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Abstract 

The emergence of serverless computing has brought significant advancements to the 

delivery of computing resources to cloud users. With the abstraction of infrastructure, 

ecosystem, and execution environments, users could focus on their code while relying on 

the cloud provider to manage the abstracted layers. In addition, desirable features such as 

autoscaling and high availability became a provider’s responsibility and can be adopted by 

the user's application at no extra overhead.  

Despite such advancements, significant challenges must be overcome as applications 

transition from monolithic stand-alone deployments to the ephemeral and stateless 

microservice model of serverless computing. These challenges pertain to the uniqueness of 

the conceptual and implementation models of serverless computing. One of the notable 

challenges is the complexity of defining Service Level Agreements (SLA) for serverless 

functions. As the serverless model shifts the administration of resources, ecosystem, and 

execution layers to the provider, users become mere consumers of the provider’s abstracted 

platform with no insight into its performance. Suboptimal conditions of the abstracted 

layers are not visible to the end-user who has no means to assess their performance. Thus, 

SLA in serverless computing must take into consideration the unique abstraction of its 

model. 

This work investigates the Service Level Agreement (SLA) modeling of serverless 

functions' and serverless chains’ executions. We highlight how serverless SLA 

fundamentally differs from earlier cloud delivery models. We then propose an approach to 

define SLA for serverless functions by utilizing resource utilization fingerprints for 

functions' executions and a method to assess if executions adhere to that SLA. We evaluate 

the approach’s accuracy in detecting SLA violations for a broad range of serverless 

application categories. Our validation results illustrate a high accuracy in detecting SLA 

violations resulting from resource contentions and provider’s ecosystem degradations. We 

conclude by presenting the empirical validation of our proposed approach, which could 

detect Execution-SLA violations with accuracy up to 99%. 
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Summary for Lay Audience 

Serverless computing has brought significant advancements to the delivery of cloud 

computing to end-users. By adopting the ephemeral, short-lived microservice model, 

developers can avoid the administration and operational overheads of previous cloud 

delivery models and focus on the application’s code. Despite such advancement, at its 

current state,  FaaS currently lacks the transparency to allow users to judge the performance 

of the FaaS platforms. Users have limited insight into the execution performance of their 

microservices, i.e., serverless functions, and consequently are unable to improve such 

performance. 

This work investigates the factors that impact serverless functions’ performance. We 

demonstrate that end-user choices and providers’ ecosystems can significantly influence 

how a serverless function performs. We propose a framework that users and providers can 

leverage to assess the performance of serverless functions and define performance 

guarantees, i.e., SLAs. The framework leverages resource utilization traces of a serverless 

function to infer its performance and detect degradations that impact the SLA. We apply 

the framework to serverless applications of different sizes and application categories and 

examine the accuracy of detecting SLA violations. 



 

 

v 

 

Acknowledgments 

I would like to express my sincere gratitude to my supervisor, Prof. Michael Bauer, for his 

continuous support, invaluable guidance, accommodation, and patience throughout the 

Ph.D. journey. Prof. Bauer’s support, constructive feedback, and highly focused critique 

were essential in enabling my growth in carrying on independent research. His mentorship, 

advice, and continuous accommodation in meeting tight deadlines can not be forgotten and 

are very much appreciated.  

Words can not sufficiently express my thanks to my mother, Arifa, and my late father, 

Fouad, who would have been very proud today. Their upbringing, encouragement, and 

unconditional support have shaped the person I am today.  

I can not be thankful enough to my wife Hanaa for her tremendous support and 

encouragement throughout the Ph.D. Her emotional support and the support of our two 

young sons, Ziyad and Taher, have helped me cross the tough times in this journey, to 

which I am very grateful.  

Special thanks also go to my sister, brothers-in-law, father-in-law, and mother-in-law for 

their support.  

Last but not least, I would also like to thank the program committees and the reviewers of 

IEEE Cloud, Smart-Cloud, Cloud-Summit, ACM-Middleware’s WoSC, and ICECCE. 

Their feedback was extremely valuable and has helped introduce new perspectives to the 

work’s analysis and potential expansions. 



 

 

vi 

 

Table of Contents 

Abstract ................................................................................................................................ i 

Summary for Lay Audience ............................................................................................... iv 

Acknowledgments (if any) .................................................................................................. v 

Table of Contents ............................................................................................................... vi 

List of Tables (where applicable) ...................................................................................... ix 

List of Figures (where applicable) ..................................................................................... xi 

Chapter 1 Cloud Computing ............................................................................................... 1 

1.1  Introduction ............................................................................................................. 1 

1.1 Cloud Computing .................................................................................................... 3 

1.2 IaaS Delivery Model ............................................................................................... 4 

1.3 The SaaS and PaaS models ..................................................................................... 5 

1.4 The Function as a Service delivery model ............................................................... 7 

Chapter 2 Function as a Service “FaaS” ........................................................................... 10 

2.1 Introduction ........................................................................................................... 10 

2.2 A Serverless Function ........................................................................................... 11 

2.3 Serverless Computing Concepts ........................................................................... 12 

2.4 Serverless Platforms .............................................................................................. 14 

2.5 A Sample Serverless Function .............................................................................. 16 

2.6 Serverless computing research directions .............................................................. 21 

2.7 Open Problems and Our Research Direction ........................................................ 27 

Chapter 3 IaaS Cloud usage behaviors: a pilot study ....................................................... 30 

3.1 Introduction ............................................................................................................ 30 

3,.2 Formulation ........................................................................................................... 34 

3.3 Results and Discussion ......................................................................................... 41 



 

 

vii 

 

Chapter 4  SLA in Cloud Computing ............................................................................... 43 

4.1 Introduction ........................................................................................................... 43 

4.2 IaaS and PaaS SLA ............................................................................................... 43 

4.3 SLA in Serverless Computing .............................................................................. 44 

4.4 The Challenge of FaaS SLA ................................................................................. 47 

Chapter 5  Serverless Execution Performance .................................................................. 49 

5.1 Introduction ........................................................................................................... 49 

5.2 Serverless Execution Environments ..................................................................... 49 

5.3 Impact of Skeleton Container and Execution Engine Builds ................................ 53 

5.4 Impact of Execution Engine Releases ................................................................... 56 

5.4.1 AWS Lambda............................................................................................ 57 

5.4.2 Google Cloud Functions ........................................................................... 59 

5.4.3 Azure Cloud Functions ............................................................................. 61 

5.5 Impact of Ecosystem Performance ....................................................................... 62 

5.6 Discussion ............................................................................................................. 63 

Chapter 6  Serverless Performance Guarantees ................................................................ 65 

6.1 Introduction ........................................................................................................... 65 

6.2 Performance Guarantees for Serverless Functions ............................................... 65 

6.3 Machine Learning in Cloud Computing ............................................................... 66 

6.4 Defining Execution-SLA ...................................................................................... 67 

6.5 FaaS2F .................................................................................................................. 68 

6.6 FaaS2F Architecture ............................................................................................. 69 

6.7 Resource Utilization Fingerprints Generation ...................................................... 71 

6.8 MLM Classifier Training ...................................................................................... 73 

6.9 Assessing Compliance with Execution-SLA ........................................................ 75 



 

 

viii 

 

6.10  Problem Formulation ........................................................................................... 75 

6.11  Validation ............................................................................................................. 78 

6.12 Number of Training Samples ............................................................................... 81 

6.13 Conclusion ........................................................................................................... 83 

Chapter 7 SLA for Serverless Chains ............................................................................... 84 

7.1 Introduction ........................................................................................................... 84 

7.2 Modeling Serverless Chains Performance ............................................................ 84 

7.3 Validation .............................................................................................................. 86 

7.3.1 Fixed-size Sequential Serverless chains ................................................... 86 

7.3.2 Variable-size Sequential Serverless chains ............................................... 89 

7.3.3 Choice of the classifier .............................................................................. 90 

Chapter 8 Conclusions, Limitations, and Future Work .................................................... 92 

8.1 Conclusion ............................................................................................................ 92 

8.2 Limitations and Future Work ................................................................................. 94 

References or Bibliography (if any) ................................................................................. 97 

Curriculum Vitae ............................................................................................................ 105 



 

 

ix 

 

List of Tables (where applicable) 

Table 1: VM lifetimes ....................................................................................................... 36 

Table 2:  VM Creation Gaps ............................................................................................. 37 

Table 3: Allocated Disk Distributions .............................................................................. 37 

Table 4: Allocated vCPU Distributions ............................................................................ 38 

Table 5: Allocated Memory Distributions ........................................................................ 38 

Table 6: Underutilized PMs .............................................................................................. 41 

Table 7: Benchmarked Execution Environments ............................................................. 54 

Table 8: Execution Duration (in Seconds) ........................................................................ 55 

Table 9: AWS Lambda Execution Durations ................................................................... 57 

Table 10: Google Cloud Functions Execution Durations ................................................. 59 

Table 11: Azure Execution Environments Performance .................................................. 61 

Table 12: Execution Durations per induced latency ......................................................... 63 

Table 13: Training and Evaluation Samples ..................................................................... 80 

Table 14: Classification Accuracy .................................................................................... 81 

Table 15: Classification Accuracy per Training Sample count ........................................ 81 

Table 16: Chains Classification Accuracy ........................................................................ 88 

Table 17: Chain-1 Per-Function Classification Accuracy ................................................ 88 

Table 18: Chain-2 Per-Function Classification Accuracy ................................................ 88 

Table 19: Chain3 Classification Accuracy ....................................................................... 89 



 

 

x 

 

Table 20: Chains’ RF-based Classification Accuracy ...................................................... 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xi 

 

List of Figures (where applicable) 

Figure 1: Sample Function High-level diagram ................................................................ 18 

Figure 2: Sample Function Table Structures .................................................................... 18 

Figure 3: A Sample Serverless Function .......................................................................... 20 

Figure 4: VM Lifetimes .................................................................................................... 36 

Figure 5: VM Creation Gaps............................................................................................. 37 

Figure 6: Underutilized PMs Percentage .......................................................................... 40 

Figure 7: Aspects of FaaS execution performance ........................................................... 45 

Figure 8: Execution Durations of Benchmarked Environments ....................................... 55 

Figure 9: AWS Lambda Execution Performance ............................................................. 58 

Figure 10: AWS Lambda Billing Durations ..................................................................... 59 

Figure 11: Google Cloud Functions Execution Performance ........................................... 60 

Figure 12: Google Cloud Functions Billing Durations ..................................................... 60 

Figure 13: Microsoft Azure Execution Performance ........................................................ 62 

Figure 14: Execution Durations per induced latency ........................................................ 63 

Figure 15: FaaS2F Diagram .............................................................................................. 69 

Figure 16: FaaS2F High-level Diagram ............................................................................ 69 

Figure 17: FaaS2F Implementation Diagram ................................................................... 71 

Figure 18: Sample scaled fingerprints .............................................................................. 72 

Figure 19: CNN Architecture............................................................................................ 74 



 

 

xii 

 

Figure 20: Classification Accuracy per Training Sample count ....................................... 82 

Figure 21: Resource utilization fingerprints stacking ....................................................... 85 

Figure 22: Fixed-size (a) and Variable-size (b) chains ..................................................... 86 

Figure 23: Fixed-size chains workflows ........................................................................... 87 

Figure 24: Variable-size (Chain 3) workflow ................................................................... 89 

 

 



1 

 

 

 

Chapter 1                                                                           
Cloud Computing 

1.1  Introduction 

In the past decade, cloud computing has caused several successive shifts in traditional 

computing. With the wide adoption of the Infrastructure as a Service (IaaS) delivery model, 

infrastructure components became virtualized, abstracted, and consumed on-demand by 

users as services. Other delivery models soon followed, such as platform as a service 

(PaaS) and software as a service (SaaS), further abstracting the platform and the software 

layers. This development, in turn, drove the relinquishing of the overhead incurred from 

layer management to cloud providers. The emergence of such delivery models presented 

many advantages, including limited upfront investment, on-demand provisioning, usage-

based billing, and scalability. It also added more challenges for cloud providers to address, 

such as efficient resource allocation, maintaining tenant isolation, and satisfying the 

objectives of Service Level Agreements (SLAs).  

Function as a service (FaaS), commonly referred to as serverless computing, is a relatively 

newer cloud delivery model that further abstracts execution runtimes. The model allows 

users to request code execution on-demand and bills users only when their code is triggered 

and executed, making way for the advent of second-based and sub-second-based billing. 

FaaS enables users to focus on code development and reduces the time from code writing 

to deployment and execution by shifting the management and the administration overheads 

to the cloud provider. However, as a new programming model, FaaS introduces challenges 

to the end-users and the cloud providers. End-users are required to adopt the programming 

model of stateless ephemeral microservices and leverage the serverless provider’s 

ecosystem for providing storage and inter-communication services to their serverless 

functions. Cloud providers also face novel, system-level, and abstraction-level challenges 

as they build their platforms to support this new model. One of these challenges is the 

complexity of defining SLAs in serverless computing. An SLA is a written agreement that 

defines the provider’s contractual obligations toward the end-user. These contractual 
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obligations can specify a broad range of service metrics that the provider must satisfy, such 

as uptime, network latency, and invocation rate. 

This research investigates the challenge of defining performance guarantees in serverless 

computing stemming from its unique abstraction. Our research examines the following 

research questions: 

- What is serverless performance, and what factors affect a serverless function’s 

execution performance? 

- How does serverless computing’s unique abstraction differentiate it from earlier 

cloud delivery models, e.g., IaaS and PaaS  

- How can Service Level Agreements be defined and assessed for serverless 

functions and serverless chains? 

Our contributions in this work are: 

- A categorical classification of the factors that impact serverless execution 

performance. 

- Introduction of the notion of an execution-SLA to specify SLAs for serverless 

functions execution performance. 

- A novel method for specifying execution-SLAs in serverless computing by defining 

execution-performance guarantees in terms of resource utilization fingerprints of a 

function's execution.  

- An approach for cloud providers to extract resource utilization fingerprints for 

functions’ executions and utilize them to define execution-SLAs.  

- A method for cloud providers and users to validate execution-SLA compliance of 

functions’ executions by comparing their resource utilization fingerprints with 

fingerprints specified in the execution-SLA.  

- Novel modeling of sequential serverless chains' execution performance using 

resource utilization fingerprints of the chain's functions. The modeling is used to 

define an SLA for the serverless chains' performance. 
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- An approach to validate compliance with the defined SLAs using a Machine 

Learning (ML) based classifier. 

In the next section, we provide a brief review of cloud computing and describe the 

evolution of its delivery models. 

1.2 Cloud Computing 

Cloud computing is a computing model in which resources are provided as a general utility 

that can be leased by users as and when required [1]. It emerged as a response to the 

information technology (I.T.) industry requirements for flexible infrastructure 

provisioning, scalability, consolidation, and isolation. One of the first cloud computing 

delivery models that arose was IaaS, which abstracts the physical compute, storage, and 

network elements of infrastructure and enables users to provision virtual instantiations of 

them. With the introduction of Elastic Compute Cloud  (EC2) by Amazon Web Services 

(AWS) in 2006, users were afforded the capacity to create on-demand virtual machines 

(VMs), incorporated with user-selected CPU and memory specifications to construct 

virtual networks and to assign virtual storage to VMs. Other companies joined the 

commercial cloud market soon after capitalizing on the massive demand for IaaS by the 

I.T. industry.  

Cloud computing cleared the way for realizing several features that the IT industry 

required, such as low up-front investment in hardware and the ability to scale immediately. 

Over the years, delivery models for cloud computing have grown, starting with IaaS and 

moving on to SaaS, PaaS, and recently FaaS. These models have varied at the abstraction 

level of resource delivery. Their offerings range from delivering dedicated, long-lived user-

managed VMs in IaaS to providing shared-tenancy, limited-lifetime, platform-managed 

function executions in FaaS.  

We begin with the theoretical background of resource allocation in IaaS platforms, 

commonly referred to as the VM placement. We choose to present the literature on this 

topic because of the dependence of recent delivery models of cloud computing (e.g., FaaS 

and PaaS) on the IaaS delivery model. The literature on IaaS resource allocation is rich, 
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addressing a broad set of objectives pursued by users and providers. The subsequent 

sections present the VM placement problem, its classifications, objectives, and an overview 

of proposed solutions. We then direct attention to the FaaS delivery model, discussing our 

examination of its advantages, disadvantages, and open research challenges. 

1.3 IaaS Delivery Model 

In IaaS clouds, compute resources are virtualized and provisioned by cloud users as VMs. 

Platforms bill users for the resources that they consume and the duration of consumption.  

Users can either request VM creations on-demand in demand-based clouds or request a 

reservation in advance in reservation-based clouds. One of the critical functions of a cloud 

platform is to allocate a VM’s requested resources to one of the available physical 

machines (PMs) in a data center, referred to as VM placement. A placement decision must 

satisfy the placement objectives specified by a cloud provider, for example, minimizing 

power consumption, meeting the SLA requirements, and reducing data center operating 

costs. Based on the time at which a placement decision is taken, the VM placement problem 

can be classified into static placement and dynamic placement [2].  

Static VM placement centers on providing an initial VM-to-PM mapping at the VMs’ 

creation time. A significant shortcoming of static placement is its failure to consider the 

dynamic nature of IaaS Clouds. Resource allocation and deallocation in IaaS clouds are 

user-driven and are triggered by the non-deterministic VM creation and termination 

behaviors of end-users. Moreover, VMs are of varying workloads, and thus, placement 

decisions need adjustment at runtime. Hence, static placement is, alone, insufficient to 

maintain the satisfaction of placement objectives at runtime. Dynamic VM placement 

generates an adaptive mapping of VMs to PMs after the initial placement to ensure the 

accomplishment of the cloud provider objectives. Dynamic placement is triggered either 

on a platform-set schedule [3], [4] or in response to changes in the active VMs and PMs 

composition and utilization of active VMs and PMs [5]–[7]. Dynamic placement decisions 

are executed through workload adjustment mechanisms. VM migration is a popular 

workload adjustment mechanism wherein VMs migrate between PMs using hypervisor 

migration functionalities. 
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While the IaaS model was a breakthrough, the model had a significant shortcoming in 

resource utilization efficiency. VMs are allocated resources even when there is little or no 

demand for the hosted applications, and users are billed for the allocated resources even if 

they are not actively utilized. Additionally, the model required users to assume 

administrative and ongoing operational responsibility for their VMs, thus requiring a 

minimum level of technical expertise to adopt this model.  

1.4 The SaaS and PaaS models 

As discussed in the preceding section, resources are allocated to users in IaaS clouds as 

VMs. IaaS cloud users are responsible for the administration and maintenance of the 

provisioned VMs. Besides, commonly desired functionalities such as high availability and 

auto-scaling must be configured by the users, thus creating technical and administrative 

overheads that can potentially affect the adoption of IaaS clouds. Software as a Service 

“SaaS” delivery model was one of the attempts to address this problem. The model [8] 

emerged to facilitate the delivery of applications to users by masking the complexity of the 

underlying infrastructure. A SaaS cloud provider is responsible for administrating and 

configuring the underlying infrastructure and applications, allowing the end-user to 

leverage the application on-demand. SaaS excelled in domain-specific software, such as 

email services and CRM software (e.g., Salesforce).  

The model had several disadvantages despite enabling users to employ the software 

without concerning themselves with the underlying infrastructure complexity. SaaS 

platforms provide a limited set of software selections to choose from and generally lack 

the configuration flexibility of an IaaS platform. Users must choose between building 

complex software environments that fit their requirements via IaaS or leverage a “one size 

fits all” SaaS platform. To approach this shortcoming, PaaS emerged to provide the utility 

of creating and deploying custom applications to the cloud, leveraging the broad adoption 

of containers as a growing standard for application packaging [9]. Docker and Linux 

containers provide a standardized method of packaging and delivering software [9], [10]. 
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In PaaS platforms, such as Heroku1 and Amazon Elastic Beanstalk2, users deploy their 

code or select a pre-packaged application such as MySQL or NGINX. The platform 

allocates the requested resources and executes the application in a dedicated container 

managed by the PaaS platform.  

A user specifies the sizing of the resources allocated to their application, and the platform 

deploys and creates an endpoint to interact with it. A PaaS cloud provider administrates 

the underlying infrastructure and configures commonly desired features, such as high 

availability. PaaS cleared the way to the advent of a more extensive set of cloud-hosted 

applications than SaaS and allowed users to focus on the application layer rather than the 

infrastructure layer.  

The progression from IaaS to PaaS enabled users to take advantage of the features of both 

models by adopting their workloads to fit each model’s design. However, multiple 

shortcomings remain unaddressed. Amongst them is the resource utilization efficiency 

challenges where resources are allocated to VMs or containers even with no application 

demand, and users are billed for these idling resources. Also, these models lack user-

transparent techniques for scaling up and down the user’s application when the demand 

change. Users must adopt custom ad-hoc methods to enable their applications to autoscale 

as needed.  

These shortcomings are an implicit consequence of several design choices adopted by the 

IaaS and PaaS models. Both IaaS and PaaS assume an infinite lifetime of the users’ 

provisioned artifacts (VMs or containers), a constant resource consumption throughout the 

artifact’s lifetime, and a tight coupling of computations and data (i.e., state). They expect 

the users to develop any necessary methods for scaling up and down the workload as 

demand changes. The models are specifically tailored to satisfy the requirements of 

persistent workloads, which are application categories with an expected long lifetime and 

whose data, i.e., state, must be shared between all the running instances of the application. 

 

1 Heroku: https://www.heroku.com/  

2 AWS Elastic Beanstalk: https://aws.amazon.com/elasticbeanstalk/  
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Common examples of these workloads are database engines, web portals, and application 

servers. These applications wait for incoming requests, process them, and then return to 

waiting for another incoming request. To scale up and down these applications, data 

clustering technologies are employed to ensure the state is shared amongst all the running 

instances of the application. The resource utilization shortcoming of the IaaS and PaaS 

models results from the assumption that any deployed workload is persistent and thus will 

require resources throughout its lifetime, even when no demand exists. 

While persistent workloads are present in practice, not all workloads exhibit their expected 

long-lifetime or data coupling specifications. Ephemeral workloads, for example, have 

short lifetimes and segregate computations from data. Every running instance of an 

ephemeral workload must only access an unshared subset of the state or access no state at 

all (stateless). Common examples of ephemeral workloads are short-lived data analytics 

tasks and stateless microservices. While IaaS and PaaS cloud delivery models can satisfy 

the persistent subset of cloud workloads, the assumption of the workload persistence results 

in major resource allocation and scaling disadvantages for ephemeral workloads.  

1.5 The Function as a Service delivery model 

The Function as a Service (FaaS) delivery model was created to address these shortcomings 

by targeting ephemeral, short-lived workloads. Users leverage the FaaS model by 

deploying serverless functions that are executed on-demand. A serverless function is a 

short-lived stateless microservice that decouples data from computations. This decoupling 

enables seamlessly scaling up and down microservices with demand as the state (i.e., data) 

is entirely segregated from computations. Additionally, the on-demand execution of 

serverless functions improves the resource utilization efficiency than prior delivery models 

as resources are allocated only when the functions are executed. The FaaS model allows 

fast adoption by requiring users to only submit code to the cloud platform, where this code 

(i.e., serverless function) is executed when invoked. Users do not need to worry about 

provisioning VMs or containers or the underlying system administration or configuration 

as the serverless providers become responsible for these tasks.   
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While FaaS brought many advantages for hosting ephemeral workloads in the cloud, the 

model introduced challenges due to its unique abstraction. As cloud providers assume the 

majority of the administration overheads in the FaaS model, end-users have limited insight 

into the factors affecting the performance of their serverless functions. Adding further 

complexity to this challenge, the FaaS model has widely adopted a pay-upon-execution 

billing scheme where users are charged based on the execution durations of their functions 

and the allocated resource. A sub-optimal execution of a serverless function results in 

longer execution durations and consequently higher incurred costs by the end-user. Thus, 

it is imperative to create the methodologies that enable users and providers to agree on 

binding Service Level Agreements (SLAs) in the FaaS model.  

SLA in serverless computing has not been thoroughly investigated. Limited attempts have 

examined defining invocation-rate guarantees [13], scheduling latency guarantees [8], [14], 

[15], and resource allocation guarantees [16]. To our knowledge, no work has examined 

execution performance guarantees for serverless functions despite their impact on the 

financial feasibility and attractiveness of the serverless model. Thus, in this work, we 

investigate the challenge of defining serverless execution performance guarantees. We 

develop a methodology and an approach that enables end-users and cloud providers to 

define and assess compliance with performance guarantees for serverless functions. Our 

contributions in this work are: 

- A categorical classification of the factors that impact serverless execution 

performance. 

- Introduction of the notion of an execution-SLA as a means of specifying SLAs for 

serverless functions execution performance. 

- A novel method for specifying execution-SLAs in serverless computing by defining 

execution-performance guarantees in terms of resource utilization fingerprints of a 

function's execution.  

- An approach for cloud providers to extract resource utilization fingerprints for 

functions’ executions and utilize them to define execution-SLAs.  
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- A method for cloud providers and users to validate execution-SLA compliance of 

functions’ executions by comparing their resource utilization fingerprints with 

fingerprints specified in the execution-SLA.  

- Novel modeling of sequential serverless chains' execution performance using 

resource utilization fingerprints of the chain's functions. The modeling is used to 

define an SLA for the serverless chains' performance. 

- An approach to validate compliance with the defined SLAs using a Machine 

Learning (ML) based classifier. 

The rest of this thesis is structured as follows: 

- Chapter 2 discusses the serverless delivery model, the current research directions, 

and the open problems.  

- In Chapter 3, we present the results of our pilot study into the usage trends of IaaS 

clouds. The results shed light on the nature of workloads in IaaS clouds and 

highlight the significant existence of short-lived ephemeral workloads. The results 

illustrate the challenges facing ephemeral workloads in IaaS clouds and justify the 

need for the serverless model. 

- Chapter 4 discusses the SLA definition in Cloud computing and how defining FaaS 

SLA fundamentally differs from earlier cloud computing models. 

- Chapter 5 examines the factors affecting execution performance in serverless 

computing and demonstrates how seemingly trivial user-made choices can 

significantly impact the execution performance of a serverless function. 

- Chapter 6 discusses FaaS SLA and presents our framework (FaaS2F) for defining 

and assessing compliance with performance guarantees for serverless functions. 

- Chapter 7 discusses execution performance guarantees for sequential serverless 

chains and presents the empirical results of utilizing FaaS2F to detect serverless 

chains' suboptimal executions. 

- We finally conclude with Chapter 8, discussing the conclusions, the limitations of 

our work, and our future directions. 



10 

 

 

 

Chapter 2                                                                               
Function as a Service “FaaS” 

2.1 Introduction                 

FaaS, or serverless computing, represents a paradigm shift [11] and a new programming 

model of stateless, event-driven microservices. It creates the foundation for programmers 

to build microservices, commonly known as serverless functions, that are executed when 

invoked, thus relinquishing the resource-idling that occurs when an application awaits 

invocations in PaaS and IaaS models. From an operational standpoint, serverless 

computing shifts the responsibility of resources’ administration and provisioning to the 

cloud provider, thus enabling developers to focus on the application [11]. 

To leverage serverless computing, applications are broken down into a set of stateless 

serverless functions that can be invoked independently. Serverless Functions are written in 

high-level languages, and users define the events that trigger the functions’ execution. The 

platforms specify these events’ sources and vary based on the provider’s ecosystem. Our 

experimentation with serverless platforms identified a standardization gap in the 

commercial and the open-source serverless platforms that can cause vendor lock-ins [12].  

AWS Lambda3, Google Cloud Functions4, Microsoft Azure functions5, and IBM Cloud 

functions6 emerged to capitalize on the IT industry demand for serverless computing. 

These platforms support cloud functions written in many high-level languages such as 

Node.js, Python, Java, Go, and C#. A large number of triggering events such as API calls, 

File upload, and database record inserts are supported by these platforms. Users are 

required to specify the memory footprint of the function, and the maximum execution time, 

commonly referred to as function timeout. Users are charged based on the functions’ 

 

3 AWS Lambda: https://aws.amazon.com/lambda/  

4 Google Cloud Functions: https://cloud.google.com/functions/  

5 Azure Cloud Functions: https://azure.microsoft.com/en-ca/services/functions/  

6 IBM Cloud Functions: https://www.ibm.com/cloud/functions  
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resources and execution duration; hence, function timeouts are utilized to avoid charges 

when functions take longer than expected to finish.  

As with most industry manifestations, open-source alternatives quickly emerged. Some of 

these open-source platforms were developed solely for accelerating research in the 

serverless computing field, such as the OpenLambda project [13]. Others, however, 

provide production-grade alternatives such as Apache Openwhisk7, Kubeless8, Fission9, 

OpenFaaS10, and Knative11. These platforms currently provide less feature-set than their 

commercial counterparts but are expected to proliferate due to their open nature that 

enables community collaborations on their growth.  

In the next section, we review the concept of a serverless function, detailing its composition 

and distinguishing characteristics. We then present the serverless computing concepts and 

review current commercial and open-source serverless platforms and their operating 

principles. 

2.2 A Serverless Function 

Serverless offerings by the commercial and the open-source platforms use different terms 

to market their offerings. To standardize, we use the term serverless function to refer to 

these offerings. AWS Lambda, Azure functions, IBM Cloud functions, and Google Cloud 

functions are all examples of serverless functions. A serverless function is a stateless, 

ephemeral, and independent software artifact written in a high-level language and executed 

by a serverless platform when a user-defined triggering event is satisfied. 

Serverless platforms require serverless functions to “operate asynchronously and process 

one request at a time “ [14]. Inputs and outputs to serverless functions have no specific 

 

7 Apache Openwhisk: http://openwhisk.apache.org/  

8 Kubleless: https://kubeless.io/  

9 Fission: https://fission.io/  

10 OpenFaaS: https://www.openfaas.com/  

11 Knative: https://knative.dev/  
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requirements, but they are generally advised to produce and consume JSON objects. In 

traditional programming, applications are composites of functions written in a 

programming language [15]. Similarly, serverless functions are written in programming 

languages supported by the serverless platforms and can collectively construct a complex 

application through composition and orchestration [16]. 

2.3 Serverless Computing Concepts 

In this section, we provide a review of the main concepts of serverless computing and their 

relationship to serverless functions. 

•  Triggering events 

- Serverless functions are event-driven [13], [17]. The functions are executed when 

a user-defined triggering event is satisfied. Serverless platforms support generic 

triggering events, such as API calls [14] and platform-specific triggering events. 

The platform-specific triggering events are closely connected to the platform’s 

ecosystem. For example, AWS Lambdas can be triggered at record-insertions into 

AWS key-value database “DynamoDB”.  

•  Resource allocation 

- Serverless platforms are responsible for allocating the resources required for a 

serverless function’s execution [13]. Users are billed for the allocated resources and 

the duration of execution. The commercial and the open-source platforms we 

reviewed, except for Microsoft Azure functions, require users to specify the 

memory footprint of their functions; CPU allocation is computed in proportion to 

the allocated memory by the platform. Azure functions’ platform computes both 

the memory and CPU allocations for serverless functions. 

•  Runtime environments: 

- Serverless functions are executed in isolated runtime environments, sometimes 

referred to as workers [13]. A serverless platform is responsible for creating and 

terminating workers based on the function’s programming language, allocated 
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resources, and function timeout. A worker is started by the platform when a 

serverless function’s triggering event is satisfied. Container technologies, such as 

Docker12, are a popular choice for runtime environment isolation and thus are 

leveraged by all the open-source serverless platforms we reviewed. Ideally, when a 

serverless function’s execution completes, the platform terminates its assigned 

worker to free up resources for other executions. However, it has been 

acknowledged that creating a new worker takes approximately 1-2 seconds in AWS 

[13]; this phenomenon is referred to as cold-start latency. It can significantly 

increase a function’s response latency, and thus, platforms tend to keep worker 

containers in a warm state to avoid the cold startup time.  

•  Limited lifetime: 

- Serverless functions are short-lived and thus are required to finish execution within 

a limited lifetime. A serverless platform is responsible for terminating a function 

that exceeds the user-defined maximum lifetime (function timeout). 

• Stateless nature: 

- Serverless functions are expected not to hold state between invocations. Subsequent 

invocations may be scheduled to execute on different workers, and thus state 

sharing must utilize a separate mechanism. If subsequent invocations are executed 

on the same worker, the common state may be visible but not guaranteed [13].  The 

serverless platforms we examined leverage their ecosystems for state sharing. 

Those mechanisms are, however, inadequate, as later discussed in this work. 

•  Autoscaling 

- The stateless nature of serverless functions enables computation to scale 

independently of the storage [11]. A serverless platform scales up and down in 

 

12 Docker: https://www.docker.com/  
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response to demand increases and decreases by starting workers and terminating 

them when they are no longer needed. 

•  Billing: 

- A user is billed only when their function is executed. The function’s allocated 

resources, and the duration of execution determine the cost. Thus, this model 

represents an advantage over earlier delivery models that billed users for resource 

reservations. 

A single serverless function cannot implement complex workflows for an extensive 

application. In traditional programming, applications are composed of many functions that 

exchange inputs and outputs for implementing complex application logic. Similarly, 

function composition and orchestration in serverless computing are leveraged to construct 

large applications from functions.   

2.4 Serverless Platforms 

Commercial and open-source serverless platforms operate on a common principle of 

allocating runtime environments for stateless high-level language functions. The platforms 

vary in their supported language runtimes, feature set, and the platform’s ecosystem. In 

this section, we survey the available commercial and open-source serverless platforms. 

2.4.1 Commercial Serverless Platforms 

Serverless functions’ commercial offerings support a growing number of high-level 

languages. Amazon’s AWS Lambdas can be written in C#, GO, Java, Node.js, Python, and 

Ruby, in addition to supporting custom runtime environments using shell scripting. 

Microsoft’s Azure functions support JavaScript, .Net, Java, or Python and support custom 

runtime environments using Docker images. IBM’s cloud functions similarly support 

custom runtime environments using Docker and functions written in PHP, Node.js, Python, 

Ruby, Swift, and GO. Google’s cloud functions do not allow custom runtime environments 

and support functions written in GO, Python, and Node.js 
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All the commercial platforms we reviewed, except for Microsoft Azure, require users to 

specify the allocated memory resources for their cloud functions. Azure dynamically 

allocates memory as needed at runtime. Functions’ timeout must be specified by the user 

for all the reviewed platforms. All the reviewed platforms support Autoscaling through a 

configurable triggering metric and concurrency of the runtime environments.  

To an outsider’s eye, serverless functions’ offerings by the commercial platforms depict a 

substantial similarity. However, the platforms are different in their coding requirements, 

feature-set, default settings, and supported programming languages [18].  Developers are 

required to adopt vendor-specific programming styles and platform ecosystems, which 

may result in vendor-lock-ins. Also, the architectures of the commercial platforms are 

difficult to review and compare due to the closed nature of these platforms. 

2.4.2 Open-Source Serverless Platforms 

Open-source serverless platforms closely follow the operating principles of their 

commercial counterparts. To facilitate their deployment, some of the platforms we 

surveyed leverage containers to package their core services. Container orchestration 

engines, such as Kubernetes, are widely adopted to coordinate the platform‘s deployment 

and coordinate the creation and the termination of serverless functions‘ runtime 

environments. 

Our review identified several open-source production-grade serverless platforms that vary 

in their architecture and their maturity levels. OpenFaaS, Kubeless, Knative, and Fission 

are examples of these platforms that leverage the Kubernetes orchestration engine. These 

platforms differ in their feature-set and architecture. However, they provide similar end-

user offerings with a broad set of supported programming languages and autoscaling 

features. Mohanty et al. [12] reviewed the architecture of these platforms and highlighted 

their distinguishing differences. In addition to supporting containerized deployments, some 

of the platforms we reviewed support stand-alone installations such as Apache Openwhisk, 



16 

 

 

 

IronFunctions13, and Fn14. We also surveyed Open Lambda [13] platform specifically 

designed to accelerate research in serverless computing and is not considered production-

ready. 

2.5 A Sample Serverless Function 

To enhance the understanding, we demonstrate a simple use case of a serverless function 

used by a retail chain to perform three operations: i) distribute the store-item prices from 

the head office to the stores, ii) collect sales reports from the stores and report back 

increases and decreases in daily sales, and iii) generate a daily sales report to head-office. 

Stores invoke an API call at their opening time to retrieve the item prices and another API 

call at close to report the quantity of sold items and determine the sales performance. Head-

office invokes an API call after stores’ closing to generate a sales performance report. At 

the scale of a small number of stores, the use-case warrants neither the expenses nor the 

administration overhead of dedicated infrastructure and thus benefit from the serverless 

model. 

We leverage Amazon’s Lambda platform and implement a serverless function written in 

Python. Item prices and daily sales records are stored in two tables in Amazon’s key-value 

database DynamoDB15. The daily sales report is generated at the head office’s request and 

is stored as a JSON encoded file in a dedicated AWS S316 bucket. The workflow for the 

application is as follows: 

 A head-office manager updates the item prices in the DynamoDB “ItemPrices” 

table before stores’ opening. 

 

13
 Ironfunctions: https://open.iron.io/  

14
 Fn: https://fnproject.io/  

15
 DynamoDB: https://aws.amazon.com/dynamodb/  

16
 AWS S3: https://aws.amazon.com/s3/  
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 At opening time, stores invoke an API call to the serverless function that 

retrieves the item prices from DynamoDB and serves it over HTTP. 

 At stores closing time, stores invoke another API call to report their daily sales 

count. The function retrieves the stores’ previous day’s sales count from 

DynamoDB “SalesCount” table and compares it with today’s sales. It then 

responds with “positive” or “negative” to indicate the increase or decrease of 

daily sales and saves the new sale count to the table. 

 Head-office managers invoke an API call to generate a JSON encoded report 

that is saved to the S3 bucket. 

Using the AWS Lambda platform, we created the serverless function and an endpoint API 

to invoke it. We designated the “store_mgmt” Python function as the handler that is 

executed when the API is invoked.  The API accepts POST requests with JSON encoded 

input to specify the requested action (get prices, report sales or generate a daily report). We 

utilize AWS SDK (Boto3 ) for Python to access DynamoDB tables and save the JSON 

encoded report to the S3 bucket. A high-level diagram of the use case is illustrated in Fig 

1. 
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Figure 1: Sample Function High-level diagram 

 

The table structure of ItemPrices and SalesCount tables is shown in Figure 2 

 

Figure 2: Sample Function Table Structures 
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The serverless function’s code is illustrated in Figure 3 

1. import json   

2. import boto3     

3.    

4. def store_mgmt(event, context):   

5.     #Store_mgmt function is the handler that is invoked when the API   

6.     #is called. It then parses the input to determine the action to be executed   

7.     action = event['Action']['Type']   

8.     if action == 'GetPrices':   

9.         return(get_prices())   

10.     elif action == 'ReportSales':   

11.         return(report_sales(event))   

12.     elif action == 'GenerateReport':   

13.         return(generate_s3_report())   

14.    

15. def get_prices():   

16.     #Access DynamoDB and retreive the item prices list   

17.     pricestable = 'ItemPrices'   

18.     dynamodb = boto3.resource('dynamodb')   

19.     client = dynamodb.Table(pricestable)   

20.     try:   

21.         priceslist=client.scan()   

22.         priceslist_dict=priceslist['Items']   

23.     except  Exception as e:   

24.         print(str(e))   

25.     return {   

26.         'statusCode': 200,   

27.         'body': json.dumps(priceslist_dict)   

28.     }   

29.        

30. def report_sales(event):   

31.     #Parse the input event to retrieve store name and sale count 

32.     storename=event['Action']['StoreName']   

33.     salecount=event['Action']['SaleCount']   

34.     #Access DynamoDB Salescount table to retrieve previous day's sales   

35.     #and compare it to today's sales    

36.     dynamodb = boto3.resource('dynamodb')   

37.     client = dynamodb.Table('SalesCount')   

38.     previoussalerecord=client.get_item(Key={'Store':storename})   

39.     previoussalerecord_dict=previoussalerecord['Item']   

40.     previoussalecount=previoussalerecord_dict['Sales']   

41.     try:   

42.            

43.         if (float(salecount) < float(previoussalecount)):    

44.             performance='negative'   

45.         else:   

46.             performance='positive'   

47.         response=client.update_item(   

48.             Key={   

49.                 'Store': storename   

50.             },   

51.             UpdateExpression="set Sales = :s, Performance= :p",   

52.             ExpressionAttributeValues={   
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53.                 ':s': salecount,   

54.                 ':p': state,   

55.             },   

56.             ReturnValues="UPDATED_NEW"   

57.         )   

58.     except  Exception as e:   

59.         print(str(e))  

60.     return {   

61.         'statusCode': 200,   

62.         'body': json.dumps(performance)   

63.     }      

64.        

65. def generate_s3_report():   

66.     #Retrieve sales performance from the DynamoDB table and generate a json report    

67.     #and place it in the S3 bucket   

68.     s3bucket = 's3-bucket'   

69.     s3 = boto3.client('s3')   

70.     reportfile='sales-report.json'   

71.     dynamodb = boto3.resource('dynamodb')   

72.     client = dynamodb.Table('SalesCount')   

73.     try:   

74.         priceslist=client.scan()   

75.         priceslist_dict=priceslist['Items']   

76.         s3.put_object(Body=json.dumps(priceslist_dict),Bucket=s3bucket, Key=reportfile)   

77.     except  Exception as e:   

78.         print(str(e))   

79.     return {   

80.         'statusCode': 200,   

81.     } 

  

Figure 3: A Sample Serverless Function 

By examining the use case and its implementation, a few observations can be made: 

1. The serverless model enables us to focus solely on the application, leaving the 

administration of the infrastructure and platform layers to the service provider. 

2. As serverless functions are stateless, our function must save its state between 

executions. Hence, DynamoDB tables are utilized to save item prices and sales 

records. 

3. The timeout value we specified for our function is 3 seconds, after which the 

function is terminated. This timeout value is appropriate for our use case. 

However, the timeout value must be increased in other use cases with large files 
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or more extensive computations. AWS supports timeouts values for up to 15 

minutes.  

4. A fresh execution of the “generate_s3_report()” function, where the S3 bucket 

and DynamoDB tables are accessed, takes 1.9 seconds despite being a simple 

computation. This latency results from a cold-start of the execution 

environment and the access to non-local storage (DynamoDB and S3). 

5. We were required to adopt AWS SDK (Boto317) in our code to access the AWS 

ecosystem (S3 and DynamoDB), thus introducing the potential shortcoming of 

vendor lock-ins. 

2.6 Serverless computing research directions 

Research in serverless computing is relatively new; however, it is gaining increasing 

attention in academia [12]. Some researchers have investigated the trends and open 

problems in serverless computing [8], [11].  Jonas et al. [11] examined the limitations of 

the current serverless platforms and proposed a vision of what serverless computing should 

become. The researchers specified a pathway defined by a set of challenges to achieve that 

vision. Baldini et al. [8] presented a survey of serverless platforms, along with their 

distinguishing characteristics. The researchers illustrated a generic architecture of 

serverless computing platforms while highlighting the role of an event processing system 

in such architecture. Their view on the current technology and research challenges facing 

serverless computing was also discussed in their work.  

Sadaqat et al. [19] investigated the core concepts of serverless computing and the adoption 

benefits and challenges. The researchers presented their view on the future adoption, the 

market growth, and the vendors of serverless computing. Buyya et al. [20] provided a 

manifesto identifying the state of research in cloud computing and their vision of Future 

Generation Cloud Computing. Realizing this vision, the researchers proposed a roadmap 

 

17 AWS SDK: https://aws.amazon.com/sdk-for-python/  
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through a set of open challenges that need to be addressed. Economics of cloud computing 

was identified as one of the key challenges, highlighting the growing interest in computing 

models that enable sub-second billing. 

During our review, we were able to classify the current research into three main directions: 

 Serverless platforms research 

 Serverless applications research 

 Serverless function composition and orchestration 

2.6.1 Serverless Platforms Research 

This research direction investigates serverless platforms' architecture, service offerings, 

performance, security, and limitations. Lynn et al. [21] surveyed seven commercial 

serverless platforms and compared their feature-set.  Mohanty et al. [18] investigated the 

architecture and performance of four open-source serverless platforms and evaluated 

functions’ invocation concurrency in these platforms by measuring the response times and 

the request processing success ratio. Also, the researchers compared the auto-scaling 

metrics and the performance of these platforms. Hendrickson et al. [13] discussed 

Amazon’s microservice models, the Lambda model, and presented the OpenLambda 

platform as an open-source platform to accelerate research on Lambda architectures. 

Lee et al. [22] studied concurrent functions’ invocations in commercial serverless 

platforms and compared the performance and the throughput results for the use case of 

distributed data processing. The researchers also provided a comprehensive review of the 

platforms’ feature-set. Oakes et al. [23] analyzed the cold startup times for Python 

serverless functions, focusing on low-latency invocations. The researchers analyzed the 

runtime initialization and containers performance and proposed a special-purpose 

container system, replacing Docker, to improve latency for Python serverless functions. 

The specialized container system imports libraries and achieve high steady-state 

throughput for the runtime environments.  

Lloyd et al. [24] investigated the factors affecting serverless functions performance in 

AWS Lambda and Azure platforms. The researchers identified five factors to evaluate in 
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their study: elasticity, load-balancing, provisioning variation, infrastructure retention, and 

memory reservation; and examined the platforms for four different states of request 

serving: provider-cold, VM-cold, container-cold and warm. These states differ in the 

components of the serverless platform that need to be freshly executed in response to a 

serverless function’s request. They highlighted the role of initialization time in cold start 

in profoundly impacting the elasticity of deployments in serverless platforms. 

Jackson et al. [25] investigated the impact of the language runtime choice on the cost and 

performance of serverless functions. The paper proposed a Serverless Performance 

Framework (SPF) that enables consistent metrics gathering from serverless platforms. The 

researchers concluded that existing serverless platforms are not high-level language 

agnostic and that the choice of a function’s runtime language affects the performance and 

the cost of its execution. Kim et al. [26] examined resource allocation in serverless 

platforms to maximize resource utilization and minimize SLA violations. The paper 

proposed a QoS-aware technique for CPU management in serverless platforms as an 

alternative to traditional consolidation approaches.   

Hypervisor and container runtime performance have also received attention from 

researchers and industry, especially in the areas of lightweight emulation and security. As 

the runtimes of the current hypervisors and containers are designed for generic workloads, 

they exhibit performance and security limitations to sophisticated workloads. Thus, 

purpose-specific hypervisors and container runtimes emerged to address this shortcoming. 

Nemu18 was developed a cloud-specific hypervisor that focuses on improving the 

emulation performance and reducing the attack surface. Kata containers19, similarly, 

address improving the container performance, isolation, and security. Firecracker20 

leverages micro-VMs to enable the isolation and performance improvement of virtualized 

workloads. 

 

18 Nemu: https://github.com/intel/nemu  

19 Kata Containers: https://katacontainers.io/  

20 Firecracker: https://firecracker-microvm.github.io/  



24 

 

 

 

2.6.2 Serverless Application Research 

As serverless computing presents a new programming model, many researchers 

investigated how existing complex applications can benefit from this new model. One can 

understand that the mandated stateless nature of serverless functions requires a mindset 

shift for programmers familiar with traditional programming models. However, it is 

essential to realize that, as a technological manifest, programmers need enough 

understanding of the other aspects of serverless computing abstraction to efficiently and 

securely utilize it. 

Jangda et al. [27] pointed to the exposure of low-level operational details as a significant 

challenge to programmers developing code for serverless platforms. Programmers are 

required to be aware of how the serverless platforms operate to avoid producing incorrect 

results, leaking confidential data, or even data loss. The paper points out that “serverless 

functions are not functions in any typical sense” [27]. To address this gap, the researchers 

developed a detailed operational semantics of serverless computing. The semantics are 

designed to allow extensions for key-value store models and serverless function 

orchestration. With those contributions, the researchers hope that the developed semantics 

provide formal foundations to bridge the knowledge gap in the adoption of serverless 

computing by programmers. Similarly, Gabbrielli et al. [28] highlighted the lack of a 

formal model for serverless computing and proposed a minimalistic model to reason on the 

new paradigm. 

Implementing traditionally stateful applications in serverless platforms has received 

attention from many researchers. Hong et al. [29] examined the implementation of scalable 

security services using serverless platforms. The researchers identified six design patterns 

for serverless architectures and discussed their advantages compared to serverful 

implementations. Limitations of the existing serverless platforms were also identified, such 

as resource constraints, event tracking, and security limitations. Jonas et al. [11] 

implemented five diverse research projects as serverless applications and presented a cost-

performance analysis of the serverless implementations versus their serverful counterparts. 

They concluded that an application’s use-case profoundly impacts the cost-performance 

gains or losses of a serverless implementation. For example, the researchers discovered 
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that a serverless implementation of SQLite database engine incurs an additional 200% 

more cost per transaction than a serverful application. In comparison, implementation of a 

serverless MapReduce sorting incurs only 15% extra cost. 

Hafeez et al. [30] investigated implementing the well-known publisher/subscriber model 

using stateless functions in AWS Lambda and Azure functions. The serverless 

implementation leveraged the decomposition of the traditional broker role into a set of 

serverless functions that perform subscriber registration and deregistration, creating 

subscriptions, and submitting publications. The researchers presented a demo utilizing 

AWS DynamoDB and Azure Table Storage for storage, Amazon Simple Queue Service  

(SQS), and Azure Service bus to implement messaging queues.  

Solving domain-specific problems has also been examined in the literature. Perez et al. 

[31] proposed a programming model for high throughput file processing serverless 

applications. The model brings performance advantages to medical image analysis and 

video analysis applications and relies on customized serverless architectures and containers 

as the execution environment. Rapid RNA sequencing in serverless platforms was 

investigated by Hung et al.[32], while Aytekin et al. [33] examined the use of serverless 

workers for solving optimization problems. The researchers observed performance 

enhancement in solving regularized logic regression problems. Hussain et al. [34] 

examined serverless functions for edge real-time sensor data computations at remote sites 

in the oil and gas industry. 

Due to its stateless nature, a serverless function cannot perform adequately in services that 

rely on in-memory buffers, such as database buffer pools. To improve performance, a user 

submitting subsequent queries to a serverless database engine must ensure that the same 

worker serves their requests. Thus, the literature has explored the concept of addressable 

stateful serverless functions through modifications of existing serverless platforms. Smith 

[35] proposed utilizing key-based addressable serverless functions to implement a 

serverless database. The researcher proposed Partitioned Function as a Service (pFaaS) to 

solve functions’ addressing in serverless platforms. A key-based partitioning of serverless 



26 

 

 

 

platforms enables directing requests to individual serverless workers and thus retaining the 

applications’ state between subsequent function invocations. 

2.6.3 Function Composition and Orchestration 

Implementing a single serverless function is relatively straightforward; however, complex 

serverless applications require sophisticated workflows and coordinating input and output 

exchange between many serverless functions. As with traditional programming models, 

building modern applications as a coordinated set of functions rather than a monolithic 

application is often desirable. Thus, serverless functions’ composition and orchestration 

are vital enablers to implement workflows and coordinate input and output exchange for 

complex serverless applications composed of many serverless functions. 

Being crucial for the success and commercialization of a serverless platform, commercial 

serverless platforms started providing services to enable workflow implementation within 

their platforms’ ecosystem. The orchestration services are offered as stand-alone services 

that integrate with the platforms’ ecosystems. Lopez et al. [15] compared the commercial 

FaaS composition and orchestration systems offered by Amazon’s  Step Functions21, IBM 

Composer22, and Azure Durable functions23 and evaluated them against a set of metrics. 

The researchers concluded that current orchestration systems vary in maturity, 

programmability, and simplicity of adoption. 

Also, engineering function composition and orchestration services as serverless functions 

themselves have been investigated by researchers. Researchers at IBM [16] defined three 

competing constraints for engineering function composition as serverless applications, 

coining the term “serverless trilemma”. In addition, the researchers examined the classes 

of function composition for the core programming model of Apache OpenWhisk and 

proposed a framework extension to implement sequential function composition. 

 

21 AWS Step Functions: https://aws.amazon.com/step-functions/  

22 IBM Composer: https://github.com/ibm-functions/composer  

23 Azure Durable Functions: https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-
functions-orchestrations  
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2.7 Open Problems and Our Research Direction 

As an emerging field, the current state of serverless computing imposes many challenges 

for wide-scale adoption. Several researchers have investigated the limitations and the open 

problems and provided classifications and potential solution roadmaps. Jonas et al. [11] 

presented a futuristic view on what serverless computing should become, specifying five 

classifications of challenges that serverless computing must overcome to reach this vision. 

They categorized the challenges into abstraction, system, networking, security, and 

computer architecture challenges. Baldini et al. [8] similarly identified system-level 

challenges and programming model and DevOps challenges as the two categories of 

challenges facing current serverless platforms. Their paper also identified some open 

research problems as unexplored research areas in serverless computing. 

In existing serverless platforms, a user can specify the memory allocated to their function. 

However, other resources are determined by the platform. This, in turn, has introduced 

resource requirement challenges with existing serverless platforms at the abstraction 

level[11].  Although it is well understood that the delivery model of serverless computing 

aims to abstract the cloud resources and thus enable users to focus only on the code, it is 

imperative that the serverless functions can leverage the resources needed for their code to 

execute efficiently. Besides, at its current state, serverless functions data dependencies and 

communication patterns are hidden from the serverless provider. This can lead to 

suboptimal placement of serverless functions and thus affect their performance. To resolve 

that, serverless functions must communicate their data dependencies and communication 

patterns to the serverless platform.  

In addition to abstraction level challenges, system, networking, and security challenges 

facing serverless computing can be summarized as follows: 

1. Serverless platforms must provide ephemeral and persistent storage for 

serverless functions. 

2. The platforms must provide means for serverless functions to coordinate and 

signal one another.  
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3. Startup times for serverless functions must be minimized, considering the 

different tasks executed at a function’s startup.  

4. Serverless platforms must provide means to define and assess compliance with 

Service Level Agreements (SLA) for serverless functions. Users must be able 

to verify whether the platforms are abiding with their posted SLAs or not.  

5. As applications are decomposed into many serverless functions, serverless 

platforms should expect and manage significant communication overheads on 

broadcast, aggregation, and shuffle. 

6. As serverless functions from different tenants are expected to cohabit on the 

same physical host, co-residency attacks need to be investigated and prevented 

by serverless platforms such as side-channel or rowhammer attacks. Also, 

platforms need to consider scheduling randomization and physical isolation as 

part of their security policies. 

7. Platforms need to provide granularity in the specification of security policies 

for serverless functions  

8. As serverless functions are ephemeral, their network transmissions do not occur 

in bulk. Platforms need to provide mechanisms to avoid leaking access patterns 

and timing information to an attacker monitoring the serverless functions’ 

communication. 

The investigation of these research directions is essential for enabling the adoption of the 

serverless model by the use-cases it was designed to serve. The other cloud delivery models 

very poorly serve these use-cases, i.e., ephemeral, short-lived workloads. As discussed in 

section 1.4, the assumption of the workload’s infinite lifetime and state persistence of the 

IaaS and PaaS models can significantly impact the scaling of ephemeral workloads and the 

overall platform resource utilization efficiency.  
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Currently, users with ephemeral, short-lived workloads are forced to adopt custom ad-hoc 

mechanisms for scaling their applications in IaaS or PaaS clouds. Similarly, cloud 

providers incur significant resource utilization inefficiencies when users deploy ephemeral, 

short-lived workloads to their cloud platform. To shed light on how this issue is 

predominant in IaaS clouds, we dedicate the next chapter to examining the usage trends of 

IaaS clouds. We conduct a pilot study to study the nature of workloads in IaaS clouds and 

their impact on the resource utilization efficiency of the platforms. The results illustrate a 

high presence of ephemeral, short-lived workloads in our examined dataset and a 

significant impact on the resource utilization efficiency of the examined IaaS platforms. 

The results illustrate the necessity of investigating the directions mentioned above to ensure 

the maturity of the serverless model for adoption by these workloads.  
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Chapter 3                                                                          
IaaS Cloud usage behaviors: a pilot study 

 This Chapter includes sections from the papers: 

- M.Elsakhawy and M.Bauer, “Usage Trends Aware VM Placement in Academic Research 

Computing Clouds“ published in the IEEE International Conference on Cloud Computing 

(CLOUD ’21 ) 

- M.Elsakhawy and M.Bauer, “An Investigation into the Usage-trends of Canada’s 

Research Computing Clouds“,  published in the IEEE International Conference on Smart 

Cloud (SmartCloud ’19) 

3.1 Introduction 

As discussed in the previous chapter, IaaS clouds are not well suited to host ephemeral 

stateless workloads due to the stateful nature of these clouds. The IaaS model’s 

shortcoming results in significant disadvantages for end-users utilizing IaaS clouds to host 

these kinds of workloads. We perform this pilot study to highlight the importance of 

developing the serverless model and the necessity of investigating and addressing its 

limitations, amongst which is the lack of SLA definition and assessment mechanisms. The 

study sheds light on the shortcomings of hosting ephemeral stateless workloads in IaaS 

Clouds and how the serverless model could easily act as a superior alternative to hosting 

these kinds of workloads.  

We began our study by exploring the space of publicly published IaaS Clouds datasets. For 

the dataset to be representative of public IaaS clouds, our criteria for the dataset was i) to 

contain records representing VM creation and termination behaviors by the cloud users for 

a sufficiently long duration and ii) the cloud should be serving a large number of users such 

that the hosted workload categories are sufficiently a diverse sample. The records must 

specify the VM’s allocated resources and their lifespan. To our surprise, we discovered 

that the landscape of publicly published datasets for IaaS clouds is non-existent. The 
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dataset24 closest to satisfying our criteria was published by Google’s Cluster platform in 

2013. A more recent dataset25 (v3) was published in 2019. Both datasets, however, are not 

IaaS cloud-specific but are instead computational cluster job records. Thus, these datasets 

are not helpful in our investigation. 

In this absence of public IaaS cloud datasets, we restored to exploring datasets for domain-

specific IaaS Clouds, whose data can be shared by the operating institutions. We obtained 

a dataset representing four public research-computing IaaS clouds in Canada hosted and 

operated by the Compute Canada Federation26. While the clouds are utilized mainly in the 

research-computing domain, thus affecting the generalizability of our findings, the datasets 

provided a step forward in understanding the users’ behavior in IaaS platforms. 

Research computing is a technology sector that provides computing services for research 

needs. Traditionally, this sector was dominated by shared-access high-performance 

computing (HPC) clusters with hundreds of thousands of cores and low latency storage. 

To adjust to a growing demand for isolation and customization, research computing centers 

worldwide have expanded their offerings to include cloud platforms. IaaS remains a 

popular delivery model in research computing clouds, providing compute, storage, and 

network virtualization at its minimalistic offering. Like their commercial counterparts, 

research computing IaaS providers employ VM placement and reallocation algorithms to 

minimize energy consumption, maximize resource utilization, and achieve other 

objectives. Research institutions deploy research-computing IaaS clouds to provide 

computing capacity for researchers. These platforms generally have a limited user base that 

gradually grows as more researchers adopt the platform. Users are granted resource quotas 

for their research projects [36]–[39], and they utilize these quotas to provision the VMs 

required to support their computations.  

 

24
 Google Cluster dataset: https://github.com/google/cluster-data/blob/master/ClusterData2011_2.md  

25
 Google’s cluster traces: https://research.google/tools/datasets/google-cluster-workload-traces-2019/  

26 Compute Canada Federation: https://www.computecanada.ca/home/  
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There are limited literature investigations into the nature of the use-cases of these clouds. 

A study by Blatecky et al. [40] pointed to three categories of applications in academic 

research computing clouds that are either cloud-ready or actively running in the Cloud: i) 

Pleasingly Parallel, i.e., independent highly parallel, workloads; 2) Web portals and 

Gateways, and 3) SaaS applications. Studies by Taylor et al. [41], [42], Panitkin et al. [43], 

and Megino et al. [44] have examined the ongoing wide-scale adoption of research 

computing clouds in the ATLAS experiment [45] by CERN. Posey et al. [46] proposed a 

management tool to facilitate the transitioning of scientific parallel workloads to virtual 

clusters in the Cloud. Compute Canada lists specialized virtual clusters and web portals 

[47] as use cases for its research computing clouds. Toor et al. [48] listed bioinformatic 

data analysis and portals and scalable processing of ozone data as two representative use-

cases to the workloads in the Swedish SSC cloud platform.  

While providing insight into the use-cases of the platforms, the studies mostly relied on 

self-reporting of the IaaS providers or a direct engagement with the platform users. In this 

work, we formalize the process of understanding the usage trends by following a data 

analytical approach. We define usage-trends as a broad set of usage metrics that capture 

aspects of an IaaS platform usage such as resource utilization, VM attributes, user behavior, 

etc. We utilize a cloud’s VM creation and termination records to generate these usage-

trends and use these trends to deduce the ephemeral/persistent nature of the use cases of 

this cloud.  

The dataset we obtained consists of VM records for four of Canada’s public research 

computing IaaS clouds deployed between 2014 and 2017. The four clouds are based on the 

x86 architecture and utilize Openstack as the IaaS framework. Collectively, the platforms 

offered around 13,000 physical CPU cores on nearly 500 PMs. The dataset contained VM 

creation and termination records of approximately 1 million VMs provisioned by end-users 

over four and half years. Users requested access to the platforms leveraging a national 

resource allocation process and utilized VMs to host a broad range of computational 

workloads. The defining characteristics of these clouds can be summarized as: 
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- IaaS quota-based clouds:  The clouds we examined are quota-based IaaS clouds, 

where users are allocated a limited quota of vCPUs, RAM, and storage. The cloud 

platforms utilize “VM Flavors” to define a combination of vCPU count, RAM size, 

and storage size that a VM can use during its lifetime. users create VMs by selecting 

one of the available flavors. When a user reaches their quota, they cannot create 

additional VMs. The resources allocated to a VM are released from the quota when 

the VM is deleted. Hence, both powered-on and powered-off VMs count towards a 

user’s quota. 

- Workload characteristics: Workloads in the clouds utilize VMs for isolation and 

are user-driven. The workloads' start and end times are non-deterministic and 

controlled by the user. 

- Cloud access: Users leverage a cloud portal and a set of API endpoints to provision 

resources in the clouds. 

- Storage: CEPH27 is used as the storage solution. Users are allocated a predefined 

storage quota to attach to their provisioned VMs. 

Openstack28 stores the cloud’s operational data in a SQL-based backend, configurable by 

the cloud operator. The VM’s metadata, such as creation and deletion timestamps, is 

recorded in the dedicated Instances table in the Nova29 database. The dataset comprised 

exported records of the instances table of the four clouds of approximately 1 million VMs 

that were created over four and a half years. We eliminated records of VMs’ provisioning 

failures and duplicated records from the set. The resulting set included records for nearly 

983 thousand VMs, with fields specifying their creation and deletion timestamps, creator 

identifier, and allocated resources. The following section formalizes the main concepts to 

examine usage-trends in IaaS clouds. 

 

27 CEPH: https://ceph.io/  

28 Openstack: https://www.openstack.org/  

29 Nova: https://docs.openstack.org/nova/  
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3,.2 Formulation 

For an IaaS cloud �, at a time instant �, � is a set of all cloud users with access to create 

VMs on � since the inception of � to time instant �. � is a set of all VMs created by � 

from the inception time of � to time instant �. 

� = ���, ��, �� … . , ��� �ℎ��� � � {1,2, … �}  

� �� �ℎ� ����� ������ �� ����� ���� ��������� 

 �� ���� ������� � 

� = {��, ��, �� … . , ��} �ℎ��� � � {1,2, … �}  

� �� �ℎ� ����� ������ �� ��� ����������� �� � ���� ��������� 

 �� ���� ������� � 

   The function that defines the ownership of a VM  is ����� 

 ∀ �� ∈ �: ����� = ��   �ℎ��� �� �� �ℎ� ������� �� �� ��  

For each user ��, the set �� is a subset of � containing only the VMs owned by the user �� 

, where 

∀ �� ∈ �: �� ⊆ �  

���ℎ �ℎ�� �� �� �ℎ� ����� �� ��� �ℎ� ��� �� ������ ��    

VM lifetime � is the duration, in seconds, that the cloud platform � reserves resources for 

a VM, regardless of those resources being actively utilized or not. 

∀ �� ∈ �: �(��) = ��(��) − ��(��) 

Where �(��) is the lifetime of VM ��, ��(��) is the deletion timestamp of VM �� and ��(��) 

is the creation timestamp of VM ��.  Based on their lifetime, VMs can be classified into 

Ephemeral and Persistent VMs. Ephemeral VMs have a short lifetime and host workloads 
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of temporary nature such as short computations or experimental environments. Persistent 

VMs, on the other hand, exhibit a long lifetime and are used for computational workloads 

of stateful nature, such as web-portals and database engines. 

VM creation gap  � is the time difference in seconds between two successive VM creations 

by the same user. VM creation gap is an indicator of the frequency of VMs’ provisioning 

by a user. A very short VM creation gap may indicate the rapid creation of VMs by a user 

to cover the peak load of an application.  

∀ �� ∈ � , ∀ �� ∈ ��: 

  ����, ��� = ��(��) − ��(����) �ℎ��� ���� ∈ �� 

Where ����, ��� is the VM creation gap of VM �� created by user ��and ��(��) is the 

creation time of VM �� and ��(����) is the creation time of VM ����. 

VM resource allocations R defines the number of virtual CPU cores (vCPU) and the 

memory size assigned to a VM.  

∀ �� ∈ �: �(��) = {��, ��}     

�ℎ��� ���� �ℎ� ������ �� ��������� �����  

��� ���� �ℎ� ���� �� ��������� ������ 

We grouped the examined VMs’ lifetimes into three intervals that reflect the degree of 

persistence of the computational workload. A VM’s workload degree of persistence 

increases with the increase in its lifetime. We define Highly-Ephemeral VMs as having a 

lifetime of less than 1 hour, while Moderately-Ephemeral VMs have a lifetime of between 

1 hour and one day. Persistent VMs have a lifetime of more than one day. The percentiles 

of VMs’ lifetimes in each range are shown in Table 1 and graphically illustrated in Figure 

4. 
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Table 1: VM lifetimes 

VM Lifetime Percentiles 

1 hour or less 45.5% 
Between 1 hour and a day 52.7% 

More than one day 1.9% 

 

Figure 4: VM Lifetimes 

By examining the VM lifetime data, it is evident that Highly-Ephemeral VMs are of a 

dominant presence, with 45.5% of the VMs being deleted within 1 hour of creation. In 

contrast, Persistent VMs, with a lifetime of more than one day, accounted for only 1.9% of 

the surveyed VMs.  

Similarly, we grouped the VMs’ creation gap into three ranges to reflect the frequency by 

which users provision VMs. High-rate VMs’ provisioning occurs when VMs are 

provisioned within 1 minute of one another. This process potentially leverages the API 

end-points and external schedulers or scripts to provision VMs. Moderate-rate VMs’ 

provisioning occurs when VMs are created with a creation gap between 1 minute and one 

hour. Finally, Low-rate VMs’ provisioning occurs when VMs are created within more than 

1 hour of one another. The percentiles of VMs’ creation gaps are shown in Table 2 and 

graphically illustrated in Figure 5. 
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Table 2:  VM Creation Gaps 

VM Creation Gap Percentiles 

1 minute or less 63% 
Between 1 minute and 1 hour 34.9% 

More than one hour 2.1% 

 

Figure 5: VM Creation Gaps 

By examining the VM creation-gap, it is evident that High-rate and Moderate-rate VM 

provisioning are of a dominant presence, while Low-rate VM provisioning has a minimal 

presence. 

Lastly, we analyzed the VMs’ resource allocations (Allocated Disk size, RAM size, and 

vCPU count) in the four clouds and grouped them into ranges starting with memory 

allocation from 2 Gigabytes to 32 Gigabytes and CPU allocation from 2 vCPUs to 32 

vCPUs. The percentiles of every range are shown in Tables 3, 4, and 5. 

Table 3: Allocated Disk Distributions 

VM Allocated Disk Percentiles 

20 GB or less 86% 
More than 20 GB 14% 
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Table 4: Allocated vCPU Distributions 

VM Allocated vCPUs Percentiles 

2 vCPUs or less 22.1% 
3 or 4 vCPUs 2.4% 
5 to 8 vCPUs 68.2% 
9 to 16 vCPUs 7.15% 
17 to 32 vCPUs 0.01% 

More than 32 vCPUs 0.03% 

Table 5: Allocated Memory Distributions 

VM Allocated Memory Percentiles 

2GB or less 7.8% 
3 or 4 GB 7.7% 
5 to 8 GB 7.9% 
9 to 16 GB 16.1% 
17 to 32 GB 65.4% 

More than 32 GB 8.9% 

The distributions of the VM lifetimes and VM creation gap metrics show a dominant 

presence of rapidly-created, short-lived VMs in the four clouds. 45.5% of the examined 

VMs have a lifetime of one hour or less, while 63% of the VMs have a creation gap of one 

minute or less. A large number of VMs appear to be provisioned to execute ephemeral 

computations and are deleted once the computation is complete. While feasible in IaaS 

clouds, this use-case is highly inefficient from a resource allocation perspective.  

As mentioned earlier, IaaS platforms use placement algorithms biased towards workload 

persistence and do not account for the ephemeral nature of the workloads identified in our 

dataset examination. To examine the effects of placing these ephemeral workloads on the 

resource allocation efficiency of the IaaS cloud platforms, we examined the resource 

utilization of the PMs in the provider’s server pool throughout four years of VM placement 

(Jan 2015 to Jan 2019). Our examination focused on identifying the underutilization of 

PMs, i.e., when the placed VMs consume 50% or less of their host PM’s resource capacity.   

For a cloud provider C with a PMs pool P 

� = {��, ��, ��, . . . , ��} �ℎ��� 1 ≤ � ≤ �                          

where m is the total number of PMs in P 
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A PM �� ∈ �is modeled as a set of resources 

�� = {��, ��, ��}                                        

Where ��is the number of CPU cores for PM ��and ��, and �� are the memory and the disk 

capacity of PM ��. 

PM �� can occupy one of two states at a time instant � : i) active (powered-on) state and ii) 

inactive (powered-off) state. The Activeness function � is formulated as 

�(��, �) = �
 1 �� �� �� ������ �� ���� ������� �   
0                                            ��ℎ������

                

To minimize the scope of our investigation, we chose to focus on CPU utilization as a 

single dimension of the PMs’ resource utilization. We define the CPU utilization function 

U of a PM �� at time instant � as the aggregate count of CPU cores allocated to VMs on �� 

at time instant � 

�(��, �) = ∑ ����������
�    �ℎ��� 1 ≤ � ≤ �                      

�ℎ��� � �� �ℎ� ������ �� ��� ℎ����� �� �� �� ���� �  

A PM �� with CPU capacity �� cores, �� is underutilized at time instant t if the aggregate 

CPU cores allocated to VMs on �� at time instant t is less than a predefined ratio, i.e. ��/� 

where � is a positive integer. In this work, we choose � = 2, where a PM is underutilized 

if its instantaneous aggregated CPU utilization is less than 50% of its CPU cores capacity, 

i.e., <  ��/2.  The underutilization function R is formulated as: 

�(��, �) = �
  1             �� �(��, �) <  ��/2   
  0                              ��ℎ������

                            

The powered-on (active) time of PM �� is denoted as ���(��),which is equal to the total 

number of seconds where �� is powered-on. ���(��) can be divided into a set of equal 

intervals. i.e. 

���(��) = {��, ��, . . . ��} 
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where ∑ �� 
�
�  =  ���(��).                                

For �� to be considered underutilized in the interval ��, it must satisfy the underutilization 

function �(��, �)for a minimum of ��/2 seconds in �� : 

�� ∑ �(��, �)
��

� � �     ≥     �� / 2                            

�� �� �� ���������� ������������� �� �� 

We specify �� = 3600 �������, i.e., one hour, to examine the hourly PM underutilization 

in our dataset. We computed the total hourly utilization per PM and flagged PMs whose 

resource utilization did not exceed 50% for 1800 seconds (i.e., half-hour) and labeled these 

PMs as underutilized. The percentage of underutilized PMs to the total number of PMs is 

plotted in Figure 6. The diagram shows the percentage on an hourly basis (i.e., every hour 

for the VM placement period of four years).  

Figure 6: Underutilized PMs Percentage 

Jan 2015                                                                                                                                                                   Jan 2019  

                                                              Validation Duration (hourly) 
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Table 6: Underutilized PMs 

Underutilized PMs Percentiles 

Min 24.7% 
Max 94.4% 

As shown in Fig. 6 and Table 6, a significant percentage of the PMs in the providers’ server 

pool was underutilized throughout the examined period. The underutilized PMs percentage 

ranged from 24.7% at best to 94.5% at worst. At best, a quarter of the provider's PMs pool 

was underutilized throughout the four years period of our examination. These underutilized 

PMs continued to incur the same energy consumption as fully utilized PMs while their 

resources were idling.  The results demonstrate the visible impact of placing ephemeral 

workloads, which are the majority of the workloads in our dataset, in IaaS clouds that 

assume a persistent nature of the workloads. The providers faced higher energy 

consumption and idling resources while end-users were forced to adopt ad-hoc mechanisms 

for scaling their ephemeral workloads through high-rate VM provisioning. While the 

providers could have employed dynamic consolidation techniques to reduce the PM 

underutilization, they would have had to activate such techniques very frequently 

(potentially hourly), causing massive migrations of many VMs, thus impacting their 

performance.   

3.3 Results and Discussion 

The results of our examination [36] highlight that a significant percentage of the workloads 

in the examined IaaS clouds are ephemeral. The majority of the provisioned VMs had 

20GB or fewer storage allocations and a lifetime of one hour or less. Users appear to have 

adopted their ephemeral workloads to the persistent nature of the IaaS model by using 

external schedulers that rapidly dispatch VMs for computations and terminate the VMs 

once the computations are complete. End-users were responsible for coordinating state-

sharing (i.e., data) between running VMs to avoid conflicts. 

While such ad-hoc techniques were able to retrofit IaaS clouds to the ephemeral workloads, 

they incurred several disadvantages: 
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- High-rate VM provisioning using external schedulers requires the end-users to have 

the expertise to adopt these complex technologies. While some users may have 

sufficient technical knowledge to achieve this, most IaaS users do not.  

- By default, resource allocation algorithms in IaaS clouds assume an indeterministic 

lifetime for provisioned VM. The short lifetime of ephemeral workloads mandates 

that dynamic consolidation techniques are employed very frequently to ensure that 

the provider’s placement objectives continue to be met at runtime. In addition to 

the consolidation cost of such techniques that the end-users and the providers incur, 

this essentially invalidates the initial VM placement decisions for ephemeral 

workloads as these decisions are expected to change very frequently throughout the 

VMs lifetime.  

- End-users incur unnecessary overheads to their computations, such as the VM’s 

underlying operating system, hypervisor, and network virtualization overheads. 

These overheads are mandated by the IaaS model and can be reduced by leveraging 

minimalistic isolation technologies such as containers or isolated runtimes. 

- While this was not directly visible in our examined data, features such as 

autoscaling and HA are left to the end-users to implement. These features also 

require technical expertise that many users lack.   

Our examination results illustrate the importance of developing the serverless model to 

serve the ephemeral workloads poorly served in the other cloud delivery models. As 

discussed in Section 2.7, we chose to focus on investigating how performance guarantees 

can be established in the serverless model. Such guarantees are an existential necessity for 

both the financial feasibility of the pay-upon-execution model in serverless computing and 

for establishing the user faith in moving their workloads to serverless platforms. The next 

chapter discusses SLA in cloud computing and demonstrates how SLA in the serverless 

model fundamentally differs from earlier cloud computing models. We discuss the 

challenges facing the definition of FaaS SLA due to its unique abstraction levels. In 

Chapter 5, we illustrate how seemingly trivial end-user choices can significantly impact 

the performance of serverless functions.  
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Chapter 4                                                             
SLA in Cloud Computing 

4.1 Introduction  

Service level agreements (SLAs) specify the contractual obligations of cloud computing 

providers to their customers. Providers must abide by these agreed-upon SLAs or risk 

penalties for incompliance. Customers rely on a provider’s SLA to guide their providers' 

choices and level-set their expectations of the cloud platform.  While the contractual 

obligations vary between cloud providers, the SLA specifications generally utilize a 

standard set of measurable metrics based on the nature of the cloud delivery model. In the 

coming sections, we discuss SLA in the IaaS and PaaS delivery models and how it 

fundamentally differs from FaaS SLA.  

4.2 IaaS and PaaS SLA 

In IaaS and PaaS delivery models, SLA is generally defined in terms of resource-

guarantees and platform uptime. In resource-guarantees, the provider promises the 

customer a predetermined set of computational resources with particular specifications and 

sizes. An SLA violation occurs if a customer’s computational entity, i.e., a VM or a 

container, is not granted its promised resources when requested. IaaS and PaaS users can 

use various OS or container tools to validate the resources available to their VMs or 

containers. On the other hand, platform-uptime specifies the minimum duration for the 

VMs or containers to be available and operational. The provider guarantees that the user’s 

entity (VM/container) is running and that the components in the cloud platform (e.g., 

networking and storage) are operational and healthy. The platform uptime is commonly 

assessed monthly, and providers are penalized for downtime durations exceeding that 

allowed by the SLA. 

While resource-guarantees suited the IaaS and PaaS models, the FaaS model abstracts 

computational resources, making it impossible to define an SLA using resource-

guarantees. In essence, FaaS exhibits the following unique characteristics that distinguish 

its SLA from earlier delivery models: 
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- FaaS abstracts the resource, ecosystem, and execution environment layers, 

requiring end-users only to submit code to be executed. With such abstraction, 

computational resources are hidden from end-users and beyond their control and 

assessment. Serverless platforms are responsible for selecting the resource 

allocations and the execution environment configurations required to execute a 

serverless function optimally. 

- The FaaS model segregates computations from data, and thus serverless functions 

are highly dependent on the provider’s ecosystem for data storage, access, and 

communication. This increases the complexity of assessing SLA violations since 

many components within the ecosystem contribute to the serverless function’s 

performance.  

- The execution duration of serverless functions is expected to vary based on non-

SLA impacting factors, such as input payload sizes, the computational workflows, 

and the nature of the functions’ computations. Hence, execution durations cannot 

be utilized solely to evaluate a function’s performance.  

- The performance of the resource, ecosystem, and execution environment layers that 

directly impact a function’s execution-performance varies significantly between 

multiple serverless providers, as Jackson et al. [26] illustrated. 

For these reasons, defining SLAs in serverless computing must accommodate the 

uniqueness of its abstraction level and performance attributes. In the next section, we 

investigate SLA in serverless computing and propose the notion of an execution-SLA as a 

means of defining execution-performance guarantees for serverless functions. 

4.3 SLA in Serverless Computing 

Defining execution-performance guarantees is crucial for serverless computing due to their 

direct financial implications. Users incur costs based on the execution durations of their 

functions and the consumed resources. Bottlenecks that adversely affect a function’s 

execution-performance result in higher user costs and impact the financial attractiveness 

of the serverless model. Little work has been done to investigate SLA in serverless 

computing. Nguyen et al. [49] investigated invocation-rate guarantees, i.e., invocation-

SLA,  in serverless frameworks as a requirement for real-time applications to leverage 
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serverless functions. The authors, however, did not address guarantees on a function’s 

execution-performance. 

While some attempts have been made to investigate serverless Quality of Service (QoS) 

and Service Level Objectives (SLOs), the works focused only on function scheduling, 

startup, and data-access latency [50]–[53]and invocation concurrency [12], [22], [49]. 

These objectives, while important, are only a subset of the performance guarantees for 

serverless functions. To provide a holistic SLA for FaaS, platforms must define guarantees 

on the factors that impact a function’s performance from invocation to termination. These 

factors can be grouped as:   

- Request servicing latency  

- Resource allocation and provisioning latency  

- Performance of the execution environment 

- Performance of the platform’s ecosystem  

- Invocation concurrency 

The mentioned factors are illustrated in Fig. 7, which follows a serverless function’s 

lifetime (1-4) along with its concurrency (5). In the following sections, we clarify these 

factors and their role in a function’s execution. 

 

Figure 7: Aspects of FaaS execution performance 
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4.3.1 Request Servicing Latency. 

Serverless functions are event-driven [8] and receive requests through a set of triggering 

events. These triggering events can be HTTP requests, object store put-events, and database 

row inserts. The request servicing latency is defined as the FaaS platform’s time-consumed 

to detect an incoming request, acknowledge it, and redirect it to the component responsible 

for starting the execution procedure. 

4.3.2 Resource Allocation and Provisioning Latency 

After the request is serviced, the platform must allocate resources to the function’s 

execution environment. A component within the FaaS platform utilizes a placement 

algorithm to select the Physical Machine (PM) or the Virtual Machine (VM) to allocate the 

resources on, based on the function’s resource requirements, the PM’s (or VM’s) 

utilization, and the placement objectives. The time consumed by the algorithm to make the 

placement decision, start/repurpose an execution environment on the selected PM or VM, 

and transfer the function’s code to the execution environment. 

4.3.3 Performance of the Execution Environment 

An execution environment provides an isolated process space and the interpreter required 

to execute the function’s code. Docker and other container technologies are widely used in 

serverless platforms to implement process isolation. The execution environment’s 

performance can be impacted by a broad range of factors such as the choice of 

containerization technology [23], [53], its configuration, interpreter optimizations, and 

runtime libraries. 

4.3.4 Performance of the Platform’s Ecosystem 

Serverless functions are stateless microservices that rely on the provider’s ecosystem for 

data storage, access, and communication. The standard ecosystem services, also referred 

to as Backend as a Service (BaaS) [54], include object storage, databases, and messaging 

queues. The performance of these services directly impacts a function’s performance. 
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4.3.5 Invocation Concurrency 

When the number of concurrent requests increases, the platform must scale up the number 

of running instances of the function [49]. Platforms must provide guarantees on the 

maximum number of concurrently running function instances and the rate by which they 

can scale up these instances. 

4.4 The Challenge of FaaS SLA  

The ability to measure the abovementioned factors is essential for defining performance 

guarantees in serverless computing. The request servicing and resource allocation latencies 

(Sections 4.3.1 and 4.3.2) can be measured by examining each responsible component’s 

time consumed to complete its functionality. Similarly, the invocation concurrency 

(Section 4.3.5) can be measured by monitoring the number of concurrent execution 

environments and the rate of scaling up the number of instances [12], [22], [55]. 

In contrast, measuring the execution environments’ performance and the ecosystem’s 

performance (Sections 4.3.3 and 4.3.4) is not a simple task. Determining the metrics that 

reflect an execution environment’s performance is complicated as the configuration, and 

optimization options for containers and interpreters are endless and vary significantly 

between different containerization technologies [56], [57], and programming languages 

interpreters [58]. Similarly, every service of the platform’s ecosystem (object storage, 

messaging queue, etc.) has unique performance metrics specific to its particular 

functionality. Thus, it is crucial to dedicate efforts to identifying the metrics that can 

measure the performance of these two abstracted layers.  

Classical approaches for defining performance do so in terms of execution durations of 

running applications. For serverless environments, however, we cannot rely on execution 

duration as a metric for performance measurement for the following reasons: 

- The abstraction of execution environments and ecosystem services: 

o End users have limited insight and control on the choices made by the 

provider in the execution environments configuration, containerization 

technology, and the ecosystem services configurations and optimizations. 
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Execution duration of a single function on the same serverless platform have 

shown to exhibit wide variability, as illustrated in [58]  

-  The dependency of execution durations on the particular function’s workflow: 

o The execution duration of functions may depend on many factors, including 

the input payload type and size as well as the function’s computational 

workflow. Thus executions durations can be impacted by any change in 

these factors and not only the performance of the execution environment 

and the ecosystem. 

In the next chapter, we illustrate the performance variations of serverless execution 

environments (sections 5.3 and 5.4) by examining the impact of multiple environmental 

optimizations on the execution durations of serverless functions. We illustrate that 

seemingly trivial decisions can significantly affect the execution durations and 

consequently the associated expenses. We then demonstrate how minor ecosystem 

performance degradations (section 5.5) can similarly impact a function’s execution 

duration. We later shift our focus in Chapter 6 to examine the specification metrics that can 

be leveraged to measure a function’s execution performance. 
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Chapter 5                                                                                    
Serverless Execution Performance 

This Chapter includes sections from the paper: 

- M.Elsakhawy and M.Bauer, “Performance Analysis of Serverless Execution 

Environments” published in the 3rd International Conference on Electrical, 

Communication, and Computer Engineering (ICECCE’21) 

5.1 Introduction 

Serverless platforms bill users for the execution duration of their functions. Commercial 

platforms use increments of 100ms as a basis to calculate the incurred costs. The longer a 

user’s function takes to execute, the higher costs the user incurs; thus, it is in a user’s best 

interest for their function to execute in the least possible duration. While a user can control 

the optimization of their function’s code, as mentioned in the previous chapter, a broader 

set of factors impacts the function’s execution performance. This chapter examines the 

impact of execution environments and ecosystem degradations on the execution 

performance of serverless functions.  

5.2 Serverless Execution Environments 

Serverless functions are executed in isolated execution environments when a triggering 

event is satisfied [14]. General-purpose container technologies, such as Docker, are a 

popular choice by serverless platforms for their portability and wide-scale adoption [23]. 

These container technologies provide a broad spectrum of configuration choices for 

building serverless execution environments. Users can select from a growing number of 

container operating systems, high-level language interpreter versions, and runtime libraries 

to create a function’s execution environment. Such diversity allows tailoring execution 

environments to satisfy the requirements for every unique serverless function. However, it 

also introduces the potential lack of uniformity between execution environments. 

Commercial serverless platforms attempt to address such nonuniformity in their platforms 

by offering users a limited set of pre-built execution environments. The pre-built 

environments provide a limited number of language interpreter choices (e.g., Python, Java, 
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etc.) and versions (Python 3.7, 3.8, etc.). Users can import custom execution environments 

if their functions require unique runtime libraries or sophisticated customizations. Users 

with non-unique requirements or with limited technical expertise are encouraged to utilize 

pre-built execution environments. The nonuniformity of execution environments also 

impacts opensource serverless platforms. Some platforms, such as Apache OpenWhisk, 

allow operators to define a set of pre-built execution environments for users to use. Knative 

users, on the other hand, generally build execution environments embodying their 

function’s code. 

As more users adopt the serverless model, it becomes essential to investigate and establish 

performance guidelines. Users assume that the serverless provider optimizes pre-built 

execution environments to achieve the serverless function’s fastest execution. However, it 

has been illustrated by Jackson et al. [25] that significant performance variations exist 

between serverless providers and even within the same provider’s execution environments. 

The authors compared execution durations and costs for a serverless function on AWS and 

Azure platforms using different interpreters and discovered significant variations in the 

function’s execution durations on both platforms. They highlighted that the language 

interpreter’s choice could significantly impact serverless functions’ execution. Lee et al. 

[22] uncovered performance differences between commercial serverless platforms related 

to concurrency, I/O throughput, and elasticity. Tariq et al. [52] examined the current 

scheduling practices in serverless providers and uncovered issues related to inflated 

application runtimes, function drops, and inefficient allocations. Ginzburg et al. [59] 

explored performance variations in AWS Lambda and discovered temporal and spatial 

performance variations consistent enough to exploit.  Martins et al. [55] also noted the 

performance variations in latency, throughput, and computation time between commercial 

providers. Hellerstein et al. [14] pointed that none of the major serverless providers offer 

transparent APIs to examine the service levels for their FaaS platform. 

The suitability of container technologies has also been studied by Oakes et al. [23]. The 

authors highlighted that general-purpose containers imposed restrictions on low-latency 

invocations of functions and proposed a special-purpose container to improve Python 



51 

 

 

 

serverless functions’ latency. Tiwary et al. [53] proposed WebAssembly30 (WASM) for 

improving serverless performance. 

To investigate execution environments’ performance, we first identify the components that 

form an execution environment as i) a Skeleton Container; ii) an Execution Engine, and iii) 

Runtime libraries: 

 A Skeleton Container: provides an isolated namespace for computations, file 

system operations, and network I/O for the executed function. Lightweight Linux 

containers are popular skeleton containers for execution environments. 

 An Execution Engine: provides a language-specific interpreter of the function’s 

code. Python, NodeJS, and Java are some of the popular high-level languages for 

serverless functions 

 Runtime Libraries: They are the libraries needed to execute the function’s code. 

Numpy31 , Scipy32 , PIL33  are popular Python libraries for linear algebra and image 

processing. 

These three components’ performance directly impacts an execution environment’s 

performance and, consequently, a function’s execution performance. We focus on 

investigating the performance impact of the choice of skeleton container and execution 

 

30
 WASM: https://webassembly.org/  

31
 Numpy: https://numpy.org/  

32
 SciPy: https://www.scipy.org/  

33
 Pillow: https://python-pillow.org/  
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engine versions and compiler-level optimizations. The rationale for our focus on these 

specific components is as follows: 

 Skeleton containers are, in essence, Linux distributions. Their memory footprint, 

general optimizations, and default packages impact the execution environment’s 

performance. 

 Execution Engines are compiled binaries whose performance is influenced by i) 

compiler-level optimizations, i.e., builds, and ii) version differences, i.e., releases. 

Our analysis explores the performance variations of skeleton containers, and execution 

engine builds and releases by focusing on the following two aspects: 

 Execution performance: We evaluate the speed of executing a serverless function 

by an execution environment. To quantify that, we leverage the function’s 

execution duration, which is the time consumed by the execution environment to 

complete one execution of the function’s code. 

 Execution consistency: We evaluate the variability of execution durations of the 

same execution environment. We measure the standard deviation of a function’s 

execution durations and use that to assess the consistency of executions per 

execution environment 

We divide our investigation is into two parts: 

 Section 5.3 focuses on the impact of skeleton containers and execution engine 

builds on serverless functions’ execution performance and consistency. We 

benchmark seven popular skeleton containers using multiple builds of the Python 

3.8.1 execution engine. 

 Section 5.4 focuses on the impact of execution engine releases on serverless 

functions’ execution performance and consistency. We benchmark multiple 
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releases of AWS Lambda, Microsoft Azure Functions, and Google Cloud 

Functions, pre-built Python execution environments (3.6, 3.7, and 3.8). 

5.3 Impact of Skeleton Container and Execution Engine 
Builds 

This section focuses on analyzing the impact of skeleton containers and execution engines’ 

build on a function’s execution performance. We benchmark seven popular skeleton 

containers using multiple builds of the Python execution engine. The choice of Python 

execution engine was due to the popularity of the Python programming language among 

software developers. We benchmarked the latest Python release available at the time of 

investigation (Python 3.8.1). We developed a benchmarking function that performs a 

sequence of matrix multiplications and additions utilizing the NumPy library. The function 

is intentionally designed to be input-less and output-less to avoid the interference of I/O 

latency with the collected statistics. 

Four of the benchmarked skeleton containers are based on Alpine Linux34, while the 

remaining three containers are general-purpose containers based on Debian35, Ubuntu36, 

and Amazon Linux37. The rationale for our choices of the skeleton container and execution 

engine compiler combinations is as follows: 

- Alpine Linux is the default skeleton container for Apache Openwhisk execution 

environments. Additionally, Debian and Alpine Linux are the skeleton containers 

of choice for the official Python docker containers on Dockerhub38 and are 

 

34
 Alpine Linux: https://alpinelinux.org/  

35
 Debian: https://www.debian.org/  

36
 Ubuntu: https://ubuntu.com/  

37
 Amazon Linux AMI: https://aws.amazon.com/amazon-linux-ami/  

38
 Python Dockerhub: https://hub.docker.com/_/python  
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commonly used in the Knative framework. Both containers are widely utilized in 

opensource serverless frameworks to create execution environments 

- Ubuntu is a  popular general-purpose container. Users familiar with the Ubuntu OS 

may be inclined to use Ubuntu to create custom execution environments. 

- Amazon Linux is the default skeleton container used in Amazon AWS Lambda, so 

it was essential to benchmark it as a reference in our performance analysis. 

- We used the default versions of GCC and CLANG compilers offered by each 

skeleton container distribution’s repositories. Users are likely to utilize the default 

compiler that ships with their skeleton container to compile the execution engine. 

We also used the default optimization options of every compiler, as users are likely 

to do the same. 

The combinations of skeleton containers and compilers that we benchmarked are listed in 

Table 7. 

Table 7: Benchmarked Execution Environments 

Skeleton Container Execution Engine Compiler 
Alpine Linux 3.8 GCC 6.4 
Alpine Linux 3.9 GCC 8.3 
Alpine Linux 3.11 GCC 9.2 
Alpine Linux 3.11 CLANG 9 

Ubuntu 18.04 GCC 7.4 
Amazon Linux GCC 7.3.1 

Debian Linux 10 GCC 8.30 

We deployed the execution environments to a Knative cluster with one control node and 

one worker node. The two nodes’ hardware setup is identical, each with 20 cores based on 

Intel(R) Xeon(R) CPU E5-2660 v3 processor and 128 GB of Memory. We performed 1000 

invocations of our benchmarking function and recorded the execution durations. We used 

Knative directives to ensure execution environments are kept idle between executions to 

avoid cold-start latency of starting new execution environments. To avoid the interference 

of co-located applications on the performance of the execution environments, we ensured  
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that the Knative worker node had no running processes during our experimentation.  The 

resulting execution durations are shown in Table 8 and are plotted in Figure 8. 

 

 

 

 

 

Table 8: Execution Duration (in Seconds) 

 

 

Figure 8: Execution Durations of Benchmarked Environments 

Skeleton Container 
Min   

    
Max Mean Std. 

Dev 
Alpine Linux 3.8 - GCC 6.4 16.3 26.7 20.4 0.59 
Alpine Linux 3.9 - GCC 8.3 15.9 27.3 21.5 0.45 
Alpine Linux 3.11 - GCC 9.2 15.9 30.2 26.4 0.52 

Alpine Linux 3.11 – CLANG 9 16 29.9 24.5 0.48 
Ubuntu 18.04 - GCC 7.4 15.7 22.8 16 0.39 

Amazon Linux - GCC 7.3.1 15.7 21.5 16 0.46 
Debian Linux 10 - GCC 8.3.0 19 25.8 19.47 0.42 
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The results show significant variations in the execution durations of the benchmarked 

environments. Amazon and Ubuntu Linux, both utilizing Python builds compiled with 

GCC version 7, outperformed executions using Alpine Linux and Python builds compiled 

with GCC versions 6, 8, and 9 and CLANG. Debian Linux, with GCC 8.3.0, exhibited 

fewer performance degradations but remained of lower performance than Amazon and 

Ubuntu Linux. The results demonstrate that seemingly non-important decisions such as 

skeleton containers or execution engine builds can result in up to 62% performance 

degradations. We also found that newer versions of Alpine and GCC appear to under-

perform older versions. This behavior can be counter-intuitive to users attempting to 

improve performance by using the latest releases of skeleton containers and compilers. 

The executions of the benchmarked environments were generally consistent. Deviations 

from the mean execution durations existed but were reasonably limited. We, thus, believe 

that skeleton containers and execution engine builds do not substantially impact the 

execution consistency of serverless functions. 

5.4 Impact of Execution Engine Releases 

This section of the investigation focuses on the impact of execution engine releases on 

serverless functions’ execution performance and execution consistency. While users of 

open source platforms are likely to build their execution environments, users of commercial 

platforms are more likely to leverage one of the platform’s pre-built execution 

environments. The pre-built environments offer different releases of execution engines 

(e.g., Python 3.6 and Python 3.7) that support multiple high-level languages (e.g., NodeJS, 

Python.etc.). 

It was possible to investigate the impact of execution engine release differences using the 

same benchmarking setup in Section 5.3. However, it is more valuable to perform our 

analysis on commercial platforms where users frequently decide on execution engine 

releases. Thus, in this part of the investigation, we benchmark the pre-built Python 3 

execution engines offered by the commercial platforms: i) AWS Lambda; ii) Google Cloud 

Functions; iii) Azure Cloud Functions. We developed a benchmarking function that 

performs a sequence of factorial calculations for a fixed set of numbers using Python’s 
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Math39 library. We refrained from using the NumPy library since it is not available by 

default in the benchmarked pre-built execution environments. The function is written in 

Python 3 and is compatible with the benchmarked execution engines. We invoked the 

function in the three platforms by defining an external API triggering event in each 

platform. When the API is called, the function is executed. We used a Linux VM hosted in 

Compute Canada’s Graham Cloud to call the API.   

5.4.1 AWS Lambda 

We deployed the benchmarking function to the Python 3 execution environments offered 

by AWS Lambda: i) Python 3.6; ii) Python 3.7; and iii) Python 3.8. We performed 1000 

invocations of the function in each execution environment with a gap period of 1 second 

between invocations. The gap period was chosen to ensure a warm invocation and avoid 

cold-start latency [12]. We utilized AWS CloudWatch40 to report the execution durations 

of the three execution environments. The results are presented in Table 9 and plotted in 

Figure 9. 

Table 9: AWS Lambda Execution Durations 

Execution Environment 
Min   

    
Max Mean Std. Dev 

Python 3.6 49.3 141.6 85.7 17.9 
Python 3.7 75.1 171.6 134.2 9.3 
Python 3.8 110.6 215.6 171.9 12.2 

 

39
 Python Math: https://docs.python.org/3/library/math.html  

40
 AWS Cloud Watch: https://aws.amazon.com/cloudwatch/  
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Figure 9: AWS Lambda Execution Performance 

The results show performance degradations ranging from 9% to 30% between the 

execution environments. They also align with our earlier findings that newer releases of 

execution engines do not necessarily result in better execution performance. Executions 

utilizing the Python 3.8 execution environments underperformed both Python 3.7 and 

Python 3.6 environments. The execution consistency was reasonably acceptable, with most 

of the execution durations having limited deviations from the mean. However, due to the 

billing practices in AWS that round-up execution durations to the next 100ms step, costs 

incurred for Python 3.8 and 3.7 executions are significantly higher than the costs for Python 

3.6 illustrated in Figure 10. 
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Figure 10: AWS Lambda Billing Durations 

5.4.2 Google Cloud Functions 

Similarly, we benchmarked the pre-built Python 3 execution environments offered by 

Google’s Cloud Functions platform: i) Python 3.7 and ii) Python 3.8. In contrast with AWS 

Lambda, Google’s Cloud Functions do not offer pre-built Python 3.6 environments. We 

performed 1000 invocations of the benchmarking function using each of the Python 

execution environments. We used Google’s Cloud Logging41 to record the execution 

durations. The results are presented in Table 10 and plotted in Figure 11. 

Table 10: Google Cloud Functions Execution Durations 

Execution Environment 
Min   

    
Max Mean Std. Dev 

Python 3.7 15 225 69.8 51.4 
Python 3.8 15 226 87.5 56.2 

 

41
 Google Cloud Logging: https://cloud.google.com/logging  
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Figure 11: Google Cloud Functions Execution Performance 

The results illustrate a limited performance degradation when using Python 3.8 vs. Python 

3.7 execution environments. Also, the execution performance in Google’s Cloud Functions 

exhibited high execution inconsistency. To examine its impact on the incurred costs, we 

plot the execution durations as 100ms steps utilized by Google for billing in Figure 12. 

 

Figure 12: Google Cloud Functions Billing Durations 
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The results illustrate a visible impact for execution inconsistency, with our benchmarking 

function incurring three different costs for executions. The inconsistency impact was 

higher in the Python 3.8 environment, where approximately 42% of the executions were 

charged for 200ms or more compute resources. 

5.4.3 Azure Cloud Functions 

Finally, we benchmarked the pre-built Python 3 execution environments offered by Azure 

Cloud Functions platform: i) Python 3.6; ii) Python 3.7; and iii) Python 3.8. We used the 

same benchmarking function and performed 1000 invocations on each of the Python 

execution environments. We used Azure’s Monitoring42 to record the execution durations. 

The results are presented in Table 11 and plotted in Figure 13. 

Table 11: Azure Execution Environments Performance 

Execution Environment 
Min   

    
Max Mea

n 
Std. Dev 

Python 3.6 29.4 300.6 41.6 11.7 
Python 3.7 24.8 143.3 32.8 5.76 
Python 3.8 29.1 172.7 38.6 7.44 

 

42
 Azure Monitor: https://azure.microsoft.com/en-ca/services/monitor/  
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Figure 13: Microsoft Azure Execution Performance 

The results show an execution performance variation between the three execution 

environments ranging from 8% to 28%. The execution durations were reasonably 

consistent, and the billing durations for 99% of the executions fall into the same billing 

category (< 100ms). 

5.5 Impact of Ecosystem Performance 

To demonstrate how minor ecosystem performance degradations can significantly impact 

the execution duration of a serverless function. We developed a simple object-storage 

Python function that retrieves a 50MB object from a MinIO bucket and rewrites the object 

to another bucket. We performed 1000 executions of the function and recorded the 

execution durations. We then induced a superficial 10ms network latency to the MinIO 

object storage server and repeated the 1000 executions while recording the execution 

durations. We used the same skeleton container, execution engine build, and release 

(Debian Linux 10 – GCC8.3.0 and Python 3.8.1) for all the executions. The purpose of this 

exercise is to examine how seemingly minor ecosystem degradations can cause a 
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significant increase in execution durations. The execution durations are presented in Table 

12 and plotted in Figure 14. 

Table 12: Execution Durations per induced latency 

Induced latency 
Min   

    
Max Mean Std. Dev 

0 ms  1.7 3,8 1.8 0.13 
10 ms 2.1 4.4 2.2 0.18 

 

Figure 14: Execution Durations per induced latency 

The execution durations show significant degradations (22% on average) when a 10ms 

induced latency impacts the object storage. The impact may be further compounded in real-

life scenarios if the serverless function executes multiple object storage operations.  

5.6 Discussion 

The results illustrate that the choice of these three execution environment parameters 

(skeleton containers, execution engine builds, and releases) can significantly impact 

serverless functions’ execution performance. The degree of performance degradation 

varied by the particular choices of the execution environment. The results also lead us to 
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believe that skeleton containers and execution engine’ builds and releases do not 

substantially impact serverless functions’ execution consistency. 

While some of the benchmarked execution engine releases demonstrated a high degree of 

execution inconsistency (e.g., Google’s Python environments), we believe that such 

inconsistency is not a result of execution engine release differences. We instead think such 

inconsistency may result from the platform’s architectural or implementation decisions as 

it impacted multiple releases of the benchmarked execution engine ( Python 3.7 and 3.8 in 

Google’s case). 

The results of our investigation illustrate that users must carefully select the optimal 

execution environments for their functions or risk longer execution durations and higher 

costs. They also highlight that minor ecosystem degradations can significantly impact the 

performance of serverless functions. These findings illustrate the necessity of defining 

execution performance guarantees in serverless computing, where serverless providers are 

required to satisfy an agreed-upon execution performance or be penalized for violations. 

Suboptimal execution environments or ecosystem degradations can impact the serverless 

model’s attractiveness and leads to resource utilization inefficiencies and monetary 

implications. In the next chapter, we investigate the SLA specification metrics in serverless 

computing. We then present a machine learning (ML) based approach to define and assess 

compliance with these specification metrics. 
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Chapter 6                                                                   
Serverless Performance Guarantees 

This chapter includes sections from the paper: 

- M.Elsakhawy and M.Bauer, “ FaaS2F: A framework for execution-SLA in serverless 

computing” published in the 2020 IEEE Cloud Summit (CloudSummit’20)“ 

6.1 Introduction 

As illustrated in the previous chapter, serverless functions’ executions are highly prone to 

performance degradations resulting from suboptimal execution environments or ecosystem 

contentions. Thus, it is crucial to define SLAs that commit the providers to an acceptable 

level of execution performance. This chapter discusses the current attempts at defining 

SLA in serverless computing and presents our proposed FaaS SLA Framework.  

6.2 Performance Guarantees for Serverless Functions 

As a new cloud delivery model, performance guarantees in serverless computing have not 

been thoroughly investigated. The literature of efforts serverless performance guarantees 

are limited, with the majority of works focusing on invocation-rate guarantees [13], 

scheduling latency guarantees [8], [14], [15], and resource allocation guarantees [16]. To 

our knowledge, no work has examined execution performance guarantees for serverless 

functions.  

A challenge that faces defining execution performance guarantees in serverless computing 

is its unique abstraction level. The specification-metrics cannot rely on the traditional 

resource-guarantees as resources are entirely abstracted from the end-users. The challenge 

is further compounded by the stateless nature of serverless functions that mandates a high 

dependency on the provider’s ecosystem for date access and storage. Thus, the 

specification-metrics must be generic enough to capture both the execution environment’s 

performance and the ecosystem's performance. In the next section, we present the literature 

on the utilization of Machine Learning in Cloud Computing. This background is necessary 

for our proposed solution that is later discussed in this chapter. 
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6.3 Machine Learning in Cloud Computing 

Machine Learning (ML) focuses on teaching computers the ability to predict results or 

provide classifications for inputs rather than explicitly programming them to do so tasks 

[60]. In the past few years, significant advancements have been achieved in Neural 

Network (NN) training and accuracy, which has led to the adoption of ML in a broad set 

of domains. Some researchers have attempted to utilize ML to address the resource 

allocation problem in the cloud. Saeed et al. [61] proposed an adaptive backpropagation 

NN that predicts the priority of submitted jobs to ensure the optimal utilization of resources. 

Liu et al. [62] proposed Radial Basis Function “RBF” NNs to address resource allocation 

contentions in cloud environments.  

Imam et al. [63] proposed using Time Delay Neural Networks (TDNN) to predict future 

resource requests by VMs in IaaS clouds. Ray et al. [64] proposed nonlinear autoregressive 

“NARX” neural networks to reverse engineer job priorities based on the resource allocation 

of a job. The proposed approach was evaluated on Google’s cloud traces. Zhang et al. [65] 

investigated the use of ML for resource allocation in auction-based clouds. The authors 

proposed the use of logistic regression for the classification of bids into winning and losing 

bids. Hemmat et al. [66] investigated leveraging ML for SLA violation detection in task 

submission in cloud computing. The authors defined an SLA violation as an occurrence of 

task eviction with no subsequent rescheduling. They examined two learning models and 

evaluated their proposed approach on Google Cloud Cluster traces.  

In this work, we model the problem of FaaS SLA as a classification problem that a broad 

set of ML classifiers can solve. We model a function’s execution using a set of specification 

metrics that are capable of capturing the performance of the execution environment and the 

platform’s ecosystem (sections 4.3.3 and 4.3.4). We then use these specifications metrics 

to train a FaaS SLA classifier to detect a function’s execution performance based on these 

metrics' distinct features and classify an execution into SLA-abiding and SLA non-abiding.  

In the next section, we discuss the specification metrics in detail and the process of defining 

the SLA. 
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6.4 Defining Execution-SLA 

Serverless functions are ephemeral entities that rely on the provider’s ecosystem for long-

term data access and retention. A function’s execution happens on shared infrastructure 

with non-dedicated access to the provider’s ecosystem, making the execution prone to 

interference and performance degradations from other neighboring functions. Defining 

execution-performance guarantees must consider that serverless execution environments 

do not hold performance guarantees on local computational resources or the provider’s 

ecosystem. Thus, SLAs involving execution-performance must capture the performance 

guarantees while avoiding the classic resource-based SLA definitions.  

We propose the concept of an execution-SLA and define it as a binding customer-provider 

agreement to perform an SLA-abiding Execution of a serverless function. An SLA-abiding 

Execution is an execution that complies with the execution-performance guarantees and 

occurs when the provider’s platform satisfies the following criteria: 

- Computational resources (CPU, Memory, and local Disk) are readily available 

when requested by a serverless function’s execution environment. Thus, no 

resource contentions should occur. 

- The provider’s ecosystem operates in alignment with its advertised SLA, and 

serverless functions’ execution environments are granted access to the ecosystem 

when requested. 

An SLA-abiding execution is defined in terms of four fingerprints derived from the 

execution’s resource utilization. The fingerprints represent the performance of the layers 

abstracted by the FaaS model, i.e., resource, ecosystem, and execution environment 

(Sections 4.3.3 and 4.3.4) as follows: 

- CPU & Memory utilization fingerprints are leveraged to model the performance of 

accessing local resources by a serverless function’s execution environment. 

- Network Transmit and Receive (Tx/Rx) utilization fingerprints are leveraged to 

model the performance of accessing the provider’s ecosystem, such as long-term 

data storage or messaging queues, by a function’s execution environment. 
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A serverless function generally exhibits limited variance in its computational workflow; 

multiple SLA-abiding Executions of the same serverless function are expected to produce 

resource utilization fingerprints with a high degree of similarity. Thus, significant 

deviations in resource utilization fingerprints can identify SLA non-abiding executions 

and, consequently, SLA violations. In this work, we assume a performance homogeneity 

of the resources at the serverless providers. Performance homogeneity means that the 

physical servers' computational and network performance in the provider’s server pool is 

identical. This homogeneity applies to performance-impacting factors such as CPU make 

and models, Memory frequency and network bandwidth, and latency.  We also assume the 

independence of the execution performance on factors external to the serverless provider, 

such as APIs call to an external entity. The next section introduces Function as a Service 

SLA Framework (FaaS2F), a framework to define and assess compliance with execution-

SLAs for serverless functions. 

6.5 FaaS2F 

FaaS2F is a modular framework to 1) define execution-SLAs, and b) detect violations of 

execution-SLAs in serverless functions.  FaaS2F uses ML to build a model of execution 

fingerprints for a specific serverless function. The resulting model can then compare actual 

executions’ fingerprints to the expected execution fingerprints. Using FaaS2F, end-users 

and cloud providers can define execution-SLAs for functions utilizing the following 

procedure: 

- An end-user submits their function’s code to the provider’s serverless framework.  

- The provider generates an execution environment for the function, executes the 

function in a Training Phase, and generates SLA-abiding and SLA non-abiding 

resource utilization fingerprints. 

- The provider trains four fingerprint-classification NNs and provides the trained 

NN models to the user. 

- The provider moves the function to the Production Phase and supplies the 

function’s executions resource utilization fingerprints to the end-user. 
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- The end-user and the provider utilize the trained NN models to classify executions 

into SLA-abiding and non-abiding, validating the compliance with the execution-

SLA. 

The procedure is illustrated in Figure 15 

 

Figure 15: FaaS2F Diagram 

6.6 FaaS2F Architecture 

 

Figure 16: FaaS2F High-level Diagram 
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Figure 16 illustrates FaaS2F architecture. The Resource Utilization Fingerprint Collection 

(RUFC) module collects resource utilization metrics for serverless functions’ executions 

and stores them in a time-series database. Time-series databases are a special kind of 

database better suited for resource metrics collection [67]. The metrics are collected on 

equally spaced time intervals, starting at the function’s invocation and ending with the 

function’s completion. In our validation (Section 6.10), we collect resource utilization 

derivatives calculated by subtracting the previous resource utilization from the current one 

and dividing the result by the time difference. We utilize Google’s Cadvisor43 to collect 

the metrics and InfluxDB44 to store them. 

The Extraction, Transformation, and Loading (ETL) module extracts utilization metrics of 

a function’s execution from the time-series database, transforms them into resource 

utilization fingerprints, and stores them in a SQL-based backend. A resource utilization 

fingerprint is a vector containing all the resource utilization metrics for a function’s 

execution. The fingerprints are utilized by the Machine Learning Module (MLM) to 

perform the following functionalities: 

- Train a set of Neural Networks (NNs) to classify SLA-abiding executions based on 

resource utilization fingerprints.  

- Assess compliance with execution-SLA by classifying a function’s executions into 

SLA-abiding and non-abiding using the trained NNs. 

Our implementation for FaaS2F is written in Python and is integrated with the Knative45 

serverless framework. It leverages the commonly used ML libraries: Keras46 and 

Tensorflow47 for NN training and subsequent classification. We designed the RUFC 

 

43
 Cadvisor: https://github.com/google/cadvisor  

44
 InfluxDB: https://www.influxdata.com/  

45
 Knative: https://knative.dev/ 

46
 Keras: https://keras.io/ 

47
 TensorFlow: https://www.tensorflow.org/ 
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module to be resident on every Knative worker node while the ETL and the MLM reside 

with the Knative control plane, as illustrated in Figure 17. 

 

Figure 17: FaaS2F Implementation Diagram 

6.7 Resource Utilization Fingerprints Generation 

To generate the resource utilization fingerprints that model a function’s SLA-abiding and 

SLA non-abiding executions, RUFC leverages a Training Phase that executes the function 

with a randomized set of input payloads in a production-replica environment as follows: 

- While modeling SLA-abiding executions, the replica environment allocates 

dedicated local computational resources to the serverless functions, and the 

platform’s ecosystem performance abides with its posted SLAs. Resource 

utilization fingerprints collected during this phase are labeled SLA-abiding 

execution fingerprints.  

- While modeling SLA non-abiding executions, the replica environment is subjected 

to induced resource and ecosystem stresses. Stresses emulate contentions in 

accessing local resources such as excessive loads on CPU and memory and non-
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local resources such as the provider’s ecosystem. Ecosystem contentions are 

emulated by inducing a sustained drop in durable storage IOPS or a sustained 

latency increase in a message queue service. Resource utilization fingerprints 

collected during this phase are labeled SLA non-abiding execution fingerprints.  

6.7.1 Input Payload Randomizing 

Randomizing the input payloads in the training phase is necessary to ensure the collected 

fingerprints represent generalizations of SLA-abiding and SLA non-abiding executions’ 

utilization fingerprints. To randomize the input payloads during the training phase, end-

users must define i) the payload type of a function’s input (e.g., numeric, text, etc.) and ii) 

the payload ranges. The cloud provider then generates a training dataset to use as the input 

payloads for the function in the training phase. The training dataset consists of random 

payloads of the same type and within the range defined by the end-user. For example, the 

cloud provider may generate a set of image files of varying sizes and resolutions as the 

training dataset for a serverless function that receives an image file as an input. 

The training dataset is inputted to the serverless function one at a time. At the same time, 

resource utilization metrics (CPU, Memory, Rx, and Tx) are monitored and stored in the 

time-series database. These metrics are collected twice for each input payload: once with 

SLA-abiding execution conditions and another time with SLA non-abiding execution 

conditions. Examples of scaled fingerprints are plotted in Figures 18(a) and 18(b). For 

illustrative purposes, we use a Min-Max scaler with upper/lower boundaries as 255 and 0 

for CPU, Tx, and Rx and 255 to -255 for Memory. We use RobustScaler instead in the 

implementation, as explained in section 6.10. 

Figure 18: Sample scaled fingerprints 
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6.8 MLM Classifier Training 

The fingerprints generation step is followed by a training step that teaches, via supervised 

learning, a set of ML models to classify executions into SLA-abiding and SLA non-abiding 

based on their resource utilization fingerprints. Our empirical validation utilized 

convolutional neural networks [18] (CNNs) and Random Forest classifiers [68]. We 

obtained acceptable classification accuracy with CNNs and Random Forst with a relatively 

small number of training samples. We settled on CNNs as the classifier of choice in our 

validation; the reasons for this choice and the accuracy of CNNs vs. SVMs vs. RFs are 

discussed in section 7.3.3. We trained 4 CNNs using the collected resource usage 

fingerprints. Each CNN utilizes one layer of 4 convolutional filters, followed by two layers 

of dense neurons. In the training phase, we made the following choices: 

- We train a separate classifier for each resource utilization fingerprint. The decision 

to train four independent CNNs instead of one CNN with the four fingerprints was 

based on the following rationale:  

o An individual classifier for each fingerprint enables the detection of the 

resource that caused the SLA violation (i.e., CPU, Memory..etc.). This 

enables the users and the providers to pinpoint the cause of the SLA 

violation and take the necessary action to address it. 

o Our experimental validation found that the convergence of NN training 

using four separate CNNs is achievable with a smaller number of training 

samples than one CNN with a 4-dimensional fingerprint.  

- Our choice of CNN as the NN architecture does not imply CNNs’ exclusive 

superiority over other ML models in execution classification. We have obtained 

high classification accuracy using RandomForests. The focus of our work is not 

ML research. We dedicate section 7.3.3 to discuss the aspects of choosing the ML 

classifier.   

- The CNNs produce a binary classification for each execution based on the resource 

utilization fingerprints, i.e., whether the execution abided or did not abide by the 
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SLA. Thus, the classification step does not provide the degree of the violation. 

Future continuations of this work will explore this direction.   

Figure 19 illustrates the CNN design in our experimental validation for an input resource 

utilization fingerprint of dimensions 144 x1. Convolution is applied with a set of 4 filters 

of a kernel size 2 x 1. The filters are responsible for detecting features in the resource 

utilization fingerprints. The filter layer is followed by a layer of 256 dense neurons and an 

output layer with a set of two neurons representing SLA-abiding and SLA non-abiding 

executions. To improve the classification performance, we use zero-padding for the input 

vectors. We normalize the resource utilization derivative values by scaling CPU, Mem, Tx, 

and Rx using Robust Scaling [69]. Our implementation of RUFC using Cadvisor collects 

cumulative resource utilization values for CPU, Tx, and Rx and absolute values for 

memory. Thus, derivative values for CPU, Tx, and Rx are positive values, while memory 

derivative values can include negative values. 

 

Figure 19: CNN Architecture 

To avoid the model’s overfitting on our training dataset, we employed a commonly used 

data augmentation technique that introduces a random horizontal displacement in each 

training sample. Data augmentation provides several techniques that target the training 

dataset’s quality and size; by applying these techniques, the training dataset is artificially 

inflated to enhance the generalizability of the classification model [70].  
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6.9 Assessing Compliance with Execution-SLA 

Following the NN training step, the serverless function is deployed to the cloud provider’s 

production environment starting the Production Phase. Similar to the Training Phase, 

resource utilization metrics of the function’s executions are collected. The resource 

utilization fingerprints are then used as unlabeled inputs to the trained NNs to examine if 

an execution classifies as SLA-Abiding or SLA non-abiding. 

6.10 Problem Formulation 

For a serverless function �, the resource utilization for a single execution � with duration 

� is modeled as the set 

� = {���, ���, ��, ��}                              (1) 

��� is a set of the CPU utilization records for function �, taken at equally spaced time 

intervals during time period � 

��� = {��, ��, … , ��}                            (2) 

�ℎ��� �� �� �ℎ� ����� ��������� ��� ����� ������ ��� 

 �� �� �ℎ� �������  � �� �ℎ� ����� ������ �� ������� 

��������� ������ ���� ������ � 

��� is a set of the memory utilization records for function �, taken at equally spaced 

time intervals during time period � 

��� = {��, ��, … , ��}                         (3) 

�ℎ��� �� �� �ℎ� ����� ��������� ������ ����� ������ ��� 

�� �� �ℎ� ���� collected metric 

���  � �� �ℎ� ����� ������ �� ������� ���������  
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������ ���� ������ � 

�� is a set of the network transmission utilization records for function �, taken at equally 

spaced time intervals during period � 

�� = {���, ���, … , ���}                          (4) 

�ℎ��� ��� �� �ℎ� ����� ��������� �� ����� ������ ��� ���  

�� �ℎ� ���� ���  � �� �ℎ� ����� ������ �� ������� 

��������� ������ ���� ������ � 

�� is a set of the network receiving utilization records for function �, taken at equally 

spaced time intervals during period � 

�� = {���, ���, … , ���}                           (5) 

�ℎ��� ��� �� �ℎ� ����� ��������� �� ����� ������ ��� 

��� �� �ℎ� ���� � �� �ℎ� ����� ������ ��������� ���������  ������ ���� �������� � 

During the Training Phase, two sets of functions executions are performed, generating 

resource utilization metrics sets � and �. � is the set of collected resource utilization 

metrics representing SLA-abiding executions, i.e., positive samples, and � is the set of 

collected metrics representing SLA non-abiding executions, i.e., negative samples. 

� = { ��,  ��,  ��, … ,  ��}                          (6) 

�ℎ���  �� ,� � � � � ��� ��� − �������  

���������� �� �������� � 

and 

� = { ��,  ��,  ��, … ,  ��}                         (7) 

�ℎ���  �� ,� � � � �   ��� ��� ��� − ������� 

���������� �� �������� � 
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���, ���, ��, �� records for executions in �and � are 1-dimensional vectors such that: 

 ���� =  { �����
,  �����

,  �����
, … ,  �����

}              (8) 

 ���� =  { �����
,  �����

,  �����
, … ,  �����

}        (9) 

 ��� =  { ����
,  ����

,  ����
, … ,  ����

}                           (10) 

 ��� =  { ����
,  ����

,  ����
, … ,  ����

}                           (11) 

where  �����
, �����

,  ����
an  ����

 are the  ���, ���, ��, �� utilization records for 

execution  �� ,� � � � �. 

And    

 ���� =  { �����
,  �����

,  �����
, … ,  �����

}            (12) 

 ���� =  { �����
,  �����

,  �����
, … ,  �����

}      (13) 

 ��� =  { ����
,  ����

,  ����
, … ,  ����

}                           (14) 

 ��� =  { ����
,  ����

,  ����
, … ,  ����

}                          (15) 

where  �����
, �����

,  ��� and  ����
 are the ���, ���, ��, �� utilization records for 

execution  �� ,� � � � �.  

The utilization values ���, ���, �� ��� �� are scaled using RobustScaler [71]. The 

scaled execution records in � and � are used to train 4 CNNs 

{������, ������, �����, �����}. Each CNN focuses on a single utilization 

fingerprint. Labels are set as 1 for executions in set � and 0 for executions in set �. 

Following the Training Phase, the function � is moved to the Production Phase. 

Invocations in this phase are denoted by the set �.  

� = { ��,  ��,  ��, … ,  ��}                               (16) 

The following resource utilization records are generated: 

           ���� =  { �����
,  �����

,  �����
, … ,  �����

}               (17) 

 ���� =  { �����
,  �����

,  �����
, … ,  �����

}       (18) 

 ��� =  { ����
,  ����

,  ����
, … ,  ����

}                          (19) 
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 ��� =  { ����
,  ����

,  ����
, … ,  ����

}                         (20) 

 

The trained CNNs {������, ������, �����, �����} are utilized to classify executions 

in � into one of the two labels: 1 and 0, representing SLA-abiding and non-abiding 

executions. 

6.11 Validation 

To validate FaaS2F’s accuracy, we developed two serverless functions representing two 

categories of applications i) Image Processing and ii) High Storage-IOPS:  

- Function 1: applies a set of image transformations to an input image utilizing 

Python’s PIL library and saves the output image to a MinIO48 bucket.  

- Function 2: retrieves the list of thousands of objects stored in a MinIO bucket and 

loops through downloading them to the execution environment ephemeral storage.  

We deployed the functions to a Knative serverless framework in a Kubernetes49 cluster. 

Our hardware setup consists of two identical physical servers, each with 20 cores based on 

an Intel Xeon CPU E5-2660 v3 processor and 128 GB of Memory. We use 10Gbit Ethernet 

connections between the two nodes and the CentOS operating system. The validation setup 

software components are as follows: 

Components on Node 1 of the Kubernetes cluster : 

- Kubernetes and Knative control planes. 

- FaaS2F’s ETL and MLM modules. 

 

48
 MinIO: https://min.io/  

49
 Kubernetes: https://kubernetes.io/  
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- MinIO Object Storage for long-term data retention. 

Components on Node 2 of the Kubernetes cluster : 

- Execution environment Docker containers for the serverless functions 

- FaaS2F RUFC module. 

- An Apache web-server50 to serve input payloads to Function 1. 

Function 1 performs a sequence of image transformations to its payload by performing 

the following procedure: 

- Retrieve a random image from an image-dataset served by the Apache webserver. 

We leverage the University of Oxford flower images-dataset [72] that contains 

8114 JPEG-encoded images of flowers commonly present in the U.K. as the input 

payload to our function. The image sizes range from 12 KB to 112 KB representing 

a wide range of possible payloads. 

- A predefined sequence of color adjustments and image resizing is applied to the 

retrieved image. 

- The output of the transformations is saved to the execution environment as a PNG 

image. 

- The PNG image is committed to the MinIO object-store utilizing the MinIO Python 

API. 

Function 2 utilizes MinIO API to retrieve a list of objects stored in a MinIO storage bucket 

and iteratively downloads them one at a time to the execution environment’s ephemeral 

storage. We selected these validation functions as representatives to categories identified 

by Berkley’s researchers [11] as computational workflows that stretch today’s serverless 

computing. Thus we consider them ideal candidates for requiring execution-performance 

guarantees.  

 

50
 Apache Webserver: https://httpd.apache.org/  
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To train the four CNNs for each function, we generated the training samples by collecting 

SLA-abiding and SLA non-abiding resource utilization fingerprints for each function using 

the guidelines in Section 6.7. We utilized the Linux stress utility to induce CPU and 

Memory stresses on Node 2 and the tc utility to induce network latency for MinIO storage 

access. In our test environment, we collected the SLA abiding fingerprints when our 

benchmarking serverless functions were the only running functions on the host. Real-live 

serverless platforms may co-locate many functions on the same physical/virtual server. If 

fingerprints for defining the SLA are collected in such a situation, then one would expect 

that SLA-abiding executions’ fingerprints in these real-life environments would be similar 

to those in the training environment. As the fingerprints are only affected by the 

performance of accessing CPU, Memory, Network transmit and receive, the collected 

fingerprints will change if the functions’ collocation impacts the performance of accessing 

these resources adversely, thus causing an SLA violation. 

Once the fingerprints were collected, we used them to train the CNNs for each function. 

We then moved to the Production Phase and performed a predefined mixture of SLA-

abiding and SLA non-abiding executions of the functions to serve as our evaluation set.  

The number of samples in the training set and the evaluation set for each function are shown 

in Table 13. We selected the evaluation samples’ count to achieve a minimum of 10 to 1 

ratio to the total training samples count. 

Table 13: Training and Evaluation Samples 

Validation 
Function 

Number of Samples 
Positive Training 

Samples 
Negative 

Training Samples 
Evaluation 

Samples 
Function 1 1000 1000 25,000 
Function 2 400 400 8,000 

The resource metrics were collected with a frequency of one reading per second. We 

specified our training batch size as 50 samples per epoch and leveraged ADAM [73] for 

training optimization and Keras ImageDataGenerator to introduce random horizontal 

shifts in the input fingerprints. Following the training process, we evaluated the 

classification accuracy of the trained CNNs using the evaluation set. We measured the 

correctness of classifying executions into SLA-abiding and SLA non-abiding based on our 
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prior knowledge of the evaluation set. The execution classification accuracies for each 

function based on the four resource utilization fingerprints (CPU, Memory, Tx, and Rx) 

are presented in Table 14. 

Table 14: Classification Accuracy 

Validation 
Function 

Resource Utilization Fingerprint 
CPU Memory Tx Rx 

Function 1 92.8% 82.8% 99.1% 93.4% 
Function 2 97.2% 71.7% 99.9% 99.7% 

The results of our empirical validation illustrate that FaaS2F is capable of detecting, with 

high accuracy, sub-optimal executions of serverless functions based on the resource 

utilization fingerprints of their executions.  

6.12 Number of Training Samples 

To examine the impact of the number of training samples on the classification accuracy, 

we repeated the training of FaaS2F for Function 1 with a different number of samples and 

observed the classification accuracy. The accuracy resulting from each training sample 

count is presented in Table 15 and illustrated in Fig 20. 

Table 15: Classification Accuracy per Training Sample count 

Number of Positive/Negative 
Training Samples  

Resource Utilization Fingerprint 
CPU Memory Tx Rx 

300 56.3% 73.6% 98.3% 90% 
400 54.3% 82.1% 98.3% 88.9% 
500 73.8% 74.7% 98.8% 92.6% 
600 64.1% 82.2% 98.8% 90.3% 
700 56% 84.6% 99.1% 89.6% 
800 70.7% 79.6% 98.7% 93.5% 
900 81.1% 82.7% 99.1% 91.9% 
1000 92.8% 82.8% 99.1% 93.4% 
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Figure 20: Classification Accuracy per Training Sample count 

As observed in the results above, the degree of improvement in accuracy varied per each 

resource fingerprint. While classification based on CPU fingerprints has improved from 

56.3% to 92.8% by increasing the training dataset from 300 to 1000 samples, the accuracy 

of other fingerprints such as Tx roughly remained unchanged. This leads us to the following 

conclusions: 

- As four distinct and unique datasets, the number of samples needed for an ML 

model to converge upon training is unique for each of the four fingerprints. 

- Similarly, the ML classifier that can produce high accuracy for one fingerprint may 

produce poor results when applied to another fingerprint. This opens the door to 

exploring other ML models that address this unique challenge. We touch base on 

this point later in Section 7.3.3. 

- The unique characteristic of the four fingerprints is extendable on a per-function 

level. This implies that the number of samples for training FaaS2F on one 

function’s dataset can vastly differ from the number of samples for another 

function. This can also be observed from Table 14’s results, where the classification 



83 

 

 

 

accuracy for Function 1 was very close to Function 2 despite using 2.5 times the 

number of samples (1000 vs. 400).  

6.13 Conclusion 

Our empirical validation for FaaS2F illustrated a high accuracy in detecting sub-optimal 

executions based on the resource utilization fingerprints of these executions. The results 

illustrate that resource utilization fingerprints effectively model the execution performance 

of a serverless function and can accurately reflect degradations resulting from resource 

contentions or ecosystem bottlenecks. The classification accuracy of each fingerprint is 

dependent on the degree of fingerprint variation when a sub-optimal execution occurs. This 

variance is highly correlated to the nature of computations of the serverless functions. For 

example, CPU-intensive serverless functions (e.g., Function 1) are expected to exhibit high 

variation in CPU fingerprints between an SLA-abiding execution and an SLA non-abiding 

execution. Similarly, for network-heavy functions (e.g., Function 2), Tx and Rx 

fingerprints can be expected to produce high classification accuracy.  

While the results of detecting sub-optimal executions for individual functions were 

promising, applications in real life rarely consist of a single function. Thus, in the next 

chapter, we investigate the applicability of FaaS2F for composites of serverless functions, 

i.e., serverless chains.  
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Chapter 7                                                                                     
SLA for Serverless Chains 

This chapter includes sections from the paper: 

-  M.Elsakhawy and M.Bauer, “SLA for Sequential Serverless Chains: A Machine Learning 

Approach” published in the 7th International Workshop on Serverless Computing 

(WoSC’7), part of ACM/IFIP Middleware Conference. “ 

7.1 Introduction 

Serverless platforms require functions to “operate asynchronously and process one request 

at a time” [14]. In traditional programming, applications are composites of many functions 

that interact to perform the application’s functionality [15]. Similarly, serverless functions 

can construct larger applications through composition. Serverless chains are constructed 

by sequentially invoking functions either synchronously from within the functions’ code 

or asynchronously by invoking ecosystem triggers [52]. Composition frameworks are add-

on services provided by serverless platforms to coordinate invocations of synchronous 

functions. 

A study by Tariq et al. [52] has found serverless chains to experience mid-chain drops, 

concurrency limit issues, and burst intolerance in commercial platforms. Another study by 

Sreekanti et al. [74] uncovered a compounding high latency overhead of AWS STEP 

functions that becomes intolerable after chaining five functions. A characteristic that makes 

defining SLA for serverless chains more challenging is their inherently diverse workflows. 

These workflows can include sequential triggering one function after another or several 

functions after one function is invoked or other workflows [75]. A single chain can follow 

multiple workflows in different executions based on the input. We limit our investigation 

to examining SLAs for sequential synchronous serverless chains, where functions are 

invoked one after another from within each function’s code. 

7.2 Modeling Serverless Chains Performance 

Two questions naturally arise. The first is how to model a serverless chain’s execution 

performance. The second is whether to define performance guarantees to a sequential 
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serverless chain as a single unit or individually to each of its constructing functions. We 

leverage our earlier execution-performance modeling [76] using resource utilization 

fingerprints to define performance guarantees for serverless chains as a single unit. The 

rationale for our choice is as follows: while it is possible to define performance guarantees 

for every function forming the chain, this approach quickly becomes infeasible as the 

chain’s number of functions increases. A chain with many functions will incur a high 

overhead for defining performance guarantees for each of its functions and even a higher 

overhead assessing compliance with them.  

Thus, we treat a serverless chain as a single unit whose execution performance is modeled 

using its constructing functions’ stacked resource utilization fingerprints. We collect the 

resource utilization metrics for all the chain’s constructing functions, stack them, and use 

them to define one resource utilization fingerprint that models the chain’s performance. A 

sample chain’s CPU, Memory, Tx, and Rx fingerprints are shown in Fig 21 (a), along with 

an illustration of how constructing functions’ are stacked to create them in Fig 21 (b). 

 

Figure 21: Resource utilization fingerprints stacking 

Following the same principles used in FaaS2F, we leverage a Training Phase to generate 

resource utilization fingerprints representing a chain’s SLA-abiding and SLA non-abiding 

executions. We use the generated fingerprints to train a classifier to detect SLA compliance 

or non-compliance based on the input resource utilization statistics. We utilize a 4-layer 

CNN for classification, as discussed in section 6.8. 
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7.3 Validation 

In our validation, we divide sequential serverless chains into two categories based on 

their sizes:  

- Fixed-size Sequential Serverless Chains: These chains are composed of a 

deterministic number of serverless functions executed in sequence when the chain 

is triggered. Multiple executions of a fixed-size chain result in the same number of 

functions that are executed.  An example for this category of chains is depicted in 

Fig 22 (a), where the number of functions composing the chain, i.e., the chain’s 

size, is three. 

- Variable-size Sequential Serverless Chains: These chains are composed of a 

variable number of functions. The concurrency of the functions forming the chain 

varies between multiple chain executions resulting in a variable-sized chain. This 

variance can be dependent on the chain's input or the workflow specifications of 

the user. For example, the size of the chain in Fig 22 (b) is dependent on the number 

of concurrent executions of Function 2, which can vary between multiple 

executions of the chain. 

 

 

 

 

 

 

 

 

 

 

7.3.1 Fixed-size Sequential Serverless chains 

We implement two sequential serverless chains of fixed size representing different 

workloads. Chain 1 is an ML pipeline composed of three functions. The chain receives an 

image as input and generates a German text representing its contents. We rely on the VGG 

[77] pre-trained model for object classification and the py-googletrans package for 

Figure 22: Fixed-size (a) and Variable-size (b) chains 
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translation. Chain 2 is a video processing application composed of six functions.  It receives 

a video file as an input and outputs a text file listing the videos' resolution and codec and a 

set of randomly transformed screenshots from the video. We leverage the OpenCV51 

python library for video processing and PIL for image transformations. Chains 1 and 2 use 

MinIO object storage for data input and output and are invoked synchronously using HTTP 

requests. The two chains' workflows are illustrated in Fig. 23(a) and 23(b). 

 

Figure 23: Fixed-size chains workflows 

We utilized a subset of MS COCO data-set [78] as input for Chain 1 and a subset of 

Moments in time data-set [79] as Chain 2’s input data-set. We deployed the chains to a 

two-node Knative-over-Kubernetes cluster. One node hosts the cluster’s control plane, 

while the other is a worker node. Our hardware setup consists of two identical physical 

servers, each with 20 cores based on Intel(R) Xeon(R) CPU E5-2660 v3 processor and 128 

GB of Memory. We trained FaaS2F using resource utilization fingerprints of 1000 SLA-

abiding and SLA non-abiding executions of each chain. We evaluated the classification 

accuracy on a validation data-set of 20,000 executions of each chain. We maintain a 20:1 

 

51
 OpenCV: https://opencv.org/  
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validation-to-training samples ratio. The accuracy of classification per resource utilization 

fingerprints is shown in Table 16. 

Table 16: Chains Classification Accuracy 

Validation 
Chain 

Resource Utilization Fingerprint 
CPU Memory Tx Rx 

Chain 1 92.8% 89.4% 96.4% 91.8% 
Chain 2 98.4% 94% 97.1% 97.6% 

To evaluate our choice of stacking resource utilization fingerprints in Section 7.2, we 

examined the classification accuracy on a per-function level using each function’s 

individual fingerprints. The results are shown in Tables 17 and 18. The per-function’s 

classification accuracy underperformed that of the stacked fingerprints. Since functions 

have shorter execution durations, per-function fingerprints have shorter resource utilization 

records. We believe this causes the per-function fingerprints to be lower resolution than 

the stacked ones, affecting accuracy [80].  

Table 17: Chain-1 Per-Function Classification Accuracy 

Validation Function 
Resource Utilization Fingerprint 
CPU Memory Tx Rx 

Chain 1 -Function 1 73.1% 83.4% 96% 95.9% 
Chain 1 -Function 2 78.2% 85.7% 97.7% 98.7% 
Chain 1 -Function 3 78.8% 83.1% 90% 95.8% 

Table 18: Chain-2 Per-Function Classification Accuracy 

Validation Function 
Resource Utilization Fingerprint 

CPU Memory Tx Rx 
Chain 2 -Function 1 69.4% 85.8% 93% 93.9% 
Chain 2 -Function 2 58.2% 56.7% 88.5% 92.5% 
Chain 2 -Function 3 87.8% 64.9% 91.4% 87.8% 
Chain 2 -Function 4 65.4% 79.2% 88.6% 62% 
Chain 2 -Function 5 80.1% 72.4% 91.3% 92% 
Chain 2 -Function 6 80.7% 83.5% 90.6% 91% 
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7.3.2 Variable-size Sequential Serverless chains 

To examine our approach's accuracy in variable-sized sequential serverless, we 

implemented Chain 3 as a map-reduce workflow of variable length based on the map-

reduce proposed architecture by Alventosa et al. [81]. The chain comprises three distinct 

functions: i) a coordinator, ii) a set of mappers, and iii)a set of reducers. The chain's 

objective is to produce a daily AM/PM count of drive records in Microsoft's published T-

Drive Taxi trajectory data [82]. The concurrency of the mapper function varies based on 

the input data size, where a new mapper is allocated for each 1KB chunk of the chain’s 

input. For example, a 10KB input to the chain will result in 10 mapper instances. The chain 

receives one of the 11 thousand files in Microsoft’s dataset as input, splits the file into 

equally sized 1KB chunks, generates the AM/PM count per chunk in the mapping phase, 

and then reduces to generate the total AM/PM count in the final phase.  Chain 3's workflow 

is illustrated in Figure 24. 

 

 

 

Figure 24: Variable-size (Chain 3) workflow 

The number of mappers varies based on the size of the input file and consequently the 

number of generated 1KB chunks. In our validation, we specified the upper limit of mapper 

instances to 10 and executed 1000 SLA-abiding and SLA non-abiding executions of the 

chain. We trained our framework using the produced resource utilization fingerprints and 

evaluated the classification accuracy on a validation dataset of 20,000 executions of the 

chain. We maintain a 20:1 validation-to-training samples ratio. The accuracy of 

classification per resource utilization fingerprint is shown in Table 19. 

Table 19: Chain3 Classification Accuracy 

Validation 
Chain 

Resource Utilization Fingerprint 
CPU Memory Tx Rx 

Chain 3 79.3% 84.8% 92.7% 82.4% 
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7.3.3 Choice of the classifier 

In this work, we have chosen to utilize CNNs for fingerprint classifications in FaaS2F as 

this particular NN architecture has an established reputation in the image classification 

domain. While a broad range of techniques can be used for time series classification, such 

as autoregressive and hidden Markov models [83]–[85], Dynamic Time Warping (DTW) 

[86], and Autoencoders [87], CNNs have proven to provide high accuracy end-to-end time 

series classification solutions [83], [88]. A significant advantage of CNNs is their ability 

to detect features to classify upon, thus alleviating the need for a human-based feature 

engineering; that is impractical in the serverless SLA scenario. The convolution layer in 

CNNs applies a common set of weights to different regions of the input, thus can efficiently 

detect the presense of classifying features anywhere in the input. While CNNs have proven 

excellent accuracy in our empirical validation, we hypothesize that the problem at hand is 

a generic univariate time series classification problem that other classification techniques 

can solve. Thus, we evaluated Random Forests' accuracy (RFs) accuracy [89],  another ML 

technique commonly used in classification problems to categorize fingerprints into SLA 

abiding and non-abiding. We trained a generic RF-classifier composed of 100 trees. We 

evaluated the accuracy of classifying SLA violations in chains 1, 2, and 3 and used the 

same number of training samples in training and the training duration of both techniques. 

Table 20: Chains’ RF-based Classification Accuracy 

Validation 
Chain 

Resource Utilization Fingerprint 
CPU Memory Tx Rx 

Chain 1 99.5% 98.5% 99.3% 99.6% 
Chain 2 98.3% 92% 96.6% 96.3% 
Chain 3 91.75% 92.3% 91.2% 91.4% 

As illustrated in Table 20, RFs generated an excellent accuracy in all of the fingerprints 

classification. A considerable advantage of using RFs is that they require less training time 

than CNNs. In our empirical validation, CNNs took approximately 83% more time to train 

than RFs for the same set of fingerprints. While producing better results than CNNs in 

classifying our validation fingerprints, we believe that the performance of RFs may not be 

superior to NNs for every serverless chain's fingerprints. Thus, other ML classification 

techniques may be used interchangeably depending on the specifics of a chain's 
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fingerprints. The choice is left to the serverless provider to choose an ML classifier that 

produces an acceptable tradeoff between classification accuracy and training time. 
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Chapter 8                                                                      
Conclusions, Limitations, and Future Work 

8.1 Conclusion 

Since its inception, the FaaS delivery model has been celebrated as a breakthrough in cloud 

delivery. Leveraging its high abstraction, developers could quickly adopt the model in their 

applications with no administration overheads. The pay-upon-execution billing model also 

became favorable as it limited the upfront investment to an absolute minimum. The 

model’s precise tailoring towards ephemeral, short-lived applications makes it attractive to 

workloads that would otherwise incur higher costs and limited scaling capacity in other 

cloud delivery models. Despite such advancements, the model’s unique abstraction affects 

the transparency of serverless functions executions and obfuscates the performance-

impacting factors from end-users. This transparency is crucial in the serverless model, 

where execution performance directly impacts incurred costs.  

In this work, we examined serverless performance and identified the factors that affect the 

execution performance in the serverless model. We illustrated how seemingly trivial 

choices in skeleton containers or execution engines could highly impact the execution 

performance of serverless functions. We also demonstrated the impact of the providers’ 

ecosystem performance on serverless functions.   In the commercial landscape, we 

examined the variations in execution performance and execution consistency of 

commercial serverless platforms and how they can impact the users’ incurred costs. The 

results of our examinations led us to perform a deep investigation into defining 

performance guarantees for serverless functions that can protect users from incurring costs 

as a result of performance degradations on the provider's end. 

We illustrated how the unique abstraction of the serverless model hinders the use of the 

traditional IaaS or PaaS SLA definition metrics that commonly leverage resource 

guarantees for SLA definitions. We thus proposed leveraging resource utilization metrics 

to uniquely model the execution performance of serverless functions. We proposed a 

framework that utilizes machine learning to detect, with high accuracy, performance 

variations in serverless functions’ executions based on these fingerprints. The framework 
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can be leveraged to define binding customer-provider agreements on execution 

performance. We extended the framework to define performance guarantees for sequential 

serverless chains as an integral component for utilizing serverless functions to build larger 

applications. 

Our proposed solution, FaaS2F, can be deployed by cloud providers as an add-on to their 

platform, thus enabling the articulation of binding SLAs. The framework works natively 

with the Kubernetes-based serverless deployment, Knative, and utilizes Google’s Cadvisor 

for resource utilization metrics collection and InfluxDB and MySQL for metrics storage. 

Providers can apply customization to the framework to adopt custom metrics-collection 

agents or other serverless frameworks. Also, other ML classification techniques can be 

employed to detect SLA violations.  

While improving the serverless model, serverless SLAs may only be appropriate in 

particular scenarios and not for every serverless function. The reason for that is the 

computational overhead incurred for training the serverless framework, the ongoing 

monitoring of a function’s execution, and detecting SLA violations. These overheads could 

be computationally comparable to the monitored serverless functions themselves and thus 

can be more justifiable in some scenarios than others, for example : 

1. Functions with an expected large number of executions: 

 The modeling of execution performance and the training of FaaS2F to 

recognize SLA violations impose the overhead of collecting training 

fingerprints. In our validation, the number of training fingerprints ranged 

from a few hundred to one thousand samples. The generation of these 

fingerprints is justifiable when a serverless function is expected to have a 

large number of executions (thousands or more). This overhead may not be 

justifiable for functions with few executions. For example, a function that 

is executed once daily may not justify defining an SLA for. 

2. Functions with longer execution durations:   

 As execution durations translate into incurred costs in the serverless model, 

SLA definition becomes more beneficial as the execution durations 
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increase. For example, a serverless function that finishes execution in 1ms 

will still be charged for 100ms billing duration, i.e., the minimum billing 

increment, in most commercial serverless platforms. Thus, for such a 

function, the computational overhead of the SLA framework may not be 

justifiable. Hence, serverless providers may provide separate server pools, 

with no SLA guarantees, for functions whose execution durations fall below 

the minimum billing increment at a much cheaper rate to end-users. 

3. Serverless chains:   

 Serverless functions that are parts of chains are better candidates for SLA 

definitions than stand-alone functions. As a single function’s sub-optimal 

performance can impact the entire chain's performance, SLA for chains can 

be higher rewarding and more impactful than for stand-alone functions. 

8.2 Limitations and Future Work 

While the validation results of our proposal are very promising, we believe our work can 

be extended to address the following limitations: 

1. Training data variability 

 In this work, we hypothesized that the samples in FaaS2F’s training phase 

are generalizations of a function’s input payload during its production 

phase. While this assumption has proven to be true in our empirical 

evaluation datasets[78], [79], [82], we did not provide a mechanism to 

validate this assumption. In theory, an end-user with malicious intent can 

execute an ML attack using a crafted training dataset, thus rendering the 

classification phase unreliable. We hope to examine this further in future 

continuations of this work. 

2. Persistent serverless functions 

 While the serverless model mandated the ephemeral, compute-only nature 

of serverless functions, some researchers have proposed persistent 

serverless functions for specific workloads [35]. Ephemeral serverless 

functions do not hold states between subsequent executions; on the other 
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hand, persistent functions rely on pre-defined hints to share states between 

multiple executions. Workflows of persistent serverless functions can thus 

exhibit high dependency on local filesystems and hence local disk 

input/output operations and less dependency on network IOPs. While CPU 

and memory utilization fingerprints may be able to capture some of an 

execution’s performance metrics, local disk IOPs utilization metrics must 

be incorporated in the modeling of SLA for persistent serverless functions. 

We plan on examining this point further in future continuations of this work. 

3. Serverless chains workflows: 

 We limited the scope of our validation to serverless functions with 

sequential workflows. Needless to say, the workflows of serverless chains 

are more diverse and can be of higher complexity as larger applications start 

to adopt the serverless model. We plan to examine the performance of 

FaaS2F, and any potential modifications to it, to support more complex 

workflows in the continuations of this work. 

4. Performance improvement guidance: 

 The proposed solution provides a binary classification of executions in 

SLA-abiding and SLA non-abiding. While this is acceptable for SLA 

compliance assessment, we hope to extend the framework to guide the 

serverless providers on methods to improve their platforms based on the 

historical trends of SLA compliance. 

5.  Integration with serverless providers 

 As a modular and open-source system, serverless providers can choose how 

to integrate FaaS2F into their platforms, including collection agents' 

technological choices, storage technologies, and machine learning 

classifiers. The customization overhead could present a barrier to some 

cloud operators who do not have the required technical knowledge to 

customize the framework to their needs. We hope to extend FaaS2F in the 

future into an SLA-as-a-Service model that providers can adopt into their 

platforms and leverage when needed. The SLA-aaS will impose no 
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overhead of customizing the framework to integrate with the provider’s 

serverless platform and thus facilitate providers' adoption.  
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