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16 Abstract 
 

17 The  pomegranate  fruit  moth,  Apomyelois  ceratoniae  (Zeller),  is  the  most  important  pest of 
 

18 pomegranate  orchards   in  Iran,  where  infestations  lead  to   20-80  %  fruit  loss.   Apomyelois 
 

19 ceratoniae overwinters as larvae in several instars. The success in overwintering determines the 
 

20 fruit loss in the following season, thus overwintering physiology of A. ceratoniae could provide 
 

21 insights  into  population  prediction.  To  this  end,  overwintering  strategy  and  some  seasonal 
 

22 physiological  and  biochemical  changes  were  investigated  in  the  field-collected  larvae  of A. 
 

23 ceratoniae. The lowest supercooling point was recorded in November (-14.6 ± 0.91 °C) and the 
 

24 highest in both October and March (-10.2 ± 0.94 °C). The median lethal temperature (LT50) of 
 

25 larvae was higher than supercooling point, suggesting that A. ceratoniae is chill-susceptible. In 
 

26 comparison with summer larvae, accumulation of glycerol and sorbitol in overwintering larvae 
 

27 resulted in lower mortality when exposed to sub-zero temperatures. There were no significant 
 

28 seasonal changes  in body water content or hemolymph osmolality.  Current winter  temperatures 
 

29 in Iranian orchards are higher than the cold tolerance thresholds of A. ceratoniae, suggesting that 
 

30 overwintering mortality is not a key factor in determining A. ceratoniae populations. 

 

31 Key words: cold hardiness, cryoprotectants, osmolality, supercooling point, water content 

32 
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33 INTRODUCTION 

 

34 The pomegranate fruit moth or carob moth, Apomyelois ceratoniae (Zeller) (Lepidoptera: 
 

35 Pyralidae), is a polyphagous fruit pest in many tropical and subtropical countries (Gothilf 1984). 
 

36 The larvae attack pomegranate, fig, and pistachio fruit in Iran (Hesami Fesharaki et al. 2011), 
 

37 pomegranate in Iraq (Al-Izzi 1985); almond in Australia; fig, carob, mango, date and almond in 
 

38 Mediterranean countries (Armstrong 2007); date in California, United States (Nay 2005); and 
 

39 citrus and macadamia in South Africa (Gothilf 1984). Apomyelois ceratoniae, which originates 
 

40 from Mediterranean countries, was first reported in Kashmar (Khorasan, Iran) pomegranate 
 

41 orchards in 1974 and since 1980 it has been the major pest of pomegranate orchards in Iran 
 

42 (Hashemi  Fesharaki  et al. 2011). Eggs  are laid on or near  the calyx, through  which second  or 
 

43 third instar larvae enter the fruit, consuming the interior tissue and seeds. This feeding facilitates 
 

44 entrance of saprophytic fungi resulting in fruit decay and leading to a 20-80 % reduction in fruit 
 

45 yield (Hashemi Fesharaki Fesharaki et al. 2011). Apomyelois ceratoniae has 4-5 generations per 
 

46 year (Shakeri 2004). In Iran, larvae of several instars enter dormancy in mid-autumn (November) 
 

47 (Gothilf 1984;  Al Izzi  1985;  Shakeri 2004,  Karami  et  al. 2011), and overwinter  inside   fruits 
 

48 remaining on or under the trees, or under the bark of trees (Shakeri 2004). In early spring (mid- 
 

49 April), the larvae pupate and adult emergence coincides with blossoming and fruiting of 
 

50 pomegranate, continuing until the end of June or beginning of July (Shakeri 2004). 

 

51 Overwintering can comprise half the life cycle of terrestrial organisms in temperate 
 

52 environments (Williams et al. 2014). During overwintering, insects must survive low 
 

53 temperature exposure, as well as desiccation and energy drain (Williams et al. 2014) that may 
 

54 reduce overall physiological performance and population growth rate (Cárcamo et al. 2009). As 
 

55 ectotherms, insects have limited ability to regulate their body temperature; thus, during winter it 
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56 is possible for their body fluids to freeze when exposed to freezing temperatures (Tattersall et al. 
 

57 2012). The formation of internal ice can cause damage to tissues, cells and proteins through 
 

58 mechanical damage or osmotic concentration and anoxia. In order to overcome freezing, many 
 

59 temperate and polar insects seasonally enhance their cold-tolerance in preparation for winter 
 

60 (Denlinger & Lee 2010). 

 

61 Two major strategies, freeze tolerance and freeze avoidance, are adopted by most 
 

62 overwintering insects. The first group withstands the formation of internal ice and maintains a 
 

63 high supercooling point (SCP), while the second die upon freezing and depress the SCP to 
 

64 survive low temperatures. Chill-susceptible insects die within brief exposure to chill at moderate 
 

65 to high sub-zero temperatures (Bale 1996). Both freeze-tolerant and freeze-avoidant insects 
 

66 accumulate cryoprotectants to enhance their cold tolerance (Lee 2010). Accumulation of 
 

67 cryoprotectants increases hemolymph osmolality results in a depression in hemolymph melting 
 

68 point and prevention of ice-crystal formation (Lee 2010). Our knowledge of overwintering 
 

69 biology of A. ceratoniae larvae is limited to three field studies in winter. Two of these 
 

70 determined the overall survival of larvae (Khoshamadi & Baghestani 1987; Mehrnejad 1992), 
 

71 reporting 92% and 77% larval survival respectively. Heydari and Izadi (2014) examined low 
 

72 temperature biology of just the last larval instar at an Iranian location that experiences relatively 
 

73 mild winters (Akbarkooh, mean minimum temperature in January: - 1.3 °C), identifying 
 

74 mortality between -5 °C and -10 °C, and suggesting, based on the mortality occurrence at 
 

75 temperature above the SCP that they are chill-intolerant. These authors also observed 
 

76 accumulation of trehalose and myo-inositol in winter (November-February), suggesting that 
 

77 these are the primary cryoprotectants in this species. 
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78 Apomyelois ceratoniae causes substantial fruit loss, even though there are several pest 
 

79 management strategies such as collecting infested fruit in March, stamen elimination (Sheikali et 
 

80 al. 2009), mating disruption (Zolfagharieh et al. 2009), biological control (Karami et al. 2011) 
 

81 and repellents (Peyrovi et al. 2011). Increased knowledge about the physiological performance 
 

82 of different instars of overwintering larvae of A. ceratoniae is affected by winter could give the 
 

83 insights in population prediction in spring. The objectives of this study were 1) to determine the 
 

84 overwintering strategy and cold tolerance of all overwintering larval stages of field-collected A. 
 

85 ceratoniae, at Chandab village, Semnan, Iran, where low winter temperatures are expected to be 
 

86 important for survival, and 2) to identify some of the biochemical and physiological correlates of 
 

87 seasonal changes in cold hardiness of this population. 

 
88 
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89 MATERIALS AND METHODS 

 

90 Animals 

 

91 Apomyelois ceratoniae larvae were collected every month during autumn (October, November, 
 

92 and December), winter (January, February, and March) and summer (June) of 2010-2011 and 
 

93 2012-2013 by gathering infested pomegranate fruit from orchards located in Chandab village, 
 

94 Semnan, Iran (35°25′N, 51°56′E, 1130 m above sea level). Infested pomegranates were 
 

95 transferred to the Faculty of Agriculture, Tarbiat Modares University, and stored on the ground 
 

96 covered with leaf litter. After one day, the larvae were removed and transferred to artificial diet 
 

97 (bran 100g, yeast 5g, sucrose 20g, water 40ml, glycerol 30ml), and kept at ambient temperature 
 

98 in the shade outdoors until use in experiments. We divided larvae into small (2nd and 3rd) and 
 

99 large (4th and 5th) instars and kept them separately. Larvae were used in experiments within one 
 

100 day of transfer to artificial diet. 

 
101  

 

102 Cold tolerance 

 

103 To determine the SCP (n=13-23 per month), larvae were individually attached to NiCr-Ni 
 

104 thermocouples (Type K, diameter 1.5 mm) using adhesive tape (Jason, Ariana Packing co. 
 

105 Tehran, Iran), attached to a transparent plastic sheet and placed inside a programmable 
 

106 refrigerated test chamber (Model MK53, Binder GmbH Bergstr., Tuttlingen, Germany). The 
 

107 temperature of the test chamber was decreased from 15 °C to -30 °C at 0.5 °C/min. The 
 

108 temperature of each insect was recorded every 30 s with a four-channel data logger (Testo Model 
 

109 177-T4; Mehrkanaz Sanat Co.Tehran, Iran) and monitored using comsoft4 software (ComSoft 
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110 Basic Software; Mehrkanaz Sanat Co., Tehran, Iran). The SCP was recorded as the lowest 
 

111 temperature prior to the start of the exotherm indicating the initiation of freezing. 

 

112 We determined survival of low temperatures each month in both years by measuring survival of 
 

113 field-collected larvae after 3 h exposure to -7, -10 and -12 °C. For each of the temperature 
 

114 treatments, three replicates of seven larvae were placed in glass Petri dishes (100 mm ×15 mm), 
 

115 the bottom of which was covered by dry tissue paper. The Petri dishes were then placed in the 
 

116 programmable refrigerator and cooled at 0.5 °C/min from 10 °C to the test temperature (-7, -10 
 

117 or -12 °C). After 3 h, the larvae were rewarmed at 0.5 °C/min until reaching 10 °C, and survival 
 

118  
 

119  

(ability to walk in a coordinated fashion) was assessed after 24 h. 

 

120 Haemolymph composition and body water content 
 

121 Haemolymph was collected from 20 individuals for osmometry. Ten microliters of hemolymph 
 

122 was collected with a pipette after cutting the 3rd leg of a larva. Hemolymph was frozen at -80 °C 
 

123 in microcentrifuge tubes (the cap of which was sealed with parafilm) until osmometry was 
 

124 performed. Measurements of hemolymph osmolality were performed with a nanolitre osmometer 
 

125 (Clifton Technical Physics, Hartford, NY; Koštál et al. 2011). To measure water content of the 
 

126 larvae, the whole fresh body  (FW) was weighed to the nearest 0.1 µg and then dried at -40 °C in 
 

127 a freeze dryer (48 h) to constant mass (DW). Water content (WC) was expressed as mg mg-1 DW 
 

128  
 

129  

(Koštál & Simek 2000). 

 

130 Cryoprotectants 
 

131 Van Handel’s (1965) method was performed to extract the sugars and polyols from whole larvae. 
 

132 Each larva (n=3/month) was weighed and homogenized in a few drops of methanol and 0.05 ml 
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133 of saturated sodium sulfate solution (for details see Van Handel 1965). The extracts were dried at 
 

134 35 °C in vacuum drying oven (model VO400, Germany) and resuspended in 200 µl of high 
 

135 performance liquid chromatography (HPLC) grade water. The samples were filtered using a 0.45 
 

136 µm syringe filter (Millex, Tokyo, Japan) and 30 µl of each sample was injected into an HPLC 
 

137 (Waters 600 Controller, Milford, MA, USA) and separated on a carbohydrate column 
 

138 (Supelcolgel TM, Ca HPLC column) with 9 µm particle size (300 mm long × 7.8 mm ID). The 
 

139 solvent was water and flow rate was kept constant at 0.5 ml/min. Separation was performed at 
 

140 room temperature and all data were acquired and processed with Empower chromatography 
 

141 software (Waters) compounds were identified and quantified from retention time of carbohydrate 
 

142  
 

143  

standards (Fulka, Bush, Switzerland). 

 

144 Statistics 
 

145 Mean osmolality and cryoprotectants were compared among months by one-way analysis 
 

146 of variance (ANOVA) followed by Tukey’s (differences were considered significant at P < 
 

147 0.05). Water content was compared with ANCOVA (with dry mass as covariate). A two-way 
 

148 mixed-model ANOVA followed by Tukey’s post hoc test was performed to compare the 
 

149 differences among SCP in both years. The lethal temperature at which 50% of the population 
 

150 died after a 3 h exposure to subzero temperatures (LT50) was determined using binary logistic 
 

151 regression (Berkvens et al. 2010). Comparisons of LT50 values were based on non-overlapping 
 

152 95% confidence intervals.  Because neither SCP nor  cold tolerance was  affected by larval instar 
 

153 (P > 0.05) the data for both small (2nd and 3rd instars) and large (4th and 5th instars) larvae were 
 

154  
 

155  

pooled. Analyses were conducted using SPSS for Windows (v. 20.0; IBM, Armonk, NY, USA) 



9  

156 RESULTS 

 

157 Supercooling point and lethal temperatures were compared to determine the cold 
 

158 tolerance strategy. SCP was measured in a total of 250 larvae in 2010-2011 and 2012-2013. The 
 

159 distribution of SCP values in different months (Fig. 2) and among small (2nd and 3rd instars) and 
 

160 large larvae (4th and 5th instars; Fig. 3) was unimodal. The lowest absolute and mean SCP of A. 
 

161 ceratoniae larvae was recorded in November 2010 (-21.4 °C and -14.6 ± 0.91 °C respectively), 
 

162 whereas the highest SCP was recorded in March 2013 (-6 °C). The highest mean SCPs of 
 

163 overwintering larvae (-10.2 ± 0.94 °C) were recorded in October 2010 and March 2013 (Fig. 1). 
 

164 There was no significant month × year interaction (F5,238 = 1.344, P = 0.24), however there was a 
 

165 significant main effect of month in both years (F5,235 = 4.712, P < 0.001). Seasonal fluctuations 
 

166 in SCP pattern in different month was equal in followed the same pattern in both years. None of 
 

167 the larvae survived freezing at the SCP. 

 

168 Overwintering individuals were more resistant to sub-zero temperatures than summer- 
 

169 collected larvae. Overwintering individuals survived 3 h exposures to sub-zero temperatures as 
 

170 low as -12 °C, whereas summer-collected individuals only survived 3 h exposures as low as -7 
 

171 °C (Fig. 5). As exposure temperature to sub-zero temperatures decreased, survival of the 
 

172 overwintering larvae decreased (Fig. 4). Cold tolerance did not differ among months during 
 

173 autumn and winter in either year (2010-2011: F5,83 = 1.18, P = 0.327; 2012-2013: F5,63 = 1.008, P 
 

174 = 0.420). 

 

175 The median lethal temperature (LT50) was higher than the SCP of overwintering larvae 
 

176 during sampling months. In 2010-2011 the highest and the lowest LT50 were observed in March 
 

177 (-8.9 °C)  and  February (-12.4 °C) respectively.  In 2012-2013, however,  the highest and lowest 
 

178 LT50  occurred in January (-8.6 °C) and December (-10.7 °C) (Fig. 1). The LT50  of larvae in each 
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179 month was higher than their corresponding SCP (Fig. 1), which suggests the larvae are chill- 
 

180 susceptible. There was no correlation between SCP of overwintering larvae and their respective 
 

181 LT50 in sampling months (r5=0.096, P=0.081). 

 

182 There was no significant difference between the water content of overwintering (1.73 ± 
 

183 0.18 mg water/mg DW) and summer-collected larvae (1.87 ± 0.13 Water/mg DW; F7,70 = 1.913, 
 

184 P=0.098). Hemolymph osmolality ranged from 413 mOsmol kg-1 in March to 443 mOsmol kg-1
 

 

185 in January, but there were no significant differences across the year (Fig. 6 A). Glycerol, glucose 
 

186 and sorbitol were detected by HPLC. Glucose levels did not change during the year (0.025-0.03 
 

187 mg/g fresh weight); whereas glycerol increased steadily during autumn, peaked in January (2.5 
 

188 mg/g fresh weight), declined in February and reached its lowest point (0.02 mg/g fresh weight) 
 

189 in March. Sorbitol went up in November (2 mg/g fresh weight) decreased to 1 mg/g fresh weight 
 

190 in February and reached its lowest point in March (Fig. 6 B). 

 
191  

 

192 DISCUSSION 

 

193 The larvae of A. ceratoniae consistently died at temperatures above the supercooling 
 

194 point, suggesting that they are chill-susceptible. In addition, the lack of relationship between SCP 
 

195 and cold hardiness confirms that SCP is not indicative of cold hardiness in this species. Heydari 
 

196 and Izadi (2014) similarly concluded that another (Akbarkooh, Iran) population of A. ceratoniae 
 

197 are chill-intolerant (a synonym of chill-susceptibility, Denlinger & Lee 2010), however they did 
 

198 not  expose  the  larvae  to  temperatures  lower  than  -10  °C.  Chill-susceptibility has  also been 
 

199 reported for overwintering adults of Alphitobius diaperinus (Panzer) (Colinet et al. 2011),  larvae 
 

200 of Drosophila melanogaster (Koštál et al. 2012) pupae of Helicoverpa zea (Boddie) (Morey et 
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201 al. 2012), and  the  larvae of  Thaumatotibia  leucotreta  (Meyrick) (Boardman  et  al.  2012). We 
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202 found  that  the  lower  lethal  temperature  and  LT50  of  both  small  and  large  overwintering A. 
 

203 ceratoniae  larvae  decreased  in  November  2010  (-11.8  °C),  February  2011  (-12.4  °C)  and 
 

204 December 2012 (-10.7 °C). This winter decrease in lower thermal limits was previously reported 
 

205 in last instar A. ceratoniae (Heydari & Izadi 2014), and is typical of insects overwintering in 
 

206 temperate  regions  (Khani  & Moharramipour 2007;  Denlinger  &  Lee 2010;  Crosthwaite et al. 
 

207 2011). However LT50 of A. ceratoniae was not determined in Akbarkooh population. 

 

208 We found that A. ceratoniae accumulated glycerol and sorbitol during the dormant 
 

209 period,  and  it  appears  that  this  accounts  for  the  observed  increase  in  cold  tolerance  in 
 

210 overwintering larvae. Glycerol is the most widely-distributed metabolite reported in cold-hardy 
 

211 (Denlinger  &  Lee 2010)  insects  (e.g.;  chill-susceptible bark  beetle  Pityogenes chalcographus 
 

212 (L.);  Koštál  et  al.  2014  while  sorbitol  is  a  common  secondary  cryoprotectant  in  other 
 

213 overwintering insects (Khani et al. 2007; Williams & Lee 2011). By contrast, Heydari and Izadi 
 

214 (2014) reported accumulations of trehalose and myo-inositol (but not glycerol) in the last instar 
 

215 larvae. This  discrepancy could  be  because of differences in  population  as  divergent  selective 
 

216 pressure in local environments can result in differentiation in thermal biology (Sinclair et al. 
 

217 2012).  The  difference  in  the  cryoprotectants  may  reflect  differences  in  the  cryoprotectant 
 

218 physiology of the  populations studied, since the present study was conducted in  Chandab where 
 

219 the duration of sub-zero temperatures is longer in winter, so the colder weather could have 
 

220 triggered sorbitol production  (e.g. Eurosta solidaginis  produces sorbitol only when  exposed  in 
 

221 temperatures below 5 °C (Storey & Storey 1990)). Further exploration and direct comparison 
 

222 will be necessary to determine the underlying cause of the apparently divergent cryoprotectant 
 

223 strategies in these two populations. 
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224 Although partial dehydration may increase cold tolerance (Ring and Danks 1994; Block 
 

225 1996); insects can rapidly change their cuticular permeability and resist dehydration (Bazinet et 
 

226 al. 2010). In the case of A. ceratoniae, the difference in water content between overwintering and 
 

227 active  larvae  (c.  6  %)  was  probably  not  biologically-significant.  Furthermore  hemolymph 
 

228 osmolality  (October-March)  was  similar  or  only  slightly  higher  in  the  January. Apomyelois 
 

229 ceratoniae larvae overwinter inside the fruit, a protected site that buffers against low ambient 
 

230 temperatures, reduces the risk of ice damage, and likely protects the larvae from water loss. 

 

231 Although overwintering larvae of A. ceratotinae are chill-susceptible, the minimum air 
 

232 temperature in pomegranate-growing areas of Iran normally does not decrease below -10 °C, and 
 

233 -12 °C was the lowest temperature recorded (http://www.irimo.ir/); otherwise the pomegranate 
 

234 tree  encounters  serious  injuries.  Thus,  low  temperatures  are  unlikely  to  cause  significant 
 

235 overwinter  mortality,  allowing  a  substantial  population  to  persist  through  to  the  following 
 

236 season. However we studied the effect of only a single short time exposure to cold and only 
 

237 measured survival. Nevertheless during winter A. ceratoniae encounters prolonged and repeated 
 

238 cold  exposures  with  sub-lethal  effects  on  reproductive fitness  as  they might  invest energy to 
 

239 repair chilling injuries as well as changing pathways to produce heat shock proteins (Marshall & 
 

240 Sinclair 2012). The first pomegranate flowers (which lead to the highest-quality fruit) emerge on 
 

241 late April (Shakeri 2008); and seem to be the host for the first generation of A. ceratoniae. Thus, 
 

242 future work understanding the timing of cold exposure (and cold tolerance of non-dormant life 
 

243 stages) and termination of dormancy may improve the timing of integrated pest management 
 

244 interventions aimed at preventing egg-laying by this first generation. 

 
245  

 

http://www.irimo.ir/
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356 Figure captions 

 

357 Figure 1 The median lethal temperature (LT50) and supercooling point (SCP) (mean ± SE) of 
 

358 overwintering and summer larvae of Apomyelois ceratoniae in 2010-2011 and 2012-2013. In 
 

359 October (2010) and February (2013), the number of larvae was too small to calculate LT50. 
 

360 Means with the same letter are not significantly different (Tukey’s post-hoc tests, P ≤ 0.05). 

 

361 Figure 2 Frequency of supercooling point (SCP) in overwintering larvae of Apomyelois 
 

362 ceratoniae in autumn and winter 2010-2011and 2011-2012. 

 

363 Figure 3 Frequency of supercooling point (SCP) in small (2nd and 3rd instars) and large (4th and 
 

364 5th instars) larvae of Apomyelois ceratoniae. 

 

365 Figure 4 Mortality and cumulative supercooling point (SCP) in overwintering larvae of 
 

366 Apomyelois ceratoniae in different sub-zero temperatures in autumn and winter 2010-2011 and 
 

367 2012-2013. In October (2010) and February (2013), the number of larvae was too small to 
 

368 calculate mortality. 

 

369 Figure 5 Mortality and cumulative supercooling point (SCP) of larvae of Apomyelois ceratoniae 
 

370 in different sub-zero temperatures in June 2012. 

 

371 Figure 6 Hemolymph osmolality (A) and whole-body cryoprotectants (B) of field-collected 
 

372 overwintering larvae of Apomyelois ceratoniae in 2010-2011. 
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