0 0 0 0 1 2x1 3x2
1 4x3

1 5x4
1 0 0 0 0

0 0 0 0 1 x2 x2
2 x3

2 x4
2 x5

2 0 0 0 0
0 0 0 0 0 1 2x2 3x2

2 4x3
2 5x4

2 0 0 0 0
0 0 0 0 0 0 2 6x2 12x2

2 20x3
2 0 0 −2 −6x2

0 0 0 0 0 0 0 0 0 0 1 x2 x2
2 x3

2
0 0 0 0 0 0 0 0 0 0 0 1 2x2 3x2

2
0 0 0 0 0 0 0 0 0 0 1 x3 x2

3 x3
3

0 0 0 0 0 0 0 0 0 0 0 1 2x3 3x2
3





y0
s0
y1
s1
0
y1
s1
y2
s2
0
y2
s2
y3
s3



=



a0
b0
c0
d0
a1
b1
c1
d1
e1
g1
a2
b2
c2
d2



(3.16)

Here, {c} is a vertical array of the 14 unknown polynomial coefficients, {y} is a vertical array of
the left side of the equations from Table 3.5, and [M] is the matrix of the right side of the equa-
tions from Table 3.5. Readers are encouraged to note the relationship between Equation 3.16
and Table 3.5. This matrix equation can be solved to determine the 14 polynomial coefficients
for a given Reynolds number. For example, when Re = 105 the curve coefficients are found as:

a0 = 0 a1 = 7.80∗105 a2 = 1.76
b0 = 0.102 b1 = −3.67∗105 b2 = −0.335
c0 = 0.005 c1 = 6.91∗104 c2 = 0.021
d0 = −6.67∗10−4 d1 = −6.50∗103 d2 = −3.87∗10−4

e1 = 305
g1 = −5.73

(3.17)

Using these polynomial coefficients the average 3D lift coefficient curve can be plotted using
the following equation, where x is the angle of attack in degrees:
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CL =


a0 + b0x + c0x2 + d0x3 x0 ≤ x ≤ x1

a1 + b1x + c1x2 + d1x3 + e1x4 + g1x5 x1 < x ≤ x2

a2 + b2x + c2x2 + d2x3 x2 < x ≤ x3

y3 + s3(x − x3) x3 < x ≤ 25◦
(3.18)

To account for the error in the linear approximations performed in Table 3.3, additional
curves are likewise generated using the largest and smallest possible curve traits within one
standard deviation. The standard deviation between the true values and the linear approxi-
mations of the curve traits were calculated using the mean root square error equation and are
reported in Table 3.4. The standard deviation curves were then generated using x1±σx1 , y1±σy1 ,
etc. where σx1 is the reported standard deviation of the curve variable x1. Generally, the upper
curve used a positive value for the standard deviation while the lower curve used the negative
value, though this was reversed in a few instances to prevent curve crossings. The additional
curves represent the error in the predicted curve within a single standard deviation. Modelling
the error using this method shows a very narrow range of values in the pre-stall and late-post-
stall regions, while the regions at the stall angle and immediately after have a much wider range
of values – this agrees with the general understanding that the stalling behaviour of an airfoil
is the most complex aerodynamically and thus would have the greatest variability.

Figure 3.8: Predicted 3D lift coefficient curves at a range of Reynolds numbers, compared to
the collected literature described in Table 3.1 at the same Reynolds number
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Figure 3.8 plots the predicted 3D lift coefficient curves generated using the piecewise poly-
nomial system technique. It reports lift coefficient curves at Reynolds numbers ranging from
105 to 106 and overlays them on the data from the previous studies shown in red. Then, for
each Reynolds number at which lift coefficient curve data exists, a predicted curve at the same
Reynolds number is generated and compared, including the one-standard-deviation curves (the
dashed lines). Comparing the existing data with the predicted curves, it can be see that the
matching is quite good for curve aspects that were able to be considered. For example, no
stall angle was quantified from Johari and Durgin (1998), and no post-stall behaviour was
quantified from Jacobs and Sherman (1939), explaining the differences between that data and
the predicted curves. Despite being included in the linear approximations, it can seen that
the post-stall decrease in lift coefficient is over-estimated compared to Critzos et al. (1955) at
Re = 5.0∗105, and the stall angle is over-estimated compared to Sheldahl and Klimas (1981)
at Re = 1.6∗105 and under-estimated compared to Benyahia et al. (2003) at Re = 1.0∗105. Be-
yond these exceptions, matching is quite good, including a nearly perfect estimation compared
to the curve reported by Sheldahl and Klimas (1981) at Re = 7.0∗105. One could argue that
these predicted curves over-value the data reported by Sheldahl and Klimas (1981), consider-
ing that these curves make up four of the five sources of post-stall information, but given the
small amount of data to work with, this approach was deemed best.

3.2.4 Average 2D lift coefficient curves

The process described in Section 3.2.3 to generate a predicted lift coefficient is likewise per-
formed using 2D data. For brevity, only changes from the procedure outlined in the previous
section are reported here.

Figure 3.9 shows the nine curve traits used to define the two polynomial system. Here,
x0 = y0 = s1 = 0 and x2 = 17◦, while the rest are defined on a per-curve basis. The piecewise
polynomial system is made of two fourth-order equations where x is the angle of attack, and
a0 to d1 are the eight unknown curve coefficients:

CL =

{
a0 + b0x + c0x2 + d0x3 x0 ≤ x ≤ x1

a1 + b1x + c1x2 + d1x3 x1 < x ≤ x2
(3.19)

Table 3.6 lists the collected traits from the recorded 2D lift coefficient curves from Huang
et al. (2004) and Airfoil Tools (2021), as well as the resulting slopes, intercepts and standard
deviations. Table 3.7 lists the eight boundary conditions used to solve for the curve coefficients.
Finally, Figure 3.10 presents the predicted curves and compares them to the results from the
existing studies. It can be seen that while the general trends are captured, due to the disparity
between the data samples and the low number of curves to work with, the true data often
lies just outside of one standard deviation from the predicted curve, a slightly worse accuracy
compared to the averaged 3D lift coefficient curves. Still, the predicted curves accurately pass
between the two data sets at each Reynolds number making this an effective enough model of
data with less-than-perfect agreement.
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3.2.5 Average 3D drag coefficient curves
The process described in Section 3.2.3 to generate average 3D lift coefficient curves is likewise
performed here for 3D drag coefficient curves. For brevity, only changes from the procedure
outlined in the previous section are presented here.

Figure 3.11 lists the nine curve traits used to define the three polynomial system. Here,
x0 = 0◦ and x3 = 25◦, while the rest are defined on a per-curve basis. The piecewise polynomial
system is made of a first-order, a fifth-order, and a second-order equation where x is the angle
of attack, and a0 to c2 are the ten unknown curve coefficients:

CD =


a0 + b0x x0 ≤ x ≤ x1

a1 + b1x + c1x2 + d1x3 + e1x4 x1 < x ≤ x2

a2 + b2x + c2x2 x2 < x ≤ x3

(3.20)

Table 3.8 lists the collected traits from the recorded 3D drag coefficient curves from Critzos
et al. (1955) and Sheldahl and Klimas (1981), and the resulting slopes, intercepts and standard
deviations. Table 3.9 lists the ten boundary conditions used to solve for the curve coefficients.
Finally, Figure 3.12 summarizes the results of the averaging and compares them to the results
from the existing studies. It can be seen that, with the exception of the dip in the drag coefficient
reported by Critzos et al. (1955) around an angle of attack of 20◦, the average curve includes
nearly all data within one standard deviation, and matched extremely well to the data from
Sheldahl and Klimas (1981) at Reynolds numbers of 1.6∗105 and 106.

3.2.6 Average 2D drag coefficient curves
The process described in Section 3.2.3 to generate average 3D lift coefficient curves is likewise
performed here for 2D drag coefficient curves. For brevity, only changes from the procedure
outlined in the previous section are presented here.

Figure 3.13 lists the eight curve traits used to define the two polynomial system. Here,
x0 = 0◦ and x2 = 17◦, while the rest are defined on a per-curve basis. The piecewise polynomial
system is made of a third-order and a second-order equation where x is the angle of attack, and
a0 to c1 are the seven unknown curve coefficients:

CD =

{
a0 + b0x + c0x2 + d0x3 x0 ≤ x ≤ x1

a1 + b1x + c1x2 x1 < x ≤ x2
(3.21)

Table 3.10 lists the collected traits from the recorded 2D drag coefficient curves from Huang
et al. (2004) and Airfoil Tools (2021), and the resulting slopes, intercepts and standard devia-
tions. Table 3.11 lists the seven boundary conditions used to solve for the curve coefficients.
Finally, Figure 3.14 summarizes the results of the averaging and compares them to the results
from the existing studies. It can be seen that the overall matching is well given the disparity
between recorded curves, though it struggles the most at low and high angles of attack.
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Paper Huang et al. (2004) XFOIL data (Airfoil Tools, 2021)

Re 1.0*105 5.0*105 10.0*105 1.0*105 5.0*105 10.0*105 Slope Si Intercept Ii Std dev

s0 0.086 0.092 0.094 0.187 0.104 0.107 −3.80 ∗ 10−8 0.132 0.031
x1 13.0 14.5 15.0 11.5 14.5 15.5 3.26 ∗ 10−6 12.26 0.63
y1 0.89 1.03 1.12 0.99 1.24 1.39 3.45 ∗ 10−7 0.926 0.106
y2 0.80 0.95 1.06 – 1.13 1.34 4.19 ∗ 10−7 0.796 0.109
s2 -0.023 -0.060 -0.053 – -0.070 -0.067 −3.06 ∗ 10−8 -0.035 0.013

Table 3.6: Collected traits that define the 2D lift coefficient curves from Figure 3.9 and the
resulting slopes, intercepts, and standard deviation of the linear trendlines

Boundary condition Equation

1. f0 passes through (x0,y0) y0 = a0 + b0x0 + c0x2
0 + d0x3

0
2. f0

′ is defined at x0 s0 = b1 + 2c1x0 + 3d1x2
0

3. f0 passes through (x1,y1) y1 = a0 + b0x1 + c0x2
1 + d0x3

1
4. f0

′ is defined at x1 s1 = b0 + 2c0x1 + 3d0x2
1

5. f0
′′ = f1

′′ at x1 2c0 + 6d0x1 = 2c1 + 6d1x1

6. f1 passes through (x1,y1) y1 = a1 + b1x1 + c1x2
1 + d1x3

1
7. f1

′ is defined at x1 s1 = b1 + 2c1x1 + 3d1x2
1

8. f1
′ is defined at x2 s2 = b1 + 2c1x2 + 3d1x2

2

Table 3.7: Boundary conditions of the 2D lift
coefficient curves based on Figure 3.9 which
are used to solve for the curve coefficients for a
given Reynolds number

Figure 3.9: Definition of the 9 traits to
characterize the 2D lift coefficient curves

Figure 3.10: Predicted 2D lift coefficient curves at a range of Reynolds numbers, compared to
the collected literature describe in Table 3.1 at the same Reynolds number
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Paper Critzos et al. (1955) Sheldahl and Klimas (1981)

Re 5.0*105 1.6*105 3.6*105 7.0*105 10.0*105 Slope Si Intercept Ii Std dev

y0 0.000 0.010 0.008 0.007 0.006 −3.92 ∗ 10−9 0.008 0.003
x1 10.0 10.0 13.0 14.0 15.0 5.66 ∗ 10−6 9.32 1.26
y1 0.010 0.018 0.022 0.024 0.025 8.77 ∗ 10−9 0.015 0.005
x2 14.0 12.0 15.0 16.0 17.0 5.45 ∗ 10−6 11.84 0.70
y2 0.170 0.134 0.190 0.210 0.231 1.06 ∗ 10−7 0.129 0.013
y3 0.370 0.420 0.420 0.420 0.420 5.29 ∗ 10−9 0.407 0.020
s3 0.030 0.026 0.026 0.026 0.026 −4.24 ∗ 10−10 0.027 0.002

Table 3.8: Collected traits that define the 3D drag coefficient curves from Figure 3.11 and the
resulting slopes, intercepts, and standard deviation of the linear trendlines

Boundary condition Equation

1. f0 passes through (x0,y0) y0 = a0 + b0x0

2. f0 passes through (x1,y1) y1 = a0 + b0x1

3. f0
′ = f1

′ at x1 b0 = b1 + 2c1x1 + 3d1x2
1 + 4e1x3

1
4. f0

′′ = f1
′′ at x1 0 = 2c1 + 6d1x1 + 12e1x2

1
5. f1 passes through (x1,y1) y1 = a1 + b1x1 + c1x2

1 + d1x3
1 + e1x4

1
6. f1 passes through (x2,y2) y2 = a1 + b1x2 + c1x2

2 + d1x3
2 + e1x4

2
7. f1

′ = f2
′ at x2 b1 + 2c1x2 + 3d1x2

2 + 4e1x3
2 = b2 + 2c2x2

8. f1
′′ = f2

′′ at x2 2c1 + 6d1x2 + 12e1x2
2 = 2c2

9. f2 passes through (x3,y3) y3 = a2 + b2x3 + c2x2
3

10. f2
′ is defined at x3 s3 = b2 + 2c2x3

Table 3.9: Boundary conditions of the 3D drag
coefficient curves based on Figure 3.11 which
are used to solve for the curve coefficients for a
given Reynolds number

Figure 3.11: Definition of the 9 traits to
characterize the 3D drag coefficient curves

Figure 3.12: Predicted 3D drag coefficient curves at a range of Reynolds numbers, compared
to the collected literature describe in Table 3.1 at the same Reynolds number
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Paper Huang et al. (2004) XFOIL data (Airfoil Tools, 2021)

Re 1.0*105 5.0*105 10.0*105 1.0*105 5.0*105 10.0*105 Slope Si Intercept Ii Std dev

y0 0.022 0.018 0.017 0.017 0.006 0.005 −8.88 ∗ 10−9 0.019 0.0053
s0 0.0005 0.0010 0.0005 -0.0012 0.0002 0.0001 6.57 ∗ 10−10 -0.0002 0.0006
x1 14.0 14.0 14.0 – 14.0 15.0 6.46 ∗ 10−7 13.80 0.33
y1 0.100 0.095 0.080 – 0.038 0.026 −4.70 ∗ 10−8 0.097 0.026
y2 0.167 0.129 0.109 – 0.093 0.062 −8.19 ∗ 10−8 0.163 0.021
s2 0.045 0.022 0.019 – 0.027 0.023 −2.27 ∗ 10−8 0.041 0.005

Table 3.10: Collected traits that define the 2D drag coefficient curves from Figure 3.13 and the
resulting slopes, intercepts, and standard deviation of the linear trendline

Boundary condition Equation

1. f0 passes through (x0,y0) y0 = a0 + b0x0 + c0x2
0 + d0x3

0
2. f0

′ defined at x0 s0 = b0 + 2c0x0 + 3d0x2
0

3. f0 passes through (x1,y1) y1 = a0 + b0x1 + c0x2
1 + d0x3

1
4. f0

′ = f1
′ at x1 b0 + 2c0x1 + 3d0x2

1 = b1 + 2c1x1

5. f0
′′ = f1

′′ at x1 2c0 + 6d0x1 = 2c1

6. f1 passes through (x1,y1) y1 = a1 + b1x1 + c1x2
1

7. f1 passes through (x2,y2) y2 = a1 + b1x2 + c1x2
2

Table 3.11: Boundary conditions of the 2D drag
coefficient curves based on Figure 3.11 which
are used to solve for the curve coefficients for a
given Reynolds number

Figure 3.13: Definition of the 8 traits to
characterize the 2D drag coefficient curves

Figure 3.14: Predicted 2D drag coefficient curves at a range of Reynolds numbers, compared
to the collected literature describe in Table 3.1 at the same Reynolds number
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3.3 CFD simulations

3.3.1 Overview
CFD is a modern aerodynamic simulation technique that can model flow through a domain
and determine aerodynamic loads on surfaces from pressure and drag. CFD divides the fluid
domain into a number of small elements and solves the local flow behaviour of each element
to collectively characterize the full, complex behaviour of the flow. Inexperienced users can
easily perform CFD simulations incorrectly, however a well-constructed CFD simulation can
yield extremely precise results, comparable to the accuracy offered by wind tunnel experiments.
As Section 2.4.3 has already offered an in-depth discussion of CFD, only a broad summary is
presented here.

Two steps in CFD simulations are notably computationally intensive: the first is the creation
of the domain mesh which is often performed using an auto-meshing algorithm. The second
is running the CFD simulation itself; the resolution of the flow through the meshed domain is
performed by iteratively solving the flow and pressure behaviour within each element of the
fluid domain. The specific equations solved during this process depend on the turbulence model
used in the analysis, including options such as Reynolds-averaged Navier-Stokes (RANS),
unsteady RANS (URANS), and large eddy simulation (LES). The derivation of each model
has been well-documented previously, but to summarize each model:

• RANS simulations are a widely-used series of time-averaged equations of motions for
fluid flow, meaning they are best-suited to steady-state problems. The RANS equations
introduce Reynolds stresses into the Navier-Stokes equations of motion of the fluid,
which in turn must be solved using additional closure models such as S-A, k-ε, and
k-ω. The main advantage of RANS its higher speed due to fewer equations and lower
required mesh density compared to the alternatives.

• URANS simulations employ the RANS equations to generate a time history of steady-
state solutions, allowing it to approximate unsteady behaviour. Provided that the time
scale of the turbulence is much smaller than the time scale of the flow, this technique is
relatively accurate and maintains the higher speeds offered by RANS simulations.

• LES modifies the Navier-Stokes equation by filtering out very small-scale turbulence,
allowing true time-history simulations to be performed in a feasible amount of time.
LES is more computationally intensive than RANS, particularly because it requires a
more refined grid in the fluid domain to capture smaller-scale turbulence effects, but is
capable of achieving time-history results with a greater level of accuracy. LES is not
applicable for 2D simulations.

Note that the term “turbulence model” can be used to describe the type of simulation per-
formed (RANS, LES, etc.) as well as the set of closure equations used in RANS simulations
(S-A, k-ω, etc.) depending on context. As both will be compared in this study, the term “clo-
sure model” is adopted to refer to the latter sets of equations. Regardless of which turbulence
model is employed, additional requirements must be met for accurate simulations such as mesh
sensitivity analyses as well as y+ and Courant number criteria, which will be detailed below. In
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this study, the commercial software STAR-CCM+ was used to perform the simulations. Due
to the high computational requirements of CFD and the number of simulations performed, this
study would be infeasible to run on a personal computer, and as such the CFD simulations
presented here were performed on supercomputing clusters provided by Compute Canada. In
general, these simulations were meshed and run on 32-CPU cores, taking between one to seven
days depending on mesh density, turbulence model, number of simulation steps and number of
testing parameters.

3.3.2 Mesh specifications and sensitivity analysis
The dimensions of the experimental tests by Sheldahl and Klimas (1981) were replicated in this
study, thus the CFD simulations were performed on an airfoil with a chord length of 0.15 m and,
in 3D tests, a 0.91 m across-wind span. All simulations were performed in smooth flows at a
Reynolds number of 5∗105, the midpoint of the testing range collected in Table 3.1. To achieve
this value, assuming an air density of 1.225 kg/m3 and a kinematic viscosity of 1.48∗10−5 m2/s,
a mean wind speed of 49.3 m/s was used during testing.

To simulate equivalent test conditions compared to the existing studies, a uniform cross-
section of the NACA 0012 airfoil was placed in a semi-circular-upwind and rectangular-downwind
domain. By rotating the airfoil around its windward edge while keeping wind flow directly
along the center axis, the airfoil could be tested at a range of angles of attack. Figure 3.15
shows the specifications of the mesh used in the 2D and 3D simulations. A curved inlet bound-
ary, the typical form used in airfoil simulations, supplies the inflow which travels across the
airfoil and is released at the flat face on the far side of the domain. The dimensions of the
domain are shown relative to the chord length c, these values are similar in size to previous
CFD simulations of airfoils. The domain mesh is defined by a base mesh size, which is refined
in a cross-shaped domain in the along-wind and vertical directions around the airfoil, and is
further refined at the surface of the airfoil. The airfoil surface includes 30 prism layers with
a growth rate of approximately 1.2, highlighted in Figure 3.15d. To accurately resolve the
sub-scale turbulence, it is critical for the dimensionless wall distance (y+) to be ≤ 1; y+ is a
nondimensional parameter that controls the wall friction caused by the flow and is critical for
accurately modelling the drag and lift on a surface in a CFD simulation. y+ can be estimated
using the following equations:

y+ =
ynearwallu∗

υ
(3.22)

u∗ =
√
τw

ρ
(3.23)

τw = 0.5ρU2C f (3.24)

C f =
(
2log10(Re) − 0.65

)−2.3 for Re < 109 (3.25)

Here, ynearwall is the thickness of the near-wall prism layer, u∗ is the friction velocity, υ is the
kinematic viscosity of the air, τw is the wall shear stress, ρ is the air density, U is the freestream
wind speed, C f is the skin friction, and Re is the Reynolds number of the flow. Using the
properties specified above, to achieve a y+ value of 1, the first prism layer thickness needs to
be approximately ≤ 6 ∗ 10−6 m. While Equations 3.22-3.25 are only approximations used to
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Figure 3.15: A summary of the testing mesh, used in both 2D and 3D testing. c is the chord
length of 0.15 m and in the 3D tests the depth of the domain is 0.91 m. a) The shape and size of
the domain as well as Boundaries 1, 2, and 3 used to refine the mesh, as explained in Table 3.12.
b) A summary of the CFD domain boundaries. c) A close-up of the airfoil boundary, defining
the chord length c and the angle of attack α. d) A close-up of the prism layers around the airfoil

Base mesh size B (m)

Boundary and property Value 0.1000 0.0750 0.0500 0.0250 0.0100 0.0075 0.0060 0.0050

1. Outer boundary - target size (m) 2B 0.2000 0.1500 0.1000 0.0500 0.0200 0.0150 0.0120 0.0100
2. Refinement volume - target size (m) 0.2B 0.0200 0.0150 0.0100 0.0050 0.0020 0.0015 0.0012 0.0010
3. Airfoil boundary - target size (m) 0.08B 0.0080 0.0060 0.0040 0.0020 0.0008 0.0006 0.0005 0.0004
3. Airfoil boundary - first prism layer thickness (m) 6 ∗ 10−6 – – – – – – – –
3. Airfoil boundary - prism layers total thickness (m) 0.007 – – – – – – – –
3. Airfoil boundary - number of prism layers 30 – – – – – – – –

Resulting cell count (2D): 28.8K 48.1K 90.3K 289K 1.58M 2.42M 3.92M 5.68M
Resulting cell count (3D): 7.20M

Table 3.12: Summary of base and refined mesh sizes compared in the sensitivity analysis and
subsequent simulations, with the final cell counts used in the 2D and 3D simulations high-
lighted. For values which are a function of the mesh’s base size, the resulting sizes are tabu-
lated

estimate the y+, post-simulation analysis confirmed that y+ ≤ 1 in over 95% of cells on the
surface of the airfoil.

Though detailed investigation of the wall treatment is beyond the scope of the paper, it will
be briefly mentioned that the use of a dimensionless wall distance of 30 ≤ y+ ≤ 100 alongside
a wall function was explored. Employing this so-called “high y+ wall treatment” reduces the
number of required cells by approximating the sub-scale turbulence using a log-law function.
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This technique has been shown to be effective for less turbulent scenarios, but for stalled airfoils
it was found that this technique damped vortex shedding, resulting in reduced drag compared
to cases where vortex shedding was simulated to occur.

Based on the near-wall prism layer thickness as well as the desired number of prism layers
and the scale between adjacent layers, the total thickness of the prism layers can be estimated
using the following equations:

youter = ynearwall(sn−1) (3.26)

ytotal = ynearwall

n−1∑
i=0

si (3.27)

Here, ynearwall is the thickness of the near-wall prism layer, n is the number of prism layers, s
is the scaling factor between prism layers, and ytotal is the combined thickness of all the prism
layers. youter is the thickness of the outermost prism layer, which should be comparable in size
to the adjacent mesh to prevent large jumps in size. In this case, assuming 30 prism layers and
a scaling factor of 1.2, the total thickness of the layers was estimated at about 0.007 m.

An additional parameter that must be considered in unsteady CFD simulations is the Courant
number, which controls the maximum allowable time step length during a simulation. The
Courant number is defined as:

C =
u∆t
∆x
≤ 1 (3.28)

Here, C is the Courant number, U is the wind speed, ∆t is the time step length, and ∆x is the
mesh size. Simply put, this parameter ensures that the flow is unable to travel farther than one
adjacent cell between time steps, improving the stability and convergence of the analysis. In
reality, the Courant number is the sum of three terms in the x-, y-, and z-directions of the flow,
however, in this case Ux ≫ Uy,Uz and thus the other terms can be disregarded. It was found
that this parameter can be oppressive at the finest mesh points along the airfoil, recommending
time steps of below 10−6 s. Instead the time step for unsteady analyses was selected at 10−4 s
using the general properties of the refined cross-section of the domain (see Figure 3.15) where
U=49.3 m/s and ∆x=0.006 m.

A mesh sensitivity analysis was also performed to confirm that the flow was modelled
properly beyond the surface of the airfoil. As shown in Table 3.12, this was done by setting the
mesh size of certain surfaces and regions as a function of the base mesh size of the simulation,
applying a conservative growth rate of 1.05 to the automatic mesher, and varying the base size
of the mesh between 0.100 m to 0.005 m. By comparing the recorded lift and drag coefficients
predicted by each simulation, once the mesh became fine enough that consistent results were
obtained, it was deemed that the results had become mesh-insensitive.

Eight different base sizes were tested via 2D URANS simulations using the k-ω closure
model at angles of attack of 8◦ and 17◦ for the mesh sensitivity analysis as described in Ta-
ble 3.12. These angles of attack were chosen such that the former would capture the pre-stall
flow and the latter the post-stall flow. Table 3.13 and Figure 3.16 summarize the resulting drag
and lift coefficients for the sixteen simulations and compare them to the predicted 2D lift and
drag coefficient curves calculated in Sections 3.2.4 and 3.2.6. As one would expect, it can be
seen that the simulations converge more readily in the simpler flow at the pre-stall angle of
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AoA = 8◦ Drag Lift

Base size (m) Force (N) Coefficient % change Force (N) Coefficient % change

0.1000 20.1 0.099 – 113.1 0.56 –
0.0750 18.4 0.091 8.9% 101.5 0.50 11.5%
0.0500 13.6 0.067 35.2% 123.6 0.61 17.9%
0.0250 7.2 0.035 90.8% 155.1 0.76 20.3%
0.0100 4.0 0.020 77.5% 173.0 0.85 10.3%
0.0075 3.8 0.019 6.7% 172.8 0.85 0.1%
0.0060 3.6 0.018 4.0% 173.1 0.85 0.2%
0.0050 3.5 0.017 3.7% 174.2 0.86 0.6%

Predicted 0.026 ± 0.019 0.84 ± 0.18

AoA = 17◦ Drag Lift

Base size (m) Force (N) Coefficient % change Force (N) Coefficient % change

0.1000 50.5 0.25 – 121.4 0.60 –
0.0750 48.4 0.24 4.4% 116.1 0.57 4.6%
0.0500 45.7 0.22 5.8% 113.0 0.56 2.8%
0.0250 43.7 0.21 4.7% 107.2 0.53 5.4%
0.0100 64.9 0.32 32.7% 178.1 0.88 39.8%
0.0075 70.8 0.35 8.4% 193.6 0.95 8.0%
0.0060 77.0 0.38 8.1% 215.3 1.06 10.1%
0.0050 75.2 0.37 2.5% 211.9 1.04 1.9%

Predicted 0.122 ± 0.021 1.05 ± 0.14

Table 3.13: Summary of mesh sensitivity analysis results at angles of attack of 8◦ and 17◦,
including the relative percent change in the coefficient as the mesh is refined, performed using
2D URANS simulations. The predicted results come from Sections 3.2.4 and 3.2.6

attack. It can also be seen that the converged results match the predicted model quite well for
both instances of lift and for the pre-stall drag.

It is shown in Figure 3.16 that the CFD-generated drag coefficient far exceeds the value
predicted by the synthesized curve from Section 3.2.6. The reason for this discrepancy likely
stems from the data used to generate the predicted drag coefficient curve in Section 3.2.6:
the XFOIL simulations in Airfoil Tools (2021) use a simplified pressure panel method (Drela,
1989) that can struggle to model airfoil stall, and the CFD simulations by Huang et al. (2004)
used a relatively coarse mesh of only 210K cells which, as shown here, may not predict accurate
drag results. This latter phenomenon can be seen in the mesh sensitivity analysis; at the higher
base cell sizes the flow over the airfoil remains attached and the drag is lower. As the mesh is
refined, the flow remains attached and the drag coefficient value approaches the value predicted
by the synthesized curve, but once the base size reaches 0.01 m – the same mesh size where the
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Figure 3.16: Results of mesh sensitivity analysis, with predicted results shifted slightly for
visibility. Note the mismatch between synthesis- and CFD-predicted drags at the 17◦ angle of
attack

cell count significantly exceeds the simulations by Huang et al. (2004) – the flow detaches and
the drag increases significantly. This is further supported by the high wall treatment simulation
discussed above, when a coarser prism layer mesh with a y+ ≈ 30 was tested, the flow remained
attached and a drag coefficient of 0.14 was found at this angle of attack. It appears clear that
despite the airfoil being beyond its stall angle, the vortex suppression that is caused by 2D
simulations and coarse meshes restricted vortex shedding in the simulations by Huang et al.
(2004) and thus the predicted drag coefficient curve will be incorrectly lower than calculated
by the detailed CFD simulations.

Despite the discrepancy between the predicted and calculated drag coefficients, the mesh
sensitivity results can be used to identify a target mesh size. By judging the percentage change
between predicted coefficients shown in Table 3.13 as the mesh is refined, it appears that mesh
sensitivity is mostly eliminated at a base mesh size of 0.006 m across all four criteria. Thus all
subsequent 2D simulations will use a base mesh size of 0.006 m, as specified in Table 3.12.

3.3.3 2D simulation results

Using the validated mesh, a series of 2D simulations were performed of the airfoil at sixteen
angles of attack ranging from 0◦ to 26◦, with a focus on the angles near stall condition. While
LES can not be performed in a 2D environment, four other types of CFD simulations were
performed for a total of 64 simulations, out of which the resulting lift and drag coefficient
curves were extracted. These conditions consisted of a RANS simulation using the k-ω closure
model and three URANS simulations using the Spalart-Allmaras, k-ε, and k-ω closure models.



3.3. CFD simulations 69

Angle of RANS (k-ω) URANS (k-ω) URANS (k-ε) URANS (Spalart–Allmaras)

Attack Drag (N) Lift (N) CD CL Drag (N) Lift (N) CD CL Drag (N) Lift (N) CD CL Drag (N) Lift (N) CD CL

0 2.6 0.0 0.012 0.00 2.7 0.0 0.012 0.00 2.9 0.0 0.013 0.00 2.8 0.0 0.012 0.00
4 3.6 74.5 0.016 0.33 3.0 91.8 0.013 0.41 3.3 92.9 0.015 0.42 3.0 92.8 0.014 0.42
8 5.3 148.3 0.024 0.66 4.0 178.0 0.018 0.80 4.3 182.0 0.019 0.82 4.1 181.0 0.018 0.81

10 6.1 186.0 0.027 0.83 5.0 216.0 0.022 0.97 5.3 222.0 0.024 0.99 5.0 221.0 0.022 0.99
11 6.6 211.7 0.029 0.95 5.7 233.0 0.026 1.04 6.0 241.0 0.027 1.08 5.7 239.0 0.025 1.07
12 7.4 218.8 0.033 0.98 6.6 248.0 0.030 1.11 6.9 258.0 0.031 1.16 6.5 256.0 0.029 1.15
13 8.9 218.9 0.040 0.98 7.8 258.0 0.035 1.16 7.9 272.0 0.035 1.22 7.5 269.0 0.034 1.20
14 11.8 213.0 0.053 0.95 9.6 262.0 0.043 1.17 9.2 283.0 0.041 1.27 9.1 279.0 0.041 1.25
15 18.8 192.8 0.084 0.86 59.3 190.9 0.266 0.85 11.1 288.0 0.050 1.29 11.7 279.0 0.052 1.25
16 56.1 213.5 0.251 0.96 67.0 200.8 0.300 0.90 14.0 281.0 0.063 1.26 18.3 252.0 0.082 1.13
17 79.2 227.3 0.355 1.02 76.9 214.8 0.344 0.96 20.8 238.0 0.093 1.07 65.0 202.7 0.291 0.91
18 80.8 206.3 0.362 0.92 81.0 212.2 0.363 0.95 55.9 209.3 0.251 0.94 71.8 198.0 0.321 0.89
20 79.2 188.1 0.355 0.84 101.1 248.8 0.453 1.11 64.4 189.5 0.288 0.85 85.3 208.6 0.382 0.93
22 104.0 227.0 0.466 1.02 114.3 254.7 0.512 1.14 90.7 225.8 0.406 1.01 97.3 217.1 0.436 0.97
24 111.4 229.7 0.499 1.03 131.8 270.5 0.590 1.21 115.1 257.5 0.515 1.15 109.4 223.5 0.490 1.00
26 143.4 274.7 0.642 1.23 149.8 285.2 0.671 1.28 144.8 296.9 0.648 1.33 153.1 292.7 0.686 1.31

Table 3.14: 2D CFD simulation results

This allows for a comparison between RANS and URANS in the 2D environment as well as a
comparison of three three main turbulence models used in CFD.

Snapshots of the instantaneous flow speeds around the airfoils at angles of attack of 8◦ and
17◦ were captured for each of the four types of simulation, as shown in Figure 3.17. As can be
seen, the behaviour is quite consistent across all presented simulations. At angles of attack of
8◦, it can be seen that the flow remains attached to the airfoil and there is very little downstream
turbulence as a result. However, when the stall angle is exceeded as shown in the 17◦ sims,
the flow separates and causes oscillating vortex shedding in the downwind flow. The four
simulations predict essentially identical behaviour in the pre-stall simulation, however in post-
stall simulation there is a clear difference between the k-ω model and the other options. Both
the Spalart-Allmaras and k-ε models appear to suppress vortex shedding as the separated flow
remains smooth downwind with very little vorticity in the wake. Conversely, the k-ω model
simulates significant vortex shedding around the airfoil in the post-stall regime. The zoomed-
out views in Figure 3.17 show the vortices as the downstream areas of increased flow. The
vortex shedding appears to be more regular for the URANS simulation compared to the RANS
simulation, stemming from URANS’ ability to approximate unsteady flow whereas the RANS
simulation reports the time average.

The average lift and drag on each airfoil during each simulation was recorded and used
to calculate the resulting drag and lift coefficients. These results are listed in Table 3.14, and
plotted in Figure 3.18, where they are compared to the predicted 2D drag and lift coefficient
curves that were generated in Sections 3.2.4 and 3.2.6. Despite the differences in predicted
flows in Figure 3.17, relatively good matching can be seen between all four simulations, with
the biggest difference being when stall occurs.

The RANS model, unsurprisingly, see the largest amount of variation as its curves struggle
to converge in the post-stall regime, due to attempting to capture time-dependent behaviour
using a time-averaging solver. It can also be seen to underestimate the pre-stall lift coefficient
compared to the predicted curve more than the other simulations.

Between the three URANS simulation, they can all be seen to perform fairly similarly.
From the flows captured in Figure 3.17, it is known that at an angle of attack of 17◦ the wake
is much smoother for the k-ε and S-A simulations, resulting in their higher predicted lift and
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Figure 3.18: Lift and drag coefficient curves predicted by the 2D CFD simulations, including
RANS and URANS simulations using Spalart-Allmaras, k-ε, and k-ω closure models, com-
pared to the predicted coefficient curves ± one standard deviation (σ)

lower predicted drag compared to the k-ω simulations. Based on the flow snapshots and the rec-
ommendations by previous researchers, it can be argued that the k-ω model plots the smoothest
curves and remains closest to the predicted model. Of the three, it also begins to stall the earli-
est and thus has the lowest maximum lift coefficient. Recall that delayed stall can be a sign of
unintentional numerical damping occurring in the fluid simulation.

Comparing the predicted lift and drag curves to the generated CFD simulations, it can be
seen that matching is decent, particularly for the k-ω simulations, though as the previous 2D
simulations typically ended at the stall angle, the post-stall behaviour can not be compared.
The matching of the predicted drag curve to the simulations is much worse than the lift curve.
As discussed in Section 3.3.2, the previous 2D studies used to generate the predicted curve may
have unintentionally restricted vortex shedding around the airfoils, which greatly reduces the
resulting drag loads. It can be seen that matching is good until the jump at the stall angle, which
is not captured by the 2D predicted model. If the predicted 3D drag coefficient curve is instead
compared to these four simulations, matching is improved, but still not perfect. Compared to
the 3D curve, these 2D curves stall later and jump to a higher drag value after stall occurs.
As stated in Section 3.2.2, the tendency for 2D simulations to stall later with higher lift and
drag forces has been documented in previous research, and since the URANS k-ω simulation
stalls the earliest as well as the other listed advantages, it is recommended as the most accurate
model compared to both predicted curves.
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3.3.4 3D simulation results

Using the 3D mesh described in Section 3.3.2 with an across-wind span of 0.91 m as in Shel-
dahl and Klimas (1981), three types of 3D CFD simulations of the NACA 0012 airfoil at
sixteen angles of attack ranging from 0◦ to 26◦ were performed, for a total of 48 simulations.
Complete 3D RANS and URANS simulations using the k-ω closure model were performed,
as well as preliminary 3D LES simulations. The total mesh size of approximately 7.2M cells
was achieved using a coarser mesh than the 2D simulations: this mesh used a base size of
0.025 m as shown in Table 3.12. This reduction was required to create a mesh with the desired
dimensions that could be run relatively quickly considering the high number of tests and avail-
able computational resources. Since LES simulations in particular require an extremely refined
mesh to model sub-scale turbulence, this mesh was insufficient for accurate LES simulations
of the NACA 0012 airfoil; as such the reported LES results are preliminary in nature and are
presented to explore the broad trends of the technique as applied for stalled airfoils.

Instantaneous flow behaviour for each of the RANS, URANS, and preliminary LES simu-
lations at an angle of attack of 14◦ are reported in Figure 3.19. In addition to a 2D flow velocity
snapshot, the 3D vortex shedding is shown via isosurface of the Q-criterion. The Q-criterion
is a function of the difference between the vorticity and viscous stress in the flow. In general,
lower Q-criterion values will capture more of the vortex shape; a value of 10 s−1 was found to
effectively display the vortices in this case.

As can be seen, all three model show turbulent flow in the wake of the airfoils, but the
regular vortex shedding differs from the 2D simulations, possibly in part due to the coarser
mesh used in the 3D tests and well as the removal of the flow simplifications found in 2D
simulations. Overall, the following observations can be made by comparing the three mod-
els: firstly, while all three simulations capture flow separation around the inclined airfoils, the
resulting turbulence differs between the simulations. In the time-averaged RANS simulation,
the turbulence settles into regular vortex shedding; in the URANS simulation milder vortex
shedding can be seen around the airfoil that quickly dissipates downwind; and in the LES
simulation the flow moves even further away from regular vortex shedding, showing irregular
turbulence due to smaller vortices on the upper edge of the airfoil, resulting in an irregular,
turbulent wake. The 3D plots of the vorticity isosurfaces around the airfoil corroborate these
observations from the 2D flow fields: the RANS simulation shows regular vortex shedding
that detaches non-uniformly along the length of the airfoil and continues downstream a long
distance; the URANS simulation predicts smaller vortices that dissipate quite quickly; and the
LES simulations show much more complex behaviour made up of a number of smaller sub-
scale vortices, which result in long, along-wind vorticies in the wake. This latter observation
shows the ability for LES to simulate improved near-wall flow behaviour which can result in
more accurate simulations, but also its notable increase in computationally intensivity.

The resulting average drag and lift coefficient curves were extracted from the simulations.
Note that as opposed to the 2D simulations where a unit length was included in the denominator
of the calculation, the 0.91 m domain width is taken to calculate the resulting coefficients.
Table 3.15 lists the recorded drags and lifts and the resulting coefficients from the simulation,
using the same methods as Section 3.3.3. Figure 3.20 plots these results and compares them to
the 3D drag and lift curves predicted in Sections 3.2.3 and 3.2.5.

Figure 3.20 shows many of the same trends as were seen in Section 3.3.3; both the URANS
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Angle of RANS URANS Preliminary LES

attack Drag (N) Lift (N) CD CL Drag (N) Lift (N) CD CL Drag (N) Lift (N) CD CL

0 0.81 0.0 0.012 0.00 1.70 0.0 0.013 0.00 1.91 -0.2 0.009 0.00
4 0.91 27.6 0.014 0.41 1.94 54.5 0.015 0.41 2.72 75.6 0.013 0.37
8 1.26 53.6 0.019 0.80 3.29 103.1 0.025 0.77 6.10 99.5 0.030 0.49

10 1.59 65.2 0.024 0.97 4.54 120.8 0.034 0.90 9.52 112.4 0.047 0.55
11 1.87 69.7 0.028 1.04 5.84 126.3 0.044 0.94 22.28 139.7 0.110 0.69
12 2.22 73.1 0.033 1.09 7.52 123.2 0.056 0.92 28.73 142.9 0.141 0.70
13 2.73 73.7 0.041 1.10 16.07 91.9 0.120 0.69 29.44 139.9 0.145 0.69
14 3.62 68.1 0.054 1.02 19.91 83.5 0.149 0.62 38.16 135.7 0.188 0.67
15 4.18 55.2 0.062 0.82 22.19 72.8 0.166 0.54 39.63 122.9 0.195 0.60
16 14.95 46.1 0.223 0.69 24.55 67.3 0.183 0.50 43.49 123.9 0.214 0.61
17 15.63 40.7 0.233 0.61 26.42 66.8 0.197 0.50 44.05 106.6 0.217 0.52
18 18.06 45.2 0.270 0.67 28.40 67.9 0.212 0.51 45.97 104.3 0.226 0.51
20 20.64 48.8 0.308 0.73 32.39 70.9 0.242 0.53 47.49 101.9 0.234 0.50
22 22.02 46.9 0.329 0.70 36.62 74.3 0.273 0.55 50.83 100.2 0.250 0.49
24 23.45 46.0 0.350 0.69 41.32 78.3 0.308 0.58 54.36 103.3 0.268 0.51
26 31.45 59.3 0.470 0.89 45.99 81.4 0.343 0.61 57.78 109.5 0.284 0.54

Table 3.15: 3D CFD simulation results

Figure 3.20: Lift and drag coefficient curves calculated by the 3D CFD simulations, including
RANS and URANS simulations using the k-ω closure model and preliminary LES simulations,
compared to the predicted coefficient curves ± one standard deviation (σ)
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and RANS simulations follow the expected shape of the lift and drag curves, though they do
not necessarily fall in to the narrow bounds of the synthesized curves. Once again the steady-
state RANS simulation has greater variance in the post-stall region compared to the URANS
simulations, as well as being seen to stall at a higher angle of attack. However, in this case
it can be seen that the RANS simulations match the predicted curves on average more closely
than the URANS simulations in the post-stall region, despite the URANS simulations once
again plotting extremely smooth coefficient curves that show better matching pre- and at-stall.

Due to the relative coarseness of the mesh compelled by the large number of simulations
and the available computational resources, the results of the preliminary LES simulations
matched the expected results relatively poorly. As can be seen in Figure 3.20, the prelimi-
nary LES simulations strongly underestimate the lift as the airfoil approaches the stall angles
when compared to the predicted curves as well as the URANS and RANS simulations. The
post-stall behaviour matches the URANS simulations more closely, and the predicted drag
curve matches decently with the exception of the early stall jump and a lower predicted drag
at very high angles of attack. It is clear that a finer mesh is required by the LES simulations to
accurately model stall behaviour around the airfoil in future simulations.

Comparing the coefficient curves in Figure 3.20 to the captured flow behaviour in Fig-
ure 3.19 provides explanations for the differences in the predicted lifts and drags in the RANS,
URANS, and preliminary LES simulations. The URANS and LES simulations match quite
closely at the angle of attack of 14◦, while the RANS simulations predicts much higher lift
and much lower drag comparatively. Based on the vorticity isosurfaces, it can be seen that the
large, lasting vortices that are regularly shed by the airfoil in the RANS simulations are the
cause of this high lift and low drag; as the vortices become smaller and weaker in the URANS
simulations, or are subsumed by the smaller sub-scale vorticies in the LES simulation, the lift
drops and the drag increases notably. Thus, Figure 3.19 interestingly captures the broad flow
behaviour as the airfoil transitions from at-stall to post-stall behaviour.

Based on these results, it must be concluded that the URANS simulations were overall
the most effective type of CFD simulation in this study given the available computational re-
sources. URANS was capable of capturing the time-dependent stall behaviour more effectively
than steady RANS simulations, and its reduced computational intensiveness compared to LES
potentially resulted in improved stall simulation for the given mesh size limited by the available
computational resources. It is recommended that the URANS simulations be performed in 3D
which has been shown to capture more realistic behaviour of an airfoil compared to idealized
2D simulations.

3.4 Conclusions
This study aimed to characterize the aerodynamic loads on the NACA 0012 airfoil in Reynolds
numbers (Re) flows of 105 to 106. Due to the complex aerodynamic behaviour of airfoils,
particularly within this Re range, this characterization is more difficult to achieve than it would
initially seem. The first section of this study collects and examines existing experimental and
numerical studies of the NACA 0012 airfoil in flows of the given Re range performed in both
2D and 3D. It then attempts to synthesize numerical averages of these collected results by
identifying common trends which are used to develop piecewise polynomial systems. This is
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performed for lift and drag coefficient curves generated using 2D and 3D testing, for a total of
four predicted curves. The second section of this study details and reports on a series of 2D
and 3D CFD simulations, comparing the effectiveness of a variety of turbulence and closure
models. Based on these results, a series of optimal CFD parameters can be recommended.

Seven previous studies of the NACA 0012 airfoil in Re flows of 105 to 106 were exam-
ined, including five sets of experimental studies and two sets of 2D numerical simulations. The
predicted drag and lift coefficient curves from these studies were collected, reported, and plot-
ted. They were then synthesized to generate piecewise polynomial systems by identifying and
quantifying similar trends between the curves such as the peak lift coefficient value. Despite
the relatively low number of existing studies, four curves for the 3D lift, 2D lift, 3D drag, and
2D drag coefficients were generated that matched the existing data well. This synthesis method
was shown to be an effective way to combine a number of different reported curves into an av-
erage for easier comparisons to new results, and to help predict curves at Re where existing
data is limited, provided tests at Re above and below can be found.

At total of 112 CFD simulations were run in 2D and 3D at various angles of attack using
RANS and URANS with Spalart–Allmaras, k-ε, k-ω closure models, as well as preliminary
3D LES simulations. The results of these CFD simulations are compared to the synthesized
lift and drag curves from the literature analysis. Overall, matching between the CFD-generated
curves and the predicted curves is not perfect. While the general shapes match quite well, the
CFD simulations often lie outside the one-standard-deviation range plotted for the predicted
curves. This limitation likely stems from a combination of the limited number of previous
examples for the predicted curves as well as limitations in the mesh size or simulation length
of the CFD simulations performed here. LES in particular requires a much finer mesh than was
tested to truly capture the stalled airfoil behaviour.

Ultimately, it was shown that much like the existing studies, airfoil stall in this range of
Reynolds numbers is a very complex phenomenon and there was disagreement between pre-
dicted curves and those generated by the CFD simulations. Still, provided a mesh sensitiv-
ity study is performed and criteria involving the y+ values and the Courant number are met,
URANS simulations using the k-ω closure model were overall the most effective simulation
technique. The effectiveness of the k-ω closure model over other options has been noted pre-
viously, agreeing with the results here. Further, the URANS turbulence model was simpler
and less intensive compared to the LES simulations allowing the optimized mesh to effectively
perform the simulation given the available computational resources, while still approximating
the unsteady post-stall vortex shedding on the airfoil better than the steady-state RANS simu-
lations. URANS likewise has the advantage of being simpler to perform for novice CFD users
compared to LES simulations. Previous studies have identified that the idealized 2D airfoil
simulations tend to hinder vortex shedding and over-predict the maximum lift and the stall
angle. The simulations here corroborate these observations, meaning that 3D simulations are
recommended over 2D simulations given the availability of sufficient computational resources.
These observed best-practices are thus recommended for future CFD simulations of airfoils
including of full wind turbine blades.



Chapter 4

Optimizing the type and
architecture of neural
network-based surrogate
aeroelastic wind turbine blade
models

Summary

Current numerical aerodynamic wind turbine blade models – models that calculate the aerody-
namic loads on a blade based on the incoming wind – are generally computationally intensive.
However, a surrogate aerodynamic blade model consisting of a neural network (NN) trained
on high-accuracy data should be capable of achieving both high accuracy and fast computa-
tion times. In this study, six different NNs were trained using numerical data from aeroelastic
blade simulations, then compared for the highest possible prediction accuracy while main-
taining high speeds. The NNs include two time-independent multilayer perceptron (MLP)
networks with a full and reduced set of input data. A time-dependent long short-term memory
(LSTM) network was also trained, along with a similar Pseudo-time-dependent MLP. Finally, a
time-dependent convolutional neural network (CNN) and a similar Multi-time-step MLP were
trained and compared. Over 30 million data points of aeroelastic time history information of
an operational 5 MW wind turbine across 115 time histories and 23 different mean wind speeds
were numerically generated for training the networks. The architecture, input and output data,
and the optimization and training processes are provided in detail for each network, and the re-
sulting accuracy and computation times are analyzed and compared. Ultimately, it was found
that both the trained full-input MLP and the CNN were particularly accurate surrogate models,
with average normalized root mean square errors of 1.11% and 0.66% respectively. While the
CNN surpasses the full-input MLP in accuracy, the latter is simpler to train and faster to run,
thus both are compelling options for future researchers. Such a surrogate model could be used
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to predict the aerodynamic loads on a wind turbine blade when computation speed is a priority,
such as during design optimization or hybrid simulations.
This chapter is an updated reproduction of the author’s published paper “Comparison
of neural network types and architectures for generating a surrogate aerodynamic wind
turbine blade model” (Lalonde et al., 2021).

4.1 Introduction
As the global threat of climate change continues to grow, the widespread adoption of wind
turbines for energy generation is critical. The global installed capacity of wind energy was over
650 GW as of 2020 (Lee and Zhao, 2021), and this continues to increase. Further engineering
refinement will help increase the safety and efficiency of these structures, thus enabling more
complex engineering studies of wind turbines is of great value.

In numerical analyses of wind turbines, the aerodynamic calculations of the blades are the
most intensive part. The aerodynamic calculation consists of determining the loads on a blade
from the incoming wind, which is affected by the blade’s position, the airfoil geometry, and
the rotation speed of the rotor. Several numerical methods exist for performing these type of
calculations, but they tend to either compute quickly with lower accuracy, such as the blade el-
ement momentum (BEM) technique (Glauert, 1935), or to be computationally time-consuming
but high in accuracy, such as computational fluid dynamics (CFD) (Dagnew and Bitsuamlak,
2013). However, surrogate aerodynamic blade models in the form of a trained neural network
(NN) have the possibility of achieving both high speed and high accuracy provided that quality
training data is available.

Neural networks (NNs) are powerful machine learning tools that can be trained to model
relationships accurately without directly simulating the underlying behaviour. Input data is
connected to output data via neurons, which are trained to accurately predict the output from
the input. Thus, a properly trained neural network could be used to predict the resulting loads
on a wind turbine blade from a given wind field without performing the time consuming aero-
dynamic calculations that would be required using a direct model.

Such a surrogate model would be advantageous due to its high speed and ability to be com-
bined into other testing. Expedited testing is often quite valuable during the preliminary stages
of any engineering project – a high-accuracy, trained surrogate blade model would allow for
quick testing of wind turbines with greater flexibility than the more-restrictive programs that
would be used to generate the network’s training data in the first place. Expedited simulations
are also useful when performing bulk analyses, such as during parametric optimization. Addi-
tionally, the high speed of the model would allow it to be combined into types of testing with
strict physical requirements, such as real-time hybrid simulation (RTHS) (see McCrum and
Williams (2016) for an introduction to this topic). Lalonde et al. (2019) have previously exam-
ined the value that RTHS offers for studying wind turbines, and have noted that the promising
technique is currently limited by the lower-accuracy modelling techniques currently used in
this system (Lalonde et al., 2020a). A neural network-based surrogate aerodynamic wind tur-
bine model is thus a promising option for improving the accuracy of RTHS of wind turbines.

However, neural network design and training is a complex process: there are a huge number
of possible architectures and types of neural networks, and if trained improperly, a surrogate
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model is likely to be of low accuracy and value. In this study, the open-source turbine mod-
elling program OpenFAST is used to quickly generate a large number of response time histories
of a 5 MW wind turbine under operational conditions. This data is used in MATLAB 2019b
to train six different NNs to act as surrogate models for the wind turbine blades, including
multilayer perceptron (MLP), long short-term memory (LSTM) and convolutional (CNN) neu-
ral networks. The accuracy and speed at which these surrogate models can predict the blade
loads under given wind speeds at each step of a time history are evaluated and contrasted to
determine the feasibility of this technique as well as the optimal neural network type and archi-
tecture. Section 4.2 of this paper presents a summary of background information about neural
networks for readers unfamiliar to the topic. Section 4.3 details the generation of the training
data and the general training process. Section 4.4 trains and analyzes two time-independent
MLP networks – one that was supplied the full set of aerodynamic data as the input (the Full
MLP) and on that was supplied a subset of data for improved usability (the Reduced MLP).
Section 4.5 investigates a time-dependent LSTM network and a similar Pseudo-time-dependent
MLP. Section 4.6 trains and studies a time-dependent CNN and a similar Multi-time-step MLP.
Finally, Section 4.7 summarizes the effectiveness of the different NNs and draws conclusions.

4.2 Neural Network Theory and Application
Neural networks are a form of machine learning that mimics nodes in the human brain to
indirectly model the relationship between input and output data using an arbitrary number of
nonlinear equations. These equations are optimized based on the provided training data – the
networks learn to accurately predict the supplied output from the supplied inputs during this
training process. NNs can be used to model any continuous function (see Fortuner (2017) and
Nielsen (2019) for simple proofs of this concept), however, care must be taken by designers
when training NNs, as it is easy to develop misleading and inaccurate models if done poorly.
The various networks employed in this study are all supervised regression models.

This section of the paper presents previous applications of neural networks for structural
engineering applications, with particular focus given to their application in wind turbine stud-
ies, followed by a foundational explanation of neural network architecture, training, and the
three types of networks employed in this study: MLPs, LSTMs, and CNNs.

4.2.1 Previous Applications
NNs (and other forms of machine learning) have seen applications in an enormous number of
fields, often for classification or prediction purposes, and have been receiving greater focus by
structural and wind engineers in recent years. MLPs are the most common type of NN used in
these fields, but examples of more complex networks will be highlighted here.

Previous application of NNs in structural engineering and fluid mechanics have been well
documented; Salehi and Burgueño (2018) have prepared a thorough review of artificial intel-
ligence methods (including MLPs, LSTMs, CNNs and other types of machine learning) in
structural engineering. Amezquita-Sanchez et al. (2016) have prepared a literature review of
NN use in civil engineering and identified the five main areas of application: structural system
identification, structural health monitoring, structural control, material property prediction, and
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design/optimization of structures. For a historical perspective, Adeli (2002) provides a detailed
literature review of neural networks in civil engineering in the previous century.

Some notable examples of complex NNs used in structural engineering include Kao and
Loh (2011) using an LSTM to predict the static deformation of a dam based on water levels
and temperature. Luo and Xiong (2019) used an LSTM-like NN to relate external loading and
fatigue loading in structural components, and Bieker et al. (2020) used a similar network for
predictive control of a flow field. Further, Kiranyaz et al. (2019) have composed a summary
of the use of CNNs for seismic damage prediction of structures, and Sony et al. (2021) have
composed a summary of the use of CNNs for structural health monitoring.

NNs have likewise seen a wide variety of applications in wind engineering; Kareem (2020)
offers a recent overview of machine learning in this field. Similarly, Brunton et al. (2020) offers
a review of machine learning in fluid mechanics. Other notable applications include using
neural networks for studying the interference effect from neighbouring buildings (Khandui
et al., 1997; Hu et al., 2020), for modelling the effect of topography on wind flow (Bitsuamlak
et al., 2007), for predicting the response of bridge decks under wind loading (Wu and Kareem,
2011; Li et al., 2018), for aerodynamic optimization of buildings (Elshaer et al., 2017; Elshaer
and Bitsuamlak, 2018), and for predicting wind speeds (Madhiarasan and Deepa, 2017). Wind-
loaded cylinders have been studied using CNNs (Jin et al., 2018) and other machine learning
techniques (Hu and Kwok, 2020). The pressure loads on residential builds have been likewise
been studied using MLPs (Bre et al., 2019; Tian et al., 2020).

NNs have also seen some applications for studying wind turbines from both structural and
wind engineering perspectives. Where applicable, the architecture and error of the network
will be reported, however note that different studies quantify the error of the network using dif-
ferent metrics (normalized root mean square error (NRMSE), mean absolute percentage error
(MAPE), and R2 are all common metrics), so consider these errors as rough approximations
that should not be precisely compared.

• CNNs have been applied for structural health monitoring of turbines; see the review by
Stetco et al. (2020) and the modern study by Yang et al. (2021). In a similar vein, Jimenez
et al. (2017) used an MLP with 15 inputs and 6 outputs to classify delamination of wind
turbines blades, with a success rate of 91%.

• A variety of NNs have been used to predict the power production of wind turbines; see
reviews by Colak et al. (2012) and Table 1 of Lin and Liu (2020). Modern examples of
this include Yin and Zhao (2019) using an LSTM with 6 inputs and 2 outputs to predict
power production with an error of < 1%. Lin and Liu (2020) used an MLP to predict
power production with 11 inputs, 1 outputs and an error of 9%.

• Material property prediction of the stiffness and fatigue life of a turbine blade was per-
formed using an LSTM and a CNN by Liu and Leng (2020). With 30 inputs and 5
outputs, both models were able to predict the stiffness curve of the blade with an ex-
tremely low amount of error. However, due to the very low amount of training data and
the value of the resulting error (< 0.001%), the authors believe that network overfitting
may be an issue with this study.

• Wake prediction of wind farms has been explored using NNs. Richmond et al. (2020)
used an MLP (among other machine learning techniques) to predict the downwind wind
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speed. Their MLP with 2 inputs and 1 output was only able to achieve an error of 12%.
Ti et al. (2020) developed an impressive set of MLPs capable of predicting a 2D vertical
cross-section of the wake behind turbine(s). Using only 2 inputs, they were able to
predict the resulting wind speed at 240,000 outputs with an average error of only 2-5%.

• NNs have also been used in optimization of wind turbines. Optimizing blade and airfoil
geometries of wind turbines blades using NNs has been attempted by Ribeiro et al. (2012)
who achieved an error of 6% using an MLP with 9 inputs and 2 outputs, and by Sessarego
et al. (2020) who achieved an error of 1% using an MLP with 6 inputs and 2 outputs.
Zhao et al. (2019) used a MLP to predict the optimal parameters of a damping device for
wind turbines, achieving an accuracy of 1% with 2 inputs and 2 outputs.

It can be seen that NNs offer a number of applications in wind turbine research. Some
general trends that can be seen are that while most research is capable of developing a network
of acceptable accuracy (error ≤ 5%), NNs with more than a tiny number of inputs and outputs
struggle to achieve very high accuracy (error ≤ 1%). Further, of the five applications of NNs
for structural engineering, NNs for structural system identification are underrepresented when
studying wind turbines. This paper will detail the development of high-accuracy NNs with a
large number of inputs and outputs for developing a surrogate aerodynamic blade model, which
represents a type of structural system identification.

4.2.2 Neural network architecture
As stated previously, neural networks are trained to connect input data to output data without
performing the underlying equations that connect them. The architecture of NNs is built out
of a series of layers as shown in Figure 4.1. The input layer of the network is connected to
the output layer by an arbitrary number of hidden layers, and each layer is built of a certain
number of nodes. Each node in the input layer represents an individual value in the layer, thus
a network with ten inputs will have ten nodes in the input layer. NNs with multiple hidden
layers are sometimes referred to as deep networks.

The most common type of hidden layer in a NN is a fully-connected layer. The network
shown in Figure 4.1 is made entirely of fully-connected layers. In a fully-connected layer,
each node is connected to every node in the layer before and after it, and the value of the node
is a weighted sum of the nodes in the previous layer, plus an internal bias, passed through a
nonlinear activation function such as tanh or ReLU to produce the overall output of the node,
as defined in Equation 4.1:

xi j = g

bi j +

Ki−1∑
k=1

x(i−1)kW(i−1)k j

 (4.1)

Here, xi j is the value of the jth node on the ith hidden layer, g() is the activation function, bi j

is this node’s bias, x(i−1)k is the value of node k on the previous layer, W(i−1)k j is its respective
weight, and Ki−1 is the total number of nodes on the previous layer.

MLP NNs are built entirely of fully-connected layers as shown in Figure 4.1, which is the
cause of their relative simplicity. Conversely, LSTM and CNN include additional complexities
that will be discussed in Sections 4.2.5 and 4.2.6.
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Figure 4.1: Generic NN architecture with two fully-connected hidden layers

4.2.3 Training process

Training a neural network refers to optimizing the weights and biases in the network, as well
as the hyperparameters, such that the predicted output is as accurate as possible. This is done
by supplying the NN with a set of training data that includes input data with its associated
output data. The network then learns to predict the output accurately using the training data as
a guide. As a rule, the longer a NN is allowed to train and the more training data it is provided,
the more accurate the network will be. This also means that the neural network is only valid
for predicting outputs of inputs that fall within the bounds of the training data, as it will not
have learned how to accurately predict outputs beyond those bounds.

Training the NN occurs in two stages: first the hyperparameters are optimized, then the
final NN is trained using the full training data set with these optimized hyperparameters. The
term hyperparameter refers to any parameters of the network that are not directly optimized
during the training, which includes values that define the architecture and training process such
as the number of hidden layers, the size of the hidden layers, the learning rate of the net-
work, and the number of epochs for training. Since the hyperparameters are not optimized
during the training itself, an external optimization process (typically the Bayesian optimiza-
tion algorithm – see Frazier (2018) for an introduction to this technique) is employed instead.
Figure 4.2 shows the full optimization and training process employed in this study. This pro-
cess involves specifying possible ranges of values for the hyperparameters, then during each
step of the optimization process a NN is quickly trained on a subset of the training data using
some combination of possible values for the hyperparameters, and the accuracy of each NN
is recorded. After some number of rounds of optimization, optimal hyperparameters can be
estimated, which are employed in the final network training.

During the final network training, a neural network is trained on the full training set using
the optimal hyperparameters. Training of the neural network is done using a back-propagation
algorithm – in this study the stochastic gradient descent with momentum (SGDM) method was
used.

The optimization target of both processes is to lower the overall average normalized root
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Figure 4.2: Flowchart of the optimization and training process of a neural network

mean square error (NRMSE) between the predicted and true outputs for all time histories for all
outputs. After generating the predicted outputs for a given time history, the RMSE is calculated
using Equation 4.2:

RMSE =

√∑T
t=1(ôt − ot)2

T
(4.2)

Here t is the current time step which ranges from 1 to T ; ôt is the predicted output value at the
given time step; and ot is the true output at the given time step. The NRMSE calculation is then
performed using Equation 4.3:

NRMSE =
RMSE

omax − omin
(4.3)

Here omax and omin are the maximum and minimum values of o for the given time history,
respectively. This NRMSE value is then averaged across all outputs and time histories to
return a single value to be reduced by optimization.

4.2.4 Multilayer perceptron (MLP) networks
As discussed previously, MLPs are one of the most basic form of NNs, built entirely of fully-
connected layers – an example of this architecture is shown in Fig 4.1. MLPs are a type of
feed-forward neural network. Being quite generic, MLPs can be applied to nearly any machine
learning problem, and are easier to train and implement while still capable of developing highly
accurate models. However, this means that more specialized types of neural networks may be
able to outperform the MLP, which is why LSTMs and CNNs are also investigated. In this
study the MLPs are limited to studying each time step of a time history as an independent data
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sample, thus its ability to consider time-based phenomena is very restricted, which was thought
to pose an issue given the nature of the data used in this study.

4.2.5 Long short-term memory (LSTM) networks
LSTMs are a form of recurrent neural network (RNN), which are designed to process time
series data. Rather than considering each time step as an independent data point, RNNs are
capable of remembering data between time steps, and LSTMs in particular are designed to
have long memory. This memory, also referred to as the cell state, allows the networks to
consider previous data when predicting the current output, and thus LSTMs are theoretically
able to achieve higher accuracy for time history processes than MLPs.

Figure 4.3 shows the layout of a LSTM network. As can be seen, the main difference
between the LSTM and the MLP is the addition of the LSTM layer. Each LSTM layer contains
the cell state that remembers data – at each time step, based on the input data, some data
is forgotten by the cell state, some data is added to the cell state, then the cell state and the
input data are used together to predict the layer output, using similar nodal equations to those
employed in a fully-connected layer. For a very clear explanation of the internal workings of
the LSTM layer, readers are directed to Phi (2018).

Figure 4.3: Layout of an LSTM NN with one LSTM layer and one fully-connected layer

The limitations of LSTMs are that the added complexity increases the time and computa-
tional requirements of training the network. Furthermore, if the temporal relationship between
neighbouring data is not significant, the added complexity and variables to optimize can results
in a network with reduced accuracy compared to modelling each time step independently.

4.2.6 Convolutional neural networks (CNNs)
CNNs are designed to process image data by passing filters (also known as detectors) over
an image to compress salient features, applying an activation function, and then pooling the
results. These steps are referred to as convolution, activation, and pooling respectively. By
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performing this process multiple times, neurons farther down the network are connected to
large areas of the original image, and the number of calculations needed versus an equivalent
MLP is strongly diminished.

Figure 4.4 shows the architecture of a typical CNN. The convolution layers slide multiple
small 2D windows over the input image and apply a filter (which can be considered as similar
to the weights in a fully-connected layer). This is performed a number of times, then the
filtered images are passed through the activation function and are pooled, which consists of
reducing areas of images into their max or average values, i.e. if a 2x2 section of the image
is pooled, then the resulting pixel’s intensity will be the average intensity of the four pooled
pixels, and the size of the image will be reduced by 3/4th. Pooling is performed to control
the number of variables in the network and increase the receptive field of deeper layers. This
convolution-activation-pooling process is often performed a number of times and followed by
fully-connected layers to maximize the accuracy of the CNN.

Figure 4.4: CNN network architecture

CNNs can be applied to time history data as a 1D CNN, in which time history data is
normalized and arranged as a 1D grayscale image, where each pixel is one time step and the
intensity of the pixel its corresponding value (i.e. white is equal to zero and black is equal to
one). Passing an image such as this through a CNN will allow neurons deeper in the network
to have a view of a number of adjacent time steps when training the network. However, in this
study, since each time step has multiple inputs, rather than a grayscale image that has a single
channel, a 1D image with a number of channels equal to the number of inputs is provided to
the network to predict the resulting blade loads at each time step. Section 4.6.1 of this paper
delves into this configuration in further detail. This form of CNN has similar advantages to
LSTMs: the possibility of improved accuracy for analyzing time history data, however due to
the size reduction of the network caused by the convolution and pooling, the risk of reduced
accuracy due to increased complexity is lowered. There is no consensus within the machine
learning community as to whether LSTMs or CNNs are superior for time-history analysis, thus
both are considered in this study.

4.3 Methodology
The open-source wind turbine modelling software OpenFAST (Jonkman et al., 2021) was used
in this study to generate the training data for the NNs.
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Hub height wind Rotor speed Blade pitch Hub height wind Rotor speed Blade pitch
speed (m/s) (rpm) (◦) speed (m/s) (rpm) (◦)

3* 6.9 0 15 12.1 10.5
4 6.9 0 16 12.1 12.1
5 6.9 0 17 12.1 13.5
6 6.9 0 18 12.1 14.9
7 7.4 0 19 12.1 16.2
8 8.5 0 20 12.1 17.5
9 9.6 0 21 12.1 18.7

10 10.6 0 22 12.1 19.9
11** 11.7 0 23 12.1 21.2

12 12.1 3.8 24 12.1 22.4
13 12.1 6.6 25*** 12.1 23.5
14 12.1 8.7 *Cut-in; **Approximate rated; ***Cut-out

Table 4.1: Specified rotor speed and blade pitch for the given hub height wind speeds. Five
simulations were run at each wind speed

Numerical simulation of an operational 5 MW wind turbine under a range of wind speeds
was used in this study to generate the training data for the NNs. MATLAB was used to optimize
and train the various NNs which was run on a supercomputing platform. This section specifies
the details of the generated data and of the NN training processes.

4.3.1 OpenFAST simulations
The open-source wind turbine modelling software OpenFAST (Jonkman et al., 2021) was used
to simulate the aeroelastic response of NREL’s standard 5 MW wind turbine (Jonkman et al.,
2009). This turbine has a hub height of 126 m and a blade length of 63 m. The cut-in and
cut-out hub height wind speeds for this turbine are 3 m/s and 25 m/s, respectively, and the
turbine was operational for all simulations. Table 4.1 summarizes the operational conditions of
the wind turbine at each wind speed considered in this study.

The wind fields used during these simulations were generated using the software TurbSim
(Kelly and Jonkman, 2012), which is capable of generating wind field time histories according
to the conditions specified by the IEC turbine design codes (IEC, 2005). In this case, the wind
fields had the following specifications: a duration of 600 s, a von Karman turbulence model of
normal-B IEC turbulence levels, a power law wind profile with exponent of 0.2 and a surface
roughness of 0.05. For each of the wind speeds listed in Table 4.1, five distinct time history
simulations were performed, each with a distinct random seed for generating the wind field.
Thus a total of 115 OpenFAST simulations were performed – five trials each for the 23 distinct
wind speeds.

OpenFAST performs aerodynamic calculations using the blade element momentum (BEM)
technique (Glauert, 1935), which has seen wide usage and validation previously. The BEM
technique consists of dividing the turbine blade into 2D airfoils, determining the drag and lift
loads on the airfoil based on the wind speed and angle of attack, summing these loads along
the length of the blade, and finally multiplying by some factors to account for 3D effects such
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Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
r (m) 63.0 61.8 58.7 56.2 52.5 48.9 44.6 40.2 36.6 32.3 27.9 24.3 20.0 15.6 12.0 8.3 5.8 2.7
r/R 1.0 .98 .93 .89 .83 .77 .70 .63 .57 .50 .43 .37 .30 .23 .17 .11 .07 .02

Table 4.2: Nodes along the turbine blade where data was recorded

as tip loss. More details about the BEM technique as well as examples of its use can be found
in Section 2.4. BEM theory can be described as high-speed but low-accuracy. Since this study
is exploratory in nature, lower-accuracy training data was deemed be sufficient for finding the
optimal NN types and architectures, which can be trained in future studies with higher-accuracy
data.

The individual OpenFAST simulations were run at a time step of 0.02 s for the full 600 s
wind field time histories, thus each time history consisted of 300,000 time steps. Across all
115 time histories, this resulted in a total of 34.5 million data points in the full data set. The
ElastoDyn module was used for aeroelastic calculations of the blades. The input wind speed
as well as the deflection and force responses were extracted at each time step at the hub and
18 nodes along one of the turbine blades. Since OpenFAST is only capable of extracting data
from 9 points on a blade per simulation, each simulation was run twice to extract the data for
the full 18 points. Table 4.2 specifies the location of each node along the 63 m blade.

Table 4.3 lists the various data points recorded at each step from the analysis, some at the
hub and some at 18 points along one of the blades. Note that the velocity and acceleration are
the instantaneous values at each time step. These data points have been grouped into five broad
categories: Geometry, Wind Speed, Deflected Shape, Structural Velocity/Acceleration,
and Loads. Thus, the Wind Speed category includes the wind speed recorded at the hub in
the fore-aft and side-to-side directions, as well as the wind speed in the edgewise and flapwise
directions at 18 points along the blade, resulting in 38 points of data per time step. These data
groups will be used either as inputs or outputs to the NNs; the specifics usages are discussed in
Sections 4.4-4.6.

Figure 4.5 explains the different data and their coordinate systems recorded from the Open-
FAST simulations. Fore-aft and side-side responses are measured at the hub, while flap and
edgewise are measured at the blade and are relative to the orientation of the airfoil.

4.3.2 Data pre-processing

Data pre-processing consisted of normalizing the data and splitting it into training groups.
Data must be normalized prior to training to prevent higher magnitude data from being overly-
valued. Data was normalized against its absolute maximum, which preserves the zero-mean
nature of the structural vibrations and restricted the data to a range of [-1, 1]. Because this range
was used rather than a more typical [0, 1] range, the tanh activation function was employed in
all neural networks rather than the more typical ReLU function.

After normalization, data was split into training, validation and testing sets. The training
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Data group name Recorded at hub (1 per time step) Recorded at blade nodes (18 per time step)

Geometric
(input)

Blade azimuth (°) -
Rotor speed (rpm) -
Blade pitch (°) -

Wind Speed
(input)

Wind speed, fore-aft (m/s) Wind speed, edgewise (m/s)
Wind speed, side-to-side (m/s) Wind speed, flapwise (m/s)

Deflected Shape
(input*)

Deflection, fore-aft (m) Deflection, edgewise (m)
Deflection, side-to-side (m) Deflection, flapwise (m)

Structural
Velocity/
Acceleration
(input**)

Velocity, fore-aft (m/s) Velocity, edgewise (m/s)
Velocity, side-to-side (m/s) Velocity, flapwise (m/s)
Acceleration, fore-aft (m/s2) Acceleration, edgewise (m/s2)
Acceleration, side-to-side (m/s2) Acceleration, flapwise (m/s2)

Loads
(output)

Shear force, fore-aft (N) Shear force, edgewise (N)
Shear force, side-to-side (N) Shear force, flapwise (N)
Moment, fore-aft (Nm) -
Moment, side-to-side (Nm) -

*Not used in the Reduced MLP in Section 4.4.1; **Only used in the PTD MLP in Section 4.5.3

Table 4.3: Recorded data from OpenFAST simulations

data set is used to train the network. The validation data set is used to validate the training,
ensuring that overfitting does not occur. The testing set is used to evaluate the trained network.
In this case, a 60-20-20 distribution between the three sets, respectively, was chosen. Since
each mean hub wind speed had five associated time histories, three per wind speed were given
to the training set, one was given to the validation set, and one was given to the testing set.
This ensured that there was an even distribution of mean wind speeds between each set. This
meant that ultimately, 69 time histories were used to train each neural network, 23 were used
for validation and 23 we used for testing.

4.3.3 Training Procedure

The Deep Learning Toolbox in MATLAB 2019b (Beale et al., 2019) was used for the construc-
tion and training of the NNs. While open-source tools such as the Python-based TensorFlow,
PyTorch and Keras are more typical and more robust for machine learning research, MATLAB
offers a straight-forward platform for NN applications, which is why it was chosen for this
research as well as by Zhao et al. (2019). NNs are trained using the trainNetwork command,
using the stochastic gradient descent with momentum (SGDM) method in the back-propagation
algorithm due to its somewhat improved convergence speed compared to the other available op-
tions (Dogo et al., 2018). Network layers were specified in a vertical array – the specific layers
used for each NN are detailed in Sections 4.4-4.6.

There are a numerous number of hyperparameters that define a NN, but the greater the
number of optimization variables, the longer the Bayesian optimization process will take to
perform. Thus, in this study a number of hyperparameters were chosen to have fixed, conser-
vative values. These chosen hyperparameters affect the training time of the network rather than
the accuracy, thus sub-optimal values for them would be unlikely to influence the accuracy of
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Figure 4.5: Recorded wind turbine coordinates systems and data

the final results. To reduce computation time, the networks trained during the hyperparameter
optimization process were supplied with random sections of 5% of the training and validation
data, which were evenly distributed across the mean wind speed time histories. The hyperpa-
rameter optimization process was performed twice per network: in the first round a very large
range of values for each hyperparameter was given; and in the second round the range was re-
duced significantly, centered on the optimal value predicted in the first round. All of the values
used for the hyperparameters are specified for each NN in the following sections. Bayesian
optimization was performed in MATLAB using the bayesopt command, and 300 rounds of
optimization was performed for each network.

Network optimization and training was performed in MATLAB on SHARCNET’s Graham
supercomputing cluster using 16GB NVIDIA T4 Turing GPUs. The optimization and training
time of each NN is reported in the following sections have been adjusted to as if they were run
on a single GPU. As using a supercomputer for operation of a surrogate model is not feasible,
the run times of the networks were instead measured on a local machine with a 4GB NVIDIA
GTX 1050 Ti GPU. As the run times can vary slightly round-to-round depending on the values
of the input data, the reported run times are the average value of five runs each.

4.4 Time-independent aerodynamic models

This section of the paper explores two MLP NNs trained as a surrogate aerodynamic turbine
blade models. These models are considered time-independent as each point of training data is
independent from all others; neighbouring time steps have no influence on the models. The two
models developed in this section differ based on the provided inputs: a model with a full set
of aerodynamic inputs was trained and contrasted to a model with a reduced set of inputs, the
latter of which was explored due to its improved usability. This sections details the specifics of
the input and output data of the models, the hyperparameter ranges, and the resulting accuracy
and time requirements of the networks.
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Full MLP Reduced MLP

Input groups Output groups Input groups Output groups

Geometry
Wind Speed
Deflected Shape

Loads
Geometry
Wind Speed Loads

Total number of inputs
per time step: 79

Total number of outputs
per time step: 40

Total number of inputs
per time step: 41

Total number of outputs
per time step: 40

Table 4.4: Input and output data groups for the Full and Reduced MLPs, including total number
of data points per time step. Table 4.3 details the contents of each data group

4.4.1 Input and output data

The two NNs developed in this section differ based on the input and output data that is supplied
to the networks. For each time step, the input data and output data is arranged according to the
data groups defined in Table 4.3.

The first network is referred to as the Full MLP network; it was supplied the full set of
aerodynamic inputs to predict the resulting aerodynamic loads. Thus, the Geometry, Wind
Speed, and Deflected Shape groups of data from Table 4.3 were supplied as inputs, which
were used to predict the Loads group as outputs. By using a simpler, widely-used type of NN
and receiving all the information required for aerodynamic calculations, the Full MLP model
represents the baseline NN in this study, against which all other models will be judged.

The second network trained here is referred to as the Reduced MLP network. Compared
to the Full MLP, the Reduced MLP was not provided the deflected shape of the turbine blade
as an input to predict the resulting aerodynamic loads. The Reduced MLP was explored as
an option as it would have a number of advantages if it could predict aerodynamic loads as
accurately as the Full MLP. This would greatly reduce the scope of the simulations required to
generate the training data, and the trained network would likely run faster due to its reduced
number of inputs as well as be simpler to implement in a time-history simulation. However,
it was expected that the Reduced MLP would have lower accuracy compared to the Full MLP
due to the reduced number of inputs, the question was whether the drop in accuracy would be
small enough to justify the increased usability. Table 4.4 summarizes the input and output data
groups used in this section.

4.4.2 Network layers

Figure 4.6 lists the vertical array of NN layers used in MATLAB to define the architecture of
the network, where the NN figure uses the same colour scheme as the MLP previously shown
in Figure 4.1. In Figure 4.6: I refers to the number of inputs to the network; O refers to the
number of outputs; and the Layer Sizes are hyperparameters defined in Section 4.4.3.
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Figure 4.6: MLP layer architecture and sizes

Hyperparameter Full MLP Reduced MLP
Momentum Layer Size 1 Layer Size 2 Momentum Layer Size 1 Layer Size 2

Round 1 low 0.900 10 10 0.900 10 10
Round 1 high 0.999 700 700 0.999 700 700

Round 2 low 0.995 450 400 0.993 200 120
Round 2 high 0.998 600 550 0.996 280 200

Optimal 0.997 541 466 0.994 240 150

Table 4.5: Hyperparameter optimization results for time-independent MLPs

4.4.3 Optimized hyperparameters

As detailed in Section 4.2.3, two rounds of hyperparameter optimization were performed dur-
ing training. The first round used a large range of possible hyperparameters, while the second
round used a smaller range centered on the optimal value found in the first test. For the MLP
networks, it was decided that the momentum, the size of the first hidden layer, and the size
of the second hidden layer would be optimized, while the remaining hyperparameters were
assigned fixed conservative values. These fixed values included using two fully-connected lay-
ers, performing 100 epochs of training during optimization and 500 epochs during the final
training, using a batch size of 100, and an initial learning rate of 0.0001. Table 4.5 summarizes
the hyperparameter optimization results.

4.4.4 Results

The average NRMSE of the trained MLPs across all outputs and time histories is presented in
the upper right corners of Figure 4.7. It can be seen that the Full MLP achieves a notably low
error of 1.11%. Recall that it was shown in Section 4.2.1 that MLPs applied in wind turbine
studies with a large (>10) number of inputs typically have error of 5-10% (Ribeiro et al.,
2012; Jimenez et al., 2017; Lin and Liu, 2020). Thus the accuracy of the Full MLP greatly
exceeds the accuracy of previous large MLPs applied in wind turbines studies. Conversely,
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the Reduced MLP achieves an average NRMSE of only 5.78% – a value roughly comparable
to those previous NNs. The drop in accuracy stems from the reduced number of inputs to the
network as well as not providing all the information that would be required to perform the
aerodynamic calculations directly. It is reasonable to say that approximately tripling the error
is not worth the increased usability offered by the Reduced MLP, thus the Full MLP is the
recommended configuration of these options.

Figure 4.7: NRMSE of each response output averaged across all time histories for a) Full or b)
Reduced MLPs

To examine the results in further detail, Figure 4.7 also compares the average NRMSE of
the Full and Reduced MLPs across each output response using the same scale. The error in
predicting the edgewise drag and flapwise lift loads at each node, as well as the fore-aft and
side-to-side loads and moments at the hub averaged across all time histories are presented. The
values on the left of the figure refer to the loads at the hub and continue to the right along the
blade, as shown in the bottom of the figure.

Figure 4.7a presents the average prediction error for the Full MLP. As can be seen there,
the prediction error is greater for edgewise loads than for flapwise loads (note that the fore-aft
moment is governed by the edgewise loads) – this increase in error is likely due to the greater
sensitivity of the lower-magnitude edgewise loads. It can also be seen that error was greatest
at the tip of the turbine blade (where the deflections are greatest) and at the root (where the
incoming turbulent wind is a larger component of the overall wind), which may explain this
increase in sensitivity.

Figure 4.7b presents the average NRMSE of the Reduced MLP for each output. It can be
seen that the trends described for the Full MLP are true here as well, in addition to the increase
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in error across the board due to reduced number of inputs.
Figure 4.8 presents a scatter plot of the normalized Full MLP results, comparing the pre-

dicted and true output values normalized by the maximum positive true value. To prevent
overplotting, 90% of the data was randomly removed from the results before generating the
figure. Here, the outputs have been categorized into six broad groups based on whether it is the
edgewise or flapwise response and which section of the blade it falls on – the Tip group consists
of the outputs from nodes 1-6, the Middle group consists of the outputs from nodes 7-12, and
the Root group consists of the outputs from nodes 13-18 and the hub. Consult Table 4.2 for the
specific location of each of these nodes. The diagonal line on Figure 4.8 represents a perfect
prediction, and it can be seen that the prediction of the Full MLP is generally quite good with
an R2 of 0.991. Further, the most noticeable outliers are from the edgewise responses at the tip
and root and the flapwise responses at the root, which generally agree with the results seen in
Figure 4.7.

Figure 4.9 shows the accuracy of the Full MLP from the perspective of a time history
analysis. Both the wind loads predicted by the NN and the true wind loads supplied in the
training data are compared in three examples which vary by blade node and mean wind speed.
Note that the scales of the vertical axes differ for each time history. These example time
histories were chosen arbitrarily across wind speeds and locations on the blade to show the
consistency of the trends. It can be seen that irrespective of the blade node and wind speed,
the time histories predicted by the Full MLP match the true values quite well, though it can be
seen that the NN tends to slightly under-predict the loads at the peaks.

Figure 4.8: Scatter plot of 10% of the normalized Full MLP results, categorized by colour into
six broad output groups

The time required to optimize, train and run both NNs was also extracted using the tic and
toc functions in MATLAB. The results of this are shown in Table 4.6. Here, the run time refers
to the time required to run the trained network for a single time step, i.e. how long it takes
to predict a set of outputs from of a single set of inputs. As can be seen, the Reduced MLP
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Figure 4.9: Comparison of arbitrary wind load time histories between outputs predicted by Full
MLP and the true values supplied in the testing data. Each of the three examples was recorded
from a different blade node and at a different mean wind speed

Full MLP Reduced MLP

Optimization time (h) 11.6 11.1
Training time (h) 21.8 10.4
Run time (ms) 2.78 2.91

Table 4.6: Optimization, training and run times for the Full and Reduced MLPs

is quicker to optimize and train than the Full MLP due to the reduced number of inputs and
smaller layers, but the run times of the two networks are nearly identical. Both NNs take about
3 ms to predict the output of a single time step on the tested hardware, which is a feasible speed
for incorporating these models into real-time testing.

4.5 Time-dependent aerodynamic model: LSTM
The previous section of this paper details the accuracy of a time-independent MLP-based sur-
rogate aerodynamic blade model referred to as the Full MLP, which was able to achieve an
average NRMSE of 1.1% between the predicted and true output values. This section explores
possible accuracy improvements by employing a specialized type of NN designed for time
history data. In this section an LSTM network is trained and compared to the Full MLP. For
further comparison, a Pseudo-time-dependent MLP is additionally trained using structural ve-
locity and acceleration data as inputs.
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Input groups Output groups

Geometry
Wind Speed
Deflected Shape

Loads

Total number of inputs per time step: 79 Total number of outputs per time step: 40

Table 4.7: Input and output data groups for the LSTM, including the total number of inputs
and outputs per time step. Table 4.3 details the contents of each data group

4.5.1 LSTM specifications
The LSTM network uses the same groups of data as the Full MLP as shown in Table 4.7:
Geometry, Wind Speed and Deflected Shape are provided as inputs, and the Loads are obtained
as outputs.

Figure 4.10 lists the vertical array of layers for the LSTM network, using the same colour
scheme as the LSTM previously shown in Figure 4.3. Here, I refers to the number of inputs
to the network; T refers to the number of time steps in a single time history; N refers to the
number of time histories; O refers to the number of outputs; and the Layer Sizes refers the
hyperparameters defined below. Note that the sequence data must be supplied as a vertical cell
array of 2D matrices.

Figure 4.10: LSTM layer architecture and sizes

Table 4.8 details the hyperparameters optimized for the LSTM. Fixed conservative values
were applied to the remaining hyperparameter as follows: one LSTM layer and two fully-
connected layers were used, 100 epochs of training during optimization and 500 epochs during
the final training were performed, a batch size of 100 was used, as well as an initial learning
rate of 0.0001. Note that as the LSTM has higher memory requirements than a fully-connected
layer, the maximum layer sizes of the network had to be reduced.
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Hyperparameter Momentum LSTM Layer Size Fully-Connected
Layer Size 1

Fully-Connected
Layer Size 2

Round 1 low 0.880 10 10 10
Round 1 high 0.999 120 400 400

Round 2 low 0.880 110 260 380
Round 2 high 0.920 120 300 420

Optimal 0.890 110 280 395

Table 4.8: Hyperparameter optimization results for the LSTM

4.5.2 LSTM results
The average NRMSE of the trained LSTM across all outputs and time histories is shown in Fig-
ure 4.11 to be 2.45%, which is greater than the prediction error of Full MLP network (1.11%).
Figure 4.11 further details the NRMSE values of each output variable. It can be seen that com-
pared to the Full MLP results, the edgewise response error of the LSTM is comparable, but
that the error in predicting the flapwise loads is much higher. In fact, unlike either of the MLP
networks, the LSTM seems to be equally effective at predicting the flapwise and the edgewise
responses. Similar to previous networks, accuracy was the greatest near the midpoint of the
blade and was lower at the hub and tip.

Figure 4.11: NRMSE of each response output averaged across all time histories for the trained
LSTM

Table 4.9 presents the optimization, training and run times of the network. Here it can be
seen that the optimization and training time exceeds those of the Full MLP due to the increased
number of variables within the LSTM to optimize. This increased number of variables also
significantly increases the run time of the LSTM which exceeds 10 ms, approximately three
times the speed of the Full MLP. This longer run time would limit the applicability of this
surrogate model in real-time testing scenarios.

These results suggest that the additional temporal considerations offered by the LSTM are
not significant compared to the increased optimization difficulties by using this more complex
type of neural network. It has been proven mathematically that MLPs can exceed the accuracy
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Optimization time (h) 51.2
Training time (h) 22.6
Run time (ms) 11.71

Table 4.9: Optimization, training and run times for the LSTM

Input groups Output groups

Geometry
Wind Speed
Deflected Shape
Structural Velocity/Acceleration

Loads

Total number of inputs per time step: 151 Total number of outputs per time step: 40

Table 4.10: Input and output data groups for the Pseudo-time-dependent MLP, including total
number of inputs and outputs per time step. Table 4.3 details the contents of each data group

of RNNs depending on the type of time history data being modelled (Dreyfus, 2005). In this
case, these results imply that the instantaneous inputs to the MLP (the Geometry, Wind Speed,
and Deflected Shape data groups) are sufficient to achieve acceptable accuracy when determin-
ing the aerodynamic response, and that any improvement from considering the adjacent time
steps does not justify the increase in network complexity. This hypothesis is investigated in the
following subsection by training a Pseudo-time-dependent MLP network.

4.5.3 Pseudo-time-dependent MLP
To further investigate the impact of time dependency on the NN’s ability to predict aerodynamic
loads, the Full MLP from Section 4.4 is modified to include some time-dependent data by
providing the instantaneous structural velocity and acceleration of the blade as inputs to the
network. The addition of the velocity and acceleration offers the network an indirect view of
the state of the system in the previous time step, which is conceptually similar to an LSTM’s
indirect view of previous time steps. This new network is referred to as the Pseudo-time-
dependent MLP, the development of which is briefly summarized here.

Table 4.10 specifies the provided inputs and outputs to the network at each of the 300,000
time steps: to generate the Loads, the Geometry, Wind Speed, Deflected Shape and Struc-
tural Velocity/Acceleration wind groups are provided as inputs, resulting in nearly double the
number of supplied inputs to the network compared to the Full MLP.

The list of layers used by the Pseudo-time-dependent MLP is the same as the previous
MLPs, which is detailed in Section 4.4.2.

Table 4.11 details the hyperparameter optimization for this NN. The fixed hyperparameters
include using two hidden layers, performing 100 epochs of training during optimization and
800 epochs during the final training, a batch size of 100, as well as an initial learning rate
of 0.0001. Note that the number of final training epochs was increased to account for the
additional inputs.



98 Chapter 4. Neural network-based surrogate aeroelastic turbine blade models

Hyperparameter Momentum Layer Size 1 Layer Size 2

Round 1 low 0.900 10 10
Round 1 high 0.999 700 700

Round 2 low 0.988 270 620
Round 2 high 0.995 350 700

Optimal 0.991 299 685

Table 4.11: Hyperparameter optimization results for the Pseudo-time-dependent MLP

The average NRMSE of the trained Pseudo-time-dependent MLP was found to be 1.34%
across all outputs and time histories. This error is greater than the Full MLP (1.11%) but less
than the LSTM (2.45%). By providing the structural velocity and acceleration data to the MLP
network, the accuracy was not notably increased and may in fact have been decreased; this
implies that the instantaneous structural velocity and acceleration are not significant factors in
determining the instantaneous aerodynamic loads, and thus the indirect effect of neighbouring
time steps may likewise not affect it significantly. Therefore, the use of an LSTM network
does not appear to notably improve accuracy while increasing the complexity and optimization
difficulties of the model.

The trends of the full breakdown of the NRMSE and the training time for the Pseudo-time-
dependent MLP do not vary notably from the Full MLP, thus they are excluded for brevity.

4.6 Time-dependent aerodynamic model: CNN
To further explore the time-dependency of the surrogate models, a CNN network was also
investigated to conclusively confirm the findings of the previous section. This section details
the development and analysis of a CNN aerodynamic model, as well as a Multi-time-step MLP
network for further investigation.

4.6.1 CNN specifications

The CNN network used the same groups of data as the Full MLP: Geometry, Wind Speed and
Deflected Shape were provided as inputs, and the Loads were obtained as outputs. However,
in this case the CNN analyzes whole segments of time history as an image, thus to obtain
each set of outputs, the w previous time steps were provided as inputs. This is summarized in
Table 4.12, where the CNN is designed to consider w number of previous time steps.

Figure 4.12 lists the vertical array of layers for the CNN. Here, O refers to the number
of outputs for the single predicted time step; I refers to the number of inputs to the network
per time step; the hyperparameter w refers to the number of time steps provided as an input.
Thus, each horizontal pixel in the input image represents a single time step, and each channel
in the image represents one input. The Layer Sizes hyperparameters control the size of the
fully-connected layers, and the Filter Size hyperparameter control the size of the convolutional
filters and the resulting pooling layer size. These filters convolute every channel across Filter
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Input groups Output groups

Geometry
Wind Speed
Deflected Shape

Loads

Total number of inputs per time step: 79*w Total number of outputs per time step: 40

Table 4.12: Input and output data groups for the CNN, including the total number of inputs and
outputs per time step. Table 4.3 details the contents of each data group

Figure 4.12: CNN layer architecture and sizes

Size time steps, moving across the time history one pixel at a time. The pooling layer then
pools the entire convolution row, using either max or average pooling depending on the Max
or Average Pooling hyperparameter, resulting in a number of condensed nodes equal to the
Number of Filters hyperparameter with a wide view of the input data.

Table 4.13 details the hyperparameters optimized for the CNN. Fixed conservative values
were applied to the remaining hyperparameters as follow: one round of convolution-activation-
pooling was performed followed by two fully-connected layers, 50 epochs of training during
optimization and 100 epochs during the final training were performed, a batch size of 100
was used, as well as an initial learning rate of 0.0001. Note that due to increased size of this
network compared to others, less epochs for optimization and training were used due to greatly
increased time requirements.

4.6.2 CNN results

The average NRMSE of the trained CNN was found to be 0.66% across all outputs and time
histories as shown in Figure 4.13. This error is notably lower than the Full MLP (1.11%).
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Hyperparameter Momentum Convolution
Filter Size

Number
of Filters

Max or
Average
Pooling

Number
of Time

Steps (w)

Fully-
Connected

Layer Size 1

Fully-
Connected

Layer Size 2

Round 1 low 0.900 1 1 0 (Max) 5 10 10
Round 1 high 0.999 5 10 1 (Avg.) 10 500 500

Round 2 low 0.990 3 1 0 (Max) 7 150 350
Round 2 high 0.996 5 5 1 (Avg.) 9 250 450

Optimal 0.993 3 1 0 (Max) 8 161 432

Table 4.13: Hyperparameter optimization results for the CNN

Figure 4.13: NRMSE of each response output averaged across all time histories for the trained
CNN

These results suggest that by providing the network with a number of previous time steps (8,
in this case), the error between the predicted and true outputs can be nearly halved.

Figure 4.13 also breaks down the NRMSE on a per-output basis. Studying this, it can
be seen that like the LSTM and unlike the MLP networks, there is not a significant disparity
in error between the prediction of the flapwise and edgewise loads; it struggles the most at
predicting the flapwise loads at the tip and the edgewise loads at the root.

Table 4.14 presents the optimization, training and run times of the network. Here it can be
seen that both the optimization and the training time far exceeds the previous networks, due
to the increased computations involved with the convolution process as well as the increased
number of hyperparameters. This represents an inconvenience for researchers, however since
training occurs ahead of time, it is an acceptable limitation. The run time of the CNN is only
slightly longer than the Full MLP, meaning that the model is fast enough to be used in real-time
testing environments.

Optimization time (h) 98.8
Training time (h) 85.1
Run time (ms) 3.16

Table 4.14: Optimization, training and run times for the CNN
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Hyperparameter Momentum Number of
Time Steps

Fully-Connected
Layer Size 1

Fully-Connected
Layer Size 2

Round 1 low 0.900 1 10 10
Round 1 high 0.999 10 500 500

Round 2 low 0.970 5 360 210
Round 2 high 0.980 7 440 290

Optimal 0.979 6 384 246

Table 4.15: Hyperparameter optimization results for the Multi-time-step MLP

These results suggest that by providing additional previous time steps to the network, the
accuracy can be increased. Further, the convolution and pooling process to limit the size of
the fully-connected layers while still providing access to the full set of time steps and inputs
seems to aid in this process. While Section 4.5 seemed to indicate the temporal sensitivity of
the aerodynamic calculations was low, it appears that the convolution process allows for it to be
considered in a way that does not significantly increase the complexity of the network. How-
ever, to ensure that the additional accuracy does not solely stem from the additional amount of
input data, a Multi-time-step MLP network was also developed and tested.

4.6.3 Multi-time-step MLP
To investigate whether the convolution process of the CNN is significant for the network’s
accuracy, the Full MLP from Section 4.4 is modified to receive the input data from w previous
time steps for predicting the aerodynamic loads on the turbine blade. This new network is
referred to as the Multi-time-step MLP, the development of which is briefly summarized
here.

The Multi-time-step MLP uses the same combinations of inputs and outputs as the CNN
network, as summarized in Table 4.12. The list of layers is the same as the previous MLPs,
which is presented in Section 4.4.2, except that the size of the input layer is 1 x (I∗w). Thus, this
network is essentially the same as the CNN with the convolution and pooling layers removed.

Table 4.15 details the hyperparameter optimization for this NN. The fixed hyperparameters
include using two fully-connected layers, performing 50 epochs of training during optimiza-
tion and 200 epochs during the final training, as well as using a batch size of 100 and an
initial learning rate of 0.0001 – identical initial values to the CNN, but it was found that extra
epochs compared to the CNN were required during the final testing due to the larger number
of connections in the first fully-connected layer.

The average NRMSE of the trained Multi-time-step MLP was found to be 1.60% across
all outputs and time histories. This error is greater than both the CNN (0.66%) and the Full
MLP (1.11%). This shows that the size reduction provided by the convolution process of the
CNN results is key to accurately training the network, allowing the large increase in inputs to
the network to be more effectively considered given the same amount of training.

The trends of the full breakdown of the NRMSE and the training time for the Multi-time-
step MLP do not vary notably from the Full MLP, thus they are excluded for brevity.
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Neural network Average NRMSE Input Groups Output Groups

Full MLP 1.11% G, W, D L
Reduced MLP 5.78% G, W L
LSTM 2.45% G, W, D L
Pseudo-time-dependent MLP 1.34% G, W, D, S L
CNN 0.66% G, W, D L
Multi-time-step MLP 1.60% G, W, D L

Table 4.16: Summary of the six NNs, their average NRMSE across all outputs and time steps,
and their input and output groups. Groups are described in Table 4.3 and include (G)eometry,
(W)ind Speed, (D)eflected Shape, (S)tructural Velocity/Acceleration, and (L)oads

4.7 Conclusions
Six neural networks (NNs) were investigated as surrogate aerodynamic blade models for a
5 MW wind turbine blade with the advantage of quick computational times. Previous NNs
applied to wind turbine research have achieved errors of 1-5% – errors of ≤ 1% have typically
only been achieved by networks with less than five inputs and outputs.

The training and validation data for these neural networks were generated in OpenFAST,
where an operational 5 MW wind turbine was subjected to mean hub wind speeds ranging from
3 to 25 m/s. Data of this quality was deemed sufficient for the optimization performed in this
study.

NN types considered in this study include multilayer perceptron (MLP), long short-term
memory (LSTM), and convolutional neural networks (CNN). After hyperparameter optimiza-
tion and final training, the accuracy of the network was determined by calculating the average
normalized root mean square error (NRMSE) between the predicted outputs of the network to
the supplied testing data outputs. The inputs, outputs, and total average NRMSE of each of the
six trained networks is summarized in Table 4.16. The run time of most networks was found
to be quite low at ≤ 5 ms.

The Full MLP represents the baseline time-independent network of the study. It was sup-
plied with the geometry, wind speed and deflected shape information to predict the aerody-
namic loads. The Full MLP’s average NRMSE of 1.11% represents a highly accurate network
that surpasses the accuracy of previous NNs of this size used in wind turbine studies.

The Reduced MLP received a reduced number of inputs relative to the Full MLP for a pos-
sible improvement in usability, but the resulting decrease in accuracy means that this network
is not recommended.

The LSTM and Pseudo-time-independent networks were unable to match the accuracy of
the Full MLP despite being better equipped for time-sensitive data. This suggests that the time-
sensitivity of the data was not sufficiently high to justify the increase in network size required
by these models.

The CNN provided a segment of neighbouring time steps as an image to predict the output
of a single time step. This represents an extremely large increase in the amount of input data,
but the convolution-activation-pooling process was used to reduce the size of the network while
keeping the most important information. The average NRMSE of the CNN was found to
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be only 0.66%, which was the most accurate surrogate model developed in this study. The
necessity of the convolution process is highlighted by the reduced accuracy of the Multi-time-
step MLP which received the same inputs as the CNN but did not convolute. The size reduction
of the convolution process explains why the CNN surpassed the Full MLP while the rest of the
time-dependent models failed to do so.

Overall, the CNN was found to be most accurate, while the Full MLP also achieved a
high accuracy using a simpler network. Simplicity of development is important for the neural
networks to be extended into structural engineering, and the Full MLP surpasses the CNN in
this regard. Thus, either of these network architectures could be recommended, depending on
the requirements of the researchers.

This research was limited in several ways; even though supercomputing was employed, the
hardware still had an upper limit on the number of variables that could be stored in memory
at once. This required that the generated data set be reduced to 300,000 time steps per time
history, meaning that these networks could potentially have been further optimized with more
training data. Furthermore, neural network-based surrogate models are inherently limited to
only being valid within the bound of the training data. Thus the developed surrogate models
cannot be used to accurately study a parked turbine, a turbine under wind loads exceeding the
cut-out speed, or a different size of turbine, etc. Finally, while reducing noise in input data has
been previously shown to improve NN performance (Cornford et al., 2000), this technique was
not explored in this study.

Ultimately, the CNN and Full MLP surrogate wind turbine blade models offer promising
options for time sensitive applications, either when the amount of testing is large such as during
parametric optimization, or when high computation times are required such as during real-time
hybrid simulation. Future research will look to train a surrogate model on higher-accuracy
aerodynamic data to further explore the advantages these systems offer.



Chapter 5

A comparison of passive and
semi-active tuned mass damper
systems for wind turbines

Summary

Robust semi-active vibration control of wind turbines using tuned mass dampers (TMDs) is
a promising technique. This study investigates a 1.5 megawatt wind turbine controlled by
eight different types of tuned mass damper systems of equal mass: a passive TMD, a semi-
active damping-component TMD, a semi-active stiffness-component TMD, a semi-active semi-
active damping-and-stiffness-component TMD, as well as these four damper systems paired
with an additional smaller passive TMD near the mid-point of the tower. The mechanism and
controller for each of these TMD systems is explained, such as employing magnetorheological
dampers for the damping-component control cases. The turbine is modelled as a lumped-mass
3D finite element model. The uncontrolled and controlled turbines are subjected to loading and
operational case combinations including service wind loads on operational turbines, seismic
loading with service wind on operational turbines, and high-intensity storm wind loads on
parked turbines. The displacement and acceleration responses of the tower at the first and
second mode maxima were used as the performance indicators. Ultimately, it was found that
while all the semi-active TMD systems outperformed the passive systems, it was the semi-
active damping-and-stiffness-component control system that was found to be the most effective
overall – capable of controlling vibrations about as effectively with only half the mass as a
passive TMD. It was also shown that by reducing the mass of the TMD and adding a second
smaller TMD below, the vibrations near the mid-point could be greatly reduced at the cost of
slightly increased vibrations at the tower top.

This chapter is an updated reproduction of the author’s published paper “Comparison
of semi-active and passive tuned mass damper systems for vibration control of a wind
turbine” (Lalonde et al., 2020b).

104
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5.1 Introduction
With the ongoing threat of climate change, renewable energy technologies such as wind tur-
bines continue to see increased implementation worldwide. As of 2019, the global installed
wind energy capacity was 592 GW (GWEC, 2017) and this number continues to grow. The
lifespan of wind turbines is traditionally governed by fatigue caused by dynamic wind load-
ing due to the flexibility of the structure. However, there has also been increased erection of
wind turbines in areas with high wind or seismic risks such as parts of the USA, Japan and
China, which risks structural failures (Mardfekri and Gardoni, 2015; Diaz and Suarez, 2014;
Chou and Tu, 2011). Ensuring long service lives and the safety of wind turbines is critical to
keeping their costs low and encouraging further implementation of this technology. For a more
thorough introduction to this topic, the reviews of modern vibration control methods for wind
turbines by Rezaee and Aly (2016) and Rahman et al. (2015) are recommended.

A very common structural vibration control method is the tuned mass damper (TMD).
The response of the primary structure can be reduced by adding a secondary mass within the
structure that can displace relative to the main structure. The TMD is typically connected
to the main structure by spring, damper, and/or pendulum systems. The natural frequency
of the TMD is tuned by changing the properties of this connection to improve the vibration
control effect. TMDs controls include passive, active, and semi-active systems, as shown in
Figure 5.1. Passive tuned mass dampers (PTMDs) are tuned to a single frequency, typically the
natural frequency of the primary structure. PTMDs have been applied to wind turbines in many
studies (Sun and Jahangiri, 2018; He et al., 2017; Lackner and Rotea, 2010; Murtagh et al.,
2008; Argyriadis et al., 2004), which have generally concluded that while PTMDs are simple
and effective at controlling vibration at their tuned frequency, they tend to have low robustness
and lose effectiveness for wideband loading processes. In particular, seismic loading can excite
the higher modes of a structure that often are not a concern under wind loading (Zhao et al.,
2019b). If the natural frequency of the primary structure changes over time due to damage or
through soil-structure effects, the PTMD will lose effectiveness in turn. Multiple tuned mass
dampers (MTMDs) can be used to offset the low robustness of individual PTMDs by tuning
each to a different frequency. Additionally, it is often more practical to install multiple small
masses within a structure than a single large one, and MTMDs have improved redundancy
compared to single TMDs. When applied to wind turbines, passive MTMDs have been shown
(Hussan et al., 2018, 2017; Zuo et al., 2017) to improve the response of the structure when
subjected to seismic loading which excites the higher modes of the structure. However, this
may come at the cost of reduced vibration control under service wind loading compared to a
single PTMD.

Active tuned mass dampers (ATMDs) include actuators that apply an active force to the
TMD mass to improve the vibration control effect. There have been multiple studies of ATMDs
used in wind turbines (Brodersen et al., 2017; Stewart, 2012; Lackner and Rotea, 2011) which
all have shown a strong capability for vibration control, however ATMDs are often limited
by the large electrical cost of running the actuators as well as lower reliability compared to
PTMDs.

Semi-active tuned mass dampers (STMDs) combine the benefits of passive and active sys-
tems by modifying their stiffness or damping values in real-time to improve their vibration
control capabilities. In traditional structures, STMDs have been shown to be about as effective
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Figure 5.1: Simplified models of TMDs connected to main structure. a) PTMD b) ATMD
c) STMD

as ATMDs, but with better reliability and reduced electrical costs (Kaveh et al., 2015; Sun et al.,
2014; Eason et al., 2013; Chung et al., 2013; Esteki et al., 2011; Owji et al., 2011; Chey et al.,
2009; Nagarajaiah and Sonmez, 2007; Yang et al., 2002; Pinkaew and Fujino, 2001; Riccia-
rdelli et al., 2000; Hrovat et al., 1983). There are two main methods of controlling an STMD:
by modifying the TMD stiffness in real-time to change the tuning, increasing its robustness; or
modifying the damping in real-time to increase the amount of energy absorbed by the TMD.
While both techniques have been shown to improve effectiveness compared to PTMDs, some
studies (Nagarajaiah, 2009) recommend employing the variable stiffness dampers due to the
improved robustness and the ability to tune the damper to the structural loading rather the nat-
ural frequency of the structure. Some studies also employ both variable stiffness and damping
simultaneously to control their STMDs (Sun and Nagarajaiah, 2013). There are several in-
stances of single and multiple STMDs with various control methods being employed in wind
turbines, all of which conclude that the improved robustness of the STMDs makes them more
effective than traditional PTMDs - these papers are summarized in Table 5.1.

These previous studies make it clear that STMDs can be effective at controlling vibrations
in wind turbines. However, Table 5.1 shows there exists limitations in the previous research:
they frequently test a smaller number of load cases using models that simplify the tower as a
single beam, which does not give the second mode response full consideration. With a few
exceptions (Park et al., 2019), the effectiveness of the proposed STMD is only compared to an
equivalent PTMD, not to other STMDs. Frequently these studies do not approach the design of
the TMDs from a pragmatic perspective: the physical systems used to control the stiffness or
damping are not modelled but merely assumed, which may result in the semi-active behaviour
of these models being unrealistically precise. Additionally, many studies place the TMD in the
wind turbine nacelle without acknowledging that there is limited space there for such a system
in modern wind turbine designs. A practical TMD design must allow workers to climb the
tower to maintain the turbine, and if placed within the nacelle it must not interfere with the
generator and other internal systems.

This paper aims to build upon the previous literature by studying the effectiveness of vari-
ous passive and semi-active single and multiple TMD systems with a focus on addressing the
gaps in previous research by comparing a wide array of equivalent, fully-detailed TMDs. It
compares 3D turbine models equipped with eight equivalent-mass TMD systems – a passive
TMD, an STMD that controls the TMD damping, an STMD that controls the TMD stiffness, an
STMD that controls both damping and stiffness, as well as MTMD configurations of these four
– to an uncontrolled turbine under service wind loads, high intensity wind loads, and seismic
loads with service wind. Firstly, the design of the wind turbine, the loading cases, and the TMD
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Paper Turbine
structure

STMD
location(s)

STMD control
method and
mechanism*

Does model
capture 2nd

mode?

2D or 3D
model?

Load
types

Performance
indices

Huang et al.
(2010)

Floating
offshore
turbine

Nacelle,
blades,

platform

Stiffness control
(no mechanism) No 2D

Wind,
wave

Nacelle
displacement

Arrigan et al.
(2011)

Onshore
turbine

Nacelle,
blades

Stiffness control
(no mechanism) No 2D Wind

Nacelle
and blade

displacement

Martynowicz
(2015)

Onshore
turbine Nacelle

Damping control
(numerical and
experimental
MR damper)

Yes
2D

loading
Harmonic,

chirp

Tower top
and midpoint
displacement

Dinh et al.
(2016)

Floating
offshore
turbine

Nacelle,
blades,
buoy

Stiffness control
(no mechanism) No 2D

Wind,
wave,

mooring

Nacelle, blade
and buoy

displacement

Park et al.
(2016)

Fixed
offshore
turbine

Tower
top

Damping control
(no mechanism) Yes 3D

Wind,
wave

Fore-aft
bending,

base moment

Tsouroukdissian
et al. (2016)

Fixed and
floating
offshore
turbine

Nacelle
Damping control
(no mechanism) Yes 3D

Wind,
wave

Nacelle
acceleration

Martynowicz
(2016)

Onshore
turbine Nacelle

Damping control
(experimental
MR damper)

Yes
(experimental)

2D
loading

Harmonic,
impulse

Tower top
and midpoint
displacement

Martynowicz
(2017)

Onshore
turbine Nacelle

Damping control
(experimental
MR damper)

Yes
(experimental)

2D
loading Harmonic

Tower top
and midpoint
displacement

Sun (2017)
Fixed

offshore
turbine

Nacelle
Stiffness and

damping control
(no mechanism)

No 3D
Wind,
wave

Nacelle
displacement,
base rotation

Hemmati and
Oterkus (2018)

Fixed
offshore
turbine

Nacelle
Stiffness and

damping control
(no mechanism)

Yes 2D
Wind,
wave,

seismic

Nacelle
displacement,

base shear
and moment

Park et al.
(2019)

Fixed and
floating
offshore
turbine

Tower
top

Damping control
(numerical

MR damper)
Yes 3D

Wind,
wave

Nacelle
displacement,
base moment

*Here the term “mechanism” refers to whether the paper presents a mechanical explanation of how the stiffness and / or
damping of the TD is varied, such as modelling a damping-component controller using a magnetorheological damper.

Table 5.1: Summary of previous studies of wind turbines with semi-active tuned mass dampers

models is presented. The effectiveness of the various TMD systems is compared by examining
the response of the turbines at the maxima of the first two modes. Finally, a pragmatic TMD
for modern wind turbines is proposed.

5.2 Methodology

5.2.1 Turbine model
The 3D turbine model employed in this testing was a lumped-mass, 32-degree of freedom
(DOF) finite element (FE) model built in MATLAB. The tower was built of standard beam
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elements and had a fixed base, which allowed for multiple modes to be analyzed in both the
fore-aft (FA) and side-to-side (SS) directions. The turbine’s nacelle and blades were modelled
as a lumped mass at the top of the tower with an applied moment to account for the normal
eccentricity of the center of mass. This simplification has been previously applied in numerous
studies (Zhang et al., 2019; Hussan et al., 2017; Dai et al., 2017a; Brodersen et al., 2016; Dai
et al., 2015a; Prowell et al., 2009). MATLAB was used for interconnectivity with the surrogate
models detailed later in Chapters 4 and 7.

This FEM model was made of eight prismatic beam elements in the tower above a fixed
foundation, as shown in Figure 5.2. Each beam element had eight DOF, which correspond to
the lateral displacements and rotations at the ends of the beams. Each lumped-mass node was
thus capable of displacement and rotation in both the FA and SS directions (which correspond
to xFA, θFA, xS S , and θS S respectively in Figure 5.2c). Axial deformation and torsion were not
modelled in this study. The lumped mass consisting of the nacelle and blades is described in
Figure 5.2b: ca is the modelled aerodynamic damping and Ms is the static moment caused by
the mass eccentricity of the nacelle – the values of the parameters are quantified below.

Equations 5.1-5.2 were used to calculate the stiffness and distributed mass element matrices
for the beams in this model (Reddy, 1993):

[Ke] =
2EIe

L3
e



6
−3Le 2L2

e
0 0 6 ...
0 0 −3Le 2L2

e
−6 3Le 0 0 6
−3Le L2

e 0 0 3Le 2L2
e

0 0 −6 3Le 0 0 6
0 0 −3Le L2

e 0 0 3Le 2L2
e


(5.1)

[Me] =
LDe · Le
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e
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0 0 −7.5Le −1.5L2

e 0 0 −11Le 2L2
e


(5.2)

Here, [Ke] and [Me] are the symmetrical stiffness and mass element matrices respectively, Le

is the element length, EIe is the flexural rigidity of the element, and LDe is its linear density.
Note that since turbine towers are built from circular hollow steel sections, the simplified mass,
stiffness and modal properties are the same in both the FA and SS directions.

Previous research has shown that when the aerodynamic damping provided by the spinning
rotor is considered, operational turbines have a damping ratio of approximately 5% in the FA
direction and a value of 0.5% (Katsanos et al., 2016) to 1% (Mardfekri and Gardoni, 2015) in
the SS direction – the latter of these values was used in this study. This damping behaviour
was captured using Rayleigh damping based on the first two FA natural frequencies and a 1%
structural damping ratio. The additional aerodynamic damping was simulated using a linear
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Figure 5.2: a) The 32-DOF FEM turbine model. b) Eccentricity moment and aerodynamic
damping of the top lumped-mass node. c) DOFs of a single lumped-mass node

damper attached to the top of the turbine and oriented in the FA direction, a technique suggested
by Valamanesh and Myers (2014). The damping coefficient for this damper was calculated
using Equation 5.3 based on the assumption that the first mode will govern the response at the
top of the tower:

ca = 2 · mm1 · fn · ξa (5.3)

Here, mm1 is the first modal mass; ω1 is the first natural frequency in the FA direction; and ξa is
the aerodynamic damping ratio of 4% (this plus the 1% structural damping reached the target
value of 5%). When the turbine was in the parked condition, ca was set to zero.

The turbine tested in this study was a standard 1.5 MW three-blade horizontal axis wind
turbine with a hub height of 65 m, which has previously been tested a number of times (Zhang
et al., 2019; Zhao et al., 2019a,b; Dai et al., 2017a; Sadowski et al., 2017). Table 5.2 lists the
tower properties used in Equations 5.1-5.2. As shown in Figure 5.2, the hub was modelled as a
16.83 tonne lumped mass 1.5 m above and 2.5 m in front of the center of the tower top, and the
nacelle was modelled as a 60 t mass 1.5 m above and 1 m behind. Sadowski et al. (2017) found
the first and second modal mass contributions for this turbine to be 64% and 18% respectively,
thus mm1 ≈ 100 t and mm2 ≈ 28 t. The damping coefficient of the aerodynamic hub damper was
calculated using Equation 5.3 to be 28,000 Ns/m. Modal analysis identified the maximum of
the first mode shape at the top of the tower (at a height of 61.7 m) and the maximum of the
second mode shape at the fifth node from the top (at a height of 39.8 m), which were chosen as
the installation locations for the upper and lower TMDs [see Figure 5.3].



110 Chapter 5. Passive and semi-active damping systems for wind turbines

Figure 5.3: Turbine tower mode shapes and the resulting TMD locations
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Rigidity
(Nm2)

EIe

Linear
Density
(kg/m)

LDe

1 (Top) 5.60 2.22E+10 739 5 5.40 5.15E+10 1043
2 5.46 2.73E+10 792 6 9.04 6.68E+10 1248
3 5.44 3.31E+10 844 7 11.76 8.19E+10 1529
4 5.42 3.96E+10 896 8 (Bottom) 13.61 1.12E+11 2084

Table 5.2: Turbine tower properties used in FEM model

1st FA freq. 2nd FA freq. 1st SS freq. 2nd SS freq.
(Hz) (Hz) (Hz) (Hz)

MATLAB FEM model 0.558 5.03 0.558 5.03

SAP 2000 model 0.557 4.93 0.557 4.93
% difference 0.06% 1.9% 0.06% 1.9%

OpenFAST model 0.511 4.82 0.511 4.82
% difference 8.3% 4.1% 8.3% 4.1%

Field measurements 0.490 3.85 0.481 4.07
% difference 12.1% 23.5% 13.8% 18.9%

Table 5.3: Natural frequency comparison between SAP 2000 model, OpenFAST model, and
field measurements to this study’s FEM model



5.2. Methodology 111

Load Loading Additional Operation Number of
case direction loading state time histories

SW - 10 m/s FA — Operational 10
SW - 15 m/s FA — Operational 10
SW - 20 m/s FA — Operational 10
SW - 25 m/s FA — Operational 10
HIW - 35 m/s SS — Parked 10
HIW - 40 m/s SS — Parked 10
HIW - 45 m/s SS — Parked 10
HIW - 50 m/s SS — Parked 10
HIW - 55 m/s SS — Parked 10
HIW - 60 m/s SS — Parked 10

EQ 1 FA, SS, FA+SS SW - 10 m/s Operational 3
EQ 2 FA, SS, FA+SS SW - 10 m/s Operational 3
EQ 3 FA, SS, FA+SS SW - 10 m/s Operational 3
EQ 4 FA, SS, FA+SS SW - 10 m/s Operational 3
EQ 5 FA, SS, FA+SS SW - 10 m/s Operational 3
EQ 6 FA, SS, FA+SS SW - 10 m/s Operational 3
EQ 7 FA, SS, FA+SS SW - 10 m/s Operational 3

Table 5.4: List of applied load cases

This FEM model of the uncontrolled turbine was validated by comparing the first two natu-
ral frequencies in the FA and SS directions to an identical 8-element model built in SAP 2000,
as well as a more detailed FEM model in the open-source turbine modelling software Open-
FAST (Jonkman et al., 2021). It was also verified against field measurements of a real specimen
of the test turbine near Shanghai (Dai et al., 2017b). Table 5.3 shows that the first and second
modes in the FA and SS directions were almost identical between the MATLAB and SAP 2000
model, with an increased error compared to the OpenFAST and field measurements due to
simplifications present in the 8-element turbine model.

5.2.2 Applied load cases

Three general loading conditions were considered in this study: multi-directional earthquake
(EQ) loading combined with service wind loads to an operational wind turbine, high-intensity
wind (HIW) loads applied in the SS direction to a parked wind turbine (which has been shown
to be the worst extreme wind loading case (Zhang et al., 2019; Wang et al., 2013), and service
wind (SW) loads applied in the FA direction to an operational turbine. Table 5.4 summarizes
the time histories used in this testing, with full explanations in the following sections. The
speeds following the wind load cases refer to the mean hub wind speed. Test durations were
kept consistent across all tests, thus an overall duration of 85 s was used. In seismic cases the
ground motion began 15 s into the test. A total of 40 SW, 60 HIW, and 21 EQ load cases were
applied to the uncontrolled turbine as well as the eight TMD types for a total of 1089 trials.
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5.2.2.1 Wind loading

Both the 50-year HIW loads and the SW loads were generated using the following technique,
which is described in greater detail in Zhao et al. (2019b). First, wind fields were generated
in the software TurbSim (Kelley and Jonkman, 2012) using random seeds, with parameters
selected according to IEC guidelines (IEC, 2005) using the normal wind and extreme turbulent
wind models. Table 5.5 summarizes the parameters and equations, which are based on the
mean hub wind speeds (Vhub) listed in Table 5.4. TurbSim then uses the Sandia method (Veers,
1988) to generate the wind fields. Secondly, these newly generated wind fields were applied
to the uncontrolled test turbine in OpenFAST (Jonkman et al., 2021), which uses the BEM
theory (Glauert, 1935) to calculate the resulting blade loads on the tower. The time history of
these blade loads were applied to the FEM model of the controlled wind turbine during test-
ing. This TurbSim-OpenFAST-FEM process to model blade loads has been applied in several
other studies (Mo et al., 2017; Asareh et al., 2016; Mardfekri and Gardoni, 2015). Tower and
nacelle loads were applied as concentrated loads at the appropriate DOF, which were likewise
generated using OpenFAST.

Normal wind Extreme turbulent
Parameter model (SW) wind model (HIW)

Turbulence intensity Ire f = 0.16 (same)
Turbulence standard deviation σ1 = Ire f (0.75Vhub + 5.6) σ1 = 0.11Vhub

Wind profile (z is height (m)
and zhub = 65 m V(z) = Vhub( z

zhub
)0.2 V(z) = Vhub( z

zhub
)0.11

Equivalent 10 m design wind speed V10 = 0.688Vhub V10 = 0.841Vhub

Spectrum S ( f ) = 0.05σ2
1( 42

Vhub
)−

2
3 f −

5
3 (same)

Table 5.5: Summary of IEC wind field parameters for the 1.5 MW wind turbine

Figure 5.4: Power spectrum density of blade load time histories under SW and HIW conditions
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The SW conditions ranged from a mean hub wind velocity of 10 m/s to 25 m/s, and the
HIW conditions ranged from 35 m/s to 60 m/s. Since this testing was limited to elastic turbine
response, the maximum design wind speed of 60 m/s for the test turbine was not exceeded.

Figure 5.4 shows the power spectrum density of the concentrated FA blade loads calcu-
lated in OpenFAST under representative operational and parked conditions. The peaks at
1, 2 and 3 Hz in the operational condition due to rotation of the blades are highlighted, which
disappear in the parked condition.

5.2.2.2 Seismic loading

As suggested by the Chinese seismic design code (MHURD, 2010), seven ground motion
records were scaled such that their mean spectra matched the 5%-damping design response
spectrum for rare earthquakes shown in Figure 5.5. Table 5.6 lists the chosen ground mo-
tion records and scaling factors, which were selected from the PEER database (Ancheta et al.,
2013). Both the north-south and east-west components were applied during testing, where it
was randomly selected which direction would correspond to the FA direction of the turbine.
Seismic loading was applied to operational turbines, which were simultaneously subjected to
10 m/s SW loads in the FA direction. Three cases were derived from each scaled time history:
one where the only loading was in the FA direction, one where the only loading was in the SS
direction, and one where both the FA and SS components were applied.

No. Earthquake name and station Scaling factor

1 Imperial Valley-02 (1940) — El Centro Station #9 1.55
2 Imperial Valley-06 (1979) — El Centro Array #12 1.53
3 Superstition Hills-02 (1987) — Westmorland Fire Station 1.38
4 Manjil Iran (1990) — Abbar 0.51
5 Chi-Chi Taiwan (1999) — TCU122 1.97
6 Iwate Japan (2008) — IWT010 3.17
7 Darfield New Zealand (2010) — Christchurch Cashmere HS 0.86

Table 5.6: Selected scaled ground motion records

Figure 5.5: Mean of seven scaled seismic record response spectra compared to the seismic
code requirement for rare earthquakes
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5.2.3 TMD models
TMDs reduce vibrations in structures by applying a restoring force in response to movement,
as shown in Figure 5.6. This restoring force can be deconstructed into two components: a
velocity-based damping component (FD) and a displacement-based stiffness component (FS ).
This is demonstrated by Equations 5.4-5.5, which are the equations of motion of the main
structure and the TMD for the 1-DOF case shown in Figure 5.6:

m1 ẍ1 + c1 ẋ1 + k1x1 = F − FD − FS (5.4)
m2 ẍ2 = FD + FS (5.5)

Here m1, c1, k1 are the mass, damping and stiffness of the main structure; m2 is the mass of
the TMD; x1, ẋ1, ẍ1 are the displacement, velocity and acceleration of the main structure; x2,
ẋ2, ẍ2 are the displacement, velocity and acceleration of the TMD; F(t) is the applied force
on the main structure from wind and/or seismic loading; FD is the damping component of the
restoring force which is primarily a function of ẋ1 − ẋ2; and FS is the stiffness component of
the restoring force which is primarily a function of x1 − x2.

Figure 5.6: Approximating TMD restoring forces applied to main structure in 1-DOF case as
FD and FS

In this study, the response of turbines equipped with eight different TMD systems were
compared to an equivalent uncontrolled turbine. This paper investigates a TMD placed within
the top section of the turbine tower. Since such a system would not be able to rotate with the
nacelle, a 2D TMD capable of displacing in both the FA and SS directions was used. In the
FEM model, the resulting forces from the upper TMD were applied to the lateral FA and SS
DOFs at the top node of the tower. In some cases, a secondary TMD was also placed at the
fifth node of the model from the top (see Figure 5.3), which was approximately 40 m above the
ground. This location represents the maximum response of the second mode shape of the tower
and has been found to be a failure point of turbine towers under seismic loading (Zhao et al.,
2019a). All eight damper systems used the same collective modal mass ratio of 3%. Damper
optimization was performed using the same performance indices analyzed in Section 3 of this
paper. Additionally, a maximum TMD stroke limit of ±1 m was placed on all TMDs, which
was assumed as a reasonable upper limit due to the 3 m interior diameter of the top section of
the turbine tower. The specifics of the eight TMDs, their controllers, and how they calculate
FD and FS are detailed in the following sections.

5.2.3.1 Summary of test cases

Table 5.7 summarizes the eight TMD cases studied under each load case. The tests consisted of
the uncontrolled turbine; four single-TMD cases (one passive and three semi-active that control
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Upper TMD (in all cases) Lower TMD (in MTMD cases)

Test
case:

TMD mass
(modal

ratio µR)

Damping
component (FD)

control

Spring
component (FS )

control

TMD mass
(modal

ratio µR)

Damping
component (FD)

control

Spring
component (FS )

control

No TMD 0 — — 0 — —

Single-
PTMD

mT

(3%)
Passive:

Section 5.2.3.2
Passive:

Section 5.2.3.3 0 — —

Single-
FD control

mT

(3%)
Semi-active:

Section 5.2.3.4 Passive 0 — —

Single-
FS control

mT

(3%) Passive
Semi-active:

Section 5.2.3.5 0 — —

Single-
FD & FS control

mT

(3%) Semi-active Semi-active 0 — —

Multi-
PTMD

0.9mT

(2.7%) Passive Passive
0.1mT

(1.1%) Passive Passive

Multi-
FD control

0.9mT

(2.7%) Semi-active Passive
0.1mT

(1.1%) Passive Passive

Multi-
FS control

0.9mT

(2.7%) Passive Semi-active
0.1mT

(1.1%) Passive Passive

Multi-
FD & FS control

0.9mT

(2.7%) Semi-active Semi-active
0.1mT

(1.1%) Passive Passive

Table 5.7: Summary of different TMDs. See Figure 5.3 for TMD locations and specified
sections for controller details

FD, FS , or both) and four similar MTMD cases consisting of a large upper TMD and a smaller
lower TMD. In these MTMD cases the upper TMD was either passive or semi-active, however
the lower TMD was always passive as preliminary testing found that semi-active control of this
smaller TMD did not resulting in significant response improvement. In Table 5.7, mT is the
mass of the TMD in the single-TMD cases, which was equal to 3% of the first modal mass of
the turbine, as defined by the modal mass ratio µR. The combined mass of the two TMDs in the
MTMD cases were made equal to the mass of the single TMD cases so that the effectiveness
of the two methods could be roughly compared, and a 90-10 split between upper and lower
masses was found to be near optimal – this results in a 2.7% mass ratio compared to the first
mode for the upper TMD and a 1.1% mass ratio compared to the second mode for the lower
TMD. The optimized parameters for the TMD controllers are summarized in Section 5.2.3.6.

5.2.3.2 Passive damping component

The passive damping component was modelled in the PTMD and FS control cases, and was
tuned following the Den Hartog guidelines presented in Connor (2002). Equations 5.6 - 5.9
show the calculation procedure for the damper force FD based on the modal mass ratio (µR):

ξ j =

√
µR(3 −

√
0.5µR)

8(1 + µR)(1 − 0.5µR)
(5.6)

Q j = 1 − 1.2µR (5.7)
c j = 2(µRmm j)(Q j fn j)ξ j (5.8)

FD = c j · (ẋ1 − ẋ2) (5.9)
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Here, Q j is the optimal natural frequency ratio between the TMD and turbine, ξ j is the damping
coefficient, mm j is the modal mass, fn j is the natural frequency, c j is the damping coefficient,
and (ẋ1 − ẋ2) is the relative velocity of the TMD (see Figure 5.6). j = 1 refers to the first mode
and j = 2 refers to the second mode; recall that the upper TMD is always tuned to the first
mode and the lower TMD is tuned to the second.

5.2.3.3 Passive stiffness component

The passive stiffness component was modelled in the PTMD and FD control cases, using the
same guidelines and nomenclature from Section 5.2.3.2. Equations 5.10-5.11 show the calcu-
lation procedure for the spring force (FS ) based on the modal mass ratio (µR):

k j = (µRmm j)(Q j fn j)2 (5.10)
FS = k j · (x1 − x2) (5.11)

Here, k j is the stiffness, and (x1 − x2) is the relative displacement of the TMD [Figure 5.6].

5.2.3.4 Semi-active damping component via MR damper

The semi-active damping component was modelled in the FD and FD & FS Control cases, and
consisted of a magnetorheological (MR) damper — MR dampers are filled with a fluid whose
viscosity changes when subjected to an electric current, allowing their properties to be con-
trolled in real time. MR dampers have been frequently studied for turbine vibration control
(Martynowicz, 2017, 2016; Caterino et al., 2016; Martynowicz, 2015; Caterino et al., 2014;
Caterino, 2014). These dampers can be numerically simulated using the Modified Bouc-Wen
(MBW) model (Talatahari et al., 2012; Caterino et al., 2011; Spencer et al., 2004), which is
shown in Figure 5.7. Though there have been criticisms of the accuracy of the MBW model
for modelling very powerful dampers (Chae et al., 2012), it should be accurate for the rela-
tively small damper modelled in these tests. Equations 5.12-5.18 list the calculations used for
determining the damper force (FD):

FD = αMR · z + cMR0 · (ẋR − ẏ) + kMR0 · (xR − y) + kMR1 · (xR − xR0) (5.12)

ż = −γMR · |ẋR − ẏ| · z · |z|nMR−1 − βMR · (ẋR − ẏ · |z|nMR + AMR · (ẋR − ẏ) (5.13)

ẏ =
1

cMR0 + cMR1
· [αMR · z + cMR0 · ẋR + kMR0 · (xR − y)] (5.14)

αMR(uMR) = αMRa + αMRb · uMR (5.15)
cMR0(uMR) = cMR0a + cMR0b · uMR (5.16)
cMR1(uMR) = cMR1a + cMR1b · uMR (5.17)

u̇MR = −ηMR · (uMR − vMR) (5.18)

Here, uMR is the efficient voltage; vMR is the applied voltage; z is the hysteretic displacement;
xR is the relative displacement of the MR damper to the turbine (equal to (x1 − x2) from Equa-
tion 5.4); y, kMR0, kMR1, cMR0, cMR1 are the displacement, stiffnesses, and damping shown in
Figure 5.7; and αMRa, αMRb, cMR0a, cMR0b, cMR1a, cMR1b, kMR0, kMR1, xR0, γMR, βMR, AMR, nMR,
ηMR are the fourteen parameters of the MBW model for a given MR damper which are derived
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from experimental testing. This paper reused the MBW model properties given in Li et al.
(2017) for a 2.4 kN RD-8041-1 MR damper. For simplicity, the backwards difference method
was used to solve the differentials of z and y.

Figure 5.7: Modified Bouc-Wen model: a numerical approximation of a MR damper

Martynowicz (2017) studied several types of varying-damper STMD controllers and found
that a modified ground-hook (MGH) controller was highly effective and simple to implement,
thus it was applied here. The MGH controller is defined by Equation 5.19:

vMR =

{
vmax, x1 · FD ≥ 0
vmin, x2 · FD < 0 (5.19)

Here vMR is the voltage applied to the MR damper, which was either vmax or vmin, depend-
ing on the state of the system. A simplified explanation of this controller is that it maxi-
mizes resistance force by applying the maximum voltage to the MR damper when the structure
moves away from its neutral position and minimizes resistance force by applying the mini-
mum voltage when the structure returns towards its neutral position. The MGH controller can
be displacement-based or velocity-based, each of which have been shown to have their own
advantages (Park et al., 2019), but the displacement-based method was used here as that was
the method employed by Martynowicz (2017). For thoroughness, a more complex LQR con-
troller (Hrovat et al., 1983) for the MR damper was also tested, but the MGH controller was
ultimately found to be equally effective while also being simpler to implement. During testing,
an artificial 10 ms delay was added to the model between between calculating and applying the
desired voltage to more closely simulate a real mechanical system (Caterino et al., 2013).

Note that as opposed to a linear damper, the MBW model includes a varying stiffness
component (see Equation 5.12). Previous research has shown that the stiffness component
contributes very little to the overall resistance force (Caterino et al., 2011) – in this study
the optimized MR damper temporarily increased the stiffness of the TMD by a maximum of
2%. Thus this additional stiffness was ignored in the FD Control case where the passive spring
system cannot easily account for this increase in stiffness, but was accounted for in the FD & FS

Control case [see Section 5.2.3.5] using kMR: the equivalent MR stiffness at a given time step
which was calculated using Equation 5.20, which uses the same symbols defined above:

kMR =
kMR0 · (xR − y) + kMR1 · (xR − xR0)

xR − xR0
(5.20)



118 Chapter 5. Passive and semi-active damping systems for wind turbines

5.2.3.5 Semi-active stiffness component via SAIVS device

The semi-active varying-stiffness controller was used in the FS and FD & FS Control cases,
and employs the SAIVS system (Sun and Nagarajaiah, 2013; Nagarajaiah, 2009; Nagarajaiah
and Sonmez, 2007) to modify the stiffness of the TMD in real-time. This system uses an
actuator to adjust an array of four springs to actively change the equivalent stiffness of the
TMD. Equation 5.21 shows the equation for the equivalent stiffness as a function of the actuator
displacement dS AIVS in meters:

k2(d) = kS AIVS · cos2
[
π

2
· sin

(
π(0.3 − dS AIVS )

0.6

)]
(5.21)

Here dS AIVS could range from 0 m (the minimum stiffness) to 0.3 m (the maximum stiffness).
It was found that the total stiffness range required could be achieved when kS AIVS was equal to
160 kN/m.

The SAIVS was tuned by using a short-term Fourier transform (STFT) to determine the
dominant frequency of the recent lateral acceleration of the top of the turbine tower and tuned
the TMD to match that frequency: a widely-used technique (Park et al., 2019; Hemmati and
Oterkus, 2018; Sun, 2017; Dinh et al., 2016; Arrigan et al., 2011; Huang et al., 2010). Some
studies tune the varying-spring to the dominant frequency of the displacement of the turbine
tower (Sun, 2017), but acceleration was used in this study due to the improved practicality
as in reality an accelerometer may be used to easily capture the acceleration response. This
STFT controller applied a Hann window function (Equation 5.22) to a segment of the previous
top lateral acceleration response to extract the dominant frequency, which the TMD was then
tuned to. If this target frequency was outside of the range of the SAIVS system, the TMD
was instead tuned to the main structural frequency using Equations 5.10-5.11. In either case,
the target stiffness at the given time step was reduced by kMR [Equation 5.20]: the stiffness
added by the varying-damper system, though kMR = 0 in all configurations but in the FD & FS

Control cases. A tight allowable frequency band was found to be the overall most effective at
controlling the behaviour of the structure – Dinh et al. (2016) similarly used an STFT variable
stiffness controller with a tight allowable band to control their turbine. The entire controller
process is detailed in Figure 5.8. An artificial 20 ms delay was inserted between calculating
the target stiffness and implementing it to model the time required for the physical system to
adjust.

w(t) = sin2(
πt
T

); tϵ[0,T ] (5.22)

5.2.3.6 Parameter optimization

Parameter optimization was performed manually via parametric study of the response of the
TMD-equipped turbine subjected to fifteen random load cases (five each of the EQ, HIW, and
SW load time histories). The averaged displacement and acceleration response of the turbine
(which is fully detailed in Section 5.3) was used as the optimization index for the four pa-
rameters. Initial values of each parameter were estimated based on previous research, and the
value of each parameter was individually studied in 0.05 V, 0.5 s, and 0.05 increments for the
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Figure 5.8: Flowchart of a single time step of the stiffness component (FS ) control process

Load type:
Optimized parameters EQ HIW SW

FD Control: Max voltage vmax (V) [Eq. 5.19] 3 1.5 0.75
FD Control: Min voltage vmin (V) [Eq. 5.19] 0
FS Control: Window time (s) [Fig. 5.8] 2
FS Control: stiffness limit kmax (N/m) [Fig. 5.8] 1.5m2 f 2

n

Table 5.8: Optimized parameters for the 3% modal mass ratio TMDs

voltages, window times, and stiffness limit, respectively. The final combination of optimized
parameters was confirmed to achieve superior results compared to all other tests performed
during the parametric study. The vmax parameter was optimized on a per-load-type basis for
increased effectiveness, while the rest of the parameters converged on the same optimal value
regardless of loading condition. The ability to change parameters based on the measured load-
ing type is an advantage of a semi-active vibration control system, and could be achieved in
reality using the existing equipment for wind speed measurement and an accelerometer at the
base of the turbine for EQ load cases. Table 5.8 lists the optimized parameters for the 3%
modal mass ratio TMDs used in the final testing.

5.2.4 Numerical algorithm

The explicit Chen-Ricles (CR) numerical algorithm (Chen et al., 2009) was used in this testing,
which is summarized in Equations 5.23-5.25:
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TMD case Stiffness value K2 (N/m) Damping value C2 (Ns/m)

Single TMD 36700 2200
Upper MTMD 33300 1900
Lower MTMD 302000 1400

Table 5.9: List of approximate stiffness and damping values used for calculating the CR inte-
gration parameters of the semi-active TMDs

ẋ j,i+1 = ẋ j,i + ∆t · α j · ẍ j,i (5.23)

x j,i+1 = x j,i + ∆t · ẋ j,i + ∆t2 · α j · ẍ j,i (5.24)

α j =
4 · M j

4 · M j + 2 · ∆t ·C j + ∆t2 · K j
(5.25)

Here, j = 1 refers to the turbine and j = 2 refers to the TMD as in Figure 5.6; i refers to the
time step; x j, ẋ j, ẍ j are the displacement, velocity and acceleration of the given mass; and ∆t is
the length of the time step in this analysis. α j refers to the integration parameters for the CR al-
gorithm, which is calculated using Equation 5.25 where M j, C j, K j refers to the mass, damping,
and stiffness matrices of the given mass. In the MTMD cases, separate integration parameters
were calculated for each TMD. In the semi-active cases where the stiffness and damping are
not constant, approximate values were used in these calculations; the original authors (Chen
et al., 2009) as well as testing here have found that the sensitivity of the integration parameter
is very low, thus using these approximated values did not introduce notable error into the final
results. Table 5.9 lists a summary of the stiffness and damping values used for each damper
system ( j = 2) for calculating the integration parameter. The CR algorithm was employed to
accommodate future real-time testing.

Figure 5.9 details the full CR algorithm process used in this testing for a simplified 1-DOF
system (using nomenclature from Figure 5.6), where x1, ẋ1, ẍ1 are the time histories of the
displacement, velocity and acceleration responses of the main mass and x2, ẋ2, ẍ2 are likewise
for the TMD; n is the total number of time steps in the analysis; and F is the time history of
the loading applied to the main mass.

Inputs: F,K1,K2,C1,C2,M1,M2

Outputs: x1, ẋ1, ẍ1, x2, ẋ2, ẍ2

1. Calculate α1, α2 using Eq. 5.25
2. For i = 2 to n

3. Calculate x1(i), ẋ1(i) using Eqs. 5.23-5.24
4. Calculate x2(i), ẋ2(i) using Eqs. 5.23-5.24
5. Calculate FD and FS depending on TMD case – [see Section 5.2.3]
6. Calculate ẍ2(i) using TMD’s equation of motion – Eq. 5.5
7. Calculate ẍ1(i) using TMD’s equation of motion – Eq. 5.4

8. End

Figure 5.9: Numerical integration algorithm for a simplified 1-DOF system
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5.3 Results of TMD comparisons
Each of the 121 load cases were applied to the uncontrolled wind turbine as well as turbines
with the eight different TMD cases. Figure 5.10 shows a selection of response time histories
under EQ loading. The effectiveness of the various TMD systems were evaluated based on the
FA and SS accelerations and displacements at the top of the turbine tower as well as at the
maximum of the second mode of the structure where the lower TMD was placed, which are
hereafter referred to as the Top and Mid points respectively. Since the TMDs only affect the
fluctuating component of the response, the static component of the response was disregarded
during analysis. The absolute mean of the displacements and accelerations over the entire 85 s
time history were compared to find the improvement of the response due to the TMDs. This
process for a given load case is summarized in Equations 5.26-5.27:

χavg,n = mean { | χn(:) −mean{χn(:)} | } , n = 1, 2, ..., 9 (5.26)

impχavg,n =
χavg,1 − χavg,n

χavg,1
, n = 2, 3, ..., 9 (5.27)

Here n refers to the TMD case where the results of the uncontrolled turbine are 1 and the
Single-PTMD, Single-FD Control, Single-FS Control, Single-FD & FS Control, Multi-PTMD,
Multi-FD Control, Multi-FS Control, and Multi-FD & FS Control case results are 2 through 9
respectively (see Table 5.7); χn(:) is the entire time history of the response of interest – displace-
ment or acceleration in the FA or SS directions at the Top or Mid point of the turbine; χavg,n is
the absolute average mean of the fluctuating component used for comparison; impχavg,n is the
percent improvement of the given TMD case compared to the uncontrolled turbine subjected
to the same loading.

Figure 5.10: Displacement time histories from EQ6 load case for single TMD cases
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As both acceleration and displacement have been used as performance indices in previous
testing [see Table 5.1], both were considered here. Acceleration is important to consider as the
large inertial mass of the nacelle can cause large accelerations in the middle of the tower. The
comparative improvements of each TMD case over the uncontrolled turbine for all the EQ,
HIW, and SW load cases have been averaged and are shown in Tables 5.10-5.12. The eight
response indices are averaged together across each TMD case to provide a broad comparison
of the effectiveness of each TMD system, though this number may overvalue reductions in
certain response indices depending on design goals.

These results clearly show that in all instances the addition of a TMD improved the response
of the turbine compared to the uncontrolled case. The additional damping provided by the
TMD had a much greater impact on controlling displacements in the SS direction where the
structure lacked aerodynamic damping compared to the FA direction. Since the structure was
parked in the HIW load cases and lacked aerodynamic damping, the TMDs were notably more
effective in the FA direction here as well. In general, the TMDs were more effective at reducing
the average displacement of turbines under HIW loading compared to EQ and SW loading.

The PTMD cases were shown to perform nearly as effectively as the semi-active cases.
While the STMDs surpassed the PTMD in all cases, the difference in improvement of the
average response reductions was only 2-3%. This difference was greatest when controlling the
acceleration and displacement of the Mid point of the turbine, particularly in the Single-PTMD
case, compared to the most effective semi-active cases. The presence of realistic mechanical
delays within the semi-active systems may play a part in why the mechanically-simpler PTMD
performed so comparatively well. The FS Control was overall the least effective semi-active
controller, typically only showing a 0.5-1% difference in improvement in average response
reduction compared to the PTMD. Due to the narrow tuning range of the FS controller, it was
very effective at controlling the response of the top of the tower (generally surpassing the FD

Control cases) but was less effective at controlling the Mid response of the tower – similar to
the PTMD cases.

The FD Control cases consistently reduced the turbine response compared to the PTMDs
and the FS Control systems, particularly when looking at the response of the Mid point of the
tower where it was up to 4 times as effective, indicating that this system was more effective
at controlling the second mode response of the structure due to a greater robustness compared
to the narrowly-tuned FS Control cases. It suffered compared to the FS Control cases at con-
trolling the top of the tower, possibly due to the passive spring system not accounting for the
additional stiffness provided by the MR damper in the varying-damper system.

The FD & FS Control cases showed even further improvement in response reduction com-
pared to the FD Control and FS Control cases individually – combining the varying-spring and
varying-damper systems tended to result in improvements that were roughly cumulative of the
improvements provided by the individual semi-active systems compared to the PTMDs. This
improvement was slightly less than cumulative under EQ loading and slightly more under SW
loading. The FD & FS controller was the most effective of all tested.

The introduction of the second passive TMD in the MTMD cases improved the overall av-
erage response reduction for all cases. The improvement was slightly larger under EQ loading
(where the second mode of the structure was more heavily excited) and the SW loading (where
the single TMDs were least effective at controlling the Mid response). It can be plainly seen
that the MTMD systems were extremely effective at controlling the response of the Mid point
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µR = 3% Displacement Acceleration
TMD Fore-aft Side-side Fore-aft Side-side Overall
case: Top Mid Top Mid Top Mid Top Mid average:

Single-PTMD 9.6% 9.8% 33.4% 34.0% 9.7% 1.0% 25.7% 4.9% 16.0%
Single-FD 9.0% 9.2% 34.8% 34.8% 11.2% 2.6% 28.5% 6.9% 17.2%
Single-FS 9.2% 9.4% 35.2% 35.2% 12.2% 1.2% 29.5% 5.7% 17.1%

Single-FD & FS 10.2% 10.3% 36.7% 36.7% 12.2% 2.9% 30.3% 7.1% 18.3%
Multi-PTMD 8.2% 8.7% 32.3% 32.3% 11.6% 25.6% 26.1% 27.5% 21.8%

Multi-FD 8.4% 8.5% 34.9% 34.9% 13.0% 26.9% 29.4% 29.7% 23.3%
Multi-FS 9.4% 9.2% 35.1% 35.1% 13.3% 25.7% 30.8% 28.5% 23.2%

Multi-FD & FS 9.7% 10.0% 36.2% 36.2% 13.4% 26.9% 31.4% 29.6% 24.2%

Table 5.10: Average % improvement compared to uncontrolled turbine under EQ loading

µR = 3% Displacement Acceleration
TMD Fore-aft Side-side Fore-aft Side-side Overall
case: Top Mid Top Mid Top Mid Top Mid average:

Single-PTMD 49.5% 49.7% 38.5% 37.5% 42.0% 2.5% 48.9% 3.9% 34.0%
Single-FD 49.0% 50.4% 38.7% 37.7% 41.3% 5.5% 50.2% 6.2% 34.9%
Single-FS 50.2% 49.2% 39.2% 38.1% 44.7% 2.5% 50.7% 4.0% 34.8%

Single-FD & FS 51.0% 51.2% 38.9% 37.9% 44.8% 5.6% 51.4% 6.1% 35.9%
Multi-PTMD 47.6% 47.9% 37.8% 36.8% 41.3% 10.7% 49.3% 20.1% 36.5%

Multi-FD 48.4% 48.9% 37.4% 36.5% 42.4% 14.0% 50.4% 22.7% 37.6%
Multi-FS 48.6% 48.7% 37.6% 37.3% 44.6% 10.7% 50.5% 20.2% 37.3%

Multi-FD & FS 49.3% 49.6% 38.3% 36.7% 44.9% 14.0% 51.1% 22.7% 38.3%

Table 5.11: Average % improvement compared to uncontrolled turbine under HIW loading

µR = 3% Displacement Acceleration
TMD Fore-aft Side-side Fore-aft Side-side Overall
case: Top Mid Top Mid Top Mid Top Mid average:

Single-PTMD 8.6% 8.6% 39.8% 40.3% 6.0% 0.4% 30.0% 2.2% 17.0%
Single-FD 9.0% 9.1% 39.8% 41.1% 6.0% 1.8% 30.8% 4.0% 17.7%
Single-FS 9.0% 9.1% 40.6% 40.3% 6.0% 0.4% 30.9% 2.3% 17.3%

Single-FD & FS 9.2% 9.2% 41.9% 42.5% 6.6% 1.9% 31.5% 4.0% 18.3%
Multi-PTMD 8.5% 8.6% 38.5% 39.0% 7.7% 19.8% 31.5% 20.3% 21.7%

Multi-FD 8.6% 8.9% 38.6% 40.5% 7.7% 21.5% 32.0% 22.3% 22.5%
Multi-FS 8.8% 8.7% 39.8% 39.1% 8.1% 19.8% 32.1% 20.4% 22.1%

Multi-FD & FS 8.8% 8.9% 41.2% 41.9% 8.6% 21.5% 33.1% 22.3% 23.3%

Table 5.12: Average % improvement compared to uncontrolled turbine under SW loading
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Load type:
Optimized parameters EQ HIW SW

FD Control: Max voltage vmax (V) [Eq. 5.19] 1.5 0.5 0.3
FD Control: Min voltage vmin (V) [Eq. 5.19] 0
FS Control: Window time (s) [Fig. 5.8] 2
FS Control: stiffness limit kmax (N/m) [Fig. 5.8] 1.5m2 f 2

n

Table 5.13: Optimized parameters for the 1.5% modal mass ratio TMDs

µR = 3% Displacement Acceleration
Load TMD Fore-aft Side-side Fore-aft Side-side Overall
type: case: Top Mid Top Mid Top Mid Top Mid average:

Single-FD 9.6% 9.8% 33.4% 34.0% 9.7% 1.0% 25.7% 4.9% 16.0%
EQ Single-FD & FS 9.0% 9.2% 34.8% 34.8% 11.2% 2.6% 28.5% 6.9% 17.2%

Single-FD 9.2% 9.4% 35.2% 35.2% 12.2% 1.2% 29.5% 5.7% 17.1%
HIW Single-FD & FS 10.2% 10.3% 36.7% 36.7% 12.2% 2.9% 30.3% 7.1% 18.3%

Single-FD 8.2% 8.7% 32.3% 32.3% 11.6% 25.6% 26.1% 27.5% 21.8%
SW Single-FD & FS 8.4% 8.5% 34.9% 34.9% 13.0% 26.9% 29.4% 29.7% 23.3%

Table 5.14: Average % improvement compared to uncontrolled turbine under EQ loading

of the tower – in some cases 50 times as effective – compared to the single TMD cases, though
typically at the cost of a slight reduction of control of the top of the turbine tower.

To further analyze the advantages of the STMDs over the PTMDs, parameter optimization
was performed (as per Section 5.2.3.6) for turbines equipped with 1.5% modal mass ratio
TMDs (as opposed to the 3% mass ratio used previous), which is summarized in Table 5.13.
These new TMD-equipped turbines were subjected to the same 121 load cases; Table 5.14
lists the resulting average response improvement of a limited number of controlled turbines
under the three loading types. It can be seen that, as before, the average reduction effect of the
Single-FD & FS Control case surpasses the Single-FD Control case in all cases.

Table 5.15 compares the ratio of the average response reduction by the 1.5% modal mass
ratio Single-FD Control and Single-FD & FS Control cases from Table 5.14 to the average
response reduction of the 3% modal mass ratio Single-PTMD system from Tables 5.10-5.12. It
can be seen that the response reduction provided by the 1.5% modal mass ratio Single-FD & FS

controller is only slightly reduced (by about 7%) compared to the response reduction provided
by the 3% modal mass ratio Single-FD Control case. Since a smaller TMD mass can result in

µR = 3% µR = 1.5%
Load
type:

Average reduction
by Single-PTMD

Average reduction
by Single-PTMD

Ratio vs 3%
Single-PTMD

Average reduction
by FD & FS Control

Ratio vs 3%
Single-PTMD

EQ 16.0% 11.6% 0.73 15.2% 0.95
HIW 34.0% 27.1% 0.80 30.9% 0.91
SW 17.0% 14.5% 0.85 15.9% 0.94

Average: 0.79 Average: 0.93

Table 5.15: Comparison of average % improvement between 3% mass ratio Single-PTMD to
1.5% mass ratio Single-PTMD and Single-FD-and-FS -Control STMD
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a reduced P-delta effect on the tower, smaller space requirements, and simpler installation, it is
a reasonable design goal to achieve the target response reduction with as small of a TMD mass
as possible. This example shows that a notably lighter semi-active TMD can achieve a nearly
equivalent response reduction effect compared to a heavier passive damping system.

5.4 Conclusions and recommendations
This paper presents a comparative study of eight tuned mass damper (TMD) systems used for
vibration control of an onshore wind turbine subjected to service wind, high-intensity wind
and seismic loading. A single passive TMD, three single semi-active TMDs (damping con-
trol, stiffness control, and damping-and-stiffness control), a passive multiple TMD (MTMD)
system, and three mixed passive-and-semi-active MTMDs (where the upper TMD was semi-
actively controlled using the three previous methods and the lower TMD was passive) were
compared to an uncontrolled turbine. The design of these TMD systems were approached
from a practical perspective using specific mechanical systems to achieve the variable proper-
ties and including realistic mechanical delays and limits. Overall, all the TMDs improved the
response of the wind turbine, but the Multi-FD & FS Control case was the most effective when
considering all performance indices. The semi-active FD Control and FS Control cases also
showed improved effectiveness compared to passive TMDs (PTMDs) cases, with the former
showing improved control of the middle of the tower and the latter showing improved control
of the top of the tower. The use of a MTMD system with the same collective mass as a single
TMD resulted in improved control of higher mode responses at the cost of a slight reduction in
control of the first mode. The improvement of the STMDs versus the PTMD cases was rela-
tively small depending on the load case and index of interest, and must be weighed against the
increased cost of implementing the semi-active systems, though in this specific case, a semi-
active damper with half the mass was found to be almost equally effective as an optimized
passive damper. Overall, the absolute best damper will depend on the desired control for each
performance index, the expected loading, and a cost-benefit analysis.

Future testing could build on this research by applying these dampers to a more widely-
used wind turbine size such as NREL’s standard 5MW wind turbine (Jonkman et al., 2009).
Research could likewise be expanded by considering the effects of non-stochastic wind loads
such as tornados (Gairola and Bitsuamlak, 2019) or downbursts Aboshosha et al. (2015a),
potentially through the use of more robust simulation methods such as computational fluid dy-
namics (Dagnew and Bitsuamlak, 2013). Results could be refined by employing more modern
wind spectrum generation techniques, as the methods suggested in the IEC code (IEC, 2005)
have been found lacking in other research (Aboshosha et al., 2015b). Furthermore, it is possi-
ble that the controllers used here could be further improved which would directly impact the
comparative effectiveness of the different semi-active systems.

The TMD system shown here to best balance simplicity and robustness was the single
multi-directional TMD equipped with the FD & FS Control system, which would be located
at the top of the turbine tower below the nacelle with a braking system to allow maintenance
workers to pass safely. Further study of this STMD using a more detailed FEM model as a
practical damping system for controlling wind turbine vibrations is warranted.



Chapter 6

Development of a rotating-base
residential wind turbine model
based on aeroelastic wind tunnel
tests

Summary

The development of improved hybrid simulation frameworks for studying wind turbines is
a promising endeavour due to inherent limitations in small-scale wind tunnel tests of these
structures. For use in investigations of such a framework, an experimentally-validated numer-
ical structural turbine model must be developed that both avoids the existing scaling issues
and incurs aeroelastic deflection to create an ideal testbed for future hybrid simulations. This
study details the development and validation of a structural turbine model that meets the listed
requirements. Firstly, two rounds of wind tunnel testing are described and catalogued of a full-
scale 1.1 m residential wind turbine installed on a custom aeroelastic rotating base. Secondly,
using existing research as well as the results for the aeroelastic wind tunnel tests, a 1-DOF
structural model is developed and validated that replicates the behaviour of the 1.1 m rotating-
base turbine. Part of this development includes the creation of a simple surrogate thrust model
using a trained multi-layer perceptron neural network. The basic structural properties, the
sources of loading, and the damping properties are then derived and validated from the exper-
imental data. Finally, the developed structural model is applied in a representative numerical
study that tests the effectiveness of passive and semi-active tuned mass dampers at controlling
the structural rotation. The detailed structural model is shown to match the experimental results
well and is effective in the representative case study, opening the door for applying it in future
hybrid simulations.

126
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6.1 Introduction

Structural and wind engineering-based upgrades to wind turbines are critical for improving
their efficiency and longevity. A relatively new testing technique called hybrid simulation (HS)
improves existing research as well as enables new types of studies. HS has seen widespread
use in seismic engineering but is just beginning to see applications for wind-loaded structures.
As described in detail in Chapter 2, HS works by simultaneously testing an experimental model
and a numerical model together to “fill out” the experimental model with cheaper numerical
data. This allows for decreased cost, increased scope, and even new types of testing compared
to traditional experimental tests, but with higher accuracy than purely numerical simulations.
To capture damping and inertial effects, hybrid simulations are frequently run in real time, that
is, where one second of simulation time is calculated within one second of real time. This has
been the main limiting factor for the adoption of HS in wind engineering: compared to cal-
culating seismic loads, calculating the aerodynamic loads on a structure is significantly more
time consuming. Beyond the simplest drag models, the estimation of pressure and shear on the
surface of the structure is a complex process, and the highest-accuracy numerical method, com-
putational fluid dynamics (CFD), potentially takes weeks in real time for just seconds of simu-
lation time. Therefore the current HS framework faces the burden of requiring lower-accuracy,
high-speed aerodynamic models. Future testing to develop an improved wind engineering HS
framework that better facilitates the use of this technique in wind engineering is thus required.

Wind turbines in particular stand as a promising option for HS. This is because the typical
method of experimental study of wind-loaded structures, wind tunnel testing, runs into unique
challenges when studying wind turbines. Wind tunnel testing of structures typically requires
significant geometric scaling of the model, but this scaling affects facets of the analysis. The
Reynolds number (Re), a non-dimensional parameter that describes the wind turbulence, is a
factor of both the wind speed and the size of the structure; if a structure is reduced to half the
size, the wind speed must double to maintain the same Re flow over it. Since large structures
are potentially scaled down hundreds of times to fit in the wind tunnel, it is clear that maintain-
ing the same Re flow is impossible for many wind tunnel tests. As the aerodynamic drag and
lift on the wind turbine blades are extremely sensitive to changes in Re, industrial-sized wind
turbine cannot merely be geometrically scaled down for wind tunnel tests. Instead, researchers
must totally redesign the model turbine blades to approximate the lift and drag properties of
the full-sized blade at these lower Re. Examples of this are presented in Section 2.5.1.1, where
researchers are generally able to match the lift properties of the blade while sacrificing the accu-
racy of the simulated drag, which can affect the predicted power production notably. However,
if an improved HS framework could be developed that would allow wind turbines to be studied
with experimental-level accuracy while side-stepping wind tunnel scaling issues, it would open
the door to a number of new research avenues – a very valuable proposition.

Towards developing a framework that remedies these issues, an experimentally-validated
structural model is required on which to test any new HS frameworks. The model must be
experimentally-validated to offer a baseline against which the existing and any proposed HS
frameworks may be compared. This chapter presents a set of wind tunnel testing designed to
side-step the scaling issues of typical wind tunnel tests of turbines while offering an appropriate
testbed with which to perform future hybrid simulations. These wind tunnel tests, as well as
previous testing on the same wind turbine, are then used to develop a robust, widely-validated
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1-DOF dynamic structural model that can be used in future wind turbine HS. Finally, a short
numerical case study is performed of the structural model equipped with a non-linear tuned
mass damping (TMD) system to show the utility of the proposed model and its potential for
future studies.

6.2 Wind tunnel testing
To offer an appropriate testbed for future HS, the wind tunnel tests that will be used to generate
the structural model must meet the following requirements:
• The tests must be able to avoid inaccuracies arising from the geometric scaling of the

wind turbine blades. A direct way of accomplishing this is by performing a full-scale
wind tunnel test of a smaller residential wind turbine, eliminating scaling-induced inac-
curacies as no scaling is performed.
• The tests must be significantly aeroelastic. Since the main limitation of existing HS

of wind turbines is that the aerodynamic and structural calculations are uncoupled, any
testbed to investigate this must have significant wind-induced structural deflections so
that this limitation can be explored. Further, external damping systems, a common HS
target, require larger deflections to cause a significant reduction in vibrations.

6.2.1 Residential wind turbine specifications
The turbine studied in these wind tunnel tests is the 900 W three-bladed horizontal-axis wind
turbine with a rotor radius of 1.1 m shown in Figure 6.1. The average diameter of the tower is
approximately 0.08 m, and while the tower height can be adjusted, it has typically been tested at
a hub height of 1.9 m. The manufacturer reports a rated wind speed of 12.9 m/s and a maximum
wind speed of 17 m/s with a furling system to reduce rotor speed and wind loads at higher wind
speeds. It has an optimal tip speed ratio (TSR) of 5.2 which results in a rotor speed of 580 rpm
at the rated wind speed. The turbine generator is connected to a transformer that in operation
would be connected to a battery, however by replacing the battery with a series of resistors, the
electrical resistance of the system can be controlled which in turn controls the friction on the
rotor from the generator. In practice, this means that by adjusting the electrical resistance in
the circuit, the friction in the rotor can be controlled, allowing for a specific friction level to be
chosen to control the TSR of the turbine during a wind tunnel test.

The 1.1 m residential wind turbine has previously been studied with a fixed tower base at
the Boundary Layer Wind Tunnel Laboratory (Refan, 2009; Refan and Hangan, 2012) and the
WindEEE Research Institute (Shirazadeh et al., 2021), both at Western University in London,
Canada. Refan (2009) first tested one of its turbine blade in a wind tunnel, then the entire
turbine, however the relatively high blockage ratio of these entire-turbine tests raises questions
about their accuracy. The blockage ratio issue was avoided by Shirazadeh et al. (2021) by
testing in a larger wind tunnel, where they subjected the residential wind turbine to uniform
wind loads and a number of extreme wind effects. In both instances, the turbine was tested at
much lower wind speeds and TSRs than the reported rated conditions; due to the extremely
high rotor speeds that occur in residential wind turbines, the rated conditions cannot be tested
without risking damage to the turbine or other wind tunnel equipment.
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Figure 6.1: Photo of the 1.1 m residential wind turbine with the connected transformer

6.2.2 Aeroelastic base design and construction
The existing fixed base on the 1.1 m residential wind turbine can be replaced with a new base
that the existing tower can slot into. This allows for the turbine to be modified to enable
aeroelastic response without requiring any permanent modifications to the turbine itself. With
the goal of developing a simple structural model for future HS testing, an aeroelastic rotating
base for the tower was designed and built. It allows the turbine to rotate in the fore-aft direction
at ground level while the tower remains essentially rigid as shown in in Figure 6.2. This type
of response mimics the pitch rotation in floating offshore wind turbines.

Figure 6.3 shows a schematic of the developed aeroelastic rotating base. It shows that the
tower axle rotates in ball bearing mounts, with a fixed frame beneath the floor of the wind tunnel
that is connected to the tower via springs as well as pneumatic dampers in some tests. These
springs and dampers control the structural dynamic properties of the rotating wind turbine
without disrupting its aerodynamics. The detailed specifications of this rotating base include:

• The dimensions of the aeroelastic base are shown in Figure 6.3. The tower was built
from an aluminum pipe, with a welded aluminum rod to act as the axle. The ground-level
element is built from medium-density fibreboard, with aluminum slotted frame elements
and a plywood support piece at the bottom.

• The rotational stiffness of the system was controlled by four linear springs. The springs
were four No. 5108N762 extension springs from McMaster-Carr with the following di-
mensions: 3.5” length, 1” outer diameter, and 0.095” wire diameter with a rated stiffness
of 1524 N/m.
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Figure 6.2: Side-view of proposed aeroelastic turbine response

Figure 6.3: Photos and schematic of the below-tunnel portion of the aeroelastic base with the
stiffness and damping systems highlighted
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• The rotational damping of the system was controlled in initial tests by using two pneu-
matic dampers. These pneumatic dampers were two NCME 106-1200-DUPO3176 double-
action air cylinders from SMC with the following dimensions: 1- 1

16” (26.99 mm) interior
bore size, 12” stroke, and a 3

8” (9.35 mm) aperture diameter. The apertures of the cylin-
ders were left open so they acted as pneumatic dampers rather than pneumatic actuators,
though additional fixtures with openings of 4.25, 3.13, and 0.63 mm were screwed into
the aperture to further increase the damping level.

6.2.3 Testing facility and data acquisition

As was done previously by Shirazadeh et al. (2021), the WindEEE Research Institute was
used to study the rotating-base turbine, avoiding any problems with high blockage ratios. The
WindEEE Research Institute houses a 25 m diameter, 3.8 m high hexagonal wind tunnel. The
facility is equipped with 106 fans to enable complex wind studies such as tornadoes and down-
bursts, however for traditional wind tunnel tests such as this only the 60 fans in the front wall
are used to generate inflow.

While the tunnel is equipped with adjustable blocks to generate a variety of wind profiles,
complex wind profiles were not necessary for this testing, and thus an open profile was used.
From previous testing at a mean uniform wind speed of 6.6 m/s, the open profile in the wind
tunnel assuming all fans are blowing at equal power matches very closely to a power law profile
with an exponent of 0.05, as seen in Figure 6.4. It is possible that this profile does not match
perfectly at the lower wind speeds studied here, however this approximation is sufficient for
use in the development of the structural model.

The final turbine setup in the wind tunnel can be seen in Figure 6.5, including the measure-
ment devices used to capture the wind speed, tower rotation, and rotor speed during testing.

Figure 6.4: Comparison of open profile recorded at WindEEE with a reference wind speed of
6.6 m/s to a power law profile with exponent (α) of 0.05
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The wind speed measurement was performed using four TFI cobra probes that capture the time
histories of all three velocity directions as well as the air pressure. These four cobra probes
were placed at the corners of the square that bound the rotor plane of the turbine, i.e. at ±1.1 m
above and ±1.1 m across from the hub, with the tips of the cobra probes 1.05 m upwind of
the rotor plane. This configuration is shown in Figure 6.6 and is the same as was used by
Shirazadeh et al. (2021).

The rotor speed was captured using an Autonotics BR200-DDTN proximity sensor attached
to the turbine tower. The voltage from the sensor peaks when the blade passes in front of the
sensor, and thus by determining the frequency of the peaks the rotor speed and the resulting
TSR can be derived. Finally, the rotation of the turbine tower was recorded using a HL-G112-
A-C5 laser distance sensor from Panasonic which has a measurement range of ±0.06 m, the
center of which is about 0.12 m from the sensor. Since the laser sensor measures linear dis-
placement, the measured displacement was converted into a rotation by multiplying by the laser
height of 0.60 m (assumption small-angle rotation). Both the proximity and laser sensors are
shown in Figures 6.5 and 6.6.

Figure 6.5: Photograph of aeroelastic turbine setup for wind tunnel testing. Equipment of
note is highlighted: A) one of the four cobra probes to measure wind speed, B) the generator
transformer to control TSR, C) the laser sensor to measure base rotation, D) the proximity
sensor to measure TSR
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Figure 6.6: Schematic of setup of the rotating-base turbine in the wind tunnel. Cobra probes
and laser sensor are highlighted

As will be discussed in the following sections, two rounds of testing were performed: the
first round of testing included all of the components discussed in this section, while the second
round of testing removed the pneumatic actuators and was performed without the cobra probes.
For both of these rounds, free vibration tests were performed in addition to the wind tunnel
tests, in which the only measurement of interest is the rotation recorded by the laser sensor.

6.2.4 Wind tunnel testing: first round
Three parameters were varied in this first round of wind tunnel tests:

• The mean hub height wind speed was varied between approximately 3.63, 4.07, and
4.85 m/s.

• The electrical resistance in the generator transformer was varied between 7.1, 12.0, and
16.9Ω, which in turn controlled the TSR. Recall that the electrical resistance is inversely
proportional to the friction in the rotor, meaning that a high resistance results in a higher
TSR.

• The aperture size of the pneumatic dampers was varied between 9.35, 4.25, 3.13, and
0.63 mm. The smaller the aperture size, the higher the damping effect.

Due to the requirement to keep rotor speeds low to protect the turbine and surrounding equip-
ment, the combinations of these parameters were limited: for each of the four aperture sizes,
six configurations were tested as shown in Table 6.1. Each of the 24 tests had a duration of
180 s and a sampling frequency of 1000 Hz. Between test cases, time was given such that the
turbine could reach a steady state in an attempt to avoid capturing transient behaviour.
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Configurations Wind speed (m/s) Electrical resistance (Ω)

1 3.63 7.1
2 4.07 7.1
3 4.85 7.1
4 3.63 12.0
5 4.07 12.0
6 3.63 16.9

Aperture sizes: 0.63, 3.18, 4.76, 9.53 mm

Table 6.1: Test cases studied in the first round of wind tunnel testing; the six configurations are
tested at each damper aperture size

Aperture (m) Variable Unit Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

Mean wind speed m/s 3.64 4.10 4.86 3.65 4.07 3.64
Turbulence intensity – 6.6% 6.9% 6.8% 6.6% 6.7% 6.6%
Electrical resistance Ω 7.1 7.1 7.1 12.0 12.0 16.9

0.63 TSR – 0.91 1.13 1.43 1.36 1.72 1.84
Rotor speed rad/s 3.02 4.22 6.30 4.51 6.37 6.08
Non-zeroed mean base rotation rad 0.00636 0.00695 0.01007 0.00634 0.00738 0.00686
Std. dev. of non-zero base rotation rad 0.00050 0.00104 0.00121 0.00075 0.00062 0.00060

Mean wind speed m/s 3.59 4.05 4.84 3.65 4.11 3.65
Turbulence intensity – 6.8% 6.9% 6.6% 6.4% 6.5% 6.5%
Electrical resistance Ω 7.1 7.1 7.1 12.0 12.0 16.9

3.18 TSR – 0.93 1.14 1.44 1.33 1.70 1.88
Rotor speed rad/s 3.03 4.18 6.35 4.40 6.37 6.25
Non-zeroed mean base rotation rad 0.00285 0.00389 0.01009 0.00891 0.00959 0.00931
Std. dev. of non-zero base rotation rad 0.00044 0.00111 0.00121 0.00088 0.00074 0.00059

Mean wind speed m/s 3.60 4.05 4.82 3.62 4.04 3.61
Turbulence intensity – 6.8% 6.7% 6.8% 6.7% 6.8% 6.7%
Electrical resistance Ω 7.1 7.1 7.1 12.0 12.0 16.9

4.76 TSR – 0.97 1.16 1.41 1.38 1.81 2.20
Rotor speed rad/s 3.18 4.28 6.19 4.54 6.67 7.22
Non-zeroed mean base rotation rad -0.00504 -0.00431 0.00020 -0.00645 -0.00437 -0.00641
Std. dev. of non-zero base rotation rad 0.00064 0.00128 0.00158 0.00098 0.00075 0.00064

Mean wind speed m/s 3.64 4.09 4.85 3.59 4.02 3.59
Turbulence intensity – 6.5% 6.6% 6.8% 7.0% 7.1% 7.0%
Electrical resistance Ω 7.1 7.1 7.1 12.0 12.0 16.9

9.53 TSR – 0.90 1.10 1.45 1.50 1.87 2.10
Rotor speed rad/s 2.99 4.08 6.38 4.90 6.83 6.87
Non-zeroed mean base rotation rad 0.00154 0.00209 0.00450 0.00333 0.00401 0.00377
Std. dev. of non-zero base rotation rad 0.00042 0.00081 0.00100 0.00065 0.00059 0.00048

Table 6.2: Mean results of the first round of wind tunnel testing. The test configurations are
defined in Table 6.1
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Figure 6.7: Normalized frequency content of the recorded wind speed and tower rotation time
histories, compared to the natural frequency of the structure and blade passing frequency.
These results are from the test with an aperture size of 9.53 mm, a wind speed of 3.63 m/s,
and an electrical resistance of 7.1 Ω

Table 6.2 summarizes the results of these tests. The extremely low standard deviation of the
base rotation is notable – these measurements clearly show that the tower fluctuations are very
small, in the order of less than 0.001 rad. To investigate further, the frequency content of the
recorded wind speed and tower response from the 9.35 mm aperture size, 4.07 m/s wind speed,
and 12.0Ω electrical resistance case was analyzed in MATLAB using the fast Fourier transform
algorithm. Additionally, from the free vibration tests, the natural frequency of the rotating base
turbine was estimated at 0.548 Hz, and based on the recorded TSR, the frequency of the blade
passing the turbine tower is approximately 1.43 Hz. This analysis is summarized in Figure 6.7;
as can be seen, despite the wind record containing the frequency content necessary to excite
the rotating-base turbine at its natural frequency, the recorded base rotation sees essentially no
response at that frequency. Instead, there is a large response spike at the frequency at which
the blades pass the tower. This strongly suggests that the minuscule recorded fluctuations are a
result of the operational rotor and there are essentially no aeroelastic vibrations caused by the
wind loading.

Suppressed vibrations are a phenomenon seen in over-damped structures. To investigate if
this was the case for the rotating-base turbine, the damping properties of the pneumatic actu-
ators can be estimated numerically. Referencing Figure 6.8, by assuming incompressible flow
and ignoring any friction effects the Bernoulli equation can be used to estimate the damping
force applied to the moving plunger:

pA + 0.5ρV2
A + ρghA = pB + 0.5ρV2

B + ρghB (6.1)

Here, A refers to the area immediately next to the plunger and B to the area adjacent to the
damper aperture. p is the air pressure, ρ is the air density, and V is the flow velocity, VA being
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Figure 6.8: Internal view of pneumatic actuator showing sections A and B and their related air
velocities (VA and VB) and cross-sectional areas (AA and AB)

equal to the plunger speed. To simplify, hA = hB, pA = p0 + ∆pA (where p0 is the atmospheric
pressure and ∆pA is the difference between p0 and pA), pB = p0, therefore:

∆pA + 0.5ρV2
A = 0.5ρV2

B (6.2)

Due to flow rate conservation:

VAAA = VBAB (6.3)

Here, AA and AB is the cross-sectional area at the respective section. By subbing Equation 6.3
into Equation 6.2:

∆pA = 0.5ρV2
A

(
A2

A

A2
B

− 1
)

(6.4)

Since the force acting on the plunger opposite the direction of motion (Fplunger) can be calcu-
lated as the additional pressure times the plunger area, it can also be found that:

Fplunger = ∆pAAA (6.5)

Fplunger = 0.5ρAAV2
A

(
A2

A

A2
B

− 1
)

(6.6)

The damping moment in this rotational system caused by the pneumatic actuators can be quan-
tified using a quadratic damping model, that is a model where the damping moment (MC) is
proportional to the square of the rotational velocity (θ̇):

MC = Cquadθ̇|θ̇| (6.7)

Here, Cquad is the quadratic damping coefficient. The quadratic damping model is less com-
monly used than the traditional linear damping model, however it is appropriate for pneumatic
damping systems since, as has been shown, aerodynamic drag force is proportional to the wind
velocity squared. This quadratic damping model will be explored in greater detail in Sec-
tion 6.3.6. Based on Equation 6.7 while using a small-angle assumption, where the vertical
distance of the linear damper relative to the rotation point of the turbine is defined as hC, it can
be found that:
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Aperture size – mm 0.63 3.18 4.76 9.53
Aperture area Ab m2 1.25 ∗ 10−6 3.18 ∗ 10−5 7.12 ∗ 10−5 2.85 ∗ 10−4

Damping coefficient Cquad Nms/rad 1534 2.36 0.47 0.029
Damping moment MC Nm 767 1.18 0.24 0.014

Table 6.3: Predicted damping ratio from simplified Bernoulli model. MC is calculated assum-
ing θ̇ = 0.5 rad/s

Cquad = 0.5ρAA

(
A2

A

A2
B

− 1
)

h2
C (6.8)

Finally, with the knowledge that AA = π0.026992 and hC = 0.57 m in the 1.1 m wind turbine,
Cquad can be determined depending on the aperture size of the pneumatic damper. The damping
moment (MC) can also be calculated assuming an roughly estimated rotational velocity of
0.5 rad/s. These results are shown in Table 6.3.

Table 6.3 reveals that the pneumatic actuators with smaller apertures induced a significant
amount of damping into the structure, however it fails to account for the lower amount of
vibrations seen in the larger aperture cases as well. Keep in mind that this Bernoulli-based
model ignores compressibility, but this assumption may not be valid for the smaller aperture
cases as the Mach number of the flow increases. This also fails to account for the friction
within the pneumatic damper, observations of the damper indicate that there was a small initial
friction to overcome before the piston would begin to move.

Thus, it was decided that the pneumatic dampers added too much uncertainty to the test
results. Additionally, it was found that an accurate zero-measurement of the turbine had not
been taken in this round of testing, limiting the ability to compare even the mean results to the
structural model. Overall this round of testing failed to meet the initial requirements described
at the beginning of Section 6.2 due to both the lack of aeroelastic fluctuations and limited
applicability of the recorded data, and thus it was decided to perform a second round of wind
tunnel tests to attempt to address these inadequacies.

6.2.5 Wind tunnel testing: second round
The second round of wind tunnel testing was run after removing the pneumatic dampers from
the aeroelastic base, thus the only sources of damping within the system are the passive struc-
tural and aerodynamic values. The system was also tested in two spring configurations: the
“full-stiffness” configuration with four springs that were used in the first round of tests, as well
as the “half-stiffness” configuration that used only two springs, one on each side of the tower,
to encourage greater vibrations in the structure.

Because of limited tunnel time available for the second round of testing, the tests were run
without cobra probes at the same 3.83 and 4.07 m/s wind speeds as the first round of testing,
such that the mean values used in the first round of testing could be applied to the second round
of testing. Similarly, all tests were run with the electrical resistance in the transformer circuit
at 12.0 Ω to encourage high TSRs. Tests were 180 s in length and data was captured using the
proximity and laser sensors at 1000 Hz as was done in the first round of testing.
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Variable Unit Test 2-1 Test 2-2 Test 2-3 Test 2-4

Mean wind speed (from first round of tests) m/s 4.07 3.63 4.07 3.63
Turbulence intensity (from first round of tests) – 6.8% 6.7% 6.8% 6.7%
Electrical resistance Ω 12.0 12.0 12.0 12.0
TSR – 1.32 0.95 1.33 0.95
Rotor speed rad/s 4.88 3.14 4.92 3.14
Stiffness case (number of springs) Full (4) Full (4) Half (2) Half (2)
Non-zeroed mean base rotation rad 0.01112 0.00602 0.04005 0.02150
Standard deviation of non-zero base rotation rad 0.00091 0.00078 0.00324 0.00206

Table 6.4: Results of the second round of wind tunnel testing. Reported wind results are the
average values from the first round of testing at the same tunnel settings

Figure 6.9: Normalized frequency content of the recorded tower rotation time histories, com-
pared to the natural frequency of the structure and the blade passing frequency

Table 6.4 shows the results from this second round of testing. It can be seen that in the
full-stiffness case, the standard deviation of the tower rotation has not increased substantially
compared to the first round of testing, suggesting that in addition to the strong damping from
the pneumatic dampers, the aeroelastic base itself contains a large amount of internal damping.
However, when the frequency content of the response is analyzed in Figure 6.9, it can be
seen that the structure is now vibrating primarily at its natural frequency rather than its blade
frequency – though the response is small it appears to be genuine wind-induced vibrations. The
vibrations are greater in the half-stiffness case, where the standard deviation of the response
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is several times greater. As seen in Figure 6.9, the vibrations in the half-stiffness case are
likewise greatest near the structural frequency. Therefore, while these results may have smaller
vibrations than would be ideal, they are sufficient to meet the original testing requirements
stated at the beginning of this section and thus will be used to help develop and validate the
1-DOF structural model.

6.2.6 Conclusions and post-mortem
The aeroelastic rotating base ultimately enabled testing that met the requirements for this study:
a wind tunnel test where a turbine experiences aeroelastic vibrations that also avoids scaling-
induced errors. Using this recorded data, a structural dynamic wind turbine model will be
developed.

Unfortunately, there were notable issues with the amount of damping in the system, owing
in large part to limited capabilities of pre-tunnel testing as well as the restrictive wind speeds
and TSR limits. Had higher wind speeds been allowable, the higher structural damping would
have been less impactful on the results.

Future testing of this rotating-base turbine is recommended to be run at higher wind speeds
with a greater amount of turbulence, as well as adding a significantly increased amount of elec-
trical resistance in the transformer circuit. The higher wind speeds would encourage greater
mean and fluctuating rotations in the tower, the greater turbulence would encourage more fluc-
tuations as well, and the increased electrical resistance would keep the rotor speed at a safe
level despite the increased wind speed.

6.3 Dynamic structural model
This section details the derivation of a dynamic structural model of the wind turbine based on
the results of the wind tunnel testing detailed in Section 6.2 as well as tests previously per-
formed by other researchers (Refan, 2009; Shirazadeh et al., 2021). As part of this design
and validation process, a simplified thrust coefficient model is also developed using a neural
network, however in the following chapter of this thesis, a higher-accuracy CFD-based aero-
dynamic model will be developed and paired with this structural model. Firstly, free vibration
tests will be used to extract the dominant structural features of the turbine, followed by the val-
idation of a numerical blade approximation and the development of the surrogate thrust model
using a neural network, and finally static and dynamic validations versus the generated wind
tunnel data.

6.3.1 Analysis of free vibration tests
The free vibration tests performed in the second round of testing described in Section 6.2.5
allows for the natural frequency, the rotational stiffness, and the rotational inertia to be quan-
tified for an equivalent structural model. Recall that free vibrations tests were performed for
both the full-stiffness and half-stiffness cases, which used four and two springs respectively to
restrain the tower during rotation. The stiffness of each spring was measured separately, with
the average of the four found to be 1557 N/m.



140 Chapter 6. Turbine model development based on aeroelastic wind tunnel tests

By measuring the average period between peaks in the free vibration results, the natural fre-
quency of the rotational response can be determined for both the full- and half-stiffness cases.
These were calculated to be 3.62 rad/s (0.576 Hz) and 2.06 rad/s (0.328 Hz), respectively. It is
well documented that in a system dominated by a single mode, as this rotating turbine system
is, the natural frequency can be calculated as

√
k/m where k is the structural stiffness and m is

the structural mass. Since this is a rotational system, the variables krot and mrot are used to des-
ignate their rotational frame of reference. It can further be assumed that the rotational mass of
the turbine constant between the two tests. Conversely, the system has two significant sources
of structural stiffness that vary between the tests: the positive stiffness provided by the spring
system and the negative stiffness inherent in an inverted pendulum system. The positive stiff-
ness is quite straightforward, and Figure 6.10 shows how the linear stiffness of the springs can
be converted into the rotational stiffness required for the model. The negative stiffness stems
from the fact that this most closely resembles an inverted, rigid pendulum, and thus its natural
stability is with the pendulum hanging below the fulcrum. The fact that without the springs, the
turbine would immediately fall over is the physical manifestation of the base system’s negative
stiffness. Thus the rotational stiffness of the system is a sum of two terms: the positive spring
stiffness (ks,rot) and the negative passive stiffness (kp,rot).

Therefore, the following set of equations are declared and solved to identify the structural
properties of the system:

ω1 = 3.617 =
√

k1,rot/mrot (6.9)

ω2 = 2.060 =
√

k2,rot/mrot (6.10)
k1,rot = kp,rot + 2ks,rot (6.11)
k2,rot = kp,rot + ks,rot (6.12)

Where subscript 1 refers to the full-stiffness case and subscript 2 refers to the half-stiffness
case. From Figure 6.10, if:

ks,rot = 2 ∗ 1557 ∗ 0.4952 = 763.0 Nm/rad (6.13)

then:

Figure 6.10: Numerical structural model of spring system in rotating base turbine. Mrot = ks,rotθ
therefore ks,rot = 2Ky2
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kp,rot = −397.0 Nm/rad (6.14)

mrot = 86.32 kgm2 (6.15)
k1,rot = 1129 Nm/rad (6.16)
k2,rot = 366.0 Nm/rad (6.17)

By simplifying the rotational model as a lumped mass at the end of a mass-less tower, the
rotational inertia mrot can be used to estimate the nacelle mass m as:

m = mrot/1.92 = 23.9 kg (6.18)

6.3.2 Numerical blade approximation
The blades of the 1.1 m residential wind turbine were previously investigated by Refan (2009).
A single blade was tested in Western University’s Boundary Layer Wind Tunnel Laboratory
on a force-balance base at several wind angles, which allowed lift and drag coefficient curves
to be generated for the blades as a whole. Based on these experiments, Refan (2009) also
approximated the unknown airfoils of the blade so that it could be numerically simulated.
They concluded that the real turbine blades could be approximated using a combination of
the NACA 6515 airfoil at the root of the blade and the Wortmann FX 63 137 airfoil at the
tip, the profiles of which are shown in Figure 6.11. This design would have been chosen
because the FX 63 137 has higher lift at low angles of attack but higher drag at higher angles
of attack compared to the NACA 6515, making the former more effective for the tips and
the latter more effective at the root. Using published lift and drag coefficient curves of the
NACA 6515 airfoil (Jacobs et al., 1932) and the FX 63 137 airfoil (Selig and McGranahan,
2004), they optimized their numerical turbine blade approximation and generated lift and drag
coefficient curves for the entire blades using the blade element momentum (BEM) technique
(Glauert, 1935). However, these approximations were not without limitations. The previous
experimental data used to characterize the airfoils was generated at much higher Re flows
compared to those experienced by the 1.1 m turbine in the wind tunnel; the NACA and FX
airfoils were previously tested at Reynolds numbers of 3∗106 and 1∗105 respectively, while the
turbine experiences flows of 2∗104 to 6∗104. Furthermore, while the approximation was able to
match the lift coefficient curve with some accuracy, it was less successful at modelling the drag
coefficient curve. Such prioritization is often seen in turbine blade approximations (Kimball
et al., 2014) because the lift force on a blade generally has a greater effect on the structural
behaviour of the turbine.

Table 6.5 shows the specifications of the blade approximation used in this study, which is

Figure 6.11: Normalized profiles of the NACA 6515 airfoil and the Wortmann FX 63 137
airfoil
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derived from the data reported by Refan (2009). In this table, a pitch of 0◦ refers to the chord
line parallel to the rotor plane.

While Refan (2009) directly employed the BEM technique to numerically study this rotor,
the more-robust, BEM-based open-source turbine modelling software OpenFAST (Jonkman
et al., 2021) was used here. OpenFAST is capable of performing a full aeroelastic analysis of
an operational turbine, making it an effective tool for loading and response modelling. This
robustness requires a larger amount of input data compared to other techniques – unlike the
BEM simulations by Refan (2009) which used experimental data with angles of attack ranging
from -6◦ to 30◦, OpenFAST requires full 360◦ lift and drag coefficient curves of its airfoils.
While such data exists for very common airfoils such as the NACA 0012 airfoil (Sheldahl
and Klimas, 1981), as far as the author is aware 360◦ experimental data does not exist for the
NACA 6515 and FX 63 137 airfoils. Instead, the open-source 2D airfoil analysis software
XFOIL (Drela and Youngren, 2000) was used to generate lift and drag coefficient curves for
angles of attack from -80◦ to 80◦ for these airfoils. XFOIL employs the simplified panel method
(Drela, 1989) to approximate the aerodynamic surface pressure on an airfoil, deriving the lift
and drag forces from this. Numerically generating the lift and drag curves using this method
had the added benefit of being able to generate the curves for a flow with Reynolds number
of 40800, a value which is equal to the median flow used by Refan (2009) and notably lower

Section Airfoil r (m) r/R Chord (m) Twist (◦) Center

1 NACA 6515 17% 0.19 0.1220 22.6 25%
2 NACA 6515 22% 0.24 0.1180 16.8 25%
3 NACA 6515 26% 0.29 0.1140 12.7 25%
4 NACA 6515 31% 0.34 0.1100 9.7 25%
5 NACA 6515 35% 0.39 0.1060 7.6 25%
6 NACA 6515 40% 0.44 0.1020 5.8 25%
7 NACA 6515 45% 0.49 0.0980 4.3 25%
8 NACA 6515 49% 0.54 0.0940 3.0 25%
9 NACA 6515 54% 0.59 0.0900 2.0 25%

10 Transition* 58% 0.64 0.0860 1.1 25%
11 FX 63 137 63% 0.69 0.0820 0.4 25%
12 FX 63 137 67% 0.74 0.0780 -0.1 25%
13 FX 63 137 72% 0.79 0.0740 -0.6 25%
14 FX 63 137 76% 0.84 0.0700 -1.1 25%
15 FX 63 137 81% 0.89 0.0660 -1.7 25%
16 FX 63 137 85% 0.94 0.0620 -2.1 25%
17 FX 63 137 90% 0.99 0.0580 -2.5 25%
18 FX 63 137 95% 1.04 0.0540 -2.8 25%
19 FX 63 137 99% 1.09 0.0500 -3.0 25%
20 FX 63 137 100% 1.10 0.0375 -3.0 15%

Table 6.5: Specifications of the airfoils lofted to make the numerical approximation of the wind
turbine blade, where r is the local radius and R is the tip radius of 1.1 m. The transition airfoil
is a radial mean of both airfoils to smooth the transition
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than the existing experimental data. The accuracy and stability of XFOIL become quite poor at
angles of attack beyond ±90◦, thus an alternative method was required to generate the lift and
drag coefficient curves at these points. Instead, the existing 360◦ lift and drag curves for the
NACA 64 airfoil, which are included in OpenFAST, were scaled and shifted to smoothly extend
the XFOIL data. The limitation of using scaled data from a different airfoil was deemed to be
acceptable as the angle of attack reaching values beyond 90◦ would rarely occur in this testing.
Figure 6.12 shows the generated 360◦ lift and drag coefficient curves for the NACA 6515 and
FX 63 137 airfoils, highlighting where values were generated using XFOIL and where they
are scaled NACA 64 data. As would be expected, the FX 63 137 has higher lift at low angles
of attack but also higher drag at high angles of attack compared to the NACA 6515. It should
be noted that, as seen in Section 3.3.3, there are concerns of the accuracy of XFOIL in stall
and post-stall conditions, particularly for drag prediction, thus this approximated blade model
requires validation.

While OpenFAST simulates an entire turbine, the single-blade wind tunnel test performed
by Refan (2009) can be replicated using OpenFAST by applying a uniform wind field to a
parked wind turbine. By setting the blade pitch to near 90◦, the leading edge of the blade can
be pointed upwind, allowing for the single-blade wind tunnel tests to be recreated and the lift
and drag loads at the root of the blade to be extracted. These loads are then converted into lift
and drag coefficients for the entire blade using the standard equations, where the area in the

Figure 6.12: Lift and drag coefficient curves for the NACA 6515 and FX 63 137 airfoils at a
Reynolds number of 40800
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denominator is taken as the blade length (0.91 m) times the average chord length (0.089 m).
Curves were generated at wind speeds of 5, 7, and 9 m/s at a turbulence intensity of 1% to
match the testing conditions from Refan (2009). Figure 6.13 compares these curves generated
in OpenFAST to the experimental and BEM-based numerical curves reported in Refan (2009).

As can be seen in Figure 6.13, there is a large discrepancy between the previous author’s ex-
perimental and BEM curves. Conversely, the OpenFAST sims match the experimental results
much better, particularly the lift predictions, despite also employing the BEM technique. This
improvement is likely due to a number of causes: firstly, as was mentioned, XFOIL was used
to generate lift and drag coefficient curve for the airfoils near the Reynolds number of the ex-
perimental tests, as opposed to the much larger Reynolds number used by the previous author.
XFOIL struggles at predicting drag in particular, which is likely why the lift coefficient curves
match the experimental results much better than the drag curves. Secondly, the BEM technique
is an older model and has seen numerous improvements by a number of authors including mod-
els to account for tip and hub losses – Liu and Janajreh (2012) offer a recent summary of these
improvements. OpenFAST employs BEM with these improvements by default, while they are
not used by Refan (2009) to generate the single-blade drag and lift coefficient curves.

While the discrepancy between drag coefficient curves is still significant in Figure 6.13,
the error can be accepted. The response of the structural model developed in this study will
be governed by the rotor thrust, which in turn is primarily governed by the airfoil lift given
the fixed pitch of these turbine blades. As a result, the error in drag prediction should have

Figure 6.13: Lift and drag coefficient curves of the entire 1.1 m turbine blade generated with
OpenFAST compared to wind tunnel and BEM tests from Refan (2009)
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a negligible impact on the final model. On the other hand, the small discrepancy in the lift
coefficient curves should be considered. By calculating the NRMSE between the OpenFAST
and experimental curves at their respective wind speeds and averaging the results, it is found
that the lift prediction by the OpenFAST implementation of the numerical approximation is
88% accurate for angles of attack between -6◦ and 30◦.

It must be emphasized that the accuracy of the numerical rotor approximation is not vali-
dated at angles of attack beyond 30◦. While in normal operational conditions this would not be
a major issue as the blade would be unlikely to ever see an angle of attack that high, at the low
TSRs seen in the experimental tests, the angle of attack on the turbine blade risks exceeding
this 30◦ validation threshold. The angle of attack on the turbine blade can be roughly defined
as:

α = tan−1
(
Uwind

Urot

)
(6.19)

Here α is the angle of attack, Uwind is the wind speed, and Urot is the rotation speed of the blade
which is equal to the product of the distance from the hub and the rotor speed. Since the wind
speed is relatively constant along the length of the blade, while the rotation speed is not, this
means that the angle of attack will be closest to zero at the tip where it will be equal to:

α = tan−1
(

1
TSR

)
(6.20)

Here the angle of attack is the inverse tangent of the inverse of the TSR, which is also shown
visually in Figure 6.14. This relationship carries forward logically: as the TSR increases for a
given wind speed, so too does the rotor speed, thus the rotation component of the relative wind
velocity on the blade will grow and the angle of attack will approach zero. This means that the
TSR can be used to directly calculate the lowest angle of attack seen on the blade (ignoring
airfoil twist which is very low at the tip). Based on Equation 6.20, with a TSR of 1.0 – which
is close to the value specified in many of the experimental tests here – the angle of attack at the
tip will be equal to 45◦. This exceeds the validation angle of the surrogate thrust model and
thus the accuracy of the thrust prediction can not be entirely validated. This limitation mainly
affects the surrogate thrust model developed in the following section, not the structural model
which is the main goal of this study. However, it does means that when validating the structural
model using this surrogate thrust model at lower TSRs, the thrust model is a likely source of
any identified error.

Figure 6.14: Relationship between the angle of attack and TSR at the blade tip
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6.3.3 Surrogate thrust coefficient model
The thrust coefficient is a critical value for the structural design of wind turbines. The thrust is
the along-wind force experienced by a turbine perpendicular to its rotor plane. While the torque
experienced by a rotor is critical for the power production of the turbine, the thrust is critical
for the tower design. Much like the other non-dimensional coefficients discussed previously,
the thrust coefficient is calculated as:

CT =
T

0.5ρAT U2 (6.21)

Here, CT is the thrust coefficient, T is the recorded thrust, ρ is the air density, U is the hub-
height wind speed, and AT is the swept area of the rotor which is equal to πR2 where R is the
blade length.

For turbines where the blade pitch is fixed, such as the 1.1 m residential turbine studied
here, the lift of the blades’ airfoil will primarily govern the rotor thrust. Since the thrust co-
efficient is normalized by the wind velocity, for an operational turbine with negligible nacelle
displacement under typical conditions the only factor that will affect the thrust coefficient is the
tip speed ratio (TSR). However, should the nacelle experience notable rotational displacement
due to tower deflections, this will also impact the thrust coefficients and in turn, the thrust load-
ing on the tower that is responsible for the tower deflections – as a result there is a non-linear
coupling between the wind speed and the thrust coefficient. Consider Figure 6.15 which com-
pares plots of the thrust coefficient as a function of the wind speed and tip ratio for a fixed-base
turbine and a rotating-base turbine. It is clearly shown that in the fixed case the thrust coef-
ficient is independent of the wind speed but dependent on the TSR, while in the rotating case
it is dependent on the TSR as well as the wind speed which controls the rotor deflection. The
final plot shows the relationship between thrust coefficient and base rotation.

The values reported in Figure 6.15 were generated for the 1.1 m residential turbine with
a rotating base using OpenFAST. A rigid turbine tower with a linearly rotating base can be

Figure 6.15: Plots of the thrust coefficient at various TSRs and wind speeds for fixed-base and
rotating-base turbines
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Figure 6.16: Diagram of the architecture of the surrogate thrust MLP NN

Figure 6.17: Contour plot of the thrust coefficient predicted by the NN-based surrogate model
for a given TSR and base rotation
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modelled in OpenFAST by restricting the tower deflections in the ElastoDyn module and im-
porting a custom turbine platform into the SubDyn module. The turbine was assigned the
rotational inertia and rotational stiffness derived in Section 6.3.1. By adjusting the rotational
inertia and testing the turbine under a number of wind speeds and TSRs, then extracting the
resulting thrust, the thrust coefficient for these varied conditions can be tabulated. Steady-state
simulations were performed in OpenFAST at TSRs of 0 through 2 in increments of 0.25, and at
wind speeds of 0.5 to 10 m/s in increments of 0.5 m/s. As seen in Figure 6.15, the relationship
between the thrust coefficient, TSR, and base rotation is complex, and a numerical model can
not be easily synthesized directly from the collected data.

Instead, the technique presented in Chapter 4 of generating a surrogate aerodynamic model
using a trained neural network (NN) was employed here as well. This network, shown in
Figure 6.16, was much simpler the the surrogate blade models developed in Chapter 4. It
received two inputs – the TSR and the base rotation – and predicted one output – the thrust
coefficient. Due to the simplicity, a three-layer multi-layer perceptron (MLP) with layer sizes
of 15, 10, and 5 was trained on the 360 OpenFAST samples. In MATLAB, samples were
normalized and randomized into the training data set (80% of samples) and testing data set
(20%). Using the trainNetwork function, the MLP was trained on the training data set for
20,000 epochs with a learning rate of 0.01, resulting in a network with an NRMSE of 3.31%
when evaluated using the testing data set. This accuracy of >96% was deemed sufficient for
the planned use of this network in this study.

Figure 6.17 shows the resulting contour plot of the thrust coefficient as a function of the
TSR and the rotation angle, plotted for a range of TSRs of 0 to 2 and -0.2 to +0.5 rad base
rotation, which was generated using the trained neural network.

6.3.4 1-DOF dynamic structural model
Using a combination of basic structural and wind analysis, a simplified 1-DOF model can be
developed to capture the structural dynamics of the rotating-base residential wind turbine. Fig-
ure 6.18 shows the 1-DOF model used to generate the structural equation of motion. Note the
frame of reference that defines downwind rotation as positive and upwind rotation as negative,
which will be used throughout the following chapters.

The 1-DOF model can be represented in equation form consisting of two sides of the equa-
tion of motion:

mrotθ̈ + MC(θ̇) + krotθ = −mgd + 0.5ρATCT U2H + 0.5ρAtCt(CtUU)2CtHH (6.22)

Here, the left side of the equation represents the response of the structure, where θ, θ̇, and θ̈ are
the rotation, the rotational velocity, and the rotational acceleration about the base in rad, rad/s,
and rad/s2. mrot and krot are the rotational inertia (kgm2) and the rotational stiffness (Nm/rad),
and MC(θ̇) is the damping moment in the structure which is a function of the rotational velocity;
the damping moment requires additional calculations that are detailed in Section 6.3.6. On the
right side of the equation are the three sources of moment acting on the turbine: the mass ec-
centricity moment, the rotor thrust moment, and the tower drag moment. The mass eccentricity
moment consists of m, the lumped nacelle mass of 23.9 kg, g, the gravitational acceleration,
and d, the eccentric distance between the center of mass of the nacelle and the tower center.
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Figure 6.18: Simplified 1-DOF model of the rotating base turbine, with the rotation stiffness
and damping shown in red and the wind profile and hub height wind speed in blue. Dashed
lines representing the blades are included for visual clarity but are part of the lumped mass in
the model

The thrust moment term consists of the thrust (see Equation 6.21) times the hub height (H).
The tower drag moment consists of the standard drag equation (see Equation 2.11) times the
hub height, where the cross-sectional area (At) is equal to the tower diameter (0.08 m) times
the tower height (1.9 m), the tower drag coefficient (Cdt) is equal to 1.2, the typical subcritical
drag value of a cylinder in low-to-mid Reynolds flow. Further, two additional coefficients have
been added to account for the non-uniform wind profile along the tower length, CtU is the mean
wind speed adjustment factor and CtH is the mean drag load height. Assuming a power law
wind profile with a coefficient of 0.05, basic calculus can be used to derive CtU=0.953 and
CtH=0.517.

The small-angle approximation is applied liberally in this model, which states that cosθ ≈ 1
(applied in the loading terms) and sinθ ≈ θ (applied in the structural terms). Provided that the
structure does not rotate beyond approximately ±0.4 rad, this simplification should have no
impact on the accuracy of the structural model.

6.3.5 Finalization and validation of the structural model under fixed and
non-fluctuating conditions

The remaining properties of the 1-DOF structural model, when paired with the NN-based surro-
gate thrust model, can be determined and validated using experimental results. Using data from
Shirazadeh et al. (2021), this turbine model can be validated for the case of a fixed base. Like-
wise, using the results from the experimental tests described in Section 6.2, the non-fluctuating
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response of the rotating-base turbine under mean wind loads can validated.
Shirazadeh et al. (2021) previously tested the 1.1 m wind turbine under uniform loads of

roughly 4.91 m/s at a TSR of 1.30. While this TSR value is lower than the residential turbine’s
rated value of 5.2, the maximum rotor speed was kept at this lower value to prevent any possible
damage to the turbine or the testing instruments. The turbine was fixed to a force balance and
the mean along-wind base shear of 14.36 N and base moment of 20.51 Nm were extracted.

Firstly, the surrogate thrust model from Section 6.3.3 can be validated by applying the
1-DOF model to the recorded base shear:

Vb,exp = FT + Ft (6.23)

FT = 0.5ρATCT (TSR, θ)U2 = 0.5(1.225)(π1.12)(0.231)(4.912) = 12.97 N (6.24)

Ft = 0.5ρAtCtC2
tUU2 = 0.5(1.225)(1.9 ∗ 0.08)(1.2)(0.953 ∗ 4.91)2 = 2.86 N (6.25)

Vb,exp = 14.36 N (6.26)
FT + Ft = 15.83 N (6.27)

Here, the experimental base shear (Vb,exp) is the sum of the thrust force (FT ) and the tower drag
force (Ft). All other variables have been defined previously (see Equation 6.22), but note that
CT (TSR, θ) refers to the thrust coefficient predicted by the surrogate model from Section 6.3.3
for a given value of TSR and θ, which returns a coefficient of 0.231 when supplied with a TSR
of 1.30 and a base rotation angle of 0 rad. The predicted base shear of the turbine using the
structural model with the surrogate thrust model is equal to 15.83 N, which matches decently
well with the recorded experimental value of 14.36 N with an error of 10.2%. Thus, it can be
said that the numerical model appears valid for the fixed turbine in conditions similar to those
described here.

The experimental data from Shirazadeh et al. (2021) also allows the eccentric distance of
the nacelle to be calculated by applying the 1-DOF model to the recorded overturning moment:

Mb,exp = −mgd + MT + Mt (6.28)

MT = 0.5ρATCT (TSR, θ)U2H (6.29)

MT = 0.5(1.225)(π1.12)(0.201)(4.912)(1.9) = 24.64 Nm (6.30)

Mt = 0.5ρAtCtC2
tUU2CtHH (6.31)

Mt = 0.5(1.225)(1.9 ∗ 0.08)(1.2)(0.953 ∗ 4.91)2(0.517)(1.9) = 2.80 Nm (6.32)
20.51 = −23.9(9.81)d + 21.49 + 2.80 (6.33)

d = 0.0296 m (6.34)

Here, the experimental base moment (Mb,exp) is the sum of the mass eccentricity moment, the
thrust moment (MT ), and the tower drag moment (Mt). As the only unknown in this equation
is the eccentric nacelle distance (d), this value can be solved as 0.0296 m.

With a validated surrogate thrust model and an identified nacelle eccentricity, the dynamic
structural model can be compared to the rotating-base turbine tests described in Section 6.2. As
explained previously, it was found that the experimental system was overly-damped for most-
to-all test cases, limiting the usefulness of the recorded results. However, the mean results
recorded in these tests should be controlled primarily by the structure’s rotational stiffness and
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thus the over-damping should not strongly impact the mean response. In terms of the model,
this condition is captured by removing the time-dependent components of Equation 6.22:

krotθ = −mgd + 0.5ρATCT Ū2H + 0.5ρAtCtC2
tUŪ2CtHH (6.35)

Here, the inertial and damping terms have been removed, and Ū is the mean wind speed. Using
this equation, the turbine’s mean overturning moment and resulting mean base rotation can be
determined for any combination of mean wind speed and TSR. Since the thrust coefficient is
used to calculate the base rotation but is also a function of the base rotation, this equation must
be solved iteratively: an initial value is assigned for the base rotation which is then used to
calculate a new thrust coefficient, then a new base rotation, etc. This iterative equation tends to
converges very quickly, typically only requiring five or fewer iterations.

As described in Section 6.2, two rounds of wind tunnel testing were performed. The
structural model is compared to both rounds, including the non-zeroed first round and higher-
accuracy second round. Beginning with the data collected in the first round of testing: due to
the failure to capture a correct zero during testing, the first round can not be directly compared
to the structural model on a test-by-test basis. However, the relative displacement between
tests can be directly compared to the numerical. In other words, while the total displacement
of a given test is unknown, the difference in base rotation between a test at Ū=3.59 m/s and
TSR=1.50 and a test at Ū=4.02 m/s and TSR=1.86 is known. In the structural model, this can
be modelled as:

krot(θ1 − θ2) = 0.5ρAT H
(
CT1Ū2

1 −CT2Ū2
2

)
+ 0.5ρAtCtCtHHC2

tU

(
Ū2

1 − Ū2
2

)
(6.36)

Here, subscripts 1 and 2 refer to the two tests being compared. Table 6.6 lists the measured
wind speed and TSR of the six tests from the first round of testing with the 9.53 mm aper-
ture pneumatic damper (the smallest amount of damping), as well as the resulting response
calculated using the numerical structural model with the surrogate thrust model. Table 6.7
then compares the difference in predicted base rotations between each combination of tests, for
both the experimental and numerical results. In Table 6.7, ∆θexp is the difference in base rota-
tion between the two listed experimental tests, ∆θnum is the difference in base rotation between
the numerical simulations of the same cases, and ∆M is the equivalent moment that would

Variable Symbol Unit Test 1-1 Test 1 -2 Test 1 - 3 Test 1 - 4 Test 1 - 5 Test 1 - 6

Mean wind speed U m/s 3.64 3.59 3.59 4.09 4.02 4.85
Tip speed ratio TSR - 0.90 1.50 2.10 1.10 1.87 1.45
Rotor speed Ω rad/s 2.98 4.90 6.85 4.09 6.83 6.39
Approximate rotational stiffness krot rpm 28.4 46.7 65.4 39.1 65.3 61.1

Non-zeroed mean experimental rotation θexp rad 0.0015 0.0033 0.0038 0.0021 0.0040 0.0045

Tower drag moment Mt Nm 2.43 2.37 2.37 3.07 2.97 4.32
Thrust coefficient CT - 0.256 0.230 0.261 0.238 0.245 0.227
Thrust moment MT Nm 14.99 13.12 14.91 17.58 17.53 23.64
Mass eccentricity moment −mgd Nm -6.94 -6.94 -6.94 -6.94 -6.94 -6.94
Predicted base moment Mb,num Nm 9.37 7.46 9.25 12.30 12.19 19.04
Predicted base rotation θnum rad 0.0083 0.0066 0.0082 0.0109 0.0108 0.0169

Table 6.6: Comparison of non-fluctuating response between the first round of wind tunnel tests
and the 1-DOF structural model
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cause the difference between ∆θexp and ∆θnum. In an attempt to contextualize the value of these
discrepancies, ∆M is compared to the thrust moment predicted by the second numerical simu-
lation in the comparison, the ratio of which is reported as ∆M/MT . Assuming that any major
discrepancies in the numerical prediction stem from error in the predicted thrust coefficient
(see Section 6.3.2), ∆M/MT thus quantifies the error in the thrust prediction of the numerical
simulations. As can be seen in Table 6.7, the “thrust error” (∆M/MT ) is generally below 20%
for most cases, though comparisons with Test 1-6 typically lie outside of this range. The error
is likely due to the limitations in the thrust model (as assumed), any errors in predicting the
thrust coefficient would scale equal to the wind speed squared, thus it would be expected that
error would be greatest in the test case with the highest wind speed. Still, given the limitations
within the data captured in the first round of wind tunnel testing as well as in the surrogate
thrust model, the overall matching between the experimental results and the results predicted
by the structural model are satisfactory.

While the results from the first round of wind tunnel testing are positive indicators of the
accuracy of the structural model, the results from the second round of testing are of higher
accuracy and worth greater consideration. These comparisons are also more straightforward;
Table 6.8 shows the conditions and results of four tests from the second round of testing, labeled
2-1 through 2-4, which vary by mean wind speed, rotational stiffness, and TSR. The table
also includes the predicted mean base rotation according to the structural model and compares
the predicted results by using a typical error equation with the denominator as a function of
the static rotation (θstatic) of 0.00615 rad or 0.0190 rad for the full- and half-stiffness cases,
respectively:

error =
θexp − θnum

θexp − θstatic
(6.37)

As can be seen in Table 6.8, matching is decent between the experimental and numerical results,
with the largest error of -17% occurring for Test 2-4. This error is greater than ideal, and

Variable Symbol Unit Test 2-1 Test 2-2 Test 2-3 Test 2-4

Mean wind speed U m/s 4.07 3.63 4.07 3.63
Tip speed ratio TSR – 1.32 0.95 1.33 0.96
Rotor speed ω rad/s 4.88 3.14 4.92 3.17
Approximate rotational stiffness krot Nm/rad 1129 1129 366 366

Mean experimental base rotation θexp rad 0.0111 0.0060 0.0401 0.0215

Tower drag moment Mt Nm 1.65 1.31 1.65 1.31
Thrust coefficient CT – 0.231 0.252 0.229 0.251
Thrust moment MT Nm 16.93 14.71 16.78 14.64
Mass eccentricity moment −mgd Nm -6.94 -6.94 -6.94 -6.94
Predicted base moment Mb,num Nm 11.64 9.08 11.49 9.01
Predicted base rotation θnum rad 0.0103 0.0080 0.0314 0.0246
Base rotation error – – 4.7% -16.6% 14.7% -7.73%

Table 6.8: Comparison of non-fluctuating response between the second round of wind tunnel
tests and the 1-DOF structural model
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likely stems from limitations in the OpenFAST-generated data used to train the surrogate thrust
model. This is supported by the fact that the model underestimates rotation at high wind
speed/TSR and overestimates at lower wind speed/TSR. If the error were due to structural
properties, it would be expected that the error would be consistently over- or underestimated.
Conversely, error in predicting the thrust coefficient could over- or underestimate depending
on the wind speed/TSR combination. Ultimately, the OpenFAST-generated thrust predictions
were fairly accurate for the upright rotor, but the rotation of the rotor plane is likely injecting
inaccuracies. Recall however, that the NN used to predict the thrust coefficient will not be
carried forward into testing beyond this chapter, only the structural model will. Therefore,
based on the overall accuracy between the non-fluctuating structural model and both rounds
of experimental tests, the developed structural model is deemed sufficiently accurate to carry
forward onto true dynamic analyses.

6.3.6 Damping model and dynamic validation
In a typical structure, the vibration damping that occurs can be approximated as a single linear
term:

Clin = 2mωξlin (6.38)
MC = Clinθ̇ (6.39)

Where Clin is the linear damping coefficient, m is the modal mass, ω is the natural frequency
of the structure, and ξlin is the linear damping ratio. Using this linear model, the damping
moment (MC) from Equation 6.22 is the product of the damping coefficient and the structure’s
rotational velocity (θ̇). While in reality the damping in a structure comes from a combination
of linear and non-linear terms, the purely-linear approximation is typically sufficiently accurate
for the purposes of structural analysis, particularly because it is often difficult to identify the
damping ratio in a real structure. The most common technique to do so is the logarithmic
decrement technique which uses the free vibration response to estimate the linear damping
ratio in a structure. The full derivation can be found in Newth (2004), but to summarize: it
can be derived from the standard equation of motion using Equation 6.38 that when a structure
with a damping ratio ≪ 1 is in free vibration, the decay curve plotted along the amplitudes of
the free vibration oscillations (a) can be modelled as:

a = a0e−ωξlint (6.40)
ar

ar−1
= e−2πξlin (6.41)

ξlin =
ln(ar−1/ar)

2π
(6.42)

Therefore, the decay curve of the oscillations is defined as the initial amplitude (a0) times a
function of the natural frequency (ω), the damping ratio (ξlin), and the time (t). This equation
can be used to determine the structural damping ratio based on the ratio between subsequent
amplitudes of oscillations ar/ar−1 where ar refers to the amplitude at t = 2πr/ω. Thus Equa-
tion 6.42 can be used for each subsequent pair of amplitudes to estimate the damping ratio,
the average of which across the entire free vibration time history can be used for the structure.
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Figure 6.19: Normalized free vibration response of the full-stiffness rotating-base turbine and
the decay curve predicted by the linear damping model assuming a damping ratio of 1.6%

Though, if the structure is closely following a linear damping response, there should be little
variation in the predicted ratio from amplitude to amplitude. Figure 6.19 compares this linear
model to the recorded free vibration results of the rotating-base turbine from the wind tunnel
testing; it can be seen that the linear model fit is imperfect, but matches decently well at a
damping ratio of 1.6%.

In industrial wind turbines, it is well documented that while there is a passive structural
damping effect, there is a much larger damping effect in the fore-aft direction due to the aero-
dynamic damping caused by the operational rotor. As a rule-of-thumb, an industrial turbine
will typically have a passive structural damping ratio of 0.5-1%, but with an additional 4-10%
aerodynamic damping ratio. This effect is quite significant in industrial turbines, thus its im-
pact must be considered for this residential turbine – recall that the rotor is not operational
during the free vibration tests and thus the predicted structural damping ratio does not include
this aerodynamic effect. The numerical Kühn model (Kühn, 2001) can be used to estimate the
aerodynamic damping ratio of an operational wind turbine. The Kühn model states:

ξaero =
NbρΩ

4ωmrot

∫
R

rroot

dCl

dα
crdr (6.43)

Here, ξaero is the aerodynamic damping ratio, Nb is the number of blades, ρ is the air density,
Ω is the rotor speed in rad/s, ω is the natural frequency of the turbine in rad/s, and mrot is the
rotational inertia of the turbine in kgm2. The final term is the integral of the linear pre-stall
slope of the lift coefficient curve (dCl

dα ) in rad−1, multiplied by the chord length c in m, and times
the radial distance from the hub r in m, ranging from the base of the blade (rroot) to the tip (R).
Solving the integral yields:
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Section Airfoil Radius (m) Chord length (m) CLslope Kühn variable

1 NACA 6515 0.19 0.1220 5.1700 0.0068
2 NACA 6515 0.24 0.1180 5.1700 0.0081
3 NACA 6515 0.29 0.1140 5.1700 0.0093
4 NACA 6515 0.34 0.1100 5.1700 0.0104
5 NACA 6515 0.39 0.1060 5.1700 0.0114
6 NACA 6515 0.44 0.1020 5.1700 0.0123
7 NACA 6515 0.49 0.0980 5.1700 0.0130
8 NACA 6515 0.54 0.0940 5.1700 0.0137
9 NACA 6515 0.59 0.0900 5.1700 0.0143

10 NACA 6515 0.64 0.0860 5.1700 0.0148
11 FX 63 137 0.69 0.0820 5.5558 0.0163
12 FX 63 137 0.74 0.0780 5.5558 0.0166
13 FX 63 137 0.79 0.0740 5.5558 0.0168
14 FX 63 137 0.84 0.0700 5.5558 0.0168
15 FX 63 137 0.89 0.0660 5.5558 0.0168
16 FX 63 137 0.94 0.0620 5.5558 0.0166
17 FX 63 137 0.99 0.0580 5.5558 0.0164
18 FX 63 137 1.04 0.0540 5.5558 0.0160
19 FX 63 137 1.09 0.0500 5.5558 0.0030
20 FX 63 137 1.10 0.0375 – –

Sum of Kühn variables: 0.2492
Predicted aerodynamic damping ratio: 0.0036

Table 6.9: Calculation of numerically predicted aerodynamic damping for the 1.1 m residential
wind turbine using Equation 6.43

Section Airfoil Radius (m) Chord length (m) CLslope Kühn variable

1 Cylinder1 2.8667 3.542 0.00 0
2 Cylinder1 5.6 3.854 0.00 0
3 Cylinder2 8.3333 4.167 0.00 0
4 DU40 A17 11.75 4.557 7.92 2043
5 DU35 A17 15.85 4.652 7.46 2547
6 DU35 A17 19.95 4.458 7.46 3000
7 DU30 A17 24.05 4.249 7.49 3405
8 DU25 A17 28.15 4.007 6.85 3397
9 DU25 A17 32.25 3.748 6.85 3609

10 DU21 A17 36.35 3.502 6.41 3532
11 DU21 A17 40.45 3.256 6.41 3634
12 NACA64 A17 44.55 3.01 6.31 3631
13 NACA64 A17 48.65 2.764 6.31 3628
14 NACA64 A17 52.75 2.518 6.31 2958
15 NACA64 A17 56.1667 2.313 6.31 2297
16 NACA64 A17 58.9 2.086 6.31 2170
17 NACA64 A17 61.6333 1.419 – –

Sum of Kühn variables: 39850
Predicted aerodynamic damping ratio: 0.0710

Table 6.10: Calculation of numerically predicted aerodynamic damping for the NREL 5 MW
industrial wind turbine using Equation 6.43
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R

rroot

dCl

dα
crdr = 0.5

n∑
i=1

dCl

dα
ci(r2

ui − r2
li) (6.44)

Here, the blade is divided into i segments of consistent airfoil shape and chord length. dCl
dα is

again the linear lift coefficient curve slope, ci is the chord length of the blade section, and rui

and rli are the upper and lower radial distance of the segment respectively.
Using the Kühn model, the predicted aeroelastic damping ratio for the 1.1 m residential

turbine can be estimated using a rotor speed of 4.88 rad/s which results in a TSR of 1.32 in
4.07 m/s wind. Table 6.9 shows the calculation process, separating the turbine blade into 20
segments and solving ξaero as 0.36%. As could be expected intuitively, due to the smaller
rotor size and the relatively low rotor speed, there is not a significant amount of aerodynamic
damping predicted. However, given that the predicted structural damping ratio is around 1.6%,
this value would still impact the structural response, representing approximately a 25% increase
in damping.

To confirm that the Kühn model works as expected, it was also used to solve for the aerody-
namic damping of the NREL 5 MW industrial wind turbine (Jonkman et al., 2009). This turbine
has three 62 m blades, with an operational rotor speed of 1.27 rad/s, a first modal frequency
of 1.83 rad/s, and a first modal mass of approximately 360 tonnes. Table 6.10 shows the cal-
culation process by dividing the blade into 17 segments, resulting in a predicted aerodynamic
damping ratio of 7.1%. This value falls into the expected value range of 4-10%, supporting the
effectiveness of the Kühn model and the relative accuracy of the predicted damping ratio for
the 1.1 m turbine.

This damping model must also be validated against the wind tunnel tests. Here, the fluctu-
ations in the rotation of the turbine tower are captured as the standard deviation of the rotation
response. The stiffness of the system controls the mean rotation, but the vibration about the
mean is controlled primarily by the damping of the system. Thus, if the dynamic structural
model achieves a similar predicted standard deviation, it can be said that the damping model is
capturing the behaviour effectively. To this end, numerical simulations of the structural model
combined with the surrogate thrust model were performed for both the full- and half-stiffness
cases under the recorded 3.63 m/s and 4.07 m/s wind speed time histories, and the standard
deviations of the results were extracted. An optimization process was then used to determine
the damping ratio required to match the recorded experimental standard deviation. The results
of this process are reported in Table 6.11. Recall that since over-damping was an issue seen
in many of the experimental tests, the recorded standard deviations of the tower rotation are
relatively small. As can be seen, infeasibly high damping ratios ranging from 300-1500% are
required to match the experimental results, compared to the values of 1.6% predicted by the
free vibration tests. This difference can not be accounted for by the small amount of aerody-
namic damping, which was predicted to be in the order of <1%. These results show that the
purely-linear damping model is unable to truly capture the recorded behaviour of this rotating-
base turbine.

To expand the damping model to satisfy both the free vibration and wind tunnel results,
one needs to consider all the physical sources of damping in the system. This includes damp-
ing from the structural response (e.g. small deformations in the frame), damping from air re-
sistance, and damping from friction (e.g. between the tower axle and the frame). These are
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Variable Test 2-1 Test 2-2 Test 2-3 Test 2-4

Mean wind speed (m/s) 4.07 3.64 4.07 3.64
Tip speed ratio 1.32 0.95 1.33 0.96
Rotor speed (rad/s) 4.88 3.14 4.92 3.18

Experimental standard deviation of rotation (rad) 0.00091 0.00078 0.00324 0.00206

Mean base moment (Nm) 18.54 16.11 18.44 15.94
Mean base rotation (rad) 0.0164 0.0143 0.0504 0.0436
Thrust coefficient 0.231 0.252 0.229 0.250
Optimized linear damping ratio 9.15 14.75 3.36 8.97
Numerical standard deviation of rotation (rad) 0.00091 0.00071 0.00320 0.00210

Table 6.11: Optimal linear damping ratios such that the standard deviation of base rotations
matches recorded wind tunnel results

Figure 6.20: Normalized free vibration response of the full-stiffness rotating-base turbine and
the decay curves predicted by the linear, quadratic and Coulomb damping models. The opti-
mized decay curve from the combined model is also shown

referred to as structural damping, air damping, and friction damping; each of which can be
described using a different damping model, as shown in Figure 6.20. The structural damping
can be represented using linear damping, as discussed previously.

The air damping is modelled using quadratic damping:

MC = Cquadθ̇|θ̇| (6.45)
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As can be seen, the damping force is equal to the quadratic damping coefficient (Cquad) multi-
plied by the velocity squared, where one of the terms is the absolute value to preserve direction-
ality. Newth (2004) characterized the quadratic damping model, and found the free vibration
decay curve to be equal to:

ar

ar−1
=

3
4Cquada0 + 3

(6.46)

Here, ar/ar−1 is the ratio of adjacent amplitudes as previously defined in Equation 6.41. Quadratic
damping is the appropriate model for air drag because, as defined in Equation 2.11, the aero-
dynamic drag force is a function of the wind velocity squared. As one would expect due to
the squared term, it is seen in Figure 6.20 that the quadratic model dampens vibrations more
strongly at higher amplitudes and less so at lower amplitudes.

The friction damping can be modelled using Coulomb damping:

MC = M f ric ∗ sign(θ̇) (6.47)

Here, the damping moment models kinetic friction and is equal to a fixed frictional moment
(M f ric) that opposes the direction of structural motion. The sign function is equal to either 1 or
-1 depending on the directionality of θ̇. As a result, this applies a significant amount of damping
to small amplitude vibrations while having limited effectiveness on high amplitude vibrations.
As described by Rizcallah (2019), the decay curve associated with Coulomb damping is:

a = a0 −
M f ricω

2krot
t (6.48)

Where krot is the structural stiffness. As can be seen in Figure 6.20, the Coulomb damping
model results in a linear reduction in amplitude until oscillations end; of the three damping
models presented here, the Coulomb model is most effective at suppressing low-amplitude
vibrations.

The improved damper model for the turbine includes the structural, air, and friction com-
ponents, thus by combining Equations 6.38, 6.39, 6.45, and 6.47:

MC = 2mωξlinθ̇ +Cquadθ̇|θ̇| + M f ricsign(θ̇) (6.49)

In this combined model there are three unknowns that control the overall damping: ξlin, Cquad,
and M f ric. There is no reasonable way to solve for these values explicitly, instead an optimiza-
tion process will be used such that the assigned values for the unknowns result in a model that
matches both the free vibration and wind tunnel tests. This process was performed in MATLAB
using the Bayesian optimization algorithm previously detailed in Section 4.2.3. The full- and
half-stiffness structural models combined with the surrogate thrust model are run under wind
tunnel and free vibrations conditions, then the resulting response curves are extracted. The op-
timization process seeks to minimize the average error between the predicted oscillation peaks
in the free vibration response and the standard deviation of the base rotation in the wind tunnel
response. Note that this process ignores any additional aerodynamic damping added by the
operational rotor, which was deemed an acceptable assumption. In addition to this three-term
combined model, three two-term models consisting of each possible pair of the three terms
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Variable Test 2-1 Test 2-2 Test 2-3 Test 2-4

Mean wind speed (m/s) 4.07 3.64 4.07 3.64
Tip speed ratio 1.32 0.95 1.33 0.96
Rotor speed (rad/s) 4.88 3.14 4.92 3.18

Experimental standard deviation of rotation (rad) 0.00091 0.00078 0.00324 0.00206

Optimized linear damping ratio 0.0097 0.0078 0.0140 0.0111
Optimized quadratic damping coefficient (Nms2/rad2) 1.934 2.618 0.063 1.149
Optimized friction value (Nm) 1.172 0.865 0.831 0.765
Numerical standard deviation of rotation (rad) 0.00091 0.00078 0.00320 0.00200

Table 6.12: Optimal linear damping ratio, quadratic damping coefficient, and friction moment
such that the standard deviation of base rotations matches recorded wind tunnel results as well
as the free vibration results

were investigated as well, but the three-term model was the most effective and thus the results
of these additional tests have been excluded.

Table 6.12 shows the results of this optimization process including the optimized damping
parameters and the resulting error for both the free vibration and wind tunnel results. As can
be seen, all four cases converge on similar values that result in the numerical model accurately
matching both the standard deviation of the tower rotation, as well as the free vibration response
as shown in Figure 6.20. As the rotational velocity of the turbine is relatively low in these
cases, the quadratic damping term is the least impactful, while the Coulomb damping term
is the most critical as it is instrumental in replicating the very small amplitude of fluctuation
recorded in the wind tunnel tests. It can be seen while there is decent agreement between the
three damping parameters between tests, there is some variation possibly stemming for the
optimization process and the different TSRs affecting the aerodynamic damping. However, for
the purposes of this study, it would be deemed sufficiently accurate to model the experimental
damping as the average values across all four cases, thus ξlin=1.07%, Cquad=1.44 Nms2/rad2,
and M f ric=3.63 Nm.

While this combined model serves to accurately capture the response of the experimental
rotating-base turbine, it carries forward the oppressive amount of damping found in the ex-
perimental model. While it was important to showcase that the true damping behaviour of
the experimental model could be identified and included in the structural model, for further
application of this structural model it would be beneficial to remedy this limitation. Thus, it
was decided to simplify the damping of the structural model for future tests. As was shown in
Figure 6.19, a linear damping model of 1.6% matches the free vibration results well, and using
Equation 6.43 the Kühn model predicted an operational aerodynamic damping ratio of 0.4%.
Thus, a total linear damping ratio of 2.0% is chosen to be used in future tests, neglecting any
quadratic or friction damping terms, thus allowing for the turbine model to experience larger
base deflections in future simulations.
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Property Symbol Unit Value

Rotational inertia mrot kgm2 86.32
Rotational stiffness krot Nm/rad 1129 or 366
Natural frequency ω rad/s 3.617 or 2.060
Operational damping ratio ξ – 0.02
Rotational damping coefficient crot Nms/rad 12.49 or 7.11
Hub height H m 1.9
Nacelle mass m kg 23.9
Nacelle overhang d m 0.0296
Rotor area AT m2 3.80
Tower area At m2 0.152
Tower drag coefficient Ct – 1.2

Density of air ρ kg/m3 Per case
Wind speed U m/s Per case
Thrust coefficient CT – Per case

Mass eccentricity moment Me Nm −mgdcosθ
Thrust moment MT Nm 0.5ρATCT (Ucosθ)2H
Tower drag moment Mt Nm 0.5ρAtCt(0.953Ucosθ)2(0.517H)
Equation of motion mrotθ̈ + crotθ̇ + krotθ = Me + MT + Mt

Table 6.13: Summary of 1-DOF dynamic structural model. Entries where two values are listed
refers to the full-stiffness and half-stiffness models respectively

6.3.7 Summary of the 1-DOF structural model

The summarized properties of the 1-DOF dynamic structural model are listed in Table 6.13 in-
cluding updating the loading terms to remove the small-angle approximation. When combined
with the surrogate thrust model detailed in Section 6.21 or some other aerodynamic model,
this model can be subjected to any wind speed time history and the resulting tower rotations
can be tracked. This time history analysis can be performed using any number of numerical
integration techniques, including the Chen-Ricles-based method described in Section 5.2.4.

6.4 Case study employing the structural model

As an example of the utility of the developed dynamic structural model, the following short
numerical case study was performed. Since existing HS of wind turbines (see Section 2.7) have
primarily been used to study non-linear external damping systems such as tuned mass dampers
(TMDs), a numerical test was performed on a similar test case. In this case study, the structural
model is paired with the surrogate thrust model from Section 6.3.3 to evaluate the effectiveness
of passive and semi-active TMDs at reducing vibrations in this turbine system. This research
is heavily inspired by the study presented in Chapter 5 and serves as both a proof-of-concept
of the dynamic model and an additional validation of the findings from Lalonde et al. (2020b).
This study subjects the full-stiffness dynamic model to a range of wind speeds recorded from



162 Chapter 6. Turbine model development based on aeroelastic wind tunnel tests

Figure 6.21: Modification of the 1-DOF structural model shown in Figure 6.18 to include a
linear, semi-active tuned mass damper

the wind tunnel tests in Section 6.2 and TSRs to evaluate the relative effectiveness of passive
and semi-active TMDs for vibration suppression.

This study places a linear TMD in the nacelle of the turbine acting against the rotation
of the turbine tower. The sine of the tower rotation is converted into a linear displacement by
multiplying by the tower height, as shown in Figure 6.21. Similarly, the sine of the base rotation
speed times the tower height is added to the wind speed to determine the relative wind speed on
the translating blades. The properties of the tuned mass damper are derived using the method
laid out by Connor (2002) as described in Sections 5.2.3.2 and 5.2.3.3. To summarize, based
on an assumed mass ratio between the TMD mass and the lumped nacelle mass of the turbine,
the optimal TMD stiffness, and the damping values can be derived. In this case, it was decided
to use a relatively common mass ratio of 1% resulting in a TMD mass (mT MD) of 0.239 kg, a
damping coefficient (cT MD) of 0.0285ω Ns/m, and a stiffness (kT MD) of 0.233ω2 N/m, where ω
is the natural frequency of the turbine (3.617 rad/s for the full-stiffness model).

For the semi-active TMD, it was decided to use a variable damping controller which was
previously found in Chapter 5 to be highly-effective while also simple to implement. It uses
the ground-hook controller as described in Section 5.2.3.4, which alternates the damping coeffi-
cient between a high and low value depending on the physical state of the turbine. In this case,
when the turbine is moving away from its neutral position, the damping coefficient defined
above is used, while when it is moving back towards its neutral position this value is reduced
by 60%, thus encouraging the turbine to remain as close to its neutral position as possible.

To offer a relatively broad range of tests, the dynamic structural model with the surrogate
thrust model was run by itself and while equipped with the passive TMD and the semi-active
TMD in wind speeds of 3.63, 4.07, and 4.85 m/s using the recorded wind speed time histories
from the first round of wind tunnel tests in Section 6.2. At each wind speed, the turbines
were tested at TSRs of 1.0 and 2.0. From each simulation, the mean and standard deviation of
the tower rotation was recorded, ignoring the first 40% of the time history to minimize start-
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up effects. Further, the percent differences between the results recorded from the PTMD and
STMD cases and the TMD-less case were calculated.

Note that the mass ratio and the value of the secondary (lower) damping coefficient in
the ground-hook controller will control the response improvement offered by the STMD. For
example, the STMD will more effective relative to the PTMD at lower wind speeds with a
higher mass ratio and lower secondary damping coefficient. Conversely, a lower mass ratio and
higher secondary damping coefficient will mean that the STMD will outperform the PTMD at
higher wind speeds. A full parametric analysis of this behaviour is beyond the scope of this case
study, which is why the singular mass ratio and secondary damping coefficient were selected
to be analyzed here.

The results of the simulations are reported in Table 6.14, which shows that despite the low
mass ratio, in all instances both TMDs were effective at reducing the response of the turbine,
particularly at higher wind speeds and lower TSRs. The standard deviation of the turbine
tower rotation was reduced by approximately 12% in 3.63 m/s wind speeds, and up to 17% in
4.85 m/s wind speeds. It can also be seen that the semi-active TMD matches or outperforms
the passive TMD in all cases. In the 3.63 and 4.07 m/s cases, the STMD does not result in
a substantial reduction in the standard deviation of the base rotation compared to the PTMD,

Wind Tip speed TMD Mean rot. St. dev. rot. St. dev.
speed ratio type (10−3 rad) (10−3 rad) reduction

None 6.02 3.223 -
1.00 Passive 6.02 2.833 12.1%

3.63 Semi-active 6.02 2.831 12.2%

m/s None 6.41 3.307 -
2.00 Passive 6.41 2.919 11.8%

Semi-active 6.41 2.917 11.8%

None 9.16 4.063 -
1.00 Passive 9.16 3.587 11.7%

4.07 Semi-active 9.16 3.585 11.8%

m/s None 9.66 4.171 -
2.00 Passive 9.66 3.698 11.3%

Semi-active 9.66 3.696 11.4%

None 16.81 3.641 -
1.00 Passive 16.82 3.050 16.2%

4.85 Semi-active 16.82 3.004 17.5%

m/s None 17.58 3.716 -
2.00 Passive 17.59 3.138 15.6%

Semi-active 17.59 3.094 16.7%

Table 6.14: Summary of simulations comparing TMD and STMD using the dynamic structural
model. Mean rotation (rot.) and the standard deviation (st. dev.) are reported, and are used to
compare the reduction in standard deviation compared to the cases with no TMD
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but in the 4.85 m/s case the STMD reduces the response by >1% compared to the no-TMD
case at both TSRs, which represents a relative improvement compared to the PTMD of 8.1
and 7.1% respectively. Overall, these results match the conclusions found in Lalonde et al.
(2020b): both forms of TMD are quite effective, the semi-active TMD is both more efficient
and more effective at response reduction, though there are instances where the improvement is
quite minor. This short study also shows how the validated dynamic structural model can be
applied for numerical turbine studies, which will see further use in the following chapter using
a novel HS framework that incorporates an improved surrogate aerodynamic model.

6.5 Conclusions
This study details the development of an experimentally-validated structural wind turbine
model to act as a testbed for future hybrid simulation studies. The experimental data used
to build such a model was required to meet two criteria: that it avoids the scaling issues seen
in traditional wind tunnel tests of wind turbines, and that it experiences measurable aeroelastic
deflection. Thus, two rounds of wind tunnel testing were performed on a 1.1 m residential
wind turbine with a custom-built aeroelastic rotating base. The rotating base mimics the pitch
rotation in buoy-supported floating wind turbines and was achieved without affecting the aero-
dynamics of the turbine by placing stiffness and damping systems beneath the floor of the
tunnel. Two rounds of testing were performed at a number of wind speeds, tip speed ratios,
structural damping, and structural stiffness levels. There were issues in some tests with insuffi-
cient vibrations, a lack of aeroelastic excitation, and non-zeroed measurements, but ultimately
the gathered data was sufficient to meet the two requirements.

A 1-DOF numerical structural model of the rotating-base turbine was built using the wind
tunnel test results. This involved the development of a multi-layer perceptron neural network-
based surrogate thrust model that predicted the thrust coefficient of the rotor based on the
hub-height wind speed and the tip speed ratio. This model was trained on OpenFAST data
using a previously-validated numerical approximation of the turbine rotor and was predicted to
have an accuracy of about 96%. Subsequently, the basic structural properties were determined
based on free vibration tests and validated based on previous fixed-base tests. The loading
models were then validated against the mean results from the new wind tunnel tests, with an
accuracy of greater than 80%, which was the maximum achievable due to the uncertainty in
the surrogate thrust model at the test conditions. Finally, the structural damping was modelled
based on the second round of wind tunnel testing, which was best-captured using a combined
linear-quadratic-Coulomb damping model - this amount of damping was found to be overly-
strong based on the wind tunnel testing, and thus it was intentionally reduced in the structural
model. A condensed summary of the structural model properties was then provided.

Finally, the developed and validated 1-DOF structural model and the surrogate thrust model
were used to study a non-linear vibration damping system. Specifically, passive and semi-active
tuned mass dampers were compared for their vibration reducing capabilities on the rotating-
base turbine. Using optimized damper parameters, vibrations were able to be reduced by 12-
18%, and the structural model was shown to be effective in hybrid simulation-like test cases.
Future testing will employ this structural model in a study to validate a novel hybrid simulation
framework for wind turbines.



Chapter 7

Development of a novel hybrid
simulation framework employing a
CFD-based surrogate model to
study a semi-actively damped wind
turbine

Summary

Current applications of hybrid simulation (HS) for wind-loaded structures such as wind tur-
bines are limited by the reliance on lower-accuracy “pre-calculated” aerodynamic data. This
study investigates the effectiveness of a novel HS framework that incorporates a computational
fluid dynamics (CFD) based surrogate model to generate higher-accuracy aerodynamic data
within the simulation loop. The investigation is performed across twelve artificial HS of a
residential wind turbine with an aeroelastic rotating base equipped with a semi-active tuned
mass damper (STMD). Firstly, the development of the surrogate aerodynamic turbine blade
model is detailed covering the training of a convolutional neural network using CFD-generated
data. 24 URANS CFD simulations were performed at a variety of wind speeds, tip speed ra-
tios (TSRs) and base rotations, the results of which were used to optimize and train the CNN.
The resulting surrogate model is capable of quickly estimating the blade thrust based on the
wind speed, rotor speed and blade position. The novel HS framework that incorporates this
trained surrogate model is applied in the artificial hybrid simulations and contrasted against
the existing technique of pre-calculating the aerodynamic loads, which were generated using
OpenFAST. By comparing the results of the twelve AHS considering the predicted rotor thrust,
base rotation, and STMD effect, the impact of the proposed framework can be assessed. While
an exact quantification of its effectiveness can not be drawn, validation of the CFD simulations
and observations of the HS indicate that the framework is feasible and should offer notable
improvement over the existing framework in both accuracy and aeroelastic fidelity.
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7.1 Introduction

Chapters 1 and 2 have detailed the promise of HS for wind turbine research and other wind
engineering applications, as well as the need for an updated HS framework to improve the
accuracy of aerodynamic load prediction. Existing HS of wind turbines were presented in de-
tail in Section 2.7, including two notable studies (Brodersen et al., 2016; Zhang et al., 2017)
which applied real-time HS to study industrial wind turbines equipped with novel non-linear
damping systems. In these HS, the dampers were modelled experimentally while the turbines
were modelled numerically. Aerodynamic loads were applied from time histories that were
generated using blade element momentum (BEM) based methods and/or generated prior to the
real-time HS. In other words, the aerodynamic loading was generated using lower-accuracy nu-
merical techniques and since they were calculated prior to testing, they were unable to take into
account the true structural response of the damper-equipped turbine, limiting the accuracy of
the modelled aeroelasticity. While the existence of these limitations is clear, these studies fail
to acknowledge them and often do not even report the specifics of the numerical model used to
perform the aerodynamic pre-calculations. While the impact of these simplifications can not be
quantified from these studies, Lee et al. (2017) has reported that simplified aerodynamic model
such as BEM introduce errors of ≥5% compared to advanced models such as CFD. Addition-
ally, Section 2.8 summarizes a numerical study of the impact of limiting the aeroelastic fidelity
in an HS-like simulation, finding that depending on the numerical model used to perform the
pre-calculation and the response index of interest, errors of up to 70% can be seen. Thus it is
clear that the existing HS framework has the potential to introduce a non-negligible amount of
error in wind engineering applications.

The novel HS framework proposed in this study is intended to address both of these ob-
served limitations in the existing framework by employing a surrogate model for aerodynamic
calculations that is both comparable in accuracy to CFD while being sufficiently lightweight
computationally to be run within the real-time HS loop. While these two improvements seem
at odds with each other, a surrogate model consisting of a neural network (NN) trained on
CFD-generated data should be able to achieve them. Neural networks are a form of machine
learning that learn to relate input data to output data without performing the underlying sim-
ulations, such as relating wind speed to aerodynamic loads. A well-trained neural network
can achieve comparable accuracy to the techniques used to generate its training data, and due
to high computational speed of these networks, they have the potential to be able to be in-
corporated directly into a real-time hybrid simulation. This study details the development of
a convolutional NN (CNN) trained on CFD-generated aerodynamic data, creating a surrogate
model that is capable at producing near-CFD-level results at real-time computation speeds.
The proposed HS framework that incorporates this surrogate model will then be compared to
the existing technique of pre-calculating wind loads in a series of artificial hybrid simulations.

Artificial hybrid simulation (AHS), also known as conceptual hybrid simulation (Song
et al., 2020), is a technique used to study aspects of HS without the specialized lab equipment
required for a true real-time HS. It is achieved by approximating the experimental substructure
as an additional numerical model, while still modelling the realistic transfer of data between
the numerical and “experimental” substructure by introducing artificial, realistic delays and
errors. Artificial HS are thus an approximation of true HS in a purely numerical environment,
allowing aspects of the HS (frameworks, timing, control systems, etc.) to be initially studied
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without requiring the use of the comparatively expensive experimental components. AHS was
chosen to be applied here to investigate the effectiveness of the proposed HS framework due to
limited access to the experimental equipment needed to perform a true HS.

This study presents a series of twelve artificial hybrid simulations of a rotating-base res-
idential turbine equipped with a semi-active tuned mass damper (STMD), using both the ex-
isting technique of pre-calculating aerodynamic loads as well as a novel HS framework that
incorporates a NN-based, CFD-trained surrogate model. In these AHS, the STMD is modelled
numerically as the artificial “experimental” substructure while the turbine and aerodynamic
models make up the numerical substructure. The wind turbine was tested at three combina-
tions of wind speeds and tip speed ratios (TSR), using three pre-calculated aerodynamic load
time histories and well as the optimized trained surrogate aerodynamic model. Section 7.2
presents the turbine model, the wind speed cases, and the pre-calculated aerodynamic time his-
tories. Section 7.3 details the validation and results of 3D CFD simulations of the residential
turbine rotor, as well as the training and validation of the resulting NN to act as the surrogate
model. Finally, Section 7.4 lists the results of the artificial hybrid simulations, and Section 7.5
draws relevant conclusions. Overall, while an exact quantification of the improvement offered
by the proposed framework could not be drawn, it was shown to be feasible to implement and
a number of indicators of its effectiveness were identified.

7.2 Methodology: structural model, TMD model and pre-
calculated aerodynamic loads

This study presents a series of AHS of a 1.1 m residential wind turbine with a rotating base
equipped with a semi-active TMD controlled by a magnetorheological (MR) damper. Three
different combinations of wind conditions were tested, as well as four different aerodynamic
models resulting a total of twelve AHS. The three different wind combinations match cases in
previous experimental tests, while the four aerodynamic models consist of three pre-calculated
aerodynamic load time histories of varying aeroelastic fidelity as well as the NN-based, CFD-
trained surrogate model employed by the novel HS framework proposed by this study. The
test case of a wind turbine equipped with a non-linear external damping system for reducing
aeroelastic deflections was chosen as it is the same case that has been previously studied in HS
of wind turbines.

The residential wind turbine used for this testing was a numerical recreation of a real 900 W
three-bladed horizontal-axis wind turbine with a rotor radius of 1.1 m, a photo of which can
be seen in Figure 6.1. This wind turbine was studied in wind tunnel tests in Chapter 6 while
mounted on a rotating base allowing for aeroelastic displacement in the fore-aft direction. This
rotational response is similar to the base pitch that occurs in floating offshore turbines. The
numerical 1-DOF rotational model of this wind turbine was derived from wind tunnel testing
as described in Section 6.3 – this model is presented is Table 6.13 and is shown equipped with
a linear, nacelle-based STMD in Figure 6.21. To summarize: a linear STMD is attached to the
nacelle and assumed to move horizontally along the fore-aft direction as the base rotates. The
equation of motion controls the response of the turbine, and loading on the turbine is applied
by the passive eccentric mass moment, the tower drag moment, the restoring moment from
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the TMD, and the aerodynamic rotor moment from the pre-calculated time histories or the
CFD-based surrogate model.

These components are detailed in the following sections: Section 7.2.1 presents the three
wind condition combinations; Section 7.2.2 presents fundamentals of the nine pre-calculated
aerodynamic time history histories, which are generated using OpenFAST as presented in Sec-
tion 7.2.3; finally the STMD is described in detail in Section 7.2.4. The development and
validation of the surrogate model is presented separately in Section 7.3.

7.2.1 Wind speed and tip speed ratio combinations

Three combinations of mean hub-height wind speeds, turbulence intensities and TSRs were
applied to the artificial HS in this study. These three cases, labelled A-C, are listed in Table 7.1.
They are adapted from previous experimental studies of this wind turbine: the first combination
at a mean wind speed of 3.63 m/s matches the most common test conditions in the wind tunnel
testing performed in Chapter 6. The second combination at a mean wind speed of 5.15 m/s
matches the non-extreme wind tunnel conditions reported by Shirazadeh et al. (2021). The
third combination is run at the same mean speed of 5.15 m/s, but at the optimal TSR of 4.98
predicted by Refan (2009). Geometric scaling applied in the CFD simulations of this rotor
prevented testing at higher tip speed ratios in higher wind speeds. While the wind tunnel
tests inspiring these wind combinations had turbulence intensities in the range of 6-10%, the
turbulence in these time histories was limited to 1.1% due to the eventual robustness of the
surrogate model (see Section 7.3.6).

In all the combinations, the wind profiles are derived from the open wind field at the
WindEEE Research Institute wind tunnel, as described in Section 6.2.3. This profile was best
matched using a power law profile with an exponent of 0.05. Flow coherence is captured using
the von Karman model, as recommended by wind turbine design codes (IEC, 2005). More de-
tails of this model and the IEC flow parameters were presented in Section 5.2.2.1. Flow fields
were generated using the open-source flow generation software TurbSim (Kelley and Jonkman,
2012), which is designed to work with OpenFAST. Using TurbSim, the specifications and mod-
els for the flow can be chosen and the resulting flow can be output over a specified mesh. 360
second time histories were generated for each of the wind combinations in Table 7.1 at a 20x20
grid centered on the hub with node spacing of 0.15 m. To diversify the training data, two dif-
ferent wind time histories were generated for cases B and C using different random seeds. The

Variable Unit A B C

Mean hub-height wind speed m/s 3.63 5.15 5.15
Turbulence intensity – 0.011 0.011 0.011
Tip speed ratio – 0.95 1.08 4.98
Rotor speed rad/s 3.14 5.06 23.32
Rotor speed rpm 30.0 48.3 222.7

Table 7.1: Wind speed, turbulence intensity, and TSR testing combinations
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Figure 7.1: Three wind speed time histories generated using TurbSim and the related TSR for
that wind case

i-direction (fore-aft) wind speed time histories recorded at the hub are presented in Figure 7.1.
These wind field time histories will be used both for pre-calculating aerodynamic loads as well
as in tandem with the CFD-based surrogate model during testing.

7.2.2 Aerodynamic models and HS frameworks
As discussed in Chapter 2, aeroelastic analysis of a structure consists of two sets of calcula-
tions. Analysis begins with determining the drag loads caused by the wind field. This can
be referred to as the aerodynamic admittance. The second set of calculations determines the
resulting structural deflections from the aerodynamic loads, sometimes referred to as the me-
chanical admittance. The mechanical model is identical for all the artificial HS performed in
this study, however there are four different aeroelastic models considered across these tests as
shown in Figure 7.2. These aerodynamic models consist of three different sets of pre-calculated
aerodynamic loads as well as the surrogate model used in the proposed HS framework. Fig-
ure 7.2 shows that an ideal HS performs the aerodynamic calculations within its testing loop,
which pre-calculated loads fail to achieve. The proposed HS framework, on the other hand,
succeeds at this integration.

Three different sets of pre-calculated aerodynamic loads are generated to investigate the
effect of the fidelity of the model used to perform the aerodynamic pre-calculations. It is
clear that the aerodynamic loading and the resulting structural response of a structure (i.e. its
aeroelasticity) can be strongly coupled. The deflection of a structure will affect its projected
area to the wind, thus affecting the resulting aerodynamic loads, which in turn affects the
deflection, etc. Therefore, failing to model this relationship will introduce some amount of
error into the simulation. The degree to which this pre-calculation process impacts the results
of the HS depends on the fidelity and accuracy of the numerical model used to perform the
pre-calculation. Consider the hypothetical scenario of a pre-calculation model that perfectly
simulates the HS test and predicts the response with the same accuracy as the experimental
substructure. In this scenario the aerodynamic loads would be pre-calculated with perfect
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Figure 7.2: The four frameworks employed in the AHS compared to an idealized HS frame-
work; all three wind case combinations are simulated by each framework

accuracy, introducing no error during the HS. However, as the pre-calculation model strays
further from reality, the amount of error introduced to the HS will increase. Therefore, the
better the numerical pre-calculation model replicates the HS model, the smaller the negative
effect of using pre-calculated aerodynamic loads should be. Therefore, three different pre-
calculation models of varying fidelity are used to generate the nine pre-calculated load time
histories. In order of increasing accuracy, these models are:
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1. Fixed wind turbine model: the turbine is modelled with a rigid tower and a fixed base,
resulting in no aeroelastic deflection.

2. Rotating wind turbine model: the turbine is modelled with a rigid tower and a rotating
base that matches the values determined in Chapter 6.

3. Rotating wind turbine with passive TMD (PTMD): the wind turbine is modelled with a
rigid tower a rotating base, assuming a PTMD in the nacelle that operates in the fore-aft
direction and uses the optimized properties that will be detailed in Table 7.3.

These pre-calculation models are also shown in Figure 7.2, and the resulting pre-calculated
wind loads were generated using OpenFAST as described in Section 7.2.3.

7.2.3 OpenFAST aerodynamic load time histories
The open-source wind turbine testing software OpenFAST (Jonkman et al., 2021) is used to
pre-calculate the aerodynamic loads. OpenFAST employs the 2D BEM method, a widely-used
technique for predicting the aerodynamic loads on a rotor. BEM is computationally efficient,
but due to simplifications of aerodynamic effects it is of lesser accuracy than advanced aerody-
namic simulations such as CFD.

The three turbine models of varying fidelity listed in Figure 7.2 are separately modelled
in OpenFAST, and are each subjected to the three sets of wind conditions listed in Table 7.1.
These models are implemented in OpenFAST by restricting response DOFs in the ElastoDyn
module, modelling the rigid tower base using a custom SubDyn base, modelling the PTMD
using the ServoDyn module, and recording the resulting aerodynamic blade loads from the
AeroDyn module. Load time histories are generated for each model subjected to each wind
case at the same 0.001 s time step and 180 s simulation length as the TurbSim wind fields. The
resulting thrust time histories are reported in Figure 7.3; during the AHS these aerodynamic
loads are applied to the structural model during the simulation as an overturning moment by
multiplying them by the hub height. The reported time histories generated by the two rotating
turbine models under wind case C have been edited slightly to remove a small number of signal
spikes erroneously generated by OpenFAST as the base rotation approached the built-in limit
of 0.4 rad. The spikes occurred for less than 0.01 s at a time and were replaced by the local
mean which should not impact the temporal and spectral properties of the time histories.

It was found in the case study in Section 2.8 that limiting the aeroelastic response of mem-
bers in the pre-calculation model (such as generating wind loads on a fixed-base turbine instead
of a rotating-base) introduced up to 5% error between the predicted results. However the test
case in that study, which compared a fixed turbine blade to a flexible turbine blade, differs
from the one here. Thus, the discrepancies between the pre-calculated load predicted by the
fixed turbine model and the rotating models must be analyzed. The time histories predicted by
OpenFAST are compared in Figure 7.3. As can be seen, the loads predicted by the three models
closely match in wind cases A and B when the TSR and resultant thrusts are low, but a larger
discrepancy is seen in wind case C due to the higher TSR and thrust. Additionally, the impor-
tance of TSR on blade loads can be clearly seen – increasing the TSR between cases B and C
results in an approximately 7 times increase in the resulting thrust due to the increased rotor
speeds. Table 7.2 reports the root mean square error (RMSE) between the fixed model results
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Figure 7.3: Comparison of the pre-calculated aerodynamic rotor loads using fixed, rotating and
rotating-with-PTMD numerical models at mean hub height speeds of 3.63 m/s and 5.15 m/s

Difference measurement: RMSE (N) NRMSE
Wind case: A B C A B C

Rotating vs fixed models: 0.047 0.184 2.731 2.96% 3.23% 15.65%
Rotating-with-PTMD vs fixed models: 0.052 0.204 3.387 3.33% 3.57% 19.41%

Table 7.2: Differences between the OpenFAST-predicted thrust time histories generated using
the fixed, rotating, and rotating-with-PTMD models, under the wind cases described in Ta-
ble 7.1
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and the results from two rotating models, as well as the normalized RMSE (NRMSE) where the
RMSE is divided by the absolute range of the fixed model results – see Equations 4.2 and 4.3.
The reported RMSEs match the observed trend that there is a greater difference between the
thrust predicted by the rotating-with-PTMD model compared to the fixed model than there is
between the rotating and fixed models. In other words, the predicted thrust changes as the
accuracy of the model is increased. Additionally, it can be seen that the cases with lower wind
speeds and TSRs that result in less base rotation match the fixed model better than case 3
where the thrust is significantly increased – larger base rotations result in greater discrepan-
cies between the rotating- and fixed-base rotors. Overall, it can be seen that the results found
in Section 2.8 are roughly replicated here, in that simplified dynamics of the pre-calculation
model may result in a small but noticeable amount of error. This justifies the application of the
three different sets of pre-calculated load time histories in the HS.

7.2.4 MR-controlled semi-active tuned mass damper design
Based on the findings of Chapter 5, which compared the effectiveness of a number of different
passive and semi-active TMDs, the external damping system used in these AHS was cho-
sen. The selected system of a variable-damping STMD controlled by a MR damper combines
non-linear behaviour, modelling simplicity, and efficiency. As detailed in Section 5.2.3.4, MR
dampers are filled with magnetically-sensitive fluid that changes viscosity when exposed to a
magnetic field. Thus, a circuit connected to an electromagnet can control the MR damper to
adjust its damping properties in real-time. As was shown in Chapter 5, the ground-hook con-
troller that reduces the amount of damping between the turbine and the TMD when the turbine
is moving towards its neutral position, the overall magnitude of vibrations can be reduced. This
section offers a summarized explanation of the damper design process and control technique,
though additional information can be found in Chapter 5, particularly in Section 5.2.3.

The STMD consists of a secondary mass attached to a primary structure that is capable of
independent displacement. This secondary mass reacts in opposition to the vibration of the
structure, damping the response. This mass is typically modelled as being connected to the
main structure through stiffness and damping components (see Figure 5.6), which allows it to
be modelled numerically using the standard structural equation of motion (see Equations 5.4-
5.5). The main advantage of TMDs is their efficiency: using a relatively small secondary mass
and relatively weak stiffness and damping members, notable reductions in vibrations can be
achieved. To achieve the same vibration reduction through direct increases in the stiffness or
damping of the main structure would require significantly stronger stiffness and damping el-
ements compared to those connected to the TMD. A limitation in traditional passive TMDs
is that they must be tuned to reduce vibrations of a specific frequency, and their effectiveness
diminishes quickly at frequencies beyond this. Semi-active TMDs attempt to broaden the ro-
bustness of TMDs by modifying their dynamic properties during operation. As was shown in
Chapter 5, controlling the damping vibration via a MR damper was successful at increasing the
effectiveness of the TMD and could be realistically modelled numerically.

Effective TMD design firstly requires the dynamic properties to be optimized, the exact
equations to do so are presented in Sections 5.2.3.2 and 5.2.3.3 based on the Den Hartog guide-
lines that are reproduced in Connor (2002). This optimization process begins with selecting the
desired mass ratio between the turbine and the TMD. In a realistic scenario, this would be con-



174 Chapter 7. A novel HS framework employing a CFD-based surrogate model

Parameter Symbol Unit Value

Turbine mass m kg 23.9
Turbine natural frequency ω rad/s 3.62

TMD mass ratio µ – 0.01
TMD mass mT MD kg 0.24
TMD natural frequency ωT MD rad/s 3.57
TMD stiffness kT MD N/m 3.05
TMD damping ratio ξT MD – 0.060
40% of TMD damping ratio 0.4ξT MD – 0.024
TMD damping coefficient cT MD Ns/m 0.103

Table 7.3: Optimal passive TMD properties

trolled by the available space and desired damping levels, however in this test a modest mass
ratio value of 1% was selected based on the observed effectiveness in the case study presented
in Section 6.4. Based on the mass ratio, an optimal natural frequency of the TMD can be found,
which will be very close to the natural frequency of the main structure. The stiffness connec-
tion between the main structure and TMD is then derived from this natural frequency. The
mass ratio also determines the optimal damping ratio for the connection between the structure
and TMD, which is used to determine the damping coefficient. Using Equations 5.6-5.11, the
optimal passive properties for the TMD can be found, which are reported in Table 7.3. These
same properties were derived for the simpler TMD model employed in Section 6.4.

During operation, the modified ground-hook controller recommended by Martynowicz
(2017) will be used to control the semi-active damping. Equation 5.19 describes this control-
scheme, but to summarize, when the turbine is moving away from its neutral position, the
damping will be maximized to its recommended passive value, but will be reduced significantly
when the turbine is moving back towards it neutral position. This controller thus encourages
the turbine to stay near its neutral position, reducing the magnitude of fluctuations. For the MR
damper, this means that the controller will alternate between applying a high and low voltage
to the MR damper to achieve a high and low damping coefficient respectively. In this testing, a
low damping value equal to 40% of the high damping value was used, which was shown to be
effective in the testing summarized in Section 6.4.

The modified Bouc-Wen model (see Figure 5.7) was used to numerically model the MR
damper. The Bouc-Wen model approximates the damper as a combination of dampers, springs
and hysteretic elements which are all a function of the applied current, and has been shown to
match the physical behaviour of an MR damper well (Talatahari et al., 2012). This model in-
cludes consideration of the delay between applying the voltage to the damper and the resulting
change in properties. The model is rather complex with a number of parameters; it is detailed
in Equations 5.12-5.18. A summarized version is that the internal voltage is derived, used to
determine the properties of a number of stiffness, damping, and hysteretic members, then inter-
nal responses are resolved and finally the resulting damping force can be derived based on the
displacement and velocity applied to the MR damper. There are fourteen different parameters
used in the modified Bouc-Wen model which must be derived experimentally; the testing in
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Parameter Symbol Unit Value Factor*

Initial MR displacement x0 m 0 –
Hysteretic factor 1 γ m−2 3.62*10−8 10−8

Hysteretic factor 2 β m−2 3.62*10−8 10−8

Hysteretic factor 3 A – 154.6 –
Voltage application rate η s−1 60 –
Hysteretic exponent n – 2 –
Base hysteretic stiffness αa N/m 0.00358 10−4

Hysteretic stiffness rate αb (N/m)/V 0.00830 10−4

Base inner damping coefficient c0a Ns/m 0.00015 10−4

Inner damping coefficient rate c0b (Ns/m)/V 0.00328 10−4

Base outer damping coefficient c1a Ns/m 0.00995 10−4

Outer damping coefficient rate c1b (Ns/m)/V 0.04039 10−4

Inner stiffness k0 N/m 0.00059 10−4

Outer stiffness k1 N/m 16*10−7 10−4

MR damper displacement x m Calculated –
Artificial internal displacement y m Calculated –
Hysteretic displacement z m Calculated –
Total MR damper force FD N Calculated –

Table 7.4: Modified Bouc-Wen model properties. Factor refers to the factors applied to the
values reported by Li et al. (2017) to reduce the damper strength, which were applied as a 104

times reduction in the internal displacement values

Chapter 5 of an industrial wind turbine used the values for a 2.4 kN MR damper reported by
Li et al. (2017). Since the MR damper required for this smaller turbine must be much weaker,
but lacking in literature that reports these values for a weaker damper, the values from Li et al.
(2017) are adjusted by reducing all distance-based measurements by a factor of 104, approxi-
mating it as a 0.24 N MR damper. The Bouc-Wen parameters, including their reduction factor,
are summarized in Table 7.4.

The applied voltages that achieved the target damping ratios for the TMD were also evalu-
ated. From Table 7.3, it is known the the optimal damping ratio for the TMD is 6.0% and thus
the target damping ratio for when the low voltage is applied is 2.4%. The STMD was mod-
elled in MATLAB using the properties described in Tables 7.3 and 7.4, and free vibration tests
were run with different applied voltages. Based on the free vibration results, the approximate
damping ratio of the system can be derived using the simplified logarithmic decrement method:

ξ =

ln
aT

aT+1

2π
(7.1)

Here, ξ is the damping ratio, while aT and aT+1 refer to the amplitudes of adjacent free vibration
response peaks with T referring to the natural period of the TMD. This simplified model is valid
provided ξ ≪ 1. The free vibration response of the TMD matched extremely well to a linear
damping model. Using trial and error, it was found that ξT MD=0.060% was found at 2.32 V
and ξT MD=0.024% was found at 0.79 V. These voltages will be used to control the MR damper.
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As the STMD will be the stand in for the experimental substructure in this artificial HS,
there must be communication delays between the STMD and the rest of the simulation to
capture the realistic limitations of experimental testing. Artificial delays and noise will thus be
added to the STMD model to replicate these experimental effects, as follow:

• The signal travelling from the numerical model to the STMD is assigned a delay of
10 ms. This signal represents the time delay between deciding the desired voltage for the
MR damper and the damper receiving the voltage, and was quantified by Caterino et al.
(2013).

• The delay from displacing the TMD, recording the resulting restoring forces, and re-
turning them to the numerical model is assigned a value of 20 ms. This delay length
will depend on the magnitude of the requested displacement and the equipment being
used; Chae et al. (2013) measured these delays in a HS as ranging from 20 to 40 ms. As
discussed in Section 2.6.2, actuator controllers are critical for minimizing the propaga-
tion of this error in a true HS, but implementation of a numerical controller is beyond
the scope of this study. Instead, the lower end value from Chae et al. (2013) is used to
approximate the improved accuracy and stability provided by these controllers.

• The equipment used to measure the assigned displacement and resulting force has built-
in measurement error. While the precise amount of error will vary depending on the
piece of equipment, lab equipment attempts to keep measurement error at less than 0.5%
of its maximum value. In light of this, factors are applied to both the measured dis-
placements and resulting force at each time step to approximate the noise stemming
from measurement error. These factors are equal to 1+0.005randnorm where randnorm is a
normally-distributed random number.

7.3 Methodology: CFD-based surrogate aerodynamic model
The novel framework proposed by this study incorporates a high-accuracy surrogate aerody-
namic model of the rotor into the testing itself, with the goal of improving both the accuracy
and aeroelastic fidelity compared to the existing frameworks. This surrogate model is a CNN
trained on CFD data, which is capable of achieving both high accuracy and high speed. The fol-
lowing section details the generation of the training data using 24 time histories from URANS
simulations, followed by the development of the surrogate model using this training data. Read-
ers are directed to Chapter 3 for more information on CFD simulations of wind turbine blades
and to Chapter 4 for more information on NN-based surrogate aerodynamic models.

7.3.1 CFD fundamentals
The CFD simulations were performed using the commercial software STAR-CCM+. Due to
the intensive computation required for these simulations, Compute Canada supercomputing
platforms were used. Generally speaking, simulations were run on 192 GB 32-CPU nodes for
a duration of several hours to several days depending on the simulation type, mesh densities,
and number of iterations. To keep the testing times a short as possible given the large number
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Scaling factor Symbol Value Example

Geometry/Length λL λL 1:4
Wind speed λV λ−1

L 4:1
Rotor speed λR λVλ

−1
L = λ

2
V 16:1

Table 7.5: CFD domain scaling factors to maintain Re and TSR similitude. Example values
are given for λV and λR assuming λL=0.25

of required tests, some domains were geometrically scaled down to reduce the required number
of mesh cells. Even if the mesh sizes in the outer regions of the domains are scaled down the
same rate, this still results in an overall reduction in cell count given that the finest mesh around
the blades is controlled by the y+ criterion rather than the geometric scale directly.

Turbine scaling requires that similitude is maintained in both the Reynolds number and the
TSR between the scaled-down and full-scale model. Both the Re (Equation 2.13) and TSR
(Equation 2.10) have been discussed in detail throughout this document; by maintaining Re-
similitude the lift and drag behaviour of the turbine is modelled correctly and by maintaining
TSR-similitude the overall rotor thrust and torque is modelled correctly. Assuming that the
fluid properties remain constant, there are thus three physical properties that must be scaled
to maintain this similitude as shown in Table 7.5: the geometric scale, the velocity scale, and
the rotor speed scale. As can be seen, λV = 1/λL and λR = λ

2
v according to the Re and TSR

respectively.
A final limitation on the scaling is the Mach number (Ma) which is the ratio of air speed

to the speed of sound. It is known that at low Ma, air experiences essentially no compression.
This incompressibility simplification is applied liberally in structural engineering applications
including greatly simplifying CFD simulations. However, as Ma increases, the compression in-
creases and this assumption ceases to be valid. In incompressible simulations the rule of thumb
is that wind speeds should not exceed 100 m/s which roughly corresponds to Ma = 0.3. This
ensures that any errors from the incompressibility assuming remain below 10%. Ultimately
this limitation controls the maximum tip speed of the rotor which scales proportionally to λV ,
which in turn controls the maximum allowable reduction in the domain geometry.

7.3.2 Turbine blade model
To perform a CFD simulation of the 1.1 m turbine rotor, a 3D model of the turbine blade is
required. The author did not have access to a true 3D scan of the blade, thus the numerical
approximation proposed by Refan (2009) was used. This approximation was previously em-
ployed in the OpenFAST simulations in Sections 6.3.2 and 7.2.3, and is detailed in Table 6.5.
This approximation consists of a series of NACA 6515 and FX 63 137 airfoils at a given length
along the blade with a given pitch, which can be combined to derived a 3D model.

Using the commercial 3D modelling software SolidWorks, airfoil curves could be imported
into the modelling environment as a table of 3D coordinates, then lofted together to form the
blade. Finally, based on visual investigations of the blade, the base curve was extracted and the
tip was rounded. This process is shown in Figure 7.4.

To implement this blade model in CFD, the blade was either tested alone or rotationally-
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Figure 7.4: 3D rotor model preparation stages compared to photo of real residential wind
turbine rotor

arrayed and combined with a nose cone to create the full rotor. The desired domain was then
prepared around the blade(s), which were then subtracted from this domain to create a negative.
This domain was then imported into the commercial CFD software STAR-CCM+ to be meshed
and tested.

7.3.3 CFD validation

To validate the simulations of the 1.1 m turbine blade numerical approximation, a series of
URANS CFD simulations were performed of a single blade at a number of pitches, replicating
the single-blade wind tunnel tests from Refan (2009) which were presented in Section 6.3.2.
URANS was identified in Chapter 3 as the best type of CFD simulation for this application
by balancing accuracy and computational requirements. In the previous experimental tests,
the mean lift and drag on the turbine blade under 7 m/s wind speeds were extracted and used
to determine the overall lift and drag coefficients of the blade for a given pitch angle. This
was replicated in a 1:10 scale CFD simulation under 70 m/s wind speeds to preserve Reynolds
number-similitude, and since the blade was stationary there was no TSR-similitude to maintain.

Figure 7.5 shows the rectangular, meshed domain for these single-blade simulations, where
the overall blade length is 0.11 m due to the scaling. Table 7.6 lists the mesh sizes used in
these simulations, sized proportionally to the base size for the different regions. Testing was
performed using URANS at 0.001 s time steps and 5 iterations per time step, for a total 1.5 s of
analysis per pitch angle, of which only the second half was used to determine the mean result.
The y+ and Courant number requirements discussed in Section 3.3.2 were met in these tests.

Flow snapshots and the isosurface of the blade wake are shown in Figure 7.6 for a pitch
of 30◦. Isosurface plotting can be used to visually model the vorticity in the flow at a selected
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Figure 7.5: Mesh properties of single-blade CFD simulations: a) domain dimensions; b) mesh
refinement regions; c) domain boundary specifications; d) meshed domain; e) meshed turbine
blade; f) meshed blade tip

Region Equation Value

Base mesh size (m) B 0.01
Outer region mesh size (m) 0.5B 0.005
Inner region mesh size (m) 0.125B 0.00125
Blade surface mesh size (m) 0.05B 0.0005
Number of prism layers – 30
Prism layers total thickness (m) – 0.007
Prism layer initial thickness (m) – 7*10−6

Table 7.6: Mesh sizes used for single-blade CFD simulations. The specified prism layers were
along the surface of the turbine blade

Q-criterion. The Q-criterion is a function of the difference between the vorticity and viscous
stress in the flow; higher Q-criterion values will result in less of the vortices being modelled.
Examining the captured flow and vortices, the results are in line with what would be expected
for this test, with smaller vortices at the mid span of the blade and large vortices streaming
from the top and bottom. The extracted drag and lift on the blade as well as the resulting
coefficient curves are listed in Table 7.7. The predicted coefficients should be unaffected by the
geometric scaling process, which is captured in the drag equation with a reduced blade area
of 0.82∗10−3 m2, an unchanged air density of 1.225 kg/m3, and an increased wind speed of
70 m/s.

The results from Table 7.7 are compared to the experimental and numerical results found by
Refan (2009) as well as the predictions by OpenFAST from Section 6.3.2 in Figure 7.7. As can
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Figure 7.6: Flow and vorticity snapshot of the single-blade CFD sims at a pitch of 30◦

Pitch (◦) Drag (N) Lift (N) Drag coefficient Lift coefficient

-6 0.397 -0.43 0.161 -0.17
-3 0.328 -0.08 0.133 -0.03
-2 0.311 0.05 0.126 0.02
0 0.288 0.28 0.117 0.11
3 0.280 0.71 0.113 0.29
6 0.307 1.03 0.124 0.42
9 0.367 1.26 0.148 0.51

12 0.447 1.46 0.181 0.59
15 0.545 1.77 0.221 0.72
20 0.728 2.02 0.294 0.82
25 0.971 2.14 0.393 0.87
30 1.270 2.33 0.514 0.94

Table 7.7: Recorded drag and lift values and resulting drag and lift coefficients for 1:10 scale
single-blade CFD simulation

be seen, the CFD results are roughly equivalent to OpenFAST at predicting the lift coefficient
at lower pitches. However, the drag predictions, which is where BEM typically struggles the
most, is significantly improved at all pitches. At higher pitches, the CFD outperforms the
OpenFAST predictions at both indices with very good matching occurring at pitches of 20-
30◦. This is a promising trend as at the lower TSRs investigated in Chapter 6, the angle of
attack between the blade pitch and the wind direction will tend to be higher. It must also be
noted that since the CFD model is based on a numerical approximation of the turbine blade,
even a flawless CFD simulation would be unlikely to perfectly match the experimental results.



7.3. Methodology: CFD-based surrogate aerodynamic model 181

Figure 7.7: Predicted drag and lift coefficient curves for the single-blade CFD sims compared to
experimental and numerical testing from Refan (2009) and OpenFAST sims from Section 6.3.2

Overall, this set of simulations help validate the 3D model of the turbine blade developed for
this testing as well as serves as an example of the possible value offered by incorporating CFD
into HS.

7.3.4 Final CFD mesh
The CFD simulations used to train the neural network require additional complexity compared
to the single-blade sims. These complexities and the resulting modelling techniques used to
capture them are as follow:

1. The model must include the entire rotor including the nose cone and all three blades
to properly capture the effect of non-orthogonal wind on the rotor. This can be accom-
plished by creating a rotational array of the turbine blades in the 3D model and modelling
an approximation of the nose cone, as shown in Figure 7.4. The domain must be modified
for the rotor model, which will be detailed below.
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2. The turbine blades must rotate in the wind. While it is possible to model moving meshes
in CFD simulations, such a process is very computationally expensive on top of CFD’s
already high computational requirements. Instead, these simulations employ a rotating
frame of reference around the rotor axis, which applies a rotational component to the
flow in the domain without having to modify the mesh. In essence, this technique rotates
the wind around a stationary rotor which generates the same results as a rotor rotating
through the wind field. This technique is typically employed for CFD simulations of
wind turbines (such as Wang et al. (2016)) due to its computational efficiency.

3. Since in this study the turbine tower rotates about its base in the fore-aft direction, this
will change the angle between the rotor axis and the wind direction. Again, while it is
possible to create a moving mesh that progressively models varying rotor deflections, it
is significantly more computationally efficient to study static meshes at a series of deflec-
tion angles. This process can be further optimized by using a single domain mesh for all
tests, and instead changing the angle of the wind flow at the inlet, greatly reducing the
amount of meshing required for these tests. The rotating wind direction can be facilitated
using a spherical inlet.

To decrease the mesh size and computational time required for the testing, these CFD
simulations were run at a scale of 1:4 while maintaining both Re- and TSR-similitude, as
detailed in Section 7.3.1. To achieve this, the freestream wind speed was increased by a factor
of 4 and the rotation speed was increased by a factor of 16. For wind case C where the wind
speed and TSR are highest, this results in a tip speed of 102.6 m/s, which is the upper limit of
the incompressibility assumption of the fluid at Ma = 0.3. Due to the number of simulations
required, the mesh had to be limited to below roughly 40M cells. However, even with the
geometric scaling further simplifications were required to meet this mesh limit. It was intended
to uses the same mesh as was employed in Section 7.3.3, but a coarser mesh was ultimately
required to keep the cell count reasonable, as well as using a high y+ wall treatment using
fewer, thicker prism layers – this concept is discussed in more detail in Section 3.3.2. While
the accuracy of the simulations was likely to suffer due to this coarser mesh, it was required
to achieve a mesh size that could be feasibly run the 24 simulations in a reasonable amount of
time.

Figure 7.8 shows the specifications of the 3D mesh used in the full-rotor simulations. This
includes a 3D view of the domain as well as the mesh refinement zones and related sizes as
a function of the blade length, R = 1.1/4 = 0.275 m. As described previously, the inlet is
a hemisphere to facilitate varying the mean wind direction during simulations to approximate
the rotor displacement due to the rotating base. Table 7.8 lists the mesh sizes and details of the
prism layers used in the domain, which aimed to match the mesh sizes previously employed
in Table 7.6 and Table 3.13 as closely as possible while keeping the cell count reasonable.
As previously detailed in Section 3.3.2, prism layers around the rotor are normally controlled
by the requirement of keeping the dimensionless wall distance (y+) below 1, however for a
high y+ wall treatment which employs a wall function to approximate the sub-scale behaviour,
it can instead be kept to 30< y+ < 100. When testing at 1:4 scale: based on the highest free
stream velocity of 20.6 m/s and the average chord length of 0.0223 m, a near-wall prism layer
thickness of 0.005 m corresponds to a y+ of 41 according to Equation 3.22.
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Figure 7.8: Mesh properties of full-rotor CFD simulations: a) domain dimensions; b) mesh
refinement regions; c) domain boundary specifications; d) meshed domain; e) mesh around
rotor; f) meshed rotor; g) meshed blade tip

Region Ratio Value (m)

Base size B 0.2600
Outer region 0.250B 0.0650
Inner region 0.100B 0.0260

Blade surface target size 0.070B 0.0182
Blade surface minimum size 0.035B 0.0091

Blade trailing edge target size 0.030B 0.0078
Blade trailing edge minimum size 0.010B 0.0026

Blade leading edge target size 0.003B 0.0008
Blade leading edge minimum size 0.0015B 0.0004

Prism layer thickness – 0.005

Number of prism layers 2 (high y+ wall treatment)
Total meshed size 26.4M cells

Table 7.8: Final mesh dimensions as a function of an optimized base size B, with reference to
the domain regions shown in Figure 7.8
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Using the stiffness of the numerical 1.1 m wind turbine model developed in Chapter 6, as
summarized in Table 6.13, and the aerodynamic loads predicted by OpenFAST in Section 7.2.3,
a range of expected base rotations can be generated. Using a base stiffness of 1129 Nm/rad
(see Equation 6.16), a mean rotor thrust from the 9 m/s wind field of 114 N (see Figure 7.3)
which results in an overturning moment of 217 Nm given the hub height of 1.9 m. Given this
overturning moment, an eccentric mass moment of -7 Nm, and ignoring the tower drag, the
mean base rotation of the turbine under the highest speed test case is approximately 0.19 rad.
Conversely, assuming no wind loading on the turbine, the eccentric mass moment alone causes
a minimum base rotation of approximately -0.006 rad. Therefore it can be said across all
the proposed test cases the base rotation will range from roughly -0.01 rad to 0.25 rad, given
the range of wind speed angles that must be simulated in the CFD tests. Table 7.9 lists the
eight wind angles that will be tested in the CFD simulations. These wind angles are applied
by rotating the main direction of the wind according to Figure 7.9 in the along wind-vertical
plane.

Wind angle αU (rad)

-0.01
0.00
0.01
0.05
0.10
0.15
0.20
0.25

Table 7.9: Eight wind angles tested in CFD simulations

Each URANS simulations was run for a total of 1 s at 0.001 s time steps with five iterations
per time step. This time step length meets the Courant number limitation in Equation 3.28 for
the free stream flow. The total simulation lengths were limited to 1 s due to the computational
requirements. For each of the 24 wind case and rotation angle combinations, the respective
simulation required 5000 iterations. On a Compute Canada 32-core 192 GB supercomput-
ing node, these 5000 iterations take approximately 36 hours to run, for a total of 36 days of
supercomputing time to perform the full set of simulations.

7.3.5 CFD results
The following CFD simulations were performed as explained in Section 7.3.4: eight sets of
LES simulations were run with at base rotations of -0.01, 0.00, 0.01, 0.05, 0.10, 0.15, 0.20,
and 0.25 radians about the across-wind axis. Each rotor angle was tested at the three wind
conditions detailed in Table 7.1, and each of these 24 simulations were run for 0.5 s at 0.001 s
time steps with 5 iterations per time step. Simulations were performed at 1:4 scale while
maintaining Re- and TSR-similitude.

The time histories of the following data were recorded from these CFD simulations: the
base edgewise and flapwise force on each turbine blade (i.e. the loads at the roots according to
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Figure 7.9: Explanation of changing angle of wind in CFD simulations, note that upwards is
positive

Figure 7.10: Locations of nodes used to record wind speeds in Star-CCM+. This figure shows
seven nodes per blade for clarity, but the simulations had 11 per blade plus one at the hub
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the blade frame of reference shown in Figure 2.3); the drag, lift, and vertical forces on the nose
cone; and the overall thrust and torque on the entire rotor. Additionally, all three wind speed
directions at 11 nodes along the length of the upwind projected area of turbine blades and one
at the hub were recorded at distances of at 0.2R, 0.5R, and 1.0R upwind of the turbine, where
R is the blade length. These locations are shown in Figure 7.10. Note that these node locations
were fixed in all simulations, thus they captured the wind speed at the locations relative to the
rotor plane, not the wind direction.

Figure 7.11 shows that the general behaviour of the flow around the rotor is broadly the
same for all the reported cases. There is an area of reduced speed in front of the turbine as the
flow is diverted around the rotor plane, followed by vorticies induced by the rotating blades.
The lower TSR cases show a lesser decrease in velocity in the wake, and the area of vorticity
is smaller compared to the higher TSR case. Changing the angle between the rotor plane and
the wind direction does not significantly change the flow behaviour. 3D plots of the immediate
rotor wake are modelled using isosurfaces of the Q-criterion at 10 s−1. Helical turbulence
is expected to be seen in operational turbines, which is captured well in these simulations.
The lower TSR sims show the helical vortices emanating from the rotor blades remain spaced
apart and travel farther downstream, while the high TSR vortices are close enough that they
combine into a large zone of vorticity that dissipates quickly. Interestingly, it can be seen that
the direction of the wake is almost entirely governed by the rotation of the rotor rather than the
wind direction; for the 3.63 m/s case there is almost no change in the 3D shape of the vortices,
though the 2D capture shows the wake dissipating into the mean wind speed more quickly
since it is no longer directly shielded by the rotor. For the 5.15 m/s case, despite the change
in wind angle of 0.2 rad, the direction of the wake remains perpendicular to the rotor plane,
though the reduced wind speed perpendicular to the rotor plane can be seen in the larger space
between the helical vortices. Overall, the results of Figure 7.11 act as a sanity check for the
simulations. The expected helical wake is seen, and the greater rotation speed and suction on
the high-TSR rotor serves to demonstrate why the rotor thrust is strongly related to the TSR of
the turbine.

The data recorded from the CFD simulations was then exported and two major adjustments
were made. Firstly, since the data needs to relate the wind speed with the resulting blade
loads, the wind speed data recorded at the nodes shown in Figure 7.10 are not directly related
to the blade thrust and torque recorded at that same time step. Instead, those blade loads
were caused by the wind that previously passed through the nodes. Thus, the recorded wind
speed time histories are shifted forward to align with their approximate respective aerodynamic
loads. If U is the mean wind speed of the simulation perpendicular to the rotor plane, dn is the
perpendicular distance between the given node and the rotor plane, and dt is the length of the
time steps of the given simulation, then:

Nt = round
(

dn

Udt

)
(7.2)

Here, Nt, rounded to the nearest integer, is the number of time steps the given wind speed time
history must be shifted forward relative to the recorded aerodynamic loads.

The second adjustment for the data was to change it from the 1:4 geometric CFD scale to
full scale to use as training data for the NN. As defined in Table 7.5, the recorded wind speeds
must be divided by λV = 4. The geometric and wind speed scaling factors (λL and λV) can
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Figure 7.11: Full rotor CFD results, showing the instantaneous velocity and Q-criterion isosur-
faces for the rotor at 0.0 rad and 0.2 rad base rotations and wind cases A and C
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also be used to derive the thrust and torque scaling factors (λT and λQ, respectively). These
are based on the thrust coefficient equation (Equation 6.21) and the similar torque coefficient
equation:

CQ =
Q

0.5ρARRU2 (7.3)

Here, Q is the total torque on the rotor, roughly equal to the sum of the torque on all three
blades. As detailed previously, ρ is the air density, R is the blade length, AR is the rotor area, and
U is the free stream wind speed. Since CT and CQ are the same for the CFD-scale (subscript m)
and full-scale (subscript f ) rotors provided Re and TSR are matched, their respective equations
can be used to derive λT and λQ:

λT =
Tm

T f
=

R2
f U

2
f

R2
mU2

m
= λ2

Lλ
2
V = 1 (7.4)

λQ =
Qm

Q f
=

R3
f U

2
f

R3
mU2

m
= λ3

Lλ
2
V = λL =

1
4

(7.5)

As can be seen, the CFD-scale thrust measurements must be divided by λT=1, i.e. they already
match the full scale results. Conversely, the CFD-scale torque measurements must be divided
by λQ=

1
4 to match the equivalent full-scale results. With the exception of the first section of

Table 7.10, the tabulated CFD results reported hereafter are adjusted to match full-scale using
these factors.

The mean results from each simulation are collected in Table 7.10, while a sample of the
data as well as a link to a digital repository of the full data set is reported in Appendix A.
The results match what would be be expected, including the following observations: firstly,
it can be seen that the recorded thrust and torque both increase in all cases as the mean wind
speed increases from 3.63 m/s to 5.15 m/s, but there is a much bigger increase when the TSR
increases from 1.08 to 4.98. Secondly, it appears that the effects of across-wind and vertical
wind on the thrust and torque are relatively minor, and that the main impact of the base rotation
is to reduce the thrust and torque since the relative wind speed perpendicular to the rotor plane
decreases as the base rotation increases. Finally, the response recorded at each blade is almost
identical, as expected from the uniform wind profile.

Based on the results at a base rotation of 0.0 rad from Table 7.10, the thrust and torque
coefficient of the rotor can be calculated for each wind case, and compared to previous exper-
imental values. The thrust coefficient (CT ) can be calculated using Equation 6.21 while the
torque coefficient (CQ) can be calculated using Equation 7.3. Table 7.11 compares these co-
efficients to those from Shirazadeh et al. (2021) (wind case A and B) and Refan (2009) (wind
case C), where available. It can be seen that the CFD and experimental results match well for
thrust prediction, achieving an error of <10%. Note that it was chosen to ignore the drag on
the hub in this study to match the OpenFAST simulations more closely, however consideration
of this additional drag would certainly reduce the thrust discrepancy seen here. Conversely,
the matching between torque predictions is significantly less precise, with an error of >30%.
This torque discrepancy is likely due to the accuracy of predicting lift versus drag loads on the
turbine airfoils. As discussed and seen in Chapter 3, numerical methods are generally more ef-
fective at predicting airfoil lift than airfoil drag at high angles of attack. Since the lift generally
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SIMULATION SCALE

Base Mean wind Mean rotor axis wind speed (m/s) Mean thrust (N) Mean torque (Nm)
rotation (rad) speed (m/s) TSR Blade 1 Blade 2 Blade 3 Blade 1 Blade 2 Blade 3 Blade 1 Blade 2 Blade 3

14.52 0.95 14.36 14.35 14.43 1.31 1.33 1.36 0.014 0.014 0.014
-0.01 20.6 1.08 20.63 20.47 20.48 2.90 2.82 2.91 0.031 0.032 0.032

20.6 4.98 18.50 19.05 18.75 17.51 17.53 17.84 0.381 0.376 0.384

14.52 0.95 14.41 14.24 14.30 1.30 1.30 1.30 0.014 0.014 0.015
0.00 20.6 1.08 20.33 20.32 20.02 2.84 2.90 2.87 0.031 0.031 0.033

20.6 4.98 18.67 18.77 18.71 17.73 17.45 17.55 0.389 0.383 0.385

14.52 0.95 14.22 14.41 14.28 1.31 1.33 1.33 0.015 0.015 0.014
0.01 20.6 1.08 20.33 20.03 20.57 2.85 2.83 2.87 0.032 0.032 0.032

20.6 4.98 19.59 18.73 18.78 17.90 17.66 17.72 0.385 0.381 0.384

14.52 0.95 14.66 14.16 14.33 1.32 1.29 1.29 0.014 0.014 0.014
0.05 20.6 1.08 19.96 19.65 20.20 2.87 2.89 2.86 0.032 0.031 0.032

20.6 4.98 19.48 19.23 19.17 17.89 17.70 17.42 0.384 0.384 0.384

14.52 0.95 14.32 14.28 14.08 1.30 1.35 1.28 0.014 0.014 0.014
0.10 20.6 1.08 20.14 20.03 20.19 2.86 2.85 2.87 0.032 0.032 0.032

20.6 4.98 18.94 19.20 19.03 17.62 17.06 17.47 0.381 0.374 0.380

14.52 0.95 14.08 13.90 14.30 1.29 1.29 1.30 0.014 0.014 0.014
0.15 20.6 1.08 20.00 20.06 20.38 2.82 2.85 2.78 0.031 0.031 0.031

20.6 4.98 18.96 18.84 18.88 17.05 17.03 17.40 0.374 0.377 0.374

14.52 0.95 14.16 14.07 13.82 1.25 1.30 1.27 0.014 0.014 0.014
0.20 20.6 1.08 20.13 19.98 19.76 2.76 2.77 2.76 0.031 0.031 0.031

20.6 4.98 18.65 18.61 18.56 17.08 17.16 16.91 0.377 0.369 0.365

14.52 0.95 13.65 13.88 14.21 1.27 1.23 1.24 0.014 0.014 0.014
0.25 20.6 1.08 19.76 19.67 19.58 2.68 2.70 2.66 0.029 0.030 0.030

20.6 4.98 18.61 18.73 18.73 16.60 16.33 16.48 0.359 0.357 0.356

FULL SCALE

Base Mean wind Mean rotor axis wind speed (m/s) Mean thrust (N) Mean torque (Nm)
rotation (rad) speed (m/s) TSR Blade 1 Blade 2 Blade 3 Blade 1 Blade 2 Blade 3 Blade 1 Blade 2 Blade 3

3.63 0.95 3.59 3.59 3.61 1.31 1.33 1.36 0.058 0.058 0.058
-0.01 5.15 1.08 5.16 5.12 5.12 2.90 2.82 2.91 0.126 0.128 0.128

5.15 4.98 4.62 4.76 4.69 17.51 17.53 17.84 1.524 1.506 1.534

3.63 0.95 3.60 3.56 3.57 1.30 1.30 1.30 0.058 0.057 0.058
0.00 5.15 1.08 5.08 5.08 5.00 2.84 2.90 2.87 0.124 0.125 0.130

5.15 4.98 4.67 4.69 4.68 17.73 17.45 17.55 1.556 1.530 1.540

3.63 0.95 3.56 3.60 3.57 1.31 1.33 1.33 0.058 0.058 0.058
0.01 5.15 1.08 5.08 5.01 5.14 2.85 2.83 2.87 0.127 0.128 0.129

5.15 4.98 4.90 4.68 4.69 17.90 17.66 17.72 1.542 1.524 1.536

3.63 0.95 3.67 3.54 3.58 1.32 1.29 1.29 0.058 0.058 0.057
0.05 5.15 1.08 4.99 4.91 5.05 2.87 2.89 2.86 0.128 0.126 0.129

5.15 4.98 4.87 4.81 4.79 17.89 17.70 17.42 1.538 1.537 1.536

3.63 0.95 3.58 3.57 3.52 1.30 1.35 1.28 0.057 0.057 0.057
0.10 5.15 1.08 5.03 5.01 5.05 2.86 2.85 2.87 0.128 0.126 0.128

5.15 4.98 4.73 4.80 4.76 17.62 17.06 17.47 1.523 1.497 1.522

3.63 0.95 3.52 3.48 3.58 1.29 1.29 1.30 0.057 0.057 0.056
0.15 5.15 1.08 5.00 5.01 5.10 2.82 2.85 2.78 0.124 0.125 0.125

5.15 4.98 4.74 4.71 4.72 17.05 17.03 17.40 1.495 1.507 1.497

3.63 0.95 3.54 3.52 3.45 1.25 1.30 1.27 0.055 0.055 0.055
0.20 5.15 1.08 5.03 4.99 4.94 2.76 2.77 2.76 0.125 0.123 0.125

5.15 4.98 4.66 4.65 4.64 17.08 17.16 16.91 1.507 1.476 1.461

3.63 0.95 3.41 3.47 3.55 1.27 1.23 1.24 0.055 0.055 0.054
0.25 5.15 1.08 4.94 4.92 4.89 2.68 2.70 2.66 0.118 0.119 0.119

5.15 4.98 4.65 4.68 4.68 16.60 16.33 16.48 1.435 1.429 1.422

Table 7.10: Mean CFD simulation results. Only the mean wind speed parallel to the rotor
plane is reported, recorded at 1.0R upwind. A sample of the full results of these simulations
are reported in Appendix A
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TSR 0.95 1.08 4.98
Mean rotor-axis wind speed (m/s) 3.57 5.07 5.07

Mean rotor thrust (N) 3.90 8.61 52.73
Thrust coefficient CT 0.139 0.150 0.917

Experimental CT 0.21 0.21 0.96
Average OpenFAST CT 0.084 0.092 0.620

Mean rotor torque (Nm) 0.173 0.379 4.63
Torque coefficient CQ 0.0055 0.0060 0.0725

Experimental CQ – – 0.105
Average OpenFAST CQ 0.0102 0.0106 0.0174

Table 7.11: Comparison of the mean thrust and torque coefficients recorded by CFD simula-
tions at a base rotation of 0.0 rad to the experimental value reported by Shirazadeh et al. (2021)
and Refan (2009), as well as the average thrust coefficient predicted by the fixed OpenFAST
model

governs the thrust while drag governs the torque, one would expect the accuracy of the numer-
ical thrust predictions to exceed the accuracy of numerical torque predictions, especially given
the relatively coarse mesh and the simplified high y+ wall treatment used for these CFD sim-
ulations. Table 7.11 shows that these expectations are reflected in the results. However, since
only the thrust will be applied to the structural model in the AHS performed in Section 7.4, the
discrepancy in the torque prediction should have little impact on the overall simulations while
the high accuracy of the predicted thrust is a positive observation.

Table 7.10 also presents the average thrust and torque coefficients predicted by the Open-
FAST simulations using the fixed-base turbine model. As can be seen, there are notable dif-
ferences in predicted values between the BEM-based OpenFAST simulations and the CFD
simulations. In particular, in the 4.98 TSR case the CFD simulations match the experimental
values much better than the BEM simulations. These results show the notable improvement
to accuracy that can be achieved by replacing simplified aerodynamic models with improved,
higher-accuracy techniques such as CFD.

A limitation to the collected CFD data that can be seen in Table 7.10 is the reduction of
the mean recorded wind speed seen at all angles between the 1.05 and 4.98 TSR cases. This
reduction is seen despite the same mean wind speed being inputted into each simulation, which
is due to the effect of the flow around the turbine blades. While at the lower TSRs this effect
is minimal – for example, at a base rotation of 0.0 rad and 1.08 TSR, the mean recorded
wind speed of 5.07 m/s is quite close to the supplied 5.15 m/s – the effect is more significant at
higher TSRs. The wind speed was recorded upwind to attempt to minimize this effect, however
future simulations should include nodes ever further away from the rotor to record completely
unaffected data.

These processed CFD results were supplied to the neural network as input data to train, val-
idate, and test it. The final iteration of each time step of the second half of the CFD simulations
were recorded and divided on a per blade basis. Each individual CFD simulation provided
three time histories relating wind speed, rotor speed, and base angle to thrust and torque on a
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blade, for a total of 72 time histories each consisting of 500 time steps of 0.001 s. In total, the
neural networks were provided 43,200 time steps for training and testing.

7.3.6 Neural network specifications
Neural networks are a type of machine learning that connect input and output data. These
networks can be trained on existing data to accurately predict outputs from inputs without per-
forming the underlying calculations. A salient example would be a NN that learns to predict
aerodynamic loads based on wind speed and blade position, as studied in Chapter 4. Well-
trained NNs can achieve accuracy levels of >99% while remaining computationally light, al-
lowing them to act as high-speed surrogate models.

Chapter 4 thoroughly details the development and optimization of a number of neural net-
works to act as surrogate aerodynamic models of a 5 MW wind turbine blade, trained using data
generated in OpenFAST. Readers unfamiliar with NNs are directed to Section 4.2 in particular.
The main findings of Chapter 4 are provided here; of all the compared neural networks, the
convolutional neural network (CNN) was the most effective at predicting aerodynamic loads
when provided with the wind speed and blade position. Accuracies exceeding 99% were seen
in this model as well as operational times below 10 ms making it a promising candidate for a
surrogate model.

The NN development process is detailed in Section 4.3, but as a summary: training data is
organized, normalized, then randomly divided into three categories. 60% of data is supplied
as training data to train the network, 20% is supplied as validation data to measure the effec-
tiveness of training, and 20% is supplied as testing data. Training was performed in two steps:
firstly, hyperparameter optimization was performed by shallowly training a number of NNs on
a subsection of data using select hyperparameter values, allowing the optimal hyperparame-
ter values to be predicted. The Bayesian optimization algorithm (Frazier, 2018) was used for
this process. Secondly, the NN is trained using the full training data set using the optimized
hyperparameters.

The general architecture of the CNN is shown in Figure 7.12, based on the architecture
analyzed in Section 4.6. It consists of a time history window of w time steps provided as input
to the network, which is convoluted, activated and pooled into a smaller data set with a wide
view of the inputs, which are then connected to the outputs of a single time step. This neural
network is built and trained using MATLAB’s Deep Learning toolbox, using the trainNetwork
command specifically. Appendix B includes a well-documented copy of the MATLAB code
used in this study to optimize, train, and test the CNN surrogate model.

The time required for optimization increases exponentially with the number of hyperpa-
rameters, thus it is preferable to assign conservative values to hyperparameters wherever it is
reasonable. In this study, the optimizable hyperparameters include the number of time steps in
the input (w), the size and number of filters in the convolution layers, the size of the pooling
filters, and the layer sizes for the two fully-connected layers. The remaining hyperparameters
are assigned the following conservative values: 80 then 40 optimization iterations were per-
formed respectively over the two optimization rounds; 100 epochs of training were performed
for each optimization iteration while 5000 epochs were performed for the final network; 5% of
the training data was used for each optimization iteration; max pooling was employed, as are a
batch size of 100, a momentum value of 0.990, and an initial learning rate of 10−5 for all cases.
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Figure 7.12: CNN architecture detailing the two outputs predicted from the input “image” of
time history data. The MATLAB layer types and sizes are specified, including reference to the
number of inputs (I) and outputs (O) detailed in Table 7.12 and the optimized hyperparameters
(w, FilterS ize, PoolingS ize, LayerS izes) detailed in Table 7.13

Two different CNNs were evaluated based on their configurations of the input CFD data
as shown in Table 7.12. To predict the thrust and outputs of a single blade using the NN for a
given time set, the following were provided as inputs: the rotor speed (rad/s), the base rotation
(rad), and a collection of the components of the recorded wind speeds (m/s) relative to the
rotor plane such that ir is parallel to the rotor axis, jr is the across-wind direction, and kr is the
near-vertical direction perpendicular to ir. The first data configuration provided 60 wind speed
samples per input time step consisting of 12 wind speeds in the ir direction from each upwind
projection of the blade in question at distances of 0.2R, 0.5R, and 1.0R (see Figure 7.10), as
well as the jr and kr recordings at the 0.2R nodes. The second, smaller data configuration only
provided the ir wind speeds measured at 1.0R with the goal of reducing the influence of the
rotor effects of the recorded wind speed as well as emphasizing the importance of the TSR
to the CNN. The convolution process of the CNN enables supplying a large amount of input
data to the network, thus w time steps are provided as an input to predict the thrust and torque
outputs of a single time step, resulting in 62w inputs for the first data configuration and 14w
inputs for the second configuration, to predict 2 outputs in each case.

Optimization and training was performed locally over about three hours using a 4GB
NVIDIA GTX 1050 Ti GPU. A supercomputer platform could be used to accelerate this pro-
cess if there was a greater amount of training data, as was done in Chapter 4.
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CONFIGURATION 1: Inputs per blade per time step (62w) Corresponding outputs (2)

12 wind speeds in ir direction at nodes 0-10 at 0.2R upwind (m/s) Base thrust (N)
12 wind speeds in jr direction at nodes 0-10 at 0.2R upwind (m/s) Base torque (Nm)
12 wind speeds in kr direction at nodes 0-10 at 0.2R upwind (m/s)
12 wind speeds in ir direction at nodes 0-10 at 0.5R upwind (m/s)
12 wind speeds in ir direction at nodes 0-10 at 1.0R upwind (m/s)

Rotor speed (rad/s)
Base rotation angle (rad)

CONFIGURATION 2: Inputs per blade per time step (14w) Corresponding outputs (2)

12 wind speeds in ir direction at nodes 0-10 at 1.0R upwind (m/s) Base thrust (N)
Rotor speed (rad/s) Base torque (Nm)

Base rotation angle (rad)

Table 7.12: Two configurations of CNN inputs and outputs per blade per time step. ir, jr, kr

refer to the along, across, and vertical wind speeds relative to the rotor plane, thus ir is not
parallel to the ground plane when the base rotation , 0. Nodes 0-12 refer to the nodes upwind
of the length of the blade from the hub (1) to the tip (12) which divides the blade in 11 segments
of 0.091R length, as shown in Figure 7.10

7.3.7 Neural network optimization and training
Using the data partially reported in Appendix A and the MATLAB code detailed in Ap-
pendix B, the CNNs were optimized and trained on the two configurations of CFD data. As will
be presented in Section 7.4.1, ultimately the second configuration with fewer inputs resulted in
the more effective surrogate model, and as such the data presented in this section corresponds
specifically to that configuration.

The first stage of training the CNN consisted of finding the optimal hyperparameters using
the same two-round process as in Section 4.3.3. In the first round of optimization a wide range
of allowable values for each of the hyperparameters was provided, and CNNs were assigned
hyperparameter values within these ranges, quickly trained on a small subset of the data, then
the accuracy of each was measured. Based on the most effective of the tested hyperparameter
combinations, the second round performed another optimization search using a much smaller
range centered on the optimal hyperparameter values from the first round. The optimal hyper-
parameters for this test case are reported in Table 7.13, where it can be seen that compared
to the optimized CNN found in Section 4.6.1, the image input to this CNN takes over double
the number of time steps at 19 compared to 8 in the previous network. In Chapter 4, due to
memory limits in MATLAB and the large amount of training data, there were limits on the
maximum number of time steps that could be supplied to the CNN, a limitation that is avoided
here due to the smaller amount of data. The final fully-connected layer is also much larger here
despite having a significantly smaller number of outputs to predict. Beyond this, the optimized
architectures are fairly similar between here and Chapter 4.

The second stage of this process was to train the network on the full set of training and
validation data using the optimal hyperparameters. The accuracy of the CNN after training
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Number First fully- Second fully-
Convolution Number of time Pooling connected connected

Hyperparameter: filter size of filters steps (w) size layer size layer size

Round 1 low 1 1 11 1 10 10
Round 1 high 10 10 30 5 500 1000

Round 2 low 7 3 15 1 10 825
Round 2 high 10 10 23 5 50 925

Optimal value 8 9 19 4 11 828

Table 7.13: Hyperparameter optimization results

Thrust Torque
prediction (N) prediction (Nm) Overall

RMSE 0.3265 0.0307 –
NRMSE 1.97% 2.03% 2.00%

Table 7.14: Accuracy of the trained neural network for predicted the blade thrust and torque

was completed could be assessed by comparing the true outputs in the testing data set to the
predicted outputs generated by the trained CNN when it was supplied the inputs from the
testing data. The error between these values was quantified using the root mean square error
(RMSE) and its normalized counterpart (NRMSE), as was performed in Chapter 4 – see Equa-
tions 4.2 and 4.3. The RMSE and NRMSE were calculated for both the thrust and torque pre-
dictions individually, as well as an overall average NRMSE. These are presented in Table 7.14,
where it can be seen that the overall accuracy of the network was ≈ 98%. The network was
approximately equally accurate at predicting the thrust and torque as shown by their respective
NRMSEs.

This overall accuracy is quite high and was suitable for applying this trained CNN as a
surrogate aerodynamic load model in the artificial HS. However, it should be emphasized that
this reported 2.0% error only applies to predicting results that fall within the bounds of the
training data. Since only a relatively small amount of CFD data with low variety was able
to be generated for this purpose, the robustness of this surrogate model is low, as will be
explored below. However, provided that testing generally remains within the bounds of the
NN, the improved accuracy of the CFD results over equivalent BEM simulations should result
in improved results when the surrogate model is applied in the AHS.

Compared to the CNN trained in Chapter 4, this CNN with a similar number of inputs and
fewer outputs had roughly 2.5 times the error (2.0% compared to 0.8%), likely stemming from
the significantly smaller amount of training data for this neural network. This network was
trained on a few thousand time steps worth of data while the previous CNN had 1000 times
that amount. Still, this network managed to achieve a similar level of accuracy to the baseline
MLP in Chapter 4, which was also deemed a successful network in that study.

The computation time of the network, that is, the time required to generate one set of out-
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puts from one set of inputs, was quantified for this trained network. This was done by predict-
ing the output of the network ten times and averaging the recorded time requirements between
them. For this network, an average computation time of 0.0034 s or 3.4 ms was found. These
computation times were estimated on the same hardware used for training which had additional
non-intensive background processes running. On dedicated hardware, this computation time
could be further improved. Recall that this surrogate model predicts the thrust and torque on
a single turbine blade and thus it must be run three times every time step during the AHS,
though this could be parallelized to avoid tripling the required computation time. Overall, this
computation time is slightly longer than ideal – if the network is run in series on this same
hardware there is a total calculation time of 0.0102 s, which encroaches on the largest time
step allowable for most HS setups (0.01 s is a rough upper limit). However, this computation
time could be easily improved in a true hybrid simulation, by using more powerful hardware,
parallelizing the calculation, by reducing the number of time steps input into the network (this
would reduce network accuracy but increase the computation speed), or by transplanting the
trained NN from MATLAB to a lighter, low-level programming environment. For the purposes
of this study, this computation time is therefore deemed acceptable.

The surrogate model is not without limitations, however. As stated, due to the low variety
of results within the CFD training data, particularly in the input wind speeds, the network has
only been trained to accurately predict rotor thrust near wind speeds of 3.63 and 5.15 m/s. This
is a direct result of the short duration of the CFD simulations, meaning that fluctuations due
to turbulence were limited. Figure 7.13 plots the range of training data generated by the CFD
simulations – as can be seen, data only exists at very specific values of wind speeds. As a result,
a reduced turbulence intensity of 1.1% was used in the wind time histories for the artificial HS,
as described in Section 7.2.1. If the turbulence intensities of near 10% were instead used to
match respective wind turbine tests, the surrogate model would be provided wind speeds below
3.63 m/s and above 5.15 m/s and the accuracy of the predictions by the surrogate model would
decrease well below the 98% predicted by the testing data.

The CNN trained on CFD data can thus be used a surrogate model for the artificial HS.
By integrating the NN directly into the HS process, high-accuracy in-the-loop aerodynamic

Figure 7.13: Range of data points generated by CFD testing – this likewise represents the range
of data the surrogate model has been trained to predict
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Case Aerodynamic Wind Turbulence Tip speed Rotor
ID model speed (m/s) intensity ratio speed (rad/s)

P1A Precalculated 3.63 1.1% 0.95 3.14
P1B fixed model 5.15 1.1% 1.08 5.06
P1C (Section 7.2.3) 5.15 1.1% 4.98 23.32

P2A Precalculated 3.63 1.1% 0.95 3.14
P2B rotating model 5.15 1.1% 1.08 5.06
P2C (Section 7.2.3) 5.15 1.1% 4.98 23.32

P3A Precalculated 3.63 1.1% 0.95 3.14
P3B rot. model w/ PTMD 5.15 1.1% 1.08 5.06
P3C (Section 7.2.3) 5.15 1.1% 4.98 23.32

SMA Surrogate model 3.63 1.1% 0.95 3.14
SMB CFD-NN 5.15 1.1% 1.08 5.06
SMC (Section 7.3) 5.15 1.1% 4.98 23.32

Table 7.15: The twelve artificial HS test cases

modelling can be performed in this novel HS framework to enable and improve the usefulness
of HS for studying wind-loaded structures.

7.4 Artificial hybrid simulations

7.4.1 Description

This section reports the artificial HS of the rotating-base residential wind turbine equipped with
a MR-controlled semi-active TMD. Table 7.15 summarizes the different hybrid simulations
performed here; the four frameworks (see Figure 7.2) are employed for each of the three wind
cases for a total of twelve AHS. The case IDs are defined as follows: the first two characters
refers to the aerodynamic models (“P1”, “P2”, “P3” for the three pre-calculated models, “SM”
for the surrogate model), while the third character refers to the wind case (“A”, “B”, “C”) as
defined in Table 7.1.

As detailed previously, an artificial HS differs from a true HS in that the experimental sub-
structure of the true HS is replaced by an additional numerical substructure. Thus, artificial
HS avoid the experimental delays and errors that are very impactful on true HS, though it was
attempted to minimize this simplification by introducing artificial numerical approximations of
these errors to the information passed to and from the STMD virtual “experimental” substruc-
ture. Artificial delays were added to the voltage supplied to MR damper in the STMD as well
as normally-distributed error applied to the recorded restoring force of the STMD, as described
in Section 7.2.4.

The artificial hybrid simulations are run in MATLAB using the code reported in Ap-
pendix C. This code allows the user to specify which framework and wind speed time history
to use, then returns the time history of the response of the rotating-base turbine. The numerical
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algorithm used to solve the equation of motion of the structure is the Chen-Ricles algorithm
(Chen et al., 2009), an explicit algorithm designed for time-sensitive testing such as HS. This
algorithm was previously employed in Chapter 5 (see Section 5.2.4).

The dynamic simulation process involves, for each time step of the analysis:

• estimating the structural response of the turbine based on the response at the previous
time step;

• estimating the response of the STMD based on the response at the previous time step;

• adjusting the future voltage supplied to the STMD if the controller calls for it;

• calculating the restoring force on the turbine based on the difference in response between
the turbine and STMD;

• determining and applying the aerodynamic loads to the turbine;

• updating the predicted structural response considering the aerodynamic and restoring
forces on the turbine;

• continuing to the next time step then repeating.

The only of these processes that differs greatly between the twelve test cases is the determi-
nation of the aerodynamic loads. For all nine AHS that employ pre-calculated aerodynamic
loads, the rotor thrust is supplied as a time history to the code, and that load is applied at a
given time step. Conversely, determining the aerodynamic loads using the surrogate model is
a more demanding process.

The process to predict the aerodynamic thrust loads on the rotor via the surrogate model
while using the proposed HS framework is reported in Figure 7.14. To summarize, firstly
the TurbSim-generated .bts wind field time history file for the given wind case is loaded into
MATLAB – this is the same wind field file used in the OpenFAST simulations to generate the
pre-calculated aerodynamic loads. During the AHS, at each time step for a given turbine blade,
the location of 12 to 36 blade nodes (depending on the input configuration) are identified based
on the base rotation and blade azimuth. These nodes consist of three sets of 12 nodes along the
upwind projected blade area at distance of 0.2R, 0.5R, and 1.0R, as shown in Figure 7.10. The
global wind speed components at these nodes can then be extracted, shifting the time step as
described in Equation 7.2 to relate the recorded wind speed and predicted thrust as strongly as
possible. These global wind components must then be transformed to the rotor-axis frame of
reference using the following equations:

ir = i cosα − k sinα (7.6)
jr = j (7.7)

kr = i sinα + k cosα (7.8)

Here, i, j, and k are the along-wind, across-wind, and vertical components of the wind speed,
where i is parallel to the mean wind direction; ir, jr, and kr are the respective components
relative to the rotor-axis; and α is the base rotation. These rotor-axis wind speeds are arranged
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Figure 7.14: Explanation of process used to predict aerodynamic thrust using the surro-
gate model. Additional references for this process include Figures 2.3 and 7.10, Equa-
tions 7.2 and 7.6-7.8, and Appendix C

to match the NN input format described in Table 7.12 and shown in Appendix A, then input into
the trained surrogate model which returns the predicted blade thrust. This process is performed
for all three blades, and total the rotor thrust can be taken as the sum of these blade thrusts –
recall that the drag on the hub and nacelle are ignored here to match the OpenFAST simulations
as closely as possible. The thrust predicted by the surrogate model is then applied to the wind
turbine as it is when using the pre-calculated loads.

As discussed in Section 7.3.7, 0.01 s represents an upper limit on the allowable time step
durations for HS, and is also the approximate speed of the trained surrogate aerodynamic model
without any further optimization (improved hardware, parallelization, etc.). As such it is logi-
cal that the AHS using the surrogate model be run at a time step of 0.01 s to approximate the
time-limitations present in a true HS. Thus, 18,000 time steps are run for the 180 s simulation
which takes roughly that much time to run. Conversely, the use of the pre-calculated aerody-
namic loads are orders of magnitudes faster to run even compared to the surrogate model – this
is partly why this technique is so widely used in existing HS. If the 180 s simulations using
the pre-calculated loads are run at time steps of 0.001 s for a total of 180,000 time steps, this
simulation only takes seconds to complete. The lower time step means that the numerical sim-
ulation will be more stable as well as capturing higher frequency behaviour more effectively.
As a result, the nine AHS that employ pre-calculated aerodynamic loads are run at this smaller
time step to benefit from this advantage the existing framework has over the proposed surrogate
model-based framework.

7.4.2 Results

All twelve AHS were performed and the results were collected for analysis, allowing the accu-
racy of the surrogate model to be evaluated as well as the proposed HS framework that employs
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it. This was performed using two different CNNs trained on different configurations of input
data as described in Table 7.12. The first configuration provided 60 wind speed measurements
per input time step w, while the second configuration provided only 14w. Both models were
able to achieve an average NRMSE of ≤2% during network testing. The mean rotor thrust
loads predicted by each model for each wind case are reported in Table 7.16 and compared to
the mean thrust predicted by the CFD simulations. As can be seen, while the surrogate model
trained on the first data configuration matched the CFD thrust slightly better than the second
configuration in the 0.95 TSR case, it strongly underestimates the rotor thrust in the 4.98 TSR
case. This is likely due to importance that the TSR input plays on the overall thrust; when
a significant number of wind speed data points are provided to the network it waters down
the relative weight of the TSR to the NN. The second model emphasizes the role of the TSR
by reporting fewer wind speed measurements. As a result the surrogate model trained on the
second, smaller data configuration was used for analysis and all reported results hereafter.

With the optimal surrogate model identified, Figure 7.15 plots the recorded time history
of the rotor thrust generated for each surrogate model test against the pre-calculated aerody-
namic loads previously reported in Figure 7.3 and the mean thrust predicted by the wind tunnel
testing by Shirazadeh et al. (2021) and Refan (2009) (see Table 7.11). As can be seen, the sur-
rogate model-generated and pre-calculated thrust time histories both underestimate the thrust
compared to the experimental means, but the surrogate model predictions match must more
closely, particularly as thrust increases and so does the resulting base rotations (and, in turn,
the impact of aeroelastic fidelity on the results). It can also be seen that the deviation of the
surrogate model-predicted thrust is less than the pre-calculated cases for case C, indicating
the surrogate model may overweigh the TSR as an input due to the small range of training
data. It can be concluded that the surrogate model has improved prediction of the mean thrust
compared to pre-calculated loads, but whether the difference in fluctuating components is an
improvement cannot be directly evaluated.

To further study the accuracy of the surrogate model, the mean and standard deviations of
the thrust time histories from all twelve AHS are reported in Table 7.17. This confirms the
previous observations that the mean thrusts predicted by the surrogate model (2.68, 7.80, and
49.51 N respectively for the three wind combinations) approach the values predicted by the
CFD simulations compared to the pre-calculated mean thrusts using the rotating-with-PTMD
model (2.39, 5.44, and 32.22 N). Recall that it was shown that the CFD results match exper-
imental data better than the pre-calculated thrust values for the 4.98 TSR case at minimum.
Overall, it can be said that the surrogate models are more accurate at predicting the mean rotor

No. of Optimal Total Mean rotor thrust (N)
inputs per no. of time no. of 3.63 m/s 5.15 m/s 5.15 m/s
time step steps w inputs 0.95 TSR 1.08 TSR 4.98 TSR

CNN using 1st config 62 24 1488 2.99 6.29 34.41
CNN using 2nd config 14 19 266 2.68 7.80 49.51

CFD simulations – – – 3.97 8.64 52.86

Table 7.16: Comparison of mean rotor thrusts predicted by two surrogate models in AHS. The
surrogate models differ according to input data configurations, as shown in Table 7.12
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Figure 7.15: Pre-calculated and surrogate model-generated rotor thrust time histories for the
three wind cases, compared to the mean experimental thrust predictions (see Table 7.11)

thrust but less effective at capturing its fluctuating component – the cause of these limitations
are discussed in detail in Section 7.4.4.

The time histories of the base rotation of the turbine for all twelve AHS simulations are
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WIND CASE A: 3.63 m/s 0.95 TSR

Pre-calculated Surrogate
AHS results Fixed Rotating Rot. w/ STMD model

Mean hub height wind speed (m/s) 3.62 3.62 3.62 3.62
Mean rotor thrust (N) 2.36 2.35 2.35 2.48

Standard dev. of rotor thrust (N) 0.04 0.04 0.04 0.05
Mean base rotation (rad) -1.02E-03 -1.03E-03 -1.03E-03 -8.07E-04

Standard dev. of base rotation (rad/s) 9.13E-05 9.05E-05 9.09E-05 1.56E-04

WIND CASE B: 5.15 m/s 1.08 TSR

Pre-calculated Surrogate
AHS results Fixed Rotating Rot. w/ STMD model

Mean hub height wind speed (m/s) 5.14 5.14 5.14 5.14
Mean rotor thrust (N) 5.07 5.13 5.16 8.61

Standard dev. of rotor thrust (N) 0.07 0.07 0.07 0.08
Mean base rotation (rad) 4.73E-03 4.82E-03 4.87E-03 1.07E-02

Standard dev. of base rotation (rad/s) 1.89E-04 1.78E-04 1.84E-04 2.66E-04

WIND CASE C: 5.15 m/s 4.98 TSR

Pre-calculated Surrogate
AHS results Fixed Rotating Rot. w/ STMD model

Mean hub height wind speed (m/s) 5.14 5.14 5.14 5.14
Mean rotor thrust (N) 35.96 33.53 32.90 49.12

Standard dev. of rotor thrust (N) 0.40 0.30 0.31 0.07
Mean base rotation (rad) 5.67E-02 5.20E-02 5.15E-02 7.89E-02

Standard dev. of base rotation (rad/s) 1.18E-03 7.29E-04 9.71E-04 2.32E-04

Table 7.17: Mean results of the twelve AHS simulations

shown in Figure 7.16, the means and standard deviations of which are also reported in Ta-
ble 7.17. As can be seen, stemming from the higher mean and differences in deviation of the
surrogate model-generated thrust, the resulting base rotations of the turbine are greater on av-
erage compared to the values resulting from the pre-calculated loads. As with the thrust time
histories, there is greater variance in the low TSR case and lower variance in the 4.98 TSR
case. Since the relationship between thrust and base rotation is so strongly correlated (with the
presence of the STMD as the other major contributor to the response of the turbine), the general
trends in the base response are the same as those seen in the predicted thrust time histories.

Additional observations from the reported thrust and base rotation time histories include:

• It can be seen that the all predicted base rotations lie within the chosen range of −0.01
to 0.25 rad for the CFD simulations. As a result, the surrogate model was never exposed
to a base rotation that exceeded the bounds of its training data, which was the intended
goal of the chosen range. However, it was seen that the chosen values for generating the
testing set were overly conservative as the base rotation of the turbine equipped with the
STMD was never seen to surpass 0.10 rad. Thus, the CFD simulations performed at a
base rotation of 0.15 rad and beyond were not strictly necessary and that computation
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Figure 7.16: Base rotation time histories generated by the AHS using the surrogate model and
pre-calculated aerodynamic loads. While there is no target time history to compare against,
referencing Figure 7.15 shows the improved accuracy of the prediction using the surrogate
model
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time could have been directed to other wind speeds or smaller base rotations seen by the
simulations for a more robust surrogate model.

• The effectiveness of the three numerical OpenFAST models of increasing fidelity used
to pre-calculate the rotor thrust – the fixed, rotating, and rotating-with-PTMD models,
can be contrasted by studying Figure 7.16. As can be seen, at the low TSR cases where
the base rotation does not exceed ±0.01 rad, there is very little difference in the pre-
dicted base rotation response. However, at the 4.98 TSR case where thrust loads are
much higher, there is a 10% difference in the predicted mean base rotation between the
fixed and rotating-with-PTMD models. This is a logical result given that whether base
rotations are considered or not means very little when the turbine never rotates much
away from its fixed position. The high-TSR results however support the importance of
modelling aeroelasticity with as much fidelity as possible in this form of testing – if
the proposed surrogate model-based framework is unavailable, using the highest-fidelity
numerical model for load pre-calculation is encouraged.

To investigate the effectiveness of the STMD in these simulations, a set of nine numerical
simulations were performed of the residential rotating-base wind turbine without the STMD
under the pre-calculated/surrogate model thrusts using the same MATLAB code. Only nine
simulations were performed as the pre-calculated loads derived from the rotating-with-PTMD
model were excluded since the turbine in question is no longer equipped with a TMD. Without
the presence of the STMD, these simulation no longer have the artificial “experimental” sub-
structure, meaning they can not be described as AHS and are simply numerical simulations.
The mean responses of the TMD-less simulations as well as the percent improvement offered
by the STMD in the equivalent simulation are reported in Table 7.18. The percent improvement
is calculated as:

Percent improvement =
|σS T MD − σnoT MD|

σS T MD
(7.9)

Here, σS T MD is the standard deviation of the base response of the turbine for given simulation
where it was equipped with the STMD, while σnoT MD is the standard deviation of the base
response for the equivalent simulation without the TMD.

The results reported in Table 7.18 show that when the turbine experiences greater deflec-
tions, the STMD reduces fluctuations effectively despite its small mass ratio of 1%, thanks to
the additional control and efficiency offered by the semi-active MR damper-based control sys-
tem. When the STMD was most effective, fluctuations were reduced in the order of 15% for
the simulations. However, it is known that TMDs have limited effectiveness when motion is
small, meaning that the vibration reduction effect was quite small for other cases. Considering
the very low turbulence in the wind conditions studied here, it is understandable that the overall
effective of the STMD would be lower than predicted by Chapter 5 and Section 6.4. Further,
when comparing the STMD effectiveness between pre-calculated and surrogate model cases,
the STMD is more effective under the more-variable thrust time history predicted by the surro-
gate model for wind case A, while it is more effective under the more-variable pre-calculated
thrust time histories for wind case C. This emphasizes the importance of correctly capturing the
dynamic behaviour of the turbine through correct aeroelastic modelling, as the effectiveness of
the STMD will vary based on the predicted response.
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7.4.3 Improvements offered by the proposed framework
Overall, this study presents an imperfect analysis of the proposed HS framework that incor-
porates a CFD-trained surrogate model for higher-accuracy, in-the-loop aerodynamic load cal-
culation. As such, the positive observations of the effectiveness of the framework will be

WIND CASE A: 3.63 m/s 0.95 TSR – Turbine without STMD

Pre-calculated Surrogate
AHS results Fixed Rotating model

Mean hub height wind speed (m/s) 3.59 3.59 3.59
Mean rotor thrust (N) 2.36 2.36 2.47

Standard dev. of rotor thrust (N) 0.04 0.04 0.05
Mean base rotation (rad) -1.01E-03 -1.02E-03 -8.25E-04

Standard dev. of base rotation (rad/s) 8.54E-05 8.46E-05 1.35E-04
% reduction in std of base rotation by STMD 6.9% 7.0% 15.7%

WIND CASE B: 5.15 m/s 1.08 TSR – Turbine without STMD

Pre-calculated Surrogate
AHS results Fixed Rotating model

Mean hub height wind speed (m/s) 5.14 5.14 5.14
Mean rotor thrust (N) 5.07 5.12 8.61

Standard dev. of rotor thrust (N) 0.07 0.07 0.08
Mean base rotation (rad) 4.73E-03 4.82E-03 1.07E-02

Standard dev. of base rotation (rad/s) 1.83E-04 1.73E-04 2.57E-04
% reduction in std of base rotation by STMD 2.9% 2.8% 3.2%

WIND CASE C: 5.15 m/s 4.98 TSR – Turbine without STMD

Pre-calculated Surrogate
AHS results Fixed Rotating model

Mean hub height wind speed (m/s) 5.14 5.14 5.14
Mean rotor thrust (N) 36.02 33.58 49.12

Standard dev. of rotor thrust (N) 0.37 0.29 0.07
Mean base rotation (rad) 5.68E-02 5.27E-02 7.89E-02

Standard dev. of base rotation (rad/s) 1.04E-03 8.36E-04 2.24E-04
% reduction in std of base rotation by STMD 13.1% 12.8% 3.5%

Table 7.18: Summary of nine simulations of the residential wind turbine without STMD, in-
cluding the percent reduction in the base rotation standard deviation compared to the equivalent
simulation equipped with the STMD
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highlighted, while the limitations of this study will be explored in the following section.
The original goal for this study was to directly validate the AHS against the wind tunnel

tests presented in Chapter 6, but limitations in the damping systems of the physical turbine
model meant that the final wind tunnel tests had no artificial experimental substructure for the
AHS. As a result, it can not be explicitly proven the degree to which (if any) that the new HS
framework employing the CFD-based surrogate model is an improvement over the existing,
pre-calculated technique. However, the following observations from this chapter strongly sup-
port that this new framework offers or has the potential to offer a notable improvement over the
previous state-of-the-art:

• The blade thrust and torque coefficients measured in the single-blade CFD simulations
were compared to equivalent BEM-based numerical values and wind tunnel experimental
values in Figure 7.7. In these simulations, it was seen that the lift coefficients had equal or
improved matching to the experimental results in the CFD simulations compared to the
BEM simulations. Further, the drag coefficient, which is generally more challenging to
capture using simplified numerical methods, more closely matched the CFD simulations
compared to the BEM simulations. This supports the general consensus of the improved
aerodynamic simulation capabilities of CFD versus simplified numerical methods.

• Table 7.11 compares the mean thrust and torque coefficients predicted by the full-rotor
CFD simulations to those predicted by the BEM-based OpenFAST simulations detailed
in Section 7.2.3 as well as existing experimental values. This table shows that the thrust
predicted by the CFD simulations matches quite closely to the experimental value, and
while the CFD torque coefficient has some amount of error compared to the experimental
value, it still matches more closely than the BEM value. This serves as a demonstration
of a CFD simulation with a relatively coarse mesh still surpassing the BEM-based simu-
lations.

• The trained surrogate model had an internal accuracy of 98% and a run time of approx-
imately 3 ms, meaning that the possibility of achieving accurate surrogate modelling of
CFD-level results at a speed high enough to be run in real-time is quite feasible.

• While the fluctuating components of the time histories of the aerodynamic loads pre-
dicted by the surrogate model may have limitations, the mean values of these thrust time
histories match the CFD results well, resulting in thrust predictions closer to experimen-
tal results as shown in Figure 7.15. Since the rotor thrust and base response are strongly
related, the base rotation time histories share the same behaviour.

• The mean base rotations predicted by the pre-calculated loads generated using the higher-
fidelity OpenFAST model differs from those predicted by the lower-fidelity models by
upwards of 10% as seen in Table 7.17, indicating that capturing the aeroelastic behaviour
of the structure as closely as possible can have notable impact on the results under greater
aerodynamic loads.

• The difference in thrust and base rotation behaviour between the surrogate model-based
AHS and the pre-calculated AHS resulted in a noticeable difference between the pre-
dicted base rotation reduction offered by the STMD. This serves as an example of the



206 Chapter 7. A novel HS framework employing a CFD-based surrogate model

effect that more accurately simulating the response can have on this typical type of HS
damper test.

• While this application of the proposed framework employing a CFD-trained surrogate
model is not without its limitations, this study clearly shows the feasibility of such a
technique and identifies indicators of the advantages it offers. A future simulation with an
improved set of training data for the surrogate model could confirm these initial findings.

7.4.4 Limitations in the proposed framework

The main limitations of the surrogate model used in this study, primarily stemming from the
CFD simulations performed to generate the training data, are dissected here to offer suggested
improvements for future applications of the proposed framework.

The primary source of any limitations in this testing stems from the quality, amount, and
variety of the CFD data used to train it:

• The mesh size of these CFD simulations was severely restricted by a number of fac-
tors. To effectively capture the base rotation of the turbine changing the wind direction
against the rotor plane, the entire rotor had to be simulated as opposed to the typical
technique of modelling only a third of the domain and rotationally mirroring it. Further,
to maintain Re- and TSR-similitude without exceeding Ma limits, the geometric scaling
was restricted to no more than 1:4. As a result, the CFD domain was quite large, limiting
the fineness of the mesh. Due to the number of simulations required, it was infeasible
to use a domain much larger than 30M cells, resulting in the use of a relatively coarse
mesh as well as a high y+ wall treatment. As discussed in Section 3.3.2, the high y+ wall
treatment is less accurate compared to the low y+ wall treatment, which are nearly always
recommended when the mesh size permits it. As was shown in Chapter 3, airfoils are
very sensitive to the CFD mesh, and a result there is likely some error in the results of
the CFD simulations, though there were never instances in this study where these errors
were identified as a source of issues. Future simulations could use greater computational
resources to generate a finer mesh, or model a smaller turbine rotor allowing the domain
size to be reduced further – it may be possible to perform single-blade simulations in a
hemispherical domain to generate the required training data, though new hurdles such as
accurately capturing the effect of the rotor rotation and the neighbouring blades would
need to be overcome.

• Due to the large number of required simulations, the large CFD domain, and the general
computational intensivity of CFD, a significant amount of supercomputing resources
were required to generate a set of data of even modest length. To generate the data set
of 24 simulations with 500 usable time steps each required over a thousand hours of
CPU time on a supercomputing platform. This limits the ability to generate more data
than the relatively small amount used here, as well as redoing tests if issues are identi-
fied. Without reducing the simulation complexity or simply using more computational
resources, this limitations acts as a bottleneck for the CFD-trained surrogate model. In
the worst case scenario, a high-accuracy version of a simplified numerical model such
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as a high-detail BEM simulation with all modern improvements could be used to gen-
erate training data, similar to what was performed in Chapter 4. This would minimize
the error from using simplified aerodynamic models while still allowing for in-the-loop
aeroelastic calculations.

• In an attempt to ensure the base rotation during operation did not exceed the bounds of
the CFD data, only a few wind speed and TSR cases could be simulated, and due to
their short duration there was not much variation in the results during these simulations.
The impact of this is shown in the scatter plots presented in Figure 7.17. These show
the collected CFD data and surrogate model predictions from the AHS, comparing the
hub wind speeds, the base rotations, and the rotor thrust. As can be seen, the data from
the CFD simulations is highly concentrated at a small number of points; there is little
variation within the individual CFD simulations. Since the turbulence of the test wind
fields was restricted heavily, the results from the AHS are clustered around the data
point, leading to the effective prediction of CFD-level aerodynamic loads. However,
given a more realistic level of turbulence (near 10%), the AHS inputs would exceeds the
bounds of the training data and the accuracy of the network would suffer. Therefore,
the surrogate model as it is presented here is accurate but lacks robustness; this is the
likely source of the difference in fluctuations of the thrust between the surrogate model
and pre-calculated loads. Exasperating this issue, it can be seen that a number of the
simulations performed at higher base rotations were quite separated from the entirety
of the AHS simulations; the computational resources used for these simulations would
have been better served running more simulations closer to the AHS conditions, though
this limitation could not easily have been identified ahead of time. The robustness issue
must be solved by providing a greater variety of training data to the network at a greater
variety of wind speeds and TSRs.

• The locations of the nodes used to record the wind speed in the CFD simulations were set

Figure 7.17: Scatter plots of CFD data and surrogate model AHS results comparing base ro-
tation, hub height wind speed, and rotor thrust. The approximate bounds of the CFD training
data are drawn, where the gradient indicates lower accuracy in the gaps between data points
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back from the rotor in an attempt to reduce the influence from the rotor itself. However,
even the wind speeds recorded at the furthest nodes were somewhat impacted by the
rotor rotation, reducing the recorded wind speed relative to the domain input. Scaling
factors were used on the inputs when provided to the surrogate model to account for this
somewhat (as shown in Appendix B), but it is recommended to measure wind speeds at
a greater distance from the rotor in future simulations to maximize the accuracy of the
training data and resulting surrogate model.

While the overall trends of this study are supportive of the proposed HS framework de-
spite these limitations, future applications of this framework would be well served to address
these shortcomings using some of the suggested techniques. A future study investigating the
proposed HS framework employing a CFD-trained surrogate model with these improvements
would serve as a stronger, more explicit proof of the effectiveness of this novel technique.

7.5 Conclusions
This study presents the development of a surrogate aerodynamic wind turbine blade model
based on a convolutional neural network (CNN) trained on computational fluid dynamics
(CFD) data for use in an novel hybrid simulation (HS) framework, enabling previously lim-
ited HS of wind turbines and other wind-loaded structures. This surrogate model is combined
with the aeroelastic rotating-base structural turbine model developed in Chapter 6 and the semi-
active variable-damping tuned mass damper (STMD) optimized in Chapter 5. The framework
was examined in a series of twelve artificial HS using four aerodynamic models across three
wind cases of varying wind speed and tip speed ratios (TSRs). The aerodynamic models in-
clude three sets of “pre-calculated” rotor thrust time histories generated using the turbine soft-
ware OpenFAST as well as the trained surrogate model. While the improvements offered by
the new framework employing the CFD-trained surrogate model cannot be directly quantified,
a number of observations were made indicating its effectiveness and the future potential of this
technique.

This study presented a summary of the wind cases, the STMD, and the OpenFAST-generated
pre-calculated thrust time histories. It then offered a detailed presentation of the development
of the CFD-trained surrogate model including the numerical turbine blade approximation, a
validation of the CFD parameters using 12 single-blade CFD simulations, a presentation of the
24 data-generating full-rotor CFD simulations, the architecture and optimization of the CNN
based on the CFD data, and a validation of the trained network. Finally, the results of the
twelve artificial HS were presented and discussed.

Overall, it was seen that while the robustness of the surrogate model was limited by the
CFD-generated training data, the proposed AHS framework was shown to be computationally
lightweight and resulted in improved prediction of the mean thrust and base rotations. This
indicates an effective and feasible framework and supports further investigation of it using
suggested improvements to advance the use of HS for studying wind-loaded structures.
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Conclusions and recommendations

This thesis presents six studies that collaborate towards the development of an improved hybrid
simulation (HS) framework that incorporates computational fluid dynamics (CFD) for the study
of wind turbines. HS is a relatively new testing technique capable of achieving experimental-
level accuracy with improved scope and scale, which is particularly promising for wind turbines
due to scaling issues arising in wind tunnel testing. However, due to the real-time testing speed
of HS, advanced aerodynamic models are too slow computationally to be incorporated directly,
limiting the technique’s ability to accurately model aeroelastic responses. Thus, there exists a
need for a modified HS framework that addresses these limitations, which is accomplished in
the proposed HS framework by incorporating a CFD-trained surrogate model.

This thesis built toward this proposed framework as follows: firstly, the need was shown
for the new framework by quantifying the limitations in the existing framework that employs
low-accuracy, pre-calculated wind loads. The aerodynamic model for the HS was developed by
determining the optimal CFD settings to generate the training data, as well as the optimal type
and architecture of the convolutional neural network (CNN) which was trained on this CFD
data to create the surrogate model. The HS test case of a turbine equipped with a semi-active
tuned mass damper (TMD) was evaluated and optimized. The structural model of a residential
rotating-base wind turbine was developed and validated using the results of aeroelastic wind
tunnel testing. Finally, each of these components were combined into a series of artificial hy-
brid simulations (AHS) that compared four different HS frameworks: three versions of the
existing framework employing lower-accuracy, pre-calculated aerodynamic loads, as well as
the novel proposed framework that incorporated the CNN-based, CFD-trained surrogate aero-
dynamic model. Though these artificial HS were purely numerical, they approximated real HS
by modelling realistic delays and errors into the simulation. Ultimately, while quantification of
the improvement offered by the proposed framework could not be drawn, several indicators of
the effectiveness of the technique were identified.

The proposed framework offers a potential avenue to enable the nascent use of HS in wind
engineering. While it is particularly promising for the area of wind turbine research, the general
framework could be applied for nearly any wind-loaded structure.
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8.1 Summaries of the conclusions of each chapter
In addition to contributing to the overall goal of developing the surrogate model-based HS
framework, each of the studies presented in this thesis stand independently. The broad conclu-
sions and contributions for each of these studies are summarized here.

8.1.1 Chapter 2: Wind turbines and hybrid simulation: an overview of
research, opportunities and limitations

In addition to collecting the general trends of existing wind turbine and HS studies, this study
also includes a numerical investigation of the effects of the limitations in the existing HS frame-
work caused by load pre-calculation and reduced aeroelastic fidelity, using a 5 MW wind tur-
bine equipped with a tuned mass damper (TMD) as the test case. This study came to the
following conclusions:

• HS is a promising testing technique for wind turbine studies due to complexity and scal-
ing issues. Existing HS of wind turbines have primarily been focused on testing the use
of complex, non-linear external damping systems such as semi-active and active TMDs.

• By studying a TMD-equipped wind turbine in an artificial hybrid simulation, it was
shown that insufficient aeroelastic fidelity can result in errors exceeding 10% and that
pre-calculated wind loads can result in errors exceeding 70%. As a result, there are
significant improvements to be made in HS of wind turbines if a framework can be de-
veloped that minimizes or avoids these limitations.

• The following research topics are promising options for future HS of wind turbines:
offshore turbines, turbines under multi-hazard loading, turbines with external damping
systems, and structural failures in turbines.

The most notable contribution of this study beyond its use in this thesis was the quan-
tification of the possible errors introduced by pre-calculated aerodynamic loads using lower-
accuracy models. These values critically emphasize the limitations that currently exist in wind
engineering applications of HS.

8.1.2 Chapter 3: Investigation of the drag and lift coefficient curves of
the NACA 0012 airfoil using CFD and a novel synthesis method

This study characterizes the drag and lift coefficient curves of the NACA 0012 airfoil at
Reynolds numbers of 105 to 106 using two methods. The first was a novel synthesis method
that generated piecewise polynomial systems to characterize the average curves as a function
of the Reynolds number based on data collected from existing studies. The second was a
collection of 114 CFD simulations of the NACA 0012 airfoil in 2D and 3D using RANS and
URANS employing the Spalart–Allmaras, k-ε, k-ω closure models, as well as preliminary LES
simulations. This study came to the following conclusions:
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• There is a notable amount of disagreement between the drag and lift coefficient curves
predicted by existing studies due to the complexity of the aerodynamic behaviour of the
airfoil in the specified Reynolds number range. Disagreement was greatest at the stall
and post-stall angles of attack beyond 10-15◦.

• Despite these disagreements, four piecewise polynomial systems of the 2D and 3D lift
and drag coefficient curves as a function of the Reynolds number were able to be devel-
oped. They generally managed to agree with all data within a single standard deviation.

• The 2D CFD simulations showed the importance of vortex shedding on the predicted
curves, which the existing 2D studies may have failed to model correctly. Of the tested
closure models, the k-ω model was found to be most accurate.

• The 3D CFD simulations generally matched well with the curve predicted from the exist-
ing data, which represents a more realistic simulation environment. The preliminary LES
results fail to accurately capture flow behaviour at the stall angle due to computational
resources limiting the mesh density.

• Overall, the most effective CFD parameters, for the purpose of the improved frame-
work proposed in Chapter 7, were deemed to be a 3D URANS simulation using the k-ω
closure model. URANS captures transient behaviour more effectively than RANS sim-
ulations, and for researchers who are less-experienced with CFD, URANS is simpler to
implement and requires lower computational resources compared to LES.

The most notable contribution of this study beyond its use in this thesis was the devel-
opment of the piecewise polynomial system-based framework for averaging drag and lift co-
efficient curves from existing wind tunnel studies. This offers researchers an efficient way to
compare new research to a single coefficient curve provided there are existing studies at similar
– but not necessarily identical – Reynolds numbers.

8.1.3 Chapter 4: Optimizing the type and architecture of neural network-
based surrogate aeroelastic wind turbine blade models

This study optimizes and compares six neural networks (NNs) for their use as surrogate aero-
dynamic blade models for a 5 MW wind turbine blade. The six NNs include four types of
multilayer perceptron (MLP) networks, one long short-term memory (LSTM) network, and
one convolutional neural network (CNN). After hyperparameter optimization and final train-
ing, the accuracy of the network was determined by calculating the average NRMSE between
the predicted outputs of the network and the supplied testing data outputs. This study came to
the following conclusions:

• Overall, the full-parameter MLP, which represents the baseline time-independent net-
work of the study, was found to have an very low average NRMSE of 1.11%. Compara-
tively, the more-complex CNN had an extremely low average NRMSE of 0.66%, which
was shown to be a result of the wide view of the input data allowed by the convolution
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process. These two networks out-performed the other four, and also out-performed pre-
vious neural networks of this size applied in wind turbine studies that tended to have
errors of 5% or greater.

• All the trained surrogate models were able to achieve high operation speed of <10 ms,
which is sufficiently fast to be incorporated into real-time simulations.

The most notable contribution of this study beyond its use in this thesis was the identifica-
tion of the utility of CNNs as surrogate models for structural and wind engineering applications.
CNNs see little general application in this field due to being designed for image processing, but
this study shows how they can be employed for alternative applications relatively easily and to
good effect.

8.1.4 Chapter 5: A comparison of passive and semi-active tuned mass
damper systems for wind turbines

This study numerically compares eight TMD systems used for vibration control of a 1.5 MW
wind turbine subjected to wind and seismic loading. These TMDs include a passive TMD and
three types of semi-active TMDs in single- and multi-TMD configurations; the three STMDs
semi-actively controlled the stiffness, the damping, and both, respectively. This study came to
the following conclusions:

• Overall, all the TMDs improved the response of the wind turbine, but the STMD that
controlled both stiffness and damping was the most effective when considering all per-
formance indices. The damping control TMDs and stiffness control TMDs also showed
improved effectiveness compared to PTMD cases, with the former showing improved
control of the middle of the tower and the latter showing improved control of the top of
the tower. Specifically, a semi-active TMD with half the mass was found to be almost
equally effective as an optimized passive TMD.

• The use of a multi-TMD system with the same collective mass as a single-TMD resulted
in improved control of higher mode responses at the cost of a slight reduction in control
of the first mode.

• The improvement of the STMDs versus the PTMDs was relatively small in some in-
stances, and must be weighed against the cost of implementing the semi-active system.
Overall, the absolute best damping system will depend on the desired control for each
performance index, the expected loading, and a cost-benefit analysis.

The most notable contribution of this study beyond its use in this thesis was the detailing
of the realistic semi-active damper controllers such as the magnetorheological damper. Most
studies in this area adopt idealized controllers, but this study shows that physically-realistic
controllers can be readily adopted in numerical simulations to achieve more robust and more
conservative test results.
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8.1.5 Chapter 6: Development of a rotating-base residential wind turbine
model based on aeroelastic wind tunnel tests

This study details the development of an experimentally-validated structural wind turbine
model for the purpose of acting as a testbed for subsequent hybrid simulation studies. Full-
scale aeroelastic wind tunnel testing of a rotating-base turbine was performed to generate the
data used to build a 1-DOF numerical structural model, including an MLP-based surrogate
thrust model and a three-term damping model. Finally, the validated model was used in a sim-
ple case study of a turbine equipped with a non-linear vibration damping system. This study
came to the following conclusions:

• While the results of the aeroelastic wind tunnel testing met the requirements set out at
the beginning of the testing, there were a number of limitations primarily due to over-
damping in the rotating base. These limitations could be avoided in future testing via a
number of suggested improvements.

• The numerical model was designed and validated using existing wind tunnel research as
well as the new aeroelastic tests. Matching between the designed numerical model and
the experimental data was shown to be at least 80%, and very likely would be higher
with an improved aerodynamic model, which was adopted in the subsequent testing in
Chapter 7.

• The overly-high damping in the aeroelastic base was best modelled using a combined
linear-quadratic-Coulomb damping model, which was modified for the proposed final
structural model.

• The case study of the final 1-DOF model compared the effectiveness of passive and
semi-active TMDs for vibration reduction. Depending on the test case, base rotation was
reduced by up to 18% and the STMD was up to 8% more effective. This case study
showed the structural model to be effective for hybrid simulation-like applications.

The most notable contribution of this study beyond its use in this thesis was the identifica-
tion and quantification of the three-term damping model for the rotating turbine base. Aeroe-
lastic wind tunnel models are often quite sensitive, and thus there is a real risk of additional,
unintentional vibration suppression creeping into the system due to a number of sources of
aerodynamic or friction damping. The ability to analyze a free-vibration curve that is not cap-
tured by a traditional linear model and identify the additional sources of damping is useful for
troubleshooting and processing results.

8.1.6 Chapter 7: Development of a novel hybrid simulation framework
employing a CFD-based surrogate model to study a semi-actively
damped wind turbine

This study details the development of CFD-based surrogate aerodynamic wind turbine blade
model, which was then employed in a novel HS framework replacing the existing technique
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of pre-calculating aerodynamic loads. Development of the surrogate model consisted of val-
idating the CFD parameters, performing 24 URANS CFD simulations, and training a CNN
on the resulting data. Twelve artificial HS were then performed using both the proposed sur-
rogate model-based framework as well as pre-calculated aerodynamic loads generated using
OpenFAST; the structure for these simulations was a residential wind turbine with aeroelastic
rotating base equipped with a STMD. This study came to the following conclusions:

• The single-blade validation CFD simulations as well as the main full-rotor simulations
showed an improvement in thrust and torque prediction against experimental data when
compared to BEM-based data. This supports the improvement offered by a HS frame-
work incorporating a CFD-level aerodynamic model.

• By extracting the wind speed and aerodynamic loads from a series of CFD simulations,
a set of training data could be generated for the NN. The trained CNN had an internal
accuracy of 98% despite the relatively small amount of training data.

• As with the CFD simulations, the thrust time histories from the AHS employing the sur-
rogate model predicted rotor thrusts that more closely matched the expected experimental
values compared to the BEM-based pre-calculated aerodynamic loads.

• The different levels of aeroelastic fidelity of the pre-calculated wind loads only resulted in
a noticeable difference in response at the high TSR case where displacements were great-
est – understandably, when base rotations are low, ignoring them in the pre-calculation
model was less impactful.

• This application of the novel HS framework using a NN-based, CFD-trained surrogate
model was not without its limitations, and while the amount of improvement offered
by the technique cannot be directly quantified, this study clearly showed the feasibility
of such a technique, identified a number of results that support the possible advantages
of this technique, and laid out how this framework can be modified in future testing to
maximize its potential.

The most notable contribution of this study was plainly the presentation of the novel HS
framework incorporating the CFD-based surrogate model. The methodology of the develop-
ment of the surrogate model was clearly laid out for readers, and the results of the AHS showed
the feasibility of this technique as well as indicate its possible ability to surpass the existing
technique of pre-calculating aerodynamic loads in both accuracy of aerodynamic simulation as
well as in aeroelastic fidelity. This framework is a promising tool for future HS of wind-loaded
structure and warrants future study.

8.2 Observations supporting the effectiveness of the proposed
framework

Given that the proposed framework is the major contribution of the overarching research pre-
sented in this thesis, its achievements should be highlighted. Observations from all chapters
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indicating the effectiveness of the proposed HS framework that employs a CFD-trained surro-
gate aerodynamic model are collected here:

• The literature review presented in Chapter 2 reported previous findings that the sim-
plified aerodynamic models (BEM, XFOIL, etc.) commonly employed to generate pre-
calculated load time histories often introduce errors of ≥10% compared to CFD simu-
lations. The simulations of the NACA 0012 airfoil in Chapter 3 showed that the stall-
induced drag predicted by fine-meshed, unsteady CFD simulations was significantly im-
proved compared to XFOIL as well as coarser, simpler CFD simulations. The single-
blade and full-rotor CFD simulations of the 1.1 m residential wind turbine rotor in Chap-
ter 7 were both shown to match experimental results better than equivalent BEM sim-
ulations. The proposed framework enables CFD-level results to be introduced into a
real-time HS given the development of a well-trained surrogate model.

• The numerical study detailed in Section 2.8 compared the errors introduced by limiting
the aeroelastic fidelity of turbine blades in numerical simulations, finding that differences
of up to 70% were seen between the low- and high-fidelity models. A similar comparison
of the fidelity of the numerical models used to pre-calculated rotor thrust for the AHS in
Chapter 7 identified differences of up to 10% between the low- and high-fidelity models.
By performing the aerodynamic calculations during the HS, the proposed framework
enables aeroelastic fidelity that can not be matched by pre-calculated loads.

• A robust CNN-based surrogate aerodynamic model of a 5 MW wind turbine blade was
trained on a large body of BEM-generated data in Chapter 4. It was able to achieve an
internal accuracy of 99%. A similar architecture was applied for the surrogate aerody-
namic model in Chapter 7, however due to the lower size and variety of the data set, this
model was comparatively less robust. The surrogate model in the proposed framework is
thus shown to be capable of accurately estimating the aerodynamic results, but the train-
ing data must be carefully curated such that a sufficient variety and quantity of results
are provided to the NN.

• The results of the dynamic simulations of wind turbines equipped with STMDs show
that the effectiveness these systems is strongly tied to the aerodynamic loads applied on
the turbine tower as a result of the tuned nature of the STMDs. This was shown by
the differing reductions in vibration caused by the STMD across the different loading
types in Chapter 5, as well as the different operational conditions in the case study in
Section 6.4 and the AHS in Chapter 7. As a result, as the proposed framework should
be capable of more accurately predicting the aerodynamic loads in such a test, its use is
recommended.

• While the proposed HS framework as it was applied in Chapter 7 had limited robustness,
within its area of effectiveness it was capable of improved thrust prediction compared to
the existing, pre-calculated framework. The feasibility of the framework was also clearly
shown: the surrogate model was capable of being integrated into an artificial HS environ-
ment while meeting the upper-limit timing requirements, and could be further quickened
using different hardware, parallelization, changing programming environments, etc.
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Overall, the proposed HS framework that incorporates a CNN-based, CFD-trained surro-
gate model for in-the-loop aerodynamic calculations was shown to be feasible to implement,
thoroughly supported by theory, and had a number of positive indicators of its effectiveness as
it was applied in this thesis.

8.3 Future research directions

The proposed HS framework could be applied in a host of future wind turbine tests, as well
as for studying other wind-loaded structures. Due to the limitations in the existing technique
of pre-calculating aerodynamic loads, HS of wind turbines has been relatively rare, but the
proposed framework is designed to address those limitations to enable more and new types
of testing. This includes test cases such as offshore turbines, multi-hazard loading, damping
systems, and member failure.

The studies presented in this thesis are not without flaws, and future research based on
these studies would be well-served to note and improve upon the identified limitations. The
most noteworthy examples include:

• The quality and amount of the CFD simulations performed in Chapters 3 and 7 were of-
ten restrained due to limited computational resources, further exasperated by the number
of required simulations. The 3D CFD simulations presented in Section 3.3.4, particu-
larly the more-demanding LES simulations, were limited to shorter unsteady simulation
lengths as well as lower density meshes; being forced to used a coarser mesh than the op-
timal found in the mesh sensitivity study in Section 3.3.2. One example of the effects of
coarser meshes on turbine blade simulations is to reduce the curvature of the windward
edge, resulting in airfoils with semi-sharp geometry that are at risk of changing the flow
attachment behaviour. The effect of the limited number of CFD simulations performed in
Chapter 7 are detailed in Section 7.4.4, resulting in a less robust surrogate model. Future
simulations must account for the fine meshing requirements of full-scale and near-full-
scale turbine blade simulations, either by acquiring greater computational resources or
by reducing computational demand; such as by reducing the number of planned tests,
testing a smaller rotor, or finding ways to perform single-blade simulations instead of
modelling the full rotor. These simplifications would help ensure that each test is of
maximal quality.

• The numerical approximation of the 1.1 m residential wind turbine blade used in both
Chapters 6 and 7 is limited in that it is truly an approximation, not a recreation, of the
real turbine blade. BEM-based simulations of the approximation approach the exper-
imental behaviour of the true turbine blade, but not overly so. The CFD simulations
using the same approximation match the experimental results somewhat more closely,
but ultimately the approximation is not a perfect recreation of the test turbine blade. Fu-
ture simulations of this type should either use manufacturer specifications of the blade
shape, an open-source blade design, or perform a 3D scan of the turbine blade to create
a perfect digital recreation.
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• The proposed framework incorporates two upgrades over the existing HS method. The
first is the change from lower-accuracy numerical models to CFD-level data, while the
second is the change from pre-calculated aerodynamic loads to performing the calcu-
lation within the HS loop. It may be worthwhile to investigate the effect of each of
these improvements separately to increase understanding and the potential usability of
the proposed framework.

• The limitations in the proposed framework as it was applied in Chapter 7 and the resulting
suggested improvements were well-documented in Section 7.4.4. However, ultimately
its advantages or disadvantages compared to the pre-calculated framework could not be
quantified due to the lack of a baseline simulation to compare against. The aeroelastic
wind tunnel testing presented in Chapter 6 was intended to fill this role but ultimately
was not able to be replicated in AHS form due to the lack of an external damping system.
Future validation of the proposed framework would be well-served to ensure there exist
baseline results to compare against for explicit confirmation of the improvements offered.

• Another notable limitation in the application of the proposed framework that warrants
further study is the lack of true HS used to test it. Due to time and travel limitations
partially due to the recent pandemic, performing a true HS was ultimately an infeasible
option – as discussed in Chapter 2, such testing requires specific equipment that was not
available at Western University. A decent approximation has been provided through the
artificial HS performed in Chapter 7, however the quality of the validation as well as the
novelty of this research would have been greater with a true HS.

With regards to applying the proposed framework in future wind turbine tests, in the au-
thor’s opinion the two most promising avenues are:

1. Failure testing of rotor blades in high-intensity wind events: It has been observed
that when turbines have been subjected to high-intensity winds (such as from hurricanes
or typhoons) to the point of member failure, it typically manifests as either blade failure
or tower failure; if the blades fail, the tower will typically remain undamaged as the drag
loads on the turbine are reduced significantly without the blades. Therefore, HS could
be used to design blades that intentionally fail before the tower which could be used to
protect the expensive nacelle and tower at the cost of the comparatively cheaper blades,
reducing the costs of typhoon- and hurricane-induced damages to wind farms. HS has
been shown to be an optimal technique for member failure studies under earthquake load-
ing and the proposed framework could enable applying this technique to wind-loaded
structures.

2. Studies of damping systems to mitigate fatigue loading under operational condi-
tions: The most obvious method to reduce the costs of wind turbine adoption is to in-
crease their fatigue-limited service life. External damping systems such as TMDs could
be used to reduce the magnitude of operational vibrations and, as a result, reduce the
overall fatigue loading. This would represent a quantitative reliability improvement for
these crucial structures. HS has been shown to be an effective technique for studying
complex, non-linear dampers, which are likely the best option here given the unique
loading directions and space requirements for blade- and nacelle-mounted dampers.
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Additionally, these proposed research avenues only just scratch the surface of the possibilities
that hybrid simulation offers for the field of wind engineering, now that a novel framework that
incorporates a CNN-based, CFD-trained surrogate aerodynamic model has been designed to
circumvent the limitations that have historically held back hybrid simulations of wind-loaded
structures.
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Appendix A

CFD data set sample for NN
development

The following tables present a sample of the recorded CFD data that is provided to the CNN
for training and testing. The CFD simulations that generated this data, including modifications
from the raw data to the processed data reported here, were presented in Section 7.3.5. This
data was used to train the surrogate aerodynamic model, as discussed in Section 7.3.6. The full
table was supplied in the first data configuration listed in Table 7.12, while the smaller, more
effective configuration only supplied columns 49-64 as the inputs and output data. The full 64
columns are provided to the MATLAB code in Appendix B regardless of data configuration,
the removal of columns is performed within the code.

After processing, one set of data was assembled for each blade at each base rotation and
wind condition. With three blades, eight base rotations, and three wind conditions, 72 data sets
were assembled consisting of 500 time steps each. The six tables presented here list a sample
of the first 50 rows of the Blade 1 data from the 0.00 rad base rotation, 3.63 m/s wind speed,
and 0.95 TSR time history. Blade 1, 2 and 3 are identified in Figure A.1. Each set of data
is made of 64 columns of input/outputs, including 60 wind speed measurements. The nodes
where these speeds were recorded are identified by their upwind distance (x) from the rotor
plane and rotational distance (r) from the rotor axis, both of which are reported as a function
of the blade length (R).

The six tables only report 0.14% of the total supplied to the NN. A .csv collection of this
entire data set can be found at https://github.com/elalond3/Lalonde-thesis-CNN-
AHS.git.
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Figure A.1: Blade identification
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s)
x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R
r=0.00 r=0.09R r=0.18R r=0.27R r=0.36R r=0.46R r=0.55R r=0.64R r=0.73R r=0.82R r=0.91R r=1.0R

2.341 3.007 3.188 3.252 3.250 3.252 3.260 3.263 3.292 3.325 3.380 3.462
2.345 3.013 3.196 3.260 3.255 3.254 3.261 3.262 3.287 3.318 3.372 3.456
2.342 3.010 3.193 3.257 3.252 3.251 3.261 3.266 3.292 3.321 3.375 3.457
2.344 3.010 3.192 3.256 3.249 3.248 3.260 3.266 3.291 3.319 3.373 3.456
2.343 3.008 3.189 3.252 3.246 3.246 3.261 3.268 3.292 3.319 3.374 3.456
2.341 3.003 3.183 3.245 3.240 3.244 3.261 3.271 3.294 3.323 3.378 3.460
2.342 3.002 3.181 3.243 3.239 3.245 3.263 3.270 3.290 3.318 3.373 3.457
2.341 3.001 3.179 3.243 3.243 3.252 3.271 3.270 3.285 3.309 3.362 3.447
2.342 2.999 3.174 3.237 3.239 3.251 3.271 3.270 3.285 3.308 3.362 3.446
2.344 3.000 3.173 3.237 3.240 3.254 3.272 3.268 3.281 3.305 3.358 3.444
2.347 3.003 3.175 3.238 3.241 3.256 3.273 3.266 3.280 3.304 3.358 3.442
2.347 3.003 3.175 3.239 3.244 3.259 3.274 3.267 3.281 3.306 3.359 3.443
2.347 3.006 3.177 3.240 3.246 3.260 3.274 3.266 3.281 3.307 3.359 3.443
2.343 3.002 3.176 3.240 3.248 3.261 3.275 3.270 3.287 3.314 3.365 3.446
2.345 3.006 3.181 3.245 3.251 3.261 3.272 3.266 3.286 3.314 3.366 3.448
2.345 3.008 3.186 3.250 3.255 3.262 3.271 3.267 3.288 3.317 3.368 3.450
2.347 3.013 3.193 3.257 3.259 3.263 3.269 3.264 3.286 3.315 3.367 3.449
2.346 3.013 3.196 3.261 3.260 3.262 3.267 3.265 3.288 3.317 3.368 3.451
2.349 3.017 3.200 3.264 3.260 3.258 3.263 3.261 3.284 3.314 3.366 3.450
2.344 3.012 3.196 3.260 3.256 3.255 3.263 3.265 3.290 3.319 3.371 3.453
2.344 3.011 3.194 3.257 3.252 3.251 3.262 3.266 3.290 3.319 3.372 3.454
2.343 3.008 3.190 3.253 3.247 3.249 3.263 3.269 3.292 3.320 3.373 3.455
2.343 3.007 3.188 3.251 3.245 3.249 3.265 3.270 3.293 3.321 3.374 3.455
2.342 3.003 3.182 3.245 3.240 3.247 3.266 3.272 3.293 3.321 3.374 3.456
2.344 3.004 3.181 3.243 3.240 3.249 3.268 3.270 3.289 3.315 3.368 3.453
2.344 3.002 3.177 3.239 3.238 3.250 3.270 3.271 3.288 3.314 3.369 3.453
2.344 3.001 3.174 3.237 3.238 3.251 3.272 3.272 3.288 3.315 3.369 3.454
2.348 3.005 3.177 3.240 3.242 3.256 3.274 3.270 3.285 3.310 3.364 3.449
2.347 3.004 3.176 3.241 3.244 3.259 3.276 3.270 3.286 3.312 3.366 3.450
2.349 3.007 3.179 3.244 3.248 3.261 3.276 3.269 3.285 3.313 3.366 3.450
2.349 3.010 3.183 3.248 3.252 3.263 3.275 3.268 3.285 3.314 3.367 3.450
2.347 3.008 3.183 3.249 3.253 3.263 3.273 3.269 3.290 3.320 3.374 3.455
2.348 3.012 3.189 3.254 3.257 3.262 3.270 3.266 3.289 3.321 3.375 3.457
2.348 3.014 3.195 3.259 3.260 3.263 3.268 3.266 3.291 3.322 3.376 3.457
2.351 3.020 3.202 3.266 3.264 3.263 3.267 3.264 3.289 3.320 3.373 3.457
2.348 3.018 3.201 3.265 3.263 3.261 3.266 3.267 3.292 3.322 3.375 3.458
2.347 3.017 3.200 3.263 3.259 3.257 3.264 3.267 3.292 3.321 3.375 3.458
2.343 3.011 3.193 3.257 3.253 3.252 3.263 3.269 3.295 3.324 3.378 3.460
2.343 3.008 3.189 3.252 3.248 3.248 3.262 3.270 3.295 3.324 3.379 3.461
2.337 2.999 3.179 3.242 3.241 3.245 3.263 3.274 3.298 3.328 3.383 3.464
2.339 2.999 3.176 3.238 3.236 3.243 3.264 3.273 3.296 3.326 3.381 3.463
2.337 2.994 3.169 3.230 3.231 3.243 3.266 3.275 3.298 3.327 3.383 3.464
2.336 2.990 3.162 3.223 3.227 3.241 3.266 3.275 3.297 3.327 3.383 3.464
2.331 2.983 3.153 3.216 3.222 3.241 3.268 3.278 3.300 3.331 3.386 3.466
2.331 2.982 3.151 3.213 3.222 3.242 3.268 3.276 3.298 3.330 3.386 3.467
2.331 2.981 3.150 3.213 3.223 3.245 3.270 3.276 3.299 3.331 3.386 3.468
2.335 2.987 3.156 3.219 3.229 3.249 3.272 3.273 3.295 3.327 3.382 3.465
2.332 2.985 3.156 3.220 3.231 3.251 3.272 3.274 3.299 3.331 3.385 3.467
2.333 2.989 3.161 3.225 3.234 3.251 3.269 3.272 3.297 3.331 3.385 3.467
2.333 2.990 3.164 3.228 3.237 3.251 3.267 3.270 3.297 3.331 3.386 3.469

Table A.1: Columns 1-12 of processed CFD data sample extracted from Blade 1 in the 0.00 rad
base rotation, 3.63 m/s mean wind speed, and 0.95 TSR conditions
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C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24

U j (m/s) U j (m/s) U j (m/s) U j (m/s) U j (m/s) U j (m/s) U j (m/s) U j (m/s) U j (m/s) U j (m/s) U j (m/s) U j (m/s)
x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R
r=0.00 r=0.09R r=0.18R r=0.27R r=0.36R r=0.46R r=0.55R r=0.64R r=0.73R r=0.82R r=0.91R r=1.0R

0.008 0.298 0.229 0.138 0.107 0.103 0.108 0.125 0.140 0.159 0.182 0.191
0.009 0.303 0.235 0.146 0.117 0.115 0.123 0.138 0.149 0.165 0.187 0.195
0.006 0.300 0.231 0.138 0.108 0.106 0.116 0.131 0.143 0.161 0.185 0.193
0.002 0.299 0.231 0.139 0.110 0.109 0.119 0.133 0.143 0.161 0.185 0.194
-0.004 0.294 0.226 0.134 0.106 0.107 0.117 0.129 0.140 0.160 0.184 0.194
-0.009 0.289 0.220 0.128 0.099 0.100 0.108 0.119 0.131 0.155 0.181 0.193
-0.010 0.290 0.225 0.137 0.112 0.115 0.119 0.127 0.137 0.159 0.185 0.195
-0.009 0.295 0.233 0.152 0.135 0.140 0.144 0.146 0.154 0.171 0.194 0.201
-0.016 0.286 0.223 0.141 0.124 0.128 0.131 0.134 0.143 0.164 0.189 0.198
-0.017 0.286 0.225 0.147 0.131 0.133 0.133 0.134 0.143 0.164 0.188 0.196
-0.019 0.283 0.222 0.145 0.130 0.130 0.128 0.131 0.142 0.163 0.187 0.196
-0.016 0.283 0.221 0.143 0.126 0.123 0.120 0.124 0.137 0.159 0.184 0.193
-0.013 0.284 0.222 0.142 0.124 0.119 0.115 0.121 0.135 0.158 0.183 0.193
-0.008 0.285 0.219 0.135 0.112 0.104 0.100 0.108 0.125 0.150 0.177 0.190
-0.004 0.288 0.221 0.135 0.109 0.101 0.098 0.109 0.126 0.150 0.177 0.189
0.002 0.292 0.223 0.132 0.103 0.094 0.093 0.107 0.125 0.149 0.175 0.187
0.005 0.295 0.225 0.133 0.102 0.093 0.095 0.110 0.127 0.149 0.175 0.187
0.009 0.297 0.226 0.131 0.097 0.089 0.093 0.109 0.126 0.148 0.174 0.186
0.006 0.298 0.228 0.133 0.100 0.094 0.100 0.116 0.130 0.151 0.176 0.186
0.006 0.297 0.226 0.129 0.095 0.090 0.098 0.114 0.128 0.150 0.175 0.186
0.002 0.296 0.225 0.130 0.097 0.095 0.103 0.117 0.130 0.152 0.178 0.188
-0.003 0.293 0.223 0.128 0.098 0.097 0.106 0.118 0.130 0.152 0.178 0.189
-0.007 0.291 0.222 0.129 0.101 0.101 0.108 0.119 0.130 0.153 0.179 0.190
-0.014 0.286 0.217 0.127 0.102 0.103 0.109 0.117 0.129 0.152 0.179 0.190
-0.016 0.285 0.219 0.133 0.113 0.116 0.121 0.126 0.136 0.157 0.183 0.192
-0.020 0.281 0.216 0.132 0.114 0.116 0.119 0.122 0.133 0.156 0.182 0.192
-0.022 0.279 0.215 0.132 0.114 0.116 0.115 0.119 0.131 0.156 0.182 0.192
-0.021 0.279 0.217 0.138 0.123 0.125 0.124 0.127 0.140 0.162 0.188 0.196
-0.019 0.279 0.216 0.136 0.119 0.117 0.115 0.119 0.134 0.158 0.184 0.193
-0.015 0.281 0.218 0.137 0.118 0.115 0.111 0.117 0.133 0.157 0.183 0.193
-0.010 0.285 0.220 0.138 0.117 0.111 0.107 0.115 0.132 0.156 0.182 0.192
-0.004 0.288 0.220 0.133 0.106 0.096 0.092 0.102 0.121 0.148 0.175 0.187
0.001 0.291 0.222 0.133 0.104 0.095 0.093 0.106 0.125 0.149 0.176 0.188
0.007 0.296 0.225 0.132 0.100 0.090 0.091 0.107 0.125 0.148 0.175 0.187
0.008 0.298 0.228 0.135 0.103 0.095 0.099 0.114 0.130 0.152 0.178 0.188
0.009 0.299 0.228 0.132 0.098 0.091 0.097 0.113 0.128 0.150 0.176 0.188
0.007 0.299 0.228 0.132 0.098 0.093 0.101 0.116 0.130 0.151 0.178 0.189
0.005 0.298 0.226 0.129 0.095 0.091 0.099 0.114 0.127 0.149 0.177 0.188
-0.001 0.295 0.225 0.130 0.097 0.095 0.104 0.116 0.128 0.151 0.178 0.189
-0.004 0.291 0.221 0.124 0.092 0.091 0.099 0.110 0.123 0.147 0.175 0.187
-0.010 0.288 0.220 0.127 0.099 0.100 0.106 0.115 0.127 0.150 0.176 0.187
-0.014 0.284 0.216 0.126 0.101 0.101 0.106 0.113 0.125 0.149 0.175 0.186
-0.019 0.280 0.213 0.127 0.104 0.105 0.107 0.113 0.126 0.150 0.176 0.187
-0.020 0.276 0.210 0.124 0.101 0.100 0.101 0.107 0.121 0.146 0.173 0.185
-0.021 0.275 0.210 0.127 0.106 0.104 0.102 0.107 0.122 0.148 0.174 0.185
-0.020 0.275 0.210 0.127 0.106 0.103 0.100 0.106 0.122 0.147 0.173 0.184
-0.018 0.278 0.214 0.134 0.116 0.113 0.109 0.114 0.129 0.152 0.177 0.185
-0.013 0.279 0.214 0.132 0.111 0.105 0.101 0.109 0.126 0.150 0.175 0.184
-0.009 0.284 0.219 0.136 0.113 0.105 0.102 0.112 0.129 0.152 0.177 0.186
-0.006 0.286 0.220 0.135 0.110 0.102 0.102 0.112 0.129 0.152 0.176 0.184

Table A.2: Columns 13-24 of processed CFD data sample extracted from Blade 1 in the
0.00 rad base rotation, 3.63 m/s mean wind speed, and 0.95 TSR conditions
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C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36

Uk (m/s) Uk (m/s) Uk (m/s) Uk (m/s) Uk (m/s) Uk (m/s) Uk (m/s) Uk (m/s) Uk (m/s) Uk (m/s) Uk (m/s) Uk (m/s)
x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R x=-0.2R
r=0.00 r=0.09R r=0.18R r=0.27R r=0.36R r=0.46R r=0.55R r=0.64R r=0.73R r=0.82R r=0.91R r=1.0R

0.000 0.046 0.011 0.026 0.029 0.040 0.041 0.055 0.044 0.044 0.032 0.025
-0.006 0.040 0.006 0.023 0.029 0.042 0.045 0.060 0.051 0.052 0.038 0.032
-0.008 0.040 0.007 0.025 0.031 0.043 0.043 0.055 0.044 0.047 0.035 0.029
-0.011 0.039 0.008 0.028 0.035 0.047 0.045 0.055 0.045 0.048 0.036 0.029
-0.010 0.042 0.012 0.033 0.039 0.049 0.044 0.053 0.043 0.047 0.036 0.028
-0.007 0.048 0.020 0.041 0.046 0.053 0.043 0.049 0.038 0.042 0.033 0.024
-0.013 0.045 0.019 0.043 0.050 0.056 0.046 0.053 0.043 0.047 0.036 0.028
-0.022 0.037 0.012 0.038 0.048 0.055 0.048 0.059 0.054 0.059 0.047 0.041
-0.009 0.049 0.024 0.046 0.051 0.054 0.043 0.053 0.047 0.053 0.041 0.035
-0.008 0.050 0.024 0.046 0.050 0.053 0.043 0.054 0.049 0.055 0.043 0.036
0.001 0.056 0.029 0.049 0.050 0.051 0.042 0.055 0.051 0.056 0.044 0.037
0.004 0.058 0.029 0.047 0.046 0.046 0.038 0.052 0.048 0.053 0.043 0.035
0.007 0.059 0.028 0.045 0.043 0.043 0.037 0.052 0.048 0.053 0.043 0.035
0.008 0.058 0.026 0.041 0.037 0.037 0.032 0.047 0.041 0.046 0.037 0.030
0.007 0.055 0.022 0.036 0.033 0.036 0.034 0.050 0.044 0.048 0.038 0.030
0.004 0.051 0.017 0.030 0.029 0.034 0.034 0.051 0.044 0.047 0.037 0.030
0.001 0.047 0.012 0.027 0.027 0.035 0.036 0.053 0.045 0.048 0.038 0.030
-0.003 0.043 0.008 0.024 0.025 0.036 0.037 0.053 0.044 0.047 0.037 0.030
-0.006 0.042 0.008 0.025 0.030 0.043 0.045 0.059 0.050 0.051 0.040 0.031
-0.008 0.041 0.008 0.027 0.032 0.045 0.044 0.056 0.045 0.047 0.037 0.028
-0.010 0.041 0.010 0.030 0.037 0.049 0.047 0.057 0.045 0.047 0.037 0.029
-0.011 0.042 0.013 0.035 0.042 0.053 0.048 0.056 0.045 0.047 0.036 0.029
-0.010 0.045 0.018 0.040 0.048 0.056 0.049 0.055 0.043 0.045 0.035 0.028
-0.008 0.049 0.023 0.046 0.053 0.059 0.049 0.054 0.043 0.045 0.034 0.027
-0.003 0.054 0.028 0.051 0.057 0.061 0.051 0.058 0.049 0.051 0.040 0.032
0.002 0.060 0.034 0.056 0.059 0.061 0.049 0.056 0.048 0.051 0.040 0.031
0.007 0.064 0.038 0.059 0.060 0.060 0.047 0.055 0.048 0.051 0.040 0.031
0.013 0.069 0.041 0.060 0.059 0.058 0.048 0.059 0.053 0.057 0.045 0.038
0.016 0.070 0.041 0.057 0.054 0.052 0.042 0.055 0.049 0.053 0.042 0.035
0.018 0.069 0.038 0.054 0.049 0.048 0.040 0.055 0.049 0.053 0.041 0.034
0.018 0.067 0.035 0.049 0.044 0.044 0.039 0.055 0.049 0.052 0.041 0.033
0.016 0.064 0.031 0.044 0.039 0.040 0.035 0.050 0.041 0.045 0.034 0.025
0.012 0.058 0.024 0.037 0.034 0.039 0.037 0.053 0.045 0.046 0.035 0.026
0.008 0.053 0.018 0.032 0.031 0.038 0.038 0.054 0.045 0.046 0.035 0.026
0.003 0.049 0.014 0.029 0.031 0.041 0.043 0.058 0.049 0.050 0.038 0.029
-0.001 0.045 0.011 0.027 0.030 0.041 0.042 0.056 0.045 0.047 0.037 0.028
-0.005 0.042 0.009 0.027 0.032 0.045 0.044 0.056 0.045 0.047 0.037 0.028
-0.008 0.042 0.010 0.030 0.036 0.048 0.045 0.055 0.044 0.046 0.036 0.027
-0.010 0.042 0.013 0.034 0.041 0.052 0.047 0.055 0.044 0.047 0.036 0.027
-0.009 0.044 0.016 0.038 0.045 0.052 0.044 0.051 0.040 0.043 0.033 0.024
-0.008 0.048 0.021 0.045 0.052 0.058 0.048 0.054 0.044 0.047 0.035 0.026
-0.004 0.052 0.027 0.051 0.056 0.059 0.047 0.052 0.042 0.045 0.034 0.025
0.000 0.058 0.033 0.056 0.060 0.061 0.047 0.052 0.043 0.046 0.034 0.025
0.005 0.061 0.037 0.058 0.060 0.058 0.043 0.049 0.039 0.042 0.031 0.023
0.009 0.065 0.039 0.059 0.060 0.057 0.043 0.051 0.042 0.044 0.032 0.024
0.013 0.067 0.040 0.058 0.057 0.054 0.041 0.050 0.042 0.044 0.032 0.024
0.014 0.066 0.037 0.055 0.054 0.053 0.044 0.055 0.048 0.050 0.037 0.028
0.014 0.064 0.034 0.049 0.046 0.046 0.039 0.052 0.044 0.046 0.035 0.027
0.012 0.061 0.029 0.043 0.041 0.043 0.039 0.053 0.045 0.047 0.035 0.026
0.010 0.057 0.024 0.038 0.036 0.041 0.039 0.054 0.046 0.048 0.036 0.026

Table A.3: Columns 25-36 of processed CFD data sample extracted from Blade 1 in the
0.00 rad base rotation, 3.63 m/s mean wind speed, and 0.95 TSR conditions
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C37 C38 C39 C40 C41 C42 C43 C44 C45 C46 C47 C48

Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s)
x=-0.5R x=-0.5R x=-0.5R x=-0.5R x=-0.5R x=-0.5R x=-0.5R x=-0.5R x=-0.5R x=-0.5R x=-0.5R x=-0.5R
r=0.00 r=0.09R r=0.18R r=0.27R r=0.36R r=0.46R r=0.55R r=0.64R r=0.73R r=0.82R r=0.91R r=1.0R

3.433 3.435 3.450 3.455 3.472 3.482 3.493 3.503 3.514 3.528 3.543 3.559
3.433 3.435 3.451 3.457 3.474 3.483 3.494 3.503 3.514 3.528 3.543 3.559
3.436 3.437 3.451 3.456 3.472 3.481 3.493 3.504 3.518 3.532 3.548 3.562
3.437 3.440 3.457 3.462 3.478 3.486 3.495 3.503 3.513 3.527 3.543 3.558
3.441 3.445 3.461 3.467 3.481 3.489 3.497 3.503 3.513 3.526 3.540 3.556
3.439 3.443 3.460 3.466 3.482 3.490 3.498 3.504 3.514 3.526 3.541 3.556
3.449 3.453 3.471 3.477 3.489 3.494 3.500 3.504 3.510 3.522 3.536 3.552
3.441 3.445 3.462 3.468 3.485 3.492 3.500 3.505 3.514 3.525 3.538 3.554
3.445 3.448 3.465 3.471 3.485 3.493 3.500 3.506 3.514 3.525 3.539 3.555
3.442 3.446 3.462 3.468 3.484 3.492 3.499 3.506 3.514 3.525 3.539 3.554
3.437 3.439 3.455 3.461 3.479 3.489 3.498 3.507 3.517 3.528 3.542 3.557
3.439 3.441 3.458 3.463 3.480 3.489 3.498 3.505 3.514 3.526 3.540 3.555
3.438 3.441 3.459 3.466 3.484 3.494 3.501 3.504 3.509 3.519 3.532 3.547
3.440 3.441 3.458 3.464 3.482 3.491 3.499 3.504 3.509 3.519 3.532 3.547
3.444 3.445 3.462 3.467 3.483 3.492 3.499 3.503 3.507 3.518 3.530 3.546
3.451 3.452 3.468 3.473 3.486 3.493 3.499 3.503 3.508 3.518 3.530 3.546
3.447 3.449 3.464 3.469 3.484 3.492 3.499 3.503 3.508 3.517 3.530 3.546
3.448 3.451 3.465 3.470 3.484 3.492 3.498 3.503 3.508 3.518 3.531 3.546
3.433 3.435 3.450 3.456 3.477 3.488 3.498 3.505 3.513 3.522 3.535 3.549
3.437 3.439 3.455 3.461 3.479 3.489 3.499 3.506 3.513 3.524 3.536 3.551
3.433 3.436 3.452 3.460 3.479 3.490 3.500 3.507 3.514 3.524 3.537 3.551
3.438 3.442 3.459 3.466 3.482 3.491 3.499 3.505 3.512 3.522 3.534 3.549
3.435 3.438 3.456 3.464 3.482 3.491 3.500 3.506 3.513 3.523 3.535 3.550
3.448 3.452 3.469 3.476 3.488 3.494 3.500 3.504 3.510 3.522 3.534 3.549
3.438 3.442 3.459 3.466 3.483 3.491 3.499 3.506 3.514 3.525 3.537 3.552
3.442 3.445 3.462 3.468 3.483 3.491 3.500 3.506 3.514 3.526 3.538 3.553
3.440 3.443 3.459 3.466 3.482 3.491 3.500 3.507 3.515 3.526 3.539 3.554
3.441 3.444 3.461 3.467 3.482 3.490 3.499 3.506 3.514 3.526 3.539 3.553
3.439 3.442 3.458 3.465 3.481 3.489 3.499 3.506 3.515 3.526 3.539 3.554
3.447 3.449 3.466 3.472 3.486 3.492 3.499 3.505 3.512 3.524 3.537 3.552
3.445 3.447 3.463 3.469 3.484 3.491 3.499 3.505 3.513 3.524 3.537 3.552
3.443 3.445 3.461 3.468 3.484 3.491 3.499 3.505 3.513 3.525 3.538 3.553
3.452 3.455 3.471 3.476 3.489 3.495 3.500 3.505 3.511 3.522 3.535 3.550
3.446 3.449 3.464 3.470 3.486 3.493 3.499 3.504 3.511 3.521 3.534 3.549
3.447 3.450 3.465 3.471 3.487 3.493 3.500 3.504 3.511 3.522 3.535 3.550
3.448 3.451 3.466 3.472 3.487 3.493 3.500 3.504 3.511 3.522 3.535 3.550
3.436 3.439 3.455 3.461 3.480 3.489 3.498 3.506 3.515 3.526 3.540 3.555
3.439 3.442 3.458 3.465 3.482 3.491 3.500 3.507 3.516 3.528 3.542 3.557
3.437 3.440 3.457 3.464 3.483 3.492 3.501 3.508 3.517 3.528 3.542 3.557
3.448 3.452 3.469 3.476 3.489 3.495 3.502 3.507 3.514 3.527 3.540 3.556
3.442 3.446 3.463 3.470 3.486 3.493 3.501 3.507 3.515 3.526 3.540 3.555
3.444 3.447 3.463 3.469 3.485 3.492 3.500 3.506 3.514 3.526 3.540 3.555
3.436 3.439 3.455 3.461 3.480 3.490 3.500 3.508 3.518 3.530 3.543 3.559
3.438 3.440 3.455 3.461 3.478 3.488 3.499 3.508 3.517 3.530 3.543 3.558
3.422 3.424 3.439 3.446 3.470 3.484 3.497 3.509 3.521 3.533 3.547 3.561
3.430 3.432 3.447 3.453 3.473 3.485 3.497 3.507 3.518 3.531 3.545 3.560
3.425 3.427 3.442 3.448 3.469 3.482 3.495 3.506 3.518 3.530 3.544 3.559
3.426 3.427 3.441 3.447 3.467 3.481 3.494 3.505 3.517 3.530 3.544 3.559
3.413 3.413 3.428 3.435 3.460 3.477 3.493 3.506 3.520 3.532 3.546 3.561
3.416 3.417 3.432 3.439 3.462 3.478 3.493 3.507 3.520 3.533 3.547 3.562

Table A.4: Columns 37-48 of processed CFD data sample extracted from Blade 1 in the
0.00 rad base rotation, 3.63 m/s mean wind speed, and 0.95 TSR conditions
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C49 C50 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60

Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s) Ui (m/s)
x=-1.0R x=-1.0R x=-1.0R x=-1.0R x=-1.0R x=-1.0R x=-1.0R x=-1.0R x=-1.0R x=-1.0R x=-1.0R x=-1.0R
r=0.00 r=0.09R r=0.18R r=0.27R r=0.36R r=0.46R r=0.55R r=0.64R r=0.73R r=0.82R r=0.91R r=1.0R

3.555 3.555 3.557 3.560 3.563 3.568 3.572 3.576 3.580 3.585 3.590 3.593
3.559 3.559 3.561 3.563 3.565 3.568 3.572 3.577 3.580 3.585 3.589 3.593
3.551 3.551 3.554 3.556 3.559 3.565 3.570 3.576 3.581 3.586 3.590 3.594
3.558 3.558 3.560 3.562 3.564 3.568 3.572 3.576 3.580 3.584 3.589 3.593
3.553 3.553 3.555 3.557 3.560 3.565 3.570 3.575 3.578 3.583 3.588 3.592
3.554 3.554 3.556 3.559 3.561 3.565 3.570 3.575 3.578 3.583 3.588 3.592
3.557 3.557 3.558 3.561 3.563 3.567 3.571 3.575 3.579 3.584 3.588 3.592
3.555 3.555 3.557 3.560 3.562 3.567 3.571 3.575 3.579 3.584 3.588 3.592
3.561 3.562 3.563 3.565 3.567 3.570 3.572 3.575 3.578 3.583 3.587 3.591
3.559 3.559 3.561 3.563 3.565 3.568 3.571 3.575 3.578 3.583 3.587 3.591
3.560 3.560 3.562 3.564 3.566 3.569 3.572 3.576 3.578 3.583 3.587 3.590
3.559 3.560 3.562 3.564 3.566 3.570 3.573 3.576 3.579 3.583 3.587 3.591
3.561 3.562 3.563 3.565 3.567 3.570 3.573 3.577 3.580 3.584 3.587 3.591
3.561 3.562 3.564 3.566 3.568 3.571 3.573 3.576 3.579 3.583 3.587 3.591
3.564 3.565 3.566 3.568 3.570 3.572 3.574 3.577 3.579 3.582 3.587 3.590
3.561 3.562 3.564 3.567 3.569 3.572 3.574 3.577 3.579 3.583 3.587 3.590
3.569 3.570 3.571 3.573 3.575 3.576 3.576 3.577 3.578 3.582 3.585 3.588
3.561 3.562 3.564 3.566 3.568 3.572 3.574 3.577 3.579 3.583 3.586 3.590
3.566 3.566 3.568 3.570 3.572 3.574 3.577 3.579 3.581 3.584 3.588 3.591
3.563 3.563 3.565 3.567 3.569 3.572 3.575 3.578 3.580 3.583 3.587 3.590
3.559 3.559 3.561 3.564 3.566 3.571 3.574 3.578 3.581 3.584 3.588 3.591
3.561 3.561 3.563 3.565 3.567 3.571 3.574 3.577 3.580 3.583 3.587 3.590
3.560 3.560 3.562 3.565 3.566 3.570 3.573 3.576 3.578 3.581 3.585 3.588
3.562 3.562 3.564 3.566 3.567 3.571 3.573 3.576 3.578 3.581 3.585 3.588
3.564 3.565 3.566 3.568 3.569 3.571 3.573 3.576 3.578 3.581 3.585 3.588
3.570 3.571 3.572 3.573 3.574 3.575 3.575 3.577 3.578 3.581 3.584 3.587
3.566 3.565 3.567 3.568 3.569 3.572 3.573 3.575 3.577 3.580 3.584 3.587
3.567 3.566 3.568 3.569 3.570 3.572 3.574 3.576 3.577 3.581 3.584 3.587
3.554 3.553 3.555 3.558 3.560 3.565 3.570 3.575 3.578 3.582 3.586 3.589
3.560 3.560 3.561 3.564 3.565 3.569 3.573 3.577 3.580 3.583 3.587 3.590
3.556 3.556 3.558 3.561 3.564 3.568 3.572 3.576 3.579 3.583 3.587 3.590
3.558 3.558 3.561 3.563 3.565 3.569 3.572 3.575 3.578 3.582 3.586 3.589
3.555 3.557 3.559 3.562 3.564 3.568 3.572 3.575 3.578 3.582 3.586 3.589
3.568 3.569 3.571 3.573 3.574 3.575 3.575 3.576 3.578 3.581 3.584 3.588
3.559 3.559 3.562 3.564 3.566 3.570 3.573 3.576 3.578 3.582 3.586 3.590
3.563 3.564 3.566 3.568 3.569 3.572 3.575 3.577 3.580 3.583 3.587 3.590
3.561 3.562 3.564 3.566 3.568 3.571 3.574 3.577 3.580 3.583 3.587 3.590
3.561 3.561 3.563 3.565 3.567 3.570 3.572 3.576 3.578 3.582 3.586 3.590
3.559 3.560 3.562 3.564 3.566 3.570 3.573 3.576 3.578 3.582 3.586 3.590
3.565 3.566 3.568 3.570 3.571 3.573 3.575 3.576 3.578 3.582 3.586 3.589
3.563 3.563 3.565 3.567 3.569 3.572 3.574 3.576 3.578 3.582 3.586 3.589
3.561 3.562 3.564 3.566 3.568 3.572 3.574 3.577 3.579 3.582 3.586 3.589
3.568 3.569 3.570 3.573 3.574 3.575 3.576 3.577 3.578 3.581 3.585 3.588
3.562 3.562 3.564 3.566 3.568 3.571 3.573 3.575 3.577 3.580 3.584 3.587
3.563 3.563 3.565 3.567 3.569 3.572 3.574 3.576 3.577 3.581 3.584 3.588
3.564 3.563 3.565 3.567 3.569 3.571 3.574 3.576 3.578 3.581 3.584 3.588
3.555 3.555 3.557 3.560 3.562 3.567 3.572 3.576 3.579 3.583 3.587 3.591
3.559 3.560 3.562 3.564 3.566 3.571 3.574 3.578 3.581 3.585 3.588 3.592
3.556 3.558 3.560 3.563 3.565 3.570 3.574 3.578 3.581 3.585 3.588 3.592
3.565 3.566 3.568 3.570 3.572 3.574 3.576 3.578 3.580 3.583 3.587 3.590

Table A.5: Columns 49-60 of processed CFD data sample extracted from Blade 1 in the
0.00 rad base rotation, 3.63 m/s mean wind speed, and 0.95 TSR conditions
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C61 C62 C63 C64

Rotor Base Blade Blade
speed rotation thrust torque
ω (rad/s) θ (rad) T (N) Q (Nm)

3.14 0.00 1.332 0.0694
3.14 0.00 1.350 0.0709
3.14 0.00 1.354 0.0700
3.14 0.00 1.369 0.0697
3.14 0.00 1.384 0.0659
3.14 0.00 1.399 0.0618
3.14 0.00 1.388 0.0572
3.14 0.00 1.379 0.0526
3.14 0.00 1.361 0.0510
3.14 0.00 1.349 0.0469
3.14 0.00 1.331 0.0469
3.14 0.00 1.314 0.0472
3.14 0.00 1.318 0.0513
3.14 0.00 1.316 0.0532
3.14 0.00 1.327 0.0596
3.14 0.00 1.337 0.0639
3.14 0.00 1.344 0.0672
3.14 0.00 1.331 0.0672
3.14 0.00 1.355 0.0706
3.14 0.00 1.355 0.0702
3.14 0.00 1.377 0.0699
3.14 0.00 1.387 0.0671
3.14 0.00 1.407 0.0660
3.14 0.00 1.402 0.0594
3.14 0.00 1.393 0.0538
3.14 0.00 1.377 0.0497
3.14 0.00 1.349 0.0478
3.14 0.00 1.343 0.0459
3.14 0.00 1.327 0.0476
3.14 0.00 1.317 0.0488
3.14 0.00 1.326 0.0550
3.14 0.00 1.333 0.0596
3.14 0.00 1.324 0.0617
3.14 0.00 1.351 0.0664
3.14 0.00 1.334 0.0676
3.14 0.00 1.361 0.0701
3.14 0.00 1.368 0.0716
3.14 0.00 1.382 0.0711
3.14 0.00 1.387 0.0705
3.14 0.00 1.414 0.0650
3.14 0.00 1.413 0.0597
3.14 0.00 1.414 0.0573
3.14 0.00 1.379 0.0495
3.14 0.00 1.355 0.0454
3.14 0.00 1.333 0.0450
3.14 0.00 1.318 0.0463
3.14 0.00 1.311 0.0490
3.14 0.00 1.298 0.0517
3.14 0.00 1.318 0.0581
3.14 0.00 1.328 0.0625

Table A.6: Columns 61-64 of processed CFD data sample extracted from Blade 1 in the
0.00 rad base rotation, 3.63 m/s mean wind speed, and 0.95 TSR conditions



Appendix B

MATLAB code for CNN
optimization and training

The following MATLAB code was used to train a surrogate aerodynamic model on CFD data
as detailed in Section 7.3.6. The surrogate model is a convolutional neural network (CNN)
that is optimized then full trained on the supplied data. This code requires MATLAB’s Deep
Learning Toolbox and was written using version R2019b. A copy of this .m file can be found at
https://github.com/elalond3/Lalonde-thesis-CNN-AHS.git. This code was origi-
nal written to provide 62 inputs per time step to the NN, however was updated to take less
using the col remove value – this aspect of the code could be made more efficient to reduce
computation time.

1 function surrogate NN cfd
2
3 %% SUMMARY ==================================================
4 % This code optimizes and trains a CNN on CFD data. This trained network relates the incoming wind
5 % speed and rotor speed to predict the thrust and torque on a 1.1 m residential turbine blade. This
6 % surrogate model will the be applied in artificial hybrid tests (run once per blade per time step)
7 % for quickly calculating aerodynamic blade loads based on the provided wind field during testing.
8 %
9 % This code is separated into the following sections:

10 % 1. Parameter input, which allows the users to specify all required parameters
11 % 2. Data importing, which imports the CFD data in tabular form
12 % 3. Data arrangement, which arranges the import data into the specific form required by
13 % trainNetwork and splits it into training, validation and testing sets
14 % 4. Data pre−processing, which normalizes and shuffles data, divides into inputs and outputs
15 % 5. Hyperparameter optimization, which performs two rounds of Bayesian optimization to
16 % optimize the network's hyperparameters, the bounds of which are defined in Section 1
17 % 6. Final training, which trains the optimized network on the full set of data
18 % 7. Network testing, which checks both the accuracy of the network compared to the testing data
19 % as well as quantifying the run time
20 % 8. Save results
21 %
22 % The CNN will relate 58 inputs per input time step to two outputs. These inputs are 33 along−wind
23 % wind speeds at 0.2R, 0.5R, and 1.0R upwind of the blade where R = 1.1 m = blade length; 11
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24 % across−wind and 11 vertical wind speeds at 0.2R; the rotor speed, the blade number, and the base
25 % rotation. These 58 data points will be input per time step input into the CNN (the exact number
26 % of which are a hyperparameter to optimize). The two outputs are the root thrust (along−wind force
27 % (N)) and torque (moment about rotor axis (Nm)) for the given time step.
28 % Data will be input as [t, Ux 0.2R, Uy 0.2R, Uz 0.2R, Ux 0.5R, Ux 1.0R, w, B, theta, T, Q] where t
29 % is time, w is the rotor speed, T is the thrust, Q is the torque. This data represents the time
30 % history of a single blade during a single simulation, thus each CFD simulation yielded three such
31 % time histories per wind speed/rotor speed configuration. Wind speeds are in m/s, rotor speed in
32 % rad/s, blade number is 1, 2 or 3, theta is in rad, thrust in N and torque in N/m.
33
34 clear
35 clc
36 %#ok<*NOPRT>
37
38 % Save output of command window to a log file
39 diary '⟨filepath⟩'
40
41 %% 1. PARAMETER INPUT ======================================
42
43 % Filepaths
44 filepath data='⟨filepath⟩';
45 filepath save='⟨filepath⟩';
46
47 % DATA CONFIGURATION: use 62 inputs or 14 inputs? Original code was designed to run with 62 inputs,
48 % but has been updated to allow for fewer. For 64 inputs col remove=0; for 14 inputs col remove=48
49 col remove=48; % number of leftmost columns to remove from input
50
51 % Static hyperparameter specification (conservative estimates made)
52 n bayopt evals1=80; % Number of Bayesian optimization evaluations in first round
53 n bayopt evals2=40; % Number of Bayesian optimization evaluations in second round
54 n epochs bayopt=50; % Number of epochs during optimization
55 n epochs final=5000; % Number of epochs during final training
56 init learn rate=0.001; % Initial learning rate
57 momentum=0.98; % Momentum
58
59 % Optimizable hyperparameter specifications
60 n hyppar=6; % Number of hyperparameters to investigate (must equal number of rows in
61 % hyppar table). hyppar = hyperparameters
62 hyppar names={'ConvolutionFilterSize'; 'NumberOfFilters'; ...
63 'NumberOfInputTimeSteps'; 'PoolingSize'; 'FirstFCLayerSize'; 'SecondFCLayerSize'};
64 % FC = fully−connected
65 hyppar range low= [ 1; 1; 11; 1; 10; 10];
66 hyppar range high=[ 10; 10; 30; 6; 1000; 1000]; % Initial high and low values for the respective
67 % hyperparameter, optimal value will be found between these
68 hyppar countstyle={'integer'; 'integer'; 'integer'; 'integer'; 'integer'; 'integer'};
69 % Hyperparameters can count uniformly, by integer, and logarithmically. Correct choice depends
70 % on type of hyperparameter. ALl here are integers, but for example learning rate would be
71 % counted logarithmically while momentum would use the default
72 hyppar secondround=[2; 4; 4; 2; 50; 50]; % Added/subtracted from optimal hyperparameter from round 1
73 % to determine ranges in round 2
74
75 hyppar table=table(hyppar names, hyppar range low, hyppar range high, ...
76 hyppar countstyle, hyppar secondround);
77 % Table collecting hyperparameter names and ranges. Each row corresponds to one hyperparameter
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78 %% 2. DATA IMPORTING =========================================
79
80 % Data files
81 n blades=3; % Number of turbine blades
82 n wind=3; % Number of wind speed/TSR configurations [3.63/0.95, 5.15/1.08, 5.15/4.98]
83 wind names={'363 095'; '515 108'; '515 498'}; % Wind names for file calling
84 n angles=8; % Number of base rotation angles [−0.01, 0.00, 0.01, 0.05, 0.10 ,0.15, 0.20, 0.25]
85 angle names={'N001'; 'P000'; 'P001'; 'P005'; 'P010'; 'P015'; 'P020'; 'P025'}; % Angle names
86 n data files total=n blades*n wind*n angles;
87 data file names=cell(n data files total,1); % Preallocate cell size to assign data file names
88
89 % Create file names
90 for i=1:n blades
91 for j=1:n wind
92 for k=1:n angles
93 % The name of each data file
94 data file names{(n angles*n wind)*(i−1)+n angles*(j−1)+k,1}=...
95 ['cfdresult ',angle names{k,1},' ',wind names{j,1},' blade',num2str(i),'.csv'];
96 end
97 end
98 end
99

100
101
102 % Import first data file
103 temp data=readtable([filepath data,data file names{1,1}]);
104 temp data=table2array(temp data); % Convert data imported as table into a matrix
105 [˜,n col]=size(temp data); % Count the number of columns
106 n col=n col−1; % Reduce by 1 as the time column will be removed from the saved data
107
108 % Extract time information
109 t=temp data(:,1); % Time history (s)
110 dt=t(2); % Time step (2)
111 n time=length(t); % Number of time steps
112 T=t(end,1); % Largest time step (s)
113
114 % File for data storage (3D matrix: rows=time, columns=input, depth=test case)
115 raw data=zeros(n time,n col,n data files total);
116
117 % Assign first data set to raw data matrix
118 raw data(:,:,1)=temp data(:,2:end);
119
120 % Assign remaining data
121 for i=2:n data files total
122 temp data=readtable([filepath data,data file names{i,1}]);
123 temp data=table2array(temp data);
124 raw data(:,:,i)=temp data(:,2:end);
125 end
126 clear temp data
127
128 % Remove unwanted data based on col remove
129 n col=n col−col remove;
130 raw data=raw data(:,(col remove+1):end,:);
131



252 Chapter B. MATLAB code for CNN optimization and training

132 %% 3. DATA ARRANGEMENT =======================================
133
134 % Normalize data to a possible range of [−1,1] and record the normalization factor (important). Data
135 % is normalized according to the training data but is applied to all data
136 norm factors=zeros(n col,1);
137 for i=n col
138 maximum=max(raw data(:,i,:),[],'all');
139 minimum=min(raw data(:,i,:),[],'all');
140 raw data(:,i,:)=raw data(:,i,:)/(maximum−minimum);
141 norm factors(i)=1/(maximum−minimum);
142 end
143
144
145 % Split data into Training (60%), Validation (20%), and Testing (20%) segments
146 % Since time step adjacency must be maintain, each TH will be split twice into 3 THs. This splitting
147 % is randomly done in one of six ways. Let Tr be training, V be validation, and Te be testing. For
148 % each TH, a random integer between 1 and 6 is chosen, and the TH is cut appropriately:
149 % If rand = 1, the TH is cut into Tr, V, Te
150 % If rand = 2, the TH is cut into Tr, Te, V
151 % If rand = 3, the TH is cut into V, Tr, Te
152 % If rand = 4, the TH is cut into V, Te, Tr
153 % If rand = 5, the TH is cut into Te, Tr, V
154 % If rand = 6, the TH is cut into Te, V, Tr
155 % The data histories (the stacking of the sheets in the 3D matrix) are then randomly shuffled
156
157 % Determine sizes of each split time history
158 n test=floor(0.2*n time); % Number of time steps in the testing segments
159 n val=n test; % Number of time steps in the validation segments
160 n train=n time−2*n test; % Number of time steps in the training segments
161
162 % Preallocate matrix sizes
163 data train=zeros(n train,n col,n data files total);
164 data val=zeros(n val,n col,n data files total);
165 data test=zeros(n test,n col,n data files total);
166
167 % Split up full data samples into training, validation, testing
168 for i=1:n data files total
169 rand num=randi(6); % Generate random integer to decide how data is split
170
171 if rand num==1
172 data train(:,:,i)=raw data(1:n train,:,i); % Split the time histories into three sections
173 data val(:,:,i)=raw data(n train+(1:n val),:,i);
174 data test(:,:,i)=raw data(n train+n val+(1:n test),:,i);
175
176 elseif rand num==2
177 data train(:,:,i)=raw data(1:n train,:,i);
178 data test(:,:,i)=raw data(n train+(1:n test),:,i);
179 data val(:,:,i)=raw data(n train+n test+(1:n val),:,i);
180
181 elseif rand num==3
182 data val(:,:,i)=raw data(1:n val,:,i);
183 data train(:,:,i)=raw data(n val+(1:n train),:,i);
184 data test(:,:,i)=raw data(n val+n train+(1:n test),:,i);
185
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186 elseif rand num==4
187 data val(:,:,i)=raw data(1:n val,:,i);
188 data test(:,:,i)=raw data(n val+(1:n test),:,i);
189 data train(:,:,i)=raw data(n val+n test+(1:n train),:,i);
190
191 elseif rand num==5
192 data test(:,:,i)=raw data(1:n test,:,i);
193 data train(:,:,i)=raw data(n test+(1:n train),:,i);
194 data val(:,:,i)=raw data(n test+n train+(1:n val),:,i);
195
196 elseif rand num==6
197 data test(:,:,i)=raw data(1:n test,:,i);
198 data val(:,:,i)=raw data(n test+(1:n val),:,i);
199 data train(:,:,i)=raw data(n test+n val+(1:n train),:,i);
200 end
201 end
202 clear raw data
203
204
205 % Shuffle 3D matrices: 3rd dimension is randomized, done independently for each data group
206 rand order=randperm(n data files total); % Generates random arrangement of integers from 1 to
207 % n data files total
208 data train=data train(:,:,rand order); % Randomize the stacking of the matrices in the training data
209 rand order=randperm(n data files total);
210 data val=data val(:,:,rand order);
211 rand order=randperm(n data files total);
212 data test=data test(:,:,rand order);
213
214
215 % Prepare to split into input and output data. Last two values are outputs (T and Q), rest are
216 % inputs
217 n inputs=n col−2;
218 n outputs=2;
219
220
221 % Define function to rearrange data into the form required by the image input layer in trainNetwork
222 % Can't be performed ahead of time due to window size being an optimizable hyperparameter, therefore
223 % will be run inside of optimization/training loops
224 function [input train, output train, input val, output val, input test, output test]=...
225 data rearranger(data train, data val, data test, windowsize)
226
227 % Initialize matrices
228 % Input into CNN as a number of 3D images (x,y,channels). Fourth dimension is the number of
229 % images, which is equal to n time−windowsize (as can't test until enough timesteps have passed
230 % that a full window can be filled) per data sample
231 n train images=(n train−windowsize+1)*n data files total;
232 n val images=(n val−windowsize+1)*n data files total;
233 n test images=(n test−windowsize+1)*n data files total;
234 input train=zeros(1, n inputs, windowsize, n train images);
235 input val=zeros(1, n inputs, windowsize, n val images);
236 input test=zeros(1, n inputs, windowsize, n test images);
237
238
239
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240 % Outputs are 2D matrix equal to number of images x number of outputs
241 output train=zeros(n train images, n outputs);
242 output val=zeros(n val images, n outputs);
243 output test=zeros(n test images, n outputs);
244
245
246 % Assign training data
247 for ii=1:n data files total
248 for jj=windowsize:n train
249 % Rearrangement is complex, but in broad strokes use reshape command to change
250 % time X input matrix into 1 X input X time matrix
251 input train(:,:,:,(n train−windowsize+1)*(ii−1)+(jj+1−windowsize))=...
252 reshape((data train((jj−windowsize+1):jj,1:n inputs,ii)'),1,n inputs,[]);
253
254 output train((n train−windowsize+1)*(ii−1)+(jj+1−windowsize),:)=...
255 data train(jj,(n inputs+1):end,ii);
256 end
257 end
258
259 % Shuffle training data so that adjacent time steps aren't next to each other in fourth
260 % dimension, while making sure that inputs and outputs remain aligned
261 rand order=randperm(n train images); % Generate random order
262 input train=input train(:,:,:,rand order); % Shuffle along fourth dimension
263 output train=output train(rand order,:); % Shuffle along first dimension
264
265
266 % Assign validation data
267 for ii=1:n data files total
268 for jj=windowsize:n val
269 % Rearrangement is complex, but in broad strokes use reshape command to change
270 % time X input matrix into 1 X input X time matrix
271 input val(:,:,:,(n val−windowsize+1)*(ii−1)+(jj+1−windowsize))=...
272 reshape((data val((jj−windowsize+1):jj,1:n inputs,ii)'),1,n inputs,[]);
273
274 output val((n val−windowsize+1)*(ii−1)+(jj+1−windowsize),:)=...
275 data val(jj,(n inputs+1):end,ii);
276 end
277 end
278
279 % Shuffle validation data so that adjacent time steps aren't next to each other in fourth
280 % dimension, while making sure that inputs and outputs remain aligned
281 rand order=randperm(n val images); % Generate random order
282 input val=input val(:,:,:,rand order); % Shuffle along fourth dimension
283 output val=output val(rand order,:); % Shuffle along first dimension
284
285
286
287
288
289
290
291
292
293
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294 % Assign testing data
295 for ii=1:n data files total
296 for jj=windowsize:n test
297 % Rearrangement is complex, but in broad strokes use reshape command to change
298 % time X input matrix into 1 X input X time matrix
299 input test(:,:,:,(n test−windowsize+1)*(ii−1)+(jj+1−windowsize))=...
300 reshape((data test((jj−windowsize+1):jj,1:n inputs,ii)'),1,n inputs,[]);
301
302 output test((n test−windowsize+1)*(ii−1)+(jj+1−windowsize),:)=...
303 data test(jj,(n inputs+1):end,ii);
304 end
305 end
306
307 % Shuffle testing data so that adjacent time steps aren't next to each other in fourth
308 % dimension, while making sure that inputs and outputs remain aligned
309 rand order=randperm(n test images); % Generate random order
310 input test=input test(:,:,:,rand order); % Shuffle along fourth dimension
311 output test=output test(rand order,:); % Shuffle along first dimension
312 end
313
314
315
316 %% 4. HYPERPARAMETER OPTIMIZATION ===========================
317
318 % Hyperparameter optimization is performed using Bayesian optimization. Firstly a function that
319 % trains a reduced network using a given set of hyperparameter values and evaluates the training must
320 % be developed. Then the Bayesian optimization program is run to estimate optimal parameter.
321 % Finally, the parameter ranges are reduced by the predicted optimal hyperparameters and a second
322 % round of Bayesian optimization is performed, where the predicted optimal hyperparameters are
323 % carried forward into the final simulation.
324
325 % Initialize neural network outside of a function
326 net = feedforwardnet(10);
327 % Initialize tracker, which helps track the progress of the program
328 tracker=0;
329
330 % Function for small set of training during hyperparameter optimization
331 function hyppar opt RMSE = hyppar opt(parameters)
332
333 % bayesopt function imports parameters as a table, convert it to a matrix
334 parameters=table2array(parameters);
335 cov filt size=parameters(1);
336 n filt=parameters(2);
337 windowsize=parameters(3);
338 pool size=parameters(4);
339 fully con size1=parameters(5);
340 fully con size2=parameters(6);
341
342 % The following value is the maximum possible size of the polling process (it pools the entire
343 % data set into a linear layer). If requested pool size exceeds this, must be reduced
344 max pool size=n inputs+1−cov filt size;
345 if max pool size<pool size
346 pool size=max pool size;
347 end
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348 % Arrange data based on windowsize using pre−defined program, testing data only needed for
349 % after the final training
350 [input train, output train, input val, output val, ˜, ˜]=...
351 data rearranger(data train, data val, data test, windowsize);
352
353 % Increment tracker and print progress
354 tracker=tracker+1;
355 ['Hyperparameter optimization: iteration ',num2str(tracker),...
356 ' of ', num2str(n bayopt evals1+n bayopt evals2),' (',num2str(n bayopt evals1),...
357 ' in first round)']
358
359 % Define the layers of the CNN
360 layers = [ ...
361 imageInputLayer([1,n inputs,windowsize])
362 convolution2dLayer([1,cov filt size],n filt,'NumChannels',windowsize)
363 batchNormalizationLayer % Recommended by documentation
364 tanhLayer
365 averagePooling2dLayer([1,pool size],'Stride',[1,1])
366 fullyConnectedLayer(fully con size1)
367 tanhLayer
368 fullyConnectedLayer(fully con size2)
369 tanhLayer
370 fullyConnectedLayer(n outputs)
371 regressionLayer];
372
373 % analyzeNetwork(layers) % Uncommented command will generate figure of neural network, useful
374 % for trouble shooting
375
376
377 % Since optimization is not occurring on full data set, will only supply a limited section of the
378 % (randomized) training and validation data. One sixth of training and one third of testing data
379 % will be supplied
380 n train images hypopt=floor((n train−windowsize+1)*n data files total/6);
381 n val images hypopt=floor((n val−windowsize+1)*n data files total/3);
382
383 % Define NN options
384 options = trainingOptions('sgdm', ...
385 'MaxEpochs', n epochs bayopt, ...
386 'InitialLearnRate',init learn rate, ...
387 'Verbose',true, ...
388 'VerboseFrequency',100, ...
389 'Momentum', momentum, ...
390 'Shuffle','never', ...
391 'LearnRateSchedule','piecewise', ...
392 'MiniBatchSize', 10, ...
393 'Plots','none', ...
394 'ValidationData', ...
395 {input val(:,:,:,1:n val images hypopt), output val(1:n val images hypopt,:)}, ...
396 'ValidationPatience', 5);
397
398 % Train small net
399 net = trainNetwork(input train(:,:,:,1:n train images hypopt),...
400 output train(1:n train images hypopt,:),layers,options);
401
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402 % Predict output of net
403 output val predicted = predict(net,input val(:,:,:,1:n val images hypopt));
404 output val true=output val(1:n val images hypopt,:);
405
406 % Calculate RMSE of net based on predicted versus true validation data outputs
407 hyppar opt RMSE=(output val true−output val predicted).ˆ2;
408 hyppar opt RMSE=sqrt(sum(hyppar opt RMSE,'all')/numel(hyppar opt RMSE));
409 end
410
411
412 % Assign previously−declared variables to optimize in first round of hyperparameter
413 optimVars = [
414 optimizableVariable(char(hyppar table{1,1}),[hyppar table{1,2},hyppar table{1,3}],...
415 'Type',char(hyppar table{1,4}))
416 optimizableVariable(char(hyppar table{2,1}),[hyppar table{2,2},hyppar table{2,3}],...
417 'Type',char(hyppar table{2,4}))
418 optimizableVariable(char(hyppar table{3,1}),[hyppar table{3,2},hyppar table{3,3}],...
419 'Type',char(hyppar table{3,4}))
420 optimizableVariable(char(hyppar table{4,1}),[hyppar table{4,2},hyppar table{4,3}],...
421 'Type',char(hyppar table{4,4}))
422 optimizableVariable(char(hyppar table{5,1}),[hyppar table{5,2},hyppar table{5,3}],...
423 'Type',char(hyppar table{5,4}))
424 optimizableVariable(char(hyppar table{6,1}),[hyppar table{6,2},hyppar table{6,3}],...
425 'Type',char(hyppar table{6,4}))];
426
427
428 % Run first round of hyperparameter optimization and track required time
429 tic
430 optimal hyperparameters = bayesopt(@hyppar opt,optimVars,'Verbose',1000,...
431 'MaxObjectiveEvaluations',n bayopt evals1,'UseParallel',false,'PlotFcn',[]);
432 toc
433
434 % Print out predicted hyperparameters
435 optimal hyperparameters.XAtMinObjective
436
437
438 % Update hyperparameter ranges for second round of testing, the ranges are selected as the minimum/
439 % maxmimum of the base starting values and the optimal value from round 1 plus/minus the second
440 % round range
441 optimVars = [
442 optimizableVariable(char(hyppar table{1,1}),...
443 [max([hyppar table{1,2},optimal hyperparameters.XAtMinObjective{1,1}−hyppar table{1,5}]),...
444 min([hyppar table{1,3},optimal hyperparameters.XAtMinObjective{1,1}+hyppar table{1,5}])],...
445 'Type',char(hyppar table{1,4}))
446 optimizableVariable(char(hyppar table{2,1}),...
447 [max([hyppar table{2,2},optimal hyperparameters.XAtMinObjective{1,2}−hyppar table{2,5}]),...
448 min([hyppar table{2,3},optimal hyperparameters.XAtMinObjective{1,2}+hyppar table{2,5}])],...
449 'Type',char(hyppar table{2,4}))
450 optimizableVariable(char(hyppar table{3,1}),...
451 [max([hyppar table{3,2},optimal hyperparameters.XAtMinObjective{1,3}−hyppar table{3,5}]),...
452 min([hyppar table{3,3},optimal hyperparameters.XAtMinObjective{1,3}+hyppar table{3,5}])],...
453 'Type',char(hyppar table{3,4}))
454
455
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456 optimizableVariable(char(hyppar table{4,1}),...
457 [max([hyppar table{4,2},optimal hyperparameters.XAtMinObjective{1,4}−hyppar table{4,5}]),...
458 min([hyppar table{4,3},optimal hyperparameters.XAtMinObjective{1,4}+hyppar table{4,5}])],...
459 'Type',char(hyppar table{4,4}))
460 optimizableVariable(char(hyppar table{5,1}),...
461 [max([hyppar table{5,2},optimal hyperparameters.XAtMinObjective{1,5}−hyppar table{5,5}]),...
462 min([hyppar table{5,3},optimal hyperparameters.XAtMinObjective{1,5}+hyppar table{5,5}])],...
463 'Type',char(hyppar table{5,4}))
464 optimizableVariable(char(hyppar table{6,1}),...
465 [max([hyppar table{6,2},optimal hyperparameters.XAtMinObjective{1,6}−hyppar table{6,5}]),...
466 min([hyppar table{6,3},optimal hyperparameters.XAtMinObjective{1,6}+hyppar table{6,5}])],...
467 'Type',char(hyppar table{6,4}))];
468
469 % Run second round of hyperparameter optimization and track required time
470 tic
471 optimal hyperparameters = bayesopt(@hyppar opt,optimVars,'Verbose',1000,...
472 'MaxObjectiveEvaluations',n bayopt evals2,'UseParallel',false,'PlotFcn',[]);
473 toc
474
475 % Print out optimal hyperparameters
476 optimal hyperparameters.XAtMinObjective
477
478
479
480 %% 5. FINAL TRAINING ==================================
481
482 % Assign optimized hyperparameters
483 parameters=table2array(optimal hyperparameters.XAtMinObjective);
484 cov filt size=parameters(1);
485 n filt=parameters(2);
486 windowsize=parameters(3);
487 pool size=parameters(4);
488 fully con size1=parameters(5);
489 fully con size2=parameters(6);
490
491 % Reduce pool size if required
492 max pool size=n inputs+1−cov filt size;
493 if max pool size<pool size
494 pool size=max pool size;
495 end
496
497 % Define the layers of the CNN
498 layers = [ imageInputLayer([1,n inputs,windowsize])
499 convolution2dLayer([1,cov filt size],n filt,'NumChannels',windowsize)
500 batchNormalizationLayer % Recommended by documentation
501 tanhLayer
502 averagePooling2dLayer([1,pool size],'Stride',[1,1])
503 fullyConnectedLayer(fully con size1)
504 tanhLayer
505 fullyConnectedLayer(fully con size2)
506 tanhLayer
507 fullyConnectedLayer(n outputs)
508 regressionLayer];
509
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510 % Arrange data based on windowsize using pre−defined program
511 [input train, output train, input val, output val, input test, output test]=...
512 data rearranger(data train, data val, data test, windowsize);
513
514 % Define NN options
515 options = trainingOptions('sgdm', ...
516 'MaxEpochs', n epochs final, ...
517 'InitialLearnRate',init learn rate, ...
518 'Verbose',true, ...
519 'VerboseFrequency',100, ...
520 'Momentum', momentum, ...
521 'Shuffle','never', ...
522 'LearnRateSchedule','piecewise', ...
523 'MiniBatchSize', 10, ...
524 'Plots','none', ...
525 'ValidationData', {input val, output val}, ...
526 'ValidationPatience', 5);
527
528 % Train the final network
529 net = trainNetwork(input train,output train,layers,options);
530
531
532
533
534 %% 6. NETWORK TESTING =====================================
535
536 % With network trained, the testing data must be fed into it and the predicted output compared to
537 % the true testing output data. The RMSE and NRMSE is calculated for both thrust and torque
538 % separately and as a whole
539
540 % Predict the output of the trained network when testing data offered as input:
541 output test predicted = predict(net,input test);
542
543 % Preallocate RMSE matrix. Row 1 is RMSE, row 2 is NRMSE, columns are equal to n outputs. Row 3 is
544 % the mean NRMSE across all outputs, so there is only one value in this row
545 RMSE results=zeros(3,n outputs);
546
547 % Calculate RMSE for each column of output data between predicted and true
548 for i=1:n outputs
549 % Get RMSE
550 RMSE calc temp=(output test(:,i)−output test predicted(:,i)).ˆ2;
551 RMSE results(1,i)=sqrt(sum(RMSE calc temp,'all')/numel(RMSE calc temp));
552
553 % Get NRMSE
554 RMSE results(2,i)=RMSE results(1,i)/...
555 (max(output test(:,i),[],'all')−min(output test(:,i),[],'all'));
556
557 % Un−normalize RMSE
558 RMSE results(1,i)=RMSE results(1,i)/norm factors(n col−n outputs+i);
559 end
560
561 % Find mean NRMSE
562 RMSE results(3,1)=mean(RMSE results(2,:));
563
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564 % Check testing speed. Program is run six times on single image inputs, first is discarded and other
565 % five are used to determine the average speed of a single step
566 for i=1:6
567 tic
568 temp = predict(net,input test(:,:,:,i));
569 toc
570 end
571
572
573
574 %% 7. SAVE RESULTS ===========================================
575
576 % Save the trained neural network with the normalization factors
577 save([filepath save,'trained NN.mat'],'net','norm factors');
578
579 % Optimal hyperparameter output is unnecessarily detailed, only need some specific information
580 optimal hyperparameters reduced={optimal hyperparameters.MinObjective; ...
581 optimal hyperparameters.XAtMinObjective; ...
582 optimal hyperparameters.MinEstimatedObjective; ...
583 optimal hyperparameters.XAtMinEstimatedObjective; ...
584 optimal hyperparameters.NumObjectiveEvaluations; ...
585 optimal hyperparameters.TotalElapsedTime; ...
586 optimal hyperparameters.ObjectiveMinimumTrace; ...
587 optimal hyperparameters.EstimatedObjectiveMinimumTrace};
588
589 % Save most of the results (input and output data will not be saved)
590 save([filepath save,'full results.mat'],'net','optimal hyperparameters reduced','RMSE results',...
591 'norm factors');
592
593 'PROGRAM COMPLETE'
594
595 % End command window logging
596 diary off
597
598 end



Appendix C

MATLAB code for artificial hybrid
simulations

The following MATLAB code was used to perform the artificial hybrid simulations. It re-
quires the three recalculated aerodynamic load time histories generated using OpenFAST as
described in Section 7.2.3 as well as the trained neural network developed in Section 7.3.6
using the code from Appendix B. The specific combination of aerodynamic model and wind
speed/TSR is set manually, this code does not have the functionality to automatically perform
all 12 simulations in a single run. Note that the original code was written to provide 62 in-
puts to network, but was updated to account for less using the col remove value – this aspect
of the code could be made more efficient to reduce computation time. These inputs cannot be
easily transcribed here, but they are supplied at https://github.com/elalond3/Lalonde-
thesis-CNN-AHS.git. The artificial hybrid simulation code requires no additional MATLAB
toolboxes and was written using version R2019b. A copy of this .m file can likewise be found
at the above link.

1 function Artificial turbine hybrid sim
2
3 %% Description
4 % This program will test the rotational residential wind turbine model dervied from aeroelastic wind
5 % tunnel testing equipped with a semi−active variable−damping TMD to three sets of wind loads using
6 % four different aerodynamic models: 1. FAST TH of a fixed turbine; 2. FAST TH of a rotational
7 % turbine; 3. FAST TH of a rotational turbine with PTMD; 4. CFD−based neural network. The results
8 % from these four sims will be compared
9

10 % The three wind speed cases are from my wind tunnel testing (3.63 m/s mean, 6.7% turbulence, 0.95
11 % TSR, 3.14 rad/s rotor speed); Kamran's testing (5.15 m/s mean, 10% turbulence, 1.08 TSR, 5.06
12 % rad/s rotor speed); and the recommended operational conditions of the wind turbine (9.00 m/s mean,
13 % 10% turbulence, 5.20 TSR, 42.54 rad/s rotor speed)
14
15 % Turbine model is approximated as a 1 DOF inverted pendulum. The weight of the turbine is simulated
16 % as a lumped mass at the end of the tower and the hub height wind speed loads both the lumped mass
17 % rotor and the tower. The lumped mass is also shifted forward by a value of d, this eccentricity is
18 % due to the fact that the COM of the turbine isn't over the tower center.
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19 % mr, Er, kr are the rotational mass, damping ratio, and stiffness of the system
20 % theta is base rotation
21 % h is tower height and d is effective mass overhang
22 % m d
23 % O−−−|
24 % |

25 % | h
26 % <− | −>
27 % (k,E) | theta
28 % −−−−−−−−−O−−−−−−−−−−
29
30
31 clear
32 clc
33 close all
34
35 %% Initial specifications
36 windspeedcase=3; % (= 1,2,3) selects the wind speed and TSR
37 meanwindspeeds=[3.63, 5.15, 5.15];
38 tsrcases=[0.95, 1.08, 4.98];
39
40 aeromodelcase=4; % (= 1,2,3,4) selects how aerodynamic loads are determined. 1−3 are FAST THs while
41 % 4 is calculated within the time history analysis using the CFD−based NN
42
43 no TMD yn=0; % Trigger to run test with or without the additional STMD on the turbine. If no TMD yn
44 % is equal to 1, the test will be run WITHOUT the TMD. This is achieved easily (and slightly
45 % inefficiently) by reducing the damper restoring force to 0 every time step
46
47 % DATA CONFIGURATION: use 62 inputs or 14 inputs? Original code was designed to run with 62 inputs,
48 % but has been updated to allow for fewer. For 64 inputs col remove=0; for 14 inputs col remove=48
49 % This value must be the same as the one used in
50 col remove=48; % number of leftmost columns to remove from input
51
52 dt=0.01; % (s) length of analysis time steps
53 T=180; % (s) total simulation time
54 t=0:dt:T; % (s) time step array
55 n=length(t); % number of time steps in analysis
56
57
58 %% Structural properties
59 % Base rotation properties
60 mrot=86.32; % (kgm2) rotational inertia of the system, derived from experimental free vibration tests
61 krot=1129; % (Nm/rad) rotational stiffness of system, derived from experimental free vibration tests
62 nfrot=sqrt(krot/mrot); % (rad/s) natural frequency of base rotation
63 Erot=0.020; % structural damping ratio, from free vibration tests
64 crot=2*nfrot*mrot*(Erot); % (Nms/rad) rotational damping coefficient
65 CRturb=4*mrot/(4*mrot+2*crot*dt+krot*dtˆ2); % Chen−Ricles factor
66
67 % Mass and lengths
68 d=0.0296; % (m) effective mass overhang
69 h=1.9; % (m) turbine tower height
70 bladelen=1.1; % (m) blade length
71 m=23.9; % (kg) lumped mass
72 mg=234.6; % (N) lumped weight
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73 % Other turbine properties
74 avchord=0.5*(0.128+0.050); % (m) average chord length of airfoil defined by Maryam
75 towerarea=h*0.08; % (m2) area of tower cross−section to on coming widn with a 8cm diameter, used
76 % with tower coefficient to calculate tower loads
77 Ctower=1.2; % drag coefficient of the tower, based on basic cylinder
78 fthrust=0.872; % thrust factor, a reduction in CT compared to FAST predictions, dervied from
79 % comparisons to Maryam's Cl and Cd curves for the entire blades
80 ftower1=0.953; % tower factor 1, a reduction in the wind speed on the tower used to calculate the
81 % tower drag loads, derived from a power law curve with exponent of 0.05, which in turn was
82 % derived from profiles acquired from the wind tunnel
83 ftower2=0.517; % tower factor 2; normalized height at which the center of the tower loads occur. In
84 % a uniform flow, this would be 0.5 but because wind speed is low close to ground, gets raised
85 % slightly. ftower2*h gives the moment arm of the tower drag loads
86 theta static=d/(1.9−krot/mg); % (rad) the static deflection of the tower from mass eccentricity
87 rotorspeed=tsrcases(windspeedcase)*meanwindspeeds(windspeedcase)/bladelen; % (rad/s) rotor speed
88
89 % Wind properties
90 airden=1.225; % (kg/m3) density of air
91 airkinvic=1.48e−5; % (m2/s) kinematic viscocity of air
92 meanwind=meanwindspeeds(windspeedcase);
93 reynolds=meanwind*avchord/airkinvic; % Reynolds number of simulation. Should be around 10ˆ4−10ˆ5
94
95 % Passive moments
96 massmoment=−mg*d; % (Nm) passive moment stemming from mass eccentricity
97 towermoment=0.5*airden*towerarea*Ctower*(ftower1*meanwind)ˆ2*h*ftower2; % (Nm) passive mean

moment
98 % stemming from tower drag. We're ignoring the fluctuating wind loads on the tower in this case
99

100
101 %% Blade node specs (for aeromodelcase==4)
102 if aeromodelcase==4
103 n blade nodes=11; % There will always be a node at the hub, so this is nodes in addition to
104 % that, resulting in the spacing between nodes equally bladelen/n blade nodes
105 blade node positions=zeros(n blade nodes+1,6); % Pre−allocate; columns 1 and 2 are for Y, Z of
106 % blade 1, columns 3 and 4 are Y, Z of blade 2, etc. Extra row if for all zeros at top
107 end
108
109
110 %% TMD properties
111 % Optimal values determined using equations from Connor (2202)
112 massratiotmd=0.01; % mass ratio between turbine and tmd
113 mtmd=m*massratiotmd; % (kg) TMD mass
114 Etmd=sqrt((massratiotmd*(3−sqrt(0.5*massratiotmd)))/(8*(1+massratiotmd)*(1−0.5*massratiotmd)));
115 % Damping ratio
116 Qtmd=1−1.2*massratiotmd; % frequency ratio
117 nftmd=nfrot*Qtmd; % (rad/s) TMD natural frequency
118 ctmd=2*mtmd*nftmd*Etmd; % (Ns/m) TMD damping coefficient
119 ktmd=mtmd*nftmdˆ2; % (N/m) TMD stiffness
120 CRtmd=4*mtmd/(4*mtmd+2*ctmd*dt+ktmd*dtˆ2); % Chen−Ricles ratios for the TMD EoM
121
122
123
124
125
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126 % Bouc−Wen parameters: **** SCALED DOWN 10000 TIMES (SEE TEXT) *****
127 x0BW=0; % (m) initial displacement
128 gammaBW=3.62/100000000; % (1/m2)
129 betaBW=3.62/100000000; % (1/m2)
130 ABW=154.60;
131 nBW=2;
132 alphaaBW=35.84/10000; % (N/m)
133 alphabBW=83.04/10000; % (N/mV)
134 c0aBW=1.539/10000; % (Ns/m)
135 c0bBW=32.82/10000; % (Ns/mV)
136 c1aBW=99.47/10000; % (Ns/m)
137 c1bBW=403.86/10000; % (Ns/mV)
138 k0BW=5.86/10000; % (N/mV)
139 k1BW=0.016/10000; % (N/m)
140 etaBW=60; % (Hz)
141
142
143
144 %% Initialize matrices
145 % Main structure
146 theta=zeros(n,3); % collect theta time history. The first column is rotation in rad, the
147 % second is rotational velocity in rad/s and the third is rotational acceleration in rad/s2
148 theta(:,1)=theta static; % assign theta static as initial theta value
149
150 % TMD
151 disptmd=zeros(n,3); % collect theta time history. The first column is TMD displacement in m,
152 % the second is TMD velocity in m/s and the third is TMD acceleration in m/s2
153 % Note, need to convert theta into displacement then shift by theta static to find displacement
154 % of TMD
155 restoretmd=zeros(n,1); % (N) the resotring force from the TMD, which is equal to the relative
156 % displacement between turb and TMD times the TMD stiffness, plus the relative velocity times
157 % the TMD damping
158 dampingforce=zeros(n,1); % (N) the force from the MR damper, roughly equal to ctmd*tmdvelocity
159 stiffnessforce=zeros(n,1); % (N)
160 vBWhigh=2.32; % (V) Using ground hook controller, the high power
161 vBWlow=2.32;%0.79; % (V)
162 BWdelay=10; % number of time steps between wanting to change vBW and the change arriving to the MR

damper
163 restoredelay=20; % number of time steps between applying voltage and getting resulting restoring force
164
165 % Bouc−Wen parameters
166 yBW=zeros(n,2); % (m) internal displacement in MBW model, true overall displacement is disptmd
167 vBW=ones(n,1)*vBWhigh; % (V) applied voltage
168 uBW=zeros(n,2); % (V) internal voltage, second column is first derivative of uBW
169 zBW=zeros(n,2); % (m) evolutionary variable, second column is firs derivative of zBW
170
171 % Measuerment errors − random normally−distribued error that are added to measured displacements and
172 % force in STMD, simulates experimental error of a true hybrid simulation
173 measureerror disp=(randn(n,1)*0.0005+1);
174 measureerror force=(randn(n,1)*0.0005+1);
175
176
177
178
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179 %% Pre−calculated aerodynamic load time history
180 % Provided aeromodelcase=1−3, import the related TH file. Loads are the final column in the file
181 filepath aero='⟨filepath⟩';
182 filepath BTS='⟨filepath⟩';
183 aeromodelstrings=[' fixed'; ' rotnt'; ' rotwt']; % naming convention for three pre−calc models;
184 % rotnt = rotation no TMD, rotwt = rotation with TMD
185
186 if aeromodelcase˜=4 % When using a pre−calc model
187 windspeedstrings=['3 63'; '5 15'; '5 50']; % 5 50 refers 5.15 m/s case with high TSR
188
189 % Simply import pre−calculated rotor thrust
190 aeroloads=importdata([filepath aero,'FAST ',...
191 windspeedstrings(windspeedcase,:),aeromodelstrings(aeromodelcase,:),'.mat']);
192
193 else % When using the trained surrogate model
194 windspeedstrings=['3 63'; '5 15'; '5 15'];
195
196 % Load .bts time history generated using OpenFAST, using MATLAB code provided from NREL, found
197 % at https://github.com/OpenFAST/matlab−toolbox/blob/main/Utilities/readfile BTS.m
198 % A following function is used to call wind speeds from the BTS file during running
199
200 [BTS velocity, ˜, BTS y, BTS z, ˜, ˜, ˜, ˜, ˜, BTS dt, ˜, ˜,˜]=...
201 readfile BTS([filepath BTS,'windTH ',windspeedstrings(windspeedcase,:),'.bts']);
202 % BTS velocity = 4D time history of wind speeds where 1st dimension is time steps, second
203 % dimension refers to i, j, k components, third dimension refers to lateral position y in field,
204 % and fourth dimension refers to vertical position z in field. BTS y and BTS z are arrays
205 % listing the y and z values of these dimensions
206
207 BTS z=BTS z−h; % Adjust recorded z nodes so that z=0 corresponds to hub height. The BTS file
208 % records ground height as z=0
209
210 dt ratio=dt/BTS dt; % Ratio of MATLAB time step to the BTS file, if the MATLAB time steps don't
211 % have an equivalent value in the BTS file, will throw an error. Since BTS dt=0.001s here,
212 % this is easy to achieve
213
214 if (floor(dt ratio)==dt ratio) || (dt ratio < 0) % Check to make sure test is compatible w/ .bts
215 error(['Time step incompatible with BTS file; adjust so that it is a multiple of ',...
216 BTS dt,' s'])
217 end
218
219
220 % Import pre−trained NN ('net') to use as surrogate aerodynamic model
221 filepath save=''⟨filepath⟩''; % net filepath
222
223 NNload=load([filepath save,'trained NN.mat'],...
224 'net','norm factors','optimal hyperparameters reduced'); % Load net saved from other code
225
226 % Extract values from import data set
227 net=NNload.net; % Trained neural network
228 norm factors=NNload.norm factors; % Normalization factors used on inputs before going into NN
229 optimal hyperparameters reduced=NNload.optimal hyperparameters reduced;
230 % Normalization factors used on inputs before going into NN
231
232
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233 windowsize=optimal hyperparameters reduced{2,1}{1,3}; % Find optimal hyperpar. of num inputs
234 ninputs=62; % col remove adjustment happens further down
235 n of outputs=2; % Number of outputs is always 2
236
237 NN inputs=zeros(1,windowsize,ninputs); % Pre−allocate NN input matrix. Will rewrite every dt
238 blade thrust=zeros(n,3); % Pre−allocate time histories of predicted thrust for each blade
239 blade torque=zeros(n,3); % Same, for torque. TOrque isn't applied in EoM so not as important
240
241 % Define wind speed reduction factors. These are rough adjustments made to try and account for
242 % the rotor influence on the recorded wind speeds of the CFD sims, dervied from the mean
243 % recorded wind speed divided by the max mean of the given wind speed
244 if windspeedcase==1
245 adjusts=[0.891, 0.978, 1.0];
246 elseif windspeedcase==2
247 adjusts=[0.892, 0.976, 1.0];
248 else
249 adjusts=[0.751, 0.866, 0.918];
250 end
251 end
252
253
254 function [u i,u j,u k]=BTS wind speed extract(time,y node,z node,base rotation)
255 % For the previously loaded BTS wind field time history, the three components of the wind will
256 % be extracted at time t at the position (X,Y). Note that x isn't relevant since when training
257 % the NN that this data will be fed into, time steps were adjusted such that wind is adjusted by
258 % the average to when it reaches the rotor plane
259
260 % This program works by finding the wind speed components at four coordinates that box in the
261 % desired point in the X,Y plane and averages them
262
263 % Note that this code assumes that the turbine blades will never escape the bounds of the wind
264 % field (reasonable since there is 0.4 m extra on each side), and thus hasn't been programmed
265 % with any way to account for if they do leave these bounds
266
267
268 current time step=round(time/BTS dt); % Found out time step based on providede time in s
269
270 % Find where y node is bounded within BTS y as y index plus and y index minus.
271 % y ratio plus and minus are the proportional weights towards of each bound, i.e. if y node is
272 % 75% of the way from minus to plus, then y ratio plus=0.75 while y ratio minus=0.25
273 [˜,y index]=min(abs(BTS y−y node));
274 if (BTS y(y index)−y node)>=0
275 y index minus=y index;
276 y index plus=y index+1;
277 else
278 y index minus=y index−1;
279 y index plus=y index;
280 end
281 y ratio plus=y index−y index minus; % Opposite since a small gap correpsonds with a big ratio
282 y ratio minus=y index plus−y index;
283
284
285
286



267

287 % Same for Z
288 [˜,z index]=min(abs(BTS z−z node));
289 if (BTS z(z index)−z node)>=0
290 z index minus=z index;
291 z index plus=z index+1;
292 else
293 z index minus=z index−1;
294 z index plus=z index;
295 end
296 z ratio plus=z index−z index minus;
297 z ratio minus=z index plus−z index;
298
299
300 % Find average wind speed components. First find horizontal then vertical averages
301 u collected=zeros(1,3);
302 for ii=1:3
303 u plusplus=BTS velocity(current time step,ii,y index plus,z index plus);
304 u plusminus=BTS velocity(current time step,ii,y index plus,z index minus);
305 u minusplus=BTS velocity(current time step,ii,y index minus,z index plus);
306 u minusminus=BTS velocity(current time step,ii,y index minus,z index minus);
307
308 u collected(ii)=z ratio plus*(y ratio plus*u plusplus+y ratio minus*u minusplus)+...
309 z ratio minus*(y ratio plus*u plusminus+y ratio minus*u minusminus);
310 end
311
312 u i=u collected(1); % Split values to be output by function
313 u j=u collected(2);
314 u k=u collected(3);
315
316 % Adjust i and k to account for base rotation. BTS has i parallel to rotor axis only when base
317 % rotation = 0, otherwise, needs to be updated slightly. Since rotation is in the XZ plane (in
318 % BTS coordinates) j is unaffected
319 u j=u collected(2);
320 u i=u collected(1)*cos(base rotation) − u collected(3)*sin(base rotation);
321 u k=u collected(1)*sin(base rotation) + u collected(3)*cos(base rotation);
322 end
323
324
325
326
327 %% Run TH simulation
328 % This section of the code runs the time history in a loop using the Chen−Ricles algorithm
329 % The Alogirthm in at the end of the Chapter 4 methodology explains Chen−Ricles clearly, and the
330 % end of Chapter 6 has a good summary of the structural model
331 for i=2:n
332
333 % Track sim progress, outputs to command line
334 if rem(i,1000)==0
335 ['Simulation step ',num2str(i),' out of ',num2str(n)] %#ok<NOPRT>
336 end
337
338
339
340
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341 % Predict rotation and rotational velocity of time step using Chen−Ricles algorithm
342 theta(i,2)=theta(i−1,2)+CRturb*dt*theta(i−1,3);
343 theta(i,1)=theta(i−1,1)+dt*theta(i−1,2)+CRturb*dtˆ2*theta(i−1,3);
344
345 f ang=cos(theta(i,1)); % Factor used to adjust horizontal loads based on base rotation
346 % (=1 in small angle assumption)
347
348
349 if aeromodelcase˜=4
350 % If using pre−calculated loads, just import the value plus multiply by hub height to get
351 % the overturning moment
352 thrustmoment=aeroloads(i,1)*h; %Nm
353
354
355 else
356 % Use the trained surrogate model
357
358 % Note that since drag loading on the hub and nacelle is neglected by OpenFAST, it is chosen
359 % to do the same here
360
361 % Determine rotational position of blades based on time and rotor speed. Recall blade 1
362 % begins at 0 rad, blade 2 at 2pi/3 rad and blade 3 at 4pi/3 rad
363 rotation amount=rotorspeed*i*dt; % Rotation in rads
364 blade 1 angle=rem(rotation amount,2*pi);
365 blade 2 angle=rem(rotation amount+(2*pi/3),2*pi);
366 blade 3 angle=rem(rotation amount+(4*pi/3),2*pi);
367
368 % Determine the YZ coordinates of the blade nodes given the current rotation. Starts at the
369 % first node beyond the hub and continues up to point 12 (there's one hub node then
370 % n blade nodes blade nodes
371 for j=2:n blade nodes+1
372 local radius=j*(bladelen/n blade nodes);
373 blade node positions(j,:)=[...
374 local radius*cos(blade 1 angle), local radius*sin(blade 1 angle),...
375 local radius*cos(blade 2 angle), local radius*sin(blade 2 angle),...
376 local radius*cos(blade 3 angle), local radius*sin(blade 3 angle)];
377 end
378
379 % Need to find thrust loads on each blade
380 for blade num=1:3
381 % Generate input to be placed in NN, which is a 1 x windowsize x 64 matrix. The third
382 % dimension refers to the i,j,k blade components, the i components of which are repeated
383 % for 34−44 and 45−55. 56 refers to the rotor speed and 57 to the base rotation. The
384 % second component has time steps ranging from t−9 to t. Based on col remove the left
385 % most columns are removed. IF col remove=48, there's just the one set of i values
386
387 if i<windowsize % Supply uniform values prior to enough back data being available
388
389 for k=1:n blade nodes+1
390 % Use previously definied program, to get u i, u j, u k for the node
391 y coordinate=blade node positions(k,2*blade num−1);
392 z coordinate=blade node positions(k,2*blade num);
393 [u BTS1,u BTS2,u BTS3]=...
394 BTS wind speed extract(i*dt,y coordinate,z coordinate,theta(i,1));
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395 % Place values in input matrix
396 NN inputs(:,1,k)=u BTS1*adjusts(1); % Adjust i component by first ring scale
397 NN inputs(:,1,k+(n blade nodes+1))=u BTS2;
398 NN inputs(:,1,k+2*(n blade nodes+1))=u BTS3;
399 end
400 NN inputs(:,1,(3*(n blade nodes+1)+1):(4*(n blade nodes+1)))=...
401 NN inputs(:,1,1:(n blade nodes+1))*adjusts(2)/adjusts(1);
402 % Adjust u i data to scale to second ring
403 NN inputs(:,1,(4*(n blade nodes+1)+1):(5*(n blade nodes+1)))=...
404 NN inputs(:,1,1:(n blade nodes+1))*adjusts(3)/adjusts(2);
405 % Adjust u i data to scale to third ring
406 NN inputs(:,1,5*(n blade nodes+1)+1)=rotorspeed; % Provide rotor speed
407 NN inputs(:,1,5*(n blade nodes+1)+2)=theta(i,1); % Provide base rotation
408
409 for j=2:windowsize
410 NN inputs(:,j,:)=NN inputs(:,1,:); % For this specific case, take current time
411 % step and fill out as uniform for the whole analysis since we don't have
412 % enough previous time steps yet
413 end
414
415 else % used for vast majority of simulation
416 for j=1:windowsize
417 for k=1:(n blade nodes+1)
418 % Use predfinied program, to get u i, u j, u k for the node
419 y coordinate=blade node positions(k,2*blade num−1);
420 z coordinate=blade node positions(k,2*blade num);
421 [u BTS1,u BTS2,u BTS3]=BTS wind speed extract(dt*(i−windowsize+j),...
422 y coordinate,z coordinate,theta(i,1));
423
424 % Place values in input matrix
425 NN inputs(:,j,k)=u BTS1*adjusts(1); % Adjust i component by first ring scale
426 NN inputs(:,j,k+(n blade nodes+1))=u BTS2;
427 NN inputs(:,j,k+2*(n blade nodes+1))=u BTS3;
428 end
429 NN inputs(:,j,(3*(n blade nodes+1)+1):(4*(n blade nodes+1)))=...
430 NN inputs(:,j,1:(n blade nodes+1))*adjusts(2)/adjusts(1);
431 % Adjust u i data to scale to second ring
432 NN inputs(:,j,(4*(n blade nodes+1)+1):(5*(n blade nodes+1)))=...
433 NN inputs(:,j,1:(n blade nodes+1))*adjusts(3)/adjusts(2);
434 % Adjust u i data to scale to third ring
435 NN inputs(:,j,5*(n blade nodes+1)+1)=rotorspeed; % Provide rotor speed
436 NN inputs(:,j,5*(n blade nodes+1)+2)=theta(i,1); % Provide base rotation
437 end
438 end
439
440
441 % Remove col remove excess columns from left hadn side
442 NN inputs=NN inputs(:,:,(col remove+1):end);
443
444 % Normalize NN input data
445 for j=1:(64−col remove)
446 NN inputs(:,:,j)=NN inputs(:,:,j)*norm factors(j);
447 end
448
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449 % Run neural network
450 NN output=predict(net,NN inputs);
451
452 % Unnormalize NN output data
453 for j=1:2
454 NN output(j)=NN output(j)/norm factors(j+(64−col remove));
455 end
456
457 % Record output thrust and torque for the given turbine blade
458 blade thrust(i,blade num)=NN output(1);
459 blade torque(i,blade num)=NN output(2);
460
461 end
462
463 % Combine predicted thrust on each blade to get the total blade load
464 thrustmoment=(sum(blade thrust(i,1:3)))*h;
465 end
466 % END OF SURROGATE MODEL CODE, REST IS STMD TH SIM
467
468
469
470 % Predict TMD displacement and velocity using Chen Ricles algorithm
471 disptmd(i,2)=disptmd(i−1,2)+CRtmd*dt*disptmd(i−1,3);
472 disptmd(i,1)=disptmd(i−1,1)+dt*disptmd(i−1,2)+CRtmd*dtˆ2*disptmd(i−1,3);
473
474
475 % Restoring force = sum of stiffness and damping forces
476 % Calulcate stiffness force from relative displacement between rotating tower and the
477 % TMD, assume sin(theta) is equal to horziontal nacelle displacement
478 stiffnessforce(i,1)=ktmd*(h*sin(theta(i,1)−theta static)−disptmd(i,1)*measureerror disp(i,1));
479
480 % Check to see what voltage value was set 10 ms previously, delay models true experimental
481 % delay between voltage sending and being received by MR damper
482 if (theta(i,1)−theta static)*theta(i,2)<0 && (n−i)>BWdelay
483 vBW(i+BWdelay,1)=vBWlow;
484 end
485
486 % Perform the complicated Modified Bouc−Wen calculations. Firstly do the voltage calcs,
487 % get rates using backwards difference method, perform calcs
488 xBW=h*sin(theta(i,1)−theta static)−disptmd(i,1)*measureerror disp(i,1);
489 xpBW=h*sin(theta(i,2))−disptmd(i,2)*measureerror disp(i,1);
490
491 uBW(i,2)=−etaBW*(uBW(i−1,1)−vBW(i,1));
492 uBW(i,1)=uBW(i−1,1)+dt*uBW(i,2);
493
494 alphaBW=alphaaBW+alphabBW*uBW(i,1);
495 c0BW=c0aBW+c0bBW*uBW(i,1);
496 c1BW=c1aBW+c1bBW*uBW(i,1);
497
498 yBW(i,2)=(1/(c0BW+c1BW))*(alphaBW*zBW(i−1,1)+c0BW*xpBW+k0BW*(xBW−yBW(i−1,1)));
499 yBW(i,1)=yBW(i−1,1)+yBW(i,2)*dt;
500
501
502
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503 zBW(i,2)=−gammaBW*abs(xpBW−yBW(i,2))*zBW(i−1,1)*(abs(zBW(i−1,1)))ˆ(nBW−1)...
504 −betaBW*(xpBW−yBW(i,2))*(abs(zBW(i−1,1)))ˆnBW...
505 +ABW*(xpBW−yBW(i,2));
506 zBW(i,1)=zBW(i−1,1)+dt*zBW(i,2);
507
508 % MBW model ends up with a prediction of the damping force
509 dampingforce(i,1)=alphaBW*zBW(i,1)+c0BW*(xpBW−yBW(i,2))+k0BW*(xBW−yBW(i,1))+k1BW*(

xBW−x0BW);
510
511 % Get total restoring force of the TMD
512 restoretmd(i,1)=dampingforce(i,1)+stiffnessforce(i,1);
513
514 % If value was set to not consider TMD, zero the rpedicted value, TMD will never have effect on
515 % the main turbine
516 if no TMD yn==1
517 restoretmd(i,1)=0; % Eliminate influence of the PTMD when no TMD yn==1
518 end
519
520
521 % Calculate resulting TMD accelration
522 disptmd(i,3)=(restoretmd(i,1))/mtmd;
523
524 % Calculate rotational acceleration using full EoM, including the delay in calculating TMD
525 % restoring force of 20 ms. Replicates experimental limitation. If time step of analysis is
526 % before 20 ms has occured, the delay is ignored
527 if i>restoredelay
528 theta(i,3)=(massmoment*f ang+towermoment*f angˆ2+thrustmoment−krot*theta(i,1)...
529 −crot*theta(i,2)−restoretmd(i−restoredelay,1)*h*measureerror force(i,1)*f ang)/mrot;
530 else
531 theta(i,3)=(massmoment*f ang+towermoment*f angˆ2+thrustmoment−krot*theta(i,1)...
532 −crot*theta(i,2)−restoretmd(1,1)*h*measureerror force(i,1)*f ang)/mrot;
533 end
534 end
535
536
537 %% Save results
538
539 filepath save=''⟨filepath⟩'';
540 aeromodelstrings=['fixed';'rotnt';'rotwt';'CFDNN']; % Identify if using the pre−calculated fixed,
541 % rotation without TMD, rotation with TMD; or using in−the−loop CFD−NN surrogate model
542 windspeedstrings=['3 63'; '5 15'; '5 50'];
543 tsrstrings=['0 95';'1 08';'4 98'];
544
545 if no TMD yn˜=1
546 save file name=[filepath save,aeromodelstrings(aeromodelcase,:),' ',...
547 windspeedstrings(windspeedcase,:),' ',tsrstrings(windspeedcase,:)];
548 else
549 save file name=[filepath save,aeromodelstrings(aeromodelcase,:),' ',...
550 windspeedstrings(windspeedcase,:),' ',tsrstrings(windspeedcase,:),' undamped'];
551 end
552
553 save(save file name);
554
555 end
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