
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

2-1-2022 11:00 AM 

Spatiotemporal characterization of the prr12 paralogues in Spatiotemporal characterization of the prr12 paralogues in 

zebrafish zebrafish 

Renee Jeannine Resendes, The University of Western Ontario 

Supervisor: Kelly, Gregory M., The University of Western Ontario 

Co-Supervisor: Bulakbasi Balci, Tugce, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Biology 

© Renee Jeannine Resendes 2022 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Biology Commons, and the Developmental Biology Commons 

Recommended Citation Recommended Citation 
Resendes, Renee Jeannine, "Spatiotemporal characterization of the prr12 paralogues in zebrafish" (2022). 
Electronic Thesis and Dissertation Repository. 8375. 
https://ir.lib.uwo.ca/etd/8375 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8375&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ir.lib.uwo.ca%2Fetd%2F8375&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/11?utm_source=ir.lib.uwo.ca%2Fetd%2F8375&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8375?utm_source=ir.lib.uwo.ca%2Fetd%2F8375&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

 

Abstract 

Pathogenic variants in the human PRR12 (Proline Rich 12) gene are associated with PRR12-

related Neuroocular Syndrome. However, little is known about the gene/protein function. The 

zebrafish was utilized to address this, as its attributes place it as a premier model to study genes 

involved in human development and disease. In situ hybridization and RT-PCR of embryos 

and larvae, and qRT-PCR of adult tissues revealed the spatial and temporal distributions of the 

prr12 paralogues: prr12a and prr12b. Both paralogues were detected from the maternal and 

zygotic transcriptomes in a global and diffuse expression pattern, and there was enrichment of 

prr12a in the ovary and prr12b in the male mesencephalon of adult zebrafish. Overall, research 

into the PRR12 zebrafish orthologues, provides new information to help elucidate its function 

in humans; and more importantly, it sets the stage for using zebrafish as a model to study this 

and other rare human disorders.   
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                      Summary for Lay Audience 

Rare diseases are individually rare but collectively common, and they impact the life of 

approximately 1 in 12 Canadians. Majority of rare diseases are seen in children, who face 

debilitating disorders that affect many organ systems. Almost all individuals will wait on 

average 5 years to receive a diagnosis. Getting a diagnosis opens the way for treatment options, 

which is paramount for the wellbeing of patients and their families. However, a genetic 

diagnosis is only possible based on the available knowledge connecting genes to diseases.  

Animal systems may be used to investigate gene function and model human genetic disorders. 

In this thesis, the human gene Proline Rich 12 (PRR12) was the target of interest. Disease 

causing changes in the PRR12 gene have been recently associated with the PRR12-related 

Neuroocular Syndrome. Individuals with this syndrome present primarily with developmental 

impairment and eye abnormalities. Currently, there is little known about the PRR12 gene or 

protein it encodes in normal or abnormal development. Therefore, I sought to investigate its 

expression in zebrafish, an established developmental and disease animal system. Zebrafish 

have two gene copies of PRR12, known as prr12a and prr12b (paralogues). I hypothesized the 

prr12 paralogues would act similarly in zebrafish development like those in humans. 

Furthermore, when turned off using a genetic approach, the zebrafish would present 

phenotypes reminiscent of patients with Neuroocular Syndrome. In a first step, I found that 

both prr12a and prr12b are expressed throughout early zebrafish development and in various 

embryonic and larval tissues. In adults, prr12a is predominately expressed in the ovary and 

prr12b is expressed in specific neural structures in the brain and eyes.  

These patterns suggest prr12a and prr12b are required in early development, similar to reports 

of human PRR12, and have more restricted roles in adult zebrafish. Taken together, these 

results provide a rationale for using zebrafish to investigate PRR12 and the PRR12-related 

Neuroocular Syndrome. The next steps, beyond the scope of my work, will be to study the 

effects of mutations of these paralogues, which may ultimately help to understand their 

functions and lead to the development of targeted therapies in humans.  
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Chapter 1  

1 Introduction  

Rare diseases are individually rare but collectively common1 and affect the life of 

approximately 1 in 12 Canadians2. It is estimated that 80% of rare diseases are caused by 

genetic disorders3, and to date, there are approximately 7000 known rare diseases4. Many 

rare diseases are severe and multisystemic, presenting with a wide spectrum of 

phenotypes5; and even though the scientific landscape is rapidly evolving with efforts in 

discovery and diagnostic technologies, rare disease patients continue to face a diagnostic 

odyssey6. Indeed, the average wait time from disease onset to receiving a clinical diagnosis 

is almost 5 years6–8. Throughout this waiting period patients undergo a variety of diagnostic 

tests in succession, including single-gene or multi-gene panel tests, whole exome 

sequencing and/or whole genome sequencing6, yet approximately 50%9 of patients will not 

receive a timely diagnosis, or one at all10,11. In addition, even if a diagnosis can be made 

less than 5% of rare diseases have a beneficial therapy for patients12. Early diagnosis and 

therapeutic intervention in these patients is paramount, as 83% of rare diseases affect 

children13 and cause 30% fatality to children before five years of age14. Ultimately, lack of 

diagnosis and an uncertainty of disease progression leaves patients and their families 

emotionally and psychologically burdened15. Therefore, highlighting the increasing 

demands for initiative and collaborative efforts on the forefront of rare genetic diseases.  

While animal systems cannot fully recapitulate the human disease phenotype, they provide 

strong means to explore the causality of diseases and in particular, help expedite research 

into the continuously growing pool of candidate rare disease variants16.  

Since the early 1980s, the zebrafish has emerged as an important organism in elucidating 

normal and pathological conditions during vertebrate development17 and available 

molecular techniques poise the zebrafish as a platform to recapitulate rare genetic 

diseases18. In particular, established genetic and transgenic zebrafish disease models are 

advantageous in drug discovery and pre-clinical trials19; as many compounds can penetrate 

zebrafish embryos via passive diffusion through the water or can be easily administered 
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orally through a gavage needle19,20. From a physiological perspective, zebrafish are also 

advantageous in studying drug metabolism21, as the kidney and liver function develops 

early in zebrafish22. Furthermore, from an ethical perspective zebrafish are well suited 

model organisms for drug discovery as animal welfare regulation considers zebrafish an 

animal only after 5 days post fertilization (dpf)21. Since major organs in the zebrafish form 

by 5 dpf and are functioning18, if experimentation is completed within this timeframe, 

substantial information and data can be gathered without comprising the principals of 

replacement, reduction, and refinement in animal research23.  

In this chapter, I will first present a specific rare disease and its underlying genetic cause: 

the PRR12-related Neuroocular Syndrome. Then, I will focus on zebrafish as an animal 

model, including its role in understanding rare diseases, to finally focus on the hypothesis 

underlying my thesis objectives.  

1.1 PRR12-related neuroocular syndrome 

The first Proline Rich 12 (PRR12, OMIM #616633) variant associated with disease was 

reported by Córdova-Fletes and colleagues, in 2015, where an 11 year old individual with 

a de novo t(10;19)(q22.3;q13.33) reciprocal chromosomal translocation disrupting the 

PRR12 and ZMIZ1 (Zinc Finger MIZ-Type Containing 1) genes was documented24. 

Specifically, this individual presented with a wide range of clinical features such as 

intellectual disability (ID), neuropsychiatric alterations, and strabismus24. Subsequently, a 

report in 2018 revealed 3 unrelated individuals who were found to have heterozygous, de 

novo truncating variants, who presented with ID, global developmental delay, 

neuropsychiatric problems, vision, and iris abnormalities25. More recently, Reis and 

colleagues reported 4 additional individuals with truncating PRR12 variants, from a cohort 

of individuals with eye anomalies26. This study identified for the first time, familial 

dominant transmission of eye anomalies segregating with the pathogenic PRR12 variant26; 

solidifying the autosomal dominant inheritance pattern originally proposed24,25. Most 

recently, Chowdhury and colleagues reported the largest PRR12 cohort to date, with 21 

additional individuals, all with de novo heterozygous apparent loss-of-function (LOF) 

sequence variants and one individual with a gross chromosomal deletion including the 
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PRR12 gene27. Within this large cohort, all individuals present with developmental 

impairment and some individuals present with additional variable clinical features such as 

structural eye defects, kidney and heart anomalies, hypotonia, and growth delay27. Hence 

the condition is now named PRR12-related Neuroocular Syndrome (NOC) in Online 

Mendelian Inheritance in Man (OMIM #619539) and to date, the cohort encompasses 29 

individuals, reported in the literature. Notably, within the larger cohort there is an almost 

equal male to female ratio (15:14), showing this rare syndrome can affect both sexes 

equally24–27.  

Reported individuals with deleterious disruptions in PRR12 contain either distinct 

sequence variants, gross deletions, or chromosomal translocations. Of the identified PRR12 

sequence variants, 16 are frameshift mutations, 7 are nonsense mutations, 2 are missense 

changes and 2 affect splice sites25–27. The predicted result of the frameshift, nonsense, and 

splice site mutation variants is the introduction of a premature stop codon inducing 

nonsense-mediated decay of PRR12 mRNA25–27. PRR12 has two known isoforms, with 

mutations occurring in both the long and short isoform24–27. Of note, there did not appear 

to be significant differences in clinical features among those with variants that affect both 

isoforms compared to variants that exclusively affect the long isoform. Altogether, it seems 

that alteration of the long isoform specifically underlies pathogenesis25,27.  

As mentioned previously, the clinical features of the PRR12-related Neuroocular 

Syndrome comprise developmental impairment, ocular defects, hypotonia, growth delays, 

and systemic defects affecting cardiovascular and renal systems24–27. Specifically, reported 

pathogenic variants of PRR12 result in: 97% of individuals having developmental 

impairments, 56% having structural eye defects, including microphthalmia and 

anophthalmia (bilateral or unilateral), coloboma (bilateral or unilateral), optic nerve and 

iris defects, 48% having hypotonia, 52% having growth failure, 41% having heart defects, 

and 28% having minor kidney defects24–27. Indeed, the PRR12 cohort reveals a broad 

spectrum of features, with the most associated phenotype being developmental impairment, 

presented in the form of global developmental delay, intellectual disability or isolated 

delays in motor and speech-language24–27. Further, the more severe structural ocular defects 

reported include bilateral anophthalmia described as no eye globe within the orbit28, 
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(Figure 1A)27 and microphthalmia (Figure 1B)26 described as small eye(s) in comparison 

to average eye size in the orbit28. Milder forms of structural eye defects were also reported, 

such as stellate iris (Figure 1C)25, where the iris appears to have a star-like pattern29 and 

iris coloboma (Figure 1D)25 a “keyhole-like” pupil feature (not a typical rounded pupil) 

which can involve the pigment epithelium and stroma30. Mild visual impairment such as 

myopia (nearsightedness) and strabismus, when the visual axis of the eye are misaligned31 

were also documented24–27. It is important to note that not all patients with PRR12 variants 

present with structural ocular abnormalities24,27, adding to the complexity of phenotypes 

seen in PRR12 LOF mutations. The cardiac phenotypes reported included atrial and 

ventricular defects, or pulmonary stenosis27. Several dysmorphic features were commonly 

observed, however, these were variable and nonspecific24–27. The clinical phenotypes of 

the PRR12-related Neuroocular Syndrome are exclusive to this rather small cohort, thus 

the addition of other patients harboring PRR12 variants is paramount in identifying an 

associated signature phenotype(s). In conclusion, this rare syndrome is believed to be 

caused by heterozygous apparent LOF variants, with strong evidence to suggest that 

haploinsufficiency is the causative genetic mechanism24–27. However, there is very little 

known about the function and dysfunction of this gene in mammals, hence a better 

understanding of the molecular mechanisms of PRR12 in normal and aberrant conditions 

is crucial for providing an accurate diagnosis.  
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Figure 1. Images of facial features from select individuals with PRR12 variants. 

Individual A. bilateral anophthalmia27; Individual B. unilateral microphthalmia26; 

Individual C. stellate iris25; Individual D. bilateral coloboma25. Adapted and modified 

from Chowdhury et al., 202127, Reis et al., 202026, and Leduc et al., 201825.  
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1.1.1 Genetic and molecular characteristics of PRR12  

Human PRR12 is located on chromosome 19 (19q13.33)24 and produces 2 functional 

isoforms via alternative splicing: one long and one short transcript24. The long transcript 

(ENST00000418929.7) contains 14 exons encoding a 2036 amino acid protein24,32 and is 

well conserved amongst vertebrate species24,33. The short transcript 

(ENST00000615927.1), encoding a 1215 amino acid protein, contains 12 exons, does not 

contain exon 1-3, and lacks a large portion of exon 4 of the large transcript24,32. PRR12 

mRNA is widely expressed amongst many human adult tissues, however, there is enriched 

expression in the cerebellum, pituitary and thyroid gland, and the female reproductive tract 

(GTEx)27,34. Also, it has been reported that PRR12 appears to be expressed more in fetal 

brain in comparison to adult brain27,35, suggesting a role in fetal brain development27. The 

majority of promoter/enhancer regions in PRR12 are also present with a bivalent state in 

induced pluripotent stem cell lines and human embryonic stem cell lines27,32,36. This 

chromatin state allows for embryonic cell differentiation and is linked to developmental 

genes37, thus further supporting that PRR12 may play a role in embryonic neurogenesis27.  

In vitro studies have revealed a similar fetal-adult expression profile with mouse Prr12 

isoforms, where the longer Prr12 (~212-kDa) is abundantly expressed in embryonic (E15) 

brain cells in comparison to postnatal (P1) and adult mouse brain cells24. Further, this in 

vitro study revealed distinct subcellular localization of the two Prr12 isoforms with the 

longer Prr12 confined to the nucleus and the shorter Prr12 detected both in and outside of 

the nucleus24. Therefore, it is speculated that PRR12/Prr12 may participate as a nuclear 

cofactor during transcriptional regulation24,25.  

The human PRR12 gene encodes a protein with two predicted AT-hook domains24,25,27, 

which are DNA-binding peptide motifs that enable the protein to bind to the minor grove 

of adenine and thymine-rich sequences38. These motifs are present in high mobility group 

proteins38, which have been associated with chromatin and DNA-binding proteins39. 

Together, these AT-hook domains and observed nuclear localization are also indicative of 

a role for PRR12 in transcriptional regulation24. In support of this role, PRR12 contains 

post-translational phosphorylation (phosphoserine and phosphothreonine)40 and 
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acetylation sites41, which are speculated to cause its epigenetic regulation25. Moreover, 

Lysine-402 is acetylated41 and since bromodomain-containing proteins (bind and recognize 

lysine residues that are acetylated)42 were found to be co-expressed with PRR1227,43–45, it 

is further speculated that PRR12 may be modulated via epigenetic regulation27. 

Although the mechanism of PRR12 function is poorly understood, new insight into its 

regulation was discovered by Mao and colleagues in glioblastoma cells lines46. This group 

discovered that PRR12 is a downstream target gene of miR-766-5p, an upregulated 

microRNA in gliomas, where overexpressing PRR12 in these cells decreased proliferation 

and increased apoptosis46. While this study sheds light on the role of PRR12 in 

tumorigenesis, there remains a huge gap in the literature describing the role of PRR12 in 

development and disease.   

In summary, based on the clinical features of PRR12 LOF24–27, and in reported expression 

patterns, human PRR12 mRNA seems to be differentially expressed in various adult human 

tissues, with abundant expression in the brain and female reproductive system (GTEx)27,34. 

Specifically, PRR12 expression is elevated in fetal brain, compared to the adult brain27,35, 

but while the spatiotemporal expression of PRR12 is currently inferred, further functional 

studies are needed to elucidate the expression profile of this target in human development.  

1.1.2 PRR12 from bedside to bench  

In further investigating orthologous human disease-associated genes in zebrafish, 

databases such as OMIM47 impart information regarding genetic disease. Specifically, 

OMIM is a repository consisting of human genes and genetic phenotypes linked to disease, 

which can be used as a diagnostic tool and reference for clinicians and researchers48,49. 

When investigating candidate genes, OMIM provides a platform to cross reference and 

identify if there are known genotype-phenotype correlations of target genes. The Proline 

Rich gene family contains 22 members in humans, with 9 of the 22 having an identifiable 

zebrafish counterpart (Table 1, verified through Ensemble Genome Browser32 and OMIM 

database searches47). 
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Table 1. Summary of the proline rich genes in development and associated human 

disease 

Gene 

Symbol 

OMIM 

Ref. 

Role in 

Human 

Development 

Human 

Tissue 

Expression 

(GTEx) 

Associated 

Human 

Disease(s) 

References 

PRR5 

(Proline 

Rich 5) 

609406 Regulates 

platelet-derived 

growth factor 

Spleen, breast, 

and pituitary  

Breast and 

colorectal 

tumorigenesis  

34,47,50–57 

PRR7 

(Proline 

Rich 7) 

618306 Brain and blood 

lymphocytes 

development  

Brain, 

pituitary, and 

lymphocytes 

cells 

Not identified 34,47,58–62 

PRR11 

(Proline 

Rich 11) 

615920 Cell-cycle 

progression  
Fibroblast 

cells, 

lymphocyte 

cells, and 

esophagus 

(mucosa) 

Breast, esophageal, 

gastric, pancreatic, 

colorectal, ovarian, 

and hilar 

cholangiocarcinoma 

tumorigenesis   

34,47,63–81 

PRR12 

(Proline 

Rich 12) 

616633 Neural 

development  
Brain, thyroid, 

and female 

productive 

tract  

Neuroocular 

syndrome: 

intellectual 

impairment, eye 

abnormalities, heart 

anomalies, kidney 

anomalies, growth 

delay, and 

tumorigenesis  

24–27,34,46,47 

PRR13 

(Proline 

Rich 13) 

610459 Not identified Whole blood, 

small 

intestine, and 

kidney 

Ovarian cancer and 

ulcerative colitis  

34,47,82–84 

PRR14 

(Proline 

Rich 14) 

617423 Promotes cell 

proliferation, 

skeletal 

myogenesis and 

MyoD activity  

Brain, uterus, 

and spleen  

Not identified 34,47,85–91 

PRR16 

(Proline 

Rich 16) 

615931 Promotes cell 

size, 

mitochondrial 

mass, and 

respiration  

Fibroblast 

cells, aorta 

artery, and 

uterus  

Carotid 

paragangliomas 

34,47,92–95 

PRR18 

(Proline 

Rich 18) 

Not found. Not identified Brain, 

lymphocyte 

cells, and liver 

Not identified 34,47 

PRR33 

(Proline 

Rich 33) 

Not found.  Not identified Spleen, whole 

blood, and 

adrenal gland  

Not identified 34,47 
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Collectively, the Proline Rich genes have some overlap in neural expression (PRR7, 

PRR12, PRR14, and PRR18) and varying types of tumorigenesis as the most common 

associated disease (PRR5, PRR11, PRR13, and PRR16). However, due to limited literature, 

identifying a definitive role of the Proline Rich genes in development and disease cannot 

be ascertained at this time. Within the Proline Rich gene family, as previously discussed is 

PRR12, a current candidate gene associated with Neuroocular Syndrome (OMIM #619539) 

and the target of this thesis. As mentioned above, there is relatively little literature 

describing the molecular function and pathogenic mechanisms of PRR12, and the protein 

it encodes, which has unknown function(s)24–27. PRR12 contains proline-rich regions, 

which have been described to consist of repetitive prolines, consisting of approximately 5-

8 residues in length96. While the proline-rich regions of PRR12 have not been 

characterized, a shared element of proline-rich regions is their involvement in binding 

processes (e.g., protein-protein binding and transcription)96. Furthermore, proteins with 

proline-rich regions have been linked to synaptic vesicle-associated neuronal proteins96, 

and curiously, the short Prr12 isoform in mouse was also identified in the perisynapse, 

postsynaptic density, and synaptosomes24. While one can speculate on the function of 

PRR12, further in vivo modelling efforts are critical in elucidating the biological function 

of PRR12/PRR12 in development.  

1.2 Zebrafish  

The zebrafish (Danio rerio) is a small tropical fish18 and named due to its signature 

horizontal stripes97. Geographically, zebrafish are native to areas of India, Nepal, and 

Pakistan, where they can be found in rivers and slow moving streams at fluctuating 

temperatures (12.3ºC – 38ºC)98–100 and elevations (39m – 63m above sea level)98. In the 

wild, zebrafish form shoals, a social behavior needed for optimal survival, which allows 

for increased foraging and escaping predation101. Wild zebrafish primarily spawn during 

the rainy season, where females oviposit their clutch of eggs into substrate, in preparation 

for male fertilization99. After successful fertilization, clutches will develop and mature 

without parental care99. On average, wild zebrafish live up to 3 years of age102, and since 

their use as a model to study embryogenesis in the 1930s103, captive bred zebrafish have 

been documented to live up to 5 years of age102.  



10 

 

1.2.1 Zebrafish development: from zygote to adult  

Optimal zebrafish embryogenesis occurs over the course of 3 days at 28.5ºC as described 

by Kimmel et al22, however, increasing the temperature to 32ºC can accelerate this 

process104. Embryogenesis is initiated with the egg and sperm fusing to form a zygote22,105, 

in which, embryogenesis is comprised of 7 periods: zygote, cleavage, blastula, gastrula, 

segmentation, pharyngula, and hatching (Figure 2)22. The transition from the short-lived 

zygotic stage is signaled by the first cleavage event, ~40 minutes after fertilization22. These 

blastomeres undergo synchronous division every 15 minutes until reaching the 64-cell 

stage. Cells undergo incomplete cytokinesis during the 2-16 cell stage due to their 

connection to the underlying yolk. Subsequent stages, 16-64-cell stages, undergo both 

complete cytokinesis of inner blastomeres and incomplete cytokinesis of outer 

blastomeres, as the latter are still in contact with the yolk22. During these early stages of 

embryogenesis, the animal-vegetal axis is visible, with cytoplasmic streaming forming the 

blastodisc at the animal pole, and the yolk at the vegetal pole22. These early cell division 

events are defined as meroblastic cleavage, as each cleavage furrow divides through the 

blastodisc but not the yolk22.  
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Figure 2. Overview of zebrafish development. There are seven developmental periods 

from the zygote stage through the larval period, corresponding to key embryonic (and 

larval) structures (on bottom). Adapted and modified from S. Lepage, using BioRender106, 

not drawn to scale.  
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Progression through the 128-cell stage marks the onset of the blastula period and near the 

10th cell division event (512-cell stage) the initiation of the midblastula transition (MBT) 

occurs22. The MBT is characterized by the lengthening of the cell cycle, metasynchronous 

cell divisions22, and activation of the zygotic genome107,108. This blastula now contains 4 

main layers: deep cells that give rise to the embryo proper; the yolk cell, which is an 

uncleaved cell-like structure containing yolk; the yolk syncytial layer between the deep 

cells and the yolk; and the enveloping layer of external cells of the blastoderm. The blastula 

period ends and gastrulation begins following epiboly, a process causing the migration of 

the blastoderm and cells of the yolk syncytial layer to spread over the yolk22.  

Gastrulation, whereby morphogenetic movements including epiboly, involution, 

convergence, and extension, is initiated by the involution of the deep blastoderm cells 

migrating outwards22. These and subsequent coordinated cell movements determine which 

cells become specific tissue and organ structures (Figure 3). Following involution, the 

germ ring forms around 5.75 hours post fertilization (hpf), and convergent movements 

cause a thickening along the margin of the blastoderm, creating two layers: epiblast (outer 

layer) and hypoblast (inner layer). Around 6 hpf, the accumulation of these cell layers 

transition and form the embryonic shield, a structure also referred to as the organizer that 

marks the future dorsal side of the embryo22,109. By 8 hpf (75%-epiboly), the epiblast and 

hypoblast are more visually distinctive with cells residing in the epiblast fated towards 

ectoderm lineages, while cells within the hypoblast comprising the mesoderm or endoderm 

lineages. The end of epiboly, where convergence and extension movements cause the 

blastoderm to nearly cover the entire yolk, signals the completion of gastrulation around 

10 hpf (Bud stage)22.  
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Figure 3. Zebrafish gastrula onset (50%-epiboly) fate map. Adapted and modified from 

Gilbert, 2000110 and Kimmel et al., 199522. 
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During the segmentation period (10 hpf - 24 hpf), the embryo lengthens, and many 

morphological processes occur. The tail bud becomes distinguishable, and the first somite 

furrow (1-somite stage) and primary embryonic organs are seen. Somites, which give rise 

to the skeletal muscle in the trunk region and axial skeleton, develop anterior to posterior 

in a process referred to as somitogenesis (1 - 26-somite stage). At later stages, the primordia 

of the brain and optic vesicles are seen at 11.75 hpf (5-somite stage) and by 16 hpf (14-

somite stage) the telencephalon, diencephalon, mesencephalon, and rhombencephalon 

clearly demarcate the divisions of the brain. By 19 hpf, organ systems have developed, 

including the pronephric (embryonic) kidney and side-to-side movements of the embryo 

are frequently observed at the end of segmentation22.  

The pharyngula period (24 hpf - 48 hpf), referred to as the phylotypic stage, is characterized 

as embryos having a hollow nervous system, brain regions delineated into 5 lobes, a 

notochord, and a complete set of somites. Noticeably, pigmentation at later stages is 

prominent, specifically in the retinal epithelium and in melanophores throughout the head, 

trunk, and tail. The circulatory system has also developed and by 24 hpf the heart contracts. 

The end of the pharyngula period signals the level High-pec stage, which by 42 hpf, the 

rudiments of the pectoral fins are seen and a division has occurred between the heart atrium 

and ventricle22.  

The hatching period (48 hpf - 72 hpf) comprises the final period of embryogenesis as the 

embryo transitions into its larval (fry) stages. Zebrafish from the same clutch will hatch 

asynchronously from their chorions (eggshell), and although many organ rudiments are 

complete by this time, rudimentary structures of the jaw, gills, and pectoral fins continue 

to develop. The yolk begins to deplete in preparation for free feeding, melanophores are 

prominent, and the mouth protrudes; all in preparation for the larval transition. Larvae can 

swim, due to the completed development of its eyes, pectoral fins, opercula, and 

specifically, the inflation of a swim bladder22.  

The larval stages last for approximately 6 weeks111, and by ~10 – 12 dpf sex differences 

are detected112. Many factors contribute to sex determination, however, the underlying 

mechanisms driving these differences have yet to be clarified113. Gonadal differentiation 
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occurs by 25 dpf114,115, where female gonads are detected around 35 dpf, and male gonads 

at 45 dpf115. Paired ovaries are elongated structures116, containing oocytes, that can be 

identified throughout development at different stages such as: primary growth, cortical 

alveolus, vitellogenic, and mature oocyte117. Similarly, testes are paired and elongated, and 

contain varying types of reproductive cells such as Sertoli cells, Leydig cells, 

spermatogonia, spermatocytes, and mature spermatids116. Adults are sexually mature at 

approximately two months of age118, whereby spawning in the laboratory is induced by the 

onset of light119, and a single breeding pair of zebrafish provides, on average, 200-300 eggs 

a week18.  

As a sexually mature adult, the brain has clearly delineated into regions comprising the 

forebrain, midbrain, and hindbrain, and each region is further subdivided120. The forebrain, 

responsible for cognitive functioning and receiving and processing sensory information, is 

the most anterior structure120. The forebrain is further divided into two main domains, the 

telencephalon containing the olfactory bulb, pallium and subpallium, and the diencephalon, 

which contains the habenula, pineal body, and hypothalamus120,121. Although technically 

not classified as regions of the brain, the eyes develop as out-pockets of the forebrain122. 

The zebrafish eye is similar to other vertebrate eyes and comprises the cornea, lens, iris, 

choroid, retina, and optic nerve, which connects the eye to the brain123. The midbrain, 

required for visual and auditory processing, is further subdivided and includes the tectum 

and tegmentum120. Lastly, the hindbrain, which includes the cerebellum, is required for 

regulation of motor function and perception of sensory stimuli124. In summary, zebrafish 

development is rapid, with distinguishable stages and structures that highlight the 

significant changes needed for subsequent physiological processes.  

1.3 Zebrafish, a model organism in development  

Within the field of developmental biology there are many vertebrate and invertebrate 

model systems: house mouse (Mus musculus), African clawed frog (Xenopus laevis), fruit 

fly (Drosophila melanogaster), and nematode (Caenorhabditis elegans), to name a few125. 

While all model organisms have both favourable and unfavourable characteristics125, 

zebrafish possess certain features that make them a powerful system in the laboratory. The 
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zebrafish, in particular, is advantageous in studying development as well as disease, due in 

part to the fact they are vertebrates, but also have a relative fast generation time, high 

fecundity, near-transparent embryos that develop outside the female18, and show genetic 

similarities to humans126.  

Having a fully sequenced genome of a model organism is vitally important in driving 

genetic and molecular research and many sites are available including: Zebrafish 

Information Network (ZFIN)127, Ensembl32, UCSC Genome Browser128, and NCBI129. 

Initiation of the zebrafish genome-sequencing project occurred in 2001, involving an 

initiative with the TU (Tübingen) wildtype zebrafish strain126. Although additional 

wildtype strains are currently in use, including the AB (Star-AB) and WIK (Wild India 

Kolkata) wildtype strains130, more than half of published research is based on TU genome 

reference databases131. The TU genome contains 26,206 protein-coding genes and ~71% 

of the human protein-coding genes share a zebrafish orthologue126. However, one apparent 

difference, is that zebrafish lack heteromorphic (X and Y) sex chromosomes132,133. 

Tetrapods and zebrafish genomes show evolutionary differences of approximately 440 

million years ago134, with the zebrafish ancestor undergoing an additional genome 

duplication, referred to as teleost-specific genome duplication135. Consequently, this teleost 

duplication accounts for the presence of paralogous genes, with zebrafish having two 

copies of many human genes126,135. While loss-of-function of duplicated genes in probable, 

paralogues can alternatively gain new functions (neo-functionalization) or retain function 

(sub-functionalization) over the evolution of an organism136.  

Although noted genetic differences exist between humans and zebrafish, their popularity 

as a model preceded these differences and was related to other attributes of the system. As 

noted above zebrafish, compared to other vertebrates, develop relatively fast and have large 

clutch sizes18. Embryogenesis and larval development of zebrafish take approximately 6 

weeks111 and fish are sexually mature after only a few months118, unlike Xenopus, who can 

take 1-2 years to become sexually active137. The ex utero fertilization and development of 

the zebrafish embryo also allows for easy manipulation and its relative transparency 

enables the direct visualization of developing organs138 and real time cell imaging139. 

Additionally, various techniques and procedures such as in situ hybridization (visualization 
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of endogenous gene expression)140, xenotransplantation (cell transplant)141, and ease of 

genetic manipulation (see below) highlight the robustness of the zebrafish embryo. In 

contrast, the house mouse has litters of 6-8 pups142 and a gestation period around 18-22 

days143. This coupled with in utero development has obvious obstacles to accessing 

embryos in the pregnant female. Furthermore, large clutches and frequent breeding 

prominently place the zebrafish as the system for high-throughput chemical and drug 

screens19. Other attributes are available to the zebrafish, but as a vertebrate one major 

attraction is that it can be grown in a cost-effective manner103, and more importantly, given 

its genetics and genomic relation to humans and the ease to modify this genome, it now 

sits at the forefront to study and model human diseases.  

1.4 Molecular toolbox to manipulate the zebrafish genome  

To create functional knockout zebrafish lines a plethora of approaches and technologies 

allow for sustained, heritable genetic disruptions. These involve endonucleases targeting 

specific sequence site(s) to induce DNA double stranded breaks (DSBs), and one of the 

approaches is using zinc finger nucleases (ZFNs)144. ZFNs are comprised of DNA binding 

domains containing zinc fingers and a DNA cleavage Fokl endonuclease domain144. Zinc 

fingers are small protein motifs that recognize a specific nucleotide sequence target of 3 

base pairs in length145. When two ZFNs bind to the target site they create a functional Fokl 

dimer and a DSB occurs after digestion with Fok1 and these are repaired through either 

non-homologous end joining (NHEJ) or homology-directed repair (HDR) if homologous 

donor templates are present146. Successful knockout of vascular endothelial growth factor-

2 receptor (kdra)145 and forkhead box protein P2 (foxP2)147 in zebrafish was performed 

using ZFNs and studies have shown that they cause between 1.6 – 33% mutagenic 

frequency148,149. Although ZFNs have been successful, their main limitations result from 

off-target effects and embryonic abnormalities not connected to the knockout of the target 

gene145,150,151. Thus, a degree of caution must be noted when implementing this knockout 

technique. 

Transcription activator-like effector nucleases (TALENs) also use the endonuclease 

machinery to induce DSBs152. Similar to ZFNs, TALENs work in pairs to target the gene 
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sequence of interest whereby their dimerization allows for the recognition of the Fokl 

endonuclease which causes breaks to occur153,154. TALENs are more specific and have 

better efficiency than ZFNs152. However, the main limitation to the TALEN approach is 

the TALEN size (~3 kb, kilobases), which poses challenges when trying to deliver the 

machinery into cells155. Despite these limitations there are advantages, highlighted in a 

study targeting the same site of the C-C chemokine receptor type 5 (CCR5) gene with ZFN 

and TALEN, with ZFNs producing more off-target mutations in the C-C chemokine 

receptor type 2 (CCR2) gene156. While ZFNs and TALENs have been successful in 

generating knockout zebrafish lines, the discovery of clustered regularly interspaced short 

palindromic repeats (CRISPR) mutagenesis has revolutionized genome editing in this and 

other organisms.   

Zebrafish were the first vertebrate system where CRISPR-Cas9 induced mutagenesis was 

successful157,158 and since 2013126, many mutants have been established using this 

method159. The origins of the CRISPR system were first identified as part of the adaptive 

immune system in bacteria160, where a guide RNA and a Cas9 endonuclease target an 

invading viral DNA161. In zebrafish, the 20 bp single guide RNA (sgRNA)162 and the Cas9 

mRNA (or protein) are injected as a ribonucleic/protein complex into the embryo at the 1-

cell stage where the sgRNA signals to the Cas9 where to cause the DSB163. Cas9 cleavage 

at the Protospacer Adjacent Motif site (5’-NGG-3’ just downstream of the sgRNA) induces 

activation of the endogenous non-homologous end joining repair mechanisms, causing de 

novo insertions and/or deletions of bases at the cut site21. In contrast, co-injecting a DNA 

cassette and homology directed repair allows for the insertion of exogenous DNA, thereby 

repairing or replacing the region of interest21. Homology directed repair in particular has 

been beneficial in the generation of zebrafish lines with specific single nucleotide 

polymorphisms and fluorescent reporters21. When knockouts are required, zebrafish 

mutants are considered as either transient or isogenic stable. With transients the mosaic 

loss or gain of function phenotype of F0 zebrafish is assessed, whereas isogenic stables 

require further mating before a phenotype is examined21. In these lines, F0 fish develop to 

sexual maturity (~2 months of age118) and are then outcrossed with WT fish to generate F1 

heterozygous carriers. The F1s are then in-crossed to generate F2 homozygous mutants now 

ready for phenotype assessment. Although more time consuming than the transient 
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approach, the isogenic knockouts can be done in approximately 6 months and provide 

genetic and phenotypic robustness21. Overall, CRISPR/Cas9 methods have shown six times 

higher mutagenic efficiency transmission than ZFNs or TALENs and a 99% success rate 

in mutation generation164. CRISPR is also limited by off-target effects, however, using 

paired Cas9 nickases to induce two single stranded breaks, appears to significantly lessen 

these drawbacks165. Thus, CRISPR-Cas9 in zebrafish has taken over the field as the go-to 

gene editing technique and has been used successfully to generate knockouts in at least five 

targets in a single fish166 and importantly, provides the ability to model human disease.  

1.5 Intersection between rare genetic diseases and 
zebrafish modelling  

Today, generating rare genetic disease models is primarily through CRISPR-Cas9 gene 

editing, as this technique provides the most robust system to mirror rare genetic disease, 

understand their pathogenesis and even validate novel therapeutics21. Many zebrafish lines 

have been generated to phenocopy diseases of the nervous system167,168, retina169, eye170,171, 

liver172, kidney173,174, craniofacial/skeletal175,176, cardiovascular177,178, hematological and 

immunological179,180, and ciliopathies181. In particular, in vivo systems are extremely 

beneficial when studying neurological disorders as human CNS tissue is usually 

inaccessible for experimentation16, where zebrafish provide an excellent alternative to 

study ocular and CNS disorders18. From an anatomical and physiological perspective, 

studying ocular disease in zebrafish is advantageous, as by 72 hpf the zebrafish eye has 

functioning vision and by that time its retinal architecture is similar to humans138. In 

addition, zebrafish have similar structures to the mammalian brain, sharing major brain 

regions and neurotransmitters (e.g., dopamine, serotonin, and gamma-aminobutyric 

acid)182. Zebrafish models can also be utilized to study the behavioral attributes of disease 

which has been revealed with their ability to recapitulate autism spectrum disorder, ID, and 

epilepsy183. Worth noting is that ~90% of rare childhood diseases compromise behavior or 

the CNS13, further stressing the importance of zebrafish CNS disease modelling. Pena and 

colleagues167, exemplify the utilization of the zebrafish to recapitulate a rare genetic disease 

through modeling Pyridoxine-Dependent Epilepsy (PDE), a rare disease associated with 

pathogenic variants in the Aldehyde Dehydrogenase 7 Family Member A1 (ALDH7A1) 
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gene, causing intractable seizures in neonates/infants. This group targeted zebrafish 

aldh7a1 using CRISPR-Cas9 to generate mutants displaying disease characteristics of PDE 

(e.g., seizures beginning in larval stages). Using drug screening techniques the researchers 

found pyridoxine and pyridoxal 5’-phosphate (which is the currently used treatment) 

mitigated the seizure-like behavior, and extended the life span of aldh7a1 mutant 

zebrafish167. This study is particularly important as it was the first time a PDE animal model 

was created and is an example of a promising start to the utilization of the zebrafish model 

to answer questions about pathogenic mechanisms and specific treatment options for rare 

genetic diseases.  

1.6 PRR12 and zebrafish  

To date, there is no literature describing any animal model recapitulating the PRR12-related 

Neuroocular Syndrome (NOC). Given the ocular and neurodevelopmental phenotypes of 

this syndrome and the advantages of using the zebrafish model to study neural development 

and the eye, the zebrafish is an attractive system to investigate this gene and potential 

syndrome. In Chapter 3, I explore the two orthologues of human PRR12 in zebrafish, 

proline rich 12a (prr12a) and proline rich 12b (prr12b); two paralogous genes that are 

related through a duplication event184. Furthermore, temporal expression of the prr12 

paralogues has been detected from the one-cell stage through 5 dpf in zebrafish185, alluding 

to its importance and role in early developmental processes.  

To understand the intricate mechanisms of development, spatiotemporal gene expression 

information is needed to characterize the regulatory processes that govern embryonic 

development. Various techniques such as quantitative reverse-transcription polymerase 

chain reaction (qRT-PCR)186, whole-mount in situ hybridization (WMISH)187 and RNA-

sequencing188, can be used to investigate the developmental and/or tissue-specific 

expression patterns of target genes within the zebrafish. Such efforts are the first step in 

investigating gene regulation, and to ultimately understand and model human genetic 

diseases in zebrafish. Thus, in the present work, the pattern and expression of the prr12 

paralogues in early development and adulthood are characterized. The presented data 

expands on the relatively limited knowledge of the developmental role of PRR12, with 
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hopes to utilize the zebrafish model to demonstrate the spectrum of clinical phenotypes 

seen within this rare syndrome.   

Disclaimer: The initial goal of this thesis was to create a CRISPR/Cas9 knockout of a 

prr12a/prr12b zebrafish disease model for the human PRR12-related Neuroocular 

Syndrome, as well as an investigation into the function of the prr12 paralogues. I was not 

able to complete these experiments due to a suspected bacterial outbreak in the zebrafish 

housing system, leading to its closure (see Appendix 1); in addition to difficulties caused 

by the COVID-19 restrictions imposed by Western University, the Province of Ontario, 

and the Government of Canada. Therefore, the experiments that I had planned on 

completing for my M.Sc. thesis were revised, to focus instead on the spatiotemporal 

expression characteristics of the prr12 paralogues in zebrafish embryos, larvae, and adult 

tissues.  
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1.7 Rationale, hypothesis, and objectives  

 

Rationale of this study:  

In vivo models, like that offered by the zebrafish, provide an unparalleled system to study 

development, genetics, and disease etiology. Due to the many attributes available to 

zebrafish including their rapid generation time, high fecundity, near-transparent embryos, 

and ease of genetic manipulation18, my aim was to investigate the expression of prr12a and 

prr12b in zebrafish early development and adulthood. Towards that end, I characterized 

the spatiotemporal expression patterns of these transcripts using in situ hybridization, RT- 

and qPCR. Given the minimal literature describing prr12 in any organism, the insight 

gained from these efforts provide significant knowledge of the role for prr12 role in 

vertebrate development, and specifically will assist in delineating the pathogenesis of the 

variation of PRR12 in the clinical population. 

Hypothesis of this study:  

I predict that during embryogenesis, larval development, and adulthood, the zebrafish 

prr12 paralogues will be expressed in tissues as seen for human PRR12. Specifically, I 

hypothesize that human PRR12 is conserved in its spatiotemporal expression patterns with 

the zebrafish paralogues, and that their biological function(s) is/are also similar. That said, 

studying the zebrafish paralogues provides a necessary platform to investigate underlying 

mechanisms that lead to human PRR12-related Neuroocular Syndrome.  

Objectives of this study:  

1. Identify the spatiotemporal expression of the prr12 paralogues in embryonic and larval 

zebrafish development.  

2. Analyze the tissue distribution and gene expression of the prr12 paralogues in male and 

female adult zebrafish.  
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Chapter 2  

2 Materials and Methods  

2.1 Zebrafish husbandry: maintenance and embryo 
collection  

All experiments were conducted in accordance with the guidelines outlined by the 

Canadian Council on Animal Care and approved by the Animal Care Committee at 

Western University (AUP #2019-149; Appendix 1), and Western’s Biosafety Approval 

(BIO-UWO-0081). 

Procedures for the assembly and start-up of the Aquaneering ZS560 Zebrafish Housing 

System were implemented according to the manufacturer’s instructions189. System 

acclimation was conducted for approximately 8 weeks where water flow, pH, ammonia, 

and nitrate levels were monitored, adjusted, and checked daily; in addition to all other 

system maintenance outlined by Aquaneering189. TU and AB wildtype zebrafish 

(generously donated by Dr. B. Ciruna, The Hospital for Sick Children, Toronto, ON and 

Dr. M. Ekker, University of Ottawa, respectively) were housed separately by zebrafish 

strain in the system and used for experimentation. Zebrafish nutritional culture standard 

operational procedures were established from Aquaneering protocols, and zebrafish were 

fed according to guides provided by Aquaneering189 and the Zebrafish Book190. Briefly, 

paramecia (Paramecium multimicronucleatum) (Ward’s Science, Henrietta, NY, USA) 

were purchased and fed to zebrafish aged 5-15 dpf; brine shrimp nauplii (hatched cysts) 

(Brine Shrimp Direct, Salt Lake City, UT, USA) were fed to zebrafish aged 16 – 30 dpf; 

and slow sinking (1.0mm) dry food pellets (Zeigler, Gardners, PA, USA) with brine shrimp 

nauplii were fed to zebrafish after 31 dpf on alternating days. Paramecia cultures were 

passaged every 5 weeks and examined for contamination every 2 days using the SZO-4 

OPTIKA stereomicroscope (OPTIKA Microscopes Italy). Brine shrimp eggs (cysts) were 

hatched according to the manufacturer’s protocol189. 

Adult zebrafish were stocked at 6-8 fish per liter with an approximately equal male to 

female ratio and held under a 14-hr light/10-hr dark light cycle at 28.5ºC. Breeding 

procedures were outlined in the Zebrafish Book190 and the Kelly Laboratory Protocol (AUP 
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#2019-149; Appendix 1). For pair-wise breeding one female and one male were placed in 

static tanks overnight. Approximately 30 minutes after light cycle initiation, embryos were 

collected using a 4-inch nylon mesh strainer. Zebrafish embryos were raised in embryo 

medium (E3) solution (1% methylene blue) at 28.5ºC that was changed daily190. Five dpf 

zebrafish were introduced to the housing system, where age and overall morphology was 

assessed according to a staging guide22.  

2.2 Embryo, larval, and adult mRNA expression analysis  

2.2.1 Embryo and larval mRNA isolation  

Total mRNA was isolated from TU wildtype strain embryos and larval (fry) at 2-cell (0.75 

hpf), 32-cell (1.75 hpf), 128-cell (2.25 hpf), 1k-cell (3 hpf), 50%-epiboly (5.3 hpf), 1-4 

somite (10.3 hpf), 14-19 somite (16 hpf), Prim-6 (24 hpf), Long pec (48 hpf), Protruding 

mouth (3 dpf), Day 4 (4 dpf), and Day 5 (5 dpf). Approximately 30 embryos or fry were 

pooled at each timepoint, according to a staging guide22, and RNA isolation was performed 

according to Peterson and Freeman, 2009191. Briefly, samples were homogenized using a 

pellet pestle (Thermo Scientific, 12-141-364), mRNA was isolated using TRIzol reagent 

(Invitrogen, 15596026) and chloroform eluted in a final volume of 100 μL of RNase-free 

water and quantified using a NanoDrop™ 2000c Spectrophotometer (Thermo Fisher 

Scientific). RNA was reverse transcribed into cDNA using the High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, 4368814) as per manufacturer’s 

instructions.  

2.2.2 Adult tissue dissection and mRNA isolation  

A total of 3 male and 3 female 8-month-old TU wildtype strain zebrafish siblings were 

used for dissections of the brain, eye, liver, kidney, and reproductive organs. Dissections 

were performed by the Zebrafish Genetics and Disease Models Core Facility at the Hospital 

for Sick Children (Toronto, ON) as described in Gupta and Mullins, 2010192 with minor 

modifications. Briefly, zebrafish were individually immersed in 0.2% tricaine and 

euthanized in an incubation of ice water and then laterally pinned on a dissecting mat under 

a stereomicroscope. The ventral underside of the fish anterior to the anal fin was cut to the 
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operculum and the gill was excised. The remaining skin and underlying muscle from the 

lateral sides of the fish were removed. The testes or ovaries were excised, and the fat was 

dissociated prior to collection. The gastrointestinal system was removed from the body 

cavity of the fish and the whole intestine and liver collected. The swim bladder was 

removed, and fish were placed dorsal-side upwards to collect the head, body and tail of the 

kidney located on the dorsal wall. For collection of the eye and the brain, the head was 

removed with a razor blade and the skull opened on the dorsal side from the anterior 

forehead. The right eye of all zebrafish was excised and collected. The whole brain was 

also excised and macro-dissected on dry ice into 3 brain regions: the telencephalon, 

mesencephalon and rhombencephalon, with the optic tectum used as a landmark. All 

dissections were performed using sterile/RNase free dissecting scissors, razor blades and 

forceps and collected on dry ice immediately after excision. RNA was isolated using the 

Trizol reagent and chloroform following the manufacturer’s protocol (Invitrogen) and 

eluted in a final volume of 15 μL of RNase-free water and quantified using a NanoDrop™ 

2000c Spectrophotometer (Thermo Fisher Scientific). As the tissue was small in size, 

glycogen (Thermo Fisher Scientific, R0551) was added as a carrier molecule directly to 

Trizol for isolation of RNA. RNA was reverse transcribed into cDNA using the High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 4368813) as per the 

manufacturer’s instructions.  

2.3 Qualitative (endpoint, RT-PCR) and quantitative 
reverse-transcription (qRT-PCR) polymerase chain 
reaction  

Specific primers for prr12a and prr12b were designed using the Ensembl Genome Browser 

(Zebrafish, GRCz11)32 and the NCBI Primer-BLAST tool193. RT-PCR was performed 

under the following reaction conditions: 500 nanomolar (nM) forward and reverse primers 

(Table 2), 25 μL DreamTaq Green PCR Master Mix (Thermo Fisher Scientific, K1081) 

and 1 μL of cDNA template. Reactions were performed using a C1000 Touch Thermal 

Cycler (Bio-Rad Laboratories) for 35 cycles. Samples for endpoint RT-PCR were 

visualized on a 2% agarose gel (1X TAE), containing RedSafe (iNtRON Biotechnology 

Inc., 21141) and gels imaged using the ChemiDoc Touch Imaging System (Bio-Rad 
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Laboratories). Like-sm protein 12 homolog b (lsm12b) was used as a reference gene to 

normalize amplification of target genes194.  

Table 2. Endpoint RT-PCR primer sequences for zebrafish target genes 

Gene  Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) Tm 

prr12a ACAGCCATCCTATGGG 

TCCT 

AACCAGAGAGGCACGA 

CTTG 

58ºC 

prr12b AGATGTCCTGGGAGGG 

AGAC 

TCCTCTTGAGCTCCTCG 

TCA 

53ºC 

lsm12b AGTTGTCCCAAGCCTA 

TGCAATCAG 

CCACTCAGGAGGATAA 

AGACGAGTC 

54ºC 

qRT-PCR was performed under the following reaction conditions: 500 nM forward and 

reverse primers (Table 3), 10 μL SensiFAST™ SYBR Mix (Bioline, FroggaBio Inc., BIO-

98050) and 1 μL cDNA template. Reactions were performed using a CFX Connect Real-

Time PCR Detection System (Bio-Rad Laboratories) for 40 cycles. Relative mRNA gene 

expression was calculated using the comparative Ct method (2-ΔCt) and normalized to the 

constitutively active glyceraldehyde-3-phosphate dehydrogenase (gapdh)195.  

Table 3. qRT-PCR primer sequences for zebrafish target genes 

Gene  Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) Tm 

prr12a TGGAGGCATTCGCCC 

GTTAT 

GGCTAGGACAGCCAC 

CCAAA 

53ºC 

prr12b ATCTCCCACCCATGC 

GGAAG 

CCCAGATGCACTTTCA 

CCGC 

54ºC 

gapdh CGCTGGCATCTCCCT 

CAA 

TCAGCAACACGATGG 

CTGTAG 

55ºC 

2.4 Spatiotemporal expression analysis  

2.4.1 Plasmid preparation and in vitro transcription for in 
situ hybridization  

In situ hybridization RNA probes (riboprobes) were designed using the Ensembl Genome 

Browser (Zebrafish, GRCz11)32 and NCBI Primer-BLAST193 tool for the creation of 

antisense and sense prr12a and prr12b 3’ riboprobes. Primers were designed targeting the 

3’ untranslated regions (UTR) for specificity, and EcoRI or BamHI restriction sites were 

included for directional cloning (Table 4). prr12a and prr12b fragments were amplified 
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via RT-PCR (as described in Section 2.3) using a C1000 Touch Thermal Cycler (Bio-Rad 

Laboratories) from 4 dpf zebrafish embryonic cDNA, purified using a QIAquick PCR 

Purification Kit (QIAGEN, 28104) and digested with EcoRI (New England Biolabs, 

R3101S) and BamHI (New England Biolabs, R0136S) as per the manufacturer’s protocol.  

Table 4. Primer sequences for zebrafish in situ hybridization probes 

Gene  Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) Tm 

prr12a  GGACGAATTCTTGGA 

GACGGCCTCAAT 

ATAAGGATCCATGAA 

TCCGTCAGTCCG 

58ºC 

prr12b  ATTAGGATCCTCCAC 

GATCCAAACACGTCC 

GGAGGGAATTCTGTC 

TCTGTGCAGACAACTG 

58ºC 

A 1:3 vector to insert ratio was used to ligate insert into EcoRI and BamHI digested 

BluescriptSK+ plasmid (generously donated by Dr. L. Dagnino, UWO, London, ON). T4 

DNA ligase (New England Biolabs, M0202S) was used for overnight incubation at 16ºC 

before plasmids were transformed into E. coli (DH5-Alpha). Colonies were selected and 

plasmids were isolated using QIAprep Spin Miniprep Kit (QIAGEN, 27104) as per the 

manufacturer’s protocol. Insertion of prr12a and prr12b was confirmed by sequencing 

(London Regional Genomics Centre, Roberts Research Institute, London, ON). 

prr12a, prr12b, and dlx3 and krox-20 plasmids (the latter two generously donated by Dr. 

B. Ciruna, The Hospital for Sick Children, Toronto, ON) were used as templates for in 

vitro transcription of antisense and sense riboprobes. Briefly, plasmids were linearized 

(Table 5), DNA was precipitated in 100% ethanol and 3 M sodium acetate (Sigma-Aldrich) 

at -80ºC, and the pellet vacuum dried and suspended in 20 μL RNase-free water. DNA 

concentrations were quantified using a NanoDrop™ 2000c Spectrophotometer (Thermo 

Fisher Scientific). Riboprobes were synthesized by in vitro transcription using a DIG 

(Digoxigenin) RNA Labelling Kit (Roche, 11175025910) as per the manufacturer’s 

instructions. 
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Table 5. Restriction enzyme and RNA polymerases for in vitro transcription 

Plasmid Name Vector RNA Polymerase Restriction 

Enzyme 

prr12a sense   Bluescript SK+ T7 BamHI 

prr12a antisense   Bluescript SK+ T3 EcoRI 

prr12b sense   Bluescript SK+ T3 EcoRI 

prr12b antisense   Bluescript SK+ T7 BamHI 

dlx3 antisense  Bluescript KS+ T7 Sall 

krox-20 antisense  Bluescript KS+ T3 Pstl 

2.4.2 Whole-mount in situ hybridization (WMISH)  

AB wildtype zebrafish embryos were fixed at 6, 16, 24, 48 and 72 hpf, by the Zebrafish 

Genetics and Disease Models Core Facility at the Hospital for Sick Children (Toronto, 

ON). Briefly, embryos were exposed to 0.003% 1-phenyl 2-thiourea to inhibit 

pigmentation, as described in Karlsson et al., 2001196. Embryos were then fixed in 4% 

paraformaldehyde, washed in 1X PBS, manually dechorionated using sterile forceps, 

transferred to 100% methanol, and shipped to the Kelly Lab at The University of Western 

Ontario (London, ON).  

Embryos were rehydrated and processed for WMISH as described in Kelly et al., 2003197 

with minor modifications. Briefly, embryos underwent incubation in hybridization solution 

containing antisense or sense riboprobes, extensively washed to ensure removal of 

unbound probe, and blocked in 5% heat inactivated sheep serum at room temperature. 

Embryos were incubated overnight at 4ºC in blocking solution containing anti-digoxigenin 

(Roche, 11093274910) conjugated to alkaline phosphatase. Next, embryos were washed in 

PBST (phosphate-buffered saline, Tween 20) and washed 3 times in staining buffer (5 M 

NaCl, 1 M MgCl2, 1 M Tris, pH 9.5, 10% Tween 20). Embryos were incubated in staining 

buffer containing NBT/BCIP (4-nitro blue tetrazolium chloride/5-bromo-4-chloro-3-

indolylphosphate) (Roche, 11681451001). Staining proceeded in the dark until a signal was 

visualized within embryos incubated with the sense probe. Stained embryos were fixed in 

100% methanol and placed in 2:1 ratio of benzyl benzoate (Sigma-Aldrich, B6630-

250ML)/benzyl alcohol (Sigma-Aldrich, 305197-100ML) and imaged at 45x 

magnification using an SZO-4 OPTIKA stereomicroscope with a OPTIKA C-B5+ camera 
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(OPTIKA Microscopes Italy). Images were processed using the OPTIKA LITEView 

software (OPTIKA Microscopes Italy) and scale bars were added using ImageJ (NIH)198. 

2.5 In silico analysis  

2.5.1 Analysis of proline rich 12 sequences  

Sequences for zebrafish and human genomic DNA and proteins were obtained from the 

Ensembl Genome Browser database32. Zebrafish (prr12a and prr12b) and human (PRR12) 

exon-intron structures were generated using an Exon-Intron Graphic Maker199. The human 

PRR12 protein schematic outlining specific protein domains was constructed using Adobe 

Illustrator 7.0 (Adobe), as described in Chowdhury et al., 202127. Alignments of human 

(PRR12) and zebrafish (Prr12a and Prr12b) amino acid sequences were performed using 

Clustal Omega Multiple Sequence Alignment Tool200. The location of the critical domains 

were identified with reference to the residue numbers stated by the Clustal Omega Multiple 

Sequence Alignment Tool and as described in PRR12 literature24,25,27. Total nucleotide and 

amino acid sequence identities were calculated using a Multiple Sequence Alignment 

(CLUSTALW)201.  

2.5.2 Whole zebrafish RNA-sequencing  

Zebrafish temporal expression data was obtained from a publicly available RNA 

sequencing database (White et al., 2017185). prr12a and prr12b TPM (Transcripts per 

Million) values were selected for various developmental time points (12 time points, N=5). 

Data was analyzed using GraphPad Software version 9.2.0 (283) for Mac OS X, GraphPad 

Software, San Diego, California USA, www.graphpad.com. The expression for the prr12 

paralogues at the selected developmental time points was analyzed for an overall trend.   

2.6 Statistical analysis  

Data for the tissue distribution across selected tissues and gene expression analyses in 

individual tissues were representative of 3 biological replicates of individual fish. Tissue 

distribution analyses were performed using a one-way ANOVA with Tukey’s honest 

significant difference (HSD) post-hoc test to compare gene expression of prr12a or prr12b 
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across selected male or female zebrafish tissues. Gene expression analyses in individual 

tissues were performed using a two-way ANOVA with Tukey’s HSD post-hoc test to 

compare gene expression of prr12a and prr12b amongst male and female tissues. A P value 

< 0.05 was considered significant for both one-way and two-way ANOVA and reported 

error bars represent standard error of the mean ( S.E.M). All statistical analysis was 

performed using GraphPad Prism version 9.2.0 for Mac OS X, GraphPad Software, San 

Diego, California USA, www.graphpad.com.  
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Chapter 3  

3 Results  

3.1 Exonic structure arrangement of human PRR12, 
zebrafish prr12a, and zebrafish prr12b  

ZFIN127 and the Ensembl Genome Browser32 report the prr12 zebrafish paralogues; prr12a 

and prr12b, that are zebrafish orthologues of the human PRR12 gene. To investigate the 

overall exonic structure of these transcripts, nucleotide sequences were obtained from the 

Ensembl Genome Browser32 and processed through an Exon-Intron Graphic Maker199, to 

allow for proportional analysis and identification of homologous exons between species. 

Analysis was performed on the following: long human PRR12 isoform, short human 

PRR12 isoform (RefSeq, NM_020719.3), zebrafish prr12a, (RefSeq, XM_005156014), 

and zebrafish prr12b (RefSeq, XM_680992)32. In silico analysis revealed similar exonic 

length in human long and short PRR12, prr12a, and prr12b; with the majority number of 

exons and exon length conserved. In comparison, to the long human PRR12 isoform, 

zebrafish prr12a has 1 additional exon and zebrafish prr12b has 2 additional exons (Figure 

4). As calculated by a Multiple Sequence Alignment (CLUSTALW)201, zebrafish prr12a 

and zebrafish prr12b, share 30% and 27% sequence identity with the long human PRR12 

isoform, respectively.  
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Figure 4. Exonic structure arrangement of human PRR12 isoforms and zebrafish 

prr12a, and zebrafish prr12b. Human PRR12 long and short isoforms, and zebrafish 

prr12a and prr12b, show overall similar exon-intron structure. Black boxes are exons, lines 

are introns, white boxes indicate the 5’ UTR and white triangles the 3’ UTR. Each exon is 

numbered, overall transcript length is indicated in base pairs (bp) and each Ensembl 

transcript ID is indicated. Nucleotide sequences were obtained from Ensembl32 and 

processed through an Exon-Intron Graphic Maker199. Scale bar: 1000bp.   
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3.2 Schematic representation of the AT-hook domain regions 
within human PRR12, zebrafish Prr12a, and zebrafish 
Prr12b 

The long and short PRR12 isoforms encode proline rich polypeptides (Ensembl, 

ENSP00000394510.1) with nuclear localization owing to their two predictive AT-hook 

binding domains24,25. To test if the two predicted AT-hook domains in both long and short 

human isoforms are conserved in zebrafish Prr12a (Ensembl, ENSDARP00000137218.1) 

and Prr12b (Ensembl, ENSDART00000156464.3), amino acid sequences were obtained 

from the Ensembl Genome Browser32 and aligned through a Clustal Omega Multiple 

Sequence Alignment Tool200. A protein schematic of human PRR12 was modelled to 

identify domains of the PRR12 protein (Figure 5A)25,27. As the DNA binding ability of 

PRR12 is one of its defining characteristics24,25,27, the two AT-hook domains was selected 

to investigate domain conservation in human and zebrafish. The results demonstrated the 

presence of the first and second AT-hook domains, corresponding to 93% and 62% amino 

acid identity, respectively, between human and zebrafish (Figure 5B). Multiple Sequence 

Alignment (CLUSTALW)201 showed the total amino acid sequence identity between 

PRR12 and Prr12a is 28%, and 26% between PRR12 and Prr12b. 
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Figure 5. Schematic representation of the AT-hook domain regions within human 

PRR12, zebrafish Prr12a, and zebrafish Prr12b. A. Full-length human PRR12 protein 

schematic highlighting specific domain regions, adapted and modified from Chowdhury et 

al., 202127. Pro-rich: proline rich domains, Gly-rich: glycine rich domains, AT-hook: 

DNA-binding protein motif, DUF4211: domain of unknown function. B. Amino acid 

sequences were obtained from Ensembl32 and processed through the Clustal Omega 

Multiple Sequence Alignment Tool200 showing the conserved AT-hook domain sequences 

between human and zebrafish. The two predictive AT-hook binding sites are denoted with 

a purple box. Asterisks (*): a fully conserved residue, colon (:): strongly similar properties 

between groups and period (.): weakly similar properties between groups. Residue type of 

amino acids are coloured based on property accordingly (Red: small + hydrophobic (incl. 

aromatic – Y), Blue: acidic, Magenta: basic – H, Green: hydroxyl + sulfhydryl + amine G, 

etc.). Schematic not drawn to scale.  
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3.3 Transcriptome profiling of prr12a and prr12b in zebrafish 
development  

To date there is no literature indicating the role prr12a and prr12b play in zebrafish 

development, however, transcriptome profiling of the prr12 paralogues throughout 

embryogenesis and larval development was publicly accessible through an RNA 

sequencing database185. This study pooled 12 Hubrecht Long Fin wildtype strain embryos 

per time point (N=5), isolated total RNA and performed a poly(A) pulldown RNA-seq and 

3’ end enrichment method to generate a temporal zebrafish expression database. The global 

expression profile of the prr12 paralogues throughout development was analyzed by 

obtaining the respective Transcripts per Million (TPM) values of each paralogue. Values 

were obtained from the database and expression of each gene was assessed over the 

selected developmental timepoints. The results demonstrated that both prr12a and prr12b 

were expressed globally throughout embryonic and larval development, where prr12a 

showed overall elevated expression levels throughout development in comparison to 

prr12b (Figure 6A and 6B). prr12a highest expression value, ~60 TPM, was seen at the 

128-cell stage, when the embryo is entering into the blastula stage22 (Figure 6A), whereas 

prr12b highest expression value, ~25 TPM, was observed at 48 hpf, when larvae are 

entering the hatching period22. In addition, when observing overall trends of expression, 

prr12a was more abundant than prr12b in early development (Figure 6A). These relatively 

low prr12b expression levels steadily increased later in development (Figure 6B).  
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Figure 6. Transcriptome profiling of prr12a and prr12b in zebrafish development. 

Global RNA-sequencing expression demonstrating A. prr12a and B. prr12b expression at 

12 developmental time points; hpf: hours post fertilization and dpf: days post fertilization. 

Each bar represents the mean value of 5 biological replicates of 12 pooled embryos,  

S.E.M. Each timepoint is represented as Transcripts per Million (TPM). Raw data obtained 

from White et al., 2017185.  
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3.4 Representative temporal expression profile of prr12a 
and prr12b in zebrafish development  

To corroborate the transcriptomic expression profiles revealed by the RNA sequencing 

data (Figure 6A and 6B), I performed RT-PCR targeting the prr12 paralogues. 

Specifically, total RNA was isolated from ~30 pooled embryos or larvae, and reverse 

transcribed into cDNA for RT-PCR analysis using prr12a, prr12b, and lsm12b (reference 

gene)194 specific primers. RNA was collected from 13 stages encompassing the 2-cell stage 

through 5 dpf (Figure 7A) and as expected, prr12a and prr12b showed a similar overall 

expression trend throughout development to the RNA sequencing data (Figure 6A and 

6B). RT-PCR of prr12a showed expression in all tested stages, where it is maternally 

expressed as evident by a band seen at the 2-cell, 32-cell, and 128-cell stages. Maternal 

prr12a expression prior to the MBT, continued after the 512-cell stage, when zygotic gene 

expression is active22. prr12a transcript was also detected in larval development (72 hpf, 4 

dpf, and 5 dpf) (Figure 7B). In comparison, the prr12b transcript amplicon was seen, albeit 

weak, early in development (Figure 7B), mirroring the prr12b RNA-sequencing data 

(Figure 6B). Interestingly, prr12b exhibited a dynamic expression pattern, as its detection 

suggests that the gene is upregulated and downregulated at varying stages. These results 

seen in Figure 7B are similar in the earlier selected timepoints but contrast those from the 

RNA sequencing analysis that showed sustained prr12b expression throughout later 

developmental stages (Figure 6B). Later stages (24 hpf through 5 dpf) correspond to the 

completion of organ morphogenesis22, and my results would suggest a potential temporal-

specific role for prr12b during these processes. 
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Figure 7. Representative temporal expression of prr12a and prr12b in zebrafish 

development. A. Zebrafish diagrams showing representative 2-cell, 32-cell, 128-cell, 1k-

cell, 50%-epiboly, Shield, 1-4 somite, 14-19 somite, Prim-6, Long pec, Protruding mouth, 

Day-4, and Day-5, adapted and modified from White et al., 2017185, and not drawn to scale. 

Hpf represents hours post fertilization and dpf represents days post fertilization. B. Agarose 

gel electrophoresis (2% agarose) of amplicons showing temporal expression of prr12a and 

prr12b, relative to the lsm12b loading control. Each lane represents global mRNA 

expression of ~30 embryos or larvae, N=1.  
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3.5 Whole-mount in situ hybridization assay of prr12a 
expression in zebrafish development  

Temporal analyses revealed that prr12a was expressed throughout embryogenesis and 

larval development (Figure 6A and 7B). However, WMISH was employed to elucidate the 

spatiotemporal expression pattern of these targets (Figure 8). Five of the 13 developmental 

time points from the previous RT-PCR analyses (Figure 7B) were selected: 6 hpf (Shield), 

16 hpf (14-19 somite), 24 hpf (Prim-6), 48 hpf (Long pec), and 72 hpf (Protruding mouth) 

(Figure 8A). prr12a expression was detected in the selected developmental stages, 

consistent with the RT-PCR data (Figure 7B) and WMISH showed there was a diffuse 

expression pattern throughout embryonic and larval stages (Figure 8B-J). Specifically, 

global expression at 6 hpf (early gastrulation period) (Figure 8B) and 16 hpf (segmentation 

period) (Figure 8C and C’) was seen with the prr12a probe. The same was true for 24 hpf 

(pharyngula period) (Figure D, D’ and E) and during organogenesis at 48 hpf (Figure 8F, 

G and G’). Of note, no distinct prr12 expression boundaries were seen at 24 hpf and 48 

hpf in the telencephalon, diencephalon, mesencephalon, and rhombencephalon. However, 

at 72 hpf in the hatching period (Figure 8H) prr12a expression appeared to be localized to 

the eye and brain regions of the larvae. dlx3202 and krox-20203 were used as positive controls 

and, as expected, highly localized expression patterns were seen at 16 and 24 hpf, 

respectively. The negative control, sense-strand prr12a probe showed some background 

staining (Figure 8B’). 
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Figure 8. Whole-mount in situ hybridization (WMISH) showing prr12a expression in 

zebrafish development. Diagrams (A) are adapted and modified from White et al., 

2017185. Representative WMISH of prr12a expression in embryos/larvae at 6 hpf (B and 

B’), 16 hpf (C and C’), 24 hpf (D, D’ and E), 48 hpf (F, G and G’), and 72 hpf (H). (I) 

dlx3 expression at 16 hpf in olfactory and otic cells (indicated with arrows) and (J) showing 

krox-20 labeling of rhombomeres 3 and 5 (indicated with arrows). B-D’, F and H-J are 

lateral views, and E, G and G’ are dorsal views. The box in area B’ shows background 

staining in a sense strand control embryo. Scale bar is equal to 100 μm and images C’, D’ 

and G’ are digitally enlarged. Image labeled acronyms; b (brain), d (diencephalon), t 

(telencephalon), m (mesencephalon), r (rhombencephalon), e (eye), le (lens), y (yolk), ot 

(otic placode), olf (olfactory placode), r3 (rhombomere 3), and r5 (rhombomere 5).  
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3.6 Whole-mount in situ hybridization assay of prr12b 
expression in zebrafish development  

The spatiotemporal expression profile of prr12b was examined by WMISH (Figure 9) and 

given the RNA sequencing and RT-PCR data, I expected its expression to vary across the 

developmental stages, becoming localized at later timepoints. To address this, the same 

developmental time points were used in the prr12a analysis, specifically: 6 hpf (Shield), 

16 hpf (14-19 somite), 24 hpf (Prim-6), 48 hpf (Long pec), and 72 hpf (Protruding mouth) 

(Figure 9A). Results showed prr12b had a similar expression profile to prr12a (Figure 

8B-H), with diffuse expression seen in all embryonic and larval tissues, corresponding to 

the early gastrulation (6 hpf, Figure 9B), a segmentation period (16 hpf, Figure 9C and 

C’), pharyngula periods 24 hpf (Figure 9D, D’ and E), and 48 hpf (Figure 9F, G and G’). 

Like prr12a, prr12b transcript was detected in the eye and brain regions of the larvae at 72 

hpf, which constitutes the end of the hatching period (Figure 9H). Thus, the prr12b profile 

was like that for prr12a (Figure 8), and the same was true for the expression in the 

telencephalon, diencephalon, mesencephalon, and rhombencephalon. dlx3202 and krox-

20203 was highly localized in embryos at 16 hpf (Figure 9I) and 24 hpf (Figure 9J), 

respectively. Furthermore, the sense strand, negative control for prr12b, showed some 

background staining (Figure 9B’).  
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Figure 9. Whole-mount in situ hybridization (WMISH) showing prr12b expression in 

zebrafish development. Diagrams (A) are adapted and modified from White et al., 

2017185. Representative WMISH of prr12b expression in embryos/larvae at 6 hpf (B and 

B’), 16 hpf (C and C’), 24 hpf (D, D’ and E), 48 hpf (F, G and G’), and 72 hpf (H). (I) 

dlx3 expression at 16 hpf in olfactory and otic cells (indicated with arrows) and (J) showing 

krox-20 labeling of rhombomeres 3 and 5 (indicated with arrows). B-D’ and H-J are lateral 

views, E, G and G’ are dorsal views, and F is a frontal view. The box in area B’ shows 

staining in a sense strand control embryo. Scale bar is equal to 100 μm and images C’, D’ 

and G’ are digitally enlarged images. Image labeled acronyms; b (brain), d (diencephalon), 

t (telencephalon), m (mesencephalon), r (rhombencephalon), e (eye), le (lens), y (yolk), ot 

(otic placode), olf (olfactory placode), r3 (rhombomere 3), and r5 (rhombomere 5).  
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3.7 prr12a expression in male and female adult zebrafish 
tissues  

Although the diffuse expression pattens of prr12a and prr12b would suggest a general role 

in zebrafish embryogenesis and early larval development (Figure 6, 7, 8, and 9), their 

spatial expression patterns in adult tissues, heretofore not reported, and may provide insight 

into roles that are organ-specific. To address this question, tissues in male and female 8-

month-old adult TU wildtype zebrafish were dissected; specifically, brain (telencephalon, 

mesencephalon, and rhombencephalon), eye, kidney, liver, testes and/or ovaries. Total 

RNA was isolated from these selected tissues and reverse transcribed to cDNA for qRT-

PCR analysis using specific prr12a and gapdh primers analyzed through a one-way 

ANOVA. Results showed prr12a expression in males within all 7 selected tissues, and 

there was no statistical difference in the levels amongst these tissues (Figure 10A). In 

contrast, prr12a expression was significantly enriched in the ovary (P<0.0001; Figure 

10B) compared to the other tissues in the female zebrafish. prr12a expression was elevated 

in female liver in comparison to the telencephalon, mesencephalon, and rhombencephalon, 

eye, and kidney, although these levels were not statistically significant (Figure 10B).  
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Figure 10. Tissue distribution of prr12a expression in male and female zebrafish. qRT-

PCR analysis of prr12a expression in A. male and B. female zebrafish organ tissues. 

Expression of prr12a was normalized to gapdh according to the 2-ΔCt method. Diagrams of 

male and female adult are adapted and modified from Santoriello and Zon, 201218 and 

Nguyen, 2015204. Bars represent mean 2-∆Ct values  S.E.M, N=3. Asterisks indicate 

significant difference (****P<0.0001) as tested by a one-way ANOVA followed by a 

Tukey test relative to the constitutively expressed gapdh gene.   
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3.8 prr12b expression in male and female adult zebrafish 
tissues  

Since prr12a expression showed sex-specific enrichment in the ovary compared to other 

female tissues (Figure 10B) and given my hypothesis that the expression of the prr12 

paralogues would be overlapping, then prr12b should also show this enrichment pattern. 

To address this, the same dissected tissues used were examined using qRT-PCR with 

prr12b and gapdh primers and analyzed through a one-way ANOVA. In males, prr12b was 

detected in all tissues; however, low expression was seen in the kidney. Furthermore, 

prr12b showed significantly higher levels in the male mesencephalon compared to eye 

(P<0.05), kidney (P<0.01), and testis (P<0.05). Other regions, including the telencephalon 

and rhombencephalon, showed no statistical differences compared to other selected tissues 

(Figure 11A), would suggest a mesencephalon-specific role of prr12b in adult males. 

prr12b expression in female fish showed no significant difference between the selected 

tissues, which contradicted that seen with prr12a. Overall, female prr12b expression was 

more enriched in the brain, liver and ovary compared to eye and kidney (Figure 11B), but 

these apparent differences were not statistically significant.  

Together, these data show that some sex-specific, tissue expression differences exist 

between the prr12 paralogues in the adult zebrafish, and although these genes are expressed 

rather ubiquitously in all tissues, these noted differences may contribute to unique adult 

roles. 
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Figure 11. Tissue distribution of prr12b expression in male and female zebrafish. qRT-

PCR analysis of prr12b expression in A. male and B. female zebrafish organ tissues. 

Expression of prr12b was normalized to gapdh according to the 2-ΔCt method. Diagrams of 

male and female adult are adapted and modified from Santoriello and Zon, 201218 and 

Nguyen, 2015204. Bars represent mean 2-∆Ct values  S.E.M, N=3. Asterisks indicate 

significant difference (*P<0.05, **P<0.01) as tested by one-way ANOVA followed by a 

Tukey test relative to the constitutively expressed gapdh gene.   
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3.9 prr12a and prr12b expression in the brain and eye of 
male and female adult zebrafish  

To further analyze the expression prolife of the prr12 paralogues in adult zebrafish, I 

investigated if there were differences in individual tissues of the brain (telencephalon, 

mesencephalon, rhombencephalon) and eye, for prr12a and prr12b gene expression 

between the sexes, in the same adult zebrafish analyzed previously (Figure 10 and 11). 

qRT-PCR results analyzed with a two-way ANOVA of the telencephalon showed no 

significant differences exist in prr12a and prr12b expression between male and female fish 

(Figure 12A). prr12b expression, however, was significantly enriched in male and female 

mesencephalon compared to prr12a expression (Figure 12B). Similarly, prr12b 

expression, compared to prr12a expression, was significantly higher in the male and 

female rhombencephalon (Figure 12C) and eye (Figure 12D).  
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Figure 12. Expression of prr12a and prr12b in the brain and eye of male and female 

adult zebrafish. qRT-PCR of prr12a and prr12b expression in the A. telencephalon, B. 

mesencephalon, C. rhombencephalon, and D. eye. Diagrams of sagittal adult zebrafish 

brain are adapted and modified from Vaz et al., 2019120, with yellow highlighted regions 

indicating the tissue dissection region. Expression of prr12a and prr12b was normalized 

to gapdh according to the 2-ΔCt method. Bars represent mean 2-∆Ct values  S.E.M, N=3. 

Asterisks indicate significant difference (*P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001) as tested by two-way ANOVA followed by a Tukey test relative to the 

constitutively expressed gapdh gene.   
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Chapter 4  

4 Discussion  

4.1 Summary of findings  

PRR12-related Neuroocular Syndrome is a rare autosomal dominant disorder (OMIM 

#619539) characterized by a spectrum of clinical phenotypes including developmental 

impairment, ocular defects, hypotonia, renal and cardiac anomalies, and growth delays24–

27. This syndrome is thought to be caused by LOF variants in PRR12 encoding for a protein 

of unknown function. The majority of PRR12 pathogenic alleles are de novo frameshift 

and nonsense variants. These unique sequence variants predominantly affect exons 3-7, 

introducing a premature stop codon, where the mRNA is expected to undergo nonsense-

mediated decay25–27. While the pathogenic mechanisms of disrupted PRR12 have not been 

elucidated, its involvement in neural development have been reported, showing abundant 

Prr12 mRNA/protein identified in embryonic mouse brain cells24 and elevated PRR12 

mRNA in fetal brain structures27,205. However, no published studies have investigated the 

developmental role of PRR12 in nonmammalian species. To address this, I characterized 

the prr12 paralogues in the zebrafish and report on the temporal and tissue-specific 

expression profiles of these paralogues during selected embryonic, larval, and adult stages.  

Zebrafish have two PRR12 orthologues, prr12a and prr12b32,127 and PRR12 orthologues 

are also found in mammals, amphibians, fish, birds, and reptiles32 (Appendix 2). 

Moreover, it has been reported that the coding regions of the long and short isoforms of 

PRR1224, are conserved amongst vertebrates25,33. Despite the conservation, there are 

additional exonic regions in the prr12 paralogues, likely due to evolutionary divergence in 

the coding regions206. Overall, prr12a and prr12b share 30% and 27% sequence identity 

with human PRR12, respectively (CLUSTALW)201. While there are overlapping 

similarities in exonic structure between these orthologues, the percent sequence identity is 

relatively low (Figure 4). Nevertheless, the analysis of the conserved protein functional 

domains between human PRR12 and zebrafish Prr12a and Prr12b were investigated (see 

below).  
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As prr12a and prr12b are currently genes of unknown function32,127, identifying co-

expressed genes might also provide insight into the biological function and/or the 

transcriptional regulatory programs involved with these targets. Co-expression analysis 

confirmed prr12a and prr12b are co-expressed, and genes that co-express with prr12a are 

linked to transcriptional regulation, including coiled coil, nuclear, zinc-finger, and 

bromodomain-containing proteins. Likewise, similar genes are co-expressed with prr12b, 

which mimics that for PRR12 (COXPRESdb7.3; DAVID)27,43–45. Although the function of 

some of these proteins have been investigated in zebrafish transcriptional regulation207,208, 

this co-expression with prr12a and prr12b intimates sharing similar biological functions 

with their human counterpart; suggesting that they are in fact orthologues. Therefore, 

similarities with co-expressed genes and the proteins they encode as reported by 

Chowdhury and colleagues27, specifically bromodomain-containing42, and zinc-finger 

containing proteins209, lends further credence for commonalities between human PRR1227 

and the zebrafish paralogues. Ultimately, replacement/rescue studies where prr12a and 

prr12b are expressed in mammalian cells deficient in PRR12 would provide insight as to 

whether they act in a functionally redundant manner. 

RT-PCR was used to identify the temporal expression of the prr12 paralogues in 

development (Figure 7). prr12a transcripts were present before the MBT, indicating that 

they are maternally expressed22, while prr12b displayed weak expression before the MBT, 

there appeared to be an upregulation at select timepoints throughout embryogenesis and 

larval development, with amplicons detected later in development. Although the data was 

from endpoint PCR and not quantifiable, the apparent differences in fluorescent intensity 

of amplicons would indicate prr12a as being the dominant maternal paralogue. These 

analyses reveal insight into when these genes are required in development, but essentially, 

they are both expressed maternally and as transcripts are depleted, they are replaced after 

the MBT when the zygote activates its genome108 and are required in the embryo and 

larvae. Therefore, the profile of the zebrafish prr12 paralogues is similar to that of the 

mouse Prr12 expression, which is relatively ubiquitous throughout embryonic 

development (E1 – E18) (MGI)210.  
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A publicly available RNA-sequencing dataset exploring the transcriptomic profile of 

zebrafish embryos and larvae identified prr12a and prr12b as being differentially 

expressed (Figure 6)185. These results were encouraging with prr12a showing consistent 

expression throughout early stages, but an apparent upregulation of the gene at the 128-

cell stage, during the blastula period before MBT22, was not expected. Moreover, the RNA-

sequencing results for prr12b revealed dynamic expression and increase throughout 

development with relatively consistent expression 48 hpf – 5 dpf; however, there was 

downregulation at 4 dpf in the RT-PCR results. Both differences in expression noted for 

prr12a and prr12b are likely due to differences in the techniques, with RNA-sequencing 

being much more sensitive and accurate than endpoint RT-PCR. Overall, both the RNA-

sequencing and RT-PCR results reveal a similar expression profile and provide insight into 

when these genes are temporally regulated.  

Determining the conservation of the amino acid sequences encoded by PRR12/prr12 was 

of interest as it could add to the phylogenetic (functional) relationship(s) between zebrafish 

and human PRR12. I used comparative in silico protein sequence analysis, targeting the 

two AT-hook domains as this region in PRR12 was proposed as having DNA-binding 

activity and conferring gene regulation24,25,27. The AT-hook domains were highly 

conserved amongst zebrafish and human, 93% and 62%, respectively (Figure 5) (Clustal 

Omega)200, suggesting that zebrafish Prr12a/12b may act functionally similar to PRR12 

and allow these proteins to bind to DNA elements. It is, however, noteworthy that the total 

protein sequence identity between PRR12 and Prr12a is 28%, and 26% between PRR12 

and Prr12b (CLUSTALW)201. Other zebrafish paralogues, including bach1 (bach1a and 

bach1b) and bach2 (bach2a and bach2b), have low amino acid sequence identity with 

some mammalian species, but they still maintain conserved functional domains211. Thus, 

and although not tested, given the presence of conserved AT-hook domains in zebrafish 

Prr12a and Prr12b, there is precedence for functional conservation. AT-hook domain 

regions are associated with high mobility group proteins38 and interestingly, other AT-hook 

domain containing proteins such as MeCP2 (Methyl-CpG Binding Protein 2) and AHDC1 

(AT-Hook DNA Binding Motif Containing Protein 1) are associated with neurological 

disorders212,213. Specifically, pathogenic variants of MeCP2 disrupting the AT-hook 

domain regions, caused the most severe phenotypes within patients214, with mecp2-null 
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zebrafish lines recapitulating similar behavioral phenotypes as seen in the patient 

population215. Moreover, de novo frameshift or nonsense AHDC1 variants predicted to 

cause LOF are associated with intellectual disability and developmental delay213, mirroring 

many of the genetic and clinical characteristics of the PRR12-related Neuroocular 

Syndrome24–27. In addition, a developmental transcriptome database containing varying 

human brain structures identified AHDC1 as having the most similar expression profile to 

PRR12 (BrainSpan atlas)35. Therefore, these findings would suggest that PRR12 and 

AHDC1 may be functionally related, and/or they participate in the same regulatory 

pathway. If so, investigation of the zebrafish prr12 paralogues would provide further 

insight into the function of these pathways in vertebrate systems. 

WMISH was used to investigate the spatial expression of prr12a and prr12b at selected 

timepoints in zebrafish development. Both prr12a and prr12b revealed similar expression 

profiles and thus, would indicate theses paralogues are not spatially distinct from each other 

in early development (Figure 8 and 9). Specifically, at 6 hpf and 16 hpf, prr12a and prr12b 

showed diffuse expression throughout the embryo proper, suggesting that these transcripts 

are needed in many tissues for various biological functions in early embryogenesis. 

Likewise, the patterns at 24 hpf and 48 hpf demonstrated diffuse signals, and no distinct 

expression boundaries of either transcript were detected in various neural tissue regions 

including the telencephalon, diencephalon, mesencephalon, and rhombencephalon. At 72 

hpf both transcripts continued to be expressed, mainly showing expression in the eye and 

brain tissue regions, but this could be due to other reasons including tissue thickness and/or 

cell density. Publicly available single cell RNA sequencing data from the UCSC Cell 

Browser128,216 highlights both transcripts being expressed in the CNS and further support 

for my in situ studies comes from prr12a and prr12b to being predominately identified 

within neurons at 24 hpf, 48 hpf, and 5 dpf zebrafish216 (Appendix 4). It is interesting to 

note that my WMISH analysis of 48 hpf embryos showed diffuse expression throughout 

the brain, which is similar to the spatial expression mapping of Prr12 in E11.5 mouse brain 

but with strong signal detected in the mesencephalon (MGI)210. Considering that these 

neural regions are common expression sites for these genes in embryonic mouse and 

zebrafish, they provide additional evidence for a role of PRR12 in neural progenitor cell 
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proliferation and differentiation. Thus, it is tempting to speculate that these genes may 

encode proteins required for various biological functions in these tissues.  

While my spatiotemporal analyses and the RNA-sequencing datasets allowed for further 

characterization of the prr12 paralogues in zebrafish development, the expression of these 

genes in adult stages or their distribution in male versus female tissues has not been 

reported in many vertebrates. To address this, I used qRT-PCR to analyze prr12a and 

prr12b expression in zebrafish brain, eye and kidney, which were specifically selected due 

to their relevance in the PRR12-related NOC cohort24–27. Other zebrafish tissues, including 

the liver, ovaries, and testes, were also examined using this method. In male adults, analysis 

revealed prr12a was distributed in all selected tissues, and in females there was significant 

expression in the ovary (Figure 10). This enrichment in the ovary is consistent in other 

vertebrates, as evident in African clawed frog (Xenbase)217 and mouse (MGI)210. 

Additionally, two human expression databases also show enriched PRR12 expression in 

female reproductive tissues, including the ovary (GTEx; BioGPS)34,218. Therefore, the 

presence of prr12a in the ovary and its presence prior to MBT in zebrafish before it even 

appears would suggest that transcripts are deposited in primordial germ cells. In 

comparison, prr12b was detected in majority of the selected adult tissues, but significant 

expression was seen in the mesencephalon region of the adult male. In females while there 

appeared to be elevated prr12b levels in the selected brain tissues, no region showed 

significant expression (Figure 11). Prescence of prr12b in neural tissues of the adult 

zebrafish are consistent with mouse Prr12 (MGI)210 and human PRR12 expression (GTEx; 

BioGPS)34,218, and prr12b enrichment in the male mesencephalon may suggest a sex-

specific role. That said, studies investigating gene expression in male and female zebrafish 

have identified sexually dimorphic patterns in the brain219,220, but reports that male 

zebrafish have higher brain weights than females221, may account for total transcript 

accumulation. Regardless, the consideration of sex is an important biological variable when 

investigating the prr12 paralogues regarding brain function and regulation.  

To further test if there were expression differences between prr12a and prr12b in male 

versus female, the same selected brain and eye tissues were analyzed through a two-way 

ANOVA. qRT-PCR analyses revealed prr12b expression in both male and female tissue 
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was significantly expressed in the mesencephalon, rhombencephalon, and eye in 

comparison to prr12a (Figure 12). Interestingly, the human mesencephalon, which 

structurally contains the tectum and tegmentum222 is analogous to the zebrafish 

mesencephalon120, and known to process auditory and visual information, in addition to 

regulating motor control223. It is interesting to speculate that lack of PRR12 expression in 

the mesencephalon region may be relevant to the underlying phenotypes seen within the 

PRR12-related Neuroocular Syndrome cohort, such as motor and speech delay, and hearing 

loss25–27. In addition, a zebrafish co-expression database revealed that the top 50 genes co-

expressed with prr12b, but not prr12a, were also enriched for central nervous system 

development and neuron cellular homeostasis (COXPRESdb7.3; DAVID)43–45. Taken 

together, these findings suggest that prr12b may have a neuronal-specific role in adulthood, 

alleviating prr12a from such function.  

Overall, the findings from the developmental and tissue-specific analyses highlight that 

despite the fact the prr12 paralogues present with overlapping expression profiles, prr12a 

seems to be predominately required in early development and is maternally expressed, 

potentially, a unique requirement for this paralogue. In comparison, while prr12b appears 

to be expressed in the latter stages of early development, it is enriched in certain adult CNS 

tissues, calling attention for its potential role in neural function and regulation.  
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4.2 Limitations and future directions  

Little is known about the gene and/or protein of the mouse Prr12 or human PRR12 

homologue and until now zebrafish prr12a and prr12b were relatively unexplored. This 

study sheds new light on the expression profile of the zebrafish paralogues in early 

development and adulthood, and the conservation in mammalian systems. Unfortunately, 

the in vivo role of prr12a and prr12b in development was not determined (see Appendices 

1, 5 and 6), and although numerous techniques were used to identify when and where the 

prr12 paralogues are expressed, such approaches are not without limitation(s).  

 

Firstly, the temporal analysis of these paralogues was performed using endpoint RT-PCR, 

and while an expression profile for each gene could be examined, the technique does not 

lend itself to detect quantitative differences amongst these targets. Therefore, the approach 

was to use qRT-PCR and focus on specific tissues in the adult zebrafish. Secondly, in situ 

hybridization was able to detect the expression of these genes in a morphological context; 

however, background noise was detected using the sense probes. In fact, non-specific probe 

detection with chromogenic enzyme reactions can produce false-positive results187. 

Therefore, in subsequent studies it would be ideal to synthesize and assay additional sets 

of prr12a and prr12b antisense and sense riboprobes to confirm my results. It is, however, 

important to recognize that since there are no published in situ hybridization assays from 

developing zebrafish embryo and/or larval stages, the WMISH technique and the 

background noted above, may not be sensitive to detect low RNA levels of these targets224. 

One approach would be to use a method employing in situ hybridization chain reaction, 

which allows for mapping of multiple target mRNAs, simultaneously within a whole-

mount embryo, using an enzyme-free approach225. In comparison to the enzyme-based in 

situ method, such an approach can reduce the amount of nonspecific signal, time and labor 

required when detecting RNAs. Lastly, histological sectioning and staining with 

hematoxylin and eosin would further accurately validate the localization of the prr12a and 

prr12b transcripts and potentially reveal distinct cellular signals within specific embryonic 

tissues.  
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One additional limitation recognized in this study relates to sample size, specifically N=1, 

~30 pooled embryos/larvae per timepoint (Figure 7) and N=3, for each individual 

organ/tissue per male and female zebrafish (Figure 10, 11, and 12). Regarding the latter, 

although I reported the overall trend for some tissue targets, due to variation, an increase 

in sample size would improve the statistical power. Moreover, adding to the current data 

with that from other targets including, heart, intestine, and muscle would help to further 

delineate the spatial relevance of the prr12 paralogues. Despite these shortfalls, the 

reported data is relevant and more importantly, serves as reference for future transcriptomic 

analyses. 

 

With the novelty of PRR12 and the related occurrence of the PRR12-related Neuroocular 

Syndrome, little has been reported on the molecular consequences of its LOF24–27. 

Zebrafish mutant line(s) targeting the prr12 paralogues would likely have contributed 

evidence into the pathogenesis of this disease, and ultimately would have been the platform 

to model the PRR12-related Neuroocular Syndrome. I had designed and synthesized 

sgRNAs to knockout prr12a, prr12b and prr12a/prr12b (Appendix 5) at the one-cell stage 

in WT TU zebrafish embryos. After preliminary experiments, I had demonstrated the 

feasibility of prr12a-specifc guides and CRISPR-Cas9, as a means to genetically edit exon 

2 of prr12a. sgRNAs were microinjected into embryos, and the knockout efficiency of 

prr12a was confirmed by Sanger sequencing and TIDE analysis226. Simultaneously, 

sgRNA and Cas9 mRNA efficiency was assessed by targeting the tyrosinase (tyr) gene 

(Ensembl, ENSDARG00000039077), and creating zebrafish tyr mutants. Specifically, 

these mutants were used as a technical control, as lack of pigmentation was the 

confirmatory phenotype (Appendix 6). Unfortunately, due to a suspected bacterial 

outbreak, all mutant and wildtype zebrafish were culled according to Animal Care 

Committee at Western University (AUP #2019-149; Appendix 1). In future, the use of 

these already synthesized sgRNAs (prr12a and prr12b), and Cas9 mRNA will resume and 

prr12 functional knockout studies will be considered. Although high-fidelity Cas9 

enzymes have been since reported227, it would be prudent to design another set of guides 

intended to induce mutations in the AT-hook domains and/or for other identified domains 

such as the domain of unknown function (DUF4211)24, which also shows conservation 
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with the DUF4211 in human PRR12 (Appendix 3). Gross morphological examination of 

prr12 mutants was not performed because of the cull, but this and histological staining 

would have provided invaluable information, possibly modelling the clinical 

characteristics seen within the PRR12-related Neuroocular Syndrome cohort.  

Although it may have been difficult to determine if the knockout of prr12a and/or prr12b 

showed obvious morphological defects, subtle behavioural changes may have provided 

evidence for the role of these genes in development. Within the clinical cohort, ~97% of 

individuals present with developmental and/or intellectual deficits24–27. To detect 

behavioural changes in larvae zebrafish, would require tracking and analysis of individual 

fish using DanioVision and accompanying software228, which assesses stimuli response 

and swimming behaviour120. With respect to adult zebrafish, specific assays also test social 

interactions (e.g., shoaling tests) analyzing sociability, anxiety, and fear120; analogous to 

ADHD and autism, observed in individuals with PRR12 pathogenic variants25–27. 

Moreover, overall growth and size of prr12 mutants would also have been amenable to this 

tracking system, as short stature and failure to thrive are additional clinical features seen 

amongst individuals with pathogenic PRR12 variants25–27. Unfortunately, although this 

data was not collected, it would have contributed to our understanding of PRR12 in 

humans.   

Another issue that needs to be addressed relates to the rescue of mutant phenotypes, which 

has been successfully demonstrated in ptk7229 and kars1230 established zebrafish mutant 

lines. One caveat is expressing wildtype prr12a and prr12b, which based on the size of the 

coding sequence (~9 kb), not to mention the vector backbone would be technically difficult 

to construct and clone. Alternative strategies such as introduction of a bacterial artificial 

chromosome could be implemented231, and have been proven successful in zebrafish232,233. 

Nonetheless, technical problems are associated with this project, and were recognized from 

the beginning. Despite these shortfalls, we have learned a great deal about the 

spatiotemporal expression profiles of prr12a and prr12b in zebrafish development and 

such limitations in the short term can be revisited.  
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4.3 Conclusion  

This thesis aimed to characterize the spatiotemporal expression profiles of the two 

zebrafish orthologues of human PRR12. Zebrafish prr12a and prr12b are diffusely 

expressed in the developing embryo, with prr12a appearing to be the predominant maternal 

transcript expressed, but also expressed later in development and in larval stages and adult. 

In contrast, prr12b was weakly expressed maternally, and there were apparent increases 

and decreases in its embryonic expression profile. In comparison to prr12a, adult males 

had enriched prr12b expression in the mesencephalon and transcripts were upregulated in 

certain CNS tissues in comparison to prr12a. Expression of the prr12 paralogues 

recapitulated a similar spatiotemporal expression profile seen in human PRR12, which had 

been predicted. Moreover, the data showed prr12a may be required for oocyte 

development and early processes, whereas prr12b is needed later, having a more neuronal-

specific role. Therefore, although prr12a and prr12b may have different biological 

functions later in zebrafish development, the presence of each transcript prior to germ layer 

formation, before the presence of specific tissues/organs, indicate they are in the same cells 

and possibly functioning to regulate gene expression. Further studies, however, are 

required to definitively state if these paralogues are phenocopying human PRR12 

expression and more specifically, if the proteins they encode are acting in a functionally 

similar role. Experiments to create the prr12-/- zebrafish mutant lines have been initiated 

and together, with what we have learned from this study, will help establish the zebrafish 

as a model of this human rare disorder. 
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Appendices 

Appendix 1. Animal use protocol 

AUP Number: 2019-149 

Biosafety Approval: BIO-UWO-0081 

AUP Title: Cell Signaling in Embryonic Epithelial to Mesenchymal Transitions  

Disease Outbreak and Zebrafish Facility Shutdown:  

Clinical symptoms of sickness were identified, in October 2020. Those presenting were 

euthanized, fixed in formalin, and sent to clinical veterinarian staff of the 

Animal Care Committee. Bacterial culture and histopathology were conducted (Animal 

Health Laboratory, University of Guelph, ON). Findings suggested Motile Aeromonas 

Septicemia as the cause of the bacterial outbreak. The zebrafish colony was culled, and the 

facility was closed. Continuation of research was completed through purchase of samples 

from the Zebrafish Genetics and Disease Models Core, The Hospital for Sick Children, 

Toronto, Canada.   
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Appendix 2. Phylogenetic relationship of proline rich 12 amongst vertebrates 

 

Figure 13. Proline rich 12 evolutionary history amongst vertebrates inferred using the 

Neighbor-joining method234. The bootstrap consensus tree inferred from 500 replicates235 

is taken to represent the evolutionary history of the taxa analyzed235. Branches 



91 

 

corresponding to partitions reproduced in less than 50% bootstrap are collapsed. The 

percentage of replicate trees in which the associated taxa clustered together in the bootstrap 

test (500 replicates) are shown next to the branches235. The evolutionary distances were 

computed using the Maximum Composite Likelihood method236 and are in the units of the 

number of base substitutions per site. This analysis involved 62 nucleotide sequences 

retrieved from NCBI129. All ambiguous positions were removed for each sequence pair 

(pairwise deletion option). Evolutionary analyses were conducted in MEGA11237,238. 
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Appendix 3. Schematic representation of DUF4122 region within human PRR12, 

zebrafish Prr12a, and zebrafish Prr12b 

 
Figure 14. Schematic representation of conserved DUF4211 region within human 

PRR12, zebrafish Prr12a, and zebrafish Prr12b. A. Full-length human PRR12 protein 

schematic highlighting specific domain regions, adapted and modified from Chowdhury et 

al., 202127. Pro-rich: proline rich domains, Gly-rich: glycine rich domains, AT-hook: 

DNA-binding protein motif, DUF4211: domain of unknown function. B. Clustal Omega 

Multiple Sequence Alignment Tool showing the conserved DUF4211 domain sequence 

across human and zebrafish. The predicted DUF4211 region is highlighted with a blue line. 

The last amino acid of the displayed sequence is indicated at the end of each row. Asterisks 

(*): fully conserved residue, colon (:): strongly similar properties, and period (.): weakly 

similar properties. Residue type of amino acids are coloured based on property accordingly 

(Red: small + hydrophobic (incl. aromatic – Y), Blue: acidic, Magenta: basic – H, Green: 

hydroxyl + sulfhydryl + amine G, etc.). Schematic not drawn to scale. Multiple Sequence 

Alignment image and analysis obtained from Clustal Omega200.  
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 Appendix 4. Zebrafish prr12a and prr12b single cell RNA-sequencing analysis 

 

Figure 15. Zebrafish prr12a single-cell RNA-sequencing analysis. prr12a transcript 

abundance present in central nervous system structures during early embryonic 

development. Cell clustering analysis of 11 clusters expressing prr12a transcripts. 7 

clusters expressed in the central nervous system and 4 clusters expressed in: intestine, 

placode, neural crest, and pectoral fin bud. Cell colours on atlas represent prr12a UMI 

count (absolute number of prr12a transcripts). Highest number of prr12a transcripts are 

represented with brown cells, and no prr12a transcripts are represented with blue cells. 

Refer to legend for full range frequency. Seurat software and Uniform Manifold 

Approximation and Projection (UMAP) was used for data analysis. Cell atlas image 
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adapted and modified from UCSC Cell Browser, 2020128 and raw data obtained from 

Farnsworth et al., 2020216. 
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Figure 16. Zebrafish prr12b single-cell RNA-sequencing analysis. prr12b transcript 

abundance present in central nervous system structures during early embryonic 

development. Cell clustering analysis of 4 clusters expressing prr12b transcripts. 4 clusters 

expressed in the central nervous system. Cell colours on atlas represent prr12b UMI count 

(absolute number of prr12b transcripts). Highest number of prr12b transcripts are 

represented with brown cells, and no prr12b transcripts are represented with blue cells. 

Refer to legend for full range frequency. Seurat software and Uniform Manifold 

Approximation and Projection (UMAP) was used for data analysis. Cell atlas image 

adapted and modified from UCSC Cell Browser, 2020128 and raw data obtained from 

Farnsworth et al., 2020216. 
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Appendix 5. Generation of knockout zebrafish lines 

Single guide RNA and SpCas9 mRNA synthesis  

CRISPRscan software239 and the Ensembl Genome Browser (Zebrafish, GRCz11)32 were 

used to identify single guide RNAs (sgRNAs) (Table 6) for CRISPR-Cas9 editing of 

prr12a or prr12b (Figure 17). Two sgRNAs were designed per gene, targeting different 

exons, to determine the most efficient Cas9 mediated cleavage. sgRNAs were synthesized 

using the EnGen sgRNA Synthesis Kit S. pyogenes (New England Biolabs, E3322S), 

purified using an RNA Clean and Concentrator (ZYMO RESEARCH, R1017) and 

quantified using a NanoDrop™ 2000c Spectrophotometer (Thermo Fisher Scientific). 

Streptococcus pyogenes CRISPR-associated protein (SpCas9) mRNA was prepared by 

digesting the pT3TS-nCas9n expression vector (generously donated by Dr. B. Ciruna, The 

Hospital for Sick Children, Toronto, ON) with Xbal (New England Biolabs, R0145S) 

followed by in vitro transcription using the mMESSAGE mMACHINE™ T3 kit (Thermo 

Fisher Scientific, AM1348) as per the manufacturer’s instructions.  

Table 6: sgRNA sequences for CRISPR-Cas9 embryo microinjection 

Gene  Sequence (5’ to 3’)  

#1. prr12a  TTAATACGACTCACTATAGGTGGGGCTTGGGGTGCAGC 

GTTTTAGAGCTAGAAATAG 

#2. prr12a  TTAATACGACTCACTATAGGGGGCTGGGAATGTGACTG 

GTTTTAGAGCTAGAAATAG 

#1. prr12b TTAATACGACTCACTATAGGGTGCGAAATTGGGAGAGA 

GTTTTAGAGCTAGAAATAG 

#2. prr12b TTAATACGACTCACTATAGGAAAAGCTTATGGAAGTCTT 

GTTTTAGAGCTAGAAATAG 

tyr (control)240 TTAATACGACTCACTATAGGACTGGAGGACTTCTGGGG 

GTTTTAGAGCTAGAAATAGC 

For each guide, an oligonucleotide was created where 18 nucleotides in yellow represent 

the T7 promoter site, 20 bp nucleotides in green represent the target sequence, followed by 

the 19 nucleotides in red representing the scaffold overlap sequence.  
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Figure 17. prr12a and prr12b sgRNA target sites within the zebrafish. prr12a #1 

sgRNA targeting exon 2 and #2 sgRNA targeting exon 4. prr12b #1 sgRNA targeting exon 

3 and #2 sgRNA targeting exon 4.  
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Zebrafish embryo microinjections and TIDE analysis  

Zebrafish embryos were collected (as described in Section 2.1) and injected with 10 μL 

either 50 pg (picograms) prr12a sgRNA, 300pg Cas9, and phenol red dye or phenol red 

dye alone in RNase-free water at the 1-cell stage using a PLI-100 Pico-Injector (Medical 

Systems Corp.). Embryos were incubated in embryo medium (E3 solution) at 28.5ºC. 

prr12a sgRNA and Cas9 mRNA efficiency was compared to a concurrently derived tyr 

(tyrosinase) knockout, where tyr deficient embryos present with little to no melanin 

pigmentation240.  

Genomic DNA of a subset of injected fish was isolated and samples were processed using 

a PTC-100 Programmable Thermal Controller (MJ Research, Inc.), under the following 

conditions: 95ºC for 10 min, 4ºC held, addition of Proteinase K, 55ºC for 60 min, when 

17.8mg/ml of proteinase K was added, then heat inactivated at 95ºC for 10 min. Followed 

by PCR amplification using prr12a forward and reverse primers (Table 7) flanking the 

CRISPR-Cas9 cut site, amplicons were purified using a QIAquick PCR Purification Kit 

(QIAGEN, 28104) and products were sequenced (London Regional Genomics Centre, 

Robarts Research Institute, London, ON). Resulting chromatograms from wildtype 

embryos (control injected) were compared to prr12a sgRNA/Cas9-injected embryos and 

analyzed using Tracking of Indels by Decomposition (TIDE)241.  

Table 7: Primer sequences for zebrafish RT-PCR genotyping target gene 

Gene  Forward Primer (5’ to 3’) Reverse Primer (5’ to 3’) Tm 

prr12a  GGGAGACTACCTCAGGCA 

AAC 

AGCACCAAAGCACTTGTG 

GAA 

55ºC 
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Appendix 6. Preliminary analysis of prr12a genetic disruption 
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Figure 18. Preliminary analysis of prr12a genetic disruption. Sequence alignment 

analysis of control embryo and prr12a sgRNA microinjected embryo; DNA was extracted, 

processed for Sanger sequencing, and chromatograms were processed using Tracking of 

Indels by Decomposition (TIDE) analysis to determine indels (insertion/deletion). A. 

Control and tyr sgRNA microinjected embryos at 72 hpf. Red boxes show digitally 

enlarged images. B. Indel spectrum, yielding a range of indels and frequencies. Each bar 

represents the percentage of sequences recognized during analysis, with statistical 

significance indicated with a red bar. C. Visual representation of aberrant sequence signal 

before and after expected break site (vertical blue dashed line). Wildtype (control) sample 

signal indicated in black and prr12a sgRNA microinjected embryos (test) indicated in 

green. D. Percent probability score indicating inserted nucleotide: A (adenine), T 

(thymine), G, (guanine), and C (cytosine). Images and data analysis (B, C and D) obtained 

from TIDE analysis241.  
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