Post-polymerization functionalization of poly (ethylene oxide)–poly (β-6-heptenolactone) diblock copolymers to tune properties and self-assembly

Elizabeth Gillies
Western University, egillie@uwo.ca

Brooke M. Raycraft
The University of Western Ontario

Jarret MacDonald
Western University, jmacd283@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/chempub

Citation of this paper:
Gillies, Elizabeth; Raycraft, Brooke M.; and MacDonald, Jarret, "Post-polymerization functionalization of poly (ethylene oxide)–poly (β-6-heptenolactone) diblock copolymers to tune properties and self-assembly" (2016). *Chemistry Publications*. 92.
https://ir.lib.uwo.ca/chempub/92
Introduction

The self-assembly of block copolymers has attracted considerable attention recently as it can enable the preparation of a wide range of ordered structures including spherical micelles, cylindrical micelles, vesicles, and other morphologies from relatively simple polymeric components.\(^1\)\(^-\)\(^3\) It is well established that the morphology can be tuned by varying the polymer composition, molar mass, and the mass or volume fraction of each block (\(f\)). Polymer assemblies show promise for a number of applications including nanopatterning,\(^4\)\(^-\)\(^5\) nanoelectronics,\(^6\) diagnostics,\(^7\)\(^-\)\(^8\) and drug delivery.\(^9\)\(^-\)\(^10\) They have garnered particular interest as drug delivery vehicles and contrast agents as their nanoscale size is ideal for achieving long \textit{in vivo} circulation times and passive targeting of tumors through the enhanced permeation and retention effect.\(^11\)\(^-\)\(^12\) Drug molecules and contrast agents can be loaded into the hydrophobic or hydrophilic cores of micelles or vesicles respectively while specific targeting moieties can be conjugated to the surfaces of the assemblies.\(^13\)

Of the numerous block copolymer assemblies that have been investigated for biomedical applications, many contain polyesters.\(^14\)\(^-\)\(^20\) Polyesters such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) are attractive as they can be broken down through enzymatic or non-enzymatic hydrolysis and have also been demonstrated to be biocompatible in certain applications.\(^21\)\(^-\)\(^22\) For example, a poly(ethylene oxide) (PEO)-PLA micelle containing paclitaxel (PTX) has been approved for treatment of breast, lung, and ovarian cancer in Korea,\(^23\) while a PEO-PLGA micelle containing docetaxel and targeted to prostate-specific membrane antigen is in clinical trials.\(^24\) However, a limitation of the commonly used polyesters is a lack of available pendant groups, making it challenging to tune their physical properties and to conjugate drugs, contrast agents or probes.

Motivated by the interest in polyesters as biomedical materials, but also as degradable and potentially bio-sourced alternatives to conventional non-degradable polymers, there has been significant interest in the development of polyesters with pendant functional groups over the past several years. For example, polyesters with alkenes,\(^25\)\(^-\)\(^32\) alkynes,\(^33\)\(^-\)\(^34\) \(\alpha,\beta\)-unsaturated carbonyls,\(^35\)\(^-\)\(^36\) hydroxyls,\(^33\)\(^-\)\(^37\) epoxides,\(^33\) amines,\(^38\) and other functional groups have been prepared through ring-opening and condensation approaches using a wide variety of different monomers. These pendant groups have enabled the tuning of the thermal properties.\(^28\)\(^-\)\(^30\)\(^,\)\(^33\)\(^-\)\(^37\)
They have also been derivatized to introduce carboxylic acids, azides, epoxides, amines, sugars, dienes, boronates, and fluoroalkyl chains as well as to perform cross-linking.

Despite the large number of functional polysters now available, there are only a limited number of block copolymer-based polymers bearing reactive groups. For example, PEO monomethyl ether was used as an initiator for a ring-opening polymerization of α-benzyl carbonate-ε-caprolactone (BCL) and for the copolymerization of caprolactone and BCL to afford PEO-b-PBCL and PEO-b-P(BCL/CL).43 The sizes and stabilities of micelles prepared from these copolymers depended on the BCL content. The benzyl group could also be cleaved by hydrogenolysis to afford pendant carboxylic acids that were used to conjugate cholesterol or palmitoyl groups in order to enhance the drug compatibility of the mica core, or PTX to enhance its loading and control its release. In other work, a methanolysis procedure could be applied to poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] to afford low molar mass initiators for the polymerization of caprolactone. Subsequent oxidation of the pendant alkenes to carboxylic acids afforded amphiphilic block copolymers.47 Alkyne-functionalized o-carboxyxyanhydrides derived from tyrosine have also been prepared and ring opening polymerization from PEO or PLA led to amphiphilic block copolymers that could be functionalized to prepare light-responsive or cancer-targeted micelles.49

We describe here a new functional polyester block copolymer platform based on PEO and poly[(β-6-heptenolactone) (PHEL). PEO is a water-soluble block with favorable biological properties, while PHEL provides pendant alkene groups for post-polymerization modification. A small library of PEO-b-PHEL copolymers was prepared and then thiol-ene chemistry was used to functionalize the alkenes with hydrophilic and hydrophobic groups including octyl, triethylene glycol (TEG) and carboxylic acids, allowing their f values to be tuned. The physical properties and self-assembly of the starting polymers and their derivatives were studied and compared. In addition, it was shown that the pendant groups could be used to conjugate PTX and the fluorescent dye rhodamine B, further demonstrating the functionality and versatility of this chemistry.

Results and discussion

Synthesis and characterization of PEO-PHEL block copolymers

β-6-heptenolactone ([β-6-HEL) was selected as the monomer for the preparation of functionalizable block copolymers as it has a pendant terminal alkene that should allow for reactions with thiols via thiol-ene chemistry. Previously, β-6-HEL has been polymerized using zinc and yttrium complexes and the resulting polymers were functionalized to introduce hydroxyl, epoxide, and pinacolborane moieties. Recently, Shaver and coworkers demonstrated that β-lactones undergo controlled coordination insertion ring opening polymerization (ROP) using aluminum salen catalysts. Successful ROP of β-6-HEL was achieved and this was expanded to include the random copolymerization with lactide, followed by cross-metathesis to include a range of functional groups. To the best of our knowledge, β-6-HEL has not previously been incorporated into block copolymers. This monomer was synthesized using a procedure previously reported for similar lactones involving epoxide carbonylation using a chromium porphyrin complex and its identity was confirmed by comparison with previously reported data for the same compound. For the preparation of block copolymers, PEO monomethyl ether with a molar mass of 2000 g mol\(^{-1}\) was used as an initiator and the polymerization was conducted in toluene at 85 °C for 20 h using an aluminum salen catalyst (Scheme 1). To prepare block copolymers with varying block ratios, 26, 50, and 90 equivalents of β-6-HEL were used (Table 1). Evaluation of the \(^1\)H NMR spectra prior to purification showed that the conversion of β-6-HEL varied from 86-88%. The polymers were subsequently purified by precipitation into hexanes.

\[
\text{Scheme 1. Synthesis of PEO-b-PHEL block copolymers.}
\]

<table>
<thead>
<tr>
<th>Copolymer</th>
<th>Equiv. of β-6-HEL added</th>
<th>DP of PHEL (NMR)</th>
<th>M(_n) (g mol(^{-1})) (NMR)</th>
<th>M(_n) (g mol(^{-1})) (SEC)</th>
<th>D (SEC)</th>
<th>T(_g) (°C)</th>
<th>T(_m) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO({10848})-b-PHEL({10848})</td>
<td>16</td>
<td>23</td>
<td>4576</td>
<td>5140</td>
<td>1.08</td>
<td>-54</td>
<td>35</td>
</tr>
<tr>
<td>PEO({7040})-b-PHEL({7040})</td>
<td>51</td>
<td>45</td>
<td>7040</td>
<td>6630</td>
<td>1.19</td>
<td>-59</td>
<td>29</td>
</tr>
<tr>
<td>PEO({12910})-b-PHEL({12910})</td>
<td>92</td>
<td>79</td>
<td>10848</td>
<td>12910</td>
<td>1.03</td>
<td>-46</td>
<td>22, 29</td>
</tr>
</tbody>
</table>

The block copolymers were characterized by \(^1\)H NMR spectroscopy, FTIR spectroscopy, size exclusion chromatography (SEC), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) (data included in the ESI). The degree of polymerization (DP) of the polyester block was determined using \(^1\)H NMR spectroscopy by comparing the integration of the peak at 3.6 ppm corresponding to the hydrogens on the PEO block with those of the multiplets corresponding to the alkene protons as well as the methine hydrogen on the PHEL block from 5 – 5.8 ppm (Fig. 1 and S1-
S3). The results indicated that DPs of approximately 23, 45, and 79 were obtained for copolymers

PEO₄₅-_b-PHEL₂₃, PEO₄₅-_b-PHEL₄₅, and PEO₄₅-_b-PHEL₇₉ respectively. From these DPs, the number average molar mass (M_n) was calculated for each polymer (Table 1). These ranged from 4576 g mol⁻¹ for PEO₄₅-_b-PHEL₂₃ to 10848 g mol⁻¹ for PEO₄₅-_b-PHEL₇₉. The molar masses were also measured by SEC in THF relative to polystyrene standards (Fig. S24). As shown in Table 1, the M_ns were in good agreement with those from NMR spectroscopy and the dispersity (Đ) was less than 1.2 for each copolymer. FTIR spectra showed characteristic peaks corresponding to the C=O stretch of the carbonyl and C=C stretch of the alkene on the PHEL block at ~1740 and 1640 cm⁻¹ respectively (Fig. S13-S15).

PEO-_b-PHEL block copolymers were stable up to at least 200 °C as determined by TGA (Table S1). PEO is a highly crystalline polymer with a T_m of ~58 °C⁵⁷ while PHEL is an amorphous polymer with a T_g of ~ -40 °C.²⁵ Upon their incorporation into block copolymers, the resulting materials show both amorphous and crystalline domains, suggesting that they undergo phase separation at the nanoscale (Fig. S26-S28). The T_m of the copolymers decreased from 35 to 22 °C as the PHEL block length increased, suggesting that the crystalline domains became smaller as the PEO content of the copolymers decreased. PEO₄₅-_b-PHEL₇₉ had two melting peaks suggesting the presence of crystalline PEO domains of different sizes. All three of the copolymers underwent cold crystallization between the T_m and T_g. The T_g ranged from -59 to -46 °C, with no clear trend relating to the changing PHEL block length. However, these T_gs were lower than those previously reported for PHEL of similar DP.²⁵ Thus, the presence of non-crystalline PEO at these temperatures prior to cold crystallization may enhance segmental motion.

As one of the main goals of this work was to explore the effects of alkene functionalization on the self-assembly of the block copolymers, the self-assembly of PEO₄₅-_b-PHEL₂₃, PEO₄₅-_b-PHEL₄₅, and PEO₄₅-_b-PHEL₇₉ was first explored. The hydrophilic mass fractions (f) of the copolymers were
calculated as molar mass of PEO block/molar mass of the copolymer and the results are summarized in Table 2. Self-assembly was performed by a solvent exchange process involving first the dissolution of the copolymer in THF, followed by the addition of water and then dialysis to remove the THF. The resulting assemblies were characterized by dynamic light scattering (DLS) (Figs. S36-S38) and TEM to determine their diameters and polydispersity indices (PDI). As shown in Fig. 2a, PEO_{45}-b-PHEL_{23} with an f of 0.44 assembled into solid spherical nanoparticles and the Z-average diameter measured by DLS was 66 nm, which is in reasonable agreement with the TEM images. This result can be compared with those obtained previously for PEO-b-PCL copolymers as the number of carbons in the lactone monomer β-6-HEL is similar to that in caprolactone. Solid spherical nanoparticles were also obtained for similar f values in PEO-b-PCL copolymers.

Upon decreasing f to 0.28 in PEO_{45}-b-PHEL_{45}, solid spherical nanoparticles with a Z-average diameter of 73 nm were observed (Fig. 2b). This increasing tendency towards the formation of larger assemblies is consistent with the increasing length of the hydrophobic block. In comparison to PEO-b-PCL copolymers, typically f values between 0.20 and 0.42 result in vesicular morphology. For f > 0.42, a mixed morphology of both worm-like micelles and spherical nanoparticles has been observed.

Upon further decreasing f to 0.18 in PEO_{45}-b-PHEL_{79}, vesicles were observed in the TEM images, possibly along with other structures (Fig. 2c). The Z-average diameter of the assemblies measured by DLS increased to 118 nm. As vesicles are more difficult to image by TEM than solid particles due to their tendency to collapse upon drying, they were also imaged by fluorescence confocal microscopy after incorporation of the hydrophobic dye Nile red into their membranes. The limitation of this technique is its resolution, which requires the formation of micrometer-sized vesicles. Such vesicles can be obtained by the hydration of polymer films.\(^{50, 61}\) Thus, PEO_{45}-b-PHEL_{79} and 0.1 wt% Nile red were dissolved in CH\(_2\)Cl\(_2\) and the solution was used to cast a film on a flask. Water was then added, and the suspension was stirred for 24 h. As shown in Fig. 2d, fluorescent vesicles were clearly observed budding from the polymer surface, confirming the tendency of this polymer to form vesicles.

The critical aggregation concentrations (CAC) of all of the above polymer assemblies were measured through encapsulation of the fluorescent probe Nile red (Figs. S44-S46).\(^{62}\) As shown in Table 2, the CAC decreased from 20 to 6 mg L\(^{-1}\) with the decreasing f values as the length of PHEL block increased. This was expected due to the increased hydrophobicity of the amphiphiles, which would favour self-assembly. However, the differences between these polymers was relatively modest and all CACs were on the same order of magnitude.

Table 2. Hydrophilic mass fraction of polymers and their self-assembly properties as determined by TEM and DLS.

<table>
<thead>
<tr>
<th>Copolymer</th>
<th>Hydrophilic mass fraction (f)</th>
<th>Z-average diameter (nm)</th>
<th>PDI</th>
<th>Morphology</th>
<th>CAC (mg L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO_{45}-b-PHEL(_{15})</td>
<td>0.44</td>
<td>66 ± 0.5</td>
<td>0.20 ± 0.01</td>
<td>Solid spherical nanoparticles</td>
<td>20</td>
</tr>
<tr>
<td>PEO_{45}-b-PHEL(_{15})</td>
<td>0.28</td>
<td>73 ± 1.1</td>
<td>0.34 ± 0.05</td>
<td>Solid spherical nanoparticles</td>
<td>14</td>
</tr>
<tr>
<td>PEO_{45}-b-PHEL(_{79})</td>
<td>0.18</td>
<td>118 ± 2.2</td>
<td>0.31 ± 0.01</td>
<td>Vesicles</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 2. a-c) TEM images and d) fluorescence confocal microscopy image of assemblies formed from a) PEO_{45}-b-PHEL_{15}, b) PEO_{45}-b-PHEL_{15}, and c) PEO_{45}-b-PHEL_{15} by the THF/water solvent exchange method and d) PEO_{45}-b-PHEL_{15} by film hydration. The arrows in d) show vesicles budding from the surface of solid polymer.

Functionalization of PEO-b-PHEL block copolymers to tune hydrophilic fractions and self-assembly

With the block copolymers in hand, the functionalization of the pendant alkenes by thiol-ene chemistry was explored. PEO_{45}-b-PHEL_{45} was chosen for this work as it had an intermediate f among the three copolymers and it was proposed that it would therefore be possible to modify the polymers to achieve a range of effects on the resulting assemblies. First, the modification of the copolymer with hydrophobic 1-octanethiol moieties was investigated. PEO_{45}-b-PHEL_{45} was reacted with 25 equiv. per polymer chain of 1-octanethiol using 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoinitiator in combination with UV irradiation to afford the functionalized copolymer PEO_{45}-b-PHEL_{15}-octyl\(_{14}\) (Scheme 2). The product was purified by dialysis in N,N-
dimethylformamide (DMF). As shown in Fig. 1, the peak corresponding to the alkene protons at 5.0 ppm in the 1H NMR spectrum decreased from 91 to 41, which is consistent with reacting approximately 24 of the 45 alkenes. In addition, new peaks appeared at 0.88, 1.28, 1.38 and 1.58 ppm that correspond to protons on the alkyl chain. Furthermore, there was a reduction in the C=C stretch peak in the FTIR spectrum (Fig. S16). The M_n of the polymer measured by SEC increased from 6630 to 8150 g/mol, consistent with the increased mass to the polymer. However, it did not increase to the same extent as the actual mass added, which can likely be attributed to the grafted architecture. D remained unchanged. DSC analysis showed that the T_g and T_m of the polymers were also relatively unchanged in comparison with PEO$_{45}$-b-PHEL$_{45}$ at -60 and 34 °C, respectively (Table 3).

![Scheme 2. Functionalization of PEO$_{45}$-b-PHEL$_{45}$ with octyl chains, TEG, and carboxylic acids.](image)

Next, functionalization of PEO$_{45}$-b-PHEL$_{45}$ with 25 equiv. of hydrophilic 1-mercaptop-3,6,9,12-tetraoxotridecane (TEG-thiol) moieties was performed using the same conditions described above to afford PEO$_{45}$-b-PHEL$_{11}$-TEG$_{14}$. As shown in Fig. 1, a reduction in the integration of the alkene peak at 5.0 ppm from 91 to 62 was observed, suggesting that ~14 alkenes were functionalized. In addition, a new peak appeared at 3.36 ppm corresponding to the terminal methoxy group of the TEG chain. A small increase in M_n to 7710 g mol$^{-1}$ relative to the starting PEO$_{45}$-b-PHEL$_{45}$ was measured by SEC while D remained similar at 1.15. In comparison to PEO$_{45}$-b-PHEL$_{45}$, PEO$_{45}$-b-PHEL$_{11}$-TEG$_{14}$ has a somewhat elevated T_g of -44 °C, suggesting that the TEG grafts reduce segmental motion. However, the T_m remained unchanged.

An additional approach to tune the hydrophilicity and functionality of the block copolymers involved the conjugation of thioglycolic acid to the alkene pendant groups. In this case, either 140 or 27 equiv. per polymer chain were coupled to PEO$_{45}$-b-PHEL$_{45}$ to afford PEO$_{45}$-b-CA$_{45}$ and PEO$_{45}$-b-PHEL$_{45}$-CA$_{45}$ respectively. When 140 equiv. were added, complete functionalization of the alkenes was achieved as shown in Fig. 1 by the disappearance of alkene peaks at 5.0 ppm in the 1H NMR spectrum and the appearance of a peak at 3.1 ppm corresponding to the protons α to the carboxylic acid. When 27 equiv. were used, ~25 carboxylic acid moieties per polymer chain were introduced (Fig. S7). The presence of carboxylic acids on the polymer made it impossible to obtain measurements by SEC due to interactions with the columns. In comparison with PEO$_{45}$-b-PHEL$_{45}$, DSC analysis showed that PEO$_{45}$-b-CA$_{45}$ had a significantly elevated T_g of -19 °C and no T_m. It is possible that hydrogen bonding occurs between the carboxylic acids, reducing segmental motion of the polyester block and preventing the crystallization of the PEO block. For PEO$_{45}$-b-PHEL$_{20}$-CA$_{25}$, DSC analysis indicated only a slight change in T_g (-46°C) relative to that of PEO-b-PHEL$_{45}$, suggesting that the lower degree of acid functionalization results in less hydrogen bonding. However, there was still no T_m, showing that the acids still inhibited crystallization of PEO.

As shown in Table 4, following the formula of mass of PEO/total mass of the copolymer, the attachment of 24 octyl chains in PEO$_{45}$-b-PHEL$_{11}$-octyl$_{24}$ results in a decrease in f to 0.19 from 0.28 for PEO$_{45}$-b-PHEL$_{45}$. For PEO$_{45}$-b-PHEL$_{11}$-TEG$_{14}$, f was calculated as (mass of PEO + mass of TEG)/total mass of copolymer, resulting in an f of 0.47. On the other hand, f values were not calculated for the carboxylic acid-functionalized copolymers as it was not obvious what mass should be deemed to contribute to hydrophilicity and the charge of the ionized acids was anticipated to override any calculated changes in f.

Self-assembly of the resulting functionalized copolymers was studied in the same manner described above. Upon the addition of octyl chains in PEO$_{45}$-b-PHEL$_{11}$-octyl$_{24}$ “worm-like” assemblies as observed by TEM with lengths on the order of a few hundred nm were formed (Fig. 3a). DLS suggested a Z-average diameter of 143 nm, but the meaning of this number is limited due to the non-spherical nature of the assemblies. It is interesting that although PEO$_{45}$-b-PHEL$_{22}$-octyl$_{24}$ and PEO$_{45}$-

<table>
<thead>
<tr>
<th>Sample</th>
<th>Number of functionalized alkenes</th>
<th>M_n (g mol$^{-1}$) (NMR)</th>
<th>M_n (g mol$^{-1}$) (SEC)</th>
<th>D</th>
<th>T_g (°C)</th>
<th>T_m (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO${45}$-b-PHEL${11}$-octyl$_{24}$</td>
<td>24</td>
<td>10549</td>
<td>8150</td>
<td>1.19</td>
<td>-60</td>
<td>34</td>
</tr>
<tr>
<td>PEO${45}$-b-PHEL${11}$-TEG$_{14}$</td>
<td>14</td>
<td>9577</td>
<td>7710</td>
<td>1.15</td>
<td>-44</td>
<td>29</td>
</tr>
<tr>
<td>PEO${45}$-b-CA${45}$</td>
<td>45</td>
<td>11180</td>
<td>-</td>
<td>-</td>
<td>-19</td>
<td>ND</td>
</tr>
<tr>
<td>PEO${45}$-b-PHEL${11}$-octyl$_{24}$</td>
<td>25</td>
<td>9341</td>
<td>-</td>
<td>-</td>
<td>-46</td>
<td>ND</td>
</tr>
<tr>
<td>PEO${45}$-b-PHEL${11}$-PTX$_{14}$</td>
<td>34 PTX, 11 acid</td>
<td>39600</td>
<td>9010</td>
<td>1.88</td>
<td>131</td>
<td>ND</td>
</tr>
<tr>
<td>PEO${45}$-b-PHEL${11}$-PTX$_{14}$</td>
<td>18 PTX, 7 acid</td>
<td>24390</td>
<td>6750</td>
<td>1.30</td>
<td>87</td>
<td>ND</td>
</tr>
<tr>
<td>PEO${45}$-b-PHEL${11}$-RHD$_{3}$</td>
<td>5</td>
<td>9895</td>
<td>6300</td>
<td>1.15</td>
<td>-33</td>
<td>ND</td>
</tr>
</tbody>
</table>
b-PHEL\textsubscript{79} had very similar f values, they assembled to different morphologies. This emphasizes that the specific chemical structure and architecture of the amphiphile can have a significant effect on the assembled morphology.

Table 4. Hydrophilic mass fractions of polymers and their self-assembly properties as determined by TEM and DLS.

<table>
<thead>
<tr>
<th>Copolymer</th>
<th>Hydrophilic mass fraction (f)</th>
<th>Z-average diameter (nm)</th>
<th>PDI</th>
<th>Morphology</th>
<th>CAC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO\textsubscript{45,5}b-PHEL\textsubscript{115}octyl\textsubscript{14}</td>
<td>0.19</td>
<td>143 ± 4</td>
<td>0.29 ± 0.01</td>
<td>Worm-like assemblies</td>
<td>12</td>
</tr>
<tr>
<td>PEO\textsubscript{45,5}b-PHEL\textsubscript{115}TEG\textsubscript{14}</td>
<td>0.47</td>
<td>59 ± 0.1</td>
<td>0.258 ± 0.002</td>
<td>Solid spherical nanoparticles</td>
<td>41</td>
</tr>
<tr>
<td>PEO\textsubscript{45,5}b-PHEL\textsubscript{115}CA\textsubscript{14}</td>
<td>-</td>
<td>97 ± 3</td>
<td>0.37 ± 0.10</td>
<td>Solid spherical nanoparticles</td>
<td>40</td>
</tr>
<tr>
<td>PEO\textsubscript{45,5}b-CA\textsubscript{15}-PTX\textsubscript{23}</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>Macroscopic aggregation</td>
<td>-</td>
</tr>
<tr>
<td>PEO\textsubscript{45,5}b-CA\textsubscript{15}-PTX\textsubscript{23}</td>
<td>0.08</td>
<td>>1000</td>
<td>-</td>
<td>Aggregates of nanoparticles</td>
<td>10</td>
</tr>
<tr>
<td>PEO\textsubscript{45,5}b-PTX\textsubscript{23}</td>
<td>0.18</td>
<td>102 ± 0.4</td>
<td>0.178 ± 0.007</td>
<td>Solid spherical nanoparticles</td>
<td>16</td>
</tr>
</tbody>
</table>

Fig. 3. TEM images of assemblies formed from: a) PEO\textsubscript{45,5}b-PHEL\textsubscript{115}octyl\textsubscript{14}; b) PEO\textsubscript{45,5}b-PHEL\textsubscript{115}TEG\textsubscript{14}; c) PEO\textsubscript{45,5}b-PHEL\textsubscript{115}CA\textsubscript{14}; d) PEO\textsubscript{45,5}b-PTX\textsubscript{23} using the THF/water solvent exchange method.

Alternatively, the attachment of hydrophilic TEG chains in PEO\textsubscript{45,5}b-PHEL\textsubscript{115}TEG\textsubscript{14} led to nanoparticles with a Z-average diameter of 59 nm (Fig. 3b). By TEM, these assemblies were noticeably smaller than those observed for PEO\textsubscript{45,5}b-PHEL\textsubscript{115} (Fig. 2b). This can be explained by the increased hydrophilicity of the copolymers, which can stabilize smaller nanoparticles. PEO\textsubscript{45,5}b-CA\textsubscript{14} did not yield any well-defined assemblies based on DLS or TEM. However, PEO\textsubscript{45,5}b-PHEL\textsubscript{115}CA\textsubscript{14} self-assembled to form small nanoparticles (diameter < 40 nm) based on TEM (Fig. 3c). Some aggregation was evident in the DLS, increasing the Z-average size to 97 nm (Table 4, Fig. S41).

The CACs of the copolymers were measured through encapsulation of nile red (Table 4, Fig. S47-S51). While all CACs remained on the same order of magnitude as the initial PEO\textsubscript{45,5}b-PHEL\textsubscript{45}, there was a general trend that hydrophilic modifications decreased the CAC and hydrophilic modifications increased it. Thus, while not all modifications led to well-defined assemblies, it was possible to tune the morphologies and stabilities of the polymer assemblies through functionalization of the polyester block. Tuning of morphology through post-polymerization functionalization of block copolymers has also recently been demonstrated using PEO-poly(allyl glycidyl ether) block copolymers,

Functionalization of PEO-b-PHEL block copolymers with drugs and fluorophores

In addition to altering the hydrophilic-hydrophobic ratios of the polymers, it was also of interest to use the pendant alkene groups to impart other functions. To demonstrate this, PTX and a rhodamine dye (RHD) were conjugated to the copolymers. Copolymer nanoparticles have been widely investigated as drug delivery vehicles, in particular for anticancer treatment due to the possibility of passively and/or actively targeting these systems to tumors. However, a major challenge is poor retention of the drug in the delivery vehicle after its administration. Chemical conjugation of the drug has been shown to eliminate or reduce the burst release effect, enabling slow and prolonged release of drug.

PTX was selected as the drug to conjugate as it is a widely used anti-cancer therapeutic and is challenging to administer due to its poor water solubility. A number of delivery systems for PTX have been developed and covalent conjugation has been shown to slow and control its release.

In designing a chemical conjugation strategy, a mechanism for release of the active drug should be considered. As PTX possesses three hydroxyl groups, with one selectively undergoing esterification, an ester linkage between PTX and PEO\textsubscript{45,5}b-PHEL\textsubscript{45} was targeted. Reaction of PEO\textsubscript{45,5}b-CA\textsubscript{45} with 100 equiv. of PTX per polymer chain using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC-HCl) and 4-dimethylaminopyridine (DMAP) afforded PEO\textsubscript{45,5}b-CA\textsubscript{115}-PTX\textsubscript{14} (Scheme 3). The amount of PTX coupled was determined using 1 H NMR spectroscopy by comparing the integration of the peak corresponding to the methine hydrogen on the PHEL block (labeled ‘1’ in Fig. 4) at 5.21 ppm with that of the methine proton adjacent to the amide group on PTX (labeled ‘b’ on the chemical structure in Fig. 4) at 5.95 ppm.
indicated that 76% of the carboxylic acids on PEO_{45-b-CA_{45}} were esterified with PTX, resulting in ~34 PTX molecules per polymer. Further conversion of the carboxylic acids was not possible, likely due to the sterically bulky nature of the drug. SEC analysis provided an M_n of 9010 g mol$^{-1}$ and a D of 1.88. While the M_w clearly increased as expected, the significant increase in D and underestimation of the M_n can likely be attributed to tailing due to interactions of the residual carboxylic acids with the column. DSC analysis showed that the copolymers were amorphous, with no melting transition observed for the PEO block. However, there was a large increase in the T_g to 131 °C due to the incorporation of PTX, which possesses a relatively rigid polycyclic structure and constitutes >70 wt% of the polymer.

The self-assembly of PEO_{45-b-CA_{11}-PTX_{18}} was studied by the solvent exchange method involving THF and water. Unfortunately, macroscopic precipitation occurred under all of the conditions investigated, likely due to the very low f value of 0.05 for this polymer. Thus, PTX was also conjugated to PEO_{45-b-PHEL_{20-CA_{25}}} using the same procedure outlined above, affording PEO_{45-b-PHEL_{20-CA_{27}}-PTX_{18}}, with ~18 molecules of PTX and ~7 residual carboxylic acids as indicated by 1H NMR spectroscopy (Fig. S9). The f value calculated for this polymer was 0.08. This copolymer appears to self-assemble into small, solid spherical nanoparticles upon solvent exchange from THF to water, but these assemblies further aggregate to form micrometer-sized aggregates based on both DLS and TEM imaging (Figs. S42, S52). Thus, to obtain well-dispersed nanometer-sized assemblies, it would be necessary to further decrease the amount of PTX conjugated.

The labeling of polymer assemblies with fluorophores is also of significant interest for monitoring their cell uptake, intracellular trafficking, and biodistribution. The covalent conjugation of the fluorophore ensures that the fluorophore does not diffuse out of the assembly and partition into hydrophobic environments such as cell membranes. In this work, the dye selected for conjugation was a rhodamine B derivative. To install a thiol onto the rhodamine for the thiol-ene reaction, 3-tritylsulfanylpropionic acid 1 was first condensed using N-N'-dicyclohexylcarbodiimide (DCC) to form the anhydride 2 (Scheme 4). An amine-functionalized rhodamine 3, was synthesized as previously reported, then reacted with anhydride 2 to afford the protected thiol derivative 4. Compound 4 was very sensitive to acid and required purification on neutral alumina rather than silica gel.

Scheme 3. Synthesis of the PTX conjugates PEO_{45-b-CA_{11}}-PTX_{18} and PEO_{45-b-PHEL_{20-CA_{27}}-PTX_{18}}. The site of conjugation on PTX is circled.

Fig 4. 1H NMR spectra of a) PEO_{45-b-CA_{11}}-PTX_{18}, b) PEO_{45-b-CA_{45}} and c) free paclitaxel (PTX-OH). The peaks labeled with ‘ indicate peaks corresponding to conjugated molecules.
to avoid the loss of the trityl protecting group. The trityl group was then purposefully cleaved using trifluoroacetic acid (TFA) to afford the free thiol, which was used immediately in the conjugation reaction due to its susceptibility to oxidation and other degradation pathways.

First, conjugation of the dye to PEO₄₅-b-PHEL₄₅ was attempted using the photochemically-initiated thiol-ene reaction described above. This was unsuccessful, likely due to the strong absorbance of light by rhodamine. However, thermal initiation using azobisisobutyronitrile (AIBN) and 38 equiv. of thiol per polymer at 80 °C provided PEO₄₅-b-PHEL₄₅-RHDS with ~5 fluorophores per polymer as determined by ¹H NMR spectroscopy (Fig. S12). The reaction was not further optimized to achieve a higher conjugation yield. SEC provided an Mₘ of 6300 g/mol and a Đ of 1.15, which are very similar to those of PEO₄₅-b-PHEL₄₅. SEC analysis showed that PEO₄₅-b-PHEL₄₅-RHDS was amorphous, with no melting transition observed for the PEO block. There was also an increase in the Tₘ to -33 °C from -59 °C of PEO₄₅-b-PHEL₄₅. Self-assembly of PEO₄₅-b-PHEL₄₀-RHDS was investigated using the solvent exchange method. As shown in Fig. 3d and Table 4, this copolymer self-assembled to form solid spherical nanoparticles with a Z-average diameter of 102 nm. The larger size of these assemblies relative to those formed by PEO₄₅-b-PHEL₄₅ can likely be attributed to the decreased f of PEO₄₅-b-PHEL₄₀-RHDS. The micelles were fluorescent with an emission λₘₐₓ of 456 nm (Fig. 5). This demonstrates that these new copolymers with pendant alkene groups can also be used to provide fluorescently-labeled polymer assemblies.

Conclusions

In this work, a small library of novel PEO-b-PHEL block copolymers with pendant alkyl groups and varying PHEL lengths were synthesized. The parent polymers were studied for the formation of different morphologies and were found to produce solid spherical nanoparticles (PEO₄₅-b-PHEL₃₃ and PEO₄₅-b-PHEL₄₅) as well as vesicles (PEO₄₅-b-PHEL₇₈). The alkenes on the PHEL block of PEO₄₅-b-PHEL₄₅ were then functionalized with octyl, TEG or carboxylic acid groups via UV-initiated thiol-ene chemistry, significantly changing the hydrophilic/hydrophobic balance of the copolymers and influencing their self-assembly behaviour to provide assemblies with different morphologies and stabilities. It was also demonstrated that the anti-cancer drug PTX could be conjugated to PEO₄₅-b-PHEL₂₀CA₂₅ via an ester linkage,
although a further reduction in PTX content will be necessary in order to obtain well-dispersed aqueous assemblies. Finally, the conjugation of a rhodamine B thiol derivative by a thermally-initiated thiol-ene reaction was demonstrated, providing fluorescent assemblies. Thus, this work demonstrates that PEO-PHEL block copolymers serve as highly versatile backbones for the preparation of functional materials and assemblies for various applications.

Experimental section

Materials. PEO monomethyl ether (Mₙ = 2000) was purchased from Sigma Aldrich and was dried by three azetropic distillations from toluene then stored in a nitrogen filled glovebox. β-6-HEL was synthesized by a procedure previously reported for similar lactones⁷⁶ and spectral data agreed with those previously reported.⁷⁶ The aluminum salen catalyst was synthesized according to a previously reported procedure.⁷⁷ 3-Tritylsulfinyl-propionic acid was prepared as previously described.⁷⁴ TEG-thiol was synthesized as previously reported.⁷⁸ Rhodamine derivative (3) was synthesized as previously reported.⁷⁹ EDC-HCl was purchased from Creo Salus (USA). Paclitaxel was purchased from Ontario Chemicals (Guelph, ON, Canada). CH₂Cl₂ was distilled from CaH₂ before use. Anhydrous THF, DMF and toluene were obtained from a solvent purification system using aluminum oxide columns. Deuterated solvents were purchased from Cambridge Isotopes Laboratories (Tewskbury, MA, USA). Solvents were purchased from Caledon Laboratory Chemicals (Georgetown, ON, Canada). All other chemical reagents were purchased from Sigma Aldrich (St. Louis, MO, USA) and were used as received.

General methods. Dialysis was performed using Spectra/Por 6 regenerated cellulose membranes with a molecular weight cut-off (MWCO) of either 3500 or 6000-8000 g mol⁻¹ from Spectrum Laboratories (Rancho Dominguez, CA, USA). Nuclear Magnetic Resonance (NMR) spectroscopy was conducted on a Varian Inova 600 MHz Spectrometer (Varian, Palo Alto, CA, USA). All ¹H and ¹³C NMR chemical shifts are reported in ppm and referenced relative to the residual solvent peaks (CHCl₃: ¹H δ = 7.26, ¹³C δ = 77). DMSO-d₆: ¹H δ = 2.50, ¹³C δ = 40). Coupling constants (J) are expressed in Hertz (Hz). Fourier transform infrared (FTIR) spectroscopy was conducted using a Bruker Tensor 27 spectrometer (Bruker, Billerica, MA, USA) in attenuated total reflectance mode (ATR) using a ZnSe crystal or a Perkin Elmer FTIR Spectrum Two Spectrometer (Waltham, MA, USA) in the universal attenuated total reflectance mode (UATR), using a diamond crystal as well as the UATR sampling accessory (part number L1050231). DSC was performed using a Q2000 from TA Instruments (New Castle, DE, USA) and TGA was performed on Q50 from TA Instruments. For TGA the heating rate was 10 °C/min between 50-700 °C under nitrogen. For DSC, the heating/cooling rate was 10 °C min⁻¹ from -100 to 150 °C. Glass transition temperatures were obtained from the third or fourth heating cycle and were taken as the midpoint temperature of the transition. Size exclusion chromatography (SEC) was performed using a Visotek GPC Max VE2001 solvent module equipped with a Visotek VE3580 RI detector operating at 30 °C, an Agilent Polypore guard column (50 x 7.5 mm) and two Agilent Polypore (300 x 7.5 mm) columns connected in series. Samples were dissolved in THF (glass distilled grade) at a concentration of approximately 5 mg mL⁻¹ and filtered (pore size: 0.22 μm, ProMax™ syringe filter, PTFE) then injected using a 100 μL loop. The THF eluent was filtered and eluted at 1 mL min⁻¹ for a total of 30 minutes. Molar mass calibration was performed using polystyrene standards. The hydrodynamic radius of aggregates was measured by dynamic light scattering (Zetasizer Nano Series, Malvern Instruments, UK) at room temperature (25 °C) in a glass cuvette. The polymer concentration was ~ 1mg/mL. Transmission electron microscopy (TEM) images were acquired on a Phillips CM10 microscope operating at 80 kV with a 40 μm aperture. For TEM sample preparation, 5 μL of a ~0.2 mg mL⁻¹ polymer assembly suspension was dropped directly on a TEM grid (Formvar/carbon film, 400 mesh, copper, Electron Microscopy Sciences, Hatfield, PA, USA) and allowed to evaporate to dryness over 16 hrs before image acquisition. No staining was performed. Fluorescence spectra were obtained using a QM-4 SE spectrometer from Photon Technology International (PTI) equipped with double excitation and emission monochromators.

Synthesis of PEO₄₋₂₆-PHEL₃₃ and general procedure for the synthesis of PEO₆₋₂₆-PHEL block copolymers. In a nitrogen filled glovebox, β-6-HEL (1.80 g, 14.3 mmol, 26 equiv) the aluminum salen catalyst [Al (Scheme 1) (295 mg, 0.54 mmol, 1.0 equiv.)] and monomethoxy-terminated PEO (Mₙ = 2000 g/mol, 1.08 g, 0.54 mmol, 1.0 equiv.) were added to an ampoule with toluene (20 mL). The ampoule was sealed, removed from the glovebox and placed in a preheated oil bath at 85 °C for 20 hours. After 20 hours, 0.5 mL of a 10% MeOH in CH₂Cl₂ solution was added to quench polymerization. A crude sample was taken for ¹H NMR spectroscopic analysis. The remainder was added to hexanes. Hexane was decanted and the remaining oil was dried until constant weight. Yield = 89%. ¹H NMR (600 MHz, CDCl₃): δ 1.70-1.71 (m, 49H, 2.02 – 2.11 (m, 51H), 2.50 – 2.61 (m, 49H), 3.38 (s, 3H), 3.64 (br s, 180H), 4.21 – 4.22 (m, 2H), 4.97 – 5.03 (m, 47H), 5.21 – 5.22 (m, 22H), 5.74 – 5.81 (m, 23H). Mₙ based on ¹H NMR spectroscopy = 4576 g mol⁻¹. SEC (THF): Mₙ = 5140 g mol⁻¹, Mᵦ = 5550 g mol⁻¹, D = 1.08. FTIR: 2891, 1737, 1642 cm⁻¹, Tₘ = 35 °C, Tₚ = -54 °C.

Synthesis of PEO₄₋₂₆-PHEL₃₃-octyl⁻₂₆ and general procedure for functionalization of PEO₄₋₂₆-PHEL₃₃ block copolymers using UV-initiated thiol-ene chemistry. To a 10 mL Schlenk tube equipped with a stir bar, a solution of PEO₄₋₂₆-PHEL₃₃-octyl⁻₂₆ (50.0 mg, 6.0 μmol), octanethiol (22.0 mg, 0.150 mmol) and DMPA (1.92 mg, 8.0 μmol) in toluene (1 mL) were added and the solution was degassed by bubbling through argon for 30 minutes. The reaction mixture was then placed in an ACE Glass photochemistry cabinet containing a medium pressure mercury light source (450 W bulb, 2.82 mW cm⁻² measured for UVA radiation at the sample position) and irradiated for 3 hours. The polymer was purified by precipitation into cold ethanol. Yield = 79%. ¹H NMR (600 MHz, CDCl₃): δ 0.88 (t, 7.2H, J = 7.0 Hz), 1.26 – 1.31 (m, 214H), 1.32-1.52 (m, 105H), 1.56-1.61 (m, 148H), 1.68-1.73 (m, 49H), 2.08 (m, 48H), 2.47 – 2.58
5. then sonicated for 0.5 h and the solution was stirred for 0 relative to the copolymer. The CH in CH organic solvent was removed by dialysis using a 6000-8000 g mol⁻¹ MWCO regenerated cellulose membrane in purified water overnight.

Procedure for self-assembly of PEO₄₅-b-PHEL₉, using a film hydration method. PEO₄₅-b-PHEL₉ (50 mg) was dissolved in 2 mL of CH₂Cl₂ in a 25 mL round bottom flask. A nile red solution in CH₂Cl₂ was then added to obtain 0.1 w/w% of nile red relative to the copolymer. The CH₂Cl₂ was removed under a stream of nitrogen to produce a film of polymer on the flask. Deionized (DI) water (1 mL/10 mg of polymer) was added and the solution was stirred for 0.5 h at 55 °C. The solution was then sonicated for 0.5 h and finally stirred for 24 h at 55 °C. The resulting vesicles were characterized by confocal fluorescence microscopy using Zeiss LSM 510 DUO Vario using a 63x objective.

Acknowledgements
The authors thank the Natural Sciences and Engineering Research Council of Canada (Discovery Grant to ERG), the Ontario Graduate Scholarships program (BMR), the University of Edinburgh (JPM and MPS) and the Marie-Curie Actions Programme (Grant FP7-PEOPLE-2013-1CIG-618372 to MPS) for funding this work.

Notes and references
15. C. Allen, A. Eisenberg, J. Mrsic and D. Maysinger, Drug Delivery, 2000, 7, 139-145.
38. S. Anantharaj and M. Jayakannan, Biomacromolecules, 2015, 16, 1009-1020.