Salience of Carbon Taxes in the Gasoline Market

Nicholas Rivers
University of Ottawa

Brandon Schaufele
Ivey School of Business

Follow this and additional works at: https://ir.lib.uwo.ca/iveypub

Part of the Business Commons

Citation of this paper:
https://ir.lib.uwo.ca/iveypub/55
Salience of Carbon Taxes in the Gasoline Market*

Nicholas Rivers†
Brandon Schaufele‡

October 22, 2014

Abstract
We demonstrate that the carbon tax imposed by the Canadian province of British Columbia caused a decline in short-run gasoline demand that is significantly greater than would be expected from an equivalent increase in the market price of gasoline. That the carbon tax is more salient, or yields a larger change in demand than equivalent market price movements, is robust to a range of specifications. As a result of the large consumer response to the tax, we calculate that during its first four years, the tax reduced carbon dioxide emissions from gasoline consumption by 3.6 million tonnes.

Keywords: Carbon tax; tax salience; environmental pricing; gasoline demand

JEL Codes: H23, H29, Q41, Q58

* We are very grateful for the useful comments and feedback from anonymous reviewers and from Werner Antewiler, Jean-Thomas Bernard, Pierre Brochu, Hilary Kennedy, Matt Kotchen, Jacob LaRiviere, Dennis Paradine, David Rapson and seminar participants at the AERE-Banff 2013, the Government of British Columbia’s Climate Action Secretariat, Iowa State University, Ivey Business School, University of Alberta, University of Manitoba, University of Ottawa, University of Victoria and the Identification of Causal Effects in Energy and Environmental Economics Workshop held in Knoxville, Tennessee.
† Graduate School of Public and International Affairs and Institute of the Environment, University of Ottawa, 55 Laurier Avenue East, Ottawa, Ontario, K1N 6N5, nicholas.rivers@uottawa.ca.
‡ Ivey School of Business, University of Western Ontario, 1255 Western Road, London, Ontario, N6G 0N1, bschaufele@ivey.uwo.ca.
1. INTRODUCTION

On July 1st, 2008, the Canadian province of British Columbia (BC) enacted North America's first broad-based carbon tax designed to reduce greenhouse gas emissions. While several jurisdictions have implemented emission reduction programs, no other state or province has implemented a policy that is as ambitious and comprehensive as the BC policy, and no other North American greenhouse gas control policy taxes households directly based on emissions. Media have both lauded the BC carbon tax as a major policy achievement and condemned it as a “nightmare” for industry and families.

While carbon taxes have been in place in various European countries since the 1990s, econometric analysis of their impact is limited, and there is minimal evidence on the effectiveness of similar programs in the North American context. Research on the implications of an actual carbon price is particularly important as several states and provinces are currently debating whether or not to introduce similar broad-based policies. By exploiting cross-provincial panel data variation and performing a wide-range of robustness checks, this study provides the first causal evidence of the effect of a carbon tax on the short-run gasoline decisions of North American households.

Throughout our analysis we concentrate on the salience of the BC carbon tax. Specifically, we adopt a narrow definition of tax salience: tax salience refers to the hypothesis that tax-induced price changes generate distinct demand responses when compared with

1 The Regional Greenhouse Gas Initiative (RGGI) is a leading example of a US emission control program. A joint initiative of nine states – Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont – its objective is to develop a market-based program aimed at “reduc[ing] CO2 emissions from the power sector [by] 10 percent by 2018” (RGGI, 2012). Similarly, the Canadian provinces of Alberta and Quebec have enacted carbon pricing policies. Alberta effectively taxes large industrial emitters (>100,000 tonnes) at $15 per tonne of CO2, while Quebec has a carbon tax on natural gas, coal and petroleum equal to $3 per tonne CO2.

2 Anderson (2010) describes European carbon taxes, and provides some evidence on their effectiveness using a simulation model. Econometric research on carbon taxes includes Martin, de Preux and Wagner (2014) who examine the UK’s Climate Change Levy and Enevoldson, Ryelund and Andersen (2007) who examine Scandinavian industrial carbon taxes. It is difficult to use the limited empirical evidence from these studies in other contexts because (1) European carbon taxes were often introduced as replacements for existing energy taxes, not as standalone taxes, (2) they include numerous exemptions and differences in rates across sectors (Bruvoll and Larsen, 2004; Sumner, Bird and Smith, 2009), and (3) there may be different preferences, culture or geography in these countries compared to others.

3 Most notable is the state of California which adopted a state-administered cap-and-trade system on October 20, 2011. California’s emission trading market is expected to be the cornerstone of the larger Western Climate Initiative, a collaborative effort with four Canadian provinces to develop a North American greenhouse gas emissions trading program.
equivalent market-determined price movements. An emerging literature delves into this hypothesis (see Chetty, Looney and Kroft (2009), Finkelstein (2009), Congdon, Kling and Mullainathan (2009), Goldin and Homonoff (2013) and Gallagher and Muehlekker (2011)). This paper, in particular, can be viewed as an extension of Davis and Kilian (2010) and Li, Linn and Muehlekker (2012), who compare consumer responses to excise taxes with responses to price changes induced by other shocks in the gasoline market. By evaluating a situation where a carbon tax actually exists, this study makes an important contribution to this growing literature.

To the best of our knowledge, ours is the first empirical investigation into the salience of environmental taxation. Carbon taxes differ from excise or other consumption taxes in that, by imposing a disincentive on fossil fuel consumption, they are explicitly designed to reduce environmental externalities. Even though excise and sales taxes reduce gasoline demand in the short-run, they are not overtly designed to correct environmental externalities. Revenues from gasoline taxes, for example, are frequently earmarked for road infrastructure, projects which lower the long-run costs of driving. Concentrating on carbon pricing permits us to identify the consumer response to a carbon tax compared with the underlying market price of gasoline when the unambiguous purpose of the policy is to reduce gasoline demand.

Our main result is that the BC carbon tax generated demand response that is 7.1 times larger than is attributable to an equivalent change in the carbon tax-exclusive price. In our preferred model, a five cent increase in the market price of gasoline yields a 1.8% reduction in the number of litres of gasoline consumed in the short-run, while a five cent increase in the carbon tax, a level approximately equal to a carbon price of $25 per tonne, generates a 12.5% short-run reduction in gasoline demand. These results lead us to claim that the carbon tax is more salient than market-determined price changes: carbon taxes produce larger demand responses than tax-exclusive price increases. Due to the robustness and consistency of our estimates across a range of specifications, we think that our results can be interpreted as causal. We use our econometric results to construct counterfactual scenarios in order to calculate the change in gasoline-related emissions stemming from the carbon tax. We find that the BC policy reduced carbon dioxide emissions from gasoline consumption by more than 3.5 million tonnes during its first four years. Of this total, 85.6%, or 3.1 million tonnes, is due to the additional salience of the carbon tax – it is an environmental bonus that would not have been achieved if
individuals responded to carbon taxes in the same way as to identical changes in gasoline prices caused by other factors.

Our results are in line with Li, Linn and Muehlegger (2012) who find that consumers are more responsive to changes in gasoline excise taxes than to tax-exclusive prices. In particular, Li, Linn and Muehlegger estimate a tax saliency ratio (i.e., the mean consumer response to an increase in gasoline taxes divided by an equivalent increase in market prices) equal to 8.1, a value that is within the range of our estimates. Although in a different context, our results also complement Finkelstein (2009) and Chetty, Looney and Kroft (2009) who suggest that consumers exhibit more elastic demand response if prices increase due to a highly visible tax than if prices increase for some other reason. Finkelstein shows that the demand curve for driving becomes more inelastic when tolls are charged electronically as compared to manual collection. Chetty, Looney and Kroft use experimental evidence to demonstrate that making a sales tax visible increases demand responsiveness. Yet it is not obvious that the retail gasoline market is sufficiently similar to electronic tolls or grocery store purchases to enable direct comparisons. Unlike most goods, gasoline prices are advertised as tax-inclusive. Both excise and sales taxes are included in stated rates, so buyers pay exactly the price that they see on signs and at the pumps (i.e., there is no risk of making mathematical errors between the instant consumers decide to buy fuel and the point where they must pay for the purchase).

The remainder of this paper contains five sections. Section two describes the design of the BC carbon tax policy. Section three presents our data and empirical methodology. The main results are in section four, including calculations of the reduction of carbon dioxide emitted. The majority of the paper focuses on empirics and is agnostic with respect to the underlying mechanism generating our results. Section five nonetheless discusses potential explanations for the large consumer response to the carbon tax but avoids ascribing the results to any particular hypothesis. Section six concludes.

2. DESIGN OF THE BC CARBON TAX

The announcement that BC was introducing a carbon tax came as a surprise to the vast majority of residents (Harrison, 2012). The province’s Finance Minister formally revealed the revenue-neutral carbon tax in her February 2008 budget speech. By July 1st, 2008, BC became the first jurisdiction in North America to have a significant carbon tax on all fossil fuels
purchased within its borders.4 It was only during the second half of 2007 that the government began to hint that environmental pricing was possible. Even then, there was no public acknowledgement that carbon taxes were a prospective policy option until a speech late in October 2007. The carbon tax was the initiative of then-premier Gordon Campbell, who reports that he was motivated by i) witnessing high levels of air pollution on a visit to China, and ii) reading about climate change on a Christmas vacation in Hawaii (Harrison, 2012). These two features of the tax’s introduction – its sudden implementation and quasi-random factors leading to its implementation – motivate us to treat it as exogenous in the empirical analysis that follows.

There are two prominent features of the BC carbon tax design. First, it was implemented gradually. The tax came into effect on July 1st, 2008. Initially set at $10 per tonne carbon dioxide equivalent (tCO$_2$e), the tax increased by $5/tCO$_2$e each July 1st until 2012, when it reached its current level of $30/tCO$_2$e. The $10/tCO$_2$e tax implied a 2.34 cent increase in the price of a litre of gasoline. At $30/tCO$_2$e, this represents an increase in the price of gasoline equivalent to 6.67 cents per litre. Table 1 presents the annual progression of the carbon tax in tCO$_2$e and cents per litre of gasoline. Gradually increasing the tax was intended to minimize potential adjustment costs associated with the tax shift.

The BC carbon tax was also designed to be revenue-neutral. Revenue-neutrality meant returning all carbon tax revenues to residents via adjustments to personal and corporate taxes as well as through lump-sum transfers. Several components of the personal and corporate tax schedule were adjusted to offset the revenues generated by the carbon tax. These changes are illustrated in Table 1. First, the BC government lowered the tax rate on the bottom two personal income tax brackets. For a household earning a nominal income of $100,000, Table 1 shows that the average provincial tax rate was reduced from 8.74\% in 2007 to 8.02\% in 2008. Two lump-sum transfers were also included to protect low-income and rural households. Low income households receive quarterly rebates, which, for a family of four, equal approximately $300 per year, and beginning in 2011, northern and rural homeowners received a further benefit of up to $200. Finally, taxes on corporations and small businesses were reduced. BC has two corporate tax rates, a high and low income rate. High income firms are those that earn profits above the

4 The carbon tax applies to all emissions that result from the burning of fossil fuels. These account for 77\% of total provincial emissions. The remaining 23\% is not due to the combustion of fossil fuels, but includes: 10\% from non-energy agriculture and landfills, 9\% from fugitive emissions, and 4\% from non-combustion industrial process emissions (BC Ministry of Finance, 2012a).
provincial business limit. In conjunction with the carbon tax, this limit was increased from $400,000 to $500,000 in 2010. Following the introduction of the carbon tax, the BC government cut both corporate and small business taxes. The corporate income tax rate was reduced in three steps. It went from 12.0% to 11.0% in 2008, from 11.0% to 10.5% in 2010 and was finally reduced to 10.0% in 2011. Similarly, Table 1 shows that the small business tax rate, which is applied to profits up to the provincial business limit, was cut by 1.0% in both 2008 and 2009.

The revenue-neutrality of the carbon tax yields several benefits. First, it likely increased public acceptability for the policy. Since residents’ tax burden did not increase, the government was able to promote the policy as a “tax shift” rather than a tax increase. Second, by cutting personal and corporate income taxes (yet still keeping total government revenues constant), the policy minimizes the negative economic impacts of taxation. Extensive theoretical analysis of environmental tax shifts indicates that, in some cases, economic activity might even increase as a result (e.g., Goulder, 1995). As a final point, revenue-neutrality acts as a commitment mechanism for the government, particularly as the carbon tax was implemented as the economy entered a recession. Once personal and corporate taxes had been reduced, the BC government needed the revenues generated by the carbon tax which equaled $741 million in 2011 (BC Ministry of Finance, 2011). Discussions on delaying the scheduled increases had to be weighed against deficits and reduced social program spending.

While our analysis focuses on the BC carbon tax, we also include – but do not emphasize – the much smaller Quebec carbon tax in our data and analysis. Quebec introduced a carbon tax in October 2007. The stated goal of the tax is to raise revenue to pursue environmental projects, in contrast to the BC tax which is aimed at discouraging fossil fuel combustion. Quebec’s goal is to annually raise $100 million from the tax; as a result, the tax rate is adjusted each year based on projected fossil fuel consumption. In practice the tax rate has remained relatively constant at about $3/tCO₂e since it was introduced.

3. EMPIRICAL METHODOLOGY

3.1 Data

Data and code written in R for all of the empirical models are available on the authors’ websites in addition to complying with the journal’s data availability policy.
Our empirical analysis requires a dataset assembled from several sources. Statistics Canada (2012) collects aggregate monthly data on litres of premium, mid-grade and regular gasoline sold within each Canadian province.\(^6\) As in Small and Van Dender (2007), aggregate provincial sales are divided by population aged 15 years or older yielding a variable on a per-adult basis. Price and excise tax information is retrieved from Kent Marketing Services Limited (2012). All prices and taxes are inflation-adjusted using monthly, province-specific consumer price indices. The retail price in each province’s largest urban centre proxies for the price for the entire province – while a high degree of price correlation within provinces exists, this may mask some intra-provincial heterogeneity. Interprovincial variation is greater than intraprovincial variation largely due to differential tax levels at the provincial level. Appendix Table A1 presents summary statistics for the monthly gasoline consumption and tax-inclusive prices by province. Additional data needed for controls and robustness checks such as time-varying provincial economic variables, are from several sources including Statistics Canada (2012) and the BC Ministry of Finance (2012b). Our period of analysis is January 1990 through December 2011 but we perform checks on shorter subsets of this timeframe. The monthly dataset contains 2580 province-month observations.

As a first step, we compare the price and gasoline time series for the provinces of BC and Ontario (Canada’s most populous province). Figure 1 illustrates this comparison. The upper panels in Figure 1 show the monthly real tax-inclusive price of gasoline per litre, while the bottom panels display the corresponding level of per capita gasoline sales.\(^7\) The introduction of the carbon tax on July 1, 2008 is shown by the dashed vertical line. Also shown are simple linear time trends for the period from January 1, 2000 until the introduction of the tax and for the period following the introduction of the tax. For both BC and Ontario, the January 2000 to July 2008 period is characterized by an upward trend in prices and a congruent decrease in quantity demanded (i.e., demand curves slope downward). During the month when the carbon tax was implemented however, prices in both provinces fell rapidly and a stark contrast between consumption patterns in BC and Ontario is obvious. In Ontario, quantity demanded increases

\(^6\) For the provinces of Nova Scotia and New Brunswick, data do not start until March 1992 and November 1992, respectively.

\(^7\) In this figure, the gasoline demand series has been seasonally adjusted by regressing monthly demand on year fixed effects and month*province indicators, allowing a distinct seasonal pattern in each province. For each province, the month dummies are then subtracted from the gasoline demand series.
with the price decline. The opposite occurs in BC where despite the reduction in the tax-inclusive price consumption continues to trend downward. Figure 1 provides suggestive evidence that the carbon tax acted as a demand shifter in addition to having a direct price effect.

There are several additional points to note about the data. First, since 2004, the highest per litre prices in Canada are found in BC (see online Appendix A). Next, although the degree of interprovincial price correlation is high, gas prices do vary across the country. As mentioned, these differences reflect differential gasoline taxes, but also distinct transportation costs and fluctuations in provincial supply conditions. Lastly, it should be emphasized that a five cent increase in the price of gasoline, roughly equal to $25/tCO₂e, is well within one standard deviation for all provinces.

3.2 Model

Econometrically, we follow the approach of Li, Linn and Muehlegger (2012) and decompose the retail price of gasoline, the price that consumers see at pumps, into two components: a carbon tax-exclusive price and a carbon price. More precisely, we specify the following linear equation:

\[
\log(y_{it}) = \alpha p_{it} + \beta \tau_{it} + \delta_i + \gamma_t + \epsilon_{it}
\]

where \(y_{it}\) is gasoline consumption per capita in province \(i\) during period \(t\), \(p_{it}\) is the carbon tax-exclusive inflation-adjusted price of gasoline in province \(i\) during period \(t\), \(\tau_{it}\) represents the inflation-adjusted carbon tax in province \(i\) during period \(t\), \(\delta_i\) is province-specific fixed effect that captures geographically constant and time invariant unobservable characteristics, while \(\gamma_t\) is a time fixed effect and captures time-specific unobserved factors that may influence gasoline demand. \(X_{it}\) represents other potentially relevant variables that vary at the province-year level. These include provincial after-tax income, unemployment rate, retail sales, building permit issuance, as well as dummy variables for time-varying provincial events that could influence gasoline consumption. Finally, \(\epsilon_{it}\) is a province and period specific error term.

8 Prices include both provincial and federal excise taxes.
Our preferred specification is a log-linear model as this provides a straightforward interpretation of the effects of the carbon tax (Yatchew and No, 2001). The BC carbon tax is published in cents per litre, thus coefficients, which approximately reflect semi-elasticities or percent change in gasoline demand for a given level of tax, have intuitive appeal. Finally, while equation (1) separates prices, taxes and geographical fixed effects, many of our models allow for provincial heterogeneity and interact the provincial dummies with prices and taxes respectively:

\[
\log(y_{it}) = \delta_1 p_{it} + \delta_2 \tau_{it} + X_{it} \theta + \delta_i + \gamma_t + \epsilon_{it}.
\]

Equation (2) enables us to identify the price and tax responses separately by province.

It is important to highlight that the model we use estimates the short-run impact of price and tax changes on gasoline consumption. We use monthly data, so regression estimates should be treated as the change in gasoline demand over a month that accompanies a price change.

3.3 Identification

Our identification strategy includes two steps. First, we exploit the panel structure of the data. Next, we perform a series of robustness checks which involve including potentially omitted variables – time-varying, province-specific economic variables – and focusing on particular sub-samples. These checks attempt to eliminate other explanations for our results. Only after our key parameters are shown to be robust across a wide-range of specifications do we interpret the results as causal.

The primary method of identification is derived from the panel structure of the data. Time-invariant, region-specific characteristics such as geography are accommodated by the

9 We also estimate the model with a log-log form. The model we estimate is: \(\log(y_{it}) = \alpha \log(p_{it}) + \beta \log(1 + \frac{\epsilon_{it}}{p_{it}}) + X_{it} \theta + \delta_i + \gamma_t + \epsilon_{it} \). Our qualitative conclusions are unchanged using this model, and the model produces estimates which are quantitatively very similar to our preferred log-linear specification. Results using a log-log specification are available upon request.

10 Throughout this paper, all semi-elasticities are calculated as the exponent of the coefficient minus one (e.g., \(e^\beta - 1 \)); however, estimates which are small in absolute value can be interpreted directly as a semi-elasticity as the difference is negligible.
provincial fixed effects. Time-varying but non-province-specific unobservables (e.g., trade policy) are captured by the time fixed effects. Any remaining province-time varying factors are grouped into the error term or included in the model. Provided gasoline prices and carbon taxes are uncorrelated with the error term, least squares yields unbiased and consistent estimates of the price (α) and the carbon tax coefficients (β).

There are persuasive reasons to believe that both the market price of gasoline and the carbon tax are exogenous in our empirical models. The gasoline market is generally considered competitive: wholesale gasoline prices are determined in a West coast market and gasoline retailing generally involves small margins. This argument is supported by Marion and Muehlegger (2011) who demonstrate that under normal market conditions any change in excise taxes is fully reflected in final prices – i.e., any change in taxes is “fully and immediately passed on to consumers” (1202). Similarly, the BC carbon tax was introduced within a short period of time, caught most residents by surprise, comprehensively covers all fossil fuels and the policy’s sole objective is to reduce greenhouse gas emissions (i.e., not to influence other outcomes), so it is unlikely to be confounded. Considering this, both the BC carbon tax and the market price of gasoline are probably exogenous variables. Our preferred models are therefore parsimonious and use least squares to identify the parameters.

Nonetheless, while convincing arguments support the exogeneity of gasoline prices and the carbon tax, we want to eliminate doubt regarding potential simultaneity or omitted variable bias. We perform a series of robustness checks. We include potentially important omitted variables such as after-tax income and the unemployment rate by province. We also inspect distinct sub-samples and rule out storage and announcement effects as explanations for our findings. Finally, we use an instrumental variables approach to ensure that endogeneity in the price of gasoline is not contributing to our results.

Identifying our key parameters is our main objective, yet we are equally interested in testing the impact of the carbon pricing policy relative to equal changes in the price of gasoline. Formally we do this by performing F-tests on the equality of the coefficients of carbon tax and tax-exclusive market price. Rejection of the null of coefficient equality implies that the market-determined price elasticity is statistically distinguishable from the carbon tax elasticity. Rejection of the null also allows us to claim that the carbon tax is either more or less salient than
the market-determined price of gasoline using our narrow definition of saliency and that equivalent price changes produced distinct demand responses. Our tables present heteroskedasticity and autocorrelation consistent (Newey-West) standard errors.

4. ECONOMETRIC RESULTS

4.1 Overview of Main Findings

Two sets of results are presented. First, estimates from parsimonious least squares models are discussed. Then, results from the robustness checks are reviewed. Overall we find economically meaningful and statistically significant coefficients on the variables of interest.

The main conclusion is that the carbon tax has a much larger impact on gasoline demand than do market prices. The point estimate on the carbon tax equals -0.025 which, for a carbon tax of $25/tCO₂e, implies a 12.5% short-run decrease in gasoline demand. An equivalent increase in the market price of gasoline predicts a 1.8% reduction in demand (the coefficient equals -0.004). Stated differently, the BC carbon tax generated a demand response that is 7.1 times greater than an equivalent increase in market prices. Upon initial consideration, the sizeable difference between the elasticities for the carbon tax and price of gasoline may surprise. However, there is convincing corroborating evidence bolstering the external validity of the finding. Even though designed to be revenue-neutral, in actuality, the BC carbon tax has been revenue negative. The carbon tax has collected less revenue than the government initially forecast. Indeed, only 83% of the initially forecast revenues have come in, well-below the benchmark of revenue-neutrality (BC Ministry of Finance, 2012b). The revenue shortcoming is largely due to unexpectedly low gasoline sales, and our empirical results show that one important reason for the shortcoming could be the unexpectedly large response to the carbon tax exhibited by consumers in BC.

4.2 Least Squares Results

Table 2 presents results from the least squares models. Coefficient estimates and standard errors for two models are shown in the upper section, while test results for the salience null and model interpretation are at the bottom. Both specifications use monthly data, include provincial and time fixed effects and have log-linear formulations (conclusions are not changed with a log-log specification).
Table 2 shows that the coefficient on the market price of gasoline in (1) is statistically insignificant and equal to -0.0014. The coefficient of the carbon tax in this model is statistically significantly different from zero and equals -0.0457 (column (1) is based on estimating equation (1)). Weighing these against parameters in (2) where prices and taxes are interacted with provincial fixed effects, several notable differences surface (column (2) is based on estimating equation (2)). First, BC residents are more sensitive to changes in the price of gasoline compared with the country as a whole. The absolute value of the estimate for price in (2) is nearly three times larger than in (1). Similarly, comparing the coefficients on the carbon tax between the two models reduces the initial estimate from -0.0457 to -0.0247, likely because in (1) the carbon tax was capturing BC’s added responsiveness to gasoline prices.

In the bottom panel of the table, we calculate that based on the model estimates a five cent increase in the price of gasoline leads to a 0.7% reduction in the demand for gasoline in Canada as a whole (column (1)) and a 1.8% reduction in BC (column (2)). Barla et al. (2009) estimate short-run price elasticities for Canadian gasoline demand of roughly -0.1. With an average gasoline price of approximately 60 cents per litre during the period of the study, Barla et al.’s elasticities imply a 5 cent increase in gasoline price reduces short run demand by about 0.8%. These estimates are nearly identical to those in column (1), so the results for the responsiveness of gasoline demand to changes in price are consistent with the literature. Unlike previous studies however, we are interested in the relative responsiveness of demand to carbon taxes and prices. Based on the F-test, we are able to reject the null hypothesis of identical consumer responses to prices and carbon taxes in both (1) and (2). Carbon taxes are statistically more salient than equivalent market prices.

The estimates that we focus on are in (2). We find that in the short-run a $25/tCO₂e tax yields a 12.5% reduction in the demand for gasoline, an effect that is 7.1 times greater than would be expected from an equivalent increase in the market price of gasoline. There are three reasons why this is our preferred model: i) the coefficients are precisely estimated, ii) the point estimates are in the neighbourhood of the majority of the other specifications, and iii) the model is simple and parsimonious. In section 4.6, this is the model used to calculate the counterfactual scenarios and determine the reduction in tonnes CO₂e emitted.

4.3 Robustness Checks
Table 3 displays results from twelve robustness checks. Across all specifications, the coefficients for both the market price of gasoline and the carbon tax are consistent with and corroborate the previous results. Taken together, these specifications reinforce the main conclusion that the carbon tax policy generated a larger demand response than would be expected from an equivalent increase in the market price of gasoline.

After-tax income is included in models in (1) and (2) of Table 4. Data on income are only available on an annual basis for 1990-2010. For (1) then, monthly income is imputed by dividing by twelve on a year-over-year basis. It is important that after-tax rather than gross income is used: due to the tax shift (revenue-neutrality) personal income taxes were reduced in conjunction with the introduction of a carbon tax, so individuals actually had more money to allocate between consumption and savings. Including income produces almost no change in the estimated response to the market price of gasoline with coefficients similar to those in Table 2. Demand responses to the carbon tax are tempered by the inclusion of income, but only by a small amount. This is likely due to the lower level and shorter span for which the carbon tax is active; still, the response to the carbon tax relative to the price of gasoline remains 5.5 times larger.

When we re-estimate (1) using first-differences rather than levels, similar results materialize. (2) shows these first-differenced results and demonstrates that our conclusions are not sensitive to the use of levels. Based on these specifications, income effects do not appear to drive the larger consumer response to the carbon tax. All key parameters are roughly consistent to the inclusion or exclusion of income and not unduly influenced by specification.

Our analysis uses real prices. It is possible however that consumers make decisions based upon nominal carbon tax levels rather than adjusted rates – in effect, consumers may incorrectly estimate the influence of inflation. As the carbon tax was introduced via a series of discrete steps, we are able to exploit this feature of the policy design to explore this potential explanation. In (3), we use the nominal carbon tax to instrument for the real level (identifying off the jumps) and find coefficient estimates agree with our previous specifications – the estimates for market price and carbon tax, respectively, are -0.0036 and -0.0239. As saliency

11 After-tax income refers to income after federal and provincial income taxes only. It does not account for other taxes such as sales or excise.
persists, the differential responsiveness to the two prices appears robust to consumer misoptimization with respect to inflation.

Next, a range of chronological effects may also potentially impact our results. First, temporary, temporally contingent effects around the date of the carbon tax introduction could influence our estimates. For example, estimates may be measuring an announcement effect and not a distinct behavioral response to equivalent price changes. There are two main ways that an announcement effect may manifest itself: i) individuals may reduce their consumption in the month or two months following the introduction of the tax because they are more attentive to their level of gasoline consumption or ii) individuals may shift their consumption to earlier months or purchase and then store fuel in the months preceding the carbon tax. With respect to storage, Borenstein, Bushnell and Lewis (2004) and Marion and Muehlegger (2011) state that the capacity for gasoline storage is extremely limited. Selected purchasers may be able to store some fuel, but capacity generally does not extend for more than a month. Along the same lines, we must distinguish between temporary and permanent announcement effects. An announcement effect associated with the carbon tax that causes a permanent change in behavior should be interpreted differently when compared with an announcement effect that causes households to alter their driving patterns for a brief period before reverting to old habits. The former emphasizes the prospective saliency or information content of the carbon pricing policy, whereas the latter may be considered a fad and the true effect is not persistent. In (4) and (5), the months of June and July and May through August are, respectively, dropped from the dataset. If an announcement effect is present, either due to a storage decision or temporary change in behavior, the coefficient on the carbon tax should be smaller and closer to the estimate for the price of gasoline. We see the opposite. Even with the limited sample, estimates for both variables remain consistent. Month-year time fixed effects are included in all of the models, so perhaps this result is not surprising. All the same, this enables us to conclude that the saliency of the carbon tax is not driven by an announcement effect, rescheduling of travel plans or storage. Similarly, if a structural break in the demand for gasoline occurred prior to the carbon tax policy, the coefficients may reflect a coincident change in preferences. Even though Hughes, Knittel and Sperling (2008) demonstrated that the short-run demand for gasoline has become more inelastic in recent decades, it is possible that demand in BC has become more elastic and that it is this change in preferences that the carbon tax coefficient is capturing. In (6), we limit the
monthly sample to January 2007 through December 2011 and find no appreciable difference in the coefficients. The behavioral response to the carbon tax is still 8.5 times larger at the mean using the restricted sample.

The carbon tax was introduced in British Columbia coincidentally with the recession of 2008-09. Given that our identification strategy is based on the assumption of common trends in British Columbia and other provinces, any heterogeneous effects from the recession across provinces could confound the estimation of the effect of the carbon tax – for example, Hoffman and Lemieux (2013) demonstrate that different Canadian regions experienced distinct labour market reactions during the Great Recession. In (7), we add in a number of time-varying provincial variables that aim to capture potentially heterogeneous responses to the recession. In particular, we include the unemployment rate, the total count of building permits issued in each province as well as the dollar value of retail sales. Adding these business cycle variables slightly reduces the coefficient estimate on the carbon tax variable, but the behavioral response to the carbon tax remains statistically different from the response to the gasoline price and four times as large. In a similar vein, (8) restricts the sample, excluding periods explicitly labelled as recessionary by the CD Howe Business Cycle Council. This restriction produces no substantive change in our estimates.

Interpreting the salience effect requires us to assume that consumers formulate expectations consistently. Anderson, Kellogg and Sallee (2011) find that consumers use a “no-change” to forecast gasoline prices, so we would expect identical responsiveness to both taxes and market prices.12 Nonetheless, it is possible that BC residents made errors with respect to their expectation of carbon tax increases – namely, they may have behaved as though the tax was initially set at its maximum $30/tCO₂e level. To test this hypothesis, we artificially set the carbon tax to its maximum nominal level throughout our period of analysis and then adjust for inflation. Beyond exploring consumer misclassification of tax levels, this specification has additional value as it provides an upper bound on the carbon tax elasticity. (9) displays the results from this formulation: consumers, even in this extreme case, are still approximately three times more responsive to changes in carbon taxes than they are to equivalent market price

12 Similarly, there should be identical responsiveness if consumers expect prices to be mean-reverting or random walks.
fluctuations. The coefficient on gasoline prices matches other models at -0.0035, while the estimate for the carbon tax is approximately half of our preferred specification.

Two additional robustness checks are completed to test the sensitivity of the results to other events that occurred contemporaneously with the carbon tax that could influence the results. In (10), provincial and month fixed effects are interacted and a trend is added. With this model, we eliminate the possibility of province-specific seasonality as an explanation for the added saliency of the carbon tax. Again there is a large and statistically different response to carbon taxes and gasoline prices. In (11) we add dummy variables to indicate the period during which the 2010 Winter Olympics were held (February 2010) as well as to indicate the period during which the Canada Line intracity rail system (a major expansion to the existing rapid transit system in Vancouver) was open (all months including and following August 2009). As both of these periods could be associated with shocks to gasoline demand, it could be important to control for them. Nearly identical coefficients to our base specification are found, suggesting that neither of these events contribute to the explanation of the results.

Finally, specification (12) addresses potential endogeneity of the gasoline price. While we believe that the gasoline price can be considered exogenous because of the highly-integrated nature of gasoline markets, it is possible that retail and refinery margins adjust to local market conditions. As such, we apply the approach of Davis and Kilian (2010), and instrument the market price of gasoline with provincial, inflation-adjusted excise taxes. Excise taxes comprise a significant share of the final price of gasoline, so the link between tax changes and price movements is obvious (i.e, excise taxes are a strong instrument for the price of gasoline; our first stage F-statistic is greater than 400 confirming that excise taxes are highly correlated with gasoline prices). However, Davis and Kilian argue that changes in tax legislation occur with a “considerable lag” (p.1197) and therefore any variation in tax rates are exogenous to short-run changes in gasoline demand. Marion and Muehlegger (2011) make a similar assertion in their analysis of the incidence of excise taxes. We assume this argument is reasonable and maintain it. The results in specification (12) that include instruments for the gasoline price are nearly identical to the prior estimates, suggesting that endogeneity of the gasoline price is not contributing to our findings.
The next subsection discusses several other non-tested explanations for our results. Plausible qualitative arguments rule out these as threats to identification and the robustness of our key coefficients across a range of specifications and sub-samples strengthens our conclusion.

4.4 Other Potential Explanations for the Results

Two alternative explanations, contemporaneous changes in cross-border shopping and contemporaneous vehicle efficiency policies, could also potentially explain our findings. Both are discussed in turn. We believe that neither is credible and that there are good reasons to trust that it is the carbon tax that caused the change in consumer behavior.

The first alternative explanation is that increases in the carbon tax occur contemporaneously with changes in regulations or prices that govern cross-border shopping. A portion of British Columbia residents live near enough the US border with Washington State to make cross-border shopping for gasoline a possibility. We are not aware of regulatory or policy change governing cross-border shopping that occurred in tandem with the carbon tax. However, changes in the Canada-US exchange rate that occurred at the same time as the carbon tax could have motivated additional purchases of gasoline by British Columbians in the US, which would affect our coefficients. We address this concern by conducting additional regressions including the Canada-US exchange rate as a covariate. As in prior models, we estimate separate models that include this variable interacted with province dummy variables to capture the potentially heterogeneous effect of changes in exchange rate by province. We find no effect on our main results. This accords with our intuition. While a portion of residents likely do regularly shop for gasoline in the US, for most people, the distance to the US and inconvenience associated with crossing an international border likely make cross-border shopping for gasoline a costly undertaking.

BC also increased funding for its accelerated vehicle retirement program, known as SCRAP-IT, in the two years following the introduction of the carbon tax (Antweiler and Gulati, 2011). Likewise it offered subsidies for hybrid vehicle purchases in the years preceding the tax (Chandra, Gulati and Kandlikar, 2010). Both policies can be considered coincident with the carbon tax. One concern is that these programs sufficiently altered the composition of the vehicle stock, increasing the average fuel economy and leading us to misattribute the reduction in gasoline demanded to the carbon tax. Several arguments lead us to believe this is unlikely.
The main reason is the scope of the programs was too small. SCRAP-IT, a program which offered individuals incentives to purchase more fuel efficient cars13 covered 18,000 vehicles over 2008 to 2011 period (Antweiler and Gulati, 2011). This is less than 1\% of the over 2 million passenger vehicles registered in the province (BC Statistics, 2011).14 Even if every vehicle that entered the SCRAP-IT program was removed from the road, the total litres of gasoline saved would account for only a small fraction of the decrease in gasoline demand. Besides, the majority of SCRAP-IT vehicles were replaced with newer cars and our robustness checks demonstrate that the carbon tax coefficient is not sensitive to small and compact car sales. Along the same lines, hybrid vehicles comprised only 1.1\% of all vehicles sold in BC in 2006 and Chandra, Gulati and Kandlikar (2010) demonstrate that hybrid vehicles tend to replace other small or fuel efficient vehicles. So, the actual increase in fuel economy is small. On balance, these programs are simply too minor to jeopardize our main conclusions. Moreover, BC residents historically tended to purchase vehicles that were already more fuel efficient than average (Chandra, Gulati and Kandlikar, 2010), implying that any accelerated retirement or hybrid subsidy program would have less of an effect in BC than might be found in other provinces or states.

As a final point, there is strong external corroboration of our findings. The carbon tax was designed to be revenue-neutral but is, in fact, revenue-negative. The carbon tax will collect $510 million, or 16.7\%, less than expected over its first four years.15 This is likely in part because of the unexpectedly large demand response to the carbon tax.

4.5 Reductions in Quantity of Gasoline Demanded and Carbon Emissions

Three scenarios are constructed to determine the reduction in litres demanded and emitted tonnes of CO$_2$e attributable to the BC carbon tax.16 We use the coefficients from our preferred model throughout. Scenario one is a baseline counterfactual which represents the situation had no carbon policy been introduced. Scenario two represents a situation where it is assumed that

13 Participants could also switch to public transit or receive a subsidy in order to purchase a bicycle (Antweiler and Gulati, 2011).

14 There are also the more than 700,000 commercial vehicles registered in the province (BC Statistics, 2011).

15 This is an undiscounted sum of the difference between forecast and actual revenues over the first three years plus the difference between the initial forecast and updated forecast for the most recent fiscal year.

16 Note that the BC carbon tax affects all fossil fuels consumed in the province, not just gasoline. However, our analysis is restricted to the impact of the carbon tax on gasoline sales.
the carbon tax has an elasticity of demand which is identical to the price of gasoline – i.e., it is the “equivalent response” scenario. Lastly, scenario three is the “salient carbon tax” scenario and employs the model-predicted quantity demanded.

Figure 2 plots for 2007 through 2011 the annual gasoline consumption for the three scenarios. Scenario one reflects the (simulated) baseline counterfactual demand for gasoline. It charts the number of per capita litres gasoline consumed per year without any carbon price. Demand remains relatively stable with fewer litres demanded in 2008 than in 2011. Scenario two has a corresponding shape to scenario one; a growing wedge, reflecting the increase in the carbon tax from 2.3 cents per litre in 2008 to 5.6 cents per litre in 2011, is apparent. Scenario two reflects a counterfactual where the carbon tax had the same influence as any other increase in the price of gasoline. Finally, scenario three shows the decrease in quantity of gasoline demanded that is the result of the differential response to the carbon tax. The elasticity of demand for the carbon tax is approximately seven times larger than for market prices. Obviously, this translates into a larger decline in litres demanded which is exhibited in the figure. In 2011, predicted per capita demand per month is 13.5 litres lower in scenario three than in scenario one (a level equal to approximately a quarter of a tank of gas per month). In fact, demand in scenario three continues to trend downward even as scenarios one and two increase.

Figure 3 illustrates the province-wide, monthly reduction in tCO₂e from gasoline consumption attributable to the carbon tax. For each scenario, predicted per capita monthly litres demanded are multiplied by population to obtain the aggregate monthly demand of gasoline for the entire province of BC. Volume of fuel demanded is then converted into tCO₂e to obtain the gross tonnes emitted under the three scenarios. Using scenario one as the baseline, we calculate the reduction in emissions from a situation where no carbon price policy is enacted. The dark bars depict the difference between scenarios one and two. This is the saved emissions had the carbon tax yielded the same demand response as conventional price increases. The lighter grey bars reflect the actual emission reduction. Over the first four years, the BC carbon

17 Each litre of gasoline combusted generates 2.47kgCO₂e. This assumes that the energy content of gasoline is 35MJ/L, while the CO₂e content is 70.68 tCO₂e/TJ. Putting it together: \(1 \text{L} = 35 \text{MJ} \times 0.07068 \text{ kg CO₂e/MJ} = 2.4738 \text{kgCO₂e} \). Note that the BC government uses a slightly different carbon content adjustment because of the exemption for the biofuel mandate that exists in the province. Our calculations effectively assume that over their lifecycle biofuels generate the same emissions as conventional gasoline.
tax reduced emissions from gasoline consumption by 3.61 MtCO\textsubscript{2}e. The large majority (about 85%) of this reduction is due to the saliency of the tax.

5. DISCUSSION

Rationalizing the saliency of the carbon tax is challenging within conventional consumer theory. Equivalent price changes for the same good, whether motivated by policy or exogenous supply shocks, should yield identical changes in quantity demanded. In general, behavioral economics has been applied to explain the saliency phenomenon. Finkelstein (2009), Chetty, Looney and Kroft (2009) and Goldin and Homonoff (2013) focus on individual irrationality in the form of inattentiveness or cognitive costs as a motive for their results. Consumers misoptimize or apply rules-of-thumb and these errors manifest themselves as empirically distinct responses to taxes and prices. Congdon, Kling and Mullainathan (2009) describe how other insights from behavioral economics have yet to be explored within the tax policy literature. In particular, they highlight non-standard preferences as an overlooked area. Non-standard preferences refers to the notion that individuals may be “other-regarding” or not “perfectly self-interested” or may use “reference points” (p.377). The welfare of others and, in this case, altruism towards the environment may enter directly into the utility function.

We briefly offer a rationalization of our results that has heretofore not been discussed in the literature: resentment of free-riding as a manifestation of intrinsic v. extrinsic motivation. Consumers resent individuals that free-ride on environmental public good provision and the carbon tax helps eliminate free-riders, an explanation that builds on Congdon, Kling and Mullainathan’s non-standard preferences.

Intrinsic v. Extrinsic Motivations

Bénabou and Tirole (2003) introduce a framework to unify “the interplay of between an individual’s personal motivation and his social environment” (p.489). They claim that there is heterogeneity in individual altruism and greed and that people are concerned about their private and social reputations. Intrinsic and extrinsic motivation can be used to rationalize the salience

18 While less precise with respect to the mechanism, (e.g., learning, statues, altruism, resentment, etc.), the burgeoning peer effects literature in environmental economics (e.g., Allcott (2011) and Bollinger and Gillingham (2012)) can be categorized as other-regarding preferences.
effect we identify. Intrinsic motivation refers to an amalgam of private incentives such as social pressure, self-image and status-seeking; extrinsic motivation represents the conventional contingent incentive structure that is the standard domain of economics. Bénabou and Tirole use intrinsic and extrinsic motivation to demonstrate that explicit incentives may yield a crowding in or crowding out of intrinsic motivation. They emphasize that there can be powerful spillover effects arising from the interaction of individuals with their social environment (Bénabou and Tirole, 2006). These spillover effects may account for the salience of the carbon tax.

Building on Bénabou and Tirole (2003, 2006), we hypothesize a precise link between prosocial behavior, extrinsic incentives and social norms: the salience of the carbon tax can be characterized as a resentment of free-ridership effect. Intuitively, the notion of resentment of free-ridership is a manifestation of other-regarding preferences where carbon taxes enter the utility function both through prices and as a direct argument because individuals care about their own and others’ contribution to an environmental public good (i.e., social norms matter).

Consider resentment of free-ridership as a type of other-regarding preference. Assume that an environmentally conscious driver wants to contribute to an environmental public good (i.e., lower her carbon emissions) by reducing the amount that she drives. Without a price on carbon, one outcome of her decision to drive fewer kilometres is that it lowers the cost of driving for the non-environmentally conscious drivers, enabling them to drive more (e.g., via reduced congestion). This is a form of leakage where a portion of actual emission reductions from the environmentally conscious driver are eliminated by increases in emissions from other drivers. Even if there are net positive environmental benefits, the environmentally conscious driver may be resentful of this leakage. This resentment may manifest itself as an intrinsic disincentive to contribute to the public good. Ultimately, resentment of free-ridership may cause the environmentally conscious driver to contribute less to the public good than if free-riding was not possible. Imposition of a carbon tax, an extrinsic incentive, eliminates the free-ridership problem and, as a consequence, any resentment of free-ridership. A carbon tax forces all drivers to pay an

19 In return, the environmentally conscious driver may, for example, receive a warm glow (Andreoni, 1990; Kotchen, 2006). It worth noting that having the tax as an argument in the utility function means that its effect is distinct from that predicted by a warm glow or impure public good model (e.g., Cornes and Sandler, 1994; Viscary, 2011; Kotchen, 2007). In impure public good models, taxes still work through prices. Nonetheless, under certain conditions, the impure public good model does predict empirically observable features of the gasoline market (e.g., asymmetric responses to price increases and decreases).
environmental cost for each litre of gasoline consumed. An environmentally conscious driver can therefore reduce her kilometres knowing that the non-environmentally conscious individual is paying the full environmental costs of his decision. In this example, the driver has non-standard preferences with respect to the carbon tax and the existence of the tax itself causes a change in behavior beyond any price effects.

6. CONCLUSION

This paper presents the first rigorous empirical evaluation of an actual carbon tax within a North American context. Through a wide-range of econometric specifications, we demonstrate that the carbon tax introduced by the Canadian province of BC is more salient than equivalent changes in price. A five cent increase in the carbon tax, all else constant, causes gasoline demand to decline by 12.5% whereas an identical five cent increase in the market price of gasoline leads to a 1.8% reduction in litres consumed. At $25/tCO₂e, the carbon tax is 7.1 times more salient than the market price of gasoline. Finally, over the first four years of the policy, the BC carbon tax led to a total reduction in emissions from gasoline consumption of over 3.5 million tCO₂e when compared with a counterfactual scenario of no tax.

To our knowledge, this is the first analysis of the saliency of environmental pricing. The results contribute to a prevailing shift to incorporate behavioral economics into tax and environmental policy. While current theory points to individual irrationality as an underlying mechanism for the saliency phenomenon, the discussion in this paper signals that individuals have may also have non-standard preferences – in this case with respect to environmental public goods. As the tax saliency literature matures, an improved understanding of how markets and policy interact within consumer utility functions will develop. We view this research as a contribution to both the behavioral economics of tax policy as well as providing rigorous empirical estimates for the demand elasticity of an actual carbon tax.

20 A converse argument could be made for a relief of guilt effect. Herein, an individual may have driven less prior to the introduction of the carbon tax because she felt guilty about the environmental damage she generated. Once she knows that she is able to pay the full environmental costs of her driving decisions – i.e., once a carbon tax exists – she is willing to drive more. A relief of guilt effect would mitigate a tax’s impact, leading to the conclusion that the tax is less salient than equivalent price changes. Ultimately, under simple other-regarding preferences logic, the saliency of environmental taxes and whether a resentment of free-ridership or a relief of guilt effects exist is an empirical question.
Our findings have several direct environmental policy implications. Most obvious is that individuals do not necessarily respond in the same way to tax increases as to supply shocks. Although our analysis is based on a single policy, the results should be taken into account by policy-makers who are considering introducing environmental taxes which affect gasoline prices. Indiscriminate use of gasoline elasticities may generate inaccurate forecasts of tax revenue and emissions. Our analysis also adds another wrinkle to the price uncertainty versus quantity uncertainty debate that has colored discussions of tax versus cap-and-trade systems. In particular, this research suggests that environmental taxes that directly affect consumer prices result in a larger demand response than an equivalent supply shock. Depending on how consumers view allowance prices (as an environmental ‘price’ or as a supply shock) consumers may respond quite differently to equivalent prices in cap and trade and carbon tax policies, adding another dimension to the comparison of these instruments.
7. REFERENCES

http://www.bcstats.gov.bc.ca/StatisticsBySubject/Economy/OtherEconomicStatistics.aspx. (Last
accessed July 17, 2012).

Chandra, A., S. Gulati and M. Kandlikar. 2010. “Green Drivers or Free Riders? An Analysis of
Tax Rebates for Hybrid Vehicles.” Journal of Environmental Economics and Management,
60(2): 78-93.

National Tax Journal, LXII(3): 375-386.

Journal of Applied Econometrics, 26: 1187-1214.

Consumption and CO2-Emissions in Energy-intensive Industries in Scandinavia.” Energy

124(3): 969-1010.

Gallagher, K.S. and E. Muehlegger. 2011. “Giving Green to Get Green? Incentives and
Consumer Adoption of Hybrid Vehicle Technology.” Journal of Environmental Economics and

Harrison, K. 2012. “A Tale of Two Taxes: The Fate of Environmental Tax Reform in Canada.”

Germany, Canada and the United States.” Working paper.

Figure 1: Average Tax-inclusive Gasoline Price (top panel) and per Capita Gasoline Consumption (bottom panel) in British Columbia and Ontario
Figure 2: Annual per Capita Consumption of Gasoline in British Columbia: Counterfactual Scenarios
Figure 3: Reduction in Emissions Attributable to the Carbon Tax
9. TABLES

Table 1: Key Characteristics of the Revenue Neutrality of the BC Carbon Tax Design*

<table>
<thead>
<tr>
<th>Date</th>
<th>Carbon Tax ($/tonnes)</th>
<th>Carbon Tax (cents/litre)</th>
<th>Average Provincial Personal Income Tax Rate on $100,000</th>
<th>Provincial Business Limit</th>
<th>Provincial Corporate Income Tax Rate (high income)</th>
<th>Provincial Small Business Tax Rate (low income)</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1, 2007</td>
<td>0</td>
<td>0</td>
<td>8.74%</td>
<td>$400,000</td>
<td>12.0%</td>
<td>4.5%</td>
</tr>
<tr>
<td>July 1, 2008</td>
<td>10</td>
<td>2.34</td>
<td>8.02%</td>
<td>$400,000</td>
<td>11.0%</td>
<td>3.5%</td>
</tr>
<tr>
<td>July 1, 2009</td>
<td>15</td>
<td>3.33</td>
<td>7.89%</td>
<td>$400,000</td>
<td>11.0%</td>
<td>2.5%</td>
</tr>
<tr>
<td>July 1, 2010</td>
<td>20</td>
<td>4.45</td>
<td>7.86%</td>
<td>$500,000</td>
<td>10.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>July 1, 2011</td>
<td>25</td>
<td>5.56</td>
<td>7.83%</td>
<td>$500,000</td>
<td>10.0%</td>
<td>2.5%</td>
</tr>
<tr>
<td>July 1, 2012</td>
<td>30</td>
<td>6.67</td>
<td>7.72%</td>
<td>$500,000</td>
<td>10.0%</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

* All non-carbon tax rate changes enacted on January 1st.

In column 2, $/tonne refers to the price in Canadian dollars per carbon dioxide equivalent tonne. Column 3 displays the tax in cents per litre of unleaded liquid gasoline as calculated by the BC Ministry of Finance. The Personal Income Tax rates displayed in Column 4 are the average provincial tax rate for a household earning a nominal income of $100,000 per year up to the point of the tax change (i.e., the tax rate is calculated such that all income is assumed to be earned instantaneously on July 1st). The provincial business limit in Column 5 is the level at which the high income corporate tax rate becomes effective. Column 6 presents the corporate tax rate for business profits that are greater than the provincial business limit, which is displayed in in Column 5. The Small Business Tax rate as shown in Column 7 applies to net income that is less than the small business limit (Column 5).
Table 2: Least Squares Estimates of the Effect of Gasoline Prices and Carbon Taxes on Gasoline Consumption

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly per Capita Gasoline Consumption (litres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Price of Gasoline</td>
<td>-0.0014</td>
<td>-0.0035***</td>
</tr>
<tr>
<td></td>
<td>(0.0014)</td>
<td>(0.0009)</td>
</tr>
<tr>
<td>Market Price of Gasoline*BC</td>
<td></td>
<td>-0.0247***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0074)</td>
</tr>
<tr>
<td>Carbon Tax</td>
<td>-0.0457***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0106)</td>
<td></td>
</tr>
<tr>
<td>Carbon Tax*BC</td>
<td></td>
<td>-0.0247***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0074)</td>
</tr>
<tr>
<td>Provincial Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Month-Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Specification</td>
<td>log-linear</td>
<td>log-linear</td>
</tr>
<tr>
<td>Observations</td>
<td>2580</td>
<td>2580</td>
</tr>
<tr>
<td>F-test - H₀: Market Price = Carbon Tax</td>
<td>95.42***</td>
<td></td>
</tr>
<tr>
<td>F-test - H₀: Market PriceBC = Carbon TaxBC</td>
<td>23.07***</td>
<td></td>
</tr>
</tbody>
</table>

Estimated percent reduction in per capita gasoline consumption caused by a 5 cent increase in the:
- Market Price of Gasoline: 0.7% (1.8%)
- Carbon Tax: 23.4% (12.5%)

Ratio of the demand response to the carbon tax relative to an equivalent change in market prices at $25 per tCO₂e:
- 33.4
- 7.1

*** - significant at a 1% level; ** - significant at a 5% level; * - significant at a 10% level.

Table 2 reports the least squares estimates of the percent change in the per capita number of litres gasoline consumed that results from a corresponding one cent increase in the market price of gasoline and the carbon tax. All models include provincial and time fixed effects (year-month) and the values in parentheses are the heteroskedasticity and autocorrelation consistent standard errors. (1) reports national coefficients for the market price of gasoline and the carbon tax. (2) reports the interactions for the province of British Columbia only. The null hypothesis of equality of the market price and carbon tax coefficients is tested using an F-test. The null is rejected in both models. Also reported are the estimated percent reductions in per capita litres of gasoline consumed that would occur with a five cent increase in the market price and carbon tax respectively. Finally, a ratio of the relative influence of the carbon tax to market-induced price changes is calculated.
Table 3: Effect of Gasoline Prices and Carbon Taxes on Gasoline Consumption: Robustness Checks

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Price of Gasoline*BC</td>
<td>-0.0035**</td>
<td>-0.0017**</td>
<td>-0.0036**</td>
<td>-0.0034**</td>
<td>-0.0034**</td>
<td>-0.0020</td>
</tr>
<tr>
<td></td>
<td>(0.0010)</td>
<td>(0.0004)</td>
<td>(0.0011)</td>
<td>(0.0009)</td>
<td>(0.0010)</td>
<td>(0.0019)</td>
</tr>
<tr>
<td>Carbon Tax*BC</td>
<td>-0.0192**</td>
<td>-0.0192**</td>
<td>-0.0239*</td>
<td>-0.0243**</td>
<td>-0.0270**</td>
<td>-0.0170**</td>
</tr>
<tr>
<td></td>
<td>(0.0093)</td>
<td>(0.0094)</td>
<td>(0.0144)</td>
<td>(0.0076)</td>
<td>(0.0079)</td>
<td>(0.0065)</td>
</tr>
<tr>
<td>Income(6)</td>
<td>0.0164</td>
<td>0.0063</td>
<td>0.0140</td>
<td>0.0066</td>
<td>0.0007</td>
<td>0.0012</td>
</tr>
<tr>
<td>Provincial Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Month-Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sample Restriction</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Drop June-July</td>
<td>Drop May-August</td>
<td>2007-2011 only</td>
</tr>
<tr>
<td>Transformation of Variables or additional covariates</td>
<td>None</td>
<td>First Differences</td>
<td>Instrument Real Tax with Nominal</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Observations</td>
<td>2460</td>
<td>2460</td>
<td>2580</td>
<td>2150</td>
<td>1730</td>
<td>600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Price of Gasoline*BC</td>
<td>-0.0042**</td>
<td>-0.0037**</td>
<td>-0.0035**</td>
<td>-0.0034**</td>
<td>-0.0033**</td>
<td>-0.0020</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
<td>(0.0009)</td>
<td>(0.0009)</td>
<td>(0.0009)</td>
<td>(0.0012)</td>
<td>(0.0019)</td>
</tr>
<tr>
<td>Carbon Tax*BC</td>
<td>-0.0167**</td>
<td>-0.0221**</td>
<td>-0.0130**</td>
<td>-0.0278**</td>
<td>-0.0257**</td>
<td>-0.0200</td>
</tr>
<tr>
<td></td>
<td>(0.0073)</td>
<td>(0.0084)</td>
<td>(0.0051)</td>
<td>(0.0105)</td>
<td>(0.0082)</td>
<td>(0.0075)</td>
</tr>
<tr>
<td>Market Price of Gasoline</td>
<td>-0.0002</td>
<td>-0.0456**</td>
<td>(0.0002)</td>
<td>(0.0021)</td>
<td>(0.0009)</td>
<td>(0.0012)</td>
</tr>
<tr>
<td>Carbon Tax</td>
<td>0.0167</td>
<td>-0.0067</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Provincial Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Month-Year Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Province*Month Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Transformation of Variables or additional covariates</td>
<td>Business Cycle Variables</td>
<td>None</td>
<td>None</td>
<td>Linear time trend</td>
<td>Dummy variables for Olympics and Canada Line</td>
<td>Instrument gasoline price with excise taxes</td>
</tr>
<tr>
<td>Sample Restriction</td>
<td>None</td>
<td>Drop recessions</td>
<td>Set Carbon Tax at Max Nominal Value</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Observations</td>
<td>2364</td>
<td>2290</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
<td>2580</td>
</tr>
</tbody>
</table>

** - significant at a 1% level; * - significant at a 5% level

(a) Income is scaled by 100. Income data are available only until 2010.

Table 3 presents a series of robustness checks. (1) includes after-tax income into the model. (2) estimates the same model using first-differences. Column (3) instruments the real carbon tax with the nominal carbon tax, identifying the parameter off discrete jumps in the tax levels. (4) and (5) drop June and July and May through August (resp.) to ensure that the coefficients on the market price of gasoline and carbon tax are not driven by announcement or storage effects. A shorter time period, from 2007-2011, is estimated in (6) to ensure that the results are robust to potential structural changes. (7) includes three business cycle variables - the unemployment rate, the dollar value of retail sales, and the number of building permits issued. In (8), all months identified as recessions are dropped to ensure the effect is not due to heterogeneous effects of recessions. Column (9) sets the nominal carbon tax at the maximum value in an effort to test whether consumers behaved as though this rate were effective throughout the period of analysis. This estimate provides an upper bound on the carbon tax elasticity. Provincial dummies are interacted with month dummies and a time trend is included in (10). In (11), additional dummy variables are included for the Olympics period and for the opening of the Canada Line in Vancouver. In (12) the provincial gasoline price is instrumented with the provincial excise tax to accommodate potential endogeneity in gasoline price. Value in parentheses are heteroskedasticity and autocorrelation robust standard errors.
ONLINE APPENDIX – SALIENCE OF CARBON TAXES IN THE GASOLINE MARKET

Appendix A: Summary Statistics

Table A1: Summary Statistics for the Monthly Gasoline Consumption and the Market Price of Gasoline

<table>
<thead>
<tr>
<th>Province</th>
<th>Per Capita Gasoline Consumption</th>
<th>Price of Gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>StdDev</td>
</tr>
<tr>
<td>Alberta</td>
<td>177.79</td>
<td>15.50</td>
</tr>
<tr>
<td>British Columbia</td>
<td>114.94</td>
<td>11.63</td>
</tr>
<tr>
<td>Manitoba</td>
<td>138.70</td>
<td>10.98</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>143.99</td>
<td>17.34</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>119.31</td>
<td>18.61</td>
</tr>
<tr>
<td>Nova Scotia</td>
<td>133.36</td>
<td>13.60</td>
</tr>
<tr>
<td>Ontario</td>
<td>128.47</td>
<td>7.78</td>
</tr>
<tr>
<td>Prince Edward Island</td>
<td>164.32</td>
<td>25.73</td>
</tr>
<tr>
<td>Quebec</td>
<td>112.89</td>
<td>7.70</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>205.48</td>
<td>35.92</td>
</tr>
</tbody>
</table>

Gasoline consumption is in litres. Prices are inflation-adjusted and tax-inclusive.

Figure A1: Tax-Inclusive Gasoline Prices for Canada’s Four Largest Provinces