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Abstract

Higher-order cognitive functions, such as working memory, attention, and decision making,

depend strongly on the functional integrity of frontal and parietal cortices. However, the internal

workings of the frontoparietal network (FPN) are not well understood. A major contributor to

this knowledge gap is our limited understanding of the intrinsic functional organization of the

FPN. In order to address this gap, we examine task-dependent reconfigurations of functional

connectivity (FC) within the FPN. We analyzed fMRI task-state data from 924 individuals

from the Human Connectome Project Young Adult study. Our results show that FC within

the FPN is highly stable across time within individuals. Furthermore, FC within the FPN is

more consistent within than between individuals and more consistent within than between tasks.

Overall, our findings indicate that human individuals exhibit a partially unique fine-grained

functional organization within the FPN, and that this organization contains a task-specific

component.

Keywords: functional magnetic resonance imaging, frontoparietal network, functional connec-

tivity, cognitive control, individual variability
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Summary for Lay Audience

Our ability to plan ahead and flexibly adapt our behaviour to novel situations relies heavily on

a network of frontal and parietal brain regions. These brain regions become active when we

remember the recent past, make and execute plans, or become aware of mistakes. How do these

brain regions support this diverse range of cognitive functions?

Research on human frontoparietal function has focused on identifying one-to-one mappings

between brain regions and cognitive functions. This approach has not been as successful as

originally anticipated. The majority of frontoparietal brain regions are not involved in just one

but many cognitive functions, including working memory, decision making, and error detection.

This suggests that a change in approach is necessary: instead of attempting to link activity of

whole brain regions to specific cognitive functions, we should examine how local processing

within the frontoparietal network supports behaviour during diverse cognitive tasks.

In order to understand local processing we need to understand the fine-grained functional orga-

nization of the frontoparietal network. In other words, we need to understand how information

flows through the network during the execution of cognitive tasks. In this project, we aim to

map the fine-grained functional organization of the frontoparietal network using functional

magnetic resonance imaging (fMRI) data acquired in a large group of individuals. Our results

indicate that the frontoparietal network indeed shows a fine-grained functional organization, and

that this organization contains an individually unique component. Furthermore, the functional

organization contains a task-general as well as a task-specific component.

Results will greatly enhance our understanding of the neural basis of human cognition and

provide a starting point for exploring functional organization level targets to study causes of

cognitive dysfunction.
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Chapter 1

Introduction

1.1 Motivation

Our ability to plan ahead and flexibly adapt our behaviour to novel situations relies heavily on

a network of frontal and parietal brain regions. Lesions to the frontoparietal network (FPN)

yield impairments across a broad array of cognitive functions, including our ability to remember

the recent past, make and execute plans, or become aware of mistakes (Dias et al., 1996;

Goldman-Rakic, 1988; Luria, 1966; Passingham, 1975; Stuss et al., 2000; Woolgar et al., 2010).

Neuroimaging studies in healthy human individuals have shown that the FPN becomes active

during the execution of a broad range of cognitive tasks (Duncan, 2010) (figure 1.1). The

network appears to function as a flexible hub that orchestrates sensory and motor regions in the

brain when executing cognitive tasks (Cole et al., 2013). Despite its well-established role in

human cognition, the internal workings of the FPN are not well understood.

To better understand the internal workings of the FPN, this thesis aims to map the net-

work’s functional organization using functional magnetic resonance imaging (fMRI). Functional

mapping commonly involves measuring brain responses during the execution of cognitive tasks,

and creating brain maps of response preferences for stimulus and task parameters. In sensory

1



2 Chapter 1.

Figure 1.1: The frontoparietal network (FPN). The figure shows core regions of the FPN, which

is recruited by a wide variety of cognitive demands, including working memory and decision

making (Assem et al., 2020). The network is indicated in yellow on an inflated cortical surface

showing the multimodal cortical parcellation from the Human Connectome Project (HCP)

(Glasser et al., 2016).

and motor cortices, functional mapping has played an important role in understanding how the

brain supports perception and action. For example, sensory brain regions contain interpretable

maps of visual and auditory stimulus properties, including retinotopic maps in visual cortex and

tonotopic maps in auditory cortex (Sereno et al., 1995; Formisano et al., 2003). These maps

reveal how the brain represents the outside world and also provide clues about how brain regions

are organized into larger systems. For example, retinotopic maps in the visual cortex have

revealed a hierarchical system of brain regions that supports object recognition (Sereno et al.,

1995; Levy et al., 2001). Despite these successes in the sensory domain, creating interpretable

functional maps of frontoparietal cortices has proven challenging.

Early neuroimaging work in humans focused on identifying one-to-one mappings be-

tween frontoparietal brain regions and cognitive functions (Rypma et al., 1999; Smith et al.,

2009). This approach assumes that one region controls one function. However, given that the

FPN as a whole becomes active during the execution of a broad range of cognitive tasks (Duncan

and Owen, 2000; Duncan, 2010; Poldrack, 2011), this approach has not been as fruitful as



1.1. Motivation 3

originally anticipated. Prior work in nonhuman primates is largely consistent with these findings.

While some degree of regional functional specialization in frontoparietal cortex is expected

given cytoarchitectonic and connectomic differences (Petrides and Pandya, 1999; Cavada and

Goldman-Rakic, 1989), differences in neural response properties across the network tend to be

relatively subtle (Duncan, 2001, 2010, 2013). At any moment in time, the majority of neurons

within the FPN appears to be engaged in coding information relevant to the ongoing cognitive

task, but evidence for spatial clustering of neurons with similar response properties is sparse

(Duncan, 2001; Machens et al., 2010; Leavitt et al., 2018). Large-scale spatial clustering accord-

ing to response properties may not be the most efficient solution given the computational goals

of the FPN, which emphasize flexible integration of information across domains as opposed

to domain-specific representation of information as observed in sensory cortices (Miller and

Cohen, 2001; Duncan, 2001; Rigotti, 2010; Duncan, 2010). The above findings, together with

the limited ability of fMRI to capture dynamic neural interactions at a fast time scale, may

explain the lack of a clear consensus in the human literature on the functional organization of

prefrontal cortex (Duncan, 2013; Badre and Nee, 2018; Bhandari et al., 2018).

In investigating the functional organization of frontoparietal cortex with human fMRI,

it may be more fruitful to think about the FPN as consisting of groups of neurons that work

together to complete the task, and that may flexibly reconfigure themselves, as well as their

connections to other parts of the brain, depending on the task (Miller and Cohen, 2001; Cole

et al., 2013). Task-dependent reconfigurations can be examined using functional connectivity

(FC) approaches. Here we use the term FC to refer to temporal co-fluctuations in activity

measured in different brain areas (Friston et al., 1993). These co-fluctuations are often taken

to be indicative of communication between brain areas. FC can be used to define functional

networks, which are groups of brain areas whose activity co-fluctuates over time. The FPN is an

example of such a network (Fox and Raichle, 2007). Networks may adjust, or reconfigure, their

FC with other brain networks to best accommodate changing task demands (Cole et al., 2013).

For example, FC between visual and frontoparietal brain networks may be stronger during a

visual than an auditory attention task. Such reconfigurations can be thought of as reflecting a
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modulation of input sensitivity in the networks, which changes the pattern of brain information

flow.

Prior work in both humans and nonhuman primates indeed shows evidence for task-

dependent network reconfigurations at the whole-brain level, with the FPN being more flexible

than other networks in its connectivity to other parts of the brain (Miller and Cohen, 2001;

Krienen et al., 2014; Gratton et al., 2018; Cole et al., 2021). These studies also suggest that

task-dependent reconfigurations tend to be unique to the individual and predictive of individual

differences in task activation and behaviour on higher-order cognitive tasks (Gratton et al., 2018;

Cole et al., 2021; Schultz and Cole, 2016; Finn et al., 2015). While this work is starting to

show the importance of network reconfigurations for human cognition, it leaves open if the

FPN reconfigures itself internally to meet changing task demands. If we find evidence for

task-dependent reconfigurations at a finer spatial scale within the FPN, this opens up a window

into the network’s internal functional organization. We address this question in the current thesis

by analyzing open source fMRI data measured during the execution of a range of cognitive tasks

from a large group of healthy young adults (Glasser et al., 2013, 2016).

1.2 Functional Magnetic Resonance Imaging

1.2.1 Principles of MRI

Magnetic Resonance Imaging (MRI) enables researchers and clinicians to obtain high resolution

images of soft brain tissue in a non-invasive manner. MRI can be used to differentiate between

brain tissue types, including normal and abnormal tissue, and therefore provides information

about morphology and is used as a diagnostic tool to detect disease. The MRI scanner creates a

strong magnetic field in which the radio frequency (RF) electromagnetic fields interact with the

atomic nuclei in the body tissue, forming a series of stacked two-dimensional images.

MRI measures the nuclear magnetic resonance signal from atomic nuclei with an odd
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number of protons and neutrons since they have an angular momentum and create small magnetic

dipoles that spin around their axis of rotation. The scanner detects changes in precession from a

large number of spins. Since water and fat contain a majority of the single protons found in the

nuclei of hydrogen atoms, they are the most frequent dipoles in the brain.

In a normal environment without an external magnetic field, the magnetic fields of

the spins in the human body are oriented randomly and have no net dipole. However, in the

presence of the scanner’s strong magnetic field, the spins will become aligned with the field and

precess around the axis of the external magnetic field. The precession frequency of the protons

is directly proportional to the strength of the external magnetic field and is referred to as the

Larmor frequency. The Larmor frequency is the frequency at which a particular type of atom

precesses at a particular field strength (i.e. it differs across tissue types and field strengths). It is

the product of the gyromagnetic ratio of an atom and the magnetic field strength. Resonance

occurs when the applied electromagnetic pulse has the same frequency as the proton’s precession

frequency resulting in excitation of the protons. Excitation occurs since the protons absorb the

transmitted energy and causes the spins to flip from a lower energy state (parallel) to higher

energy state (antiparallel). This enables the excited protons to rotate in phase, the spins create a

net magnetic field. This creates a current flow which is detected by the MRI scanner (receiver

coil).

There are also smaller magnetic field gradients formed in orthogonal directions which

adjust the Larmor frequency, enabling detection of the signal origin.

Once the RF transmitter is turned off, the spin precession is not stable because the protons

interact with the magnetic fields and begin to decay. As a result, these spin-spin interactions lead

to varying local magnetic field strengths and slightly different Larmor frequencies, resulting

in phase shifts between the precessing spins, which is referred to as dephasing or transversal

relaxation.

T1 relaxation is referred to as spin-lattice relaxation. This is where the net magnetization
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returns to the original value in the direction of the applied magnetic field. T2 relaxation is

referred to as spin-spin relaxation. This is the dephasing of magnetization vectors because of

differences in Larmor frequencies.

The T2* parameter (measurements of changing local magnetic field inhomogeneities)

provides indirect measurements of local neuronal activity. A major factor contributing to local

inhomogeneities is due to the presence of deoxygenated hemoglobin. T2* relaxation is shorter

in deoxyhemoglobin than in oxyhemoglobin blood.

1.2.2 Principles of fMRI

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique employed in

studying the activation of brain regions. MRI provides a static structural view of brain tissue

whereas fMRI extends this function by capturing functional changes in the brain caused by

neuronal activity. Neuronal activity consumes energy which is delivered by oxygen in the

blood. Regions that are highly active in the brain display a high signal due to a higher ratio of

oxygenated blood.

The blood consists of hemoglobin molecules which bind and deliver oxygen to the

various tissues and organs in the human body. Hemoglobin tends to have varying magnetic

properties based on whether it is bound to oxygen. Oxyhemoglobin is weakly diamagnetic

and therefore has a small effect on magnetic fields. However, deoxyhemoglobin is strongly

paramagnetic and therefore has a larger effect on magnetic fields. This difference in magnetic

properties allows for an improved MR signal since the deoxygenated blood creates distortions

in the magnetic field (causing the nuclei there to lose magnetization faster) which lead to an

accelerated T2* relaxation time. When the local blood vessels have more oxyhemoglobin

compared to deoxyhemoglobin, it results in a longer T2* relaxation time which produces a

larger signal from that region.

When there is local brain activity, there is an increase in neuronal activity which utilizes
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Figure 1.2: Hemodynamic response function. At the beginning of the stimulus presentation,

there is an initial dip in fMRI signal, followed by a positive BOLD response and then a

post-stimulus undershoot.

more oxygen and therefore increases the ratio of deoxygenated hemoglobin to oxygenated

hemoglobin. The brain detects that there is an energy need when it detects metabolites (indicative

of neural activity) after which it increases blood flow (functional hyperemia), which leads to

an increase in oxygen delivery. After a short interval of approximately 3 seconds (after neural

activity was induced), there is a strong increase in local blood flow, and associated changes in

blood volume and oxygen extraction, all of which dynamically affect local deoxyhemoglobin

levels, and therefore the measured signal (Buxton, 2012). The measured BOLD response shows

a characteristic shape as it unfolds over time (Boynton et al., 1996). It peaks about 4-6 seconds

after which it slowly goes back to baseline. Often, there is an initial dip and a post-stimulus

undershoot, possibly due to temporal offsets between neural activity and the changes in blood

flow, blood volume, and oxygen extraction. This has been referred to as the hemodynamic

response function (HRF) (Figure 1.2).

Although fMRI does not directly measure the spiking activity of neurons, the blood

oxygenation dependent levels (BOLD) are still tightly linked to neural activity. Studies have

shown that changes in the BOLD signal reflect changes in the underlying local field potentials

(LFPs) (Logothetis et al., 2001; Logothetis, 2008). LFPs are the summation of inhibitory

and excitatory postsynaptic potentials from a large number of neurons in the recording site.
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Therefore, LFPs are a reflection of information processing in local neural populations.

1.3 Resting State fMRI

Resting state fMRI indicates a scan which is performed while no stimulus is being presented to

the subject. This method of scanning can be beneficial for understanding how different brain

regions are functioning and communicating with one another during resting-state. In the early

stages of fMRI research, many studies focused on performing fMRI scans while engaging the

subject in a task. At this time, there were many concerns that the brain activity would vary

unpredictably during resting state as it would be difficult to monitor what the subject would

be thinking about. However, Biswal et al. (1995) measured brain activity from subjects at rest

and demonstrated that different brain regions interacted with the motor cortex, suggesting that

correlations in resting state activity can provide insight into the function of neural systems

even though they are not actively engaged. Other studies have also shown that there are groups

of brain regions that become more active during resting-state and activity decreases during a

demanding cognitive task (task-negative networks) (Raichle et al., 2001; Shulman et al., 1997).

These studies suggest that there is ongoing information processing and functional connections

between regions during rs-fMRI. Overall, these studies have advanced the concept of resting

state fMRI as a functionally relevant paradigm and paved the way for its acceptance in the

neuroscience field.

1.3.1 Functional Connectivity

Functional connectivity (FC) is the study of relationships between areas of the brain based

on co-varying fluctuations of activity (Fox and Raichle, 2007). FC can be determined by

measuring the similarity between BOLD signals of various brain regions. If different areas

have similar signals, it is taken to suggest that the regions are communicating with one another.

Spontaneous fluctuations in the signal are used to investigate the FC during resting state since



1.3. Resting State fMRI 9

the subject is not performing any cognitive task. Therefore these spontaneous fluctuations

provide useful information about the similarity between brain regions and can be used to study

brain connectivity.

It is important to acknowledge that there are different types of connectivity. For example,

FC does not describe the directionality (or causality) of the signal. This type of connectivity is

called effective connectivity. Also, FC does not indicate a direct physical connection between

the interacting brain regions. This is referred to as anatomical (or structural) connectivity,

which relies on white matter tracts. White matter tracts are known to be responsible for carrying

information across brain regions and enable functional signals to be transferred between spatially

separated regions. Recent studies have suggested a direct relationship between structural and

FC (Hermundstad et al., 2014; Deco et al., 2014). These studies employ structural diffusion

tensor imaging (DTI) which is an MRI technique that maps white matter tracts in the brain.

FC analyses come in multiple forms. Most approaches quantify the zero-lag similarity

of regional activity fluctuations during rest and use this information to group brain regions into

larger-scale functional networks. Functional networks can be estimated from a whole-brain

connectivity matrix, which contains pairwise correlations between regional time courses, using

clustering techniques (Fox and Raichle, 2007), or by applying independent component analysis

(ICA) to the voxel time courses (Smith et al., 2009). Prior work using these approaches has

consistently identified the FPN (Fox and Raichle, 2007; Smith et al., 2009). The brain networks

discovered with FC analyses correspond to networks that become active during the execution

of specific tasks (Smith et al., 2009). This suggests that the brain’s functional organization

is relatively stable across task-driven and resting states, supporting the idea of an inherent

functional organization. Only a few fMRI studies have examined FC at a more fine grained

spatial scale within the FPN (Waskom and Wagner, 2017; Stiers and Goulas, 2018). These

studies also showed that task tuning is correlated with FC: the time courses of voxels with

similar tuning profiles also co-fluctuate during rest.
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Figure 1.3: FPN mean variable connectivity. Figure above shows the pairwise mean variable

connectivity between the ten networks shown. Black lines indicate that the mean variable

connectivity between two networks is significantly greater than the mean, whereas grey lines

indicate that they are not significantly greater than the mean. The thickness of the lines represents

the strength of the variable connectivity. Overall, the FPN variable connectivity is the highest

across the ten networks. (Adapted from Cole et al., 2013)

These studies leave open if and how strongly FC varies across tasks. For example, Cole

et al. (2013) have shown that the FPN shows task-dependent changes in connectivity with other

networks in the brain (Figure 1.3). Their study demonstrates that the FC pattern of the FPN

shifted more significantly compared to other networks across a variety of tasks. The variability

in FC was estimated at a whole-brain level and was referred to as the global variability coefficient

(GVC). However, a gap in this research remains as the FC of the FPN has not been investigated

at a finer spatial scale yet. This is one aspect that we aim to address in this thesis.

1.3.2 Limitations of Resting State fMRI

Although rs-fMRI has many applications and provides useful insights about brain function, there

are several limitations that should be taken into consideration when interpreting resting-state FC

results.
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Figure 1.4: Extraction of functional timeseries data and FC matrices.

Spatial Limitations

The spatial resolution of fMRI refers to how well it distinguishes differences between nearby

locations of activity in the brain, which depends on a few factors, the main two being the voxel

size and the hemodynamic point spread function (PSF) (Uğurbil et al., 2003; Parkes et al., 2005).

The PSF describes the spatial spread of the BOLD signal due to oxygenated blood entering the

venous blood supply beyond the spatial location of neural activity.

In this thesis, we analyze 3T gradient-echo (GE) echo-planar-imaging (EPI) fMRI data

with a voxel resolution of 2 mm isotropic (Barch et al., 2013), meaning that the slice thickness

is equal to the in-plane resolution and the voxels are cubic. The hemodynamic PSF for 3T GE

EPI fMRI data is approximately 3-4 mm (Parkes et al., 2005). Taken together, our data has a

spatial resolution in the range of 2-4 mm. At this level, microstructural features such as cortical

columns and sub-nuclei are not clearly identified. For example, if there are structures similar

to cortical columns in the prefrontal cortex, these are expected to be on the scale of 0.7 mm

(Goldman-Rakic, 1988). 3T GE EPI fMRI may therefore be sensitive to clusters of columns,

but not individual ones. Despite these spatial limitations, fMRI is a useful tool for measuring

brain activity across a larger spatial area compared to neural recording methods. Regardless

of the measurement tool used, there will be a trade-off between spatial resolution and spatial
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coverage (Sejnowski et al., 2014).

In addition to the above two factors, which are inherent to how fMRI samples neural

activity, fMRI preprocessing methods may also reduce the spatial resolution of the data. For

example, it is common to spatially smooth the data by applying a low-pass filter to the image

(Goebel, 2007). Signals with larger spatial scales benefit from this approach because it increases

the signal-to-noise ratio. While this may improve the power of statistical tests and comparisons

between subjects, it may lead to reduced spatial resolution. In this thesis, we do not apply spatial

smoothing to the data given that we aim to assess FC at a fine grained spatial scale within the

FPN.

Temporal Limitations

Temporal resolution refers to the ability to distinguish changes in the fMRI signal over time.

Given that neural activity during task execution can fluctuate rapidly (Hebart et al., 2018), it is

important to measure the timing of brain activity with high precision. The temporal resolution of

fMRI is limited by a few factors, including the hemodynamic response function (HRF; (Boynton

et al., 1996)) and the repetition time (TR).

The HRF acts as a low-pass filter, making the BOLD fMRI signal predominantly

sensitive to neural signals in the range of 0.01-1 Hz (He et al., 2008). Signals in this range may

predominantly reflect neural communication at larger spatial distances (Matsui et al., 2016).

This raises the question of whether the 3T HCP fMRI data analyzed here is suitable for assessing

FC at a relatively fine grained spatial scale within the FPN. Prior reports from the monkey

electrophysiology literature suggest the answer is yes. Kiani and colleagues identified functional

subnetworks within the lateral prefrontal cortex within the millimetre range from a signal that

was temporally broadband, measured in the range of 0.01 Hz to 16.67 Hz (Kiani et al., 2015).

The detected functional structure was relatively stable across the measured frequency range.

This provides support for the feasibility of identifying a similar structure from fMRI data in

humans (Fox and Raichle, 2007).
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The repetition time (TR) is the time it takes to acquire one functional image of the

brain. In technical terms, is the length of time between corresponding consecutive points on a

repeating series of pulses and echoes, where each series of pulses and echoes corresponds to

one image. The TR defines the sampling rate of fMRI data. Commonly used TRs for acquiring

a whole-brain image are ∼ 1 second, and the smallest possible TR with reasonable spatial

coverage (∼ 4 cm thick slab) and voxel size (2.5 mm isotropic) is ∼ 250 ms for 3T fMRI

data (Lewis et al., 2016). The HCP 3T fMRI data were acquired with whole-brain coverage

at a relatively short TR of 720 ms. This corresponds to a sampling rate of ∼ 1.4 Hz. The

HCP protocols use multiband acquisition (multiband factor 8) (Moeller et al., 2010; Barch

et al., 2013) which increases the temporal resolution by exciting and reading out multiple slices

simultaneously. Taken together, the strongest signal in the data will be in the <1 Hz frequency

band.

Noise: Slow Drifts

Slow drifts refer to low-frequency fluctuations in the baseline BOLD signal over time. The

presence of these slow changes contributes to noise components in fMRI and they can affect

the reliability and accuracy of the data and produce false positives. Therefore, these noise

components are usually removed before data analysis (Yan et al., 2009). Slow drifts may arise

from different sources. For example, some studies observed that they may be due to scanner

instabilities (Smith et al., 1999), whereas others suggest that they may reflect spontaneous

neuronal events related to fluctuations in metabolic events (Biswal et al., 1995; Greicius et al.,

2003).

Noise: Head Motion

Head motion alters the uniformity of the magnetic field which is set at the beginning of the

scan with shimming. This can lead to distortions in the signal. Head motion can also result in

spin-history effects which refers to the change in excitation and signal intensity of a voxel as a
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particular slice may correspond to a different part of the brain after some movement. This form

of motion may be corrected using methods such as ICA or spin-history corrections.

Noise: Physiological Noise

The 0.01 - 1 Hz frequency band that fMRI is most sensitive to contains physiological noise

components, driven by cardiac and respiratory rhythms that produce periodic fluctuations

approximately in the 1-1.3 Hz and 0.25-0.45 Hz range, respectively. Relative changes in the

cardiac rhythm and respiration can additionally impact other factors that impact the BOLD

signal such as blood flow, blood oxygenation, blood CO2 levels and vasodilation. Since activity

fluctuations across the brain are tightly coupled to the cardiac and respiratory variations, it may

be difficult to separate this noise from the neural signal (Chen et al., 2020; Caballero-Gaudes

and Reynolds, 2017). If the sampling rate is fast enough, i.e. more than twice the frequency of

the noise which is approximately greater than 1 Hz for respiratory noise and greater than 2 Hz

for cardiac noise, it may be possible to characterize and minimize these confounds (Agrawal

et al., 2020). However, fMRI usually does not sample the signal at a frequency high enough to

directly measure these fluctuations. Since the heart rate and respiration are usually unmodeled,

these fluctuations contribute to the measured time course through aliasing and lead to temporal

autocorrelation in the signal.

Reducing Noise

Slow drifts can be attenuated by using high-pass temporal filtering. This method removes

low-frequency trends from the data. Since the head is a rigid body, the displacement of the

voxels in space can be expressed in terms of translation and rotation along each of the three

axes. In order to correct for head motion, prepossessing includes volume realignment where the

displacement of the head is estimated and the fMRI volumes are realigned.

The noise components discussed above may be regressed out using ‘nuisance regressors’.

Physiological noise can be identified by using a pulse oximeter to measure the cardiac rhythm
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and a respiratory belt can measure the respiratory rate. Alternatively, time courses of the white

matter and cerebral spinal fluid (CSF) may be regressed out as these time courses include

physiological or other noise components but not neural signals. This is the approach that we

followed in this thesis. Although physiological regressors may be considered to be closer to the

data, white matter and CSF regressors also reflect these noise components substantially (Cole

et al., 2019). For example, the cardiac rhythm contributes to a large portion of the variance

around large vessels and in areas with CSF (Dagli et al., 1999).

Noise may also be removed using ICA-based methods (Beckmann and Smith, 2004).

One commonly used method is ICA-FIX, which first identifies network components from

resting-state data and then applies an automatic algorithm that identifies and removes noise

components from the data (Salimi-Khorshidi et al., 2014). The HCP includes fMRI data

preprocessed with ICA-FIX in later releases.

Although these these techniques are beneficial in reducing noise, they carry the risk of

also removing some signal of interest. Also, these measurements are not perfect since noise

may be present in other frequency bands and may remain unidentified. Thus, we always hope to

remove more noise than signal.

1.4 Task fMRI

1.4.1 Introduction

While rs-fMRI is useful for many applications such as characterizing FC, the researcher has

relatively weak control over the cognitive state of the subject. Even though there are no stimuli or

tasks being presented to subjects during rest, there are still many activities occurring in the brain

during resting state. The brain is constantly engaged in many distinct tasks that can range from

regulating homeostasis of the body to memory consolidation of behaviour or previous thoughts

(Bijsterbosch, 2017). As a result, the brain is continuously engaged in mental activities beyond
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the researcher’s control while the subject is in a ‘resting state’. While this may be beneficial for

understanding the functional organization of the brain at rest, we should also engage subjects

in concerted tasks to assess brain activity and functional organization in response to external

events and goals.

Task-state fMRI is beneficial for multiple reasons as it facilitates research on an array

of cognitive tasks. It enables researchers to identify activity patterns, functional relationships

between brain regions, and residual activity fluctuations that occur during different cognitive

tasks. Task state fMRI is versatile because researchers can present a broad range of sensory

stimuli, including auditory, tactile, and visual stimuli, as well as complex cognitive tasks of

varying difficulty (Sereno et al., 1995; Formisano et al., 2003; Fedorenko et al., 2013). However,

these applications present their own unique challenges including difficulty with selection and

design of cognitive tasks for detecting functionally specialized brain regions, especially in the

FPN (Lorenz et al., 2018).

Typically, experiments are designed as either a block, event-related or mixed block/event

related format (Henson, 2007). Block designs were developed earlier and are a relatively simple

approach as it involves presenting consecutive stimuli as a series of epochs or blocks. There

are alternating on-off periods where the stimulus is presented (i.e. on-period) and where it is

removed to allow a state of rest (i.e. off-period). An advantage of block designs is that the fMRI

signal increases in response to a longer stimulation period (Boynton et al., 1996). Since the

events are concentrated within task blocks, it enables block designs to have better power than

event-related designs. However, since block designs only present one condition in each block, it

is not possible to randomize the stimulus conditions. This means that subjects may be able to

predict the next stimulus condition, which may not always be desired.

Event-related designs differ from block designs in that they evoke transient rather than

continuous task-based neuronal activity. An underlying assumption of an event-related design

is that the neural activity of interest occurs for discrete intervals. The stimuli that lead to the
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neural activity are known as events. Event-related designs often require rapid and randomized

subject responses. This prevents subjects from adopting cognitive strategies or heuristics while

performing the task. It also permits a post hoc sorting of events into correct and incorrect trials,

which may be beneficial for further analyses. Slow event-related designs also enable estimation

of the HRF after each stimulus presentation. This is beneficial because by identifying the timing

and properties of the HRF, inferences can be made about the relative timing of neural activity

during distinct processes of a trial (Formisano and Goebel, 2003). The main disadvantage of

event-related designs is their reduced statistical power relative to block designs. The HCP tasks

therefore used a block design (Barch et al., 2013).

In order to analyze the task-state fMRI data, we use a general linear model (GLM). In

general, a GLM is used for modelling the signals obtained from the data. The purpose of a

multiple regression analysis is to find the linear combination of the regressors that produces a

timeseries that is “best fit” to the data and explains as much variance as possible. In a GLM,

data from one voxel is modelled as a linear combination of a model (X) consisting of a set of

regressors (X1 and X2 - blue lines in Figure 1.5), which are the independent variables. The

regressors may describe variance in the data, such as the BOLD signal. The dependent variable

can be the preprocessed BOLD data. The output is a beta value (β) which represents amplitude

and is calculated for each regressor in the model (i.e. β1 for X1 and β2 for X2). It represents the

contribution of the regressor to the overall linear combination of regressors. The component

of the data that cannot be explained by the regressors is the error, also known as the residual

activity or noise. This is the difference between the data and the line of best fit. The residuals

can be calculated by subtracting the sum of each regressor multiplied by its beta value from

the data. The model with the best fit is the one with the smallest residuals. In conventional

approaches, the residuals are considered to be noise and tend to be discarded.

Task-based fMRI has been used widely to map the functional organization of the brain,

and has especially been successful at doing so at the whole-brain level (Smith et al., 2009) and for

sensory systems (Sereno et al., 1995; Kanwisher et al., 1997; Formisano et al., 2003). Although
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Figure 1.5: Schematic of general linear modelling of fMRI data. Red indicates the BOLD signal

time course, blue indicates predicted BOLD signal by each regressor in the model, and black

indicates the residuals unexplained by the model.

resting-state FC and task-based fMRI are quite different approaches, there is evidence in the

literature that the two converge on what they infer about the brain’s functional organization

(Smith et al., 2009; Greicius et al., 2003; Waskom and Wagner, 2017; Haak et al., 2018).

For example, Smith and colleagues showed that major brain networks, including the FPN,

correspond between rest and task (Smith et al., 2009). In fact, resting-state FC can be used to

predict task-based activations (Tavor et al., 2016; Cole et al., 2016).

1.4.2 Functional Connectivity

FC analyses are most commonly applied to resting-state fMRI data, but can also be applied

to task-based fMRI data (Cole et al., 2019). The analyses can either be applied to the full

time courses as measured during task performance, or separately to the task-predicted and

residual components of the time courses (Fox and Raichle, 2007; Cole et al., 2019, 2021; Kiani

et al., 2015). FC analyses on the task-predicted time courses reveal structure in co-fluctuations

between voxels that can be explained by the task design. The same analyses applied to the

residual time courses reveal structure in co-fluctuations between voxels that cannot be explained

by the task design. The residual time courses can be thought of as the task-based ‘equivalent’ of

resting-state time courses.
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Functional structure in the residuals has been shown to be relatively similar to functional

structure revealed by resting-state data (Greicius et al., 2003; Cole et al., 2014; Gratton et al.,

2018). This suggests that there is an inherent functional organization that exists during both rest

and task. However, there are differences between the two as well and these differences appear

to be meaningful for cognition (Schultz and Cole, 2016; Cole et al., 2021). This suggests that

network configurations are adjusted to best accommodate the task at hand (Varela et al., 2001;

Cole et al., 2013). Recent work in humans suggests that task-driven network reconfigurations

are largely unique to the individual as opposed to shared across individuals (Gratton et al.,

2018).

1.4.3 Limitations of Task State fMRI

Many of the limitations described for resting-state fMRI also apply to task state fMRI such as

noise, spatial and temporal limitations. However, task state fMRI can be difficult to regulate

as task performance across subjects and studies may be inconsistent. As a result, testing must

be designed and implemented systematically to avoid poor test-retest variability and reduce

confounds. For example, tasks must be considerably engaging so that the subject’s attention

is maintained throughout the experiment. Also, the tasks should strive to minimize variations

in behavioural performance and cognitive strategy since some subjects may use heuristics (i.e.

selecting the option that seems most familiar to them), whereas others may adopt a more analytic

approach (i.e. comparing the costs and benefits of every option).

1.5 Human Connectome Project

Thousands of neuroimaging studies over the past two decades have identified major functional

brain networks, such as the FPN (Fox and Raichle, 2007; Smith et al., 2009; Duncan, 2010;

Cole et al., 2013). Traditionally, the majority of these studies have focused on localizing brain

function at a relatively coarse spatial scale using a single source of data, for example resting-state
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fMRI. However, recently, researchers have developed improved multi-modal pipelines that take

advantage of the different properties of the brain to provide rich information about its various

structures and functions (Glasser et al., 2016).

The data used in this thesis are obtained from the Human Connectome Project (HCP)

which is an NIH-funded collaboration between the University of Minnesota and Washington

University (Van Essen et al., 2012). The specific dataset that we use is the S1200 Subject

Release which has data publicly available from approximately 1200 young healthy adults.

The HCP follows a surface-based alignment instead of a traditional volume-based approach

(Glasser et al., 2013). This is motivated by studies which show that cortical folds are unreliable

landmarks for brain alignment (Coalson et al., 2018). Instead, it is more reliable to use cortical

features such as myelin maps and areal patches defined based on resting state FC (referred

to as multimodal surface matching (MSM)) (Coalson et al., 2018). Since the HCP follows a

surface-based alignment, our analyses were performed on the cortical surface using vertices,

rather than voxels. Studies show that a vertex-wise approach may yield better multivariate

classification performance than voxel-wise information decoding (Oosterhof et al., 2011).

The HCP S1200 Subject Release consists of 3T and 7T data. We chose to analyze the

3T data since there are seven tasks that engage subjects in cognitive tasks. The seven tasks

are: working memory, gambling, motor, language, social cognition, relational processing, and

emotion processing. We did not analyze the 7T data in this thesis because it only consists of

two tasks: retinotopic mapping and movie-watching. Past studies have also shown the utility of

3T task data in analyzing cognitive processes in the FPN (Assem et al., 2020; Cole et al., 2016).

1.5.1 Glasser Parcellation

The HCP data comes with the multi-modal Glasser parcellation (Glasser et al., 2016), which

we used for defining the FPN of interest. A brain parcellation is a delineation of spatial non-

overlapping parts of the brain (parcels, also referred to as regions of interests (ROIs)). The
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parcellation is created by a variety of imaging techniques which take advantage of the similarities

between regions such as cytoarchitecture, structural or FC and task-related activity. Researchers

have created a variety of maps based on these different features. Despite recent advances,

there is still no universal atlas of the human brain due to the myriad of challenges involved.

Nevertheless, brain parcellations are useful in providing information about the organization and

features of the brain and allow streamlined methods of analyzing brain function (Glasser et al.,

2016; Arslan et al., 2018).

Different ways of creating a brain parcellation have been developed, such as an atlas-

based parcellation, connectivity-based parcellation and multimodal parcellations (Arslan et al.,

2018; Zhi et al., 2021). An atlas-based parcellation subdivides the brain by employing an anatom-

ical template. This approach has shown to be limited because it does not adequately address

the variations between subjects since the divisions are based on an averaged dataset (Tzourio-

Mazoyer et al., 2002; Fischl, 2004; Desikan et al., 2006). Another method is connectivity-based

parcellation, which divides the brain regions by grouping voxels that are similar in their connec-

tivity patterns measured from fMRI (Gordon et al., 2016; Thomas Yeo et al., 2011). Another

parcellation method employs multimodal techniques which partition the brain by employing

information from a variety of sources. Multimodal parcellations have shown to be a promising

technique in defining brain regions more accurately (Glasser et al., 2016).

In this work, we use the Glasser surface-based parcellation which is created based on

multimodal techniques (Glasser et al., 2016) (Figure 1.6). It uses four different neuroimaging

modalities. The atlas identifies 180 symmetric cortical parcels per hemisphere (360 total ROIs)

based on architectural, functional, connective and topographic features. This parcellation

was created from the multimodal dataset from the HCP and an objective semi-automated

neuroanatomical procedure. There were notable differences between neighbouring areas in

terms of microstructural architecture, functional specialization, connectivity to other regions,

and internal topographic organization. Due to the multi-modal approach used in its development,

this parcellation is different from most others. The architectural measurements included cortical
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thickness and cortical myelin content which was computed from the T1 and T2-weighted

structural MRI. Cortical function was assessed using task state fMRI contrasts for seven different

tasks. FC was quantified from resting-state fMRI.

The Glasser parcellation was constructed through rigorous automated algorithms and

manual neuroanatomical approaches (Glasser et al., 2016). Initially, an observer-independent

semi-automated neuroanatomical approach was created to delineate the boundaries, which

were then reviewed by expert neuroanatomy specialists. The cortical areas in subjects were

subsequently identified using an automated algorithm. The multimodal parcellation was achieved

by training a machine-learning classifier; it was repeated in new subjects and studies with a

high degree of reproducibility. After these steps, the HCP research group was able to achieve an

average subject’s parcellation by averaging the results from data of 210 subjects in the healthy

young adult dataset.

1.6 Thesis Outline

1.6.1 Thesis Question

In this thesis, we ask whether there is a fine-grained functional organization within the human

FPN. A better understanding of the network’s internal functional organization will contribute

to a better understanding of its role in higher-order cognition. Higher-order cognition requires

flexible integration of information across domains. The FPN may therefore adhere to somewhat

different organizational principles than sensory cortices, which show orderly and stable maps

of functional selectivity to stimulus features. Instead, we hypothesize that the FPN contains

neurons that multi-task and that flexibly reconfigure themselves to best meet the current task

demands. The task-dependent reconfigurations are expected to provide clues about the internal

functional organization of the network. We address the research question by examining task-

dependent reconfigurations of FC within the human FPN as measured with fMRI. This approach
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Figure 1.6: Glasser Parcellation. Colour scheme represents the likelihood of a region responding

during the execution of a particular cognitive task (Glasser et al., 2016).
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assumes that the reconfigurations happen at spatial and temporal scales accessible to 3T fMRI

(Kiani et al., 2015).

1.6.2 Thesis Objectives

Our overall aim of mapping the internal functional organization of the human FPN translates

into three objectives. First, we will characterize the functional organization of the human FPN

using FC approaches. To visualize the spatial structure of the functional organization, we

will map the organization onto the cortical surface using dimensionality reduction techniques.

Second, we will test whether FC profiles within the FPN are replicable within individuals over

time, and whether they are more consistent within than between individuals. If we confirm these

hypotheses, this provides evidence for the existence of a fine-grained functional organization

within the FPN that is (partially) unique to the individual. Third, we will assess if the individual

FC profiles are affected by task. If they are affected by task, this provides evidence for task-

dependent internal reconfigurations of the FPN. In Chapter 4, we will elaborate on how these

reconfigurations may shed further light on the internal organization of the FPN.
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Methods

2.1 Human Connectome Project

2.1.1 Participants

We analyzed 3 Tesla (T) fMRI data from the Washington University of Minnesota Consortium

of the Human Connectome Project (HCP) database. This open-source database contains both

resting-state and task fMRI data for 1206 healthy young adults. The dataset is available in the

Human Connectome Project repository (https://www.humanconnectome.org/study/hcpyoung-

adult). We only included individuals with complete data sets yielding a total of 924 individuals

for analysis (22-37 years old) (mean age 28 +/- 3.72 standard deviation, 487 females, 437

males). Of those individuals, 100 participants were genetically unrelated, while the remaining

824 participants consisted of sets of siblings, including dizygotic and monozygotic twins.

2.1.2 Experimental Design

Each participant performed seven tasks twice in the scanner over two days. The task-based fMRI

data available from the HCP include: Working Memory, Gambling, Motor, Language, Social

25
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Cognition, Relational Processing, and Emotion Processing. The first three tasks were performed

on one day, the remaining four tasks were performed on another day. The experimental design

was described in Barch et al. (2013), where further details can be found. We summarize the

most relevant experimental design features below. Stimuli were projected onto a computer

screen behind the participant’s head within the imaging chamber. The screen was viewed using

a mirror positioned approximately 8 cm above the subject’s face.

Working Memory: Participants were presented with two runs of 8 task blocks (10 trials

of 2.5s each, for 25s) for each run and 4 fixation blocks (15 s each). Within each run, 4 blocks

used a 2-back working memory task and 4 blocks used a 0-back working memory task. A 2.5s

cue indicated the task type (and target for 0-back) at the start of the block. On each trial, the

stimulus was presented for 2 seconds, followed by a 500 ms inter-task interval (ITI). Block

stimuli consisted of images of places, tools, faces and body parts. In each block there were 2

targets, and (in the case of the 2-back task) 2–3 non-target lures (repeated items in the wrong

n-back position, either 1-679 back or 3-back).

Gambling: This task was adapted from Delgado et al. (2000). Participants were

presented with a card guessing game where they guessed the number on a mystery card in order

to win or lose money. Participants were presented with blocks of 8 trials that are either mostly

reward (6 reward trials pseudo randomly interleaved with either 1 neutral and 1 loss trial, 2

neutral trials, or 2 loss trials) or mostly loss (6 loss trials pseudo randomly interleaved with

either 1 neutral and 1 reward trial, 2 neutral trials or 2 reward trials). In each of the two runs,

there were 2 mostly reward and 2 mostly loss blocks, interleaved with 4 fixation blocks (15s

each).

Motor: To map motor areas, participants were instructed to either tap their left or right

fingers, squeeze their left or right toes, or move their tongue. Each block of movement started

with a 3s cue followed by 12s of 10 movements. There were three 15s fixation blocks per run.

There were two runs, each consisted of 13 blocks with 2 tongue movements, 4 hand movements,
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and 4 foot movements.

Language: The language task consisted of two runs interleaved with 4 blocks of the

story task and 4 blocks of the math task, where each block was approximately 30s. Participants

were presented with a story task and a math task. The story blocks consisted of short auditory

stories followed by a 2-alternative forced-choice question that asked participants about the topic

of the story. The math blocks presented trials aurally and instructed participants to perform

addition and subtraction problems presented as a 2-alternative forced-choice question.

Social Cognition: The social cognition task consisted of two task runs with 5 video

blocks and 5 fixation blocks (15s each). Participants were presented with brief video clips

of objects that interacted or moved randomly. After each video clip, participants were asked

whether the objects had a mental interaction.

Relational Processing: In this task, there were 2 runs, where each one consisted of

3 relational condition blocks, 3 control matching blocks, and 3 16s fixation blocks. In the

relational condition, there were 5 trials per block where stimuli were presented for 3500ms

with a 500ms ITI. In the matching condition, there were 5 trials per block where stimuli were

presented for 2800ms with a 400ms ITI. Each block was 18s in duration. In the relational

condition, participants were presented with 2 pairs of different shapes with varying textures.

They were asked how the pairs differed in terms of shape or texture. In the control matching

condition, participants were shown two objects at the top of the screen and one object at the

bottom of the screen and asked whether either matched in terms of shape or texture.

Emotion Processing: This task was adapted from Hariri et al. (2002). The emotion

processing task consisted of two runs, each with 3 face blocks and 3 shape blocks, and ending

with 8s fixation blocks. Each trial started with a 3000ms task cue (shape or face) and was

presented in blocks of 6 trials of the same task where the stimulus was presented for 2000ms

and a 1000ms ITI. Overall, each block was 21s in duration including the cue. Participants were

presented with blocks of trials where they performed a matching task on images of fearful faces
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or neutral shapes.

2.1.3 MRI Measurements

Participants took part in two measurement sessions on separate days. They performed two

resting-state runs and three of the seven tasks in one session, and two resting-state runs and four

of the seven tasks in the other session. For each task, data were acquired for two runs. Within

each session, acquisitions alternated between phase encoding in a right-to-left (RL) direction

in one run and phase encoding in a left-to-right (LR) direction in the other run. Data were

acquired on a 3-Tesla Siemens Siemens Skyra “Connectom” MRI scanner with a 32-channel

RF receive head coil. Data were acquired using 2D gradient-echo echo-planar-imaging (GE

EPI) with whole-brain coverage and the following parameters: repetition time (TR) = 720 ms,

echo time (TE) = 33.1 ms, multiband factor = 8, 72 slices at oblique axial orientation, 2.0

mm isotropic voxels. Each resting-state run consisted of 1200 volumes (14 min and 33 s per

run). Participants kept their eyes open with a relaxed fixation on a bright cross-hair on a dark

background projection. Task runs were 3-5 minutes in duration, depending on the task. Cardiac

and respiratory signals were measured using a standard Siemens pulse oximeter placed on the

fingertip and a breathing belt placed around the chest, with a 400 Hz sampling rate. Further

details can be found in past papers (Smith et al., 2013; Van Essen et al., 2012; Uğurbil et al.,

2013; Sotiropoulos et al., 2013).

2.2 fMRI Preprocessing

We used preprocessed data made available on the HCP ConnectomeDB data management

platform. These data were processed using the minimal preprocessing pipeline for the HCP

dataset, which is described in detail in Glasser et al. (2013). Below, we describe the most

relevant steps of this pipeline.

Structural data preprocessing was performed using the PreFreeSurfer, FreeSurfer and
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PostFreeSurfer HCP pipelines. In brief, structural images (T1w and T2w) were corrected for

gradient nonlinearity distortion and registered to the Montreal Neurological Institute (MNI)

space template using an initial rigid-body alignment (6 degrees of freedom) followed by linear

(FLIRT) and non-linear (FNIRT) volume registration. The structural images were then warped

back into native volume space, and corrected for readout distortion and B1 bias. The T1w

structural image in native volume space was passed on to Freesurfer’s recon-all algorithm

for segmentation. Freesurfer outputs, including white matter and pial surface definitions,

were converted to NIFTI format. The native-mesh surfaces were subsequently registered to

the Conte69 population-average surfaces, which brings the surfaces into alignment with the

Freesurfer standard surface mesh. The HCP processing pipeline uses a downsampled version of

this standard mesh, which is referred to as 32k fs LR space. This space has an average vertex

spacing of 2 mm on the midthickness surface. The data analyzed in this thesis reside in the

32 fs LR space.

Functional data preprocessing was performed using the fMRIVolume and fMRISurface

HCP pipelines. In brief, these pipelines implement gradient nonlinearity distortion correction,

motion correction (6 degrees of freedom: 3 translation and 3 rotation parameters), EPI distortion

correction, EPI to T1w registration using a combination of FSL’s FLIRT and FreeSurfer’s

BBRegister tools, native volume to MNI nonlinear registration, and mild high-pass (200s)

temporal filtering. Resting state and task state functional images were mapped from volume

to surface space with ribbon-constrained volume to surface mapping. A standard CIFTI gray-

ordinate space was created by including both subcortical voxel data and cortical surface data.

Grayordinates consist of surface vertices and subcortical voxels contained in a CIFTI file. Data

were smoothed with a 2mm FWHM kernel in the grayordinate space that did not mix data across

gyral banks for surface data and areal borders for subcortical data.
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2.3 fMRI Analyses

2.3.1 Extraction of Residual Time Courses

First, we selected a subset of 10 parcels from the Glasser parcellation. The selected parcels

are core regions of the FPN as assessed by Assem et al. (2020) (see Figure 1.1). The selected

parcels show stronger activation with increasing working memory, relational processing, and

arithmetic task demands. Only parcels showing these effects for at least two of the three task

demands were included. The 10 parcels include seven frontal parcels (8C, IFJp, a9-46v, p9-46v,

i6-8, AVI, 8BM) and three parietal parcels (IP1, IP2, PFm) (details listed in table A.1). We

extracted time series data from these parcels for both left and right hemispheres (3745 vertices

in total) and for resting as well as task states.

We then prepared nuisance regressors for both resting-state and task data and used these

to model variability due to head motion and physiological noise using linear regression. We

used 12 motion regressors per run, consisting of 3 translation and 3 rotation regressors, plus their

first-order derivatives. The physiological noise was modelled with white matter and cerebral

spinal fluid (CSF) regressors. These regressors were created by extracting time course data

from voxels covering the white matter and ventricles, respectively, and by averaging these

data across voxels. This process yielded one white matter regressor and one CSF regressor

per participant per run. We also included a linear trend regressor. This yielded at total of 15

nuisance regressors per run. The first 5 frames of each run were removed before fitting the GLM

to the data. Later versions of the pipeline have implemented ICA+FIX. In our analyses, we did

not use this approach. Instead we used the nuisance regressors based on the white matter and

CSF time courses.

We did not perform global signal regression (GSR) since this may introduce negative

correlations between time series (Murphy et al., 2009). This would bias the FC analyses and

could introduce artificial differences in FC between resting and task states (Cole et al., 2019).
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We did not perform low-pass temporal filtering because there may be task signals at higher

frequencies (e.g. relative to slow resting-state fluctuations).

Next, we prepared task regressors based on the seven tasks, modelling 24 task conditions

in total. The emotion processing task consisted of two conditions, face and shape. The gambling

task consisted of two conditions as well, punishment and reward. The language task consisted of

a story condition and a math condition. The motor task had six conditions: cue, right hand trials,

left hand trials, right foot trials, left foot trials, and tongue trials. For the relational processing

task, the conditions were matched objects or unmatched objects. The social cognition task

consisted of two conditions, interacting objects (theory of mind) or objects randomly moving.

For the working memory task, there were four conditions for each 0-back and 2-back load: body,

face, tool, place.

We created predictors by applying a finite impulse response (FIR) function to the task

timings. We created one regressor per TR, resulting in 25-50 predictors per condition. Since

all tasks used block designs, each TR for each block was modelled separately for each task

condition based on the FIR model, with a lag extending up to 25 TRs after task block offset.

The FIR approach allows us to estimate the HRF as precisely as possible and thus regress out

task-predicted activation as best as possible. A FIR function does not assume an HRF and

therefore it is better than the standard HRF because it avoids including task related information

in the residuals. Prior work shows that the FIR model reduces both false positives and false

negatives in the identification of FC estimates (Cole et al., 2019). This is due to the FIR model’s

ability to flexibly fit the average task-evoked response as it unfolds over time. Removing the

averaged evoked response of a task condition is useful for separating the task-predicted from the

residual activity, each of which may have different FC profiles (Norman-Haignere et al., 2012).

We fit the GLMs to the resting-state and task time series data of each individual vertex

within the FPN. For resting-state data, the GLMs consisted of nuisance regressors only. For task

data, the GLMs consisted of both nuisance and task regressors. After fitting, we computed the
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residuals and used these for further analyses.

2.3.2 Estimation of Functional Connectivity Matrices

We estimated FC by computing pairwise Pearson correlation coefficients between the residual

time series of the frontoparietal vertices. We stored the pairwise correlations in a FC matrix

(Figure 2.1a). We computed these matrices for each resting-state and task run, yielding a total of

18 matrices per subject for further analysis. These 18 matrices were based on four resting-state

runs and two runs for each of the seven tasks. The correlation matrices serve as a starting point

for examining the network’s internal functional organization.

2.3.3 Visualization of Functional Connectivity on the Cortical Surface

Dimensionality refers to the number of coordinate values used to identify a point in space. When

data are collected in a high-dimensional space, for example a space spanned by the number of

time points in the fMRI data, they are challenging to interpret. In order to better visualize the

data, we can perform dimensionality reduction. Dimensionality reduction is a statistical method

which converts the high-dimensional data into a low-dimensional space while capturing the

dimensions where most of the variance occurs (Cunningham and Yu, 2014; Williamson et al.,

2016). These methods have revealed evidence of the neural mechanisms underlying cognitive

functioning such as integrating sensory information and decision making (Kaufman et al., 2014;

Mante et al., 2013).

In our analyses, we use dimensionality reduction techniques to enable projection of the

FC results onto the cortical sheet (Figure 2.1) (Kiani et al., 2015). By visualizing the results on

the cortical sheet, we can get an impression of the spatial structure of the network’s internal

functional organization. We first converted the correlation coefficients in the FC matrices into

correlation distances and then applied 2-dimensional (2D) multidimensional scaling (MDS)

(criterion: metric stress) to the matrices. MDS is a nonlinear dimensionality reduction technique
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that converts distances between points in a high-dimensional space to distances between points

in a low-dimensional space with the least possible distortion (Borg and Groenen, 2005; Kruskal

and Wish, 1978; Torgerson, 1958; Shepard, 1980). The 2D MDS representation consists of

points (in our case vertices) on a plane, where smaller distances between vertices reflect a

stronger positive correlation in their residual time courses. The MDS plots illustrate the time

course correlations between vertices and facilitate visualization of the data structure.

To visualize FC on the cortical surface, we next colour coded the vertices according to

their location in the 2D MDS space, with hue coding for polar angle and saturation coding for

eccentricity (Figure 2.1b). Next, we projected these colours to the cortical surface and displayed

them using Connectome Workbench (Figure 2.1c). Vertices with similar colours have similar

time series; vertices with dissimilar colours have dissimilar time series. Given that MDS is a

dimensionality reduction technique, it naturally induces distortions. To assess the degree of

distortion, we computed the Pearson correlation coefficient between the distances in the original

high dimensional space and the distances in MDS space. For displaying multiple MDS solutions,

for example multiple task runs within the same subject, we used procrustes alignment to ensure

the best possible alignment between the MDS solutions. We selected one MDS solution as the

reference, and aligned the others to this reference.

2.3.4 Consistency of Functional Connectivity Within and Between Indi-

viduals

We first estimated the replicability of the FC matrices over time within individuals. For each

individual, we computed the Pearson correlation coefficient between pairs of connectivity

matrices. Pairs consisted of two different runs of the same type acquired on the same day, for

example two resting state runs or two working memory runs. We computed pairwise correlations

for the following mental states: rest day 1, rest day 2, and each of the seven tasks. We next

estimated the consistency of the FC matrices between individuals. For each pair of individuals,

we computed the Pearson correlation coefficient between pairs of connectivity matrices. Pairs
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Figure 2.1: Visualizing FC within the FPN on the cortical surface. We performed 2D MDS

on the FC matrices (3745 x 3745 vertices), coloured the vertices according to their location in

the 2D MDS space, and projected the colours to the cortical surface. Similar colours indicate

vertices with similar time series. This example is based on one resting-state run of one example

subject. The Pearson correlation coefficient between the distances in the original space and the

distances in the 2D MDS space is 0.65.
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consisted of runs of the same type, one acquired in the first individual and the other acquired

in the second individual. We computed pairwise correlations for the following mental states:

rest day 1, rest day 2, and each of the seven tasks. We then averaged the within- and between-

subject correlations across run pairs and subtracted the average between- from the average

within-subject correlation.

We performed statistical inference on the difference in the average within- and between-

subject correlations using randomization of the subject labels. We randomized the subject labels

before averaging correlations across run pairs, simulating the null hypothesis of no difference

in within- and between-subject consistency of FC. We performed 1,000 randomizations, each

providing an estimate of the difference under the null hypothesis. If the actual difference fell

within the top 5 percent of the simulated null distribution, we rejected the null hypothesis of no

difference in within- and between-individual consistency of FC. We performed a one-sided test

because we expected the consistency to be higher within than between subjects. We focused

our analysis on the subset of 100 genetically unrelated subjects to prevent inflation of the

between-subject correlations.

2.3.5 Consistency of Functional Connectivity Within and Between Tasks

To determine whether task affects FC within the FPN, we estimated the consistency of the FC

matrices within and between tasks. For each individual, we computed the Pearson correlation

coefficient between pairs of connectivity matrices from the same task or from different tasks.

This yielded a 14-by-14 correlation matrix for each individual, with the 14 task runs on the

axes (Figure 3.5a). We averaged the within- and between-task correlations across run pairs

and subtracted the average between- from the average within-task correlation. We performed

statistical inference on the difference in the average within- and between-task correlations using

a one-sided paired t-test across individuals. We performed a one-sided test because we expected

the consistency to be higher within than between tasks. We ran this analysis for all subjects (n =

924), for the related subjects (n = 824), and the unrelated subjects (n = 100).
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Results

3.1 Functional Connectivity is Replicable Within Individu-

als

We first computed FC matrices for the FPN during resting and task states in each individual

(see Figure 2.1a). We then visualized the FC information on the cortical surface to get an

impression of the spatial structure of the frontoparietal FC. We applied 2D MDS to the FC

matrices, coloured the frontoparietal vertices according to their location in the MDS space, and

projected the colours onto the cortical surface. Similar colours indicate similar residual time

courses. Figure 3.1 shows results for an example participant for two resting-state runs acquired

on the same day. The visualizations suggest that FC within the FPN is relatively consistent

within individuals during resting state. These observations were qualitatively similar for the

seven task states and for the other participants.

We next quantified these observations by assessing the replicability of FC matrices

between repetitions of resting and task states within individuals. We hypothesized that FC is

replicable within individuals over time. This was assessed by computing pairwise Pearson

36
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Figure 3.1: FC within the FPN visualized on the cortical surface. Vertices with similar colours

exhibit similar time courses. Resting state data for run 1 and run 2 of one example subject are

shown with a lateral and medial view of each hemisphere. FC appears relatively replicable over

time within the same individual.

correlation coefficients between FC matrices for different runs of the same resting or task

state, shown schematically in Figure 3.3a. The dark grey bars in Figure 3.3b show the average

replicability of FC matrices within individuals for each task and for each day of resting-state

data acquisitions. FC within the FPN indeed appears replicable within individuals. This is an

important observation, because replicability of FC is a first necessary step for establishing that

the FPN contains a fine-grained functional organization.

3.2 Functional Connectivity is More Consistent Within than

Between Individuals

After establishing that frontoparietal FC is consistent over time within individuals, we assessed

consistency of FC between individuals. Figure 3.2 visualizes FC on the cortical surface for

two example participants for each of the two working memory task runs. These visualizations

suggest that FC within the FPN is more consistent within than between individuals. These

observations were similar for the other tasks, for resting-state data, and for other participant
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pairs.

We quantified these observations by assessing the consistency of FC matrices between

individuals for the same resting or task state. This was assessed by computing pairwise Pearson

correlation coefficients between FC matrices for runs of the same resting or task state acquired

in different participants, shown schematically in Figure 3.3a. The light grey bars in Figure 3.3b

show the average replicability of FC matrices between individuals for each task and for each

day of resting-state data acquisitions. We performed inference on the difference in within- and

between-subject consistency using subject-label randomization tests (5,000 randomizations,

one-sided test). For both resting-state days and all tasks, the difference was significant (p<0.001

for each comparison). The motor and WM tasks appear to show higher consistency within

individuals than the other tasks. Overall, these results indicate that frontoparietal FC is more

consistent within than between individuals. In other words, the internal functional organization

of the FPN is partially individually unique. This is an important observation because it raises

the possibility that individual variability in the network’s internal organization may contribute

to individual variability in cognitive function.

3.3 Functional Connectivity is More Consistent Within than

Between Tasks

We next investigated whether the internal functional organization of the FPN is affected by task.

If the FC matrices are fully consistent across tasks within an individual, this would suggest that

the FPN does not internally reconfigure itself to accommodate changing task demands. Instead,

any task effects would be predominantly driven by changes in input to the FPN (Cole et al.,

2016). Alternatively, if the FC matrices are uncorrelated across tasks within an individual, this

would suggest that the FPN completely reconfigures itself from one task to the next. To get

an impression of the consistency across tasks, we visualized frontoparietal FC on the cortical

surface for the seven tasks within individuals. Figure 3.4 demonstrates results for an example
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Figure 3.2: FC within the FPN visualized on the cortical surface. Vertices with similar colours

exhibit similar time courses. Working memory task state data for run 1 and run 2 of two

example subjects are shown with a lateral and medial view of each hemisphere. FC appears

more consistent within than between individuals.
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Figure 3.3: FC within the FPN is more consistent within than between individuals. Results

are based on the 100 unrelated individuals in the HCP data set. Panel a schematically shows

how we computed consistency of FC within and between individuals. Panel b shows results

averaged across all within- and between-subject run pairs for each task and for each of the two

resting-state acquisition days. The x-axis represents the resting state runs (rest A=run 1-2; rest

B=run 3-4) and the seven different tasks. Error bars reflect standard error based on subject-label

randomization. Statistical inference was performed using subject-label randomization (5,000

randomizations).
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participant. Residual time courses were concatenated across the two runs for each task before

computing the FC matrices that were used for the visualization. These visualizations suggest that

FC within the FPN is moderately consistent across tasks. However, between-task consistency

seems lower than within-task consistency (compare to Figure 3.2). These observations were

similar for the other participants.

To quantify these observations, we estimated the consistency of FC matrices within

and between tasks. This was estimated by computing pairwise Pearson correlation coefficients

between FC matrices for runs of the same task and for runs of different tasks within individuals.

Figure 3.5a shows the resulting correlation matrix for an example participant. The correlation

matrix suggests that frontoparietal FC is more consistent within than between tasks. Figure

3.5b shows within- and between-task FC correlations, averaged across run pairs and individuals.

Results are shown for all individuals, for related individuals, and for unrelated individuals. We

performed inference on the difference in within- and between-task consistency using paired

t-tests (one-sided test). The difference was significant for all three groups (t(923) = 236.5,

t(823) = 222.0, and t(99) = 82.7; p<0.001 for each), confirming that frontoparietal FC is

more consistent within than between tasks. This provides evidence for task-dependent internal

reconfigurations of the FPN. These outcomes suggest that flexible reorganization may be a

principle of frontoparietal function, and provide a starting point for further investigations into

the network’s internal functional organization.
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Figure 3.4: FC within the FPN visualized on the cortical surface. Vertices with similar colours

exhibit similar time courses. Data from all seven tasks (time series were concatenated across

runs for each task) for one example subject are shown with a lateral and medial view of each

hemisphere. While the visualizations suggest some consistency in FC across tasks, there appear

to be differences as well. These observations suggest that FC may be more replicable within

(see Figure 3.2) than between tasks.
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Figure 3.5: FC within the FPN is more consistent within than between tasks. Panel a: Consis-

tency of FC within and between tasks shown for an example participant. The axes of the matrix

represent the different tasks, with two runs per task. The diagonal values represent correlations

of FC profiles within tasks and off-diagonal values represent correlations between different

tasks. Panel b: Bars reflect consistency of FC within and between tasks, averaged across task

pairs. X-axis represents groups of subjects: all subjects (n=924), related subjects (n=824),

and unrelated subjects (n=100). Error bars reflect standard error of the mean across subjects.

Statistical inference was performed with a paired t-test.
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Discussion

4.1 Summary

Throughout the current thesis, we have aimed to understand the functional organization of the

human FPN on a fine-grained spatial scale as this has not been consolidated in previous literature.

We did this through examining FC within the human FPN during the execution of cognitive

tasks. We analyzed fMRI task-state data from 924 individuals from the HCP Young Adult study

(Van Essen et al., 2012). Our results show that FC within the FPN is highly stable across time

within individuals. Furthermore, FC within the FPN is more consistent within than between

individuals. These findings provide evidence for the existence of a fine-grained functional

organization within the FPN that is partially unique to the individual. Prior work on large-scale

functional brain organization reported similar results (Gratton et al., 2018), suggesting that

individual variability in FC is substantial at both local and global scales. Individual variability

in global FC has been shown to predict variability in behaviour on higher-order cognitive tasks

(Finn et al., 2015). Our findings raise the possibility that individual variability in local FC may

also contribute to variability in cognitive performance across individuals.

Our results additionally show that FC within the FPN is more consistent within than

44
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between tasks within an individual. This finding provides evidence for task-dependent reconfig-

urations of FC within the FPN. In other words, the FPN may adjust its input sensitivities at a

local scale to best accommodate changing task demands. This is exciting because it provides

additional evidence for a fine-grained functional organization within the FPN. Our findings

extend prior work which showed that the FPN reconfigures its connectivity with other brain

networks at a global scale to meet task demands (Cole et al., 2013). Flexible reorganization may

be a general principle of frontoparietal function at both local and global scales.

This thesis also contributes tools for visualization of FC profiles on the cortical surface.

We visualized FC maps of the FPN by utilizing MDS. Visualizations are important because

there may be different spatial structures possible. For instance, on one side, there could

have been distinct spatial clusters in the FPN where vertices with the same time courses are

clustering together. However, we observed more moderate maps where there was no clearly

observable spatial clustering. These different organizations are useful to visualize because they

are indicative of different types of organizations. While MDS provides a useful visualization

tool, the limitations that accompany MDS must be taken into consideration when interpreting

results. Furthermore, the spatial structure observed in the maps needs to be quantified further

in order to draw stronger conclusions, for example by performing clustering analyses before

projecting results to the cortical surface.

Overall, this study shows clearly that human individuals exhibit a partially unique fine-

grained functional organization within the FPN with some shared components, and that this

organization contains a task-specific component.

4.2 Limitations and Future Directions

Although the Glasser parcellation (Glasser et al., 2016) provided a good framework for defining

the FPN, there are limitations to its usage. For instance, since the parcellation is based on a

group average, this poses a problem because in reality, individual subject brains may vary in
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their parcels slightly. There may be differences in the degree of overlap with the parcellation

and this may potentially be an underlying source of apparent changes in FC between subjects.

This is a confound because the parcels are not defined precisely for each individual brain.

Recent studies have begun proposing improved methods for defining functional bound-

aries. For example, King et al. (2019) developed a method to identify functional boundaries of

the cerebellum based on task activations. Haak et al. (2018) proposed a different approach: they

computed connectivity gradients based on voxel-wise FC profiles. Applying these approaches

would allow clustering of voxels based on how similar they are in their connectivity to the rest of

the brain. This approach would be complementary to our local connectivity measurements which

focused on connectivity within the FPN only. One intermediate approach could be a searchlight

approach (Oosterhof et al., 2016). The conceptual motivation behind the searchlight approach is

to find stable local structure in FC. It combines the stability of large-scale group parcellations

with the sensitivity of local connectivity gradients to detect fine-grained functional organization.

This makes the searchlight approach sensitive to the fine-grained functional organization of

frontoparietal cortex. In order to develop this approach, the next steps would involve addressing

how to visualize the results (e.g. colour the edges), and how to detect the functional boundaries

(e.g. watershed approach, boundary search on local edges, compare global and local solutions

to detect noisy vertices). In developing the searchlight approach, we should also generate the

two extremes that the approach is trying to bridge: global parcellation and local connectivity

gradients. Correspondence between global and local solutions would be encouraging and would

suggest that the searchlight approach should give stable results.

Our results are suggestive of task-related reconfigurations of the FPN. An important next

step is to further examine the network changes and investigate whether they are relevant for

behaviour. For example, are some vertices more strongly reconfiguring their connectivity to

accommodate task demands than others? Where are these vertices located? Which other parts

of the brain are they connected to? We could potentially identify such vertices by computing a

local variable connectivity measure for each vertex, reflecting the variability in its connections to
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other frontoparietal vertices across task states (extending Cole et al. (2013)). If this vertex-wise

variability is replicable over time within an individual, we can further examine the spatial

organization of ‘flexible’ versus ‘stable’ vertices within the FPN. Furthermore, flexible vertices

may show different connectivity profiles to other parts of the brain than stable vertices. The

average local variable connectivity across frontoparietal vertices could serve as a summary

measure of task-related frontoparietal reconfiguration. This summary measure could be used for

predicting behavioural performance. Combining this ‘local’ connectivity measure with existing

‘global’ connectivity measures (Finn et al., 2015) may improve performance at predicting

behaviour during task states.

The HCP has acquired a plethora of data in the young healthy adult dataset, therefore

expanding our analyses to other aspects of the dataset would provide further insight into the

FC of the FPN. For example, we analyzed the data from the 3T fMRI dataset, and it would be

beneficial to next expand our analyses to the 7T dataset in order to assess the FC of the FPN on

higher resolution data. Also, future studies should investigate the relationship between fMRI

and structural MRI data. This stems from the idea that FC may be driven (partly or largely)

by structural connectivity (Hermundstad et al., 2014; Deco et al., 2014). Since the HCP has

acquired structural data for the subjects we analyzed, this would be a practical next step to

implement. Another advantage of the HCP dataset is the large amount of siblings, including

monozygotic and dizygotic twins. Therefore, differences between family members (twins and

non-twin siblings) and unrelated subjects should be investigated. A limitation of the HCP

dataset is that it only has seven tasks for the 3T dataset and two tasks for the 7T dataset. In

future studies, it would be advantageous to extend our set of analyses to datasets with more

tasks in order to engage more complex cognitive functions.

A general limitation of our work is that we are limited by the measurement technique.

In the case of fMRI, this means that we have limited temporal resolution, which means that

we are only sensitive to activity fluctuations in lower frequency ranges (0.01 - 1 Hz) (He et al.,

2008). Low-frequency fluctuations are predominantly sensitive to network reconfigurations at a
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global spatial scale and may fail to detect local reconfigurations (Matsui et al., 2016) (but see

Kiani et al. (2015)). This may to some extent limit what we can infer from fMRI data about

task-related reconfigurations within the FPN. Data acquired in nonhuman primates with cell

array recordings (Kiani et al., 2015) may provide complementary evidence for task-related

reconfigurations of FC at a local scale.

4.3 Concluding Remarks

The work presented in this thesis provides initial evidence for task-related reconfigurations of

FC within the human FPN. The reported results serve as a stepping stone toward characterizing

the functional organization of frontoparietal cortex and understanding its role in supporting

higher-order cognitive function.
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Appendix A

Glasser Parcellation

Table A.1 lists the ten parcels from the Glasser parcellation that were selected to represent the

FPN according to Assem et al. (2020).

Parcel Name Area Description
8C Area 8C

IFJp Area IFJp
a9-46v Area anterior 9-46v
p9-46v Area posterior 9-46v

i6-8 Inferior 6-8 Transitional Area
AVI Anterior Ventral Insular Area
8BM Area 8BM
IP1 Area Intraparietal 1
IP2 Area Intraparietal 2

PFm Area PFm Complex
8BM Area 8BM

Table A.1: Parcel descriptions based on Glasser parcellation
(Glasser et al., 2016)

63



Curriculum Vitae

Name: Geetika Gupta

Education Master of Science, Neuroscience 2019 - 2021
University of Western Ontario
London, Ontario, Canada
Bachelor of Medical Sciences 2014 - 2019
University of Western Ontario
London, Ontario, Canada

Honours and Awards

2020-2021 NSERC Canada Graduate Scholarship (CGS-M)
2017 Dean’s Undergraduate Research Opportunities Award (DUROP)
2017 USC Alumni Award
2016 Western Campaign Scholarship
2014 Western Scholarship of Excellence

Teaching Experience

2019-2020 Teaching Assistant, Western University

Publications

1. Rafeh, R., & Gupta, G. (2020). Information-Limiting Correlations in Neural Populations:

The Devil Is in the Details. Journal of Neuroscience, 40(41), 7782-7784.

2. Lau, J. C., Parrent, A. G., Demarco, J., Gupta, G., Kai, J., Stanley, O. W., ... & Peters, T. M.

(2019). A framework for evaluating correspondence between brain images using anatomical

fiducials. Human Brain Mapping, 40(14), 4163-4179.

64


	Mapping The Functional Organization of Human Frontoparietal Cortex With fMRI
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Functional Magnetic Resonance Imaging
	Principles of MRI
	Principles of fMRI

	Resting State fMRI
	Functional Connectivity
	Limitations of Resting State fMRI

	Task fMRI
	Introduction
	Functional Connectivity
	Limitations of Task State fMRI

	Human Connectome Project
	Glasser Parcellation

	Thesis Outline
	Thesis Question
	Thesis Objectives


	Methods
	Human Connectome Project
	Participants
	Experimental Design
	MRI Measurements

	fMRI Preprocessing
	fMRI Analyses
	Extraction of Residual Time Courses
	Estimation of Functional Connectivity Matrices
	Visualization of Functional Connectivity on the Cortical Surface
	Consistency of Functional Connectivity Within and Between Individuals
	Consistency of Functional Connectivity Within and Between Tasks


	Results
	Functional Connectivity is Replicable Within Individuals
	Functional Connectivity is More Consistent Within than Between Individuals
	Functional Connectivity is More Consistent Within than Between Tasks

	Discussion
	Summary
	Limitations and Future Directions
	Concluding Remarks

	Bibliography
	Glasser Parcellation
	Curriculum Vitae

