
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

12-2013

uOS : A resource rerouting middleware for
ubiquitous games
Fabricio N. Buzeto
Universidde de Brasilia, fabricio@aluno.unb.br

Miriam A M Capretz
Western University, mcapretz@uwo.ca

Carla D. Castanho
Universidade de Brasilia

Ricardo P. Jacobi
Universidade de Brasilia

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons, and the Systems Architecture Commons

Citation of this paper:
Buzeto, Fabricio N., Miriam AM Capretz, Carla D. Castanho, and Ricardo P. Jacobi. "uOS: A Resource Rerouting Middleware for
Ubiquitous Games." In Ubiquitous Intelligence and Computing, 2013 IEEE 10th International Conference on and 10th International
Conference on Autonomic and Trusted Computing (UIC/ATC), pp. 88-95. IEEE, 2013.

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages

uOS : A resource rerouting middleware for
ubiquitous games

Fabricio N. Buzeto∗, Miriam A. M. Capretz† Carla D. Castanho∗, Ricardo P. Jacobi∗
∗ Departamento de Ciências da Computação

Universidade de Brasília - UnB
Brasília, Brazil 70.910-900

fabricio@aluno.unb.br, {carlacastanho,rjacobi}@cic.unb.br
† Department of Electrical and Computer Engineering

Western University
London, Canada N6A 5B9

mcapretz@eng.uwo.ca

Abstract—Ubiquitous computing (ubicomp) relies on the com-
putation distributed over the environment to simplify the tasks
performed by its users. A smart space is an instance of a
ubiquitous environment, composed of a dynamic and heteroge-
neous set of devices that interact to support the execution of
distributed smart applications. In this context, mobile devices
provide new resources when they join the environment, which
disappear when they leave it. This introduces the challenge of
self-adaptation, in which smart applications may either include
new resources as they become available or replace them when
they become unavailable. Ubiquitous games combine ubicomp
and computer game technologies to enrich user’s experience and
fun. Such games may benefit from different input and output
resources offered by mobile devices. To support the development
and deployment of ubiquitous games, this work presents the
uOS middleware. Using a DSOA (Device Service Oriented Ar-
chitecture) based architecture and lightweight service discovery
protocols, uOS ensures compatibility among resources, providing
resource rerouting between heterogeneous and limited software
and hardware platforms. The uMoleHunt game is presented to
illustrate the practical application of uOS.

I. INTRODUCTION

In recent decades, computation power has been distributed
across a large number of new devices and objects. This reality
gave birth to research topics such as “Pervasive Comput-
ing”, the “Internet of Things” and “Mobile Computing”’[13].
“Ubiquitous Computing” [29], also known as ubicomp, places
itself in the same context. Its purpose is to use all this
computing power to help users perform everyday tasks [30]
while requiring as little attention as possible. The environment,
then, must be intelligent and pro-active in its actions [31], and
for this reason it has been called a “smart space”.

Realizing such a scenario involves the development of
new technologies, especially those involving human interac-
tion. Touch screens and voice controlled gadgets are good
examples that have become very common over the last five
years. However, despite research to make user interfaces more
natural, traditional devices such as keyboard, mouse and screen
continue to be the most common mode of human-machine
interaction. Alternatives like HUD (Heads-Up Display) [26],
a concept more than a century old, have seen a very slow
adoption among users.

One of the tools that can aid in this scenario is the
development of so called ubigames. This kind of application
takes advantage of the technology surrounding the user to build
a game. Such games can be developed according to three
different propositions [23]. The first is aimed at the game
itself and is based on the belief that all technology can be
used to enhance fun. The other two approaches use games
as a way of shortening the path to adoption of new concepts
and technologies. The first approach takes advantage of the
greater engagement of users with games than with “serious
applications”. This is a welcome effect of the playful aspects
of such activity. Another characteristic of games is that players
want to be challenged, which contributes to the acceptance of
new ideas and prevents the rejection of those that initially
could be considered odd. The second approach consists of
embedding gaming and ludic features in other applications,
thus easing their reception by the user. This advantage has
been explored by pervasive applications such as FourSquare1,
GetGlue2, and AccidentBucket [21], in which a game layer is
placed over the application to enhance user interaction.

A problem that can benefit from these characteristics lies
in selecting the best available resource option in the environ-
ment. For example, a game happening in a living room can
choose from many different types of inputs. The game console
joystick, the TV remote control, the smart phone or even a
microphone can be suitable options for the task. Moreover,
devices need to exchange knowledge in order to implement
smart distributed applications. This raises the challenge of
choosing the most adequate services among them [10]. Unlike
the way it is achieved today, through direct user intervention,
in the smart space applications are expected to take on this
responsibility. In this scenario the smart space must be able
to identify the possible options in the environment and even
choose pro-actively the best ones for the task at hand.

Given that the environment can host multiple users and
devices and that these possess a wide variety of usable re-
sources, the smart space is indeed a very complex environ-
ment. In addition, both users and devices can enter or leave
unpredictably. Leaving to each ubigame the responsibility of

1http://foursquare.com
2http://getglue.com

handling all the challenges involved in finding, choosing and
using these resources is not the best option. Migrating those
tasks to a software layer that manages resources and devices
may significantly simplify the development of ubigames

This work presents uOS, a middleware that provides dy-
namic resource rerouting among multiple devices to support
the development of ubiquitous games. The middleware follows
the DSOA [7] (Device Service Oriented Architecture), which
provides a high-level abstraction of how to organize the
environment and the use of the uP [6] (Ubiquitous Protocols)
set for enabling lightweight communication. This allows the
middleware to tackle three important challenges among this
type of games: platform heterogeneity, device interaction and
discovery, and device limitations. This paper also presents a
game developed with the support of uOS to exemplify resource
reconfiguration at runtime.

This paper is arranged in the following order. Section II
describes ubigames and how they are used to validate new
concepts. Section III highlights middleware research focused
on resource rerouting. Section IV describes the uOS middle-
ware and its features, while Section V further describes uOS
features. Section VI presents how the uOS can be used to build
a game application, while Section VII presents the uMoleHunt
game that adapts to different resources available in the smart
space. Finally, Section VIII covers the conclusions reached and
the topics for future research.

II. UBIGAMES

Research into how to make better use of contextual in-
formation gave birth to ubiquitous games (ubigames) [4].
These games are also known by other names like pervasive
games and context-aware games. The main purpose of these
is to blend the concepts of ubiquitous computing and games.
Mcgonigal [23] presented three different ways to envision this
concept: as motivation, means, or ends.

Ubigames can be analysed according to four dimensions:
environment, flexibility regarding players, user interaction and
contextual data [5]. Contextual data were the first focus of at-
tention for this category of games. Similarly to other ubiquitous
applications, location data received the largest portion of early
research focus. This importance is understandable because it
makes it possible to target action towards where the user is. In
ubigames, this information has been explored in different types
of environment and for varying degrees of player flexibility.
For example, the “Touch Space” [8] game focuses on indoor
environments and team play, while “Treasure Hunt NFC” [14]
is designed for outdoor spaces and multi-player interaction.

Exploring the way that users interact with recently de-
veloped devices or with a new approach to old technologies
is where ubigames stand out. Games like “Uncle Roy All
Around You”[3] and “Hitchers” [11] present new views on
how location information is gathered from the user, with the
aim of using less invasive methods. In the first game, the
location is either provided directly by the user or inferred by
the patterns perceived while the user interacts with the game
map. In Hitchers, location is derived from cellphone towers
near the device. Even though the precision is not very high,
this approach provides a level of abstraction suitable for the
purpose. The “FantasyA” [25] game explores totally different

types of interfaces. Using a doll named “SentToy”, it can sense
the user’s emotional state and apply it to the game.

Exploring new interfaces or giving new meaning to well-
established ones is a great achievement. To achieve this,
resource rerouting plays a very important role, enabling dif-
ferent options to be exploited during runtime without needing
to adapt the game. However, these games are not capable
of integrating devices dynamically as they become available
in the smart space. The Multi-User Application Platform
[19] (MUPE) enables the development of ubigames over
heterogeneous devices. It relies on a centralized server that
contains the contextual data and game logic. The devices in
the environment exchange XML data that carry both user
inputs and UI (User Interface) descriptions. This approach
limits the information that these devices can provide without
requiring user interaction. Hybrid Pastry [32] (HP), on the
other hand, provides a P2P protocol for integrating devices
over an unstable network. It ensures that key-value messages
are delivered between nodes. This strategy is efficient but
does not ensure compatibility between services during runtime,
which limits the evolution of the game. Summing up, resource
discovery, access and validation over heterogeneous platform
remains unattended to ubiquitous gaming development.

III. RESOURCE REROUTING

The smart space contains a great variety of resources of
which many are available for use. Resource rerouting makes
it possible to redirect the binding between resources and
applications. This binding is usually placed on local options so
that, better-suited alternatives can be used. Most applications
delegate the decision about which resources to use to the
underlying platform or to fixed options during development
time. Take as an example the input and output interfaces used
for a cellphone game. While engaged with the device, the user
relies on the screen for both display and user input. This is the
best choice for the application in this context. However, when
the game changes and only the screen cannot keep up with this
level of engagement, other choices can be used. Suppose that
after starting a game session, the user moves towards another
room. There a game console joystick and a large LCD screen
are available, which are better suited to the task. Redirecting
the display and the user input to these, without interrupting the
game, enables the player to benefit from these better options.

The ease with which a system can adapt to changes in
binding of the resources it requires is defined as adaptability
[12]. According to the ubicomp purpose of aiding users in their
tasks in the most invisible way possible, adaptability can be
classified into the following three levels:

1) Direct Interaction: This level of adaptability requires
the full attention of the user. He must personally
choose which devices must be redirected among all
available options. It is also the user’s responsibility to
decide which characteristics to consider when making
this choice. Because of its simplicity, this is the
most common type of adaptability. It can be found
in situations like plugging a secondary monitor into
a laptop, which requires the user to choose which
monitor to use and to perform the act of connecting
it manually, thus realizing his intent.

2) Suggested Interaction: Instead of letting the user
decide among all available options, this level presents
a selection of options. This approach aims to ease
the task of choosing which one to pick. This can be
achieved by applying a simple filter on the available
set or by ordering the resources by their suitability
to the task. For example, when choosing a new input
device, those closer to the user can be shown first,
because they are the easiest to reach.

3) Automatic Interaction: The highest level of adaptabil-
ity delegates the choice completely to the system.
The system is responsible for selecting the best
option without requiring interaction from the user.
This approach achieves the most invisible interaction
possible, but also presents great challenges in provid-
ing a suitable result. Understanding the patterns and
contexts engaged by the user plays a very important
role for applications operating at this level.

Many applications have a fixed set of resource options
available for use, which is established at compilation time.
This approach cannot be considered for automatic interaction
level because adaptability cannot happen during runtime in
response to changes in the environment. It is also noteworthy
that mixing suggested with automatic interaction can provide
good results. In this approach the system can decide which
resources to use, but when in doubt, can ask the user to choose
among the best identifiable options.

Accessing remote computing capabilities is the main pur-
pose of techniques like VNC [28] (Virtual Network Com-
puting) and RDP [17] (Remote Desktop Protocol). Unfortu-
nately, these options demand high bandwidth while forcing
applications to run on the target device without truly sharing
its resources. On the other hand, initiatives like Bluetooth3

and UPnP [18] (Universal Plug and Play) provide capabilities
focused on enabling resource redirection for smart houses.
The Digital Living Network Alliance4 (DLNA) developed a
communication standard to connect media electronics, and
should also be highlighted. This standard classifies each device
into a category according to the features it can provide. Built on
top of the UPnP, it enables devices to connect with each other,
but does not allow applications to redirect such resources.

According to authors’ knowledge, literature in resource
rerouting in games is sparse. Therefore, general ubiquitous
applications will be discussed here. GMote [15] and Cliky5

have demonstrated that both academia and the market have
shown interest in resource rerouting capabilities. GMote is one
of many applications that provide easy control of PC functions
using a smart phone. It simulates mouse and keyboard inputs
using peer-to-peer (P2P) messages that are translated to the
underlying operating system. Cliky is an application demo for
the capabilities achieved by the GaiaOS middleware [9]. It
acts as an interface that makes it possible to move a computer
mouse using a PDA as an input interface.

Applications need to access the capabilities present in the
smart space seamlessly. While DLNA ensures that interfaces

3https://www.bluetooth.org/Building/HowTechnologyWorks/
ProfilesAndProtocols/Overview.htm

4http://www.dlna.org
5http://gaia.cs.uiuc.edu/html/demos.htm

are met when using a service, it is limited to a few media
resources defined. On the other hand, Bluetooth allows a
broader connectivity but does not ensure that interfaces are
compatible. Ensuring both characteristics while allowing for
different resources types joined at runtime remains a challenge
in ubigames development.

The DSOA [7] presents a set of concepts that aid in mod-
elling the environment, the applications and their interactions
considering such issues. Although, as an architecture, it does
not provide an implementation to meet such requirements.
Figure 1 shows a graphic representation of how these concepts
relate to each other. The most basic concept is the smart
space. It is defined as a set of connected computing devices
collaborating to help users. Devices are the entities responsible
for hosting both applications and resources. These are the basic
concepts that interact during the life time of a smart space.

Figure 1. Concepts in a DSOA smart space [7].

A resource is a group of functionalities which are logi-
cally related. These functionalities are represented by services
accessible though defined interfaces. A resource interface is
defined by an identifier and the set of services that it provides.
Service interfaces are composed of the name of the service
and its parameters. Interaction with these services can happen
either synchronously or asynchronously (through events). This
difference is important because the first approach is mostly
applied to commands and queries while the second is useful
when responding to changes in context. In a DSOA smart
space, a cellphone is considered a device that contains various
resources. One of them is a camera. It can provide services
with the capability of taking snapshots, streaming video, or
even alerting when movement is detected.

Applications, on the other hand, implement a set of rules
and behaviours relating users and resources in the smart space.
They are the entities responsible for providing the intelligence
that is required by ubicomp. They rely on the resources
available to coordinate their actions while facilitating the tasks
performed by users. For example, using the camera resource
mentioned earlier, an application can identify which user is
present in the smart space. This information can be used to
adjust the game settings according to that user’s profile.

IV. UOS MIDDLEWARE

The uOS is a middleware that provides resource rerouting
to support the development of ubiquitous games. It is based
on DSOA [7] architecture and the protocol set uP (Ubiq-
uitous Protocols) [6]. It is available for multiple software

platforms. Its current version is supported by Java VMs like
JSE6 (Java Standard Edition), JME/CLDC7 (Java Micro Edi-
tion/Connected Limited Device Configuration) and Dalvik8.
Although these versions are based on the Java language,
using uP removes the platform constraint. It enables many
other software, hardware, and communication platforms to be
integrated with uOS applications without needing any kind of
modification or configuration. The DSOA provides a set of
concepts that makes it possible to model and organize the
smart space, with a focus on how resources can be shared
among devices and applications.

The following subsections will present the ecosystem
around the middleware (Section IV-A), while Section IV-B
presents the layered organization of its components.

A. Ecosystem

Figure 2 provides an overview of the ecosystem around
the middleware uOS. Its main components are the underlying
software and hardware platform, the Network Plugins and the
Resource Drivers, which are explained below.

Figure 2. High level view of the uOS middleware.

1) Platform: The underlying platform must consider both
the hardware and software that the middleware will abstract.
On the software side all layers involved are included, like the
operating system and virtual machines such as Java or Python.

2) Network Plugins: Network plugins enable the middle-
ware to provide different types of communication technologies
to connect applications and resource drivers. They play an im-
portant role because many different technologies are available
and many devices can be restricted to one or a few of them. The
middleware provides plugins that enable communication for
Bluetooth, Sockets (TCP and UDP), and RTP. There is also a
Loopback plugin that simulates local communications in mem-
ory, enabling consistent data transfer in the middleware. These
plugins provide two important features for the middleware. The
first is the capability of creating data channels between devices.
These data channels are passed transparently to applications
that are not aware of the technology that provides them. The
second feature is called “Radar” because it provides a way to
perceive which devices are available in the environment.

3) Resource Drivers: Drivers are entities which implement
the services provided by resources in the devices. Because
they are responsible for integrating physical components, they
retain access to the underlying platform that is abstracted
through their interface. They also possess full visibility of the

6http://www.oracle.com/technetwork/java/javase/overview/index.html
7http://www.oracle.com/technetwork/java/cldc-141990.html
8https://code.google.com/p/dalvik/

middleware capabilities. This enables the creation of logical
drivers which are not related to physical resources. It also
makes it possible to create composite resources, which provide
services resulting from the combination of other available
resources.

4) Applications: As the main component supported by the
middleware, applications have access to an API that enables
all the features it provides. This interface makes resource
and device discovery and service consumption transparent,
regardless of the platform. Relying only on the interface
provided by services, any available capability can be put to
work. Applications can also exchange messages with each
other to coordinate their actions. Complementary information
about the device and its neighbours in the smart space are
provided as well. This information includes which devices
exist, the platform they are running on and which resources
they possess.

B. uOS Middleware Components

The inner components are arranged in a three-layer model
as shown in Figure 3. The bottom layer is the Network Layer,
which is responsible for managing the communication streams.
The Connectivity Layer is responsible for translating the data
into messages understandable by the upper layer. Finally,
the Adaptability Layer manages the ecosystem that revolves
around the middleware.

Figure 3. uOS components follows a layer model.

1) Network Layer: The bottom layer is made up of network
plugins and the Network Manager component. It is responsible
for managing both input and output communications. Its main
task is to translate requests from the upper layers to the
appropriate format transmitted by the network plugin. Using
identifiers provided by the uP, it is possible to match the
desired data channel with the proper plugin. Input data as well
as device discovery are delegated to the upper layers to handle,
leaving only the interface management for the network layer.

2) Connectivity Layer: The Message Engine understands
the uP protocol set and acts as a translation interface between
the other layers. Inbound data streams are received as raw
bytes; translation reveals the type of each message allowing

to discover which action needs to be performed. The same
applies to outbound information which must be encoded into
the proper format before transmission.

Specific managed translators can also be applied to data
streams. These are responsible for performing transformations
on the transported data such as compression or information
encryption. One of the applications that this feature provides
is described by Ribeiro et al. [27] as a lightweight security
protocol that establishes a secure channel between devices with
limitations.

3) Adaptability Layer: This layer is in charge of coordi-
nating all interaction through the middleware. Its main job
is performed by the Adaptability Engine, which forwards
each request to the appropriate component according to its
responsibility. The purpose of this layer is to enable all service
interactions to happen transparently to external entities, both
local and remote.

The Driver Manager controls the resource driver instances
that are available in each device. When a service request ar-
rives, it is responsible for choosing the most adequate instance
to perform it. The application life cycle is managed by the Ap-
plication Manager. Messages exchanged by applications also
come through this component to find their correct recipient.

The Device Manager acts as an endpoint when a device is
discovered by the bottom layer. It gathers information about
the device and its resources. This information is used by appli-
cations and the Adaptability Engine to decide which services
to use. The Event Manager coordinates all event subscriptions
for asynchronous services. Inbound events are redirected to
the appropriated listeners while outbound subscriptions are
assigned to the corresponding drivers.

V. FEATURES OF THE UOS

Providing easy access to resources is of major importance
in the uOS. Complementary to this, a set of other features are
also provided to improve application development.

A. Resource Sub-typing

Certain devices may have similar resources suitable for
tasks not predicted by the applications. A game like tic-tac-toe
only needs a feature that make it possible to know which spot
the user has selected. A resource that provides the coordinates
to which the user is pointing and the desire to take action is
enough. Although the game was developed to use a mouse for
such tasks, if other options were available, they could be used
instead. For example a joystick or a touch screen interface,
among others, could provide the same information.

Figure 4. uOS resource subtyping scheme.

If the resource interface were composed of a single unique
identifier, all interchangeable options would need to be known
beforehand. Otherwise, the application would not be expecting
them and could not make use of their capabilities. Delegating
this task to the application is not only complex, but also hard to
maintain up-to-date during runtime. To address this problem,
the DSOA resource interface definition includes the possibility
of stating an equivalence with other resources. By taking
advantage of this feature, the middleware is capable of broad-
ening the results for a resource query to all equivalent instances
available. Figure 4 shows a representation of the equivalence
between Pointer resources using the support provided by
DSOA. Similarly to what is provided by other projects [22, 20]
all information about resources and their relationships is also
provided though an ontology to applications. This provides a
flexible way to extract new knowledge about which resources
can be used in each situation.

B. Proxies

This feature takes advantage of the fact that multiple types
of networks are accessible transparently through the middle-
ware, while some devices possess multiple communication
interfaces. In this case, devices restricted to only one interface
could exploit the fact that others have more flexibility and
use them as a bridge, providing access to their resources.
Figure 5 shows a cellphone restricted to Bluetooth and a
PC restricted to Wi-Fi communication, while the laptop can
interact using both types of connections. This makes it possible
to create a path between the two disconnected devices. The
proxy is created during service consumption and is responsible
for relaying the data between the two endpoints. This is
implemented by cooperation between the Adaptability Layer
and the Connectivity Layer. When a device is able to act as
a proxy and recognize unreachable devices, it announces their
resources as its own. Later, when these resources are requested,
the Message Engine recognizes them and forwards the message
to the appropriate device.

Figure 5. The uOS proxy capability enables devices in different networks to
share resources.

C. Resource Discovery

The basis of resource discovery are the network plugins,
which are responsible for providing a list of available devices
in the smart space. Each plugin uses its own strategy for doing
this. The Bluetooth stack has its own mechanism to find nearby
peers, while Ethernet has many available options. For example,
it could be use ARP (Address Resolution Protocol) broadcast,
IP (Internet Protocol) scan or SNMP (Simple Network Man-
agement Protocol) queries. Once a device is encountered for
the first time, its resources are recorded in a local database,
making them visible to applications.

Operating this way, the uOS can work in a peer-to-peer
infrastructure without requiring any centralized entity. The
radar provides a means to detect devices in range, while
the proxy feature makes it possible to reach those that are
not within range. However, some very limited devices cannot
afford to maintain an active radar or even to store all data about
the surrounding environment. In this case, the uOS allows more
capable devices to operate as resource registers. They operate
like yellow pages, when a limited device is discovered by a
register device, the limited device stores only its address. This
way, when a resource needs to be queried, the register will be
used to access data about what is available in the smart space.

VI. IMPLEMENTING A GAME USING UOS

As shown before, applications are responsible for turning
the environment a smart space. Games perform this role, taking
advantage of the capabilities available to engage with the
player. The uOS aims to enable easy access to resources.
To achieve this, the middleware provides to both Drivers
and Applications an object named “Gateway”. This object is
responsible for providing all necessary services regarding the
device and the smart space. It is worth noticing that even if
the implementation is in Java, the use of uP protocols makes it
possible to access resources available through other platforms.

Figure 6 shows subset of the class diagram involved in the
creation of a uOS application.

Figure 6. Classes for the creation of a uOS application.

A. Creating an application

The life-cycle followed by an application is composed of
four distinct stages:

• Initialization, which happens only once; here the ap-
plication can set up all necessary resources for use
during its execution.

• When execution starts, the application gains access to
middleware capabilities through a “Gateway” instance.

• The application can be stopped during its runtime,
for example, when it is sent to background on a
cellphone or tablet. During this phase, information
must be stored for the time when the application is
started again.

• When an application is removed (torn down) it must
clean up any resources attached to it.

During each of these stages, an object provides access
to the ontology shared among applications in the device.

This object controls changes to ensure consistency throughout
execution.

B. Acessing the smart space

The Gateway provides methods that enables easy access to
middleware capabilities through the following methods:

• callService: Makes a call to a synchronous service
returning its response.

• registerForEvent: Registers a listener for an asyn-
chronous service on a resource driver.

• unregisterForEvent: Stops listening for the desired
event.

• listDrivers: Provides an inventory of all known re-
source drivers in the smart space.

• listDevices: Lists all devices discovered in the envi-
ronment.

All these methods are based on the resources discovered in
the devices found using the radar on the network layer. Using
the resource sub-typing scheme, it is possible to search for
and to use services based on a generic type, avoiding multiple
calls.

VII. UMOLEHUNT

The uMoleHunt is a Ubiquitous Game that takes advantage
of the resources in the smart space to adapt itself to the
number of users available. In this game, each player embodies
a member of a different group. The player is either part of
a Mafia that controls a smart space (like the laboratory), or
a cop trying to put an end to this reign of crimes. Both of
these share a similar purpose: they want to discover the name
of the informers (moles) inside the organization. For the cops,
these informers are a vital part of the investigation, providing
information about the criminals. On the other side, the bandits
want to find their weak links and terminate them before they
are caught and sent to jail.

As shown in Figure 7, the game is played using a public
display available to all users in the smart space. A game session
is composed of a series of guessing runs. At the beginning
of a run, each team is presented with a different mole to
be detected. Each team starts a run with 26 points, a vague
hint about the name and how many characters it contains. A
run involves taking turns between the teams and players and
proceeds as follows:

Figure 7. An overview of the uMoleHunt game.

• The player must guess a letter in the name of the mole.

• If the guess was right, the positions corresponding to
the letter are uncovered on the screen, displaying part
of the name.

• If the guess was wrong the team loses one point.

• If the team makes a sequence of right guesses they
create a 50% chance for the other team to miss a right
answer. The team does not know whether this was
really wrong or part of the bonus.

• If the team reaches 13 points a more helping guess
about the name is shown.

• If a team gets the name right, it wins the run and
receives the number of points remaining.

• If a team reaches zero points, it loses the run.

The first team to reach 100 points wins the game session.
The names are chosen from a database made up of known
science personalities with minor changes to resemble mob-
sters. For example, Newton is displayed as “Isaac Rubberface
Newton”. Each personality also has a list of hints, about his or
her accomplishments in life, which are displayed as described
before.

L i s t < Dr ive r Da t a > k e y b o a r d s = gateway
. l i s t D r i v e r s (" uos . keyboard ") ;

f o r (D r i v e r D a t a keyboard : k e y b o a r d s) {
gateway . r e g i s t e r F o r E v e n t (t h i s ,

keyboard . g e t D e v i c e () ,
keyboard . g e t D r i v e r () ,
" k e y P r e s s e d ") ;

}

Listing 1. Finding Resource Drivers and using them.

The current version of this game runs on Android smart-
phones and PCs accepting any keyboard resource available
in the smart space as a player input. The current version of
uOS middleware has keyboard drivers available for PCs, JME
phones (using the keyboard), and Android devices (using the
touch-screen interface). This enables the game to incorporate
the most common personal devices that users possess. Listing
1 shows how keyboard devices can be found and accessed in
the smart space using the methods provided by the gateway.
The code needed to handle a key being pressed is presented
in Listing 2.

p u b l i c vo id h a n d l e E v e n t (N o t i f y e v e n t) {
i f (e v e n t . ge tEven tKey ()

. e q u a l s (" k e y P r e s s e d ")) {
/ / h a n d l i n g code

}
}

Listing 2. Handling an asynchronous event.

Because the game involves a single public display that
must be shared among all players it is best suited for indoor
spaces. This kind of space is best suited for games where
player flexibility is based on single or team play [5]. Although
in this case players were split into teams, the game can be
characterized as a multi-player game, because there is no

restriction on how many players each team can include. Few
indoor games focus on multi-player or collaborative flexibility
as in “Hoodies and Barrels” [2], “Save the Princess!” [24], and
“Day of the Figurine” [16]. Unlike these, uMoleHunt does
not require any kind of intervention by an administrator to
adapt the game session as new players, devices or environment
configurations are used.

Using the middleware uOS, the game runs on any device
that has a screen available. Dynamically, as new devices be-
come available, if they have a keyboard resource or a subtype
compatible with the game they are invited to be part of the
game session. New players are incorporated during runtime,
requiring no interaction by the user to adapt the game.

VIII. CONCLUSIONS AND FUTURE RESEARCH

The idea of ubicomp is to help users perform everyday
tasks in the most invisible way. In this way, the computation
present around the user can be useful while not demanding
much attention. One of the tools used to attain this goal
is to exploit the pervasiveness of devices available in the
environment and the network that connects them together.

Connecting a wide range of devices and heterogeneous
platforms is a difficult task for individual applications to
handle. This paper has presented the uOS middleware, which
helps in creating this kind of applications. Specifically, it
focuses on enabling devices to share resources among each
other easily. This permits local resources to be redirected to
other, more suitable ones.

In this context, ubigames have been used to validate how
new technologies respond in real-life situations. This paper has
presented the uMoleHunt game developed in this research. It
takes advantage of the resource rerouting capabilities provided
by the middleware to create a dynamic, multi-player indoor
game. uOS can also be used to develop other ubiquitous
applications [1] and games.

The implementation of uMoleHunt has been presented in
order to illustrate the uOS capabilities for the development
of more complex games. Current work also is focused on
expanding these capabilities in order to incorporate “Code
Mobility” as one of its features. This approach makes it
possible to build games that adapt dynamically to the devices in
the smart space despite variability in their available resources.

IX. ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support to
Fabricio Buzeto from CAPES (Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior) and CNPq (Conselho
Nacional de Desenvolvimento Científico e Tecnológico) for the
period of this research. We also thank Matheus Pimenta for the
assistance provided.

REFERENCES

[1] L.A. Almeida, F.N. Buzeto, A.H.O.R. Castillo, C.D. Cas-
tanho, and R.P. Jacobi. Hydra: An ubiquitous application
for service rerouting. In 9th Int. Conf. on Ubiquitous
Intelligent Computing and 9th Int. Conf. on Autonomic
Trusted Computing (UIC/ATC), pages 366–373, 2012.

[2] I. Arroyo, I.A. Zualkernan, and B.P. Woolf. Hoodies and
barrels: Using a hide-and-seek ubiquitous game to teach
mathematics. In Proc., 11th IEEE Int. Conf. on Advanced
Learning Technologies (ICALT), pages 295–299, 2011.

[3] S. Benford, W. Seager, M. Flintham, R. Anastasi,
D. Rowland, J. Humble, D. Stanton, J. Bowers, N. Tan-
davanitj, M. Adams, J. Farr, A. Oldroyd, and J. Sutton.
The error of our ways: The experience of self-reported
position in a location-based game. In N. Davies, E. D.
Mynatt, and I. Siio, editors, UbiComp 2004: Ubiquitous
Computing, volume 3205 of Lecture Notes in Computer
Science, pages 70–87. Springer Berlin Heidelberg, 2004.

[4] S. Björk, J. Holopainen, P. Ljungstrand, and K. P.
Akesson. Designing ubiquitous computing games - a
report from a workshop exploring ubiquitous computing
entertainment. Personal Ubiquitous Comput., 6(5-6):443–
458, 2002.

[5] F. Buzeto, A. Helena Castillo, C. Castanho, and J. Ri-
cardo. What is going on with ubicomp games. In XI
Brazilian Symposium on Computer Games and Digital
Entertainment - SBGAMES, pages 1–7, 2012.

[6] F. N. Buzeto, C. D. Castanho, and R. P. Jacobi. up: A
lightweight protocol for services in smart spaces. In 4th
Int. Conf. on Ubi-Media Computing (U-Media), pages
25–30, 2011.

[7] F. N. Buzeto, C. B. P. Filho, C. D. Castanho, and R. P.
Jacobi. Dsoa: A service oriented architecture for ubiq-
uitous applications. Int. Journal of Handheld Computing
Research, 2(2):47–64, 2011.

[8] A. D. Cheok, X. Yang, Z. Z. Ying, M. Billinghurst, and
H. Kato. Touch-space: Mixed reality game space based
on ubiquitous, tangible, and social computing. Personal
Ubiquitous Comput., 6(5-6):430–442, 2002.

[9] S. Chetan, J. Al-Muhtadi, R. Campbell, and M.D. Mick-
unas. Mobile gaia: a middleware for ad-hoc pervasive
computing. In Second IEEE Consumer Communications
and Networking Conf. (CCNC), pages 223–228, 2005.

[10] C. A. Costa, A. C. Yamin, and C. F. R. Geyer. Toward a
general software infrastructure for ubiquitous computing.
IEEE Pervasive Computing, 7(1):64–73, 2008.

[11] A. Drozd, S. Benford, N. Tandavanitj, M. Wright, and
A. Chamberlain. Hitchers: Designing for cellular po-
sitioning. In Paul Dourish and Adrian Friday, editors,
UbiComp 2006: Ubiquitous Computing, volume 4206
of Lecture Notes in Computer Science, pages 279–296.
Springer Berlin Heidelberg, 2006.

[12] O. Fouial, K. A. Fadel, and I. Demeure. Adaptive service
provision in mobile computing environments. In 4th
IFIP Int. Conf. on Mobile and Wireless Communications
Networks (IEEE MWCN), pages 9–11, 2002.

[13] M. Friedewald and O. Raabe. Ubiquitous computing:
An overview of technology impacts. Telematics and
Informatics, 28(2):55 – 65, 2011.

[14] P.C. Garrido, G.M. Miraz, I.L. Ruiz, and M.A. Gomez-
Nieto. Near field communication in the development of
ubiquitous games. In Int. Conf. for Internet Technology
and Secured Transactions (ICITST), pages 1–7, 2010.

[15] F. Gatt. Turn Your Android Phone Or Tablet Into a
Multimedia Hub. MetaPlume Corporation, 2011. ISBN
9780987165275.

[16] C. Greenhalgh, S. Benford, A. Drozd, M. Flintham,
A. Hampshire, L. Oppermann, K. Smith, and Christoph

Tycowicz. Addressing mobile phone diversity in ubicomp
experience development. In UbiComp 2007: Ubiquitous
Computing, volume 4717 of Lecture Notes in Computer
Science, pages 447–464. Springer Berlin Heidelberg,
2007.

[17] ITU-T. Multipoint application sharing. Recommendation
T.128, Int. Telecommunication Union, Geneva, 2008.

[18] Michael Jeronimo and Jack Weast. UPnP Design by
Example: A Software Developer’s Guide to Universal
Plug and Play. Intel Press, 2003. ISBN 0971786119.

[19] K. Koskinen and R. Suomela. Rapid prototyping of
context-aware games. In 2nd IET Int. Conf. on Intelligent
Environments (IE 06), volume 1, pages 135–142, 2006.

[20] U.P. Kulkarni, J. V. Vadavi, S.M. Joshi, and A. R.
Yardi. Ubiquitous object categorization and identity. In
Computational Intelligence for Modeling, Control, and
Automation 2006 and Int. Conf. on Intelligent Agents,
Web Technologies, and Internet Commerce, pages 81–86,
2006.

[21] F. L. Law, Z.M. Kasirun, and C. K. Gan. Gamification
towards sustainable mobile application. In 5th Malaysian
Conf. on Software Engineering (MySEC), pages 349 –
353, 2011.

[22] J. Madhusudanan, V. P. Venkatesan, V. Indumathy,
A. Kalaiselvi, C. Ramachandran, and K. Preathee. Ar-
ticle: Categorization and grouping of devices in generic
pervasive applications. Int. Journal of Computer Appli-
cations, 45(3):33–37, 2012. Published by Foundation of
Computer Science, New York, USA.

[23] J. E. Mcgonigal. This might be a game: ubiquitous play
and performance at the turn of the twenty-first century.
PhD thesis, Berkeley, CA, USA, 2006.

[24] L. Mottola, A. L. Murphy, and G. P. Picco. Pervasive
games in a mote-enabled virtual world using tuple space
middleware. In Proc. of 5th ACM SIGCOMM workshop
on Network and system support for games (NetGames
06), NetGames ’06, New York, NY, USA, 2006. ACM.

[25] A. Paiva, G. Andersson, K. Höök, D. Mourão, M. Costa,
and C. Martinho. Sentoy in fantasya: Designing an affec-
tive sympathetic interface to a computer game. Personal
Ubiquitous Comput., 6(5-6):378–389, 2002. ISSN 1617-
4909.

[26] S. Pope. The future of head-up display technology.
Aviation Int. News, 38(1):60–63, 2006. Published by
Convention News Company, Incorporated.

[27] B. Ribeiro, J. Gondim, R. Jacobi, and C. Castanho.
Private communication. 2009.

[28] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and
A. Hopper. Virtual network computing. Internet Com-
puting, IEEE, 2(1):33–38, 1998. ISSN 1089-7801. doi:
10.1109/4236.656066.

[29] M. Weiser. The computer for the 21st century. Scientific
American, (265):94–104, 1991.

[30] M. Weiser. The world is not a desktop. interactions, 1
(1):7–8, 1994.

[31] M. Weiser and J. S. Brown. Designing calm technology.
Technical Report 1, 1996.

[32] B. Wietrzyk and M. Radenkovic. Enabling rapid and
cost-effective creation of massive pervasive games in
very unstable environments. In Fourth Annual Conf.
on Wireless-on-Demand Network Systems and Services
(WONS ?07), pages 146–153, 2007.

	Western University
	Scholarship@Western
	12-2013

	uOS : A resource rerouting middleware for ubiquitous games
	Fabricio N. Buzeto
	Miriam A M Capretz
	Carla D. Castanho
	Ricardo P. Jacobi
	Citation of this paper:

	tmp.1399751865.pdf.FoYWL

