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20 This work is part of Ferguson’s PhD, integrating ecophysiology, thermal biology, and 

21 ecoimmunology. We measured insect immune performance across temperatures, finding that 

22 thermal performance does not consistently respond to acclimation among, or even within, 

23 physiological systems. Paradoxically, cold acclimation decreases low temperature immune 

24 performance, revealing that cold tolerance trades off with immunity in the cold. Thus, 

25 physiological systems differ in their responses to temperature, and conclusions about the impacts 

26 of climate change cannot be based on a single performance measure. 
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32 Abstract 
33 

 

34 Winter is accompanied by multiple stressors, and the interactions between cold and pathogen 
 

35 stress potentially determine the overwintering success of insects. Thus, it is necessary to explore 
 

36 the thermal performance of the insect immune system. We cold-acclimated spring field crickets, 
 

37 Gryllus veletis, to 6°C for 7d and measured the thermal performance of potential (lysozyme and 
 

38 phenoloxidase activity) and realised (bacterial clearance and melanisation) immune responses. 
 

39 Cold acclimation decreased the critical thermal minimum from -0.5 ± 0.25°C to -2.1 ± 0.18°C, 
 

40 and chill coma recovery time after 72 h at -2°C from 16.8 ± 4.9 min to 5.2 ± 2.0 min. Measures 
 

41 of both potential and realised immunity followed a typical thermal performance curve, 
 

42 decreasing with decreasing temperature. However, cold acclimation further decreased realised 
 

43 immunity at low, but not high, temperatures; effectively, activity became paradoxically 
 

44 specialised to higher temperatures. Thus, cold acclimation induced mismatched thermal 
 

45 responses between locomotor and immune systems, as well as within the immune system itself. 
 

46 We conclude that cold acclimation in insects appears to preferentially improve cold tolerance 
 

47 over whole-animal immune performance at low temperatures, and that the differential thermal 
 

48 performance of physiological responses to multiple pressures must be considered when 
 

49 predicting ectotherms’ response to climate change. 

 
50 

 

51 Key words: cold, pathogen, thermal performance curve, biotic stressor, plasticity 



52 Introduction 
 

53 Ectotherms can respond to seasonal changes by maintaining homeostasis via phenotypic 
 

54 or developmental plasticity. In insects, the cues that govern acclimation (in the laboratory) or 
 

55 acclimatisation (in the field), such as temperature or photoperiod, often coordinate diverse 
 

56 physiological adjustments to suit a new set of environmental conditions (Harrison et al. 2012). 
 

57 For example, cold-acclimation of the beetle Dendroides canadensis elicits antifreeze protein 
 

58 synthesis, removal of ice nucleators (Olsen and Duman 1997), and modification of epicuticular 
 

59 waxes (Olsen et al. 1998) - all of which contribute to improved cold tolerance. In addition to 
 

60 cold, there are multiple abiotic and biotic stressors associated with winter (Williams et al. 2015), 
 

61 and these can select for thermal plasticity in multiple physiological systems. For instance, cold- 
 

62 acclimation often increases desiccation resistance in insects, likely because of the high water 
 

63 vapour deficits experienced during overwintering (Sinclair et al. 2013; Terblanche et al. 2005). 
 

64 Biotic stressors, such as pathogens, are also likely to affect the success of insects at low 
 

65 temperatures (Hokkanen 1992; Riedel and Steenberg 1998; Webberley and Hurst 2002; Williams 
 

66 et al. 2015), yet the ability of insects to manage cold-related pathogen stress, and the role of 
 

67 phenotypic plasticity in this response, is unclear. 
 

68 Some insect pathogens are cold-active [e.g. fungi in the genera Beauveria and 
 

69 Metarhizium (Fernandes et al. 2008)], or have increased virulence at low temperatures [e.g. the 
 

70 bacterium Yersinia entercolitica (Bresolin et al. 2006)]; thus there is capacity for these cold- 
 

71 adapted pathogens to contribute to mortality of insects at low temperatures (Hokkanen 1992; 
 

72 Steenberg et al. 1995). However, cold exposure appears to upregulate the insect immune system, 
 

73 which may allow insects to respond to cold-associated pathogen stress (Sinclair et al. 2013). For 
 

74 example, cold exposure increases fungal resistance in Pyrrharctia isabella caterpillars (Marshall 



75 and Sinclair 2011) and adult Drosophila melanogaster (Le Bourg et al. 2009), and upregulates 
 

76 genes encoding antimicrobial peptides in both D. melanogaster (Zhang et al. 2011) and the 
 

77 solitary bee Megachile rotundata (Xu and James 2012). Further, this increased immunity appears 
 

78 to translate into fitness: water striders (Aquarias najas) with stronger immune responses have 
 

79 higher overwinter survival (Krams et al. 2011). Although cold-induced upregulation of immunity 
 

80 may be a non-adaptive by-product of responses to cold (Fedorka et al. 2013; Sinclair et al. 2013), 
 

81 the potential for conflicts between the energetic costs of immune responses (Ardia et al. 2012; 
 

82 Freitak et al. 2003; Schmid-Hempel 2003) and energy conservation in the cold (Sinclair, in press) 
 

83 instead suggest that the immune system is upregulated as an adaptive response to low- 
 

84 temperature pathogen pressure (Irwin and Lee 2003; Sinclair, in press ; Williams et al. 2012). 
 

85 However, most studies have been performed upon re-warming from cold exposure, and do not 
 

86 necessarily reflect immune activity at low temperatures. Thus, to determine the ability of insects 
 

87 to combat low-temperature pathogen stress, we must first explore the low-temperature 
 

88 performance of the immune system, as well as the role of acclimation in shaping this 
 

89 performance. 
 

90 We expect the insect immune system to have reduced performance in the cold because it 
 

91 relies on cellular and enzymatic processes that are likely temperature-sensitive (Collazos et al. 
 

92 1994; Le Morvan et al. 1998; Marnila et al. 1995; Somero 1995). Indeed, phagocytosis and 
 

93 encapsulation decrease at 4 °C in diapausing pupae of the giant silk moth, Samia cynthia pryeri, 
 

94 although some immune function is maintained (Nakamura et al. 2011). However, this loss of 
 

95 performance has the potential to be mitigated through phenotypic plasticity, including the 
 

96 expression of cold-active isoforms of immune-related enzymes, or an increase in the 
 

97 concentration of cells and molecules necessary for an immune response (Angilletta 2009; 



98 Somero 1995). In either case, if there is an adaptive advantage to improved immunity at low 
 

99 temperatures, then cold-acclimation would be expected to modify the thermal performance of the 
 

100 immune system to increase activity at low temperatures (Angilletta 2009). 
 

101 Thus, to understand the potential interactions of cold and immune stress in insects, and to 
 

102 understand the role of biotic interactions in shaping ectotherm performance in a changing 
 

103 climate, it is necessary to explore the thermal biology of the insect immune system. We explored 
 

104 the thermal sensitivity and plasticity of the insect immune system by measuring the thermal 
 

105 performance of immune-related enzymes in vitro, and immune responses in vivo [i.e. potential 
 

106 immunity and realised immunity, respectively (Fedorka et al. 2007; Gershman 2008)] in warm- 
 

107 and cold-acclimated spring field crickets (Gryllus veletis). We used a short-term acclimation to 
 

108 explore the possibility of thermal plasticity in the immune system, as a first step in understanding 
 

109 how the thermal biology of the immune system might impact the ecology of overwintering 
 

110 insects. Cold acclimation differentially affected realised and potential immunity, in a direction 
 

111 that is not predicted by the whole-organism response to cold acclimation. We suggest that 
 

112 pathogen stress may be most prevalent upon re-warming from cold, and conclude that divergent 
 

113 thermal performance of distinct stress responses must be considered when predicting ectotherms’ 
 

114 responses to climate change. 

 
115  

 

116 Material and Methods 
 

117 We studied the thermal biology of the immune system in the spring field cricket, Gryllus 
 

118 veletis. Gryllus veletis overwinters as a late-instar nymph in temperate North America 
 

119 (Alexander 1968), and has a cold acclimation response (Coello Alvarado et al. 2015). Our 
 

120 cricket colony was derived from a population collected in Lethbridge, Alberta, in 2010, and were 



121 reared from egg to nymph at 25 °C (14 L:10 D) as described by Coello Alvarado et al. (2015). 
 

122 We haphazardly assigned female 6th instar nymphs (the overwintering stage) into individual 180 
 

123 mL clear plastic cups and provided ad libitum rabbit chow (Little Friends Rabbit Food, Martin 
 

124 Mills, Elmira, ON, Canada) and water, with cardboard shelters. We cold-acclimated (CA) 
 

125 individuals at 6 °C on a short light cycle (10 L: 14 D) or maintained them at rearing conditions 
 

126  

 
127  

(warm-acclimated, WA) for 7 d. 

 

128 Thermal limits of locomotor activity 
 

129 We measured the critical thermal minimum (CTmin, the temperature at which an insect 
 

130 enters chill coma) following MacMillan and Sinclair (2011), and chill-coma recovery (CCR) time 
 

131 following MacMillan et al. (2012). Briefly, we cooled crickets at 0.25 °C/min from 22 °C to the 
 

132 temperature at which movement ceased. Similarly, we measured the critical thermal maximum 
 

133 (CTmax) by increasing temperature at 0.25 °C/min from 22 °C until we visually observed the 
 

134 onset of spasms (Lutterschmidt and Hutchison 1997). For CCR, we cooled crickets at 0.25 
 

135 °C/min from 22 °C to -2 °C and held them at -2 °C for 72 h. Crickets were returned to room 
 

136  

 
137  

temperature and we recorded the time taken to achieve a coordinated righting response. 

 

138 Potential Immune Response 
 

139 We collected haemolymph for measuring potential humoral immunity following Adamo 
 

140 (2004), and all measurements of potential immunity at different temperatures were tested on 
 

141 extracted hemolymph. We pierced the membrane under the pronotum and collected 2 μL of 
 

142 haemolymph with a micropipette. We mixed 2 µL of haemolymph with either 2 μL of 
 

143 anticoagulant buffer (98 mM NaOH, 186 mM NaCl, 1.7 mM EDTA, 41 mM citric acid, pH 6.8; 



144 for lysozyme activity) or 50 μL of phosphate-buffered saline [PBS; for phenoloxidase (PO) 
 

145 activity] and snap-froze it in liquid nitrogen, followed by storage at -80 °C. 
 

146 To estimate the bactericidal activity of lysozyme, we followed Vilcinskas and Matha 
 

147 (1997), with some modifications. We added 4 µL of the haemolymph-anticoagulant-buffer 
 

148 suspension to 2 mm diameter wells on a petri plate containing Micrococcus lysodeikticus (luteus) 
 

149 agar (1 % agar; 67 mM potassium phosphate, pH 6.4, 0.1 mg/mL streptomycin sulfate; 5 mg/ml 
 

150 M. lysodeikticus). Plates were sealed with Parafilm® and incubated at one of 0, 6, 12, 18, 25 or 30 
 

151 °C (MIR-153 incubators, Sanyo Scientific, Bensenville, IL, US).We then measured the area of 
 

152 the cleared region around each well 24 and 48 h later using NIS Elements Imaging Software 
 

153 (Nikon Instruments Inc, Melville, NY, USA). 
 

154 Total PO activity, which indicates a potential broad-spectrum immune response, was 
 

155 measured spectrophotometrically (Adamo 2004). Briefly, we mixed 25 μL of thawed 
 

156 hemoymph/PBS mixture with 70 μL alpha-chymotrypsin (1.3 mg/ mL in PBS) and incubated it 
 

157 for 20 min at room temperature (22 °C) before adding it to 0.9 mL of L-DOPA (4 mg/mL in 
 

158 PBS). The rate of increase in absorbance was measured over 60 min at one of 6, 12, 18, 25, or 30 
 

159 °C (Carey 100 Spectrophotometer with Peltier-effect Temperature Controller, Agilent, Santa 
 

160 Clara, CA, USA). 
 

161 Higher haemolymph protein concentration is linked to stronger immune responses in 
 

162 insects, especially the melanisation response (Adamo 2004). To measure haemolymph protein 
 

163 concentration, we followed methods as described by Adamo (2004) with some modifications. 
 

164 Briefly, we used 10 μL of the haemolymph/PBS mixture in a Bicinchoninic Acid kit (BCA; Life 
 

165 Technologies, Carlsbad, CA, USA) and measured absorbance at 562 nm in a microplate 
 

166 spectrophotometer (SpectraMax, Molecular Devices, Sunnyvale, CA, USA). We then converted 



167  

 
168  

absorbance to concentration values using a standard curve created from bovine serum albumin. 

 

169 Realised Immune Response 
 

170 As an estimate of a broad-spectrum, realised immune response, we measured 
 

171 melanisation by inserting a 2 mm piece of nylon filament (Krams et al. 2011) under the 
 

172 pronotum and placing crickets at 0, 6, 12, 18, 25 or 30 ºC for 12 h. We removed the filament 
 

173 after 12 h, photographed it from two different angles at 30× magnification using a Nikon DSFI1 
 

174 camera (Nikon Instruments Inc. Melville, NY, USA) attached to a stereomicroscope, and 
 

175 determined the darkness of each filament using the average grey value calculated in ImageJ 
 

176 (Rasband 1997-2014). We calculated relative melanisation as 255 - the grey value, such that a 
 

177 higher number indicates more melanisation. 
 

178 We measured the in vivo ability of crickets to clear Staphylococcus aureus (strain 
 

179 Newman with chromosomally-encoded tetracycline resistance) from haemolymph following 
 

180 (Haine et al. 2008). Briefly, we diluted S. aureus (grown overnight at 37 °C in tryptic soy broth) 
 

181 to 1 × 109 CFU/mL in PBS and injected 2 μL of suspension into the thorax under the pronotum 
 

182 (Adamo 2004) via a 30 G needle. Following 24 h post-challenge at 0.5, 4, 12, 18, 25, or 30 °C, 
 

183 we homogenised whole crickets in 900 μL of PBS to ensure that we captured all remaining 
 

184 bacteria (including those associated with tissue). We diluted and spotted of the homogenate on 
 

185 tryptic soy agar (TSA) containing 2 μg/mL tetracycline and averaged the number of CFU over 
 

186 four replicate spots, following 24 h at 37 °C. We homogenised a subset of crickets 1 min 
 

187 following injection to obtain the true number of CFU injected and calculate percent clearance 
 

188 (Haine et al. 2008). Control crickets injected with sterile PBS did not demonstrate any bacterial 
 

189 growth on TSA containing tetracycline. 



190  
 

191 Statistical analyses 
 

192 All analyses were performed in R v3.1.2 (Team 2010) and preliminary data exploration was 
 

193 conducted according to (Zuur et al. 2010). We compared CTmin, CTmax, CCR, and protein 
 

194 concentration between CA and WA crickets using Welch’s two-sample t-test. We compared the 
 

195 performance curves of immune activity between WA and CA crickets using ANOVA (Angilletta 
 

196 2006). Where necessary, response variables were square-root- (lysozyme, phenoloxidase), 
 

197 arcsine- (bacterial clearance), or log-transformed (melanisation) to satisfy the assumptions of the 
 

198 ANOVA. We assessed the assumptions of ANOVA by plotting residuals against fitted values to 
 

199 confirm homogeneity of variance, and standardised residuals against theoretical quantiles to 
 

200 assess normality (Crawley 2007). We used polynomial contrasts (Lenth 2013) to compare means 
 

201 between warm and cold-acclimated crickets at each temperature. 

 
202  

 

203 3. Results 

204  

205 Thermal limits of locomotor activity 
 

206 Cold-acclimation enhanced low temperature locomotor activity of G. veletis and 
 

207 shortened recovery time after cold exposure. The CTmin of WA crickets was significantly higher 
 

208 than that of CA crickets (t14.46 = 5.53, p < 0.001; Fig. 1A); however, there was no difference 
 

209 between the CTmax of WA and CA crickets (Fig. 1B; t5 = 0.11, p = 0.45). Chill coma recovery 
 

210  

 
211  

time was lower in CA crickets than WA crickets (Fig. 1C; t5.34 = 2.19, p = 0.04). 

 

212 Potential Immune Response 
 

213 Potential humoral immunity was sensitive to temperature but remained unaffected by acclimation 



214 (Table 1). Specifically, both lysozyme and phenoloxidase activities decreased with decreasing 
 

215 temperature in both WA and CA crickets (Fig. 2); however, there was no overall difference in the 
 

216 activity of either enzyme in WA compared to CA crickets (Table 1). Haemolymph protein 
 

217  

 
218  

concentration of CA and WA crickets did not differ significantly (t22 = 0.59, p = 0.28). 

 

219 Realised Immune Response 
 

220 Temperature also significantly affected realised immunity, including both bacterial 
 

221 clearance and melanisation (Table 1). In addition, and in contrast to potential immunity, 
 

222 acclimation had a significant effect on realised immunity (Table 1). Specifically, melanisation 
 

223 and bacterial clearance were decreased in CA crickets at low temperatures, but largely 
 

224 unchanged at warm temperatures (Fig. 3). 

 
225  

 

226 Discussion 
 

227 We explored the capacity for cold-acclimation of the immune system in G. veletis using 
 

228 an acclimation regime that improved locomotor activity at low temperatures [decreased CTmin 
 

229 and CCR, recognised proxies for cold tolerance in insects (Andersen et al. 2015)], but had no 
 

230 effect on heat tolerance (CTmax). Cold acclimation did not affect potential immunity nor realised 
 

231 immunity at higher temperatures; however, realised immunity decreased in the cold in CA 
 

232 crickets. We suggest that decreased activity in the cold may result from trade-off between some 
 

233 components of immune activity and other physiological responses initiated by cold acclimation. 
 

234 Theory suggests three ways by which the thermal performance of immunity could shift in 
 

235 response to acclimation, if increased low temperature performance were important in the cold: 1) 
 

236 a shift in the thermal performance curve (TPC) where Topt decreases (i.e. beneficial acclimation; 



237 Fig. 4A); 2) a shift in the TPC where Topt is unchanged but maximal activity is higher across all 
 

238 temperatures (i.e. colder is better; Fig. 4B); or 3) a reduction in thermal sensitivity, whereby the 
 

239 TPC encompasses a larger range of activity, but maximal activity at the Topt is lower [i.e. 
 

240 generalist vs. specialist; Fig. 4C (Angilletta 2009)]. However, we found that cold-acclimation 
 

241 resulted in a paradoxical narrowing of the TPC of realised immune responses in crickets, 
 

242 whereby activity was specialised to higher instead of lower temperatures, and the Topt and 
 

243 maximal activity at the Topt were unaffected (Fig. 3, 4D). Decreased performance in the cold may 
 

244 result from trade-offs between the increased energy demands of improving cold tolerance (e.g. 
 

245 production of cryoprotectants) and the immune system (Sinclair, in press). For example, 
 

246 infection decreases CCR time in Drosophila melanogaster (Linderman et al. 2012), suggesting 
 

247 that immune activity conflicts with cold tolerance. Thus, cold acclimation may preferentially 
 

248 improve cold tolerance over whole-animal immune performance at low temperatures. 
 

249 In addition to a decrease in realised immunity, cold acclimation produced mismatches 
 

250 between potential and realised immunity. First, acclimation appeared only to decrease realised 
 

251 immune responses in the cold, while potential immunity remained unchanged. Realised immune 
 

252 responses, such as bacterial clearance, are generally mediated by the combined activity of 
 

253 haemocytes, enzymes, and antimicrobial peptides (Gillespie and Kanost 1997), while the 
 

254 potential immunity that we measured focused on the activity enzymes in isolation. Decreased 
 

255 realised immune responses that are not paralleled in potential responses suggest that cold 
 

256 acclimation has a stronger effect on cellular activity than it does on the activity of enzymes or 
 

257 antimicrobial peptides, although we caution that we did not measure all components of the 
 

258 immune system. Differences in potential and realised immune activity can create a disparate 
 

259 estimate of overall immunocompetence (Fedorka et al. 2007), yet also hint at the relative 



260 contributions of different immune components to protection against pathogens. In this case, 
 

261 overall immunocompetence may decrease in the cold (realised immunity), yet a basal level of 
 

262 protection may persist through the activity of enzymes and antimicrobial peptides (potential 
 

263 immunity).  We suggest that measuring multiple components of the immune system provides a 
 

264 more comprehensive picture of the effects of thermal acclimation on immune performance, and 
 

265 that both potential and realised responses should be considered when assessing the impact of the 
 

266 abiotic environment on immunity. 
 

267 Second, although PO activity and melanisation are linked as an immune response 
 

268 (González-Santoyo and Córdoba-Aguilar 2012) their thermal optima were disparate; PO activity 
 

269 peaked at 25 °C, whereas melanisation peaked at 18 °C, in both CA and WA crickets [similar to 
 

270 phagocytic capacity in mosquitoes (Murdock et al. 2012)]. The lower Topt of melanisation 
 

271 compared to that of PO activity appears to reflect a disconnect between the Topt, or thermal 
 

272 sensitivity, of different components of the overall melanisation response. Temperature is likely to 
 

273 drive the local adaptation of hosts and pathogens (Sternberg and Thomas 2014) and may have 
 

274 driven the selection of G. veletis immune performance to a thermal optimum lower than enzyme 
 

275 activity would predict. Thus, using thermal performance curves, we may gain insight into the 
 

276 evolution of thermal sensitivity and plasticity of immune activity, and can begin to predict the 
 

277 capacity for hosts to respond to pathogens under climate change scenarios. 
 

278 Pathogen growth generally increases as temperatures increase (Harvell et al. 2002); thus, 
 

279 re-warming from cold exposure is likely to lead to an increase in pathogen pressure, and require 
 

280 an increase in immune activity. Despite decreased immune activity in the cold, realised immune 
 

281 activity in CA crickets was maintained at optimal temperatures, which suggests that immune 
 

282 activity may be required following, but not during, cold exposure. Seasonal immune activity in 



283 other ectotherms, including fish [e.g. Sparus aurata (Tort et al. 1998)] and frogs [e.g. Rana 
 

284 pipiens (Maniero and Carey 1997)], follows a pattern that reflects the effects of a short-term 
 

285 acclimation on immune activity in crickets; specifically, immune activity decreases during the 
 

286 winter but rapidly recovers, and even increases beyond control levels, upon re-warming. In 
 

287 hibernators, such as the golden-mantled ground squirrel (Spermophilus lateralus), interbout 
 

288 euthermia is accompanied by an increase in immune activity, thereby allowing the animal to 
 

289 combat pathogens that have established in the cold (Prendergast et al. 2002). The thermal 
 

290 performance of immune activity in G. veletis following a short acclimation to low temperatures 
 

291 may thus reflect a seasonal pattern of immune activity in insects that fluctuates with seasonal 
 

292 shifts in pathogen pressure. 
 

293 The contrast between decreased immune activity in the cold and maintained immune 
 

294 activity at high temperatures suggests that fluctuating temperatures will affect the ability of cold- 
 

295 acclimated insects to fight cold-active pathogens and survive at low temperatures. Transient 
 

296 increases in environmental temperature may facilitate a response to cold-active pathogens by 
 

297 allowing for increased immune activity. For example, the expression of genes encoding immune 
 

298 peptides in M. rotundata increases under warming provided by fluctuating thermal regimes 
 

299 (Torson et al. 2015). Conversely, increased immune activity under periods of re-warming is 
 

300 likely to decrease the energy available for responses to other stressors, such as cold. Further, 
 

301 immune activity can trade-off with components of fitness, such as growth (Rantala and Roff 
 

302 2005) and reproduction (Adamo et al. 2001; Ahmed et al. 2002); thus fluctuations in temperature 
 

303 may create conflict between the response to pathogens and fitness- or stress-related physiological 
 

304 processes. If climate change-related warming leads to an increase in both pathogen pressure and 
 

305 immune activity, both transient and seasonal periods of re-warming will affect the interactions 



306 between energy expenditure and pathogen response, thereby contributing to the impacts of cold 
 

307 and winter on insects. We do caution, however, that the acclimation used in our study does not 
 

308 reflect the type of long-term, seasonal acclimation that an insect would experience in preparation 
 

309 for overwintering (Tauber et al. 1986), and thus we are limited in using our results to predict the 
 

310 outcome of insect-pathogen responses in the wild. 
 

311 As global temperatures shift with climate change, it is increasingly important to 
 

312 understand the physiological capacity of organisms to respond to changes in their environment 
 

313 (Araújo and Luoto 2007; Chown et al. 2010). Ecological physiology often quantifies this 
 

314 capacity of ectotherms to respond to environmental change by measuring the thermal sensitivity 
 

315 and plasticity of one trait or system; for example, thermal limits to activity (Terblanche et al. 
 

316 2008) or reproduction (Cudmore et al. 2010). However, multiple abiotic and biotic pressures co- 
 

317 occur, and we must instead consider what phenotypes are produced by the simultaneous activity 
 

318 of multiple physiological systems in response to these pressures. Increased cold-tolerance, 
 

319 coupled with decreased immune activity at low temperatures in cold-acclimated G. veletis, 
 

320 demonstrates that thermal plasticity was disconnected among and within physiological systems; 
 

321 this suggests that plasticity in one trait does not necessarily reflect the response of the whole 
 

322 organism to connected shifts in its abiotic and biotic environment. Thus, to predict the phenotype 
 

323 of an organism that will succeed under climate change scenarios, we must begin to measure 
 

324 multiple physiological traits that correspond to multiple, integrated pressures in a changing 
 

325 environment. 

 
326  

 

327 Conclusions 



328 We show that cold acclimation improves cold tolerance in G. veletis, does not affect the 
 

329 activity of immune enzymes in vitro (potential immunity), and decreases realised immune 
 

330 activity at low temperatures. Thus, measures of whole-animal immune performance appear to 
 

331 trade-off with cold tolerance, and we suggest that pathogen stress may be more prevalent upon 
 

332 re-warming. Climate change will result in alterations to the interactions among multiple 
 

333 stressors, such as between temperature and pathogens (Todgham and Stillman 2013), and the 
 

334 thermal performance of the responses to these stressors will contribute to success under new 
 

335 environmental conditions. However, we show that thermal performance does not consistently 
 

336 respond to acclimation among – or even within – physiological systems. Therefore we caution 
 

337 against predicting responses to climate change based on thermal performance of a single 
 

338 physiological system. 

 
339  
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526 Figures and Tables 
 

527 Fig. 1 Locomotor activity related to cold tolerance in warm- and cold-acclimated Gryllus veletis. 
 

528 (A) The critical thermal minima, or the temperatures at which crickets entered chill coma (n = 9 
 

529 WA, 8 CA). (B) The critical thermal maxima, or temperatures indicating the onset of heat spasms 
 

530 (n = 6 WA, 5 CA). (C) Time taken to recover from 72 h in chill coma at -2 °C (n = 5 per 
 

531 acclimation) 

532  

533 Fig. 2 Potential immune activity in warm- and cold-acclimated Gryllus veletis. (A) Lysozyme 
 

534 activity in vitro, measured as the zone of inhibition of Micrococcus luteus from 24 h - 48 h (n = 
 

535 6-8 per acclimation, per temperature) (B) Total phenoloxidase activity measured in vitro as an 
 

536 increase in absorbance at 495 nm (n = 4-5 per acclimation, per temperature). Points represent 
 

537 mean ± SEM 

538  

539 Fig. 3 Realised immune activity in warm- and cold-acclimated Gryllus veletis. (A) Melanisation, 
 

540 represented as a reverse grey value, of an implanted nylon filament (n = 4-5 per acclimation, per 
 

541 temperature) (B) The proportion of Staphylococcus aureus cleared from the haemolymph in vivo, 
 

542 24 h following inoculation (n = 4-8 per acclimation, per temperature). Points represent mean ± 
 

543 SEM. Asterisks indicate significant differences between warm- and cold-acclimated crickets, p < 
 

544 0.05 

545 

546 Fig. 4 Thermal performance curves of the potential outcomes of cold-acclimation on immune 
 

547 activity. A) The Beneficial Acclimation Hypothesis B) The Colder is Better Hypothesis C) The 
 

548 Generalist-Specialist hypothesis D) Paradoxical narrowing of the TPC, representing 
 

549 specialisation of activity to temperatures not predicted by acclimation temperature 
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1 Table 1. ANOVA results of the thermal performance of immune activity in warm- and cold- 

2 acclimated Gryllus veletis. Bolded p-values represent significant effects of each term 

3 (acclimation or temperature) on the response variable. 
 

Immune activity Term df F P 

Potential Lysozyme Temperature 5,73 36.22 <0.01 

 Acclimation 1,73 0.45 0.50 

 Temperature × Acclimation 5,73 1.24 0.30 

Phenoloxidase Temperature 4,66 27.1 <0.01 

 Acclimation 1,66 0.50 0.48 

 Temperature × Acclimation 4,66 0.34 0.85 

Realised Bacterial clearance Temperature 5,55 15.49 <0.01 

 Acclimation 1,55 10.45 <0.01 

 Temperature × Acclimation 5,55 1.31 0.27 

Melanisation Temperature 5,34 9.98 <0.01 

 Acclimation 1,34 30.6 <0.01 

 Temperature × Acclimation 5,34 2.62 0.04 

http://www.editorialmanager.com/oeco/download.aspx?id=59572&amp;guid=42a30992-8381-4351-8252-ae0df4fdd8b4&amp;scheme=1


Figure 1 

Click here to download Figure: ferguson oecologia figure 1.docx 
 
 
 
 
 

 

Figure 1. 

http://www.editorialmanager.com/oeco/download.aspx?id=59575&amp;guid=1a04d5d4-b403-4cc6-8f52-aa52362a9add&amp;scheme=1


Figure2 

Click here to download Figure: ferguson oecologia figure 2.docx 
 
 
 
 
 
 

 

Figure 2. 

http://www.editorialmanager.com/oeco/download.aspx?id=59565&amp;guid=e80d60cb-d879-4a21-92b4-c18e5de51a38&amp;scheme=1


Figure3 

Click here to download Figure: ferguson oecologia figure 3.docx 
 
 
 
 

 

Figure 3. 

http://www.editorialmanager.com/oeco/download.aspx?id=59566&amp;guid=fc7bbff3-ed00-4549-8ee9-7c0da78b9e90&amp;scheme=1


Figure4 

Click here to download Figure: ferguson oecologia figure 4.docx 
 
 
 
 

Figure 4. 

http://www.editorialmanager.com/oeco/download.aspx?id=59567&amp;guid=73327248-0844-4022-9703-4190a258ac13&amp;scheme=1

	Western University
	Scholarship@Western
	5-1-2016

	Paradoxical acclimation responses in the thermal performance of insect immunity.
	Laura V Ferguson
	David E Heinrichs
	Brent J Sinclair
	Citation of this paper:


	tmp.1525964932.pdf.PmE9y

